1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Red Hat. All rights reserved.
6 #include <linux/init.h>
8 #include <linux/slab.h>
9 #include <linux/rwsem.h>
10 #include <linux/xattr.h>
11 #include <linux/security.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/iversion.h>
14 #include <linux/sched/mm.h>
16 #include "btrfs_inode.h"
17 #include "transaction.h"
23 int btrfs_getxattr(struct inode *inode, const char *name,
24 void *buffer, size_t size)
26 struct btrfs_dir_item *di;
27 struct btrfs_root *root = BTRFS_I(inode)->root;
28 struct btrfs_path *path;
29 struct extent_buffer *leaf;
31 unsigned long data_ptr;
33 path = btrfs_alloc_path();
37 /* lookup the xattr by name */
38 di = btrfs_lookup_xattr(NULL, root, path, btrfs_ino(BTRFS_I(inode)),
39 name, strlen(name), 0);
43 } else if (IS_ERR(di)) {
48 leaf = path->nodes[0];
49 /* if size is 0, that means we want the size of the attr */
51 ret = btrfs_dir_data_len(leaf, di);
55 /* now get the data out of our dir_item */
56 if (btrfs_dir_data_len(leaf, di) > size) {
62 * The way things are packed into the leaf is like this
63 * |struct btrfs_dir_item|name|data|
64 * where name is the xattr name, so security.foo, and data is the
65 * content of the xattr. data_ptr points to the location in memory
66 * where the data starts in the in memory leaf
68 data_ptr = (unsigned long)((char *)(di + 1) +
69 btrfs_dir_name_len(leaf, di));
70 read_extent_buffer(leaf, buffer, data_ptr,
71 btrfs_dir_data_len(leaf, di));
72 ret = btrfs_dir_data_len(leaf, di);
75 btrfs_free_path(path);
79 int btrfs_setxattr(struct btrfs_trans_handle *trans, struct inode *inode,
80 const char *name, const void *value, size_t size, int flags)
82 struct btrfs_dir_item *di = NULL;
83 struct btrfs_root *root = BTRFS_I(inode)->root;
84 struct btrfs_fs_info *fs_info = root->fs_info;
85 struct btrfs_path *path;
86 size_t name_len = strlen(name);
91 if (name_len + size > BTRFS_MAX_XATTR_SIZE(root->fs_info))
94 path = btrfs_alloc_path();
97 path->skip_release_on_error = 1;
100 di = btrfs_lookup_xattr(trans, root, path,
101 btrfs_ino(BTRFS_I(inode)), name, name_len, -1);
102 if (!di && (flags & XATTR_REPLACE))
107 ret = btrfs_delete_one_dir_name(trans, root, path, di);
112 * For a replace we can't just do the insert blindly.
113 * Do a lookup first (read-only btrfs_search_slot), and return if xattr
114 * doesn't exist. If it exists, fall down below to the insert/replace
115 * path - we can't race with a concurrent xattr delete, because the VFS
116 * locks the inode's i_mutex before calling setxattr or removexattr.
118 if (flags & XATTR_REPLACE) {
119 ASSERT(inode_is_locked(inode));
120 di = btrfs_lookup_xattr(NULL, root, path,
121 btrfs_ino(BTRFS_I(inode)), name, name_len, 0);
128 btrfs_release_path(path);
132 ret = btrfs_insert_xattr_item(trans, root, path, btrfs_ino(BTRFS_I(inode)),
133 name, name_len, value, size);
134 if (ret == -EOVERFLOW) {
136 * We have an existing item in a leaf, split_leaf couldn't
137 * expand it. That item might have or not a dir_item that
138 * matches our target xattr, so lets check.
141 btrfs_assert_tree_locked(path->nodes[0]);
142 di = btrfs_match_dir_item_name(fs_info, path, name, name_len);
143 if (!di && !(flags & XATTR_REPLACE)) {
147 } else if (ret == -EEXIST) {
149 di = btrfs_match_dir_item_name(fs_info, path, name, name_len);
150 ASSERT(di); /* logic error */
155 if (di && (flags & XATTR_CREATE)) {
162 * We're doing a replace, and it must be atomic, that is, at
163 * any point in time we have either the old or the new xattr
164 * value in the tree. We don't want readers (getxattr and
165 * listxattrs) to miss a value, this is specially important
168 const int slot = path->slots[0];
169 struct extent_buffer *leaf = path->nodes[0];
170 const u16 old_data_len = btrfs_dir_data_len(leaf, di);
171 const u32 item_size = btrfs_item_size_nr(leaf, slot);
172 const u32 data_size = sizeof(*di) + name_len + size;
173 struct btrfs_item *item;
174 unsigned long data_ptr;
177 if (size > old_data_len) {
178 if (btrfs_leaf_free_space(leaf) <
179 (size - old_data_len)) {
185 if (old_data_len + name_len + sizeof(*di) == item_size) {
186 /* No other xattrs packed in the same leaf item. */
187 if (size > old_data_len)
188 btrfs_extend_item(path, size - old_data_len);
189 else if (size < old_data_len)
190 btrfs_truncate_item(path, data_size, 1);
192 /* There are other xattrs packed in the same item. */
193 ret = btrfs_delete_one_dir_name(trans, root, path, di);
196 btrfs_extend_item(path, data_size);
199 item = btrfs_item_nr(slot);
200 ptr = btrfs_item_ptr(leaf, slot, char);
201 ptr += btrfs_item_size(leaf, item) - data_size;
202 di = (struct btrfs_dir_item *)ptr;
203 btrfs_set_dir_data_len(leaf, di, size);
204 data_ptr = ((unsigned long)(di + 1)) + name_len;
205 write_extent_buffer(leaf, value, data_ptr, size);
206 btrfs_mark_buffer_dirty(leaf);
209 * Insert, and we had space for the xattr, so path->slots[0] is
210 * where our xattr dir_item is and btrfs_insert_xattr_item()
215 btrfs_free_path(path);
217 set_bit(BTRFS_INODE_COPY_EVERYTHING,
218 &BTRFS_I(inode)->runtime_flags);
223 * @value: "" makes the attribute to empty, NULL removes it
225 int btrfs_setxattr_trans(struct inode *inode, const char *name,
226 const void *value, size_t size, int flags)
228 struct btrfs_root *root = BTRFS_I(inode)->root;
229 struct btrfs_trans_handle *trans;
232 trans = btrfs_start_transaction(root, 2);
234 return PTR_ERR(trans);
236 ret = btrfs_setxattr(trans, inode, name, value, size, flags);
240 inode_inc_iversion(inode);
241 inode->i_ctime = current_time(inode);
242 ret = btrfs_update_inode(trans, root, inode);
245 btrfs_end_transaction(trans);
249 ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size)
251 struct btrfs_key key;
252 struct inode *inode = d_inode(dentry);
253 struct btrfs_root *root = BTRFS_I(inode)->root;
254 struct btrfs_path *path;
256 size_t total_size = 0, size_left = size;
259 * ok we want all objects associated with this id.
260 * NOTE: we set key.offset = 0; because we want to start with the
261 * first xattr that we find and walk forward
263 key.objectid = btrfs_ino(BTRFS_I(inode));
264 key.type = BTRFS_XATTR_ITEM_KEY;
267 path = btrfs_alloc_path();
270 path->reada = READA_FORWARD;
272 /* search for our xattrs */
273 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
278 struct extent_buffer *leaf;
280 struct btrfs_dir_item *di;
281 struct btrfs_key found_key;
285 leaf = path->nodes[0];
286 slot = path->slots[0];
288 /* this is where we start walking through the path */
289 if (slot >= btrfs_header_nritems(leaf)) {
291 * if we've reached the last slot in this leaf we need
292 * to go to the next leaf and reset everything
294 ret = btrfs_next_leaf(root, path);
302 btrfs_item_key_to_cpu(leaf, &found_key, slot);
304 /* check to make sure this item is what we want */
305 if (found_key.objectid != key.objectid)
307 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
309 if (found_key.type < BTRFS_XATTR_ITEM_KEY)
312 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
313 item_size = btrfs_item_size_nr(leaf, slot);
315 while (cur < item_size) {
316 u16 name_len = btrfs_dir_name_len(leaf, di);
317 u16 data_len = btrfs_dir_data_len(leaf, di);
318 u32 this_len = sizeof(*di) + name_len + data_len;
319 unsigned long name_ptr = (unsigned long)(di + 1);
321 total_size += name_len + 1;
323 * We are just looking for how big our buffer needs to
329 if (!buffer || (name_len + 1) > size_left) {
334 read_extent_buffer(leaf, buffer, name_ptr, name_len);
335 buffer[name_len] = '\0';
337 size_left -= name_len + 1;
338 buffer += name_len + 1;
341 di = (struct btrfs_dir_item *)((char *)di + this_len);
349 btrfs_free_path(path);
354 static int btrfs_xattr_handler_get(const struct xattr_handler *handler,
355 struct dentry *unused, struct inode *inode,
356 const char *name, void *buffer, size_t size)
358 name = xattr_full_name(handler, name);
359 return btrfs_getxattr(inode, name, buffer, size);
362 static int btrfs_xattr_handler_set(const struct xattr_handler *handler,
363 struct dentry *unused, struct inode *inode,
364 const char *name, const void *buffer,
365 size_t size, int flags)
367 name = xattr_full_name(handler, name);
368 return btrfs_setxattr_trans(inode, name, buffer, size, flags);
371 static int btrfs_xattr_handler_set_prop(const struct xattr_handler *handler,
372 struct dentry *unused, struct inode *inode,
373 const char *name, const void *value,
374 size_t size, int flags)
377 struct btrfs_trans_handle *trans;
378 struct btrfs_root *root = BTRFS_I(inode)->root;
380 name = xattr_full_name(handler, name);
381 ret = btrfs_validate_prop(name, value, size);
385 trans = btrfs_start_transaction(root, 2);
387 return PTR_ERR(trans);
389 ret = btrfs_set_prop(trans, inode, name, value, size, flags);
391 inode_inc_iversion(inode);
392 inode->i_ctime = current_time(inode);
393 ret = btrfs_update_inode(trans, root, inode);
397 btrfs_end_transaction(trans);
402 static const struct xattr_handler btrfs_security_xattr_handler = {
403 .prefix = XATTR_SECURITY_PREFIX,
404 .get = btrfs_xattr_handler_get,
405 .set = btrfs_xattr_handler_set,
408 static const struct xattr_handler btrfs_trusted_xattr_handler = {
409 .prefix = XATTR_TRUSTED_PREFIX,
410 .get = btrfs_xattr_handler_get,
411 .set = btrfs_xattr_handler_set,
414 static const struct xattr_handler btrfs_user_xattr_handler = {
415 .prefix = XATTR_USER_PREFIX,
416 .get = btrfs_xattr_handler_get,
417 .set = btrfs_xattr_handler_set,
420 static const struct xattr_handler btrfs_btrfs_xattr_handler = {
421 .prefix = XATTR_BTRFS_PREFIX,
422 .get = btrfs_xattr_handler_get,
423 .set = btrfs_xattr_handler_set_prop,
426 const struct xattr_handler *btrfs_xattr_handlers[] = {
427 &btrfs_security_xattr_handler,
428 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
429 &posix_acl_access_xattr_handler,
430 &posix_acl_default_xattr_handler,
432 &btrfs_trusted_xattr_handler,
433 &btrfs_user_xattr_handler,
434 &btrfs_btrfs_xattr_handler,
438 static int btrfs_initxattrs(struct inode *inode,
439 const struct xattr *xattr_array, void *fs_private)
441 struct btrfs_trans_handle *trans = fs_private;
442 const struct xattr *xattr;
443 unsigned int nofs_flag;
448 * We're holding a transaction handle, so use a NOFS memory allocation
449 * context to avoid deadlock if reclaim happens.
451 nofs_flag = memalloc_nofs_save();
452 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
453 name = kmalloc(XATTR_SECURITY_PREFIX_LEN +
454 strlen(xattr->name) + 1, GFP_KERNEL);
459 strcpy(name, XATTR_SECURITY_PREFIX);
460 strcpy(name + XATTR_SECURITY_PREFIX_LEN, xattr->name);
461 err = btrfs_setxattr(trans, inode, name, xattr->value,
462 xattr->value_len, 0);
467 memalloc_nofs_restore(nofs_flag);
471 int btrfs_xattr_security_init(struct btrfs_trans_handle *trans,
472 struct inode *inode, struct inode *dir,
473 const struct qstr *qstr)
475 return security_inode_init_security(inode, dir, qstr,
476 &btrfs_initxattrs, trans);