Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-2.6-microblaze.git] / fs / btrfs / zstd.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016-present, Facebook, Inc.
4  * All rights reserved.
5  *
6  */
7
8 #include <linux/bio.h>
9 #include <linux/bitmap.h>
10 #include <linux/err.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/mm.h>
14 #include <linux/sched/mm.h>
15 #include <linux/pagemap.h>
16 #include <linux/refcount.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/zstd.h>
20 #include "compression.h"
21 #include "ctree.h"
22
23 #define ZSTD_BTRFS_MAX_WINDOWLOG 17
24 #define ZSTD_BTRFS_MAX_INPUT (1 << ZSTD_BTRFS_MAX_WINDOWLOG)
25 #define ZSTD_BTRFS_DEFAULT_LEVEL 3
26 #define ZSTD_BTRFS_MAX_LEVEL 15
27 /* 307s to avoid pathologically clashing with transaction commit */
28 #define ZSTD_BTRFS_RECLAIM_JIFFIES (307 * HZ)
29
30 static ZSTD_parameters zstd_get_btrfs_parameters(unsigned int level,
31                                                  size_t src_len)
32 {
33         ZSTD_parameters params = ZSTD_getParams(level, src_len, 0);
34
35         if (params.cParams.windowLog > ZSTD_BTRFS_MAX_WINDOWLOG)
36                 params.cParams.windowLog = ZSTD_BTRFS_MAX_WINDOWLOG;
37         WARN_ON(src_len > ZSTD_BTRFS_MAX_INPUT);
38         return params;
39 }
40
41 struct workspace {
42         void *mem;
43         size_t size;
44         char *buf;
45         unsigned int level;
46         unsigned int req_level;
47         unsigned long last_used; /* jiffies */
48         struct list_head list;
49         struct list_head lru_list;
50         ZSTD_inBuffer in_buf;
51         ZSTD_outBuffer out_buf;
52 };
53
54 /*
55  * Zstd Workspace Management
56  *
57  * Zstd workspaces have different memory requirements depending on the level.
58  * The zstd workspaces are managed by having individual lists for each level
59  * and a global lru.  Forward progress is maintained by protecting a max level
60  * workspace.
61  *
62  * Getting a workspace is done by using the bitmap to identify the levels that
63  * have available workspaces and scans up.  This lets us recycle higher level
64  * workspaces because of the monotonic memory guarantee.  A workspace's
65  * last_used is only updated if it is being used by the corresponding memory
66  * level.  Putting a workspace involves adding it back to the appropriate places
67  * and adding it back to the lru if necessary.
68  *
69  * A timer is used to reclaim workspaces if they have not been used for
70  * ZSTD_BTRFS_RECLAIM_JIFFIES.  This helps keep only active workspaces around.
71  * The upper bound is provided by the workqueue limit which is 2 (percpu limit).
72  */
73
74 struct zstd_workspace_manager {
75         const struct btrfs_compress_op *ops;
76         spinlock_t lock;
77         struct list_head lru_list;
78         struct list_head idle_ws[ZSTD_BTRFS_MAX_LEVEL];
79         unsigned long active_map;
80         wait_queue_head_t wait;
81         struct timer_list timer;
82 };
83
84 static struct zstd_workspace_manager wsm;
85
86 static size_t zstd_ws_mem_sizes[ZSTD_BTRFS_MAX_LEVEL];
87
88 static inline struct workspace *list_to_workspace(struct list_head *list)
89 {
90         return container_of(list, struct workspace, list);
91 }
92
93 /*
94  * zstd_reclaim_timer_fn - reclaim timer
95  * @t: timer
96  *
97  * This scans the lru_list and attempts to reclaim any workspace that hasn't
98  * been used for ZSTD_BTRFS_RECLAIM_JIFFIES.
99  */
100 static void zstd_reclaim_timer_fn(struct timer_list *timer)
101 {
102         unsigned long reclaim_threshold = jiffies - ZSTD_BTRFS_RECLAIM_JIFFIES;
103         struct list_head *pos, *next;
104
105         spin_lock(&wsm.lock);
106
107         if (list_empty(&wsm.lru_list)) {
108                 spin_unlock(&wsm.lock);
109                 return;
110         }
111
112         list_for_each_prev_safe(pos, next, &wsm.lru_list) {
113                 struct workspace *victim = container_of(pos, struct workspace,
114                                                         lru_list);
115                 unsigned int level;
116
117                 if (time_after(victim->last_used, reclaim_threshold))
118                         break;
119
120                 /* workspace is in use */
121                 if (victim->req_level)
122                         continue;
123
124                 level = victim->level;
125                 list_del(&victim->lru_list);
126                 list_del(&victim->list);
127                 wsm.ops->free_workspace(&victim->list);
128
129                 if (list_empty(&wsm.idle_ws[level - 1]))
130                         clear_bit(level - 1, &wsm.active_map);
131
132         }
133
134         if (!list_empty(&wsm.lru_list))
135                 mod_timer(&wsm.timer, jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES);
136
137         spin_unlock(&wsm.lock);
138 }
139
140 /*
141  * zstd_calc_ws_mem_sizes - calculate monotonic memory bounds
142  *
143  * It is possible based on the level configurations that a higher level
144  * workspace uses less memory than a lower level workspace.  In order to reuse
145  * workspaces, this must be made a monotonic relationship.  This precomputes
146  * the required memory for each level and enforces the monotonicity between
147  * level and memory required.
148  */
149 static void zstd_calc_ws_mem_sizes(void)
150 {
151         size_t max_size = 0;
152         unsigned int level;
153
154         for (level = 1; level <= ZSTD_BTRFS_MAX_LEVEL; level++) {
155                 ZSTD_parameters params =
156                         zstd_get_btrfs_parameters(level, ZSTD_BTRFS_MAX_INPUT);
157                 size_t level_size =
158                         max_t(size_t,
159                               ZSTD_CStreamWorkspaceBound(params.cParams),
160                               ZSTD_DStreamWorkspaceBound(ZSTD_BTRFS_MAX_INPUT));
161
162                 max_size = max_t(size_t, max_size, level_size);
163                 zstd_ws_mem_sizes[level - 1] = max_size;
164         }
165 }
166
167 static void zstd_init_workspace_manager(void)
168 {
169         struct list_head *ws;
170         int i;
171
172         zstd_calc_ws_mem_sizes();
173
174         wsm.ops = &btrfs_zstd_compress;
175         spin_lock_init(&wsm.lock);
176         init_waitqueue_head(&wsm.wait);
177         timer_setup(&wsm.timer, zstd_reclaim_timer_fn, 0);
178
179         INIT_LIST_HEAD(&wsm.lru_list);
180         for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++)
181                 INIT_LIST_HEAD(&wsm.idle_ws[i]);
182
183         ws = wsm.ops->alloc_workspace(ZSTD_BTRFS_MAX_LEVEL);
184         if (IS_ERR(ws)) {
185                 pr_warn(
186                 "BTRFS: cannot preallocate zstd compression workspace\n");
187         } else {
188                 set_bit(ZSTD_BTRFS_MAX_LEVEL - 1, &wsm.active_map);
189                 list_add(ws, &wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1]);
190         }
191 }
192
193 static void zstd_cleanup_workspace_manager(void)
194 {
195         struct workspace *workspace;
196         int i;
197
198         del_timer(&wsm.timer);
199
200         for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) {
201                 while (!list_empty(&wsm.idle_ws[i])) {
202                         workspace = container_of(wsm.idle_ws[i].next,
203                                                  struct workspace, list);
204                         list_del(&workspace->list);
205                         list_del(&workspace->lru_list);
206                         wsm.ops->free_workspace(&workspace->list);
207                 }
208         }
209 }
210
211 /*
212  * zstd_find_workspace - find workspace
213  * @level: compression level
214  *
215  * This iterates over the set bits in the active_map beginning at the requested
216  * compression level.  This lets us utilize already allocated workspaces before
217  * allocating a new one.  If the workspace is of a larger size, it is used, but
218  * the place in the lru_list and last_used times are not updated.  This is to
219  * offer the opportunity to reclaim the workspace in favor of allocating an
220  * appropriately sized one in the future.
221  */
222 static struct list_head *zstd_find_workspace(unsigned int level)
223 {
224         struct list_head *ws;
225         struct workspace *workspace;
226         int i = level - 1;
227
228         spin_lock(&wsm.lock);
229         for_each_set_bit_from(i, &wsm.active_map, ZSTD_BTRFS_MAX_LEVEL) {
230                 if (!list_empty(&wsm.idle_ws[i])) {
231                         ws = wsm.idle_ws[i].next;
232                         workspace = list_to_workspace(ws);
233                         list_del_init(ws);
234                         /* keep its place if it's a lower level using this */
235                         workspace->req_level = level;
236                         if (level == workspace->level)
237                                 list_del(&workspace->lru_list);
238                         if (list_empty(&wsm.idle_ws[i]))
239                                 clear_bit(i, &wsm.active_map);
240                         spin_unlock(&wsm.lock);
241                         return ws;
242                 }
243         }
244         spin_unlock(&wsm.lock);
245
246         return NULL;
247 }
248
249 /*
250  * zstd_get_workspace - zstd's get_workspace
251  * @level: compression level
252  *
253  * If @level is 0, then any compression level can be used.  Therefore, we begin
254  * scanning from 1.  We first scan through possible workspaces and then after
255  * attempt to allocate a new workspace.  If we fail to allocate one due to
256  * memory pressure, go to sleep waiting for the max level workspace to free up.
257  */
258 static struct list_head *zstd_get_workspace(unsigned int level)
259 {
260         struct list_head *ws;
261         unsigned int nofs_flag;
262
263         /* level == 0 means we can use any workspace */
264         if (!level)
265                 level = 1;
266
267 again:
268         ws = zstd_find_workspace(level);
269         if (ws)
270                 return ws;
271
272         nofs_flag = memalloc_nofs_save();
273         ws = wsm.ops->alloc_workspace(level);
274         memalloc_nofs_restore(nofs_flag);
275
276         if (IS_ERR(ws)) {
277                 DEFINE_WAIT(wait);
278
279                 prepare_to_wait(&wsm.wait, &wait, TASK_UNINTERRUPTIBLE);
280                 schedule();
281                 finish_wait(&wsm.wait, &wait);
282
283                 goto again;
284         }
285
286         return ws;
287 }
288
289 /*
290  * zstd_put_workspace - zstd put_workspace
291  * @ws: list_head for the workspace
292  *
293  * When putting back a workspace, we only need to update the LRU if we are of
294  * the requested compression level.  Here is where we continue to protect the
295  * max level workspace or update last_used accordingly.  If the reclaim timer
296  * isn't set, it is also set here.  Only the max level workspace tries and wakes
297  * up waiting workspaces.
298  */
299 static void zstd_put_workspace(struct list_head *ws)
300 {
301         struct workspace *workspace = list_to_workspace(ws);
302
303         spin_lock(&wsm.lock);
304
305         /* A node is only taken off the lru if we are the corresponding level */
306         if (workspace->req_level == workspace->level) {
307                 /* Hide a max level workspace from reclaim */
308                 if (list_empty(&wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1])) {
309                         INIT_LIST_HEAD(&workspace->lru_list);
310                 } else {
311                         workspace->last_used = jiffies;
312                         list_add(&workspace->lru_list, &wsm.lru_list);
313                         if (!timer_pending(&wsm.timer))
314                                 mod_timer(&wsm.timer,
315                                           jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES);
316                 }
317         }
318
319         set_bit(workspace->level - 1, &wsm.active_map);
320         list_add(&workspace->list, &wsm.idle_ws[workspace->level - 1]);
321         workspace->req_level = 0;
322
323         spin_unlock(&wsm.lock);
324
325         if (workspace->level == ZSTD_BTRFS_MAX_LEVEL)
326                 cond_wake_up(&wsm.wait);
327 }
328
329 static void zstd_free_workspace(struct list_head *ws)
330 {
331         struct workspace *workspace = list_entry(ws, struct workspace, list);
332
333         kvfree(workspace->mem);
334         kfree(workspace->buf);
335         kfree(workspace);
336 }
337
338 static struct list_head *zstd_alloc_workspace(unsigned int level)
339 {
340         struct workspace *workspace;
341
342         workspace = kzalloc(sizeof(*workspace), GFP_KERNEL);
343         if (!workspace)
344                 return ERR_PTR(-ENOMEM);
345
346         workspace->size = zstd_ws_mem_sizes[level - 1];
347         workspace->level = level;
348         workspace->req_level = level;
349         workspace->last_used = jiffies;
350         workspace->mem = kvmalloc(workspace->size, GFP_KERNEL);
351         workspace->buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
352         if (!workspace->mem || !workspace->buf)
353                 goto fail;
354
355         INIT_LIST_HEAD(&workspace->list);
356         INIT_LIST_HEAD(&workspace->lru_list);
357
358         return &workspace->list;
359 fail:
360         zstd_free_workspace(&workspace->list);
361         return ERR_PTR(-ENOMEM);
362 }
363
364 static int zstd_compress_pages(struct list_head *ws,
365                 struct address_space *mapping,
366                 u64 start,
367                 struct page **pages,
368                 unsigned long *out_pages,
369                 unsigned long *total_in,
370                 unsigned long *total_out)
371 {
372         struct workspace *workspace = list_entry(ws, struct workspace, list);
373         ZSTD_CStream *stream;
374         int ret = 0;
375         int nr_pages = 0;
376         struct page *in_page = NULL;  /* The current page to read */
377         struct page *out_page = NULL; /* The current page to write to */
378         unsigned long tot_in = 0;
379         unsigned long tot_out = 0;
380         unsigned long len = *total_out;
381         const unsigned long nr_dest_pages = *out_pages;
382         unsigned long max_out = nr_dest_pages * PAGE_SIZE;
383         ZSTD_parameters params = zstd_get_btrfs_parameters(workspace->req_level,
384                                                            len);
385
386         *out_pages = 0;
387         *total_out = 0;
388         *total_in = 0;
389
390         /* Initialize the stream */
391         stream = ZSTD_initCStream(params, len, workspace->mem,
392                         workspace->size);
393         if (!stream) {
394                 pr_warn("BTRFS: ZSTD_initCStream failed\n");
395                 ret = -EIO;
396                 goto out;
397         }
398
399         /* map in the first page of input data */
400         in_page = find_get_page(mapping, start >> PAGE_SHIFT);
401         workspace->in_buf.src = kmap(in_page);
402         workspace->in_buf.pos = 0;
403         workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE);
404
405
406         /* Allocate and map in the output buffer */
407         out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
408         if (out_page == NULL) {
409                 ret = -ENOMEM;
410                 goto out;
411         }
412         pages[nr_pages++] = out_page;
413         workspace->out_buf.dst = kmap(out_page);
414         workspace->out_buf.pos = 0;
415         workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE);
416
417         while (1) {
418                 size_t ret2;
419
420                 ret2 = ZSTD_compressStream(stream, &workspace->out_buf,
421                                 &workspace->in_buf);
422                 if (ZSTD_isError(ret2)) {
423                         pr_debug("BTRFS: ZSTD_compressStream returned %d\n",
424                                         ZSTD_getErrorCode(ret2));
425                         ret = -EIO;
426                         goto out;
427                 }
428
429                 /* Check to see if we are making it bigger */
430                 if (tot_in + workspace->in_buf.pos > 8192 &&
431                                 tot_in + workspace->in_buf.pos <
432                                 tot_out + workspace->out_buf.pos) {
433                         ret = -E2BIG;
434                         goto out;
435                 }
436
437                 /* We've reached the end of our output range */
438                 if (workspace->out_buf.pos >= max_out) {
439                         tot_out += workspace->out_buf.pos;
440                         ret = -E2BIG;
441                         goto out;
442                 }
443
444                 /* Check if we need more output space */
445                 if (workspace->out_buf.pos == workspace->out_buf.size) {
446                         tot_out += PAGE_SIZE;
447                         max_out -= PAGE_SIZE;
448                         kunmap(out_page);
449                         if (nr_pages == nr_dest_pages) {
450                                 out_page = NULL;
451                                 ret = -E2BIG;
452                                 goto out;
453                         }
454                         out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
455                         if (out_page == NULL) {
456                                 ret = -ENOMEM;
457                                 goto out;
458                         }
459                         pages[nr_pages++] = out_page;
460                         workspace->out_buf.dst = kmap(out_page);
461                         workspace->out_buf.pos = 0;
462                         workspace->out_buf.size = min_t(size_t, max_out,
463                                                         PAGE_SIZE);
464                 }
465
466                 /* We've reached the end of the input */
467                 if (workspace->in_buf.pos >= len) {
468                         tot_in += workspace->in_buf.pos;
469                         break;
470                 }
471
472                 /* Check if we need more input */
473                 if (workspace->in_buf.pos == workspace->in_buf.size) {
474                         tot_in += PAGE_SIZE;
475                         kunmap(in_page);
476                         put_page(in_page);
477
478                         start += PAGE_SIZE;
479                         len -= PAGE_SIZE;
480                         in_page = find_get_page(mapping, start >> PAGE_SHIFT);
481                         workspace->in_buf.src = kmap(in_page);
482                         workspace->in_buf.pos = 0;
483                         workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE);
484                 }
485         }
486         while (1) {
487                 size_t ret2;
488
489                 ret2 = ZSTD_endStream(stream, &workspace->out_buf);
490                 if (ZSTD_isError(ret2)) {
491                         pr_debug("BTRFS: ZSTD_endStream returned %d\n",
492                                         ZSTD_getErrorCode(ret2));
493                         ret = -EIO;
494                         goto out;
495                 }
496                 if (ret2 == 0) {
497                         tot_out += workspace->out_buf.pos;
498                         break;
499                 }
500                 if (workspace->out_buf.pos >= max_out) {
501                         tot_out += workspace->out_buf.pos;
502                         ret = -E2BIG;
503                         goto out;
504                 }
505
506                 tot_out += PAGE_SIZE;
507                 max_out -= PAGE_SIZE;
508                 kunmap(out_page);
509                 if (nr_pages == nr_dest_pages) {
510                         out_page = NULL;
511                         ret = -E2BIG;
512                         goto out;
513                 }
514                 out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
515                 if (out_page == NULL) {
516                         ret = -ENOMEM;
517                         goto out;
518                 }
519                 pages[nr_pages++] = out_page;
520                 workspace->out_buf.dst = kmap(out_page);
521                 workspace->out_buf.pos = 0;
522                 workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE);
523         }
524
525         if (tot_out >= tot_in) {
526                 ret = -E2BIG;
527                 goto out;
528         }
529
530         ret = 0;
531         *total_in = tot_in;
532         *total_out = tot_out;
533 out:
534         *out_pages = nr_pages;
535         /* Cleanup */
536         if (in_page) {
537                 kunmap(in_page);
538                 put_page(in_page);
539         }
540         if (out_page)
541                 kunmap(out_page);
542         return ret;
543 }
544
545 static int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb)
546 {
547         struct workspace *workspace = list_entry(ws, struct workspace, list);
548         struct page **pages_in = cb->compressed_pages;
549         u64 disk_start = cb->start;
550         struct bio *orig_bio = cb->orig_bio;
551         size_t srclen = cb->compressed_len;
552         ZSTD_DStream *stream;
553         int ret = 0;
554         unsigned long page_in_index = 0;
555         unsigned long total_pages_in = DIV_ROUND_UP(srclen, PAGE_SIZE);
556         unsigned long buf_start;
557         unsigned long total_out = 0;
558
559         stream = ZSTD_initDStream(
560                         ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size);
561         if (!stream) {
562                 pr_debug("BTRFS: ZSTD_initDStream failed\n");
563                 ret = -EIO;
564                 goto done;
565         }
566
567         workspace->in_buf.src = kmap(pages_in[page_in_index]);
568         workspace->in_buf.pos = 0;
569         workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE);
570
571         workspace->out_buf.dst = workspace->buf;
572         workspace->out_buf.pos = 0;
573         workspace->out_buf.size = PAGE_SIZE;
574
575         while (1) {
576                 size_t ret2;
577
578                 ret2 = ZSTD_decompressStream(stream, &workspace->out_buf,
579                                 &workspace->in_buf);
580                 if (ZSTD_isError(ret2)) {
581                         pr_debug("BTRFS: ZSTD_decompressStream returned %d\n",
582                                         ZSTD_getErrorCode(ret2));
583                         ret = -EIO;
584                         goto done;
585                 }
586                 buf_start = total_out;
587                 total_out += workspace->out_buf.pos;
588                 workspace->out_buf.pos = 0;
589
590                 ret = btrfs_decompress_buf2page(workspace->out_buf.dst,
591                                 buf_start, total_out, disk_start, orig_bio);
592                 if (ret == 0)
593                         break;
594
595                 if (workspace->in_buf.pos >= srclen)
596                         break;
597
598                 /* Check if we've hit the end of a frame */
599                 if (ret2 == 0)
600                         break;
601
602                 if (workspace->in_buf.pos == workspace->in_buf.size) {
603                         kunmap(pages_in[page_in_index++]);
604                         if (page_in_index >= total_pages_in) {
605                                 workspace->in_buf.src = NULL;
606                                 ret = -EIO;
607                                 goto done;
608                         }
609                         srclen -= PAGE_SIZE;
610                         workspace->in_buf.src = kmap(pages_in[page_in_index]);
611                         workspace->in_buf.pos = 0;
612                         workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE);
613                 }
614         }
615         ret = 0;
616         zero_fill_bio(orig_bio);
617 done:
618         if (workspace->in_buf.src)
619                 kunmap(pages_in[page_in_index]);
620         return ret;
621 }
622
623 static int zstd_decompress(struct list_head *ws, unsigned char *data_in,
624                 struct page *dest_page,
625                 unsigned long start_byte,
626                 size_t srclen, size_t destlen)
627 {
628         struct workspace *workspace = list_entry(ws, struct workspace, list);
629         ZSTD_DStream *stream;
630         int ret = 0;
631         size_t ret2;
632         unsigned long total_out = 0;
633         unsigned long pg_offset = 0;
634         char *kaddr;
635
636         stream = ZSTD_initDStream(
637                         ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size);
638         if (!stream) {
639                 pr_warn("BTRFS: ZSTD_initDStream failed\n");
640                 ret = -EIO;
641                 goto finish;
642         }
643
644         destlen = min_t(size_t, destlen, PAGE_SIZE);
645
646         workspace->in_buf.src = data_in;
647         workspace->in_buf.pos = 0;
648         workspace->in_buf.size = srclen;
649
650         workspace->out_buf.dst = workspace->buf;
651         workspace->out_buf.pos = 0;
652         workspace->out_buf.size = PAGE_SIZE;
653
654         ret2 = 1;
655         while (pg_offset < destlen
656                && workspace->in_buf.pos < workspace->in_buf.size) {
657                 unsigned long buf_start;
658                 unsigned long buf_offset;
659                 unsigned long bytes;
660
661                 /* Check if the frame is over and we still need more input */
662                 if (ret2 == 0) {
663                         pr_debug("BTRFS: ZSTD_decompressStream ended early\n");
664                         ret = -EIO;
665                         goto finish;
666                 }
667                 ret2 = ZSTD_decompressStream(stream, &workspace->out_buf,
668                                 &workspace->in_buf);
669                 if (ZSTD_isError(ret2)) {
670                         pr_debug("BTRFS: ZSTD_decompressStream returned %d\n",
671                                         ZSTD_getErrorCode(ret2));
672                         ret = -EIO;
673                         goto finish;
674                 }
675
676                 buf_start = total_out;
677                 total_out += workspace->out_buf.pos;
678                 workspace->out_buf.pos = 0;
679
680                 if (total_out <= start_byte)
681                         continue;
682
683                 if (total_out > start_byte && buf_start < start_byte)
684                         buf_offset = start_byte - buf_start;
685                 else
686                         buf_offset = 0;
687
688                 bytes = min_t(unsigned long, destlen - pg_offset,
689                                 workspace->out_buf.size - buf_offset);
690
691                 kaddr = kmap_atomic(dest_page);
692                 memcpy(kaddr + pg_offset, workspace->out_buf.dst + buf_offset,
693                                 bytes);
694                 kunmap_atomic(kaddr);
695
696                 pg_offset += bytes;
697         }
698         ret = 0;
699 finish:
700         if (pg_offset < destlen) {
701                 kaddr = kmap_atomic(dest_page);
702                 memset(kaddr + pg_offset, 0, destlen - pg_offset);
703                 kunmap_atomic(kaddr);
704         }
705         return ret;
706 }
707
708 static unsigned int zstd_set_level(unsigned int level)
709 {
710         if (!level)
711                 return ZSTD_BTRFS_DEFAULT_LEVEL;
712
713         return min_t(unsigned int, level, ZSTD_BTRFS_MAX_LEVEL);
714 }
715
716 const struct btrfs_compress_op btrfs_zstd_compress = {
717         .init_workspace_manager = zstd_init_workspace_manager,
718         .cleanup_workspace_manager = zstd_cleanup_workspace_manager,
719         .get_workspace = zstd_get_workspace,
720         .put_workspace = zstd_put_workspace,
721         .alloc_workspace = zstd_alloc_workspace,
722         .free_workspace = zstd_free_workspace,
723         .compress_pages = zstd_compress_pages,
724         .decompress_bio = zstd_decompress_bio,
725         .decompress = zstd_decompress,
726         .set_level = zstd_set_level,
727 };