ac9bbe0c4ffe691747eb2f9247c2aaa75f65f3b5
[linux-2.6-microblaze.git] / fs / btrfs / zoned.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/blkdev.h>
6 #include <linux/sched/mm.h>
7 #include <linux/atomic.h>
8 #include <linux/vmalloc.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "zoned.h"
12 #include "rcu-string.h"
13 #include "disk-io.h"
14 #include "block-group.h"
15 #include "transaction.h"
16 #include "dev-replace.h"
17 #include "space-info.h"
18 #include "super.h"
19 #include "fs.h"
20 #include "accessors.h"
21 #include "bio.h"
22
23 /* Maximum number of zones to report per blkdev_report_zones() call */
24 #define BTRFS_REPORT_NR_ZONES   4096
25 /* Invalid allocation pointer value for missing devices */
26 #define WP_MISSING_DEV ((u64)-1)
27 /* Pseudo write pointer value for conventional zone */
28 #define WP_CONVENTIONAL ((u64)-2)
29
30 /*
31  * Location of the first zone of superblock logging zone pairs.
32  *
33  * - primary superblock:    0B (zone 0)
34  * - first copy:          512G (zone starting at that offset)
35  * - second copy:           4T (zone starting at that offset)
36  */
37 #define BTRFS_SB_LOG_PRIMARY_OFFSET     (0ULL)
38 #define BTRFS_SB_LOG_FIRST_OFFSET       (512ULL * SZ_1G)
39 #define BTRFS_SB_LOG_SECOND_OFFSET      (4096ULL * SZ_1G)
40
41 #define BTRFS_SB_LOG_FIRST_SHIFT        const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
42 #define BTRFS_SB_LOG_SECOND_SHIFT       const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
43
44 /* Number of superblock log zones */
45 #define BTRFS_NR_SB_LOG_ZONES 2
46
47 /*
48  * Minimum of active zones we need:
49  *
50  * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
51  * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
52  * - 1 zone for tree-log dedicated block group
53  * - 1 zone for relocation
54  */
55 #define BTRFS_MIN_ACTIVE_ZONES          (BTRFS_SUPER_MIRROR_MAX + 5)
56
57 /*
58  * Minimum / maximum supported zone size. Currently, SMR disks have a zone
59  * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
60  * We do not expect the zone size to become larger than 8GiB or smaller than
61  * 4MiB in the near future.
62  */
63 #define BTRFS_MAX_ZONE_SIZE             SZ_8G
64 #define BTRFS_MIN_ZONE_SIZE             SZ_4M
65
66 #define SUPER_INFO_SECTORS      ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
67
68 static void wait_eb_writebacks(struct btrfs_block_group *block_group);
69 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written);
70
71 static inline bool sb_zone_is_full(const struct blk_zone *zone)
72 {
73         return (zone->cond == BLK_ZONE_COND_FULL) ||
74                 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
75 }
76
77 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
78 {
79         struct blk_zone *zones = data;
80
81         memcpy(&zones[idx], zone, sizeof(*zone));
82
83         return 0;
84 }
85
86 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
87                             u64 *wp_ret)
88 {
89         bool empty[BTRFS_NR_SB_LOG_ZONES];
90         bool full[BTRFS_NR_SB_LOG_ZONES];
91         sector_t sector;
92         int i;
93
94         for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
95                 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
96                 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
97                 full[i] = sb_zone_is_full(&zones[i]);
98         }
99
100         /*
101          * Possible states of log buffer zones
102          *
103          *           Empty[0]  In use[0]  Full[0]
104          * Empty[1]         *          0        1
105          * In use[1]        x          x        1
106          * Full[1]          0          0        C
107          *
108          * Log position:
109          *   *: Special case, no superblock is written
110          *   0: Use write pointer of zones[0]
111          *   1: Use write pointer of zones[1]
112          *   C: Compare super blocks from zones[0] and zones[1], use the latest
113          *      one determined by generation
114          *   x: Invalid state
115          */
116
117         if (empty[0] && empty[1]) {
118                 /* Special case to distinguish no superblock to read */
119                 *wp_ret = zones[0].start << SECTOR_SHIFT;
120                 return -ENOENT;
121         } else if (full[0] && full[1]) {
122                 /* Compare two super blocks */
123                 struct address_space *mapping = bdev->bd_inode->i_mapping;
124                 struct page *page[BTRFS_NR_SB_LOG_ZONES];
125                 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
126                 int i;
127
128                 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
129                         u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT;
130                         u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) -
131                                                 BTRFS_SUPER_INFO_SIZE;
132
133                         page[i] = read_cache_page_gfp(mapping,
134                                         bytenr >> PAGE_SHIFT, GFP_NOFS);
135                         if (IS_ERR(page[i])) {
136                                 if (i == 1)
137                                         btrfs_release_disk_super(super[0]);
138                                 return PTR_ERR(page[i]);
139                         }
140                         super[i] = page_address(page[i]);
141                 }
142
143                 if (btrfs_super_generation(super[0]) >
144                     btrfs_super_generation(super[1]))
145                         sector = zones[1].start;
146                 else
147                         sector = zones[0].start;
148
149                 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
150                         btrfs_release_disk_super(super[i]);
151         } else if (!full[0] && (empty[1] || full[1])) {
152                 sector = zones[0].wp;
153         } else if (full[0]) {
154                 sector = zones[1].wp;
155         } else {
156                 return -EUCLEAN;
157         }
158         *wp_ret = sector << SECTOR_SHIFT;
159         return 0;
160 }
161
162 /*
163  * Get the first zone number of the superblock mirror
164  */
165 static inline u32 sb_zone_number(int shift, int mirror)
166 {
167         u64 zone = U64_MAX;
168
169         ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
170         switch (mirror) {
171         case 0: zone = 0; break;
172         case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
173         case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
174         }
175
176         ASSERT(zone <= U32_MAX);
177
178         return (u32)zone;
179 }
180
181 static inline sector_t zone_start_sector(u32 zone_number,
182                                          struct block_device *bdev)
183 {
184         return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
185 }
186
187 static inline u64 zone_start_physical(u32 zone_number,
188                                       struct btrfs_zoned_device_info *zone_info)
189 {
190         return (u64)zone_number << zone_info->zone_size_shift;
191 }
192
193 /*
194  * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
195  * device into static sized chunks and fake a conventional zone on each of
196  * them.
197  */
198 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
199                                 struct blk_zone *zones, unsigned int nr_zones)
200 {
201         const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
202         sector_t bdev_size = bdev_nr_sectors(device->bdev);
203         unsigned int i;
204
205         pos >>= SECTOR_SHIFT;
206         for (i = 0; i < nr_zones; i++) {
207                 zones[i].start = i * zone_sectors + pos;
208                 zones[i].len = zone_sectors;
209                 zones[i].capacity = zone_sectors;
210                 zones[i].wp = zones[i].start + zone_sectors;
211                 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
212                 zones[i].cond = BLK_ZONE_COND_NOT_WP;
213
214                 if (zones[i].wp >= bdev_size) {
215                         i++;
216                         break;
217                 }
218         }
219
220         return i;
221 }
222
223 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
224                                struct blk_zone *zones, unsigned int *nr_zones)
225 {
226         struct btrfs_zoned_device_info *zinfo = device->zone_info;
227         int ret;
228
229         if (!*nr_zones)
230                 return 0;
231
232         if (!bdev_is_zoned(device->bdev)) {
233                 ret = emulate_report_zones(device, pos, zones, *nr_zones);
234                 *nr_zones = ret;
235                 return 0;
236         }
237
238         /* Check cache */
239         if (zinfo->zone_cache) {
240                 unsigned int i;
241                 u32 zno;
242
243                 ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
244                 zno = pos >> zinfo->zone_size_shift;
245                 /*
246                  * We cannot report zones beyond the zone end. So, it is OK to
247                  * cap *nr_zones to at the end.
248                  */
249                 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
250
251                 for (i = 0; i < *nr_zones; i++) {
252                         struct blk_zone *zone_info;
253
254                         zone_info = &zinfo->zone_cache[zno + i];
255                         if (!zone_info->len)
256                                 break;
257                 }
258
259                 if (i == *nr_zones) {
260                         /* Cache hit on all the zones */
261                         memcpy(zones, zinfo->zone_cache + zno,
262                                sizeof(*zinfo->zone_cache) * *nr_zones);
263                         return 0;
264                 }
265         }
266
267         ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
268                                   copy_zone_info_cb, zones);
269         if (ret < 0) {
270                 btrfs_err_in_rcu(device->fs_info,
271                                  "zoned: failed to read zone %llu on %s (devid %llu)",
272                                  pos, rcu_str_deref(device->name),
273                                  device->devid);
274                 return ret;
275         }
276         *nr_zones = ret;
277         if (!ret)
278                 return -EIO;
279
280         /* Populate cache */
281         if (zinfo->zone_cache) {
282                 u32 zno = pos >> zinfo->zone_size_shift;
283
284                 memcpy(zinfo->zone_cache + zno, zones,
285                        sizeof(*zinfo->zone_cache) * *nr_zones);
286         }
287
288         return 0;
289 }
290
291 /* The emulated zone size is determined from the size of device extent */
292 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
293 {
294         struct btrfs_path *path;
295         struct btrfs_root *root = fs_info->dev_root;
296         struct btrfs_key key;
297         struct extent_buffer *leaf;
298         struct btrfs_dev_extent *dext;
299         int ret = 0;
300
301         key.objectid = 1;
302         key.type = BTRFS_DEV_EXTENT_KEY;
303         key.offset = 0;
304
305         path = btrfs_alloc_path();
306         if (!path)
307                 return -ENOMEM;
308
309         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
310         if (ret < 0)
311                 goto out;
312
313         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
314                 ret = btrfs_next_leaf(root, path);
315                 if (ret < 0)
316                         goto out;
317                 /* No dev extents at all? Not good */
318                 if (ret > 0) {
319                         ret = -EUCLEAN;
320                         goto out;
321                 }
322         }
323
324         leaf = path->nodes[0];
325         dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
326         fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
327         ret = 0;
328
329 out:
330         btrfs_free_path(path);
331
332         return ret;
333 }
334
335 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
336 {
337         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
338         struct btrfs_device *device;
339         int ret = 0;
340
341         /* fs_info->zone_size might not set yet. Use the incomapt flag here. */
342         if (!btrfs_fs_incompat(fs_info, ZONED))
343                 return 0;
344
345         mutex_lock(&fs_devices->device_list_mutex);
346         list_for_each_entry(device, &fs_devices->devices, dev_list) {
347                 /* We can skip reading of zone info for missing devices */
348                 if (!device->bdev)
349                         continue;
350
351                 ret = btrfs_get_dev_zone_info(device, true);
352                 if (ret)
353                         break;
354         }
355         mutex_unlock(&fs_devices->device_list_mutex);
356
357         return ret;
358 }
359
360 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
361 {
362         struct btrfs_fs_info *fs_info = device->fs_info;
363         struct btrfs_zoned_device_info *zone_info = NULL;
364         struct block_device *bdev = device->bdev;
365         unsigned int max_active_zones;
366         unsigned int nactive;
367         sector_t nr_sectors;
368         sector_t sector = 0;
369         struct blk_zone *zones = NULL;
370         unsigned int i, nreported = 0, nr_zones;
371         sector_t zone_sectors;
372         char *model, *emulated;
373         int ret;
374
375         /*
376          * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
377          * yet be set.
378          */
379         if (!btrfs_fs_incompat(fs_info, ZONED))
380                 return 0;
381
382         if (device->zone_info)
383                 return 0;
384
385         zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
386         if (!zone_info)
387                 return -ENOMEM;
388
389         device->zone_info = zone_info;
390
391         if (!bdev_is_zoned(bdev)) {
392                 if (!fs_info->zone_size) {
393                         ret = calculate_emulated_zone_size(fs_info);
394                         if (ret)
395                                 goto out;
396                 }
397
398                 ASSERT(fs_info->zone_size);
399                 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
400         } else {
401                 zone_sectors = bdev_zone_sectors(bdev);
402         }
403
404         ASSERT(is_power_of_two_u64(zone_sectors));
405         zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
406
407         /* We reject devices with a zone size larger than 8GB */
408         if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
409                 btrfs_err_in_rcu(fs_info,
410                 "zoned: %s: zone size %llu larger than supported maximum %llu",
411                                  rcu_str_deref(device->name),
412                                  zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
413                 ret = -EINVAL;
414                 goto out;
415         } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
416                 btrfs_err_in_rcu(fs_info,
417                 "zoned: %s: zone size %llu smaller than supported minimum %u",
418                                  rcu_str_deref(device->name),
419                                  zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
420                 ret = -EINVAL;
421                 goto out;
422         }
423
424         nr_sectors = bdev_nr_sectors(bdev);
425         zone_info->zone_size_shift = ilog2(zone_info->zone_size);
426         zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
427         if (!IS_ALIGNED(nr_sectors, zone_sectors))
428                 zone_info->nr_zones++;
429
430         max_active_zones = bdev_max_active_zones(bdev);
431         if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
432                 btrfs_err_in_rcu(fs_info,
433 "zoned: %s: max active zones %u is too small, need at least %u active zones",
434                                  rcu_str_deref(device->name), max_active_zones,
435                                  BTRFS_MIN_ACTIVE_ZONES);
436                 ret = -EINVAL;
437                 goto out;
438         }
439         zone_info->max_active_zones = max_active_zones;
440
441         zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
442         if (!zone_info->seq_zones) {
443                 ret = -ENOMEM;
444                 goto out;
445         }
446
447         zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
448         if (!zone_info->empty_zones) {
449                 ret = -ENOMEM;
450                 goto out;
451         }
452
453         zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
454         if (!zone_info->active_zones) {
455                 ret = -ENOMEM;
456                 goto out;
457         }
458
459         zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
460         if (!zones) {
461                 ret = -ENOMEM;
462                 goto out;
463         }
464
465         /*
466          * Enable zone cache only for a zoned device. On a non-zoned device, we
467          * fill the zone info with emulated CONVENTIONAL zones, so no need to
468          * use the cache.
469          */
470         if (populate_cache && bdev_is_zoned(device->bdev)) {
471                 zone_info->zone_cache = vcalloc(zone_info->nr_zones,
472                                                 sizeof(struct blk_zone));
473                 if (!zone_info->zone_cache) {
474                         btrfs_err_in_rcu(device->fs_info,
475                                 "zoned: failed to allocate zone cache for %s",
476                                 rcu_str_deref(device->name));
477                         ret = -ENOMEM;
478                         goto out;
479                 }
480         }
481
482         /* Get zones type */
483         nactive = 0;
484         while (sector < nr_sectors) {
485                 nr_zones = BTRFS_REPORT_NR_ZONES;
486                 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
487                                           &nr_zones);
488                 if (ret)
489                         goto out;
490
491                 for (i = 0; i < nr_zones; i++) {
492                         if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
493                                 __set_bit(nreported, zone_info->seq_zones);
494                         switch (zones[i].cond) {
495                         case BLK_ZONE_COND_EMPTY:
496                                 __set_bit(nreported, zone_info->empty_zones);
497                                 break;
498                         case BLK_ZONE_COND_IMP_OPEN:
499                         case BLK_ZONE_COND_EXP_OPEN:
500                         case BLK_ZONE_COND_CLOSED:
501                                 __set_bit(nreported, zone_info->active_zones);
502                                 nactive++;
503                                 break;
504                         }
505                         nreported++;
506                 }
507                 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
508         }
509
510         if (nreported != zone_info->nr_zones) {
511                 btrfs_err_in_rcu(device->fs_info,
512                                  "inconsistent number of zones on %s (%u/%u)",
513                                  rcu_str_deref(device->name), nreported,
514                                  zone_info->nr_zones);
515                 ret = -EIO;
516                 goto out;
517         }
518
519         if (max_active_zones) {
520                 if (nactive > max_active_zones) {
521                         btrfs_err_in_rcu(device->fs_info,
522                         "zoned: %u active zones on %s exceeds max_active_zones %u",
523                                          nactive, rcu_str_deref(device->name),
524                                          max_active_zones);
525                         ret = -EIO;
526                         goto out;
527                 }
528                 atomic_set(&zone_info->active_zones_left,
529                            max_active_zones - nactive);
530                 set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags);
531         }
532
533         /* Validate superblock log */
534         nr_zones = BTRFS_NR_SB_LOG_ZONES;
535         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
536                 u32 sb_zone;
537                 u64 sb_wp;
538                 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
539
540                 sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
541                 if (sb_zone + 1 >= zone_info->nr_zones)
542                         continue;
543
544                 ret = btrfs_get_dev_zones(device,
545                                           zone_start_physical(sb_zone, zone_info),
546                                           &zone_info->sb_zones[sb_pos],
547                                           &nr_zones);
548                 if (ret)
549                         goto out;
550
551                 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
552                         btrfs_err_in_rcu(device->fs_info,
553         "zoned: failed to read super block log zone info at devid %llu zone %u",
554                                          device->devid, sb_zone);
555                         ret = -EUCLEAN;
556                         goto out;
557                 }
558
559                 /*
560                  * If zones[0] is conventional, always use the beginning of the
561                  * zone to record superblock. No need to validate in that case.
562                  */
563                 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
564                     BLK_ZONE_TYPE_CONVENTIONAL)
565                         continue;
566
567                 ret = sb_write_pointer(device->bdev,
568                                        &zone_info->sb_zones[sb_pos], &sb_wp);
569                 if (ret != -ENOENT && ret) {
570                         btrfs_err_in_rcu(device->fs_info,
571                         "zoned: super block log zone corrupted devid %llu zone %u",
572                                          device->devid, sb_zone);
573                         ret = -EUCLEAN;
574                         goto out;
575                 }
576         }
577
578
579         kvfree(zones);
580
581         switch (bdev_zoned_model(bdev)) {
582         case BLK_ZONED_HM:
583                 model = "host-managed zoned";
584                 emulated = "";
585                 break;
586         case BLK_ZONED_HA:
587                 model = "host-aware zoned";
588                 emulated = "";
589                 break;
590         case BLK_ZONED_NONE:
591                 model = "regular";
592                 emulated = "emulated ";
593                 break;
594         default:
595                 /* Just in case */
596                 btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
597                                  bdev_zoned_model(bdev),
598                                  rcu_str_deref(device->name));
599                 ret = -EOPNOTSUPP;
600                 goto out_free_zone_info;
601         }
602
603         btrfs_info_in_rcu(fs_info,
604                 "%s block device %s, %u %szones of %llu bytes",
605                 model, rcu_str_deref(device->name), zone_info->nr_zones,
606                 emulated, zone_info->zone_size);
607
608         return 0;
609
610 out:
611         kvfree(zones);
612 out_free_zone_info:
613         btrfs_destroy_dev_zone_info(device);
614
615         return ret;
616 }
617
618 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
619 {
620         struct btrfs_zoned_device_info *zone_info = device->zone_info;
621
622         if (!zone_info)
623                 return;
624
625         bitmap_free(zone_info->active_zones);
626         bitmap_free(zone_info->seq_zones);
627         bitmap_free(zone_info->empty_zones);
628         vfree(zone_info->zone_cache);
629         kfree(zone_info);
630         device->zone_info = NULL;
631 }
632
633 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
634 {
635         struct btrfs_zoned_device_info *zone_info;
636
637         zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
638         if (!zone_info)
639                 return NULL;
640
641         zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
642         if (!zone_info->seq_zones)
643                 goto out;
644
645         bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
646                     zone_info->nr_zones);
647
648         zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
649         if (!zone_info->empty_zones)
650                 goto out;
651
652         bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
653                     zone_info->nr_zones);
654
655         zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
656         if (!zone_info->active_zones)
657                 goto out;
658
659         bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
660                     zone_info->nr_zones);
661         zone_info->zone_cache = NULL;
662
663         return zone_info;
664
665 out:
666         bitmap_free(zone_info->seq_zones);
667         bitmap_free(zone_info->empty_zones);
668         bitmap_free(zone_info->active_zones);
669         kfree(zone_info);
670         return NULL;
671 }
672
673 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
674                        struct blk_zone *zone)
675 {
676         unsigned int nr_zones = 1;
677         int ret;
678
679         ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
680         if (ret != 0 || !nr_zones)
681                 return ret ? ret : -EIO;
682
683         return 0;
684 }
685
686 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
687 {
688         struct btrfs_device *device;
689
690         list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
691                 if (device->bdev &&
692                     bdev_zoned_model(device->bdev) == BLK_ZONED_HM) {
693                         btrfs_err(fs_info,
694                                 "zoned: mode not enabled but zoned device found: %pg",
695                                 device->bdev);
696                         return -EINVAL;
697                 }
698         }
699
700         return 0;
701 }
702
703 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
704 {
705         struct queue_limits *lim = &fs_info->limits;
706         struct btrfs_device *device;
707         u64 zone_size = 0;
708         int ret;
709
710         /*
711          * Host-Managed devices can't be used without the ZONED flag.  With the
712          * ZONED all devices can be used, using zone emulation if required.
713          */
714         if (!btrfs_fs_incompat(fs_info, ZONED))
715                 return btrfs_check_for_zoned_device(fs_info);
716
717         blk_set_stacking_limits(lim);
718
719         list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
720                 struct btrfs_zoned_device_info *zone_info = device->zone_info;
721
722                 if (!device->bdev)
723                         continue;
724
725                 if (!zone_size) {
726                         zone_size = zone_info->zone_size;
727                 } else if (zone_info->zone_size != zone_size) {
728                         btrfs_err(fs_info,
729                 "zoned: unequal block device zone sizes: have %llu found %llu",
730                                   zone_info->zone_size, zone_size);
731                         return -EINVAL;
732                 }
733
734                 /*
735                  * With the zoned emulation, we can have non-zoned device on the
736                  * zoned mode. In this case, we don't have a valid max zone
737                  * append size.
738                  */
739                 if (bdev_is_zoned(device->bdev)) {
740                         blk_stack_limits(lim,
741                                          &bdev_get_queue(device->bdev)->limits,
742                                          0);
743                 }
744         }
745
746         /*
747          * stripe_size is always aligned to BTRFS_STRIPE_LEN in
748          * btrfs_create_chunk(). Since we want stripe_len == zone_size,
749          * check the alignment here.
750          */
751         if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
752                 btrfs_err(fs_info,
753                           "zoned: zone size %llu not aligned to stripe %u",
754                           zone_size, BTRFS_STRIPE_LEN);
755                 return -EINVAL;
756         }
757
758         if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
759                 btrfs_err(fs_info, "zoned: mixed block groups not supported");
760                 return -EINVAL;
761         }
762
763         fs_info->zone_size = zone_size;
764         /*
765          * Also limit max_zone_append_size by max_segments * PAGE_SIZE.
766          * Technically, we can have multiple pages per segment. But, since
767          * we add the pages one by one to a bio, and cannot increase the
768          * metadata reservation even if it increases the number of extents, it
769          * is safe to stick with the limit.
770          */
771         fs_info->max_zone_append_size = ALIGN_DOWN(
772                 min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT,
773                      (u64)lim->max_sectors << SECTOR_SHIFT,
774                      (u64)lim->max_segments << PAGE_SHIFT),
775                 fs_info->sectorsize);
776         fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
777         if (fs_info->max_zone_append_size < fs_info->max_extent_size)
778                 fs_info->max_extent_size = fs_info->max_zone_append_size;
779
780         /*
781          * Check mount options here, because we might change fs_info->zoned
782          * from fs_info->zone_size.
783          */
784         ret = btrfs_check_mountopts_zoned(fs_info, &fs_info->mount_opt);
785         if (ret)
786                 return ret;
787
788         btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
789         return 0;
790 }
791
792 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info, unsigned long *mount_opt)
793 {
794         if (!btrfs_is_zoned(info))
795                 return 0;
796
797         /*
798          * Space cache writing is not COWed. Disable that to avoid write errors
799          * in sequential zones.
800          */
801         if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
802                 btrfs_err(info, "zoned: space cache v1 is not supported");
803                 return -EINVAL;
804         }
805
806         if (btrfs_raw_test_opt(*mount_opt, NODATACOW)) {
807                 btrfs_err(info, "zoned: NODATACOW not supported");
808                 return -EINVAL;
809         }
810
811         if (btrfs_raw_test_opt(*mount_opt, DISCARD_ASYNC)) {
812                 btrfs_info(info,
813                            "zoned: async discard ignored and disabled for zoned mode");
814                 btrfs_clear_opt(*mount_opt, DISCARD_ASYNC);
815         }
816
817         return 0;
818 }
819
820 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
821                            int rw, u64 *bytenr_ret)
822 {
823         u64 wp;
824         int ret;
825
826         if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
827                 *bytenr_ret = zones[0].start << SECTOR_SHIFT;
828                 return 0;
829         }
830
831         ret = sb_write_pointer(bdev, zones, &wp);
832         if (ret != -ENOENT && ret < 0)
833                 return ret;
834
835         if (rw == WRITE) {
836                 struct blk_zone *reset = NULL;
837
838                 if (wp == zones[0].start << SECTOR_SHIFT)
839                         reset = &zones[0];
840                 else if (wp == zones[1].start << SECTOR_SHIFT)
841                         reset = &zones[1];
842
843                 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
844                         ASSERT(sb_zone_is_full(reset));
845
846                         ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
847                                                reset->start, reset->len,
848                                                GFP_NOFS);
849                         if (ret)
850                                 return ret;
851
852                         reset->cond = BLK_ZONE_COND_EMPTY;
853                         reset->wp = reset->start;
854                 }
855         } else if (ret != -ENOENT) {
856                 /*
857                  * For READ, we want the previous one. Move write pointer to
858                  * the end of a zone, if it is at the head of a zone.
859                  */
860                 u64 zone_end = 0;
861
862                 if (wp == zones[0].start << SECTOR_SHIFT)
863                         zone_end = zones[1].start + zones[1].capacity;
864                 else if (wp == zones[1].start << SECTOR_SHIFT)
865                         zone_end = zones[0].start + zones[0].capacity;
866                 if (zone_end)
867                         wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
868                                         BTRFS_SUPER_INFO_SIZE);
869
870                 wp -= BTRFS_SUPER_INFO_SIZE;
871         }
872
873         *bytenr_ret = wp;
874         return 0;
875
876 }
877
878 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
879                                u64 *bytenr_ret)
880 {
881         struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
882         sector_t zone_sectors;
883         u32 sb_zone;
884         int ret;
885         u8 zone_sectors_shift;
886         sector_t nr_sectors;
887         u32 nr_zones;
888
889         if (!bdev_is_zoned(bdev)) {
890                 *bytenr_ret = btrfs_sb_offset(mirror);
891                 return 0;
892         }
893
894         ASSERT(rw == READ || rw == WRITE);
895
896         zone_sectors = bdev_zone_sectors(bdev);
897         if (!is_power_of_2(zone_sectors))
898                 return -EINVAL;
899         zone_sectors_shift = ilog2(zone_sectors);
900         nr_sectors = bdev_nr_sectors(bdev);
901         nr_zones = nr_sectors >> zone_sectors_shift;
902
903         sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
904         if (sb_zone + 1 >= nr_zones)
905                 return -ENOENT;
906
907         ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
908                                   BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
909                                   zones);
910         if (ret < 0)
911                 return ret;
912         if (ret != BTRFS_NR_SB_LOG_ZONES)
913                 return -EIO;
914
915         return sb_log_location(bdev, zones, rw, bytenr_ret);
916 }
917
918 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
919                           u64 *bytenr_ret)
920 {
921         struct btrfs_zoned_device_info *zinfo = device->zone_info;
922         u32 zone_num;
923
924         /*
925          * For a zoned filesystem on a non-zoned block device, use the same
926          * super block locations as regular filesystem. Doing so, the super
927          * block can always be retrieved and the zoned flag of the volume
928          * detected from the super block information.
929          */
930         if (!bdev_is_zoned(device->bdev)) {
931                 *bytenr_ret = btrfs_sb_offset(mirror);
932                 return 0;
933         }
934
935         zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
936         if (zone_num + 1 >= zinfo->nr_zones)
937                 return -ENOENT;
938
939         return sb_log_location(device->bdev,
940                                &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
941                                rw, bytenr_ret);
942 }
943
944 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
945                                   int mirror)
946 {
947         u32 zone_num;
948
949         if (!zinfo)
950                 return false;
951
952         zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
953         if (zone_num + 1 >= zinfo->nr_zones)
954                 return false;
955
956         if (!test_bit(zone_num, zinfo->seq_zones))
957                 return false;
958
959         return true;
960 }
961
962 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
963 {
964         struct btrfs_zoned_device_info *zinfo = device->zone_info;
965         struct blk_zone *zone;
966         int i;
967
968         if (!is_sb_log_zone(zinfo, mirror))
969                 return 0;
970
971         zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
972         for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
973                 /* Advance the next zone */
974                 if (zone->cond == BLK_ZONE_COND_FULL) {
975                         zone++;
976                         continue;
977                 }
978
979                 if (zone->cond == BLK_ZONE_COND_EMPTY)
980                         zone->cond = BLK_ZONE_COND_IMP_OPEN;
981
982                 zone->wp += SUPER_INFO_SECTORS;
983
984                 if (sb_zone_is_full(zone)) {
985                         /*
986                          * No room left to write new superblock. Since
987                          * superblock is written with REQ_SYNC, it is safe to
988                          * finish the zone now.
989                          *
990                          * If the write pointer is exactly at the capacity,
991                          * explicit ZONE_FINISH is not necessary.
992                          */
993                         if (zone->wp != zone->start + zone->capacity) {
994                                 int ret;
995
996                                 ret = blkdev_zone_mgmt(device->bdev,
997                                                 REQ_OP_ZONE_FINISH, zone->start,
998                                                 zone->len, GFP_NOFS);
999                                 if (ret)
1000                                         return ret;
1001                         }
1002
1003                         zone->wp = zone->start + zone->len;
1004                         zone->cond = BLK_ZONE_COND_FULL;
1005                 }
1006                 return 0;
1007         }
1008
1009         /* All the zones are FULL. Should not reach here. */
1010         ASSERT(0);
1011         return -EIO;
1012 }
1013
1014 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
1015 {
1016         sector_t zone_sectors;
1017         sector_t nr_sectors;
1018         u8 zone_sectors_shift;
1019         u32 sb_zone;
1020         u32 nr_zones;
1021
1022         zone_sectors = bdev_zone_sectors(bdev);
1023         zone_sectors_shift = ilog2(zone_sectors);
1024         nr_sectors = bdev_nr_sectors(bdev);
1025         nr_zones = nr_sectors >> zone_sectors_shift;
1026
1027         sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1028         if (sb_zone + 1 >= nr_zones)
1029                 return -ENOENT;
1030
1031         return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1032                                 zone_start_sector(sb_zone, bdev),
1033                                 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
1034 }
1035
1036 /*
1037  * Find allocatable zones within a given region.
1038  *
1039  * @device:     the device to allocate a region on
1040  * @hole_start: the position of the hole to allocate the region
1041  * @num_bytes:  size of wanted region
1042  * @hole_end:   the end of the hole
1043  * @return:     position of allocatable zones
1044  *
1045  * Allocatable region should not contain any superblock locations.
1046  */
1047 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1048                                  u64 hole_end, u64 num_bytes)
1049 {
1050         struct btrfs_zoned_device_info *zinfo = device->zone_info;
1051         const u8 shift = zinfo->zone_size_shift;
1052         u64 nzones = num_bytes >> shift;
1053         u64 pos = hole_start;
1054         u64 begin, end;
1055         bool have_sb;
1056         int i;
1057
1058         ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1059         ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1060
1061         while (pos < hole_end) {
1062                 begin = pos >> shift;
1063                 end = begin + nzones;
1064
1065                 if (end > zinfo->nr_zones)
1066                         return hole_end;
1067
1068                 /* Check if zones in the region are all empty */
1069                 if (btrfs_dev_is_sequential(device, pos) &&
1070                     !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) {
1071                         pos += zinfo->zone_size;
1072                         continue;
1073                 }
1074
1075                 have_sb = false;
1076                 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1077                         u32 sb_zone;
1078                         u64 sb_pos;
1079
1080                         sb_zone = sb_zone_number(shift, i);
1081                         if (!(end <= sb_zone ||
1082                               sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1083                                 have_sb = true;
1084                                 pos = zone_start_physical(
1085                                         sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1086                                 break;
1087                         }
1088
1089                         /* We also need to exclude regular superblock positions */
1090                         sb_pos = btrfs_sb_offset(i);
1091                         if (!(pos + num_bytes <= sb_pos ||
1092                               sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1093                                 have_sb = true;
1094                                 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1095                                             zinfo->zone_size);
1096                                 break;
1097                         }
1098                 }
1099                 if (!have_sb)
1100                         break;
1101         }
1102
1103         return pos;
1104 }
1105
1106 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1107 {
1108         struct btrfs_zoned_device_info *zone_info = device->zone_info;
1109         unsigned int zno = (pos >> zone_info->zone_size_shift);
1110
1111         /* We can use any number of zones */
1112         if (zone_info->max_active_zones == 0)
1113                 return true;
1114
1115         if (!test_bit(zno, zone_info->active_zones)) {
1116                 /* Active zone left? */
1117                 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1118                         return false;
1119                 if (test_and_set_bit(zno, zone_info->active_zones)) {
1120                         /* Someone already set the bit */
1121                         atomic_inc(&zone_info->active_zones_left);
1122                 }
1123         }
1124
1125         return true;
1126 }
1127
1128 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1129 {
1130         struct btrfs_zoned_device_info *zone_info = device->zone_info;
1131         unsigned int zno = (pos >> zone_info->zone_size_shift);
1132
1133         /* We can use any number of zones */
1134         if (zone_info->max_active_zones == 0)
1135                 return;
1136
1137         if (test_and_clear_bit(zno, zone_info->active_zones))
1138                 atomic_inc(&zone_info->active_zones_left);
1139 }
1140
1141 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1142                             u64 length, u64 *bytes)
1143 {
1144         int ret;
1145
1146         *bytes = 0;
1147         ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1148                                physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1149                                GFP_NOFS);
1150         if (ret)
1151                 return ret;
1152
1153         *bytes = length;
1154         while (length) {
1155                 btrfs_dev_set_zone_empty(device, physical);
1156                 btrfs_dev_clear_active_zone(device, physical);
1157                 physical += device->zone_info->zone_size;
1158                 length -= device->zone_info->zone_size;
1159         }
1160
1161         return 0;
1162 }
1163
1164 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1165 {
1166         struct btrfs_zoned_device_info *zinfo = device->zone_info;
1167         const u8 shift = zinfo->zone_size_shift;
1168         unsigned long begin = start >> shift;
1169         unsigned long nbits = size >> shift;
1170         u64 pos;
1171         int ret;
1172
1173         ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1174         ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1175
1176         if (begin + nbits > zinfo->nr_zones)
1177                 return -ERANGE;
1178
1179         /* All the zones are conventional */
1180         if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits))
1181                 return 0;
1182
1183         /* All the zones are sequential and empty */
1184         if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) &&
1185             bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits))
1186                 return 0;
1187
1188         for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1189                 u64 reset_bytes;
1190
1191                 if (!btrfs_dev_is_sequential(device, pos) ||
1192                     btrfs_dev_is_empty_zone(device, pos))
1193                         continue;
1194
1195                 /* Free regions should be empty */
1196                 btrfs_warn_in_rcu(
1197                         device->fs_info,
1198                 "zoned: resetting device %s (devid %llu) zone %llu for allocation",
1199                         rcu_str_deref(device->name), device->devid, pos >> shift);
1200                 WARN_ON_ONCE(1);
1201
1202                 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1203                                               &reset_bytes);
1204                 if (ret)
1205                         return ret;
1206         }
1207
1208         return 0;
1209 }
1210
1211 /*
1212  * Calculate an allocation pointer from the extent allocation information
1213  * for a block group consist of conventional zones. It is pointed to the
1214  * end of the highest addressed extent in the block group as an allocation
1215  * offset.
1216  */
1217 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1218                                    u64 *offset_ret, bool new)
1219 {
1220         struct btrfs_fs_info *fs_info = cache->fs_info;
1221         struct btrfs_root *root;
1222         struct btrfs_path *path;
1223         struct btrfs_key key;
1224         struct btrfs_key found_key;
1225         int ret;
1226         u64 length;
1227
1228         /*
1229          * Avoid  tree lookups for a new block group, there's no use for it.
1230          * It must always be 0.
1231          *
1232          * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1233          * For new a block group, this function is called from
1234          * btrfs_make_block_group() which is already taking the chunk mutex.
1235          * Thus, we cannot call calculate_alloc_pointer() which takes extent
1236          * buffer locks to avoid deadlock.
1237          */
1238         if (new) {
1239                 *offset_ret = 0;
1240                 return 0;
1241         }
1242
1243         path = btrfs_alloc_path();
1244         if (!path)
1245                 return -ENOMEM;
1246
1247         key.objectid = cache->start + cache->length;
1248         key.type = 0;
1249         key.offset = 0;
1250
1251         root = btrfs_extent_root(fs_info, key.objectid);
1252         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1253         /* We should not find the exact match */
1254         if (!ret)
1255                 ret = -EUCLEAN;
1256         if (ret < 0)
1257                 goto out;
1258
1259         ret = btrfs_previous_extent_item(root, path, cache->start);
1260         if (ret) {
1261                 if (ret == 1) {
1262                         ret = 0;
1263                         *offset_ret = 0;
1264                 }
1265                 goto out;
1266         }
1267
1268         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1269
1270         if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1271                 length = found_key.offset;
1272         else
1273                 length = fs_info->nodesize;
1274
1275         if (!(found_key.objectid >= cache->start &&
1276                found_key.objectid + length <= cache->start + cache->length)) {
1277                 ret = -EUCLEAN;
1278                 goto out;
1279         }
1280         *offset_ret = found_key.objectid + length - cache->start;
1281         ret = 0;
1282
1283 out:
1284         btrfs_free_path(path);
1285         return ret;
1286 }
1287
1288 struct zone_info {
1289         u64 physical;
1290         u64 capacity;
1291         u64 alloc_offset;
1292 };
1293
1294 static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx,
1295                                 struct zone_info *info, unsigned long *active,
1296                                 struct btrfs_chunk_map *map)
1297 {
1298         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1299         struct btrfs_device *device = map->stripes[zone_idx].dev;
1300         int dev_replace_is_ongoing = 0;
1301         unsigned int nofs_flag;
1302         struct blk_zone zone;
1303         int ret;
1304
1305         info->physical = map->stripes[zone_idx].physical;
1306
1307         if (!device->bdev) {
1308                 info->alloc_offset = WP_MISSING_DEV;
1309                 return 0;
1310         }
1311
1312         /* Consider a zone as active if we can allow any number of active zones. */
1313         if (!device->zone_info->max_active_zones)
1314                 __set_bit(zone_idx, active);
1315
1316         if (!btrfs_dev_is_sequential(device, info->physical)) {
1317                 info->alloc_offset = WP_CONVENTIONAL;
1318                 return 0;
1319         }
1320
1321         /* This zone will be used for allocation, so mark this zone non-empty. */
1322         btrfs_dev_clear_zone_empty(device, info->physical);
1323
1324         down_read(&dev_replace->rwsem);
1325         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1326         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1327                 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, info->physical);
1328         up_read(&dev_replace->rwsem);
1329
1330         /*
1331          * The group is mapped to a sequential zone. Get the zone write pointer
1332          * to determine the allocation offset within the zone.
1333          */
1334         WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size));
1335         nofs_flag = memalloc_nofs_save();
1336         ret = btrfs_get_dev_zone(device, info->physical, &zone);
1337         memalloc_nofs_restore(nofs_flag);
1338         if (ret) {
1339                 if (ret != -EIO && ret != -EOPNOTSUPP)
1340                         return ret;
1341                 info->alloc_offset = WP_MISSING_DEV;
1342                 return 0;
1343         }
1344
1345         if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1346                 btrfs_err_in_rcu(fs_info,
1347                 "zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1348                         zone.start << SECTOR_SHIFT, rcu_str_deref(device->name),
1349                         device->devid);
1350                 return -EIO;
1351         }
1352
1353         info->capacity = (zone.capacity << SECTOR_SHIFT);
1354
1355         switch (zone.cond) {
1356         case BLK_ZONE_COND_OFFLINE:
1357         case BLK_ZONE_COND_READONLY:
1358                 btrfs_err(fs_info,
1359                 "zoned: offline/readonly zone %llu on device %s (devid %llu)",
1360                           (info->physical >> device->zone_info->zone_size_shift),
1361                           rcu_str_deref(device->name), device->devid);
1362                 info->alloc_offset = WP_MISSING_DEV;
1363                 break;
1364         case BLK_ZONE_COND_EMPTY:
1365                 info->alloc_offset = 0;
1366                 break;
1367         case BLK_ZONE_COND_FULL:
1368                 info->alloc_offset = info->capacity;
1369                 break;
1370         default:
1371                 /* Partially used zone. */
1372                 info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT);
1373                 __set_bit(zone_idx, active);
1374                 break;
1375         }
1376
1377         return 0;
1378 }
1379
1380 static int btrfs_load_block_group_single(struct btrfs_block_group *bg,
1381                                          struct zone_info *info,
1382                                          unsigned long *active)
1383 {
1384         if (info->alloc_offset == WP_MISSING_DEV) {
1385                 btrfs_err(bg->fs_info,
1386                         "zoned: cannot recover write pointer for zone %llu",
1387                         info->physical);
1388                 return -EIO;
1389         }
1390
1391         bg->alloc_offset = info->alloc_offset;
1392         bg->zone_capacity = info->capacity;
1393         if (test_bit(0, active))
1394                 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1395         return 0;
1396 }
1397
1398 static int btrfs_load_block_group_dup(struct btrfs_block_group *bg,
1399                                       struct btrfs_chunk_map *map,
1400                                       struct zone_info *zone_info,
1401                                       unsigned long *active)
1402 {
1403         struct btrfs_fs_info *fs_info = bg->fs_info;
1404
1405         if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1406                 btrfs_err(fs_info, "zoned: data DUP profile needs raid-stripe-tree");
1407                 return -EINVAL;
1408         }
1409
1410         if (zone_info[0].alloc_offset == WP_MISSING_DEV) {
1411                 btrfs_err(bg->fs_info,
1412                           "zoned: cannot recover write pointer for zone %llu",
1413                           zone_info[0].physical);
1414                 return -EIO;
1415         }
1416         if (zone_info[1].alloc_offset == WP_MISSING_DEV) {
1417                 btrfs_err(bg->fs_info,
1418                           "zoned: cannot recover write pointer for zone %llu",
1419                           zone_info[1].physical);
1420                 return -EIO;
1421         }
1422         if (zone_info[0].alloc_offset != zone_info[1].alloc_offset) {
1423                 btrfs_err(bg->fs_info,
1424                           "zoned: write pointer offset mismatch of zones in DUP profile");
1425                 return -EIO;
1426         }
1427
1428         if (test_bit(0, active) != test_bit(1, active)) {
1429                 if (!btrfs_zone_activate(bg))
1430                         return -EIO;
1431         } else if (test_bit(0, active)) {
1432                 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1433         }
1434
1435         bg->alloc_offset = zone_info[0].alloc_offset;
1436         bg->zone_capacity = min(zone_info[0].capacity, zone_info[1].capacity);
1437         return 0;
1438 }
1439
1440 static int btrfs_load_block_group_raid1(struct btrfs_block_group *bg,
1441                                         struct btrfs_chunk_map *map,
1442                                         struct zone_info *zone_info,
1443                                         unsigned long *active)
1444 {
1445         struct btrfs_fs_info *fs_info = bg->fs_info;
1446         int i;
1447
1448         if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1449                 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1450                           btrfs_bg_type_to_raid_name(map->type));
1451                 return -EINVAL;
1452         }
1453
1454         for (i = 0; i < map->num_stripes; i++) {
1455                 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1456                     zone_info[i].alloc_offset == WP_CONVENTIONAL)
1457                         continue;
1458
1459                 if ((zone_info[0].alloc_offset != zone_info[i].alloc_offset) &&
1460                     !btrfs_test_opt(fs_info, DEGRADED)) {
1461                         btrfs_err(fs_info,
1462                         "zoned: write pointer offset mismatch of zones in %s profile",
1463                                   btrfs_bg_type_to_raid_name(map->type));
1464                         return -EIO;
1465                 }
1466                 if (test_bit(0, active) != test_bit(i, active)) {
1467                         if (!btrfs_test_opt(fs_info, DEGRADED) &&
1468                             !btrfs_zone_activate(bg)) {
1469                                 return -EIO;
1470                         }
1471                 } else {
1472                         if (test_bit(0, active))
1473                                 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1474                 }
1475                 /* In case a device is missing we have a cap of 0, so don't use it. */
1476                 bg->zone_capacity = min_not_zero(zone_info[0].capacity,
1477                                                  zone_info[1].capacity);
1478         }
1479
1480         if (zone_info[0].alloc_offset != WP_MISSING_DEV)
1481                 bg->alloc_offset = zone_info[0].alloc_offset;
1482         else
1483                 bg->alloc_offset = zone_info[i - 1].alloc_offset;
1484
1485         return 0;
1486 }
1487
1488 static int btrfs_load_block_group_raid0(struct btrfs_block_group *bg,
1489                                         struct btrfs_chunk_map *map,
1490                                         struct zone_info *zone_info,
1491                                         unsigned long *active)
1492 {
1493         struct btrfs_fs_info *fs_info = bg->fs_info;
1494
1495         if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1496                 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1497                           btrfs_bg_type_to_raid_name(map->type));
1498                 return -EINVAL;
1499         }
1500
1501         for (int i = 0; i < map->num_stripes; i++) {
1502                 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1503                     zone_info[i].alloc_offset == WP_CONVENTIONAL)
1504                         continue;
1505
1506                 if (test_bit(0, active) != test_bit(i, active)) {
1507                         if (!btrfs_zone_activate(bg))
1508                                 return -EIO;
1509                 } else {
1510                         if (test_bit(0, active))
1511                                 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1512                 }
1513                 bg->zone_capacity += zone_info[i].capacity;
1514                 bg->alloc_offset += zone_info[i].alloc_offset;
1515         }
1516
1517         return 0;
1518 }
1519
1520 static int btrfs_load_block_group_raid10(struct btrfs_block_group *bg,
1521                                          struct btrfs_chunk_map *map,
1522                                          struct zone_info *zone_info,
1523                                          unsigned long *active)
1524 {
1525         struct btrfs_fs_info *fs_info = bg->fs_info;
1526
1527         if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1528                 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1529                           btrfs_bg_type_to_raid_name(map->type));
1530                 return -EINVAL;
1531         }
1532
1533         for (int i = 0; i < map->num_stripes; i++) {
1534                 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1535                     zone_info[i].alloc_offset == WP_CONVENTIONAL)
1536                         continue;
1537
1538                 if (test_bit(0, active) != test_bit(i, active)) {
1539                         if (!btrfs_zone_activate(bg))
1540                                 return -EIO;
1541                 } else {
1542                         if (test_bit(0, active))
1543                                 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1544                 }
1545
1546                 if ((i % map->sub_stripes) == 0) {
1547                         bg->zone_capacity += zone_info[i].capacity;
1548                         bg->alloc_offset += zone_info[i].alloc_offset;
1549                 }
1550         }
1551
1552         return 0;
1553 }
1554
1555 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1556 {
1557         struct btrfs_fs_info *fs_info = cache->fs_info;
1558         struct btrfs_chunk_map *map;
1559         u64 logical = cache->start;
1560         u64 length = cache->length;
1561         struct zone_info *zone_info = NULL;
1562         int ret;
1563         int i;
1564         unsigned long *active = NULL;
1565         u64 last_alloc = 0;
1566         u32 num_sequential = 0, num_conventional = 0;
1567
1568         if (!btrfs_is_zoned(fs_info))
1569                 return 0;
1570
1571         /* Sanity check */
1572         if (!IS_ALIGNED(length, fs_info->zone_size)) {
1573                 btrfs_err(fs_info,
1574                 "zoned: block group %llu len %llu unaligned to zone size %llu",
1575                           logical, length, fs_info->zone_size);
1576                 return -EIO;
1577         }
1578
1579         map = btrfs_find_chunk_map(fs_info, logical, length);
1580         if (!map)
1581                 return -EINVAL;
1582
1583         cache->physical_map = btrfs_clone_chunk_map(map, GFP_NOFS);
1584         if (!cache->physical_map) {
1585                 ret = -ENOMEM;
1586                 goto out;
1587         }
1588
1589         zone_info = kcalloc(map->num_stripes, sizeof(*zone_info), GFP_NOFS);
1590         if (!zone_info) {
1591                 ret = -ENOMEM;
1592                 goto out;
1593         }
1594
1595         active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1596         if (!active) {
1597                 ret = -ENOMEM;
1598                 goto out;
1599         }
1600
1601         for (i = 0; i < map->num_stripes; i++) {
1602                 ret = btrfs_load_zone_info(fs_info, i, &zone_info[i], active, map);
1603                 if (ret)
1604                         goto out;
1605
1606                 if (zone_info[i].alloc_offset == WP_CONVENTIONAL)
1607                         num_conventional++;
1608                 else
1609                         num_sequential++;
1610         }
1611
1612         if (num_sequential > 0)
1613                 set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1614
1615         if (num_conventional > 0) {
1616                 /* Zone capacity is always zone size in emulation */
1617                 cache->zone_capacity = cache->length;
1618                 ret = calculate_alloc_pointer(cache, &last_alloc, new);
1619                 if (ret) {
1620                         btrfs_err(fs_info,
1621                         "zoned: failed to determine allocation offset of bg %llu",
1622                                   cache->start);
1623                         goto out;
1624                 } else if (map->num_stripes == num_conventional) {
1625                         cache->alloc_offset = last_alloc;
1626                         set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1627                         goto out;
1628                 }
1629         }
1630
1631         switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1632         case 0: /* single */
1633                 ret = btrfs_load_block_group_single(cache, &zone_info[0], active);
1634                 break;
1635         case BTRFS_BLOCK_GROUP_DUP:
1636                 ret = btrfs_load_block_group_dup(cache, map, zone_info, active);
1637                 break;
1638         case BTRFS_BLOCK_GROUP_RAID1:
1639         case BTRFS_BLOCK_GROUP_RAID1C3:
1640         case BTRFS_BLOCK_GROUP_RAID1C4:
1641                 ret = btrfs_load_block_group_raid1(cache, map, zone_info, active);
1642                 break;
1643         case BTRFS_BLOCK_GROUP_RAID0:
1644                 ret = btrfs_load_block_group_raid0(cache, map, zone_info, active);
1645                 break;
1646         case BTRFS_BLOCK_GROUP_RAID10:
1647                 ret = btrfs_load_block_group_raid10(cache, map, zone_info, active);
1648                 break;
1649         case BTRFS_BLOCK_GROUP_RAID5:
1650         case BTRFS_BLOCK_GROUP_RAID6:
1651         default:
1652                 btrfs_err(fs_info, "zoned: profile %s not yet supported",
1653                           btrfs_bg_type_to_raid_name(map->type));
1654                 ret = -EINVAL;
1655                 goto out;
1656         }
1657
1658 out:
1659         if (cache->alloc_offset > cache->zone_capacity) {
1660                 btrfs_err(fs_info,
1661 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1662                           cache->alloc_offset, cache->zone_capacity,
1663                           cache->start);
1664                 ret = -EIO;
1665         }
1666
1667         /* An extent is allocated after the write pointer */
1668         if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1669                 btrfs_err(fs_info,
1670                           "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1671                           logical, last_alloc, cache->alloc_offset);
1672                 ret = -EIO;
1673         }
1674
1675         if (!ret) {
1676                 cache->meta_write_pointer = cache->alloc_offset + cache->start;
1677                 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1678                         btrfs_get_block_group(cache);
1679                         spin_lock(&fs_info->zone_active_bgs_lock);
1680                         list_add_tail(&cache->active_bg_list,
1681                                       &fs_info->zone_active_bgs);
1682                         spin_unlock(&fs_info->zone_active_bgs_lock);
1683                 }
1684         } else {
1685                 btrfs_free_chunk_map(cache->physical_map);
1686                 cache->physical_map = NULL;
1687         }
1688         bitmap_free(active);
1689         kfree(zone_info);
1690
1691         return ret;
1692 }
1693
1694 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1695 {
1696         u64 unusable, free;
1697
1698         if (!btrfs_is_zoned(cache->fs_info))
1699                 return;
1700
1701         WARN_ON(cache->bytes_super != 0);
1702         unusable = (cache->alloc_offset - cache->used) +
1703                    (cache->length - cache->zone_capacity);
1704         free = cache->zone_capacity - cache->alloc_offset;
1705
1706         /* We only need ->free_space in ALLOC_SEQ block groups */
1707         cache->cached = BTRFS_CACHE_FINISHED;
1708         cache->free_space_ctl->free_space = free;
1709         cache->zone_unusable = unusable;
1710 }
1711
1712 bool btrfs_use_zone_append(struct btrfs_bio *bbio)
1713 {
1714         u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT);
1715         struct btrfs_inode *inode = bbio->inode;
1716         struct btrfs_fs_info *fs_info = bbio->fs_info;
1717         struct btrfs_block_group *cache;
1718         bool ret = false;
1719
1720         if (!btrfs_is_zoned(fs_info))
1721                 return false;
1722
1723         if (!inode || !is_data_inode(&inode->vfs_inode))
1724                 return false;
1725
1726         if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE)
1727                 return false;
1728
1729         /*
1730          * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1731          * extent layout the relocation code has.
1732          * Furthermore we have set aside own block-group from which only the
1733          * relocation "process" can allocate and make sure only one process at a
1734          * time can add pages to an extent that gets relocated, so it's safe to
1735          * use regular REQ_OP_WRITE for this special case.
1736          */
1737         if (btrfs_is_data_reloc_root(inode->root))
1738                 return false;
1739
1740         cache = btrfs_lookup_block_group(fs_info, start);
1741         ASSERT(cache);
1742         if (!cache)
1743                 return false;
1744
1745         ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1746         btrfs_put_block_group(cache);
1747
1748         return ret;
1749 }
1750
1751 void btrfs_record_physical_zoned(struct btrfs_bio *bbio)
1752 {
1753         const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
1754         struct btrfs_ordered_sum *sum = bbio->sums;
1755
1756         if (physical < bbio->orig_physical)
1757                 sum->logical -= bbio->orig_physical - physical;
1758         else
1759                 sum->logical += physical - bbio->orig_physical;
1760 }
1761
1762 static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered,
1763                                         u64 logical)
1764 {
1765         struct extent_map_tree *em_tree = &BTRFS_I(ordered->inode)->extent_tree;
1766         struct extent_map *em;
1767
1768         ordered->disk_bytenr = logical;
1769
1770         write_lock(&em_tree->lock);
1771         em = search_extent_mapping(em_tree, ordered->file_offset,
1772                                    ordered->num_bytes);
1773         em->block_start = logical;
1774         free_extent_map(em);
1775         write_unlock(&em_tree->lock);
1776 }
1777
1778 static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered,
1779                                       u64 logical, u64 len)
1780 {
1781         struct btrfs_ordered_extent *new;
1782
1783         if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
1784             split_extent_map(BTRFS_I(ordered->inode), ordered->file_offset,
1785                              ordered->num_bytes, len, logical))
1786                 return false;
1787
1788         new = btrfs_split_ordered_extent(ordered, len);
1789         if (IS_ERR(new))
1790                 return false;
1791         new->disk_bytenr = logical;
1792         btrfs_finish_one_ordered(new);
1793         return true;
1794 }
1795
1796 void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered)
1797 {
1798         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1799         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1800         struct btrfs_ordered_sum *sum;
1801         u64 logical, len;
1802
1803         /*
1804          * Write to pre-allocated region is for the data relocation, and so
1805          * it should use WRITE operation. No split/rewrite are necessary.
1806          */
1807         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
1808                 return;
1809
1810         ASSERT(!list_empty(&ordered->list));
1811         /* The ordered->list can be empty in the above pre-alloc case. */
1812         sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list);
1813         logical = sum->logical;
1814         len = sum->len;
1815
1816         while (len < ordered->disk_num_bytes) {
1817                 sum = list_next_entry(sum, list);
1818                 if (sum->logical == logical + len) {
1819                         len += sum->len;
1820                         continue;
1821                 }
1822                 if (!btrfs_zoned_split_ordered(ordered, logical, len)) {
1823                         set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
1824                         btrfs_err(fs_info, "failed to split ordered extent");
1825                         goto out;
1826                 }
1827                 logical = sum->logical;
1828                 len = sum->len;
1829         }
1830
1831         if (ordered->disk_bytenr != logical)
1832                 btrfs_rewrite_logical_zoned(ordered, logical);
1833
1834 out:
1835         /*
1836          * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures
1837          * were allocated by btrfs_alloc_dummy_sum only to record the logical
1838          * addresses and don't contain actual checksums.  We thus must free them
1839          * here so that we don't attempt to log the csums later.
1840          */
1841         if ((inode->flags & BTRFS_INODE_NODATASUM) ||
1842             test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) {
1843                 while ((sum = list_first_entry_or_null(&ordered->list,
1844                                                        typeof(*sum), list))) {
1845                         list_del(&sum->list);
1846                         kfree(sum);
1847                 }
1848         }
1849 }
1850
1851 static bool check_bg_is_active(struct btrfs_eb_write_context *ctx,
1852                                struct btrfs_block_group **active_bg)
1853 {
1854         const struct writeback_control *wbc = ctx->wbc;
1855         struct btrfs_block_group *block_group = ctx->zoned_bg;
1856         struct btrfs_fs_info *fs_info = block_group->fs_info;
1857
1858         if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1859                 return true;
1860
1861         if (fs_info->treelog_bg == block_group->start) {
1862                 if (!btrfs_zone_activate(block_group)) {
1863                         int ret_fin = btrfs_zone_finish_one_bg(fs_info);
1864
1865                         if (ret_fin != 1 || !btrfs_zone_activate(block_group))
1866                                 return false;
1867                 }
1868         } else if (*active_bg != block_group) {
1869                 struct btrfs_block_group *tgt = *active_bg;
1870
1871                 /* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */
1872                 lockdep_assert_held(&fs_info->zoned_meta_io_lock);
1873
1874                 if (tgt) {
1875                         /*
1876                          * If there is an unsent IO left in the allocated area,
1877                          * we cannot wait for them as it may cause a deadlock.
1878                          */
1879                         if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) {
1880                                 if (wbc->sync_mode == WB_SYNC_NONE ||
1881                                     (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync))
1882                                         return false;
1883                         }
1884
1885                         /* Pivot active metadata/system block group. */
1886                         btrfs_zoned_meta_io_unlock(fs_info);
1887                         wait_eb_writebacks(tgt);
1888                         do_zone_finish(tgt, true);
1889                         btrfs_zoned_meta_io_lock(fs_info);
1890                         if (*active_bg == tgt) {
1891                                 btrfs_put_block_group(tgt);
1892                                 *active_bg = NULL;
1893                         }
1894                 }
1895                 if (!btrfs_zone_activate(block_group))
1896                         return false;
1897                 if (*active_bg != block_group) {
1898                         ASSERT(*active_bg == NULL);
1899                         *active_bg = block_group;
1900                         btrfs_get_block_group(block_group);
1901                 }
1902         }
1903
1904         return true;
1905 }
1906
1907 /*
1908  * Check if @ctx->eb is aligned to the write pointer.
1909  *
1910  * Return:
1911  *   0:        @ctx->eb is at the write pointer. You can write it.
1912  *   -EAGAIN:  There is a hole. The caller should handle the case.
1913  *   -EBUSY:   There is a hole, but the caller can just bail out.
1914  */
1915 int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1916                                    struct btrfs_eb_write_context *ctx)
1917 {
1918         const struct writeback_control *wbc = ctx->wbc;
1919         const struct extent_buffer *eb = ctx->eb;
1920         struct btrfs_block_group *block_group = ctx->zoned_bg;
1921
1922         if (!btrfs_is_zoned(fs_info))
1923                 return 0;
1924
1925         if (block_group) {
1926                 if (block_group->start > eb->start ||
1927                     block_group->start + block_group->length <= eb->start) {
1928                         btrfs_put_block_group(block_group);
1929                         block_group = NULL;
1930                         ctx->zoned_bg = NULL;
1931                 }
1932         }
1933
1934         if (!block_group) {
1935                 block_group = btrfs_lookup_block_group(fs_info, eb->start);
1936                 if (!block_group)
1937                         return 0;
1938                 ctx->zoned_bg = block_group;
1939         }
1940
1941         if (block_group->meta_write_pointer == eb->start) {
1942                 struct btrfs_block_group **tgt;
1943
1944                 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
1945                         return 0;
1946
1947                 if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)
1948                         tgt = &fs_info->active_system_bg;
1949                 else
1950                         tgt = &fs_info->active_meta_bg;
1951                 if (check_bg_is_active(ctx, tgt))
1952                         return 0;
1953         }
1954
1955         /*
1956          * Since we may release fs_info->zoned_meta_io_lock, someone can already
1957          * start writing this eb. In that case, we can just bail out.
1958          */
1959         if (block_group->meta_write_pointer > eb->start)
1960                 return -EBUSY;
1961
1962         /* If for_sync, this hole will be filled with trasnsaction commit. */
1963         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
1964                 return -EAGAIN;
1965         return -EBUSY;
1966 }
1967
1968 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1969 {
1970         if (!btrfs_dev_is_sequential(device, physical))
1971                 return -EOPNOTSUPP;
1972
1973         return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1974                                     length >> SECTOR_SHIFT, GFP_NOFS, 0);
1975 }
1976
1977 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1978                           struct blk_zone *zone)
1979 {
1980         struct btrfs_io_context *bioc = NULL;
1981         u64 mapped_length = PAGE_SIZE;
1982         unsigned int nofs_flag;
1983         int nmirrors;
1984         int i, ret;
1985
1986         ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1987                               &mapped_length, &bioc, NULL, NULL);
1988         if (ret || !bioc || mapped_length < PAGE_SIZE) {
1989                 ret = -EIO;
1990                 goto out_put_bioc;
1991         }
1992
1993         if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1994                 ret = -EINVAL;
1995                 goto out_put_bioc;
1996         }
1997
1998         nofs_flag = memalloc_nofs_save();
1999         nmirrors = (int)bioc->num_stripes;
2000         for (i = 0; i < nmirrors; i++) {
2001                 u64 physical = bioc->stripes[i].physical;
2002                 struct btrfs_device *dev = bioc->stripes[i].dev;
2003
2004                 /* Missing device */
2005                 if (!dev->bdev)
2006                         continue;
2007
2008                 ret = btrfs_get_dev_zone(dev, physical, zone);
2009                 /* Failing device */
2010                 if (ret == -EIO || ret == -EOPNOTSUPP)
2011                         continue;
2012                 break;
2013         }
2014         memalloc_nofs_restore(nofs_flag);
2015 out_put_bioc:
2016         btrfs_put_bioc(bioc);
2017         return ret;
2018 }
2019
2020 /*
2021  * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
2022  * filling zeros between @physical_pos to a write pointer of dev-replace
2023  * source device.
2024  */
2025 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
2026                                     u64 physical_start, u64 physical_pos)
2027 {
2028         struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
2029         struct blk_zone zone;
2030         u64 length;
2031         u64 wp;
2032         int ret;
2033
2034         if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
2035                 return 0;
2036
2037         ret = read_zone_info(fs_info, logical, &zone);
2038         if (ret)
2039                 return ret;
2040
2041         wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
2042
2043         if (physical_pos == wp)
2044                 return 0;
2045
2046         if (physical_pos > wp)
2047                 return -EUCLEAN;
2048
2049         length = wp - physical_pos;
2050         return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
2051 }
2052
2053 /*
2054  * Activate block group and underlying device zones
2055  *
2056  * @block_group: the block group to activate
2057  *
2058  * Return: true on success, false otherwise
2059  */
2060 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
2061 {
2062         struct btrfs_fs_info *fs_info = block_group->fs_info;
2063         struct btrfs_chunk_map *map;
2064         struct btrfs_device *device;
2065         u64 physical;
2066         const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA);
2067         bool ret;
2068         int i;
2069
2070         if (!btrfs_is_zoned(block_group->fs_info))
2071                 return true;
2072
2073         map = block_group->physical_map;
2074
2075         spin_lock(&fs_info->zone_active_bgs_lock);
2076         spin_lock(&block_group->lock);
2077         if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2078                 ret = true;
2079                 goto out_unlock;
2080         }
2081
2082         /* No space left */
2083         if (btrfs_zoned_bg_is_full(block_group)) {
2084                 ret = false;
2085                 goto out_unlock;
2086         }
2087
2088         for (i = 0; i < map->num_stripes; i++) {
2089                 struct btrfs_zoned_device_info *zinfo;
2090                 int reserved = 0;
2091
2092                 device = map->stripes[i].dev;
2093                 physical = map->stripes[i].physical;
2094                 zinfo = device->zone_info;
2095
2096                 if (zinfo->max_active_zones == 0)
2097                         continue;
2098
2099                 if (is_data)
2100                         reserved = zinfo->reserved_active_zones;
2101                 /*
2102                  * For the data block group, leave active zones for one
2103                  * metadata block group and one system block group.
2104                  */
2105                 if (atomic_read(&zinfo->active_zones_left) <= reserved) {
2106                         ret = false;
2107                         goto out_unlock;
2108                 }
2109
2110                 if (!btrfs_dev_set_active_zone(device, physical)) {
2111                         /* Cannot activate the zone */
2112                         ret = false;
2113                         goto out_unlock;
2114                 }
2115                 if (!is_data)
2116                         zinfo->reserved_active_zones--;
2117         }
2118
2119         /* Successfully activated all the zones */
2120         set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2121         spin_unlock(&block_group->lock);
2122
2123         /* For the active block group list */
2124         btrfs_get_block_group(block_group);
2125         list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
2126         spin_unlock(&fs_info->zone_active_bgs_lock);
2127
2128         return true;
2129
2130 out_unlock:
2131         spin_unlock(&block_group->lock);
2132         spin_unlock(&fs_info->zone_active_bgs_lock);
2133         return ret;
2134 }
2135
2136 static void wait_eb_writebacks(struct btrfs_block_group *block_group)
2137 {
2138         struct btrfs_fs_info *fs_info = block_group->fs_info;
2139         const u64 end = block_group->start + block_group->length;
2140         struct radix_tree_iter iter;
2141         struct extent_buffer *eb;
2142         void __rcu **slot;
2143
2144         rcu_read_lock();
2145         radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
2146                                  block_group->start >> fs_info->sectorsize_bits) {
2147                 eb = radix_tree_deref_slot(slot);
2148                 if (!eb)
2149                         continue;
2150                 if (radix_tree_deref_retry(eb)) {
2151                         slot = radix_tree_iter_retry(&iter);
2152                         continue;
2153                 }
2154
2155                 if (eb->start < block_group->start)
2156                         continue;
2157                 if (eb->start >= end)
2158                         break;
2159
2160                 slot = radix_tree_iter_resume(slot, &iter);
2161                 rcu_read_unlock();
2162                 wait_on_extent_buffer_writeback(eb);
2163                 rcu_read_lock();
2164         }
2165         rcu_read_unlock();
2166 }
2167
2168 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
2169 {
2170         struct btrfs_fs_info *fs_info = block_group->fs_info;
2171         struct btrfs_chunk_map *map;
2172         const bool is_metadata = (block_group->flags &
2173                         (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
2174         int ret = 0;
2175         int i;
2176
2177         spin_lock(&block_group->lock);
2178         if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2179                 spin_unlock(&block_group->lock);
2180                 return 0;
2181         }
2182
2183         /* Check if we have unwritten allocated space */
2184         if (is_metadata &&
2185             block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
2186                 spin_unlock(&block_group->lock);
2187                 return -EAGAIN;
2188         }
2189
2190         /*
2191          * If we are sure that the block group is full (= no more room left for
2192          * new allocation) and the IO for the last usable block is completed, we
2193          * don't need to wait for the other IOs. This holds because we ensure
2194          * the sequential IO submissions using the ZONE_APPEND command for data
2195          * and block_group->meta_write_pointer for metadata.
2196          */
2197         if (!fully_written) {
2198                 if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2199                         spin_unlock(&block_group->lock);
2200                         return -EAGAIN;
2201                 }
2202                 spin_unlock(&block_group->lock);
2203
2204                 ret = btrfs_inc_block_group_ro(block_group, false);
2205                 if (ret)
2206                         return ret;
2207
2208                 /* Ensure all writes in this block group finish */
2209                 btrfs_wait_block_group_reservations(block_group);
2210                 /* No need to wait for NOCOW writers. Zoned mode does not allow that */
2211                 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
2212                                          block_group->length);
2213                 /* Wait for extent buffers to be written. */
2214                 if (is_metadata)
2215                         wait_eb_writebacks(block_group);
2216
2217                 spin_lock(&block_group->lock);
2218
2219                 /*
2220                  * Bail out if someone already deactivated the block group, or
2221                  * allocated space is left in the block group.
2222                  */
2223                 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2224                               &block_group->runtime_flags)) {
2225                         spin_unlock(&block_group->lock);
2226                         btrfs_dec_block_group_ro(block_group);
2227                         return 0;
2228                 }
2229
2230                 if (block_group->reserved ||
2231                     test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2232                              &block_group->runtime_flags)) {
2233                         spin_unlock(&block_group->lock);
2234                         btrfs_dec_block_group_ro(block_group);
2235                         return -EAGAIN;
2236                 }
2237         }
2238
2239         clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2240         block_group->alloc_offset = block_group->zone_capacity;
2241         if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))
2242                 block_group->meta_write_pointer = block_group->start +
2243                                                   block_group->zone_capacity;
2244         block_group->free_space_ctl->free_space = 0;
2245         btrfs_clear_treelog_bg(block_group);
2246         btrfs_clear_data_reloc_bg(block_group);
2247         spin_unlock(&block_group->lock);
2248
2249         map = block_group->physical_map;
2250         for (i = 0; i < map->num_stripes; i++) {
2251                 struct btrfs_device *device = map->stripes[i].dev;
2252                 const u64 physical = map->stripes[i].physical;
2253                 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2254
2255                 if (zinfo->max_active_zones == 0)
2256                         continue;
2257
2258                 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2259                                        physical >> SECTOR_SHIFT,
2260                                        zinfo->zone_size >> SECTOR_SHIFT,
2261                                        GFP_NOFS);
2262
2263                 if (ret)
2264                         return ret;
2265
2266                 if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA))
2267                         zinfo->reserved_active_zones++;
2268                 btrfs_dev_clear_active_zone(device, physical);
2269         }
2270
2271         if (!fully_written)
2272                 btrfs_dec_block_group_ro(block_group);
2273
2274         spin_lock(&fs_info->zone_active_bgs_lock);
2275         ASSERT(!list_empty(&block_group->active_bg_list));
2276         list_del_init(&block_group->active_bg_list);
2277         spin_unlock(&fs_info->zone_active_bgs_lock);
2278
2279         /* For active_bg_list */
2280         btrfs_put_block_group(block_group);
2281
2282         clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2283
2284         return 0;
2285 }
2286
2287 int btrfs_zone_finish(struct btrfs_block_group *block_group)
2288 {
2289         if (!btrfs_is_zoned(block_group->fs_info))
2290                 return 0;
2291
2292         return do_zone_finish(block_group, false);
2293 }
2294
2295 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2296 {
2297         struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2298         struct btrfs_device *device;
2299         bool ret = false;
2300
2301         if (!btrfs_is_zoned(fs_info))
2302                 return true;
2303
2304         /* Check if there is a device with active zones left */
2305         mutex_lock(&fs_info->chunk_mutex);
2306         spin_lock(&fs_info->zone_active_bgs_lock);
2307         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2308                 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2309                 int reserved = 0;
2310
2311                 if (!device->bdev)
2312                         continue;
2313
2314                 if (!zinfo->max_active_zones) {
2315                         ret = true;
2316                         break;
2317                 }
2318
2319                 if (flags & BTRFS_BLOCK_GROUP_DATA)
2320                         reserved = zinfo->reserved_active_zones;
2321
2322                 switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
2323                 case 0: /* single */
2324                         ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved));
2325                         break;
2326                 case BTRFS_BLOCK_GROUP_DUP:
2327                         ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved));
2328                         break;
2329                 }
2330                 if (ret)
2331                         break;
2332         }
2333         spin_unlock(&fs_info->zone_active_bgs_lock);
2334         mutex_unlock(&fs_info->chunk_mutex);
2335
2336         if (!ret)
2337                 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2338
2339         return ret;
2340 }
2341
2342 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2343 {
2344         struct btrfs_block_group *block_group;
2345         u64 min_alloc_bytes;
2346
2347         if (!btrfs_is_zoned(fs_info))
2348                 return;
2349
2350         block_group = btrfs_lookup_block_group(fs_info, logical);
2351         ASSERT(block_group);
2352
2353         /* No MIXED_BG on zoned btrfs. */
2354         if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2355                 min_alloc_bytes = fs_info->sectorsize;
2356         else
2357                 min_alloc_bytes = fs_info->nodesize;
2358
2359         /* Bail out if we can allocate more data from this block group. */
2360         if (logical + length + min_alloc_bytes <=
2361             block_group->start + block_group->zone_capacity)
2362                 goto out;
2363
2364         do_zone_finish(block_group, true);
2365
2366 out:
2367         btrfs_put_block_group(block_group);
2368 }
2369
2370 static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2371 {
2372         struct btrfs_block_group *bg =
2373                 container_of(work, struct btrfs_block_group, zone_finish_work);
2374
2375         wait_on_extent_buffer_writeback(bg->last_eb);
2376         free_extent_buffer(bg->last_eb);
2377         btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2378         btrfs_put_block_group(bg);
2379 }
2380
2381 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2382                                    struct extent_buffer *eb)
2383 {
2384         if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2385             eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2386                 return;
2387
2388         if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2389                 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2390                           bg->start);
2391                 return;
2392         }
2393
2394         /* For the work */
2395         btrfs_get_block_group(bg);
2396         atomic_inc(&eb->refs);
2397         bg->last_eb = eb;
2398         INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2399         queue_work(system_unbound_wq, &bg->zone_finish_work);
2400 }
2401
2402 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2403 {
2404         struct btrfs_fs_info *fs_info = bg->fs_info;
2405
2406         spin_lock(&fs_info->relocation_bg_lock);
2407         if (fs_info->data_reloc_bg == bg->start)
2408                 fs_info->data_reloc_bg = 0;
2409         spin_unlock(&fs_info->relocation_bg_lock);
2410 }
2411
2412 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2413 {
2414         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2415         struct btrfs_device *device;
2416
2417         if (!btrfs_is_zoned(fs_info))
2418                 return;
2419
2420         mutex_lock(&fs_devices->device_list_mutex);
2421         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2422                 if (device->zone_info) {
2423                         vfree(device->zone_info->zone_cache);
2424                         device->zone_info->zone_cache = NULL;
2425                 }
2426         }
2427         mutex_unlock(&fs_devices->device_list_mutex);
2428 }
2429
2430 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2431 {
2432         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2433         struct btrfs_device *device;
2434         u64 used = 0;
2435         u64 total = 0;
2436         u64 factor;
2437
2438         ASSERT(btrfs_is_zoned(fs_info));
2439
2440         if (fs_info->bg_reclaim_threshold == 0)
2441                 return false;
2442
2443         mutex_lock(&fs_devices->device_list_mutex);
2444         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2445                 if (!device->bdev)
2446                         continue;
2447
2448                 total += device->disk_total_bytes;
2449                 used += device->bytes_used;
2450         }
2451         mutex_unlock(&fs_devices->device_list_mutex);
2452
2453         factor = div64_u64(used * 100, total);
2454         return factor >= fs_info->bg_reclaim_threshold;
2455 }
2456
2457 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2458                                        u64 length)
2459 {
2460         struct btrfs_block_group *block_group;
2461
2462         if (!btrfs_is_zoned(fs_info))
2463                 return;
2464
2465         block_group = btrfs_lookup_block_group(fs_info, logical);
2466         /* It should be called on a previous data relocation block group. */
2467         ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2468
2469         spin_lock(&block_group->lock);
2470         if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2471                 goto out;
2472
2473         /* All relocation extents are written. */
2474         if (block_group->start + block_group->alloc_offset == logical + length) {
2475                 /*
2476                  * Now, release this block group for further allocations and
2477                  * zone finish.
2478                  */
2479                 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2480                           &block_group->runtime_flags);
2481         }
2482
2483 out:
2484         spin_unlock(&block_group->lock);
2485         btrfs_put_block_group(block_group);
2486 }
2487
2488 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2489 {
2490         struct btrfs_block_group *block_group;
2491         struct btrfs_block_group *min_bg = NULL;
2492         u64 min_avail = U64_MAX;
2493         int ret;
2494
2495         spin_lock(&fs_info->zone_active_bgs_lock);
2496         list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2497                             active_bg_list) {
2498                 u64 avail;
2499
2500                 spin_lock(&block_group->lock);
2501                 if (block_group->reserved || block_group->alloc_offset == 0 ||
2502                     (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) ||
2503                     test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2504                         spin_unlock(&block_group->lock);
2505                         continue;
2506                 }
2507
2508                 avail = block_group->zone_capacity - block_group->alloc_offset;
2509                 if (min_avail > avail) {
2510                         if (min_bg)
2511                                 btrfs_put_block_group(min_bg);
2512                         min_bg = block_group;
2513                         min_avail = avail;
2514                         btrfs_get_block_group(min_bg);
2515                 }
2516                 spin_unlock(&block_group->lock);
2517         }
2518         spin_unlock(&fs_info->zone_active_bgs_lock);
2519
2520         if (!min_bg)
2521                 return 0;
2522
2523         ret = btrfs_zone_finish(min_bg);
2524         btrfs_put_block_group(min_bg);
2525
2526         return ret < 0 ? ret : 1;
2527 }
2528
2529 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2530                                 struct btrfs_space_info *space_info,
2531                                 bool do_finish)
2532 {
2533         struct btrfs_block_group *bg;
2534         int index;
2535
2536         if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2537                 return 0;
2538
2539         for (;;) {
2540                 int ret;
2541                 bool need_finish = false;
2542
2543                 down_read(&space_info->groups_sem);
2544                 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2545                         list_for_each_entry(bg, &space_info->block_groups[index],
2546                                             list) {
2547                                 if (!spin_trylock(&bg->lock))
2548                                         continue;
2549                                 if (btrfs_zoned_bg_is_full(bg) ||
2550                                     test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2551                                              &bg->runtime_flags)) {
2552                                         spin_unlock(&bg->lock);
2553                                         continue;
2554                                 }
2555                                 spin_unlock(&bg->lock);
2556
2557                                 if (btrfs_zone_activate(bg)) {
2558                                         up_read(&space_info->groups_sem);
2559                                         return 1;
2560                                 }
2561
2562                                 need_finish = true;
2563                         }
2564                 }
2565                 up_read(&space_info->groups_sem);
2566
2567                 if (!do_finish || !need_finish)
2568                         break;
2569
2570                 ret = btrfs_zone_finish_one_bg(fs_info);
2571                 if (ret == 0)
2572                         break;
2573                 if (ret < 0)
2574                         return ret;
2575         }
2576
2577         return 0;
2578 }
2579
2580 /*
2581  * Reserve zones for one metadata block group, one tree-log block group, and one
2582  * system block group.
2583  */
2584 void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info)
2585 {
2586         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2587         struct btrfs_block_group *block_group;
2588         struct btrfs_device *device;
2589         /* Reserve zones for normal SINGLE metadata and tree-log block group. */
2590         unsigned int metadata_reserve = 2;
2591         /* Reserve a zone for SINGLE system block group. */
2592         unsigned int system_reserve = 1;
2593
2594         if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
2595                 return;
2596
2597         /*
2598          * This function is called from the mount context. So, there is no
2599          * parallel process touching the bits. No need for read_seqretry().
2600          */
2601         if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2602                 metadata_reserve = 4;
2603         if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2604                 system_reserve = 2;
2605
2606         /* Apply the reservation on all the devices. */
2607         mutex_lock(&fs_devices->device_list_mutex);
2608         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2609                 if (!device->bdev)
2610                         continue;
2611
2612                 device->zone_info->reserved_active_zones =
2613                         metadata_reserve + system_reserve;
2614         }
2615         mutex_unlock(&fs_devices->device_list_mutex);
2616
2617         /* Release reservation for currently active block groups. */
2618         spin_lock(&fs_info->zone_active_bgs_lock);
2619         list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
2620                 struct btrfs_chunk_map *map = block_group->physical_map;
2621
2622                 if (!(block_group->flags &
2623                       (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)))
2624                         continue;
2625
2626                 for (int i = 0; i < map->num_stripes; i++)
2627                         map->stripes[i].dev->zone_info->reserved_active_zones--;
2628         }
2629         spin_unlock(&fs_info->zone_active_bgs_lock);
2630 }