Merge tag 'kbuild-fixes-v6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/masahi...
[linux-2.6-microblaze.git] / fs / btrfs / zoned.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/blkdev.h>
6 #include <linux/sched/mm.h>
7 #include <linux/atomic.h>
8 #include <linux/vmalloc.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "zoned.h"
12 #include "rcu-string.h"
13 #include "disk-io.h"
14 #include "block-group.h"
15 #include "transaction.h"
16 #include "dev-replace.h"
17 #include "space-info.h"
18 #include "super.h"
19 #include "fs.h"
20 #include "accessors.h"
21 #include "bio.h"
22
23 /* Maximum number of zones to report per blkdev_report_zones() call */
24 #define BTRFS_REPORT_NR_ZONES   4096
25 /* Invalid allocation pointer value for missing devices */
26 #define WP_MISSING_DEV ((u64)-1)
27 /* Pseudo write pointer value for conventional zone */
28 #define WP_CONVENTIONAL ((u64)-2)
29
30 /*
31  * Location of the first zone of superblock logging zone pairs.
32  *
33  * - primary superblock:    0B (zone 0)
34  * - first copy:          512G (zone starting at that offset)
35  * - second copy:           4T (zone starting at that offset)
36  */
37 #define BTRFS_SB_LOG_PRIMARY_OFFSET     (0ULL)
38 #define BTRFS_SB_LOG_FIRST_OFFSET       (512ULL * SZ_1G)
39 #define BTRFS_SB_LOG_SECOND_OFFSET      (4096ULL * SZ_1G)
40
41 #define BTRFS_SB_LOG_FIRST_SHIFT        const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
42 #define BTRFS_SB_LOG_SECOND_SHIFT       const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
43
44 /* Number of superblock log zones */
45 #define BTRFS_NR_SB_LOG_ZONES 2
46
47 /*
48  * Minimum of active zones we need:
49  *
50  * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
51  * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
52  * - 1 zone for tree-log dedicated block group
53  * - 1 zone for relocation
54  */
55 #define BTRFS_MIN_ACTIVE_ZONES          (BTRFS_SUPER_MIRROR_MAX + 5)
56
57 /*
58  * Minimum / maximum supported zone size. Currently, SMR disks have a zone
59  * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
60  * We do not expect the zone size to become larger than 8GiB or smaller than
61  * 4MiB in the near future.
62  */
63 #define BTRFS_MAX_ZONE_SIZE             SZ_8G
64 #define BTRFS_MIN_ZONE_SIZE             SZ_4M
65
66 #define SUPER_INFO_SECTORS      ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
67
68 static void wait_eb_writebacks(struct btrfs_block_group *block_group);
69 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written);
70
71 static inline bool sb_zone_is_full(const struct blk_zone *zone)
72 {
73         return (zone->cond == BLK_ZONE_COND_FULL) ||
74                 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
75 }
76
77 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
78 {
79         struct blk_zone *zones = data;
80
81         memcpy(&zones[idx], zone, sizeof(*zone));
82
83         return 0;
84 }
85
86 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
87                             u64 *wp_ret)
88 {
89         bool empty[BTRFS_NR_SB_LOG_ZONES];
90         bool full[BTRFS_NR_SB_LOG_ZONES];
91         sector_t sector;
92         int i;
93
94         for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
95                 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
96                 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
97                 full[i] = sb_zone_is_full(&zones[i]);
98         }
99
100         /*
101          * Possible states of log buffer zones
102          *
103          *           Empty[0]  In use[0]  Full[0]
104          * Empty[1]         *          0        1
105          * In use[1]        x          x        1
106          * Full[1]          0          0        C
107          *
108          * Log position:
109          *   *: Special case, no superblock is written
110          *   0: Use write pointer of zones[0]
111          *   1: Use write pointer of zones[1]
112          *   C: Compare super blocks from zones[0] and zones[1], use the latest
113          *      one determined by generation
114          *   x: Invalid state
115          */
116
117         if (empty[0] && empty[1]) {
118                 /* Special case to distinguish no superblock to read */
119                 *wp_ret = zones[0].start << SECTOR_SHIFT;
120                 return -ENOENT;
121         } else if (full[0] && full[1]) {
122                 /* Compare two super blocks */
123                 struct address_space *mapping = bdev->bd_inode->i_mapping;
124                 struct page *page[BTRFS_NR_SB_LOG_ZONES];
125                 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
126                 int i;
127
128                 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
129                         u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT;
130                         u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) -
131                                                 BTRFS_SUPER_INFO_SIZE;
132
133                         page[i] = read_cache_page_gfp(mapping,
134                                         bytenr >> PAGE_SHIFT, GFP_NOFS);
135                         if (IS_ERR(page[i])) {
136                                 if (i == 1)
137                                         btrfs_release_disk_super(super[0]);
138                                 return PTR_ERR(page[i]);
139                         }
140                         super[i] = page_address(page[i]);
141                 }
142
143                 if (btrfs_super_generation(super[0]) >
144                     btrfs_super_generation(super[1]))
145                         sector = zones[1].start;
146                 else
147                         sector = zones[0].start;
148
149                 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
150                         btrfs_release_disk_super(super[i]);
151         } else if (!full[0] && (empty[1] || full[1])) {
152                 sector = zones[0].wp;
153         } else if (full[0]) {
154                 sector = zones[1].wp;
155         } else {
156                 return -EUCLEAN;
157         }
158         *wp_ret = sector << SECTOR_SHIFT;
159         return 0;
160 }
161
162 /*
163  * Get the first zone number of the superblock mirror
164  */
165 static inline u32 sb_zone_number(int shift, int mirror)
166 {
167         u64 zone = U64_MAX;
168
169         ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
170         switch (mirror) {
171         case 0: zone = 0; break;
172         case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
173         case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
174         }
175
176         ASSERT(zone <= U32_MAX);
177
178         return (u32)zone;
179 }
180
181 static inline sector_t zone_start_sector(u32 zone_number,
182                                          struct block_device *bdev)
183 {
184         return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
185 }
186
187 static inline u64 zone_start_physical(u32 zone_number,
188                                       struct btrfs_zoned_device_info *zone_info)
189 {
190         return (u64)zone_number << zone_info->zone_size_shift;
191 }
192
193 /*
194  * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
195  * device into static sized chunks and fake a conventional zone on each of
196  * them.
197  */
198 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
199                                 struct blk_zone *zones, unsigned int nr_zones)
200 {
201         const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
202         sector_t bdev_size = bdev_nr_sectors(device->bdev);
203         unsigned int i;
204
205         pos >>= SECTOR_SHIFT;
206         for (i = 0; i < nr_zones; i++) {
207                 zones[i].start = i * zone_sectors + pos;
208                 zones[i].len = zone_sectors;
209                 zones[i].capacity = zone_sectors;
210                 zones[i].wp = zones[i].start + zone_sectors;
211                 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
212                 zones[i].cond = BLK_ZONE_COND_NOT_WP;
213
214                 if (zones[i].wp >= bdev_size) {
215                         i++;
216                         break;
217                 }
218         }
219
220         return i;
221 }
222
223 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
224                                struct blk_zone *zones, unsigned int *nr_zones)
225 {
226         struct btrfs_zoned_device_info *zinfo = device->zone_info;
227         int ret;
228
229         if (!*nr_zones)
230                 return 0;
231
232         if (!bdev_is_zoned(device->bdev)) {
233                 ret = emulate_report_zones(device, pos, zones, *nr_zones);
234                 *nr_zones = ret;
235                 return 0;
236         }
237
238         /* Check cache */
239         if (zinfo->zone_cache) {
240                 unsigned int i;
241                 u32 zno;
242
243                 ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
244                 zno = pos >> zinfo->zone_size_shift;
245                 /*
246                  * We cannot report zones beyond the zone end. So, it is OK to
247                  * cap *nr_zones to at the end.
248                  */
249                 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
250
251                 for (i = 0; i < *nr_zones; i++) {
252                         struct blk_zone *zone_info;
253
254                         zone_info = &zinfo->zone_cache[zno + i];
255                         if (!zone_info->len)
256                                 break;
257                 }
258
259                 if (i == *nr_zones) {
260                         /* Cache hit on all the zones */
261                         memcpy(zones, zinfo->zone_cache + zno,
262                                sizeof(*zinfo->zone_cache) * *nr_zones);
263                         return 0;
264                 }
265         }
266
267         ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
268                                   copy_zone_info_cb, zones);
269         if (ret < 0) {
270                 btrfs_err_in_rcu(device->fs_info,
271                                  "zoned: failed to read zone %llu on %s (devid %llu)",
272                                  pos, rcu_str_deref(device->name),
273                                  device->devid);
274                 return ret;
275         }
276         *nr_zones = ret;
277         if (!ret)
278                 return -EIO;
279
280         /* Populate cache */
281         if (zinfo->zone_cache) {
282                 u32 zno = pos >> zinfo->zone_size_shift;
283
284                 memcpy(zinfo->zone_cache + zno, zones,
285                        sizeof(*zinfo->zone_cache) * *nr_zones);
286         }
287
288         return 0;
289 }
290
291 /* The emulated zone size is determined from the size of device extent */
292 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
293 {
294         struct btrfs_path *path;
295         struct btrfs_root *root = fs_info->dev_root;
296         struct btrfs_key key;
297         struct extent_buffer *leaf;
298         struct btrfs_dev_extent *dext;
299         int ret = 0;
300
301         key.objectid = 1;
302         key.type = BTRFS_DEV_EXTENT_KEY;
303         key.offset = 0;
304
305         path = btrfs_alloc_path();
306         if (!path)
307                 return -ENOMEM;
308
309         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
310         if (ret < 0)
311                 goto out;
312
313         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
314                 ret = btrfs_next_leaf(root, path);
315                 if (ret < 0)
316                         goto out;
317                 /* No dev extents at all? Not good */
318                 if (ret > 0) {
319                         ret = -EUCLEAN;
320                         goto out;
321                 }
322         }
323
324         leaf = path->nodes[0];
325         dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
326         fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
327         ret = 0;
328
329 out:
330         btrfs_free_path(path);
331
332         return ret;
333 }
334
335 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
336 {
337         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
338         struct btrfs_device *device;
339         int ret = 0;
340
341         /* fs_info->zone_size might not set yet. Use the incomapt flag here. */
342         if (!btrfs_fs_incompat(fs_info, ZONED))
343                 return 0;
344
345         mutex_lock(&fs_devices->device_list_mutex);
346         list_for_each_entry(device, &fs_devices->devices, dev_list) {
347                 /* We can skip reading of zone info for missing devices */
348                 if (!device->bdev)
349                         continue;
350
351                 ret = btrfs_get_dev_zone_info(device, true);
352                 if (ret)
353                         break;
354         }
355         mutex_unlock(&fs_devices->device_list_mutex);
356
357         return ret;
358 }
359
360 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
361 {
362         struct btrfs_fs_info *fs_info = device->fs_info;
363         struct btrfs_zoned_device_info *zone_info = NULL;
364         struct block_device *bdev = device->bdev;
365         unsigned int max_active_zones;
366         unsigned int nactive;
367         sector_t nr_sectors;
368         sector_t sector = 0;
369         struct blk_zone *zones = NULL;
370         unsigned int i, nreported = 0, nr_zones;
371         sector_t zone_sectors;
372         char *model, *emulated;
373         int ret;
374
375         /*
376          * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
377          * yet be set.
378          */
379         if (!btrfs_fs_incompat(fs_info, ZONED))
380                 return 0;
381
382         if (device->zone_info)
383                 return 0;
384
385         zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
386         if (!zone_info)
387                 return -ENOMEM;
388
389         device->zone_info = zone_info;
390
391         if (!bdev_is_zoned(bdev)) {
392                 if (!fs_info->zone_size) {
393                         ret = calculate_emulated_zone_size(fs_info);
394                         if (ret)
395                                 goto out;
396                 }
397
398                 ASSERT(fs_info->zone_size);
399                 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
400         } else {
401                 zone_sectors = bdev_zone_sectors(bdev);
402         }
403
404         ASSERT(is_power_of_two_u64(zone_sectors));
405         zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
406
407         /* We reject devices with a zone size larger than 8GB */
408         if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
409                 btrfs_err_in_rcu(fs_info,
410                 "zoned: %s: zone size %llu larger than supported maximum %llu",
411                                  rcu_str_deref(device->name),
412                                  zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
413                 ret = -EINVAL;
414                 goto out;
415         } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
416                 btrfs_err_in_rcu(fs_info,
417                 "zoned: %s: zone size %llu smaller than supported minimum %u",
418                                  rcu_str_deref(device->name),
419                                  zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
420                 ret = -EINVAL;
421                 goto out;
422         }
423
424         nr_sectors = bdev_nr_sectors(bdev);
425         zone_info->zone_size_shift = ilog2(zone_info->zone_size);
426         zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
427         if (!IS_ALIGNED(nr_sectors, zone_sectors))
428                 zone_info->nr_zones++;
429
430         max_active_zones = bdev_max_active_zones(bdev);
431         if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
432                 btrfs_err_in_rcu(fs_info,
433 "zoned: %s: max active zones %u is too small, need at least %u active zones",
434                                  rcu_str_deref(device->name), max_active_zones,
435                                  BTRFS_MIN_ACTIVE_ZONES);
436                 ret = -EINVAL;
437                 goto out;
438         }
439         zone_info->max_active_zones = max_active_zones;
440
441         zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
442         if (!zone_info->seq_zones) {
443                 ret = -ENOMEM;
444                 goto out;
445         }
446
447         zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
448         if (!zone_info->empty_zones) {
449                 ret = -ENOMEM;
450                 goto out;
451         }
452
453         zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
454         if (!zone_info->active_zones) {
455                 ret = -ENOMEM;
456                 goto out;
457         }
458
459         zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
460         if (!zones) {
461                 ret = -ENOMEM;
462                 goto out;
463         }
464
465         /*
466          * Enable zone cache only for a zoned device. On a non-zoned device, we
467          * fill the zone info with emulated CONVENTIONAL zones, so no need to
468          * use the cache.
469          */
470         if (populate_cache && bdev_is_zoned(device->bdev)) {
471                 zone_info->zone_cache = vcalloc(zone_info->nr_zones,
472                                                 sizeof(struct blk_zone));
473                 if (!zone_info->zone_cache) {
474                         btrfs_err_in_rcu(device->fs_info,
475                                 "zoned: failed to allocate zone cache for %s",
476                                 rcu_str_deref(device->name));
477                         ret = -ENOMEM;
478                         goto out;
479                 }
480         }
481
482         /* Get zones type */
483         nactive = 0;
484         while (sector < nr_sectors) {
485                 nr_zones = BTRFS_REPORT_NR_ZONES;
486                 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
487                                           &nr_zones);
488                 if (ret)
489                         goto out;
490
491                 for (i = 0; i < nr_zones; i++) {
492                         if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
493                                 __set_bit(nreported, zone_info->seq_zones);
494                         switch (zones[i].cond) {
495                         case BLK_ZONE_COND_EMPTY:
496                                 __set_bit(nreported, zone_info->empty_zones);
497                                 break;
498                         case BLK_ZONE_COND_IMP_OPEN:
499                         case BLK_ZONE_COND_EXP_OPEN:
500                         case BLK_ZONE_COND_CLOSED:
501                                 __set_bit(nreported, zone_info->active_zones);
502                                 nactive++;
503                                 break;
504                         }
505                         nreported++;
506                 }
507                 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
508         }
509
510         if (nreported != zone_info->nr_zones) {
511                 btrfs_err_in_rcu(device->fs_info,
512                                  "inconsistent number of zones on %s (%u/%u)",
513                                  rcu_str_deref(device->name), nreported,
514                                  zone_info->nr_zones);
515                 ret = -EIO;
516                 goto out;
517         }
518
519         if (max_active_zones) {
520                 if (nactive > max_active_zones) {
521                         btrfs_err_in_rcu(device->fs_info,
522                         "zoned: %u active zones on %s exceeds max_active_zones %u",
523                                          nactive, rcu_str_deref(device->name),
524                                          max_active_zones);
525                         ret = -EIO;
526                         goto out;
527                 }
528                 atomic_set(&zone_info->active_zones_left,
529                            max_active_zones - nactive);
530                 set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags);
531         }
532
533         /* Validate superblock log */
534         nr_zones = BTRFS_NR_SB_LOG_ZONES;
535         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
536                 u32 sb_zone;
537                 u64 sb_wp;
538                 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
539
540                 sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
541                 if (sb_zone + 1 >= zone_info->nr_zones)
542                         continue;
543
544                 ret = btrfs_get_dev_zones(device,
545                                           zone_start_physical(sb_zone, zone_info),
546                                           &zone_info->sb_zones[sb_pos],
547                                           &nr_zones);
548                 if (ret)
549                         goto out;
550
551                 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
552                         btrfs_err_in_rcu(device->fs_info,
553         "zoned: failed to read super block log zone info at devid %llu zone %u",
554                                          device->devid, sb_zone);
555                         ret = -EUCLEAN;
556                         goto out;
557                 }
558
559                 /*
560                  * If zones[0] is conventional, always use the beginning of the
561                  * zone to record superblock. No need to validate in that case.
562                  */
563                 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
564                     BLK_ZONE_TYPE_CONVENTIONAL)
565                         continue;
566
567                 ret = sb_write_pointer(device->bdev,
568                                        &zone_info->sb_zones[sb_pos], &sb_wp);
569                 if (ret != -ENOENT && ret) {
570                         btrfs_err_in_rcu(device->fs_info,
571                         "zoned: super block log zone corrupted devid %llu zone %u",
572                                          device->devid, sb_zone);
573                         ret = -EUCLEAN;
574                         goto out;
575                 }
576         }
577
578
579         kvfree(zones);
580
581         switch (bdev_zoned_model(bdev)) {
582         case BLK_ZONED_HM:
583                 model = "host-managed zoned";
584                 emulated = "";
585                 break;
586         case BLK_ZONED_HA:
587                 model = "host-aware zoned";
588                 emulated = "";
589                 break;
590         case BLK_ZONED_NONE:
591                 model = "regular";
592                 emulated = "emulated ";
593                 break;
594         default:
595                 /* Just in case */
596                 btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
597                                  bdev_zoned_model(bdev),
598                                  rcu_str_deref(device->name));
599                 ret = -EOPNOTSUPP;
600                 goto out_free_zone_info;
601         }
602
603         btrfs_info_in_rcu(fs_info,
604                 "%s block device %s, %u %szones of %llu bytes",
605                 model, rcu_str_deref(device->name), zone_info->nr_zones,
606                 emulated, zone_info->zone_size);
607
608         return 0;
609
610 out:
611         kvfree(zones);
612 out_free_zone_info:
613         btrfs_destroy_dev_zone_info(device);
614
615         return ret;
616 }
617
618 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
619 {
620         struct btrfs_zoned_device_info *zone_info = device->zone_info;
621
622         if (!zone_info)
623                 return;
624
625         bitmap_free(zone_info->active_zones);
626         bitmap_free(zone_info->seq_zones);
627         bitmap_free(zone_info->empty_zones);
628         vfree(zone_info->zone_cache);
629         kfree(zone_info);
630         device->zone_info = NULL;
631 }
632
633 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
634 {
635         struct btrfs_zoned_device_info *zone_info;
636
637         zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
638         if (!zone_info)
639                 return NULL;
640
641         zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
642         if (!zone_info->seq_zones)
643                 goto out;
644
645         bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
646                     zone_info->nr_zones);
647
648         zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
649         if (!zone_info->empty_zones)
650                 goto out;
651
652         bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
653                     zone_info->nr_zones);
654
655         zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
656         if (!zone_info->active_zones)
657                 goto out;
658
659         bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
660                     zone_info->nr_zones);
661         zone_info->zone_cache = NULL;
662
663         return zone_info;
664
665 out:
666         bitmap_free(zone_info->seq_zones);
667         bitmap_free(zone_info->empty_zones);
668         bitmap_free(zone_info->active_zones);
669         kfree(zone_info);
670         return NULL;
671 }
672
673 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
674                        struct blk_zone *zone)
675 {
676         unsigned int nr_zones = 1;
677         int ret;
678
679         ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
680         if (ret != 0 || !nr_zones)
681                 return ret ? ret : -EIO;
682
683         return 0;
684 }
685
686 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
687 {
688         struct btrfs_device *device;
689
690         list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
691                 if (device->bdev &&
692                     bdev_zoned_model(device->bdev) == BLK_ZONED_HM) {
693                         btrfs_err(fs_info,
694                                 "zoned: mode not enabled but zoned device found: %pg",
695                                 device->bdev);
696                         return -EINVAL;
697                 }
698         }
699
700         return 0;
701 }
702
703 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
704 {
705         struct queue_limits *lim = &fs_info->limits;
706         struct btrfs_device *device;
707         u64 zone_size = 0;
708         int ret;
709
710         /*
711          * Host-Managed devices can't be used without the ZONED flag.  With the
712          * ZONED all devices can be used, using zone emulation if required.
713          */
714         if (!btrfs_fs_incompat(fs_info, ZONED))
715                 return btrfs_check_for_zoned_device(fs_info);
716
717         blk_set_stacking_limits(lim);
718
719         list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
720                 struct btrfs_zoned_device_info *zone_info = device->zone_info;
721
722                 if (!device->bdev)
723                         continue;
724
725                 if (!zone_size) {
726                         zone_size = zone_info->zone_size;
727                 } else if (zone_info->zone_size != zone_size) {
728                         btrfs_err(fs_info,
729                 "zoned: unequal block device zone sizes: have %llu found %llu",
730                                   zone_info->zone_size, zone_size);
731                         return -EINVAL;
732                 }
733
734                 /*
735                  * With the zoned emulation, we can have non-zoned device on the
736                  * zoned mode. In this case, we don't have a valid max zone
737                  * append size.
738                  */
739                 if (bdev_is_zoned(device->bdev)) {
740                         blk_stack_limits(lim,
741                                          &bdev_get_queue(device->bdev)->limits,
742                                          0);
743                 }
744         }
745
746         /*
747          * stripe_size is always aligned to BTRFS_STRIPE_LEN in
748          * btrfs_create_chunk(). Since we want stripe_len == zone_size,
749          * check the alignment here.
750          */
751         if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
752                 btrfs_err(fs_info,
753                           "zoned: zone size %llu not aligned to stripe %u",
754                           zone_size, BTRFS_STRIPE_LEN);
755                 return -EINVAL;
756         }
757
758         if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
759                 btrfs_err(fs_info, "zoned: mixed block groups not supported");
760                 return -EINVAL;
761         }
762
763         fs_info->zone_size = zone_size;
764         /*
765          * Also limit max_zone_append_size by max_segments * PAGE_SIZE.
766          * Technically, we can have multiple pages per segment. But, since
767          * we add the pages one by one to a bio, and cannot increase the
768          * metadata reservation even if it increases the number of extents, it
769          * is safe to stick with the limit.
770          */
771         fs_info->max_zone_append_size = ALIGN_DOWN(
772                 min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT,
773                      (u64)lim->max_sectors << SECTOR_SHIFT,
774                      (u64)lim->max_segments << PAGE_SHIFT),
775                 fs_info->sectorsize);
776         fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
777         if (fs_info->max_zone_append_size < fs_info->max_extent_size)
778                 fs_info->max_extent_size = fs_info->max_zone_append_size;
779
780         /*
781          * Check mount options here, because we might change fs_info->zoned
782          * from fs_info->zone_size.
783          */
784         ret = btrfs_check_mountopts_zoned(fs_info);
785         if (ret)
786                 return ret;
787
788         btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
789         return 0;
790 }
791
792 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
793 {
794         if (!btrfs_is_zoned(info))
795                 return 0;
796
797         /*
798          * Space cache writing is not COWed. Disable that to avoid write errors
799          * in sequential zones.
800          */
801         if (btrfs_test_opt(info, SPACE_CACHE)) {
802                 btrfs_err(info, "zoned: space cache v1 is not supported");
803                 return -EINVAL;
804         }
805
806         if (btrfs_test_opt(info, NODATACOW)) {
807                 btrfs_err(info, "zoned: NODATACOW not supported");
808                 return -EINVAL;
809         }
810
811         btrfs_clear_and_info(info, DISCARD_ASYNC,
812                         "zoned: async discard ignored and disabled for zoned mode");
813
814         return 0;
815 }
816
817 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
818                            int rw, u64 *bytenr_ret)
819 {
820         u64 wp;
821         int ret;
822
823         if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
824                 *bytenr_ret = zones[0].start << SECTOR_SHIFT;
825                 return 0;
826         }
827
828         ret = sb_write_pointer(bdev, zones, &wp);
829         if (ret != -ENOENT && ret < 0)
830                 return ret;
831
832         if (rw == WRITE) {
833                 struct blk_zone *reset = NULL;
834
835                 if (wp == zones[0].start << SECTOR_SHIFT)
836                         reset = &zones[0];
837                 else if (wp == zones[1].start << SECTOR_SHIFT)
838                         reset = &zones[1];
839
840                 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
841                         ASSERT(sb_zone_is_full(reset));
842
843                         ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
844                                                reset->start, reset->len,
845                                                GFP_NOFS);
846                         if (ret)
847                                 return ret;
848
849                         reset->cond = BLK_ZONE_COND_EMPTY;
850                         reset->wp = reset->start;
851                 }
852         } else if (ret != -ENOENT) {
853                 /*
854                  * For READ, we want the previous one. Move write pointer to
855                  * the end of a zone, if it is at the head of a zone.
856                  */
857                 u64 zone_end = 0;
858
859                 if (wp == zones[0].start << SECTOR_SHIFT)
860                         zone_end = zones[1].start + zones[1].capacity;
861                 else if (wp == zones[1].start << SECTOR_SHIFT)
862                         zone_end = zones[0].start + zones[0].capacity;
863                 if (zone_end)
864                         wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
865                                         BTRFS_SUPER_INFO_SIZE);
866
867                 wp -= BTRFS_SUPER_INFO_SIZE;
868         }
869
870         *bytenr_ret = wp;
871         return 0;
872
873 }
874
875 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
876                                u64 *bytenr_ret)
877 {
878         struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
879         sector_t zone_sectors;
880         u32 sb_zone;
881         int ret;
882         u8 zone_sectors_shift;
883         sector_t nr_sectors;
884         u32 nr_zones;
885
886         if (!bdev_is_zoned(bdev)) {
887                 *bytenr_ret = btrfs_sb_offset(mirror);
888                 return 0;
889         }
890
891         ASSERT(rw == READ || rw == WRITE);
892
893         zone_sectors = bdev_zone_sectors(bdev);
894         if (!is_power_of_2(zone_sectors))
895                 return -EINVAL;
896         zone_sectors_shift = ilog2(zone_sectors);
897         nr_sectors = bdev_nr_sectors(bdev);
898         nr_zones = nr_sectors >> zone_sectors_shift;
899
900         sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
901         if (sb_zone + 1 >= nr_zones)
902                 return -ENOENT;
903
904         ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
905                                   BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
906                                   zones);
907         if (ret < 0)
908                 return ret;
909         if (ret != BTRFS_NR_SB_LOG_ZONES)
910                 return -EIO;
911
912         return sb_log_location(bdev, zones, rw, bytenr_ret);
913 }
914
915 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
916                           u64 *bytenr_ret)
917 {
918         struct btrfs_zoned_device_info *zinfo = device->zone_info;
919         u32 zone_num;
920
921         /*
922          * For a zoned filesystem on a non-zoned block device, use the same
923          * super block locations as regular filesystem. Doing so, the super
924          * block can always be retrieved and the zoned flag of the volume
925          * detected from the super block information.
926          */
927         if (!bdev_is_zoned(device->bdev)) {
928                 *bytenr_ret = btrfs_sb_offset(mirror);
929                 return 0;
930         }
931
932         zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
933         if (zone_num + 1 >= zinfo->nr_zones)
934                 return -ENOENT;
935
936         return sb_log_location(device->bdev,
937                                &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
938                                rw, bytenr_ret);
939 }
940
941 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
942                                   int mirror)
943 {
944         u32 zone_num;
945
946         if (!zinfo)
947                 return false;
948
949         zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
950         if (zone_num + 1 >= zinfo->nr_zones)
951                 return false;
952
953         if (!test_bit(zone_num, zinfo->seq_zones))
954                 return false;
955
956         return true;
957 }
958
959 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
960 {
961         struct btrfs_zoned_device_info *zinfo = device->zone_info;
962         struct blk_zone *zone;
963         int i;
964
965         if (!is_sb_log_zone(zinfo, mirror))
966                 return 0;
967
968         zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
969         for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
970                 /* Advance the next zone */
971                 if (zone->cond == BLK_ZONE_COND_FULL) {
972                         zone++;
973                         continue;
974                 }
975
976                 if (zone->cond == BLK_ZONE_COND_EMPTY)
977                         zone->cond = BLK_ZONE_COND_IMP_OPEN;
978
979                 zone->wp += SUPER_INFO_SECTORS;
980
981                 if (sb_zone_is_full(zone)) {
982                         /*
983                          * No room left to write new superblock. Since
984                          * superblock is written with REQ_SYNC, it is safe to
985                          * finish the zone now.
986                          *
987                          * If the write pointer is exactly at the capacity,
988                          * explicit ZONE_FINISH is not necessary.
989                          */
990                         if (zone->wp != zone->start + zone->capacity) {
991                                 int ret;
992
993                                 ret = blkdev_zone_mgmt(device->bdev,
994                                                 REQ_OP_ZONE_FINISH, zone->start,
995                                                 zone->len, GFP_NOFS);
996                                 if (ret)
997                                         return ret;
998                         }
999
1000                         zone->wp = zone->start + zone->len;
1001                         zone->cond = BLK_ZONE_COND_FULL;
1002                 }
1003                 return 0;
1004         }
1005
1006         /* All the zones are FULL. Should not reach here. */
1007         ASSERT(0);
1008         return -EIO;
1009 }
1010
1011 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
1012 {
1013         sector_t zone_sectors;
1014         sector_t nr_sectors;
1015         u8 zone_sectors_shift;
1016         u32 sb_zone;
1017         u32 nr_zones;
1018
1019         zone_sectors = bdev_zone_sectors(bdev);
1020         zone_sectors_shift = ilog2(zone_sectors);
1021         nr_sectors = bdev_nr_sectors(bdev);
1022         nr_zones = nr_sectors >> zone_sectors_shift;
1023
1024         sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1025         if (sb_zone + 1 >= nr_zones)
1026                 return -ENOENT;
1027
1028         return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1029                                 zone_start_sector(sb_zone, bdev),
1030                                 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
1031 }
1032
1033 /*
1034  * Find allocatable zones within a given region.
1035  *
1036  * @device:     the device to allocate a region on
1037  * @hole_start: the position of the hole to allocate the region
1038  * @num_bytes:  size of wanted region
1039  * @hole_end:   the end of the hole
1040  * @return:     position of allocatable zones
1041  *
1042  * Allocatable region should not contain any superblock locations.
1043  */
1044 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1045                                  u64 hole_end, u64 num_bytes)
1046 {
1047         struct btrfs_zoned_device_info *zinfo = device->zone_info;
1048         const u8 shift = zinfo->zone_size_shift;
1049         u64 nzones = num_bytes >> shift;
1050         u64 pos = hole_start;
1051         u64 begin, end;
1052         bool have_sb;
1053         int i;
1054
1055         ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1056         ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1057
1058         while (pos < hole_end) {
1059                 begin = pos >> shift;
1060                 end = begin + nzones;
1061
1062                 if (end > zinfo->nr_zones)
1063                         return hole_end;
1064
1065                 /* Check if zones in the region are all empty */
1066                 if (btrfs_dev_is_sequential(device, pos) &&
1067                     !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) {
1068                         pos += zinfo->zone_size;
1069                         continue;
1070                 }
1071
1072                 have_sb = false;
1073                 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1074                         u32 sb_zone;
1075                         u64 sb_pos;
1076
1077                         sb_zone = sb_zone_number(shift, i);
1078                         if (!(end <= sb_zone ||
1079                               sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1080                                 have_sb = true;
1081                                 pos = zone_start_physical(
1082                                         sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1083                                 break;
1084                         }
1085
1086                         /* We also need to exclude regular superblock positions */
1087                         sb_pos = btrfs_sb_offset(i);
1088                         if (!(pos + num_bytes <= sb_pos ||
1089                               sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1090                                 have_sb = true;
1091                                 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1092                                             zinfo->zone_size);
1093                                 break;
1094                         }
1095                 }
1096                 if (!have_sb)
1097                         break;
1098         }
1099
1100         return pos;
1101 }
1102
1103 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1104 {
1105         struct btrfs_zoned_device_info *zone_info = device->zone_info;
1106         unsigned int zno = (pos >> zone_info->zone_size_shift);
1107
1108         /* We can use any number of zones */
1109         if (zone_info->max_active_zones == 0)
1110                 return true;
1111
1112         if (!test_bit(zno, zone_info->active_zones)) {
1113                 /* Active zone left? */
1114                 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1115                         return false;
1116                 if (test_and_set_bit(zno, zone_info->active_zones)) {
1117                         /* Someone already set the bit */
1118                         atomic_inc(&zone_info->active_zones_left);
1119                 }
1120         }
1121
1122         return true;
1123 }
1124
1125 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1126 {
1127         struct btrfs_zoned_device_info *zone_info = device->zone_info;
1128         unsigned int zno = (pos >> zone_info->zone_size_shift);
1129
1130         /* We can use any number of zones */
1131         if (zone_info->max_active_zones == 0)
1132                 return;
1133
1134         if (test_and_clear_bit(zno, zone_info->active_zones))
1135                 atomic_inc(&zone_info->active_zones_left);
1136 }
1137
1138 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1139                             u64 length, u64 *bytes)
1140 {
1141         int ret;
1142
1143         *bytes = 0;
1144         ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1145                                physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1146                                GFP_NOFS);
1147         if (ret)
1148                 return ret;
1149
1150         *bytes = length;
1151         while (length) {
1152                 btrfs_dev_set_zone_empty(device, physical);
1153                 btrfs_dev_clear_active_zone(device, physical);
1154                 physical += device->zone_info->zone_size;
1155                 length -= device->zone_info->zone_size;
1156         }
1157
1158         return 0;
1159 }
1160
1161 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1162 {
1163         struct btrfs_zoned_device_info *zinfo = device->zone_info;
1164         const u8 shift = zinfo->zone_size_shift;
1165         unsigned long begin = start >> shift;
1166         unsigned long nbits = size >> shift;
1167         u64 pos;
1168         int ret;
1169
1170         ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1171         ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1172
1173         if (begin + nbits > zinfo->nr_zones)
1174                 return -ERANGE;
1175
1176         /* All the zones are conventional */
1177         if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits))
1178                 return 0;
1179
1180         /* All the zones are sequential and empty */
1181         if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) &&
1182             bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits))
1183                 return 0;
1184
1185         for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1186                 u64 reset_bytes;
1187
1188                 if (!btrfs_dev_is_sequential(device, pos) ||
1189                     btrfs_dev_is_empty_zone(device, pos))
1190                         continue;
1191
1192                 /* Free regions should be empty */
1193                 btrfs_warn_in_rcu(
1194                         device->fs_info,
1195                 "zoned: resetting device %s (devid %llu) zone %llu for allocation",
1196                         rcu_str_deref(device->name), device->devid, pos >> shift);
1197                 WARN_ON_ONCE(1);
1198
1199                 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1200                                               &reset_bytes);
1201                 if (ret)
1202                         return ret;
1203         }
1204
1205         return 0;
1206 }
1207
1208 /*
1209  * Calculate an allocation pointer from the extent allocation information
1210  * for a block group consist of conventional zones. It is pointed to the
1211  * end of the highest addressed extent in the block group as an allocation
1212  * offset.
1213  */
1214 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1215                                    u64 *offset_ret, bool new)
1216 {
1217         struct btrfs_fs_info *fs_info = cache->fs_info;
1218         struct btrfs_root *root;
1219         struct btrfs_path *path;
1220         struct btrfs_key key;
1221         struct btrfs_key found_key;
1222         int ret;
1223         u64 length;
1224
1225         /*
1226          * Avoid  tree lookups for a new block group, there's no use for it.
1227          * It must always be 0.
1228          *
1229          * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1230          * For new a block group, this function is called from
1231          * btrfs_make_block_group() which is already taking the chunk mutex.
1232          * Thus, we cannot call calculate_alloc_pointer() which takes extent
1233          * buffer locks to avoid deadlock.
1234          */
1235         if (new) {
1236                 *offset_ret = 0;
1237                 return 0;
1238         }
1239
1240         path = btrfs_alloc_path();
1241         if (!path)
1242                 return -ENOMEM;
1243
1244         key.objectid = cache->start + cache->length;
1245         key.type = 0;
1246         key.offset = 0;
1247
1248         root = btrfs_extent_root(fs_info, key.objectid);
1249         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1250         /* We should not find the exact match */
1251         if (!ret)
1252                 ret = -EUCLEAN;
1253         if (ret < 0)
1254                 goto out;
1255
1256         ret = btrfs_previous_extent_item(root, path, cache->start);
1257         if (ret) {
1258                 if (ret == 1) {
1259                         ret = 0;
1260                         *offset_ret = 0;
1261                 }
1262                 goto out;
1263         }
1264
1265         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1266
1267         if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1268                 length = found_key.offset;
1269         else
1270                 length = fs_info->nodesize;
1271
1272         if (!(found_key.objectid >= cache->start &&
1273                found_key.objectid + length <= cache->start + cache->length)) {
1274                 ret = -EUCLEAN;
1275                 goto out;
1276         }
1277         *offset_ret = found_key.objectid + length - cache->start;
1278         ret = 0;
1279
1280 out:
1281         btrfs_free_path(path);
1282         return ret;
1283 }
1284
1285 struct zone_info {
1286         u64 physical;
1287         u64 capacity;
1288         u64 alloc_offset;
1289 };
1290
1291 static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx,
1292                                 struct zone_info *info, unsigned long *active,
1293                                 struct map_lookup *map)
1294 {
1295         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1296         struct btrfs_device *device = map->stripes[zone_idx].dev;
1297         int dev_replace_is_ongoing = 0;
1298         unsigned int nofs_flag;
1299         struct blk_zone zone;
1300         int ret;
1301
1302         info->physical = map->stripes[zone_idx].physical;
1303
1304         if (!device->bdev) {
1305                 info->alloc_offset = WP_MISSING_DEV;
1306                 return 0;
1307         }
1308
1309         /* Consider a zone as active if we can allow any number of active zones. */
1310         if (!device->zone_info->max_active_zones)
1311                 __set_bit(zone_idx, active);
1312
1313         if (!btrfs_dev_is_sequential(device, info->physical)) {
1314                 info->alloc_offset = WP_CONVENTIONAL;
1315                 return 0;
1316         }
1317
1318         /* This zone will be used for allocation, so mark this zone non-empty. */
1319         btrfs_dev_clear_zone_empty(device, info->physical);
1320
1321         down_read(&dev_replace->rwsem);
1322         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1323         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1324                 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, info->physical);
1325         up_read(&dev_replace->rwsem);
1326
1327         /*
1328          * The group is mapped to a sequential zone. Get the zone write pointer
1329          * to determine the allocation offset within the zone.
1330          */
1331         WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size));
1332         nofs_flag = memalloc_nofs_save();
1333         ret = btrfs_get_dev_zone(device, info->physical, &zone);
1334         memalloc_nofs_restore(nofs_flag);
1335         if (ret) {
1336                 if (ret != -EIO && ret != -EOPNOTSUPP)
1337                         return ret;
1338                 info->alloc_offset = WP_MISSING_DEV;
1339                 return 0;
1340         }
1341
1342         if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1343                 btrfs_err_in_rcu(fs_info,
1344                 "zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1345                         zone.start << SECTOR_SHIFT, rcu_str_deref(device->name),
1346                         device->devid);
1347                 return -EIO;
1348         }
1349
1350         info->capacity = (zone.capacity << SECTOR_SHIFT);
1351
1352         switch (zone.cond) {
1353         case BLK_ZONE_COND_OFFLINE:
1354         case BLK_ZONE_COND_READONLY:
1355                 btrfs_err(fs_info,
1356                 "zoned: offline/readonly zone %llu on device %s (devid %llu)",
1357                           (info->physical >> device->zone_info->zone_size_shift),
1358                           rcu_str_deref(device->name), device->devid);
1359                 info->alloc_offset = WP_MISSING_DEV;
1360                 break;
1361         case BLK_ZONE_COND_EMPTY:
1362                 info->alloc_offset = 0;
1363                 break;
1364         case BLK_ZONE_COND_FULL:
1365                 info->alloc_offset = info->capacity;
1366                 break;
1367         default:
1368                 /* Partially used zone. */
1369                 info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT);
1370                 __set_bit(zone_idx, active);
1371                 break;
1372         }
1373
1374         return 0;
1375 }
1376
1377 static int btrfs_load_block_group_single(struct btrfs_block_group *bg,
1378                                          struct zone_info *info,
1379                                          unsigned long *active)
1380 {
1381         if (info->alloc_offset == WP_MISSING_DEV) {
1382                 btrfs_err(bg->fs_info,
1383                         "zoned: cannot recover write pointer for zone %llu",
1384                         info->physical);
1385                 return -EIO;
1386         }
1387
1388         bg->alloc_offset = info->alloc_offset;
1389         bg->zone_capacity = info->capacity;
1390         if (test_bit(0, active))
1391                 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1392         return 0;
1393 }
1394
1395 static int btrfs_load_block_group_dup(struct btrfs_block_group *bg,
1396                                       struct map_lookup *map,
1397                                       struct zone_info *zone_info,
1398                                       unsigned long *active)
1399 {
1400         struct btrfs_fs_info *fs_info = bg->fs_info;
1401
1402         if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1403                 btrfs_err(fs_info, "zoned: data DUP profile needs raid-stripe-tree");
1404                 return -EINVAL;
1405         }
1406
1407         if (zone_info[0].alloc_offset == WP_MISSING_DEV) {
1408                 btrfs_err(bg->fs_info,
1409                           "zoned: cannot recover write pointer for zone %llu",
1410                           zone_info[0].physical);
1411                 return -EIO;
1412         }
1413         if (zone_info[1].alloc_offset == WP_MISSING_DEV) {
1414                 btrfs_err(bg->fs_info,
1415                           "zoned: cannot recover write pointer for zone %llu",
1416                           zone_info[1].physical);
1417                 return -EIO;
1418         }
1419         if (zone_info[0].alloc_offset != zone_info[1].alloc_offset) {
1420                 btrfs_err(bg->fs_info,
1421                           "zoned: write pointer offset mismatch of zones in DUP profile");
1422                 return -EIO;
1423         }
1424
1425         if (test_bit(0, active) != test_bit(1, active)) {
1426                 if (!btrfs_zone_activate(bg))
1427                         return -EIO;
1428         } else if (test_bit(0, active)) {
1429                 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1430         }
1431
1432         bg->alloc_offset = zone_info[0].alloc_offset;
1433         bg->zone_capacity = min(zone_info[0].capacity, zone_info[1].capacity);
1434         return 0;
1435 }
1436
1437 static int btrfs_load_block_group_raid1(struct btrfs_block_group *bg,
1438                                         struct map_lookup *map,
1439                                         struct zone_info *zone_info,
1440                                         unsigned long *active)
1441 {
1442         struct btrfs_fs_info *fs_info = bg->fs_info;
1443         int i;
1444
1445         if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1446                 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1447                           btrfs_bg_type_to_raid_name(map->type));
1448                 return -EINVAL;
1449         }
1450
1451         for (i = 0; i < map->num_stripes; i++) {
1452                 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1453                     zone_info[i].alloc_offset == WP_CONVENTIONAL)
1454                         continue;
1455
1456                 if ((zone_info[0].alloc_offset != zone_info[i].alloc_offset) &&
1457                     !btrfs_test_opt(fs_info, DEGRADED)) {
1458                         btrfs_err(fs_info,
1459                         "zoned: write pointer offset mismatch of zones in %s profile",
1460                                   btrfs_bg_type_to_raid_name(map->type));
1461                         return -EIO;
1462                 }
1463                 if (test_bit(0, active) != test_bit(i, active)) {
1464                         if (!btrfs_test_opt(fs_info, DEGRADED) &&
1465                             !btrfs_zone_activate(bg)) {
1466                                 return -EIO;
1467                         }
1468                 } else {
1469                         if (test_bit(0, active))
1470                                 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1471                 }
1472                 /* In case a device is missing we have a cap of 0, so don't use it. */
1473                 bg->zone_capacity = min_not_zero(zone_info[0].capacity,
1474                                                  zone_info[1].capacity);
1475         }
1476
1477         if (zone_info[0].alloc_offset != WP_MISSING_DEV)
1478                 bg->alloc_offset = zone_info[0].alloc_offset;
1479         else
1480                 bg->alloc_offset = zone_info[i - 1].alloc_offset;
1481
1482         return 0;
1483 }
1484
1485 static int btrfs_load_block_group_raid0(struct btrfs_block_group *bg,
1486                                         struct map_lookup *map,
1487                                         struct zone_info *zone_info,
1488                                         unsigned long *active)
1489 {
1490         struct btrfs_fs_info *fs_info = bg->fs_info;
1491
1492         if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1493                 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1494                           btrfs_bg_type_to_raid_name(map->type));
1495                 return -EINVAL;
1496         }
1497
1498         for (int i = 0; i < map->num_stripes; i++) {
1499                 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1500                     zone_info[i].alloc_offset == WP_CONVENTIONAL)
1501                         continue;
1502
1503                 if (test_bit(0, active) != test_bit(i, active)) {
1504                         if (!btrfs_zone_activate(bg))
1505                                 return -EIO;
1506                 } else {
1507                         if (test_bit(0, active))
1508                                 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1509                 }
1510                 bg->zone_capacity += zone_info[i].capacity;
1511                 bg->alloc_offset += zone_info[i].alloc_offset;
1512         }
1513
1514         return 0;
1515 }
1516
1517 static int btrfs_load_block_group_raid10(struct btrfs_block_group *bg,
1518                                          struct map_lookup *map,
1519                                          struct zone_info *zone_info,
1520                                          unsigned long *active)
1521 {
1522         struct btrfs_fs_info *fs_info = bg->fs_info;
1523
1524         if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1525                 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1526                           btrfs_bg_type_to_raid_name(map->type));
1527                 return -EINVAL;
1528         }
1529
1530         for (int i = 0; i < map->num_stripes; i++) {
1531                 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1532                     zone_info[i].alloc_offset == WP_CONVENTIONAL)
1533                         continue;
1534
1535                 if (test_bit(0, active) != test_bit(i, active)) {
1536                         if (!btrfs_zone_activate(bg))
1537                                 return -EIO;
1538                 } else {
1539                         if (test_bit(0, active))
1540                                 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1541                 }
1542
1543                 if ((i % map->sub_stripes) == 0) {
1544                         bg->zone_capacity += zone_info[i].capacity;
1545                         bg->alloc_offset += zone_info[i].alloc_offset;
1546                 }
1547         }
1548
1549         return 0;
1550 }
1551
1552 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1553 {
1554         struct btrfs_fs_info *fs_info = cache->fs_info;
1555         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1556         struct extent_map *em;
1557         struct map_lookup *map;
1558         u64 logical = cache->start;
1559         u64 length = cache->length;
1560         struct zone_info *zone_info = NULL;
1561         int ret;
1562         int i;
1563         unsigned long *active = NULL;
1564         u64 last_alloc = 0;
1565         u32 num_sequential = 0, num_conventional = 0;
1566
1567         if (!btrfs_is_zoned(fs_info))
1568                 return 0;
1569
1570         /* Sanity check */
1571         if (!IS_ALIGNED(length, fs_info->zone_size)) {
1572                 btrfs_err(fs_info,
1573                 "zoned: block group %llu len %llu unaligned to zone size %llu",
1574                           logical, length, fs_info->zone_size);
1575                 return -EIO;
1576         }
1577
1578         /* Get the chunk mapping */
1579         read_lock(&em_tree->lock);
1580         em = lookup_extent_mapping(em_tree, logical, length);
1581         read_unlock(&em_tree->lock);
1582
1583         if (!em)
1584                 return -EINVAL;
1585
1586         map = em->map_lookup;
1587
1588         cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS);
1589         if (!cache->physical_map) {
1590                 ret = -ENOMEM;
1591                 goto out;
1592         }
1593
1594         zone_info = kcalloc(map->num_stripes, sizeof(*zone_info), GFP_NOFS);
1595         if (!zone_info) {
1596                 ret = -ENOMEM;
1597                 goto out;
1598         }
1599
1600         active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1601         if (!active) {
1602                 ret = -ENOMEM;
1603                 goto out;
1604         }
1605
1606         for (i = 0; i < map->num_stripes; i++) {
1607                 ret = btrfs_load_zone_info(fs_info, i, &zone_info[i], active, map);
1608                 if (ret)
1609                         goto out;
1610
1611                 if (zone_info[i].alloc_offset == WP_CONVENTIONAL)
1612                         num_conventional++;
1613                 else
1614                         num_sequential++;
1615         }
1616
1617         if (num_sequential > 0)
1618                 set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1619
1620         if (num_conventional > 0) {
1621                 /* Zone capacity is always zone size in emulation */
1622                 cache->zone_capacity = cache->length;
1623                 ret = calculate_alloc_pointer(cache, &last_alloc, new);
1624                 if (ret) {
1625                         btrfs_err(fs_info,
1626                         "zoned: failed to determine allocation offset of bg %llu",
1627                                   cache->start);
1628                         goto out;
1629                 } else if (map->num_stripes == num_conventional) {
1630                         cache->alloc_offset = last_alloc;
1631                         set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1632                         goto out;
1633                 }
1634         }
1635
1636         switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1637         case 0: /* single */
1638                 ret = btrfs_load_block_group_single(cache, &zone_info[0], active);
1639                 break;
1640         case BTRFS_BLOCK_GROUP_DUP:
1641                 ret = btrfs_load_block_group_dup(cache, map, zone_info, active);
1642                 break;
1643         case BTRFS_BLOCK_GROUP_RAID1:
1644         case BTRFS_BLOCK_GROUP_RAID1C3:
1645         case BTRFS_BLOCK_GROUP_RAID1C4:
1646                 ret = btrfs_load_block_group_raid1(cache, map, zone_info, active);
1647                 break;
1648         case BTRFS_BLOCK_GROUP_RAID0:
1649                 ret = btrfs_load_block_group_raid0(cache, map, zone_info, active);
1650                 break;
1651         case BTRFS_BLOCK_GROUP_RAID10:
1652                 ret = btrfs_load_block_group_raid10(cache, map, zone_info, active);
1653                 break;
1654         case BTRFS_BLOCK_GROUP_RAID5:
1655         case BTRFS_BLOCK_GROUP_RAID6:
1656         default:
1657                 btrfs_err(fs_info, "zoned: profile %s not yet supported",
1658                           btrfs_bg_type_to_raid_name(map->type));
1659                 ret = -EINVAL;
1660                 goto out;
1661         }
1662
1663 out:
1664         if (cache->alloc_offset > cache->zone_capacity) {
1665                 btrfs_err(fs_info,
1666 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1667                           cache->alloc_offset, cache->zone_capacity,
1668                           cache->start);
1669                 ret = -EIO;
1670         }
1671
1672         /* An extent is allocated after the write pointer */
1673         if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1674                 btrfs_err(fs_info,
1675                           "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1676                           logical, last_alloc, cache->alloc_offset);
1677                 ret = -EIO;
1678         }
1679
1680         if (!ret) {
1681                 cache->meta_write_pointer = cache->alloc_offset + cache->start;
1682                 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1683                         btrfs_get_block_group(cache);
1684                         spin_lock(&fs_info->zone_active_bgs_lock);
1685                         list_add_tail(&cache->active_bg_list,
1686                                       &fs_info->zone_active_bgs);
1687                         spin_unlock(&fs_info->zone_active_bgs_lock);
1688                 }
1689         } else {
1690                 kfree(cache->physical_map);
1691                 cache->physical_map = NULL;
1692         }
1693         bitmap_free(active);
1694         kfree(zone_info);
1695         free_extent_map(em);
1696
1697         return ret;
1698 }
1699
1700 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1701 {
1702         u64 unusable, free;
1703
1704         if (!btrfs_is_zoned(cache->fs_info))
1705                 return;
1706
1707         WARN_ON(cache->bytes_super != 0);
1708         unusable = (cache->alloc_offset - cache->used) +
1709                    (cache->length - cache->zone_capacity);
1710         free = cache->zone_capacity - cache->alloc_offset;
1711
1712         /* We only need ->free_space in ALLOC_SEQ block groups */
1713         cache->cached = BTRFS_CACHE_FINISHED;
1714         cache->free_space_ctl->free_space = free;
1715         cache->zone_unusable = unusable;
1716 }
1717
1718 void btrfs_redirty_list_add(struct btrfs_transaction *trans,
1719                             struct extent_buffer *eb)
1720 {
1721         if (!btrfs_is_zoned(eb->fs_info) ||
1722             btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN))
1723                 return;
1724
1725         ASSERT(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1726
1727         memzero_extent_buffer(eb, 0, eb->len);
1728         set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);
1729         set_extent_buffer_dirty(eb);
1730         set_extent_bit(&trans->dirty_pages, eb->start, eb->start + eb->len - 1,
1731                         EXTENT_DIRTY, NULL);
1732 }
1733
1734 bool btrfs_use_zone_append(struct btrfs_bio *bbio)
1735 {
1736         u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT);
1737         struct btrfs_inode *inode = bbio->inode;
1738         struct btrfs_fs_info *fs_info = bbio->fs_info;
1739         struct btrfs_block_group *cache;
1740         bool ret = false;
1741
1742         if (!btrfs_is_zoned(fs_info))
1743                 return false;
1744
1745         if (!inode || !is_data_inode(&inode->vfs_inode))
1746                 return false;
1747
1748         if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE)
1749                 return false;
1750
1751         /*
1752          * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1753          * extent layout the relocation code has.
1754          * Furthermore we have set aside own block-group from which only the
1755          * relocation "process" can allocate and make sure only one process at a
1756          * time can add pages to an extent that gets relocated, so it's safe to
1757          * use regular REQ_OP_WRITE for this special case.
1758          */
1759         if (btrfs_is_data_reloc_root(inode->root))
1760                 return false;
1761
1762         cache = btrfs_lookup_block_group(fs_info, start);
1763         ASSERT(cache);
1764         if (!cache)
1765                 return false;
1766
1767         ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1768         btrfs_put_block_group(cache);
1769
1770         return ret;
1771 }
1772
1773 void btrfs_record_physical_zoned(struct btrfs_bio *bbio)
1774 {
1775         const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
1776         struct btrfs_ordered_sum *sum = bbio->sums;
1777
1778         if (physical < bbio->orig_physical)
1779                 sum->logical -= bbio->orig_physical - physical;
1780         else
1781                 sum->logical += physical - bbio->orig_physical;
1782 }
1783
1784 static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered,
1785                                         u64 logical)
1786 {
1787         struct extent_map_tree *em_tree = &BTRFS_I(ordered->inode)->extent_tree;
1788         struct extent_map *em;
1789
1790         ordered->disk_bytenr = logical;
1791
1792         write_lock(&em_tree->lock);
1793         em = search_extent_mapping(em_tree, ordered->file_offset,
1794                                    ordered->num_bytes);
1795         em->block_start = logical;
1796         free_extent_map(em);
1797         write_unlock(&em_tree->lock);
1798 }
1799
1800 static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered,
1801                                       u64 logical, u64 len)
1802 {
1803         struct btrfs_ordered_extent *new;
1804
1805         if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
1806             split_extent_map(BTRFS_I(ordered->inode), ordered->file_offset,
1807                              ordered->num_bytes, len, logical))
1808                 return false;
1809
1810         new = btrfs_split_ordered_extent(ordered, len);
1811         if (IS_ERR(new))
1812                 return false;
1813         new->disk_bytenr = logical;
1814         btrfs_finish_one_ordered(new);
1815         return true;
1816 }
1817
1818 void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered)
1819 {
1820         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1821         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1822         struct btrfs_ordered_sum *sum;
1823         u64 logical, len;
1824
1825         /*
1826          * Write to pre-allocated region is for the data relocation, and so
1827          * it should use WRITE operation. No split/rewrite are necessary.
1828          */
1829         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
1830                 return;
1831
1832         ASSERT(!list_empty(&ordered->list));
1833         /* The ordered->list can be empty in the above pre-alloc case. */
1834         sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list);
1835         logical = sum->logical;
1836         len = sum->len;
1837
1838         while (len < ordered->disk_num_bytes) {
1839                 sum = list_next_entry(sum, list);
1840                 if (sum->logical == logical + len) {
1841                         len += sum->len;
1842                         continue;
1843                 }
1844                 if (!btrfs_zoned_split_ordered(ordered, logical, len)) {
1845                         set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
1846                         btrfs_err(fs_info, "failed to split ordered extent");
1847                         goto out;
1848                 }
1849                 logical = sum->logical;
1850                 len = sum->len;
1851         }
1852
1853         if (ordered->disk_bytenr != logical)
1854                 btrfs_rewrite_logical_zoned(ordered, logical);
1855
1856 out:
1857         /*
1858          * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures
1859          * were allocated by btrfs_alloc_dummy_sum only to record the logical
1860          * addresses and don't contain actual checksums.  We thus must free them
1861          * here so that we don't attempt to log the csums later.
1862          */
1863         if ((inode->flags & BTRFS_INODE_NODATASUM) ||
1864             test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) {
1865                 while ((sum = list_first_entry_or_null(&ordered->list,
1866                                                        typeof(*sum), list))) {
1867                         list_del(&sum->list);
1868                         kfree(sum);
1869                 }
1870         }
1871 }
1872
1873 static bool check_bg_is_active(struct btrfs_eb_write_context *ctx,
1874                                struct btrfs_block_group **active_bg)
1875 {
1876         const struct writeback_control *wbc = ctx->wbc;
1877         struct btrfs_block_group *block_group = ctx->zoned_bg;
1878         struct btrfs_fs_info *fs_info = block_group->fs_info;
1879
1880         if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1881                 return true;
1882
1883         if (fs_info->treelog_bg == block_group->start) {
1884                 if (!btrfs_zone_activate(block_group)) {
1885                         int ret_fin = btrfs_zone_finish_one_bg(fs_info);
1886
1887                         if (ret_fin != 1 || !btrfs_zone_activate(block_group))
1888                                 return false;
1889                 }
1890         } else if (*active_bg != block_group) {
1891                 struct btrfs_block_group *tgt = *active_bg;
1892
1893                 /* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */
1894                 lockdep_assert_held(&fs_info->zoned_meta_io_lock);
1895
1896                 if (tgt) {
1897                         /*
1898                          * If there is an unsent IO left in the allocated area,
1899                          * we cannot wait for them as it may cause a deadlock.
1900                          */
1901                         if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) {
1902                                 if (wbc->sync_mode == WB_SYNC_NONE ||
1903                                     (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync))
1904                                         return false;
1905                         }
1906
1907                         /* Pivot active metadata/system block group. */
1908                         btrfs_zoned_meta_io_unlock(fs_info);
1909                         wait_eb_writebacks(tgt);
1910                         do_zone_finish(tgt, true);
1911                         btrfs_zoned_meta_io_lock(fs_info);
1912                         if (*active_bg == tgt) {
1913                                 btrfs_put_block_group(tgt);
1914                                 *active_bg = NULL;
1915                         }
1916                 }
1917                 if (!btrfs_zone_activate(block_group))
1918                         return false;
1919                 if (*active_bg != block_group) {
1920                         ASSERT(*active_bg == NULL);
1921                         *active_bg = block_group;
1922                         btrfs_get_block_group(block_group);
1923                 }
1924         }
1925
1926         return true;
1927 }
1928
1929 /*
1930  * Check if @ctx->eb is aligned to the write pointer.
1931  *
1932  * Return:
1933  *   0:        @ctx->eb is at the write pointer. You can write it.
1934  *   -EAGAIN:  There is a hole. The caller should handle the case.
1935  *   -EBUSY:   There is a hole, but the caller can just bail out.
1936  */
1937 int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1938                                    struct btrfs_eb_write_context *ctx)
1939 {
1940         const struct writeback_control *wbc = ctx->wbc;
1941         const struct extent_buffer *eb = ctx->eb;
1942         struct btrfs_block_group *block_group = ctx->zoned_bg;
1943
1944         if (!btrfs_is_zoned(fs_info))
1945                 return 0;
1946
1947         if (block_group) {
1948                 if (block_group->start > eb->start ||
1949                     block_group->start + block_group->length <= eb->start) {
1950                         btrfs_put_block_group(block_group);
1951                         block_group = NULL;
1952                         ctx->zoned_bg = NULL;
1953                 }
1954         }
1955
1956         if (!block_group) {
1957                 block_group = btrfs_lookup_block_group(fs_info, eb->start);
1958                 if (!block_group)
1959                         return 0;
1960                 ctx->zoned_bg = block_group;
1961         }
1962
1963         if (block_group->meta_write_pointer == eb->start) {
1964                 struct btrfs_block_group **tgt;
1965
1966                 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
1967                         return 0;
1968
1969                 if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)
1970                         tgt = &fs_info->active_system_bg;
1971                 else
1972                         tgt = &fs_info->active_meta_bg;
1973                 if (check_bg_is_active(ctx, tgt))
1974                         return 0;
1975         }
1976
1977         /*
1978          * Since we may release fs_info->zoned_meta_io_lock, someone can already
1979          * start writing this eb. In that case, we can just bail out.
1980          */
1981         if (block_group->meta_write_pointer > eb->start)
1982                 return -EBUSY;
1983
1984         /* If for_sync, this hole will be filled with trasnsaction commit. */
1985         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
1986                 return -EAGAIN;
1987         return -EBUSY;
1988 }
1989
1990 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1991 {
1992         if (!btrfs_dev_is_sequential(device, physical))
1993                 return -EOPNOTSUPP;
1994
1995         return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1996                                     length >> SECTOR_SHIFT, GFP_NOFS, 0);
1997 }
1998
1999 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
2000                           struct blk_zone *zone)
2001 {
2002         struct btrfs_io_context *bioc = NULL;
2003         u64 mapped_length = PAGE_SIZE;
2004         unsigned int nofs_flag;
2005         int nmirrors;
2006         int i, ret;
2007
2008         ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2009                               &mapped_length, &bioc, NULL, NULL);
2010         if (ret || !bioc || mapped_length < PAGE_SIZE) {
2011                 ret = -EIO;
2012                 goto out_put_bioc;
2013         }
2014
2015         if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2016                 ret = -EINVAL;
2017                 goto out_put_bioc;
2018         }
2019
2020         nofs_flag = memalloc_nofs_save();
2021         nmirrors = (int)bioc->num_stripes;
2022         for (i = 0; i < nmirrors; i++) {
2023                 u64 physical = bioc->stripes[i].physical;
2024                 struct btrfs_device *dev = bioc->stripes[i].dev;
2025
2026                 /* Missing device */
2027                 if (!dev->bdev)
2028                         continue;
2029
2030                 ret = btrfs_get_dev_zone(dev, physical, zone);
2031                 /* Failing device */
2032                 if (ret == -EIO || ret == -EOPNOTSUPP)
2033                         continue;
2034                 break;
2035         }
2036         memalloc_nofs_restore(nofs_flag);
2037 out_put_bioc:
2038         btrfs_put_bioc(bioc);
2039         return ret;
2040 }
2041
2042 /*
2043  * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
2044  * filling zeros between @physical_pos to a write pointer of dev-replace
2045  * source device.
2046  */
2047 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
2048                                     u64 physical_start, u64 physical_pos)
2049 {
2050         struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
2051         struct blk_zone zone;
2052         u64 length;
2053         u64 wp;
2054         int ret;
2055
2056         if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
2057                 return 0;
2058
2059         ret = read_zone_info(fs_info, logical, &zone);
2060         if (ret)
2061                 return ret;
2062
2063         wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
2064
2065         if (physical_pos == wp)
2066                 return 0;
2067
2068         if (physical_pos > wp)
2069                 return -EUCLEAN;
2070
2071         length = wp - physical_pos;
2072         return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
2073 }
2074
2075 /*
2076  * Activate block group and underlying device zones
2077  *
2078  * @block_group: the block group to activate
2079  *
2080  * Return: true on success, false otherwise
2081  */
2082 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
2083 {
2084         struct btrfs_fs_info *fs_info = block_group->fs_info;
2085         struct map_lookup *map;
2086         struct btrfs_device *device;
2087         u64 physical;
2088         const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA);
2089         bool ret;
2090         int i;
2091
2092         if (!btrfs_is_zoned(block_group->fs_info))
2093                 return true;
2094
2095         map = block_group->physical_map;
2096
2097         spin_lock(&block_group->lock);
2098         if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2099                 ret = true;
2100                 goto out_unlock;
2101         }
2102
2103         /* No space left */
2104         if (btrfs_zoned_bg_is_full(block_group)) {
2105                 ret = false;
2106                 goto out_unlock;
2107         }
2108
2109         spin_lock(&fs_info->zone_active_bgs_lock);
2110         for (i = 0; i < map->num_stripes; i++) {
2111                 struct btrfs_zoned_device_info *zinfo;
2112                 int reserved = 0;
2113
2114                 device = map->stripes[i].dev;
2115                 physical = map->stripes[i].physical;
2116                 zinfo = device->zone_info;
2117
2118                 if (zinfo->max_active_zones == 0)
2119                         continue;
2120
2121                 if (is_data)
2122                         reserved = zinfo->reserved_active_zones;
2123                 /*
2124                  * For the data block group, leave active zones for one
2125                  * metadata block group and one system block group.
2126                  */
2127                 if (atomic_read(&zinfo->active_zones_left) <= reserved) {
2128                         ret = false;
2129                         spin_unlock(&fs_info->zone_active_bgs_lock);
2130                         goto out_unlock;
2131                 }
2132
2133                 if (!btrfs_dev_set_active_zone(device, physical)) {
2134                         /* Cannot activate the zone */
2135                         ret = false;
2136                         spin_unlock(&fs_info->zone_active_bgs_lock);
2137                         goto out_unlock;
2138                 }
2139                 if (!is_data)
2140                         zinfo->reserved_active_zones--;
2141         }
2142         spin_unlock(&fs_info->zone_active_bgs_lock);
2143
2144         /* Successfully activated all the zones */
2145         set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2146         spin_unlock(&block_group->lock);
2147
2148         /* For the active block group list */
2149         btrfs_get_block_group(block_group);
2150
2151         spin_lock(&fs_info->zone_active_bgs_lock);
2152         list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
2153         spin_unlock(&fs_info->zone_active_bgs_lock);
2154
2155         return true;
2156
2157 out_unlock:
2158         spin_unlock(&block_group->lock);
2159         return ret;
2160 }
2161
2162 static void wait_eb_writebacks(struct btrfs_block_group *block_group)
2163 {
2164         struct btrfs_fs_info *fs_info = block_group->fs_info;
2165         const u64 end = block_group->start + block_group->length;
2166         struct radix_tree_iter iter;
2167         struct extent_buffer *eb;
2168         void __rcu **slot;
2169
2170         rcu_read_lock();
2171         radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
2172                                  block_group->start >> fs_info->sectorsize_bits) {
2173                 eb = radix_tree_deref_slot(slot);
2174                 if (!eb)
2175                         continue;
2176                 if (radix_tree_deref_retry(eb)) {
2177                         slot = radix_tree_iter_retry(&iter);
2178                         continue;
2179                 }
2180
2181                 if (eb->start < block_group->start)
2182                         continue;
2183                 if (eb->start >= end)
2184                         break;
2185
2186                 slot = radix_tree_iter_resume(slot, &iter);
2187                 rcu_read_unlock();
2188                 wait_on_extent_buffer_writeback(eb);
2189                 rcu_read_lock();
2190         }
2191         rcu_read_unlock();
2192 }
2193
2194 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
2195 {
2196         struct btrfs_fs_info *fs_info = block_group->fs_info;
2197         struct map_lookup *map;
2198         const bool is_metadata = (block_group->flags &
2199                         (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
2200         int ret = 0;
2201         int i;
2202
2203         spin_lock(&block_group->lock);
2204         if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2205                 spin_unlock(&block_group->lock);
2206                 return 0;
2207         }
2208
2209         /* Check if we have unwritten allocated space */
2210         if (is_metadata &&
2211             block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
2212                 spin_unlock(&block_group->lock);
2213                 return -EAGAIN;
2214         }
2215
2216         /*
2217          * If we are sure that the block group is full (= no more room left for
2218          * new allocation) and the IO for the last usable block is completed, we
2219          * don't need to wait for the other IOs. This holds because we ensure
2220          * the sequential IO submissions using the ZONE_APPEND command for data
2221          * and block_group->meta_write_pointer for metadata.
2222          */
2223         if (!fully_written) {
2224                 if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2225                         spin_unlock(&block_group->lock);
2226                         return -EAGAIN;
2227                 }
2228                 spin_unlock(&block_group->lock);
2229
2230                 ret = btrfs_inc_block_group_ro(block_group, false);
2231                 if (ret)
2232                         return ret;
2233
2234                 /* Ensure all writes in this block group finish */
2235                 btrfs_wait_block_group_reservations(block_group);
2236                 /* No need to wait for NOCOW writers. Zoned mode does not allow that */
2237                 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
2238                                          block_group->length);
2239                 /* Wait for extent buffers to be written. */
2240                 if (is_metadata)
2241                         wait_eb_writebacks(block_group);
2242
2243                 spin_lock(&block_group->lock);
2244
2245                 /*
2246                  * Bail out if someone already deactivated the block group, or
2247                  * allocated space is left in the block group.
2248                  */
2249                 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2250                               &block_group->runtime_flags)) {
2251                         spin_unlock(&block_group->lock);
2252                         btrfs_dec_block_group_ro(block_group);
2253                         return 0;
2254                 }
2255
2256                 if (block_group->reserved ||
2257                     test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2258                              &block_group->runtime_flags)) {
2259                         spin_unlock(&block_group->lock);
2260                         btrfs_dec_block_group_ro(block_group);
2261                         return -EAGAIN;
2262                 }
2263         }
2264
2265         clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2266         block_group->alloc_offset = block_group->zone_capacity;
2267         if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))
2268                 block_group->meta_write_pointer = block_group->start +
2269                                                   block_group->zone_capacity;
2270         block_group->free_space_ctl->free_space = 0;
2271         btrfs_clear_treelog_bg(block_group);
2272         btrfs_clear_data_reloc_bg(block_group);
2273         spin_unlock(&block_group->lock);
2274
2275         map = block_group->physical_map;
2276         for (i = 0; i < map->num_stripes; i++) {
2277                 struct btrfs_device *device = map->stripes[i].dev;
2278                 const u64 physical = map->stripes[i].physical;
2279                 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2280
2281                 if (zinfo->max_active_zones == 0)
2282                         continue;
2283
2284                 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2285                                        physical >> SECTOR_SHIFT,
2286                                        zinfo->zone_size >> SECTOR_SHIFT,
2287                                        GFP_NOFS);
2288
2289                 if (ret)
2290                         return ret;
2291
2292                 if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA))
2293                         zinfo->reserved_active_zones++;
2294                 btrfs_dev_clear_active_zone(device, physical);
2295         }
2296
2297         if (!fully_written)
2298                 btrfs_dec_block_group_ro(block_group);
2299
2300         spin_lock(&fs_info->zone_active_bgs_lock);
2301         ASSERT(!list_empty(&block_group->active_bg_list));
2302         list_del_init(&block_group->active_bg_list);
2303         spin_unlock(&fs_info->zone_active_bgs_lock);
2304
2305         /* For active_bg_list */
2306         btrfs_put_block_group(block_group);
2307
2308         clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2309
2310         return 0;
2311 }
2312
2313 int btrfs_zone_finish(struct btrfs_block_group *block_group)
2314 {
2315         if (!btrfs_is_zoned(block_group->fs_info))
2316                 return 0;
2317
2318         return do_zone_finish(block_group, false);
2319 }
2320
2321 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2322 {
2323         struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2324         struct btrfs_device *device;
2325         bool ret = false;
2326
2327         if (!btrfs_is_zoned(fs_info))
2328                 return true;
2329
2330         /* Check if there is a device with active zones left */
2331         mutex_lock(&fs_info->chunk_mutex);
2332         spin_lock(&fs_info->zone_active_bgs_lock);
2333         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2334                 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2335                 int reserved = 0;
2336
2337                 if (!device->bdev)
2338                         continue;
2339
2340                 if (!zinfo->max_active_zones) {
2341                         ret = true;
2342                         break;
2343                 }
2344
2345                 if (flags & BTRFS_BLOCK_GROUP_DATA)
2346                         reserved = zinfo->reserved_active_zones;
2347
2348                 switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
2349                 case 0: /* single */
2350                         ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved));
2351                         break;
2352                 case BTRFS_BLOCK_GROUP_DUP:
2353                         ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved));
2354                         break;
2355                 }
2356                 if (ret)
2357                         break;
2358         }
2359         spin_unlock(&fs_info->zone_active_bgs_lock);
2360         mutex_unlock(&fs_info->chunk_mutex);
2361
2362         if (!ret)
2363                 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2364
2365         return ret;
2366 }
2367
2368 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2369 {
2370         struct btrfs_block_group *block_group;
2371         u64 min_alloc_bytes;
2372
2373         if (!btrfs_is_zoned(fs_info))
2374                 return;
2375
2376         block_group = btrfs_lookup_block_group(fs_info, logical);
2377         ASSERT(block_group);
2378
2379         /* No MIXED_BG on zoned btrfs. */
2380         if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2381                 min_alloc_bytes = fs_info->sectorsize;
2382         else
2383                 min_alloc_bytes = fs_info->nodesize;
2384
2385         /* Bail out if we can allocate more data from this block group. */
2386         if (logical + length + min_alloc_bytes <=
2387             block_group->start + block_group->zone_capacity)
2388                 goto out;
2389
2390         do_zone_finish(block_group, true);
2391
2392 out:
2393         btrfs_put_block_group(block_group);
2394 }
2395
2396 static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2397 {
2398         struct btrfs_block_group *bg =
2399                 container_of(work, struct btrfs_block_group, zone_finish_work);
2400
2401         wait_on_extent_buffer_writeback(bg->last_eb);
2402         free_extent_buffer(bg->last_eb);
2403         btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2404         btrfs_put_block_group(bg);
2405 }
2406
2407 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2408                                    struct extent_buffer *eb)
2409 {
2410         if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2411             eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2412                 return;
2413
2414         if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2415                 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2416                           bg->start);
2417                 return;
2418         }
2419
2420         /* For the work */
2421         btrfs_get_block_group(bg);
2422         atomic_inc(&eb->refs);
2423         bg->last_eb = eb;
2424         INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2425         queue_work(system_unbound_wq, &bg->zone_finish_work);
2426 }
2427
2428 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2429 {
2430         struct btrfs_fs_info *fs_info = bg->fs_info;
2431
2432         spin_lock(&fs_info->relocation_bg_lock);
2433         if (fs_info->data_reloc_bg == bg->start)
2434                 fs_info->data_reloc_bg = 0;
2435         spin_unlock(&fs_info->relocation_bg_lock);
2436 }
2437
2438 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2439 {
2440         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2441         struct btrfs_device *device;
2442
2443         if (!btrfs_is_zoned(fs_info))
2444                 return;
2445
2446         mutex_lock(&fs_devices->device_list_mutex);
2447         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2448                 if (device->zone_info) {
2449                         vfree(device->zone_info->zone_cache);
2450                         device->zone_info->zone_cache = NULL;
2451                 }
2452         }
2453         mutex_unlock(&fs_devices->device_list_mutex);
2454 }
2455
2456 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2457 {
2458         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2459         struct btrfs_device *device;
2460         u64 used = 0;
2461         u64 total = 0;
2462         u64 factor;
2463
2464         ASSERT(btrfs_is_zoned(fs_info));
2465
2466         if (fs_info->bg_reclaim_threshold == 0)
2467                 return false;
2468
2469         mutex_lock(&fs_devices->device_list_mutex);
2470         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2471                 if (!device->bdev)
2472                         continue;
2473
2474                 total += device->disk_total_bytes;
2475                 used += device->bytes_used;
2476         }
2477         mutex_unlock(&fs_devices->device_list_mutex);
2478
2479         factor = div64_u64(used * 100, total);
2480         return factor >= fs_info->bg_reclaim_threshold;
2481 }
2482
2483 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2484                                        u64 length)
2485 {
2486         struct btrfs_block_group *block_group;
2487
2488         if (!btrfs_is_zoned(fs_info))
2489                 return;
2490
2491         block_group = btrfs_lookup_block_group(fs_info, logical);
2492         /* It should be called on a previous data relocation block group. */
2493         ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2494
2495         spin_lock(&block_group->lock);
2496         if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2497                 goto out;
2498
2499         /* All relocation extents are written. */
2500         if (block_group->start + block_group->alloc_offset == logical + length) {
2501                 /*
2502                  * Now, release this block group for further allocations and
2503                  * zone finish.
2504                  */
2505                 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2506                           &block_group->runtime_flags);
2507         }
2508
2509 out:
2510         spin_unlock(&block_group->lock);
2511         btrfs_put_block_group(block_group);
2512 }
2513
2514 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2515 {
2516         struct btrfs_block_group *block_group;
2517         struct btrfs_block_group *min_bg = NULL;
2518         u64 min_avail = U64_MAX;
2519         int ret;
2520
2521         spin_lock(&fs_info->zone_active_bgs_lock);
2522         list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2523                             active_bg_list) {
2524                 u64 avail;
2525
2526                 spin_lock(&block_group->lock);
2527                 if (block_group->reserved || block_group->alloc_offset == 0 ||
2528                     (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) ||
2529                     test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2530                         spin_unlock(&block_group->lock);
2531                         continue;
2532                 }
2533
2534                 avail = block_group->zone_capacity - block_group->alloc_offset;
2535                 if (min_avail > avail) {
2536                         if (min_bg)
2537                                 btrfs_put_block_group(min_bg);
2538                         min_bg = block_group;
2539                         min_avail = avail;
2540                         btrfs_get_block_group(min_bg);
2541                 }
2542                 spin_unlock(&block_group->lock);
2543         }
2544         spin_unlock(&fs_info->zone_active_bgs_lock);
2545
2546         if (!min_bg)
2547                 return 0;
2548
2549         ret = btrfs_zone_finish(min_bg);
2550         btrfs_put_block_group(min_bg);
2551
2552         return ret < 0 ? ret : 1;
2553 }
2554
2555 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2556                                 struct btrfs_space_info *space_info,
2557                                 bool do_finish)
2558 {
2559         struct btrfs_block_group *bg;
2560         int index;
2561
2562         if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2563                 return 0;
2564
2565         for (;;) {
2566                 int ret;
2567                 bool need_finish = false;
2568
2569                 down_read(&space_info->groups_sem);
2570                 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2571                         list_for_each_entry(bg, &space_info->block_groups[index],
2572                                             list) {
2573                                 if (!spin_trylock(&bg->lock))
2574                                         continue;
2575                                 if (btrfs_zoned_bg_is_full(bg) ||
2576                                     test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2577                                              &bg->runtime_flags)) {
2578                                         spin_unlock(&bg->lock);
2579                                         continue;
2580                                 }
2581                                 spin_unlock(&bg->lock);
2582
2583                                 if (btrfs_zone_activate(bg)) {
2584                                         up_read(&space_info->groups_sem);
2585                                         return 1;
2586                                 }
2587
2588                                 need_finish = true;
2589                         }
2590                 }
2591                 up_read(&space_info->groups_sem);
2592
2593                 if (!do_finish || !need_finish)
2594                         break;
2595
2596                 ret = btrfs_zone_finish_one_bg(fs_info);
2597                 if (ret == 0)
2598                         break;
2599                 if (ret < 0)
2600                         return ret;
2601         }
2602
2603         return 0;
2604 }
2605
2606 /*
2607  * Reserve zones for one metadata block group, one tree-log block group, and one
2608  * system block group.
2609  */
2610 void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info)
2611 {
2612         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2613         struct btrfs_block_group *block_group;
2614         struct btrfs_device *device;
2615         /* Reserve zones for normal SINGLE metadata and tree-log block group. */
2616         unsigned int metadata_reserve = 2;
2617         /* Reserve a zone for SINGLE system block group. */
2618         unsigned int system_reserve = 1;
2619
2620         if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
2621                 return;
2622
2623         /*
2624          * This function is called from the mount context. So, there is no
2625          * parallel process touching the bits. No need for read_seqretry().
2626          */
2627         if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2628                 metadata_reserve = 4;
2629         if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2630                 system_reserve = 2;
2631
2632         /* Apply the reservation on all the devices. */
2633         mutex_lock(&fs_devices->device_list_mutex);
2634         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2635                 if (!device->bdev)
2636                         continue;
2637
2638                 device->zone_info->reserved_active_zones =
2639                         metadata_reserve + system_reserve;
2640         }
2641         mutex_unlock(&fs_devices->device_list_mutex);
2642
2643         /* Release reservation for currently active block groups. */
2644         spin_lock(&fs_info->zone_active_bgs_lock);
2645         list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
2646                 struct map_lookup *map = block_group->physical_map;
2647
2648                 if (!(block_group->flags &
2649                       (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)))
2650                         continue;
2651
2652                 for (int i = 0; i < map->num_stripes; i++)
2653                         map->stripes[i].dev->zone_info->reserved_active_zones--;
2654         }
2655         spin_unlock(&fs_info->zone_active_bgs_lock);
2656 }