btrfs: simplify data stripe calculation helpers
[linux-2.6-microblaze.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33 #include "discard.h"
34 #include "zoned.h"
35
36 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
37         [BTRFS_RAID_RAID10] = {
38                 .sub_stripes    = 2,
39                 .dev_stripes    = 1,
40                 .devs_max       = 0,    /* 0 == as many as possible */
41                 .devs_min       = 4,
42                 .tolerated_failures = 1,
43                 .devs_increment = 2,
44                 .ncopies        = 2,
45                 .nparity        = 0,
46                 .raid_name      = "raid10",
47                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID10,
48                 .mindev_error   = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
49         },
50         [BTRFS_RAID_RAID1] = {
51                 .sub_stripes    = 1,
52                 .dev_stripes    = 1,
53                 .devs_max       = 2,
54                 .devs_min       = 2,
55                 .tolerated_failures = 1,
56                 .devs_increment = 2,
57                 .ncopies        = 2,
58                 .nparity        = 0,
59                 .raid_name      = "raid1",
60                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1,
61                 .mindev_error   = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
62         },
63         [BTRFS_RAID_RAID1C3] = {
64                 .sub_stripes    = 1,
65                 .dev_stripes    = 1,
66                 .devs_max       = 3,
67                 .devs_min       = 3,
68                 .tolerated_failures = 2,
69                 .devs_increment = 3,
70                 .ncopies        = 3,
71                 .nparity        = 0,
72                 .raid_name      = "raid1c3",
73                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C3,
74                 .mindev_error   = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
75         },
76         [BTRFS_RAID_RAID1C4] = {
77                 .sub_stripes    = 1,
78                 .dev_stripes    = 1,
79                 .devs_max       = 4,
80                 .devs_min       = 4,
81                 .tolerated_failures = 3,
82                 .devs_increment = 4,
83                 .ncopies        = 4,
84                 .nparity        = 0,
85                 .raid_name      = "raid1c4",
86                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C4,
87                 .mindev_error   = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
88         },
89         [BTRFS_RAID_DUP] = {
90                 .sub_stripes    = 1,
91                 .dev_stripes    = 2,
92                 .devs_max       = 1,
93                 .devs_min       = 1,
94                 .tolerated_failures = 0,
95                 .devs_increment = 1,
96                 .ncopies        = 2,
97                 .nparity        = 0,
98                 .raid_name      = "dup",
99                 .bg_flag        = BTRFS_BLOCK_GROUP_DUP,
100                 .mindev_error   = 0,
101         },
102         [BTRFS_RAID_RAID0] = {
103                 .sub_stripes    = 1,
104                 .dev_stripes    = 1,
105                 .devs_max       = 0,
106                 .devs_min       = 2,
107                 .tolerated_failures = 0,
108                 .devs_increment = 1,
109                 .ncopies        = 1,
110                 .nparity        = 0,
111                 .raid_name      = "raid0",
112                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID0,
113                 .mindev_error   = 0,
114         },
115         [BTRFS_RAID_SINGLE] = {
116                 .sub_stripes    = 1,
117                 .dev_stripes    = 1,
118                 .devs_max       = 1,
119                 .devs_min       = 1,
120                 .tolerated_failures = 0,
121                 .devs_increment = 1,
122                 .ncopies        = 1,
123                 .nparity        = 0,
124                 .raid_name      = "single",
125                 .bg_flag        = 0,
126                 .mindev_error   = 0,
127         },
128         [BTRFS_RAID_RAID5] = {
129                 .sub_stripes    = 1,
130                 .dev_stripes    = 1,
131                 .devs_max       = 0,
132                 .devs_min       = 2,
133                 .tolerated_failures = 1,
134                 .devs_increment = 1,
135                 .ncopies        = 1,
136                 .nparity        = 1,
137                 .raid_name      = "raid5",
138                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID5,
139                 .mindev_error   = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
140         },
141         [BTRFS_RAID_RAID6] = {
142                 .sub_stripes    = 1,
143                 .dev_stripes    = 1,
144                 .devs_max       = 0,
145                 .devs_min       = 3,
146                 .tolerated_failures = 2,
147                 .devs_increment = 1,
148                 .ncopies        = 1,
149                 .nparity        = 2,
150                 .raid_name      = "raid6",
151                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID6,
152                 .mindev_error   = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
153         },
154 };
155
156 /*
157  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
158  * can be used as index to access btrfs_raid_array[].
159  */
160 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
161 {
162         if (flags & BTRFS_BLOCK_GROUP_RAID10)
163                 return BTRFS_RAID_RAID10;
164         else if (flags & BTRFS_BLOCK_GROUP_RAID1)
165                 return BTRFS_RAID_RAID1;
166         else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
167                 return BTRFS_RAID_RAID1C3;
168         else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
169                 return BTRFS_RAID_RAID1C4;
170         else if (flags & BTRFS_BLOCK_GROUP_DUP)
171                 return BTRFS_RAID_DUP;
172         else if (flags & BTRFS_BLOCK_GROUP_RAID0)
173                 return BTRFS_RAID_RAID0;
174         else if (flags & BTRFS_BLOCK_GROUP_RAID5)
175                 return BTRFS_RAID_RAID5;
176         else if (flags & BTRFS_BLOCK_GROUP_RAID6)
177                 return BTRFS_RAID_RAID6;
178
179         return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
180 }
181
182 const char *btrfs_bg_type_to_raid_name(u64 flags)
183 {
184         const int index = btrfs_bg_flags_to_raid_index(flags);
185
186         if (index >= BTRFS_NR_RAID_TYPES)
187                 return NULL;
188
189         return btrfs_raid_array[index].raid_name;
190 }
191
192 /*
193  * Fill @buf with textual description of @bg_flags, no more than @size_buf
194  * bytes including terminating null byte.
195  */
196 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
197 {
198         int i;
199         int ret;
200         char *bp = buf;
201         u64 flags = bg_flags;
202         u32 size_bp = size_buf;
203
204         if (!flags) {
205                 strcpy(bp, "NONE");
206                 return;
207         }
208
209 #define DESCRIBE_FLAG(flag, desc)                                               \
210         do {                                                            \
211                 if (flags & (flag)) {                                   \
212                         ret = snprintf(bp, size_bp, "%s|", (desc));     \
213                         if (ret < 0 || ret >= size_bp)                  \
214                                 goto out_overflow;                      \
215                         size_bp -= ret;                                 \
216                         bp += ret;                                      \
217                         flags &= ~(flag);                               \
218                 }                                                       \
219         } while (0)
220
221         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
222         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
223         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
224
225         DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
226         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
227                 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
228                               btrfs_raid_array[i].raid_name);
229 #undef DESCRIBE_FLAG
230
231         if (flags) {
232                 ret = snprintf(bp, size_bp, "0x%llx|", flags);
233                 size_bp -= ret;
234         }
235
236         if (size_bp < size_buf)
237                 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
238
239         /*
240          * The text is trimmed, it's up to the caller to provide sufficiently
241          * large buffer
242          */
243 out_overflow:;
244 }
245
246 static int init_first_rw_device(struct btrfs_trans_handle *trans);
247 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
248 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
249 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
250 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
251                              enum btrfs_map_op op,
252                              u64 logical, u64 *length,
253                              struct btrfs_bio **bbio_ret,
254                              int mirror_num, int need_raid_map);
255
256 /*
257  * Device locking
258  * ==============
259  *
260  * There are several mutexes that protect manipulation of devices and low-level
261  * structures like chunks but not block groups, extents or files
262  *
263  * uuid_mutex (global lock)
264  * ------------------------
265  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
266  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
267  * device) or requested by the device= mount option
268  *
269  * the mutex can be very coarse and can cover long-running operations
270  *
271  * protects: updates to fs_devices counters like missing devices, rw devices,
272  * seeding, structure cloning, opening/closing devices at mount/umount time
273  *
274  * global::fs_devs - add, remove, updates to the global list
275  *
276  * does not protect: manipulation of the fs_devices::devices list in general
277  * but in mount context it could be used to exclude list modifications by eg.
278  * scan ioctl
279  *
280  * btrfs_device::name - renames (write side), read is RCU
281  *
282  * fs_devices::device_list_mutex (per-fs, with RCU)
283  * ------------------------------------------------
284  * protects updates to fs_devices::devices, ie. adding and deleting
285  *
286  * simple list traversal with read-only actions can be done with RCU protection
287  *
288  * may be used to exclude some operations from running concurrently without any
289  * modifications to the list (see write_all_supers)
290  *
291  * Is not required at mount and close times, because our device list is
292  * protected by the uuid_mutex at that point.
293  *
294  * balance_mutex
295  * -------------
296  * protects balance structures (status, state) and context accessed from
297  * several places (internally, ioctl)
298  *
299  * chunk_mutex
300  * -----------
301  * protects chunks, adding or removing during allocation, trim or when a new
302  * device is added/removed. Additionally it also protects post_commit_list of
303  * individual devices, since they can be added to the transaction's
304  * post_commit_list only with chunk_mutex held.
305  *
306  * cleaner_mutex
307  * -------------
308  * a big lock that is held by the cleaner thread and prevents running subvolume
309  * cleaning together with relocation or delayed iputs
310  *
311  *
312  * Lock nesting
313  * ============
314  *
315  * uuid_mutex
316  *   device_list_mutex
317  *     chunk_mutex
318  *   balance_mutex
319  *
320  *
321  * Exclusive operations
322  * ====================
323  *
324  * Maintains the exclusivity of the following operations that apply to the
325  * whole filesystem and cannot run in parallel.
326  *
327  * - Balance (*)
328  * - Device add
329  * - Device remove
330  * - Device replace (*)
331  * - Resize
332  *
333  * The device operations (as above) can be in one of the following states:
334  *
335  * - Running state
336  * - Paused state
337  * - Completed state
338  *
339  * Only device operations marked with (*) can go into the Paused state for the
340  * following reasons:
341  *
342  * - ioctl (only Balance can be Paused through ioctl)
343  * - filesystem remounted as read-only
344  * - filesystem unmounted and mounted as read-only
345  * - system power-cycle and filesystem mounted as read-only
346  * - filesystem or device errors leading to forced read-only
347  *
348  * The status of exclusive operation is set and cleared atomically.
349  * During the course of Paused state, fs_info::exclusive_operation remains set.
350  * A device operation in Paused or Running state can be canceled or resumed
351  * either by ioctl (Balance only) or when remounted as read-write.
352  * The exclusive status is cleared when the device operation is canceled or
353  * completed.
354  */
355
356 DEFINE_MUTEX(uuid_mutex);
357 static LIST_HEAD(fs_uuids);
358 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
359 {
360         return &fs_uuids;
361 }
362
363 /*
364  * alloc_fs_devices - allocate struct btrfs_fs_devices
365  * @fsid:               if not NULL, copy the UUID to fs_devices::fsid
366  * @metadata_fsid:      if not NULL, copy the UUID to fs_devices::metadata_fsid
367  *
368  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
369  * The returned struct is not linked onto any lists and can be destroyed with
370  * kfree() right away.
371  */
372 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
373                                                  const u8 *metadata_fsid)
374 {
375         struct btrfs_fs_devices *fs_devs;
376
377         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
378         if (!fs_devs)
379                 return ERR_PTR(-ENOMEM);
380
381         mutex_init(&fs_devs->device_list_mutex);
382
383         INIT_LIST_HEAD(&fs_devs->devices);
384         INIT_LIST_HEAD(&fs_devs->alloc_list);
385         INIT_LIST_HEAD(&fs_devs->fs_list);
386         INIT_LIST_HEAD(&fs_devs->seed_list);
387         if (fsid)
388                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
389
390         if (metadata_fsid)
391                 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
392         else if (fsid)
393                 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
394
395         return fs_devs;
396 }
397
398 void btrfs_free_device(struct btrfs_device *device)
399 {
400         WARN_ON(!list_empty(&device->post_commit_list));
401         rcu_string_free(device->name);
402         extent_io_tree_release(&device->alloc_state);
403         bio_put(device->flush_bio);
404         btrfs_destroy_dev_zone_info(device);
405         kfree(device);
406 }
407
408 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
409 {
410         struct btrfs_device *device;
411         WARN_ON(fs_devices->opened);
412         while (!list_empty(&fs_devices->devices)) {
413                 device = list_entry(fs_devices->devices.next,
414                                     struct btrfs_device, dev_list);
415                 list_del(&device->dev_list);
416                 btrfs_free_device(device);
417         }
418         kfree(fs_devices);
419 }
420
421 void __exit btrfs_cleanup_fs_uuids(void)
422 {
423         struct btrfs_fs_devices *fs_devices;
424
425         while (!list_empty(&fs_uuids)) {
426                 fs_devices = list_entry(fs_uuids.next,
427                                         struct btrfs_fs_devices, fs_list);
428                 list_del(&fs_devices->fs_list);
429                 free_fs_devices(fs_devices);
430         }
431 }
432
433 static noinline struct btrfs_fs_devices *find_fsid(
434                 const u8 *fsid, const u8 *metadata_fsid)
435 {
436         struct btrfs_fs_devices *fs_devices;
437
438         ASSERT(fsid);
439
440         /* Handle non-split brain cases */
441         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
442                 if (metadata_fsid) {
443                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
444                             && memcmp(metadata_fsid, fs_devices->metadata_uuid,
445                                       BTRFS_FSID_SIZE) == 0)
446                                 return fs_devices;
447                 } else {
448                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
449                                 return fs_devices;
450                 }
451         }
452         return NULL;
453 }
454
455 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
456                                 struct btrfs_super_block *disk_super)
457 {
458
459         struct btrfs_fs_devices *fs_devices;
460
461         /*
462          * Handle scanned device having completed its fsid change but
463          * belonging to a fs_devices that was created by first scanning
464          * a device which didn't have its fsid/metadata_uuid changed
465          * at all and the CHANGING_FSID_V2 flag set.
466          */
467         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
468                 if (fs_devices->fsid_change &&
469                     memcmp(disk_super->metadata_uuid, fs_devices->fsid,
470                            BTRFS_FSID_SIZE) == 0 &&
471                     memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
472                            BTRFS_FSID_SIZE) == 0) {
473                         return fs_devices;
474                 }
475         }
476         /*
477          * Handle scanned device having completed its fsid change but
478          * belonging to a fs_devices that was created by a device that
479          * has an outdated pair of fsid/metadata_uuid and
480          * CHANGING_FSID_V2 flag set.
481          */
482         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
483                 if (fs_devices->fsid_change &&
484                     memcmp(fs_devices->metadata_uuid,
485                            fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
486                     memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
487                            BTRFS_FSID_SIZE) == 0) {
488                         return fs_devices;
489                 }
490         }
491
492         return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
493 }
494
495
496 static int
497 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
498                       int flush, struct block_device **bdev,
499                       struct btrfs_super_block **disk_super)
500 {
501         int ret;
502
503         *bdev = blkdev_get_by_path(device_path, flags, holder);
504
505         if (IS_ERR(*bdev)) {
506                 ret = PTR_ERR(*bdev);
507                 goto error;
508         }
509
510         if (flush)
511                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
512         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
513         if (ret) {
514                 blkdev_put(*bdev, flags);
515                 goto error;
516         }
517         invalidate_bdev(*bdev);
518         *disk_super = btrfs_read_dev_super(*bdev);
519         if (IS_ERR(*disk_super)) {
520                 ret = PTR_ERR(*disk_super);
521                 blkdev_put(*bdev, flags);
522                 goto error;
523         }
524
525         return 0;
526
527 error:
528         *bdev = NULL;
529         return ret;
530 }
531
532 static bool device_path_matched(const char *path, struct btrfs_device *device)
533 {
534         int found;
535
536         rcu_read_lock();
537         found = strcmp(rcu_str_deref(device->name), path);
538         rcu_read_unlock();
539
540         return found == 0;
541 }
542
543 /*
544  *  Search and remove all stale (devices which are not mounted) devices.
545  *  When both inputs are NULL, it will search and release all stale devices.
546  *  path:       Optional. When provided will it release all unmounted devices
547  *              matching this path only.
548  *  skip_dev:   Optional. Will skip this device when searching for the stale
549  *              devices.
550  *  Return:     0 for success or if @path is NULL.
551  *              -EBUSY if @path is a mounted device.
552  *              -ENOENT if @path does not match any device in the list.
553  */
554 static int btrfs_free_stale_devices(const char *path,
555                                      struct btrfs_device *skip_device)
556 {
557         struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
558         struct btrfs_device *device, *tmp_device;
559         int ret = 0;
560
561         if (path)
562                 ret = -ENOENT;
563
564         list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
565
566                 mutex_lock(&fs_devices->device_list_mutex);
567                 list_for_each_entry_safe(device, tmp_device,
568                                          &fs_devices->devices, dev_list) {
569                         if (skip_device && skip_device == device)
570                                 continue;
571                         if (path && !device->name)
572                                 continue;
573                         if (path && !device_path_matched(path, device))
574                                 continue;
575                         if (fs_devices->opened) {
576                                 /* for an already deleted device return 0 */
577                                 if (path && ret != 0)
578                                         ret = -EBUSY;
579                                 break;
580                         }
581
582                         /* delete the stale device */
583                         fs_devices->num_devices--;
584                         list_del(&device->dev_list);
585                         btrfs_free_device(device);
586
587                         ret = 0;
588                 }
589                 mutex_unlock(&fs_devices->device_list_mutex);
590
591                 if (fs_devices->num_devices == 0) {
592                         btrfs_sysfs_remove_fsid(fs_devices);
593                         list_del(&fs_devices->fs_list);
594                         free_fs_devices(fs_devices);
595                 }
596         }
597
598         return ret;
599 }
600
601 /*
602  * This is only used on mount, and we are protected from competing things
603  * messing with our fs_devices by the uuid_mutex, thus we do not need the
604  * fs_devices->device_list_mutex here.
605  */
606 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
607                         struct btrfs_device *device, fmode_t flags,
608                         void *holder)
609 {
610         struct request_queue *q;
611         struct block_device *bdev;
612         struct btrfs_super_block *disk_super;
613         u64 devid;
614         int ret;
615
616         if (device->bdev)
617                 return -EINVAL;
618         if (!device->name)
619                 return -EINVAL;
620
621         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
622                                     &bdev, &disk_super);
623         if (ret)
624                 return ret;
625
626         devid = btrfs_stack_device_id(&disk_super->dev_item);
627         if (devid != device->devid)
628                 goto error_free_page;
629
630         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
631                 goto error_free_page;
632
633         device->generation = btrfs_super_generation(disk_super);
634
635         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
636                 if (btrfs_super_incompat_flags(disk_super) &
637                     BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
638                         pr_err(
639                 "BTRFS: Invalid seeding and uuid-changed device detected\n");
640                         goto error_free_page;
641                 }
642
643                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
644                 fs_devices->seeding = true;
645         } else {
646                 if (bdev_read_only(bdev))
647                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
648                 else
649                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
650         }
651
652         q = bdev_get_queue(bdev);
653         if (!blk_queue_nonrot(q))
654                 fs_devices->rotating = true;
655
656         device->bdev = bdev;
657         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
658         device->mode = flags;
659
660         fs_devices->open_devices++;
661         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
662             device->devid != BTRFS_DEV_REPLACE_DEVID) {
663                 fs_devices->rw_devices++;
664                 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
665         }
666         btrfs_release_disk_super(disk_super);
667
668         return 0;
669
670 error_free_page:
671         btrfs_release_disk_super(disk_super);
672         blkdev_put(bdev, flags);
673
674         return -EINVAL;
675 }
676
677 /*
678  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
679  * being created with a disk that has already completed its fsid change. Such
680  * disk can belong to an fs which has its FSID changed or to one which doesn't.
681  * Handle both cases here.
682  */
683 static struct btrfs_fs_devices *find_fsid_inprogress(
684                                         struct btrfs_super_block *disk_super)
685 {
686         struct btrfs_fs_devices *fs_devices;
687
688         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
689                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
690                            BTRFS_FSID_SIZE) != 0 &&
691                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
692                            BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
693                         return fs_devices;
694                 }
695         }
696
697         return find_fsid(disk_super->fsid, NULL);
698 }
699
700
701 static struct btrfs_fs_devices *find_fsid_changed(
702                                         struct btrfs_super_block *disk_super)
703 {
704         struct btrfs_fs_devices *fs_devices;
705
706         /*
707          * Handles the case where scanned device is part of an fs that had
708          * multiple successful changes of FSID but currently device didn't
709          * observe it. Meaning our fsid will be different than theirs. We need
710          * to handle two subcases :
711          *  1 - The fs still continues to have different METADATA/FSID uuids.
712          *  2 - The fs is switched back to its original FSID (METADATA/FSID
713          *  are equal).
714          */
715         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
716                 /* Changed UUIDs */
717                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
718                            BTRFS_FSID_SIZE) != 0 &&
719                     memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
720                            BTRFS_FSID_SIZE) == 0 &&
721                     memcmp(fs_devices->fsid, disk_super->fsid,
722                            BTRFS_FSID_SIZE) != 0)
723                         return fs_devices;
724
725                 /* Unchanged UUIDs */
726                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
727                            BTRFS_FSID_SIZE) == 0 &&
728                     memcmp(fs_devices->fsid, disk_super->metadata_uuid,
729                            BTRFS_FSID_SIZE) == 0)
730                         return fs_devices;
731         }
732
733         return NULL;
734 }
735
736 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
737                                 struct btrfs_super_block *disk_super)
738 {
739         struct btrfs_fs_devices *fs_devices;
740
741         /*
742          * Handle the case where the scanned device is part of an fs whose last
743          * metadata UUID change reverted it to the original FSID. At the same
744          * time * fs_devices was first created by another constitutent device
745          * which didn't fully observe the operation. This results in an
746          * btrfs_fs_devices created with metadata/fsid different AND
747          * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
748          * fs_devices equal to the FSID of the disk.
749          */
750         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
751                 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
752                            BTRFS_FSID_SIZE) != 0 &&
753                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
754                            BTRFS_FSID_SIZE) == 0 &&
755                     fs_devices->fsid_change)
756                         return fs_devices;
757         }
758
759         return NULL;
760 }
761 /*
762  * Add new device to list of registered devices
763  *
764  * Returns:
765  * device pointer which was just added or updated when successful
766  * error pointer when failed
767  */
768 static noinline struct btrfs_device *device_list_add(const char *path,
769                            struct btrfs_super_block *disk_super,
770                            bool *new_device_added)
771 {
772         struct btrfs_device *device;
773         struct btrfs_fs_devices *fs_devices = NULL;
774         struct rcu_string *name;
775         u64 found_transid = btrfs_super_generation(disk_super);
776         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
777         bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
778                 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
779         bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
780                                         BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
781
782         if (fsid_change_in_progress) {
783                 if (!has_metadata_uuid)
784                         fs_devices = find_fsid_inprogress(disk_super);
785                 else
786                         fs_devices = find_fsid_changed(disk_super);
787         } else if (has_metadata_uuid) {
788                 fs_devices = find_fsid_with_metadata_uuid(disk_super);
789         } else {
790                 fs_devices = find_fsid_reverted_metadata(disk_super);
791                 if (!fs_devices)
792                         fs_devices = find_fsid(disk_super->fsid, NULL);
793         }
794
795
796         if (!fs_devices) {
797                 if (has_metadata_uuid)
798                         fs_devices = alloc_fs_devices(disk_super->fsid,
799                                                       disk_super->metadata_uuid);
800                 else
801                         fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
802
803                 if (IS_ERR(fs_devices))
804                         return ERR_CAST(fs_devices);
805
806                 fs_devices->fsid_change = fsid_change_in_progress;
807
808                 mutex_lock(&fs_devices->device_list_mutex);
809                 list_add(&fs_devices->fs_list, &fs_uuids);
810
811                 device = NULL;
812         } else {
813                 mutex_lock(&fs_devices->device_list_mutex);
814                 device = btrfs_find_device(fs_devices, devid,
815                                 disk_super->dev_item.uuid, NULL);
816
817                 /*
818                  * If this disk has been pulled into an fs devices created by
819                  * a device which had the CHANGING_FSID_V2 flag then replace the
820                  * metadata_uuid/fsid values of the fs_devices.
821                  */
822                 if (fs_devices->fsid_change &&
823                     found_transid > fs_devices->latest_generation) {
824                         memcpy(fs_devices->fsid, disk_super->fsid,
825                                         BTRFS_FSID_SIZE);
826
827                         if (has_metadata_uuid)
828                                 memcpy(fs_devices->metadata_uuid,
829                                        disk_super->metadata_uuid,
830                                        BTRFS_FSID_SIZE);
831                         else
832                                 memcpy(fs_devices->metadata_uuid,
833                                        disk_super->fsid, BTRFS_FSID_SIZE);
834
835                         fs_devices->fsid_change = false;
836                 }
837         }
838
839         if (!device) {
840                 if (fs_devices->opened) {
841                         mutex_unlock(&fs_devices->device_list_mutex);
842                         return ERR_PTR(-EBUSY);
843                 }
844
845                 device = btrfs_alloc_device(NULL, &devid,
846                                             disk_super->dev_item.uuid);
847                 if (IS_ERR(device)) {
848                         mutex_unlock(&fs_devices->device_list_mutex);
849                         /* we can safely leave the fs_devices entry around */
850                         return device;
851                 }
852
853                 name = rcu_string_strdup(path, GFP_NOFS);
854                 if (!name) {
855                         btrfs_free_device(device);
856                         mutex_unlock(&fs_devices->device_list_mutex);
857                         return ERR_PTR(-ENOMEM);
858                 }
859                 rcu_assign_pointer(device->name, name);
860
861                 list_add_rcu(&device->dev_list, &fs_devices->devices);
862                 fs_devices->num_devices++;
863
864                 device->fs_devices = fs_devices;
865                 *new_device_added = true;
866
867                 if (disk_super->label[0])
868                         pr_info(
869         "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
870                                 disk_super->label, devid, found_transid, path,
871                                 current->comm, task_pid_nr(current));
872                 else
873                         pr_info(
874         "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
875                                 disk_super->fsid, devid, found_transid, path,
876                                 current->comm, task_pid_nr(current));
877
878         } else if (!device->name || strcmp(device->name->str, path)) {
879                 /*
880                  * When FS is already mounted.
881                  * 1. If you are here and if the device->name is NULL that
882                  *    means this device was missing at time of FS mount.
883                  * 2. If you are here and if the device->name is different
884                  *    from 'path' that means either
885                  *      a. The same device disappeared and reappeared with
886                  *         different name. or
887                  *      b. The missing-disk-which-was-replaced, has
888                  *         reappeared now.
889                  *
890                  * We must allow 1 and 2a above. But 2b would be a spurious
891                  * and unintentional.
892                  *
893                  * Further in case of 1 and 2a above, the disk at 'path'
894                  * would have missed some transaction when it was away and
895                  * in case of 2a the stale bdev has to be updated as well.
896                  * 2b must not be allowed at all time.
897                  */
898
899                 /*
900                  * For now, we do allow update to btrfs_fs_device through the
901                  * btrfs dev scan cli after FS has been mounted.  We're still
902                  * tracking a problem where systems fail mount by subvolume id
903                  * when we reject replacement on a mounted FS.
904                  */
905                 if (!fs_devices->opened && found_transid < device->generation) {
906                         /*
907                          * That is if the FS is _not_ mounted and if you
908                          * are here, that means there is more than one
909                          * disk with same uuid and devid.We keep the one
910                          * with larger generation number or the last-in if
911                          * generation are equal.
912                          */
913                         mutex_unlock(&fs_devices->device_list_mutex);
914                         return ERR_PTR(-EEXIST);
915                 }
916
917                 /*
918                  * We are going to replace the device path for a given devid,
919                  * make sure it's the same device if the device is mounted
920                  */
921                 if (device->bdev) {
922                         int error;
923                         dev_t path_dev;
924
925                         error = lookup_bdev(path, &path_dev);
926                         if (error) {
927                                 mutex_unlock(&fs_devices->device_list_mutex);
928                                 return ERR_PTR(error);
929                         }
930
931                         if (device->bdev->bd_dev != path_dev) {
932                                 mutex_unlock(&fs_devices->device_list_mutex);
933                                 /*
934                                  * device->fs_info may not be reliable here, so
935                                  * pass in a NULL instead. This avoids a
936                                  * possible use-after-free when the fs_info and
937                                  * fs_info->sb are already torn down.
938                                  */
939                                 btrfs_warn_in_rcu(NULL,
940         "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
941                                                   path, devid, found_transid,
942                                                   current->comm,
943                                                   task_pid_nr(current));
944                                 return ERR_PTR(-EEXIST);
945                         }
946                         btrfs_info_in_rcu(device->fs_info,
947         "devid %llu device path %s changed to %s scanned by %s (%d)",
948                                           devid, rcu_str_deref(device->name),
949                                           path, current->comm,
950                                           task_pid_nr(current));
951                 }
952
953                 name = rcu_string_strdup(path, GFP_NOFS);
954                 if (!name) {
955                         mutex_unlock(&fs_devices->device_list_mutex);
956                         return ERR_PTR(-ENOMEM);
957                 }
958                 rcu_string_free(device->name);
959                 rcu_assign_pointer(device->name, name);
960                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
961                         fs_devices->missing_devices--;
962                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
963                 }
964         }
965
966         /*
967          * Unmount does not free the btrfs_device struct but would zero
968          * generation along with most of the other members. So just update
969          * it back. We need it to pick the disk with largest generation
970          * (as above).
971          */
972         if (!fs_devices->opened) {
973                 device->generation = found_transid;
974                 fs_devices->latest_generation = max_t(u64, found_transid,
975                                                 fs_devices->latest_generation);
976         }
977
978         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
979
980         mutex_unlock(&fs_devices->device_list_mutex);
981         return device;
982 }
983
984 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
985 {
986         struct btrfs_fs_devices *fs_devices;
987         struct btrfs_device *device;
988         struct btrfs_device *orig_dev;
989         int ret = 0;
990
991         fs_devices = alloc_fs_devices(orig->fsid, NULL);
992         if (IS_ERR(fs_devices))
993                 return fs_devices;
994
995         mutex_lock(&orig->device_list_mutex);
996         fs_devices->total_devices = orig->total_devices;
997
998         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
999                 struct rcu_string *name;
1000
1001                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1002                                             orig_dev->uuid);
1003                 if (IS_ERR(device)) {
1004                         ret = PTR_ERR(device);
1005                         goto error;
1006                 }
1007
1008                 /*
1009                  * This is ok to do without rcu read locked because we hold the
1010                  * uuid mutex so nothing we touch in here is going to disappear.
1011                  */
1012                 if (orig_dev->name) {
1013                         name = rcu_string_strdup(orig_dev->name->str,
1014                                         GFP_KERNEL);
1015                         if (!name) {
1016                                 btrfs_free_device(device);
1017                                 ret = -ENOMEM;
1018                                 goto error;
1019                         }
1020                         rcu_assign_pointer(device->name, name);
1021                 }
1022
1023                 list_add(&device->dev_list, &fs_devices->devices);
1024                 device->fs_devices = fs_devices;
1025                 fs_devices->num_devices++;
1026         }
1027         mutex_unlock(&orig->device_list_mutex);
1028         return fs_devices;
1029 error:
1030         mutex_unlock(&orig->device_list_mutex);
1031         free_fs_devices(fs_devices);
1032         return ERR_PTR(ret);
1033 }
1034
1035 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1036                                       struct btrfs_device **latest_dev)
1037 {
1038         struct btrfs_device *device, *next;
1039
1040         /* This is the initialized path, it is safe to release the devices. */
1041         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1042                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1043                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1044                                       &device->dev_state) &&
1045                             !test_bit(BTRFS_DEV_STATE_MISSING,
1046                                       &device->dev_state) &&
1047                             (!*latest_dev ||
1048                              device->generation > (*latest_dev)->generation)) {
1049                                 *latest_dev = device;
1050                         }
1051                         continue;
1052                 }
1053
1054                 /*
1055                  * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1056                  * in btrfs_init_dev_replace() so just continue.
1057                  */
1058                 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1059                         continue;
1060
1061                 if (device->bdev) {
1062                         blkdev_put(device->bdev, device->mode);
1063                         device->bdev = NULL;
1064                         fs_devices->open_devices--;
1065                 }
1066                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1067                         list_del_init(&device->dev_alloc_list);
1068                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1069                         fs_devices->rw_devices--;
1070                 }
1071                 list_del_init(&device->dev_list);
1072                 fs_devices->num_devices--;
1073                 btrfs_free_device(device);
1074         }
1075
1076 }
1077
1078 /*
1079  * After we have read the system tree and know devids belonging to this
1080  * filesystem, remove the device which does not belong there.
1081  */
1082 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1083 {
1084         struct btrfs_device *latest_dev = NULL;
1085         struct btrfs_fs_devices *seed_dev;
1086
1087         mutex_lock(&uuid_mutex);
1088         __btrfs_free_extra_devids(fs_devices, &latest_dev);
1089
1090         list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1091                 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1092
1093         fs_devices->latest_bdev = latest_dev->bdev;
1094
1095         mutex_unlock(&uuid_mutex);
1096 }
1097
1098 static void btrfs_close_bdev(struct btrfs_device *device)
1099 {
1100         if (!device->bdev)
1101                 return;
1102
1103         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1104                 sync_blockdev(device->bdev);
1105                 invalidate_bdev(device->bdev);
1106         }
1107
1108         blkdev_put(device->bdev, device->mode);
1109 }
1110
1111 static void btrfs_close_one_device(struct btrfs_device *device)
1112 {
1113         struct btrfs_fs_devices *fs_devices = device->fs_devices;
1114
1115         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1116             device->devid != BTRFS_DEV_REPLACE_DEVID) {
1117                 list_del_init(&device->dev_alloc_list);
1118                 fs_devices->rw_devices--;
1119         }
1120
1121         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1122                 fs_devices->missing_devices--;
1123
1124         btrfs_close_bdev(device);
1125         if (device->bdev) {
1126                 fs_devices->open_devices--;
1127                 device->bdev = NULL;
1128         }
1129         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1130         btrfs_destroy_dev_zone_info(device);
1131
1132         device->fs_info = NULL;
1133         atomic_set(&device->dev_stats_ccnt, 0);
1134         extent_io_tree_release(&device->alloc_state);
1135
1136         /* Verify the device is back in a pristine state  */
1137         ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1138         ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1139         ASSERT(list_empty(&device->dev_alloc_list));
1140         ASSERT(list_empty(&device->post_commit_list));
1141         ASSERT(atomic_read(&device->reada_in_flight) == 0);
1142 }
1143
1144 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1145 {
1146         struct btrfs_device *device, *tmp;
1147
1148         lockdep_assert_held(&uuid_mutex);
1149
1150         if (--fs_devices->opened > 0)
1151                 return;
1152
1153         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1154                 btrfs_close_one_device(device);
1155
1156         WARN_ON(fs_devices->open_devices);
1157         WARN_ON(fs_devices->rw_devices);
1158         fs_devices->opened = 0;
1159         fs_devices->seeding = false;
1160         fs_devices->fs_info = NULL;
1161 }
1162
1163 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1164 {
1165         LIST_HEAD(list);
1166         struct btrfs_fs_devices *tmp;
1167
1168         mutex_lock(&uuid_mutex);
1169         close_fs_devices(fs_devices);
1170         if (!fs_devices->opened)
1171                 list_splice_init(&fs_devices->seed_list, &list);
1172
1173         list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1174                 close_fs_devices(fs_devices);
1175                 list_del(&fs_devices->seed_list);
1176                 free_fs_devices(fs_devices);
1177         }
1178         mutex_unlock(&uuid_mutex);
1179 }
1180
1181 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1182                                 fmode_t flags, void *holder)
1183 {
1184         struct btrfs_device *device;
1185         struct btrfs_device *latest_dev = NULL;
1186         struct btrfs_device *tmp_device;
1187
1188         flags |= FMODE_EXCL;
1189
1190         list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1191                                  dev_list) {
1192                 int ret;
1193
1194                 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1195                 if (ret == 0 &&
1196                     (!latest_dev || device->generation > latest_dev->generation)) {
1197                         latest_dev = device;
1198                 } else if (ret == -ENODATA) {
1199                         fs_devices->num_devices--;
1200                         list_del(&device->dev_list);
1201                         btrfs_free_device(device);
1202                 }
1203         }
1204         if (fs_devices->open_devices == 0)
1205                 return -EINVAL;
1206
1207         fs_devices->opened = 1;
1208         fs_devices->latest_bdev = latest_dev->bdev;
1209         fs_devices->total_rw_bytes = 0;
1210         fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1211         fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1212
1213         return 0;
1214 }
1215
1216 static int devid_cmp(void *priv, const struct list_head *a,
1217                      const struct list_head *b)
1218 {
1219         struct btrfs_device *dev1, *dev2;
1220
1221         dev1 = list_entry(a, struct btrfs_device, dev_list);
1222         dev2 = list_entry(b, struct btrfs_device, dev_list);
1223
1224         if (dev1->devid < dev2->devid)
1225                 return -1;
1226         else if (dev1->devid > dev2->devid)
1227                 return 1;
1228         return 0;
1229 }
1230
1231 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1232                        fmode_t flags, void *holder)
1233 {
1234         int ret;
1235
1236         lockdep_assert_held(&uuid_mutex);
1237         /*
1238          * The device_list_mutex cannot be taken here in case opening the
1239          * underlying device takes further locks like open_mutex.
1240          *
1241          * We also don't need the lock here as this is called during mount and
1242          * exclusion is provided by uuid_mutex
1243          */
1244
1245         if (fs_devices->opened) {
1246                 fs_devices->opened++;
1247                 ret = 0;
1248         } else {
1249                 list_sort(NULL, &fs_devices->devices, devid_cmp);
1250                 ret = open_fs_devices(fs_devices, flags, holder);
1251         }
1252
1253         return ret;
1254 }
1255
1256 void btrfs_release_disk_super(struct btrfs_super_block *super)
1257 {
1258         struct page *page = virt_to_page(super);
1259
1260         put_page(page);
1261 }
1262
1263 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1264                                                        u64 bytenr, u64 bytenr_orig)
1265 {
1266         struct btrfs_super_block *disk_super;
1267         struct page *page;
1268         void *p;
1269         pgoff_t index;
1270
1271         /* make sure our super fits in the device */
1272         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1273                 return ERR_PTR(-EINVAL);
1274
1275         /* make sure our super fits in the page */
1276         if (sizeof(*disk_super) > PAGE_SIZE)
1277                 return ERR_PTR(-EINVAL);
1278
1279         /* make sure our super doesn't straddle pages on disk */
1280         index = bytenr >> PAGE_SHIFT;
1281         if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1282                 return ERR_PTR(-EINVAL);
1283
1284         /* pull in the page with our super */
1285         page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1286
1287         if (IS_ERR(page))
1288                 return ERR_CAST(page);
1289
1290         p = page_address(page);
1291
1292         /* align our pointer to the offset of the super block */
1293         disk_super = p + offset_in_page(bytenr);
1294
1295         if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1296             btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1297                 btrfs_release_disk_super(p);
1298                 return ERR_PTR(-EINVAL);
1299         }
1300
1301         if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1302                 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1303
1304         return disk_super;
1305 }
1306
1307 int btrfs_forget_devices(const char *path)
1308 {
1309         int ret;
1310
1311         mutex_lock(&uuid_mutex);
1312         ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1313         mutex_unlock(&uuid_mutex);
1314
1315         return ret;
1316 }
1317
1318 /*
1319  * Look for a btrfs signature on a device. This may be called out of the mount path
1320  * and we are not allowed to call set_blocksize during the scan. The superblock
1321  * is read via pagecache
1322  */
1323 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1324                                            void *holder)
1325 {
1326         struct btrfs_super_block *disk_super;
1327         bool new_device_added = false;
1328         struct btrfs_device *device = NULL;
1329         struct block_device *bdev;
1330         u64 bytenr, bytenr_orig;
1331         int ret;
1332
1333         lockdep_assert_held(&uuid_mutex);
1334
1335         /*
1336          * we would like to check all the supers, but that would make
1337          * a btrfs mount succeed after a mkfs from a different FS.
1338          * So, we need to add a special mount option to scan for
1339          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1340          */
1341         flags |= FMODE_EXCL;
1342
1343         bdev = blkdev_get_by_path(path, flags, holder);
1344         if (IS_ERR(bdev))
1345                 return ERR_CAST(bdev);
1346
1347         bytenr_orig = btrfs_sb_offset(0);
1348         ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1349         if (ret)
1350                 return ERR_PTR(ret);
1351
1352         disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1353         if (IS_ERR(disk_super)) {
1354                 device = ERR_CAST(disk_super);
1355                 goto error_bdev_put;
1356         }
1357
1358         device = device_list_add(path, disk_super, &new_device_added);
1359         if (!IS_ERR(device)) {
1360                 if (new_device_added)
1361                         btrfs_free_stale_devices(path, device);
1362         }
1363
1364         btrfs_release_disk_super(disk_super);
1365
1366 error_bdev_put:
1367         blkdev_put(bdev, flags);
1368
1369         return device;
1370 }
1371
1372 /*
1373  * Try to find a chunk that intersects [start, start + len] range and when one
1374  * such is found, record the end of it in *start
1375  */
1376 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1377                                     u64 len)
1378 {
1379         u64 physical_start, physical_end;
1380
1381         lockdep_assert_held(&device->fs_info->chunk_mutex);
1382
1383         if (!find_first_extent_bit(&device->alloc_state, *start,
1384                                    &physical_start, &physical_end,
1385                                    CHUNK_ALLOCATED, NULL)) {
1386
1387                 if (in_range(physical_start, *start, len) ||
1388                     in_range(*start, physical_start,
1389                              physical_end - physical_start)) {
1390                         *start = physical_end + 1;
1391                         return true;
1392                 }
1393         }
1394         return false;
1395 }
1396
1397 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1398 {
1399         switch (device->fs_devices->chunk_alloc_policy) {
1400         case BTRFS_CHUNK_ALLOC_REGULAR:
1401                 /*
1402                  * We don't want to overwrite the superblock on the drive nor
1403                  * any area used by the boot loader (grub for example), so we
1404                  * make sure to start at an offset of at least 1MB.
1405                  */
1406                 return max_t(u64, start, SZ_1M);
1407         case BTRFS_CHUNK_ALLOC_ZONED:
1408                 /*
1409                  * We don't care about the starting region like regular
1410                  * allocator, because we anyway use/reserve the first two zones
1411                  * for superblock logging.
1412                  */
1413                 return ALIGN(start, device->zone_info->zone_size);
1414         default:
1415                 BUG();
1416         }
1417 }
1418
1419 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1420                                         u64 *hole_start, u64 *hole_size,
1421                                         u64 num_bytes)
1422 {
1423         u64 zone_size = device->zone_info->zone_size;
1424         u64 pos;
1425         int ret;
1426         bool changed = false;
1427
1428         ASSERT(IS_ALIGNED(*hole_start, zone_size));
1429
1430         while (*hole_size > 0) {
1431                 pos = btrfs_find_allocatable_zones(device, *hole_start,
1432                                                    *hole_start + *hole_size,
1433                                                    num_bytes);
1434                 if (pos != *hole_start) {
1435                         *hole_size = *hole_start + *hole_size - pos;
1436                         *hole_start = pos;
1437                         changed = true;
1438                         if (*hole_size < num_bytes)
1439                                 break;
1440                 }
1441
1442                 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1443
1444                 /* Range is ensured to be empty */
1445                 if (!ret)
1446                         return changed;
1447
1448                 /* Given hole range was invalid (outside of device) */
1449                 if (ret == -ERANGE) {
1450                         *hole_start += *hole_size;
1451                         *hole_size = 0;
1452                         return true;
1453                 }
1454
1455                 *hole_start += zone_size;
1456                 *hole_size -= zone_size;
1457                 changed = true;
1458         }
1459
1460         return changed;
1461 }
1462
1463 /**
1464  * dev_extent_hole_check - check if specified hole is suitable for allocation
1465  * @device:     the device which we have the hole
1466  * @hole_start: starting position of the hole
1467  * @hole_size:  the size of the hole
1468  * @num_bytes:  the size of the free space that we need
1469  *
1470  * This function may modify @hole_start and @hole_size to reflect the suitable
1471  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1472  */
1473 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1474                                   u64 *hole_size, u64 num_bytes)
1475 {
1476         bool changed = false;
1477         u64 hole_end = *hole_start + *hole_size;
1478
1479         for (;;) {
1480                 /*
1481                  * Check before we set max_hole_start, otherwise we could end up
1482                  * sending back this offset anyway.
1483                  */
1484                 if (contains_pending_extent(device, hole_start, *hole_size)) {
1485                         if (hole_end >= *hole_start)
1486                                 *hole_size = hole_end - *hole_start;
1487                         else
1488                                 *hole_size = 0;
1489                         changed = true;
1490                 }
1491
1492                 switch (device->fs_devices->chunk_alloc_policy) {
1493                 case BTRFS_CHUNK_ALLOC_REGULAR:
1494                         /* No extra check */
1495                         break;
1496                 case BTRFS_CHUNK_ALLOC_ZONED:
1497                         if (dev_extent_hole_check_zoned(device, hole_start,
1498                                                         hole_size, num_bytes)) {
1499                                 changed = true;
1500                                 /*
1501                                  * The changed hole can contain pending extent.
1502                                  * Loop again to check that.
1503                                  */
1504                                 continue;
1505                         }
1506                         break;
1507                 default:
1508                         BUG();
1509                 }
1510
1511                 break;
1512         }
1513
1514         return changed;
1515 }
1516
1517 /*
1518  * find_free_dev_extent_start - find free space in the specified device
1519  * @device:       the device which we search the free space in
1520  * @num_bytes:    the size of the free space that we need
1521  * @search_start: the position from which to begin the search
1522  * @start:        store the start of the free space.
1523  * @len:          the size of the free space. that we find, or the size
1524  *                of the max free space if we don't find suitable free space
1525  *
1526  * this uses a pretty simple search, the expectation is that it is
1527  * called very infrequently and that a given device has a small number
1528  * of extents
1529  *
1530  * @start is used to store the start of the free space if we find. But if we
1531  * don't find suitable free space, it will be used to store the start position
1532  * of the max free space.
1533  *
1534  * @len is used to store the size of the free space that we find.
1535  * But if we don't find suitable free space, it is used to store the size of
1536  * the max free space.
1537  *
1538  * NOTE: This function will search *commit* root of device tree, and does extra
1539  * check to ensure dev extents are not double allocated.
1540  * This makes the function safe to allocate dev extents but may not report
1541  * correct usable device space, as device extent freed in current transaction
1542  * is not reported as available.
1543  */
1544 static int find_free_dev_extent_start(struct btrfs_device *device,
1545                                 u64 num_bytes, u64 search_start, u64 *start,
1546                                 u64 *len)
1547 {
1548         struct btrfs_fs_info *fs_info = device->fs_info;
1549         struct btrfs_root *root = fs_info->dev_root;
1550         struct btrfs_key key;
1551         struct btrfs_dev_extent *dev_extent;
1552         struct btrfs_path *path;
1553         u64 hole_size;
1554         u64 max_hole_start;
1555         u64 max_hole_size;
1556         u64 extent_end;
1557         u64 search_end = device->total_bytes;
1558         int ret;
1559         int slot;
1560         struct extent_buffer *l;
1561
1562         search_start = dev_extent_search_start(device, search_start);
1563
1564         WARN_ON(device->zone_info &&
1565                 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1566
1567         path = btrfs_alloc_path();
1568         if (!path)
1569                 return -ENOMEM;
1570
1571         max_hole_start = search_start;
1572         max_hole_size = 0;
1573
1574 again:
1575         if (search_start >= search_end ||
1576                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1577                 ret = -ENOSPC;
1578                 goto out;
1579         }
1580
1581         path->reada = READA_FORWARD;
1582         path->search_commit_root = 1;
1583         path->skip_locking = 1;
1584
1585         key.objectid = device->devid;
1586         key.offset = search_start;
1587         key.type = BTRFS_DEV_EXTENT_KEY;
1588
1589         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1590         if (ret < 0)
1591                 goto out;
1592         if (ret > 0) {
1593                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1594                 if (ret < 0)
1595                         goto out;
1596         }
1597
1598         while (1) {
1599                 l = path->nodes[0];
1600                 slot = path->slots[0];
1601                 if (slot >= btrfs_header_nritems(l)) {
1602                         ret = btrfs_next_leaf(root, path);
1603                         if (ret == 0)
1604                                 continue;
1605                         if (ret < 0)
1606                                 goto out;
1607
1608                         break;
1609                 }
1610                 btrfs_item_key_to_cpu(l, &key, slot);
1611
1612                 if (key.objectid < device->devid)
1613                         goto next;
1614
1615                 if (key.objectid > device->devid)
1616                         break;
1617
1618                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1619                         goto next;
1620
1621                 if (key.offset > search_start) {
1622                         hole_size = key.offset - search_start;
1623                         dev_extent_hole_check(device, &search_start, &hole_size,
1624                                               num_bytes);
1625
1626                         if (hole_size > max_hole_size) {
1627                                 max_hole_start = search_start;
1628                                 max_hole_size = hole_size;
1629                         }
1630
1631                         /*
1632                          * If this free space is greater than which we need,
1633                          * it must be the max free space that we have found
1634                          * until now, so max_hole_start must point to the start
1635                          * of this free space and the length of this free space
1636                          * is stored in max_hole_size. Thus, we return
1637                          * max_hole_start and max_hole_size and go back to the
1638                          * caller.
1639                          */
1640                         if (hole_size >= num_bytes) {
1641                                 ret = 0;
1642                                 goto out;
1643                         }
1644                 }
1645
1646                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1647                 extent_end = key.offset + btrfs_dev_extent_length(l,
1648                                                                   dev_extent);
1649                 if (extent_end > search_start)
1650                         search_start = extent_end;
1651 next:
1652                 path->slots[0]++;
1653                 cond_resched();
1654         }
1655
1656         /*
1657          * At this point, search_start should be the end of
1658          * allocated dev extents, and when shrinking the device,
1659          * search_end may be smaller than search_start.
1660          */
1661         if (search_end > search_start) {
1662                 hole_size = search_end - search_start;
1663                 if (dev_extent_hole_check(device, &search_start, &hole_size,
1664                                           num_bytes)) {
1665                         btrfs_release_path(path);
1666                         goto again;
1667                 }
1668
1669                 if (hole_size > max_hole_size) {
1670                         max_hole_start = search_start;
1671                         max_hole_size = hole_size;
1672                 }
1673         }
1674
1675         /* See above. */
1676         if (max_hole_size < num_bytes)
1677                 ret = -ENOSPC;
1678         else
1679                 ret = 0;
1680
1681 out:
1682         btrfs_free_path(path);
1683         *start = max_hole_start;
1684         if (len)
1685                 *len = max_hole_size;
1686         return ret;
1687 }
1688
1689 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1690                          u64 *start, u64 *len)
1691 {
1692         /* FIXME use last free of some kind */
1693         return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1694 }
1695
1696 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1697                           struct btrfs_device *device,
1698                           u64 start, u64 *dev_extent_len)
1699 {
1700         struct btrfs_fs_info *fs_info = device->fs_info;
1701         struct btrfs_root *root = fs_info->dev_root;
1702         int ret;
1703         struct btrfs_path *path;
1704         struct btrfs_key key;
1705         struct btrfs_key found_key;
1706         struct extent_buffer *leaf = NULL;
1707         struct btrfs_dev_extent *extent = NULL;
1708
1709         path = btrfs_alloc_path();
1710         if (!path)
1711                 return -ENOMEM;
1712
1713         key.objectid = device->devid;
1714         key.offset = start;
1715         key.type = BTRFS_DEV_EXTENT_KEY;
1716 again:
1717         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1718         if (ret > 0) {
1719                 ret = btrfs_previous_item(root, path, key.objectid,
1720                                           BTRFS_DEV_EXTENT_KEY);
1721                 if (ret)
1722                         goto out;
1723                 leaf = path->nodes[0];
1724                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1725                 extent = btrfs_item_ptr(leaf, path->slots[0],
1726                                         struct btrfs_dev_extent);
1727                 BUG_ON(found_key.offset > start || found_key.offset +
1728                        btrfs_dev_extent_length(leaf, extent) < start);
1729                 key = found_key;
1730                 btrfs_release_path(path);
1731                 goto again;
1732         } else if (ret == 0) {
1733                 leaf = path->nodes[0];
1734                 extent = btrfs_item_ptr(leaf, path->slots[0],
1735                                         struct btrfs_dev_extent);
1736         } else {
1737                 goto out;
1738         }
1739
1740         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1741
1742         ret = btrfs_del_item(trans, root, path);
1743         if (ret == 0)
1744                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1745 out:
1746         btrfs_free_path(path);
1747         return ret;
1748 }
1749
1750 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1751 {
1752         struct extent_map_tree *em_tree;
1753         struct extent_map *em;
1754         struct rb_node *n;
1755         u64 ret = 0;
1756
1757         em_tree = &fs_info->mapping_tree;
1758         read_lock(&em_tree->lock);
1759         n = rb_last(&em_tree->map.rb_root);
1760         if (n) {
1761                 em = rb_entry(n, struct extent_map, rb_node);
1762                 ret = em->start + em->len;
1763         }
1764         read_unlock(&em_tree->lock);
1765
1766         return ret;
1767 }
1768
1769 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1770                                     u64 *devid_ret)
1771 {
1772         int ret;
1773         struct btrfs_key key;
1774         struct btrfs_key found_key;
1775         struct btrfs_path *path;
1776
1777         path = btrfs_alloc_path();
1778         if (!path)
1779                 return -ENOMEM;
1780
1781         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1782         key.type = BTRFS_DEV_ITEM_KEY;
1783         key.offset = (u64)-1;
1784
1785         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1786         if (ret < 0)
1787                 goto error;
1788
1789         if (ret == 0) {
1790                 /* Corruption */
1791                 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1792                 ret = -EUCLEAN;
1793                 goto error;
1794         }
1795
1796         ret = btrfs_previous_item(fs_info->chunk_root, path,
1797                                   BTRFS_DEV_ITEMS_OBJECTID,
1798                                   BTRFS_DEV_ITEM_KEY);
1799         if (ret) {
1800                 *devid_ret = 1;
1801         } else {
1802                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1803                                       path->slots[0]);
1804                 *devid_ret = found_key.offset + 1;
1805         }
1806         ret = 0;
1807 error:
1808         btrfs_free_path(path);
1809         return ret;
1810 }
1811
1812 /*
1813  * the device information is stored in the chunk root
1814  * the btrfs_device struct should be fully filled in
1815  */
1816 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1817                             struct btrfs_device *device)
1818 {
1819         int ret;
1820         struct btrfs_path *path;
1821         struct btrfs_dev_item *dev_item;
1822         struct extent_buffer *leaf;
1823         struct btrfs_key key;
1824         unsigned long ptr;
1825
1826         path = btrfs_alloc_path();
1827         if (!path)
1828                 return -ENOMEM;
1829
1830         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1831         key.type = BTRFS_DEV_ITEM_KEY;
1832         key.offset = device->devid;
1833
1834         ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1835                                       &key, sizeof(*dev_item));
1836         if (ret)
1837                 goto out;
1838
1839         leaf = path->nodes[0];
1840         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1841
1842         btrfs_set_device_id(leaf, dev_item, device->devid);
1843         btrfs_set_device_generation(leaf, dev_item, 0);
1844         btrfs_set_device_type(leaf, dev_item, device->type);
1845         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1846         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1847         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1848         btrfs_set_device_total_bytes(leaf, dev_item,
1849                                      btrfs_device_get_disk_total_bytes(device));
1850         btrfs_set_device_bytes_used(leaf, dev_item,
1851                                     btrfs_device_get_bytes_used(device));
1852         btrfs_set_device_group(leaf, dev_item, 0);
1853         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1854         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1855         btrfs_set_device_start_offset(leaf, dev_item, 0);
1856
1857         ptr = btrfs_device_uuid(dev_item);
1858         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1859         ptr = btrfs_device_fsid(dev_item);
1860         write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1861                             ptr, BTRFS_FSID_SIZE);
1862         btrfs_mark_buffer_dirty(leaf);
1863
1864         ret = 0;
1865 out:
1866         btrfs_free_path(path);
1867         return ret;
1868 }
1869
1870 /*
1871  * Function to update ctime/mtime for a given device path.
1872  * Mainly used for ctime/mtime based probe like libblkid.
1873  */
1874 static void update_dev_time(const char *path_name)
1875 {
1876         struct file *filp;
1877
1878         filp = filp_open(path_name, O_RDWR, 0);
1879         if (IS_ERR(filp))
1880                 return;
1881         file_update_time(filp);
1882         filp_close(filp, NULL);
1883 }
1884
1885 static int btrfs_rm_dev_item(struct btrfs_device *device)
1886 {
1887         struct btrfs_root *root = device->fs_info->chunk_root;
1888         int ret;
1889         struct btrfs_path *path;
1890         struct btrfs_key key;
1891         struct btrfs_trans_handle *trans;
1892
1893         path = btrfs_alloc_path();
1894         if (!path)
1895                 return -ENOMEM;
1896
1897         trans = btrfs_start_transaction(root, 0);
1898         if (IS_ERR(trans)) {
1899                 btrfs_free_path(path);
1900                 return PTR_ERR(trans);
1901         }
1902         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1903         key.type = BTRFS_DEV_ITEM_KEY;
1904         key.offset = device->devid;
1905
1906         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1907         if (ret) {
1908                 if (ret > 0)
1909                         ret = -ENOENT;
1910                 btrfs_abort_transaction(trans, ret);
1911                 btrfs_end_transaction(trans);
1912                 goto out;
1913         }
1914
1915         ret = btrfs_del_item(trans, root, path);
1916         if (ret) {
1917                 btrfs_abort_transaction(trans, ret);
1918                 btrfs_end_transaction(trans);
1919         }
1920
1921 out:
1922         btrfs_free_path(path);
1923         if (!ret)
1924                 ret = btrfs_commit_transaction(trans);
1925         return ret;
1926 }
1927
1928 /*
1929  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1930  * filesystem. It's up to the caller to adjust that number regarding eg. device
1931  * replace.
1932  */
1933 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1934                 u64 num_devices)
1935 {
1936         u64 all_avail;
1937         unsigned seq;
1938         int i;
1939
1940         do {
1941                 seq = read_seqbegin(&fs_info->profiles_lock);
1942
1943                 all_avail = fs_info->avail_data_alloc_bits |
1944                             fs_info->avail_system_alloc_bits |
1945                             fs_info->avail_metadata_alloc_bits;
1946         } while (read_seqretry(&fs_info->profiles_lock, seq));
1947
1948         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1949                 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1950                         continue;
1951
1952                 if (num_devices < btrfs_raid_array[i].devs_min) {
1953                         int ret = btrfs_raid_array[i].mindev_error;
1954
1955                         if (ret)
1956                                 return ret;
1957                 }
1958         }
1959
1960         return 0;
1961 }
1962
1963 static struct btrfs_device * btrfs_find_next_active_device(
1964                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1965 {
1966         struct btrfs_device *next_device;
1967
1968         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1969                 if (next_device != device &&
1970                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1971                     && next_device->bdev)
1972                         return next_device;
1973         }
1974
1975         return NULL;
1976 }
1977
1978 /*
1979  * Helper function to check if the given device is part of s_bdev / latest_bdev
1980  * and replace it with the provided or the next active device, in the context
1981  * where this function called, there should be always be another device (or
1982  * this_dev) which is active.
1983  */
1984 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1985                                             struct btrfs_device *next_device)
1986 {
1987         struct btrfs_fs_info *fs_info = device->fs_info;
1988
1989         if (!next_device)
1990                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1991                                                             device);
1992         ASSERT(next_device);
1993
1994         if (fs_info->sb->s_bdev &&
1995                         (fs_info->sb->s_bdev == device->bdev))
1996                 fs_info->sb->s_bdev = next_device->bdev;
1997
1998         if (fs_info->fs_devices->latest_bdev == device->bdev)
1999                 fs_info->fs_devices->latest_bdev = next_device->bdev;
2000 }
2001
2002 /*
2003  * Return btrfs_fs_devices::num_devices excluding the device that's being
2004  * currently replaced.
2005  */
2006 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2007 {
2008         u64 num_devices = fs_info->fs_devices->num_devices;
2009
2010         down_read(&fs_info->dev_replace.rwsem);
2011         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2012                 ASSERT(num_devices > 1);
2013                 num_devices--;
2014         }
2015         up_read(&fs_info->dev_replace.rwsem);
2016
2017         return num_devices;
2018 }
2019
2020 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2021                                struct block_device *bdev,
2022                                const char *device_path)
2023 {
2024         struct btrfs_super_block *disk_super;
2025         int copy_num;
2026
2027         if (!bdev)
2028                 return;
2029
2030         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2031                 struct page *page;
2032                 int ret;
2033
2034                 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2035                 if (IS_ERR(disk_super))
2036                         continue;
2037
2038                 if (bdev_is_zoned(bdev)) {
2039                         btrfs_reset_sb_log_zones(bdev, copy_num);
2040                         continue;
2041                 }
2042
2043                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2044
2045                 page = virt_to_page(disk_super);
2046                 set_page_dirty(page);
2047                 lock_page(page);
2048                 /* write_on_page() unlocks the page */
2049                 ret = write_one_page(page);
2050                 if (ret)
2051                         btrfs_warn(fs_info,
2052                                 "error clearing superblock number %d (%d)",
2053                                 copy_num, ret);
2054                 btrfs_release_disk_super(disk_super);
2055
2056         }
2057
2058         /* Notify udev that device has changed */
2059         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2060
2061         /* Update ctime/mtime for device path for libblkid */
2062         update_dev_time(device_path);
2063 }
2064
2065 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2066                     u64 devid)
2067 {
2068         struct btrfs_device *device;
2069         struct btrfs_fs_devices *cur_devices;
2070         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2071         u64 num_devices;
2072         int ret = 0;
2073
2074         mutex_lock(&uuid_mutex);
2075
2076         num_devices = btrfs_num_devices(fs_info);
2077
2078         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2079         if (ret)
2080                 goto out;
2081
2082         device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2083
2084         if (IS_ERR(device)) {
2085                 if (PTR_ERR(device) == -ENOENT &&
2086                     strcmp(device_path, "missing") == 0)
2087                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2088                 else
2089                         ret = PTR_ERR(device);
2090                 goto out;
2091         }
2092
2093         if (btrfs_pinned_by_swapfile(fs_info, device)) {
2094                 btrfs_warn_in_rcu(fs_info,
2095                   "cannot remove device %s (devid %llu) due to active swapfile",
2096                                   rcu_str_deref(device->name), device->devid);
2097                 ret = -ETXTBSY;
2098                 goto out;
2099         }
2100
2101         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2102                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2103                 goto out;
2104         }
2105
2106         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2107             fs_info->fs_devices->rw_devices == 1) {
2108                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2109                 goto out;
2110         }
2111
2112         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2113                 mutex_lock(&fs_info->chunk_mutex);
2114                 list_del_init(&device->dev_alloc_list);
2115                 device->fs_devices->rw_devices--;
2116                 mutex_unlock(&fs_info->chunk_mutex);
2117         }
2118
2119         mutex_unlock(&uuid_mutex);
2120         ret = btrfs_shrink_device(device, 0);
2121         if (!ret)
2122                 btrfs_reada_remove_dev(device);
2123         mutex_lock(&uuid_mutex);
2124         if (ret)
2125                 goto error_undo;
2126
2127         /*
2128          * TODO: the superblock still includes this device in its num_devices
2129          * counter although write_all_supers() is not locked out. This
2130          * could give a filesystem state which requires a degraded mount.
2131          */
2132         ret = btrfs_rm_dev_item(device);
2133         if (ret)
2134                 goto error_undo;
2135
2136         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2137         btrfs_scrub_cancel_dev(device);
2138
2139         /*
2140          * the device list mutex makes sure that we don't change
2141          * the device list while someone else is writing out all
2142          * the device supers. Whoever is writing all supers, should
2143          * lock the device list mutex before getting the number of
2144          * devices in the super block (super_copy). Conversely,
2145          * whoever updates the number of devices in the super block
2146          * (super_copy) should hold the device list mutex.
2147          */
2148
2149         /*
2150          * In normal cases the cur_devices == fs_devices. But in case
2151          * of deleting a seed device, the cur_devices should point to
2152          * its own fs_devices listed under the fs_devices->seed.
2153          */
2154         cur_devices = device->fs_devices;
2155         mutex_lock(&fs_devices->device_list_mutex);
2156         list_del_rcu(&device->dev_list);
2157
2158         cur_devices->num_devices--;
2159         cur_devices->total_devices--;
2160         /* Update total_devices of the parent fs_devices if it's seed */
2161         if (cur_devices != fs_devices)
2162                 fs_devices->total_devices--;
2163
2164         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2165                 cur_devices->missing_devices--;
2166
2167         btrfs_assign_next_active_device(device, NULL);
2168
2169         if (device->bdev) {
2170                 cur_devices->open_devices--;
2171                 /* remove sysfs entry */
2172                 btrfs_sysfs_remove_device(device);
2173         }
2174
2175         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2176         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2177         mutex_unlock(&fs_devices->device_list_mutex);
2178
2179         /*
2180          * at this point, the device is zero sized and detached from
2181          * the devices list.  All that's left is to zero out the old
2182          * supers and free the device.
2183          */
2184         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2185                 btrfs_scratch_superblocks(fs_info, device->bdev,
2186                                           device->name->str);
2187
2188         btrfs_close_bdev(device);
2189         synchronize_rcu();
2190         btrfs_free_device(device);
2191
2192         if (cur_devices->open_devices == 0) {
2193                 list_del_init(&cur_devices->seed_list);
2194                 close_fs_devices(cur_devices);
2195                 free_fs_devices(cur_devices);
2196         }
2197
2198 out:
2199         mutex_unlock(&uuid_mutex);
2200         return ret;
2201
2202 error_undo:
2203         btrfs_reada_undo_remove_dev(device);
2204         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2205                 mutex_lock(&fs_info->chunk_mutex);
2206                 list_add(&device->dev_alloc_list,
2207                          &fs_devices->alloc_list);
2208                 device->fs_devices->rw_devices++;
2209                 mutex_unlock(&fs_info->chunk_mutex);
2210         }
2211         goto out;
2212 }
2213
2214 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2215 {
2216         struct btrfs_fs_devices *fs_devices;
2217
2218         lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2219
2220         /*
2221          * in case of fs with no seed, srcdev->fs_devices will point
2222          * to fs_devices of fs_info. However when the dev being replaced is
2223          * a seed dev it will point to the seed's local fs_devices. In short
2224          * srcdev will have its correct fs_devices in both the cases.
2225          */
2226         fs_devices = srcdev->fs_devices;
2227
2228         list_del_rcu(&srcdev->dev_list);
2229         list_del(&srcdev->dev_alloc_list);
2230         fs_devices->num_devices--;
2231         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2232                 fs_devices->missing_devices--;
2233
2234         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2235                 fs_devices->rw_devices--;
2236
2237         if (srcdev->bdev)
2238                 fs_devices->open_devices--;
2239 }
2240
2241 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2242 {
2243         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2244
2245         mutex_lock(&uuid_mutex);
2246
2247         btrfs_close_bdev(srcdev);
2248         synchronize_rcu();
2249         btrfs_free_device(srcdev);
2250
2251         /* if this is no devs we rather delete the fs_devices */
2252         if (!fs_devices->num_devices) {
2253                 /*
2254                  * On a mounted FS, num_devices can't be zero unless it's a
2255                  * seed. In case of a seed device being replaced, the replace
2256                  * target added to the sprout FS, so there will be no more
2257                  * device left under the seed FS.
2258                  */
2259                 ASSERT(fs_devices->seeding);
2260
2261                 list_del_init(&fs_devices->seed_list);
2262                 close_fs_devices(fs_devices);
2263                 free_fs_devices(fs_devices);
2264         }
2265         mutex_unlock(&uuid_mutex);
2266 }
2267
2268 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2269 {
2270         struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2271
2272         mutex_lock(&fs_devices->device_list_mutex);
2273
2274         btrfs_sysfs_remove_device(tgtdev);
2275
2276         if (tgtdev->bdev)
2277                 fs_devices->open_devices--;
2278
2279         fs_devices->num_devices--;
2280
2281         btrfs_assign_next_active_device(tgtdev, NULL);
2282
2283         list_del_rcu(&tgtdev->dev_list);
2284
2285         mutex_unlock(&fs_devices->device_list_mutex);
2286
2287         /*
2288          * The update_dev_time() with in btrfs_scratch_superblocks()
2289          * may lead to a call to btrfs_show_devname() which will try
2290          * to hold device_list_mutex. And here this device
2291          * is already out of device list, so we don't have to hold
2292          * the device_list_mutex lock.
2293          */
2294         btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2295                                   tgtdev->name->str);
2296
2297         btrfs_close_bdev(tgtdev);
2298         synchronize_rcu();
2299         btrfs_free_device(tgtdev);
2300 }
2301
2302 static struct btrfs_device *btrfs_find_device_by_path(
2303                 struct btrfs_fs_info *fs_info, const char *device_path)
2304 {
2305         int ret = 0;
2306         struct btrfs_super_block *disk_super;
2307         u64 devid;
2308         u8 *dev_uuid;
2309         struct block_device *bdev;
2310         struct btrfs_device *device;
2311
2312         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2313                                     fs_info->bdev_holder, 0, &bdev, &disk_super);
2314         if (ret)
2315                 return ERR_PTR(ret);
2316
2317         devid = btrfs_stack_device_id(&disk_super->dev_item);
2318         dev_uuid = disk_super->dev_item.uuid;
2319         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2320                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2321                                            disk_super->metadata_uuid);
2322         else
2323                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2324                                            disk_super->fsid);
2325
2326         btrfs_release_disk_super(disk_super);
2327         if (!device)
2328                 device = ERR_PTR(-ENOENT);
2329         blkdev_put(bdev, FMODE_READ);
2330         return device;
2331 }
2332
2333 /*
2334  * Lookup a device given by device id, or the path if the id is 0.
2335  */
2336 struct btrfs_device *btrfs_find_device_by_devspec(
2337                 struct btrfs_fs_info *fs_info, u64 devid,
2338                 const char *device_path)
2339 {
2340         struct btrfs_device *device;
2341
2342         if (devid) {
2343                 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2344                                            NULL);
2345                 if (!device)
2346                         return ERR_PTR(-ENOENT);
2347                 return device;
2348         }
2349
2350         if (!device_path || !device_path[0])
2351                 return ERR_PTR(-EINVAL);
2352
2353         if (strcmp(device_path, "missing") == 0) {
2354                 /* Find first missing device */
2355                 list_for_each_entry(device, &fs_info->fs_devices->devices,
2356                                     dev_list) {
2357                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2358                                      &device->dev_state) && !device->bdev)
2359                                 return device;
2360                 }
2361                 return ERR_PTR(-ENOENT);
2362         }
2363
2364         return btrfs_find_device_by_path(fs_info, device_path);
2365 }
2366
2367 /*
2368  * does all the dirty work required for changing file system's UUID.
2369  */
2370 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2371 {
2372         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2373         struct btrfs_fs_devices *old_devices;
2374         struct btrfs_fs_devices *seed_devices;
2375         struct btrfs_super_block *disk_super = fs_info->super_copy;
2376         struct btrfs_device *device;
2377         u64 super_flags;
2378
2379         lockdep_assert_held(&uuid_mutex);
2380         if (!fs_devices->seeding)
2381                 return -EINVAL;
2382
2383         /*
2384          * Private copy of the seed devices, anchored at
2385          * fs_info->fs_devices->seed_list
2386          */
2387         seed_devices = alloc_fs_devices(NULL, NULL);
2388         if (IS_ERR(seed_devices))
2389                 return PTR_ERR(seed_devices);
2390
2391         /*
2392          * It's necessary to retain a copy of the original seed fs_devices in
2393          * fs_uuids so that filesystems which have been seeded can successfully
2394          * reference the seed device from open_seed_devices. This also supports
2395          * multiple fs seed.
2396          */
2397         old_devices = clone_fs_devices(fs_devices);
2398         if (IS_ERR(old_devices)) {
2399                 kfree(seed_devices);
2400                 return PTR_ERR(old_devices);
2401         }
2402
2403         list_add(&old_devices->fs_list, &fs_uuids);
2404
2405         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2406         seed_devices->opened = 1;
2407         INIT_LIST_HEAD(&seed_devices->devices);
2408         INIT_LIST_HEAD(&seed_devices->alloc_list);
2409         mutex_init(&seed_devices->device_list_mutex);
2410
2411         mutex_lock(&fs_devices->device_list_mutex);
2412         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2413                               synchronize_rcu);
2414         list_for_each_entry(device, &seed_devices->devices, dev_list)
2415                 device->fs_devices = seed_devices;
2416
2417         fs_devices->seeding = false;
2418         fs_devices->num_devices = 0;
2419         fs_devices->open_devices = 0;
2420         fs_devices->missing_devices = 0;
2421         fs_devices->rotating = false;
2422         list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2423
2424         generate_random_uuid(fs_devices->fsid);
2425         memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2426         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2427         mutex_unlock(&fs_devices->device_list_mutex);
2428
2429         super_flags = btrfs_super_flags(disk_super) &
2430                       ~BTRFS_SUPER_FLAG_SEEDING;
2431         btrfs_set_super_flags(disk_super, super_flags);
2432
2433         return 0;
2434 }
2435
2436 /*
2437  * Store the expected generation for seed devices in device items.
2438  */
2439 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2440 {
2441         struct btrfs_fs_info *fs_info = trans->fs_info;
2442         struct btrfs_root *root = fs_info->chunk_root;
2443         struct btrfs_path *path;
2444         struct extent_buffer *leaf;
2445         struct btrfs_dev_item *dev_item;
2446         struct btrfs_device *device;
2447         struct btrfs_key key;
2448         u8 fs_uuid[BTRFS_FSID_SIZE];
2449         u8 dev_uuid[BTRFS_UUID_SIZE];
2450         u64 devid;
2451         int ret;
2452
2453         path = btrfs_alloc_path();
2454         if (!path)
2455                 return -ENOMEM;
2456
2457         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2458         key.offset = 0;
2459         key.type = BTRFS_DEV_ITEM_KEY;
2460
2461         while (1) {
2462                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2463                 if (ret < 0)
2464                         goto error;
2465
2466                 leaf = path->nodes[0];
2467 next_slot:
2468                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2469                         ret = btrfs_next_leaf(root, path);
2470                         if (ret > 0)
2471                                 break;
2472                         if (ret < 0)
2473                                 goto error;
2474                         leaf = path->nodes[0];
2475                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2476                         btrfs_release_path(path);
2477                         continue;
2478                 }
2479
2480                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2481                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2482                     key.type != BTRFS_DEV_ITEM_KEY)
2483                         break;
2484
2485                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2486                                           struct btrfs_dev_item);
2487                 devid = btrfs_device_id(leaf, dev_item);
2488                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2489                                    BTRFS_UUID_SIZE);
2490                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2491                                    BTRFS_FSID_SIZE);
2492                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2493                                            fs_uuid);
2494                 BUG_ON(!device); /* Logic error */
2495
2496                 if (device->fs_devices->seeding) {
2497                         btrfs_set_device_generation(leaf, dev_item,
2498                                                     device->generation);
2499                         btrfs_mark_buffer_dirty(leaf);
2500                 }
2501
2502                 path->slots[0]++;
2503                 goto next_slot;
2504         }
2505         ret = 0;
2506 error:
2507         btrfs_free_path(path);
2508         return ret;
2509 }
2510
2511 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2512 {
2513         struct btrfs_root *root = fs_info->dev_root;
2514         struct request_queue *q;
2515         struct btrfs_trans_handle *trans;
2516         struct btrfs_device *device;
2517         struct block_device *bdev;
2518         struct super_block *sb = fs_info->sb;
2519         struct rcu_string *name;
2520         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2521         u64 orig_super_total_bytes;
2522         u64 orig_super_num_devices;
2523         int seeding_dev = 0;
2524         int ret = 0;
2525         bool locked = false;
2526
2527         if (sb_rdonly(sb) && !fs_devices->seeding)
2528                 return -EROFS;
2529
2530         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2531                                   fs_info->bdev_holder);
2532         if (IS_ERR(bdev))
2533                 return PTR_ERR(bdev);
2534
2535         if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2536                 ret = -EINVAL;
2537                 goto error;
2538         }
2539
2540         if (fs_devices->seeding) {
2541                 seeding_dev = 1;
2542                 down_write(&sb->s_umount);
2543                 mutex_lock(&uuid_mutex);
2544                 locked = true;
2545         }
2546
2547         sync_blockdev(bdev);
2548
2549         rcu_read_lock();
2550         list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2551                 if (device->bdev == bdev) {
2552                         ret = -EEXIST;
2553                         rcu_read_unlock();
2554                         goto error;
2555                 }
2556         }
2557         rcu_read_unlock();
2558
2559         device = btrfs_alloc_device(fs_info, NULL, NULL);
2560         if (IS_ERR(device)) {
2561                 /* we can safely leave the fs_devices entry around */
2562                 ret = PTR_ERR(device);
2563                 goto error;
2564         }
2565
2566         name = rcu_string_strdup(device_path, GFP_KERNEL);
2567         if (!name) {
2568                 ret = -ENOMEM;
2569                 goto error_free_device;
2570         }
2571         rcu_assign_pointer(device->name, name);
2572
2573         device->fs_info = fs_info;
2574         device->bdev = bdev;
2575
2576         ret = btrfs_get_dev_zone_info(device);
2577         if (ret)
2578                 goto error_free_device;
2579
2580         trans = btrfs_start_transaction(root, 0);
2581         if (IS_ERR(trans)) {
2582                 ret = PTR_ERR(trans);
2583                 goto error_free_zone;
2584         }
2585
2586         q = bdev_get_queue(bdev);
2587         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2588         device->generation = trans->transid;
2589         device->io_width = fs_info->sectorsize;
2590         device->io_align = fs_info->sectorsize;
2591         device->sector_size = fs_info->sectorsize;
2592         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2593                                          fs_info->sectorsize);
2594         device->disk_total_bytes = device->total_bytes;
2595         device->commit_total_bytes = device->total_bytes;
2596         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2597         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2598         device->mode = FMODE_EXCL;
2599         device->dev_stats_valid = 1;
2600         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2601
2602         if (seeding_dev) {
2603                 btrfs_clear_sb_rdonly(sb);
2604                 ret = btrfs_prepare_sprout(fs_info);
2605                 if (ret) {
2606                         btrfs_abort_transaction(trans, ret);
2607                         goto error_trans;
2608                 }
2609         }
2610
2611         device->fs_devices = fs_devices;
2612
2613         mutex_lock(&fs_devices->device_list_mutex);
2614         mutex_lock(&fs_info->chunk_mutex);
2615         list_add_rcu(&device->dev_list, &fs_devices->devices);
2616         list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2617         fs_devices->num_devices++;
2618         fs_devices->open_devices++;
2619         fs_devices->rw_devices++;
2620         fs_devices->total_devices++;
2621         fs_devices->total_rw_bytes += device->total_bytes;
2622
2623         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2624
2625         if (!blk_queue_nonrot(q))
2626                 fs_devices->rotating = true;
2627
2628         orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2629         btrfs_set_super_total_bytes(fs_info->super_copy,
2630                 round_down(orig_super_total_bytes + device->total_bytes,
2631                            fs_info->sectorsize));
2632
2633         orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2634         btrfs_set_super_num_devices(fs_info->super_copy,
2635                                     orig_super_num_devices + 1);
2636
2637         /*
2638          * we've got more storage, clear any full flags on the space
2639          * infos
2640          */
2641         btrfs_clear_space_info_full(fs_info);
2642
2643         mutex_unlock(&fs_info->chunk_mutex);
2644
2645         /* Add sysfs device entry */
2646         btrfs_sysfs_add_device(device);
2647
2648         mutex_unlock(&fs_devices->device_list_mutex);
2649
2650         if (seeding_dev) {
2651                 mutex_lock(&fs_info->chunk_mutex);
2652                 ret = init_first_rw_device(trans);
2653                 mutex_unlock(&fs_info->chunk_mutex);
2654                 if (ret) {
2655                         btrfs_abort_transaction(trans, ret);
2656                         goto error_sysfs;
2657                 }
2658         }
2659
2660         ret = btrfs_add_dev_item(trans, device);
2661         if (ret) {
2662                 btrfs_abort_transaction(trans, ret);
2663                 goto error_sysfs;
2664         }
2665
2666         if (seeding_dev) {
2667                 ret = btrfs_finish_sprout(trans);
2668                 if (ret) {
2669                         btrfs_abort_transaction(trans, ret);
2670                         goto error_sysfs;
2671                 }
2672
2673                 /*
2674                  * fs_devices now represents the newly sprouted filesystem and
2675                  * its fsid has been changed by btrfs_prepare_sprout
2676                  */
2677                 btrfs_sysfs_update_sprout_fsid(fs_devices);
2678         }
2679
2680         ret = btrfs_commit_transaction(trans);
2681
2682         if (seeding_dev) {
2683                 mutex_unlock(&uuid_mutex);
2684                 up_write(&sb->s_umount);
2685                 locked = false;
2686
2687                 if (ret) /* transaction commit */
2688                         return ret;
2689
2690                 ret = btrfs_relocate_sys_chunks(fs_info);
2691                 if (ret < 0)
2692                         btrfs_handle_fs_error(fs_info, ret,
2693                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2694                 trans = btrfs_attach_transaction(root);
2695                 if (IS_ERR(trans)) {
2696                         if (PTR_ERR(trans) == -ENOENT)
2697                                 return 0;
2698                         ret = PTR_ERR(trans);
2699                         trans = NULL;
2700                         goto error_sysfs;
2701                 }
2702                 ret = btrfs_commit_transaction(trans);
2703         }
2704
2705         /*
2706          * Now that we have written a new super block to this device, check all
2707          * other fs_devices list if device_path alienates any other scanned
2708          * device.
2709          * We can ignore the return value as it typically returns -EINVAL and
2710          * only succeeds if the device was an alien.
2711          */
2712         btrfs_forget_devices(device_path);
2713
2714         /* Update ctime/mtime for blkid or udev */
2715         update_dev_time(device_path);
2716
2717         return ret;
2718
2719 error_sysfs:
2720         btrfs_sysfs_remove_device(device);
2721         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2722         mutex_lock(&fs_info->chunk_mutex);
2723         list_del_rcu(&device->dev_list);
2724         list_del(&device->dev_alloc_list);
2725         fs_info->fs_devices->num_devices--;
2726         fs_info->fs_devices->open_devices--;
2727         fs_info->fs_devices->rw_devices--;
2728         fs_info->fs_devices->total_devices--;
2729         fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2730         atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2731         btrfs_set_super_total_bytes(fs_info->super_copy,
2732                                     orig_super_total_bytes);
2733         btrfs_set_super_num_devices(fs_info->super_copy,
2734                                     orig_super_num_devices);
2735         mutex_unlock(&fs_info->chunk_mutex);
2736         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2737 error_trans:
2738         if (seeding_dev)
2739                 btrfs_set_sb_rdonly(sb);
2740         if (trans)
2741                 btrfs_end_transaction(trans);
2742 error_free_zone:
2743         btrfs_destroy_dev_zone_info(device);
2744 error_free_device:
2745         btrfs_free_device(device);
2746 error:
2747         blkdev_put(bdev, FMODE_EXCL);
2748         if (locked) {
2749                 mutex_unlock(&uuid_mutex);
2750                 up_write(&sb->s_umount);
2751         }
2752         return ret;
2753 }
2754
2755 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2756                                         struct btrfs_device *device)
2757 {
2758         int ret;
2759         struct btrfs_path *path;
2760         struct btrfs_root *root = device->fs_info->chunk_root;
2761         struct btrfs_dev_item *dev_item;
2762         struct extent_buffer *leaf;
2763         struct btrfs_key key;
2764
2765         path = btrfs_alloc_path();
2766         if (!path)
2767                 return -ENOMEM;
2768
2769         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2770         key.type = BTRFS_DEV_ITEM_KEY;
2771         key.offset = device->devid;
2772
2773         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2774         if (ret < 0)
2775                 goto out;
2776
2777         if (ret > 0) {
2778                 ret = -ENOENT;
2779                 goto out;
2780         }
2781
2782         leaf = path->nodes[0];
2783         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2784
2785         btrfs_set_device_id(leaf, dev_item, device->devid);
2786         btrfs_set_device_type(leaf, dev_item, device->type);
2787         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2788         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2789         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2790         btrfs_set_device_total_bytes(leaf, dev_item,
2791                                      btrfs_device_get_disk_total_bytes(device));
2792         btrfs_set_device_bytes_used(leaf, dev_item,
2793                                     btrfs_device_get_bytes_used(device));
2794         btrfs_mark_buffer_dirty(leaf);
2795
2796 out:
2797         btrfs_free_path(path);
2798         return ret;
2799 }
2800
2801 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2802                       struct btrfs_device *device, u64 new_size)
2803 {
2804         struct btrfs_fs_info *fs_info = device->fs_info;
2805         struct btrfs_super_block *super_copy = fs_info->super_copy;
2806         u64 old_total;
2807         u64 diff;
2808
2809         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2810                 return -EACCES;
2811
2812         new_size = round_down(new_size, fs_info->sectorsize);
2813
2814         mutex_lock(&fs_info->chunk_mutex);
2815         old_total = btrfs_super_total_bytes(super_copy);
2816         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2817
2818         if (new_size <= device->total_bytes ||
2819             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2820                 mutex_unlock(&fs_info->chunk_mutex);
2821                 return -EINVAL;
2822         }
2823
2824         btrfs_set_super_total_bytes(super_copy,
2825                         round_down(old_total + diff, fs_info->sectorsize));
2826         device->fs_devices->total_rw_bytes += diff;
2827
2828         btrfs_device_set_total_bytes(device, new_size);
2829         btrfs_device_set_disk_total_bytes(device, new_size);
2830         btrfs_clear_space_info_full(device->fs_info);
2831         if (list_empty(&device->post_commit_list))
2832                 list_add_tail(&device->post_commit_list,
2833                               &trans->transaction->dev_update_list);
2834         mutex_unlock(&fs_info->chunk_mutex);
2835
2836         return btrfs_update_device(trans, device);
2837 }
2838
2839 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2840 {
2841         struct btrfs_fs_info *fs_info = trans->fs_info;
2842         struct btrfs_root *root = fs_info->chunk_root;
2843         int ret;
2844         struct btrfs_path *path;
2845         struct btrfs_key key;
2846
2847         path = btrfs_alloc_path();
2848         if (!path)
2849                 return -ENOMEM;
2850
2851         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2852         key.offset = chunk_offset;
2853         key.type = BTRFS_CHUNK_ITEM_KEY;
2854
2855         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2856         if (ret < 0)
2857                 goto out;
2858         else if (ret > 0) { /* Logic error or corruption */
2859                 btrfs_handle_fs_error(fs_info, -ENOENT,
2860                                       "Failed lookup while freeing chunk.");
2861                 ret = -ENOENT;
2862                 goto out;
2863         }
2864
2865         ret = btrfs_del_item(trans, root, path);
2866         if (ret < 0)
2867                 btrfs_handle_fs_error(fs_info, ret,
2868                                       "Failed to delete chunk item.");
2869 out:
2870         btrfs_free_path(path);
2871         return ret;
2872 }
2873
2874 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2875 {
2876         struct btrfs_super_block *super_copy = fs_info->super_copy;
2877         struct btrfs_disk_key *disk_key;
2878         struct btrfs_chunk *chunk;
2879         u8 *ptr;
2880         int ret = 0;
2881         u32 num_stripes;
2882         u32 array_size;
2883         u32 len = 0;
2884         u32 cur;
2885         struct btrfs_key key;
2886
2887         lockdep_assert_held(&fs_info->chunk_mutex);
2888         array_size = btrfs_super_sys_array_size(super_copy);
2889
2890         ptr = super_copy->sys_chunk_array;
2891         cur = 0;
2892
2893         while (cur < array_size) {
2894                 disk_key = (struct btrfs_disk_key *)ptr;
2895                 btrfs_disk_key_to_cpu(&key, disk_key);
2896
2897                 len = sizeof(*disk_key);
2898
2899                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2900                         chunk = (struct btrfs_chunk *)(ptr + len);
2901                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2902                         len += btrfs_chunk_item_size(num_stripes);
2903                 } else {
2904                         ret = -EIO;
2905                         break;
2906                 }
2907                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2908                     key.offset == chunk_offset) {
2909                         memmove(ptr, ptr + len, array_size - (cur + len));
2910                         array_size -= len;
2911                         btrfs_set_super_sys_array_size(super_copy, array_size);
2912                 } else {
2913                         ptr += len;
2914                         cur += len;
2915                 }
2916         }
2917         return ret;
2918 }
2919
2920 /*
2921  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2922  * @logical: Logical block offset in bytes.
2923  * @length: Length of extent in bytes.
2924  *
2925  * Return: Chunk mapping or ERR_PTR.
2926  */
2927 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2928                                        u64 logical, u64 length)
2929 {
2930         struct extent_map_tree *em_tree;
2931         struct extent_map *em;
2932
2933         em_tree = &fs_info->mapping_tree;
2934         read_lock(&em_tree->lock);
2935         em = lookup_extent_mapping(em_tree, logical, length);
2936         read_unlock(&em_tree->lock);
2937
2938         if (!em) {
2939                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2940                            logical, length);
2941                 return ERR_PTR(-EINVAL);
2942         }
2943
2944         if (em->start > logical || em->start + em->len < logical) {
2945                 btrfs_crit(fs_info,
2946                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2947                            logical, length, em->start, em->start + em->len);
2948                 free_extent_map(em);
2949                 return ERR_PTR(-EINVAL);
2950         }
2951
2952         /* callers are responsible for dropping em's ref. */
2953         return em;
2954 }
2955
2956 static int remove_chunk_item(struct btrfs_trans_handle *trans,
2957                              struct map_lookup *map, u64 chunk_offset)
2958 {
2959         int i;
2960
2961         /*
2962          * Removing chunk items and updating the device items in the chunks btree
2963          * requires holding the chunk_mutex.
2964          * See the comment at btrfs_chunk_alloc() for the details.
2965          */
2966         lockdep_assert_held(&trans->fs_info->chunk_mutex);
2967
2968         for (i = 0; i < map->num_stripes; i++) {
2969                 int ret;
2970
2971                 ret = btrfs_update_device(trans, map->stripes[i].dev);
2972                 if (ret)
2973                         return ret;
2974         }
2975
2976         return btrfs_free_chunk(trans, chunk_offset);
2977 }
2978
2979 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2980 {
2981         struct btrfs_fs_info *fs_info = trans->fs_info;
2982         struct extent_map *em;
2983         struct map_lookup *map;
2984         u64 dev_extent_len = 0;
2985         int i, ret = 0;
2986         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2987
2988         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2989         if (IS_ERR(em)) {
2990                 /*
2991                  * This is a logic error, but we don't want to just rely on the
2992                  * user having built with ASSERT enabled, so if ASSERT doesn't
2993                  * do anything we still error out.
2994                  */
2995                 ASSERT(0);
2996                 return PTR_ERR(em);
2997         }
2998         map = em->map_lookup;
2999
3000         /*
3001          * First delete the device extent items from the devices btree.
3002          * We take the device_list_mutex to avoid racing with the finishing phase
3003          * of a device replace operation. See the comment below before acquiring
3004          * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3005          * because that can result in a deadlock when deleting the device extent
3006          * items from the devices btree - COWing an extent buffer from the btree
3007          * may result in allocating a new metadata chunk, which would attempt to
3008          * lock again fs_info->chunk_mutex.
3009          */
3010         mutex_lock(&fs_devices->device_list_mutex);
3011         for (i = 0; i < map->num_stripes; i++) {
3012                 struct btrfs_device *device = map->stripes[i].dev;
3013                 ret = btrfs_free_dev_extent(trans, device,
3014                                             map->stripes[i].physical,
3015                                             &dev_extent_len);
3016                 if (ret) {
3017                         mutex_unlock(&fs_devices->device_list_mutex);
3018                         btrfs_abort_transaction(trans, ret);
3019                         goto out;
3020                 }
3021
3022                 if (device->bytes_used > 0) {
3023                         mutex_lock(&fs_info->chunk_mutex);
3024                         btrfs_device_set_bytes_used(device,
3025                                         device->bytes_used - dev_extent_len);
3026                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3027                         btrfs_clear_space_info_full(fs_info);
3028                         mutex_unlock(&fs_info->chunk_mutex);
3029                 }
3030         }
3031         mutex_unlock(&fs_devices->device_list_mutex);
3032
3033         /*
3034          * We acquire fs_info->chunk_mutex for 2 reasons:
3035          *
3036          * 1) Just like with the first phase of the chunk allocation, we must
3037          *    reserve system space, do all chunk btree updates and deletions, and
3038          *    update the system chunk array in the superblock while holding this
3039          *    mutex. This is for similar reasons as explained on the comment at
3040          *    the top of btrfs_chunk_alloc();
3041          *
3042          * 2) Prevent races with the final phase of a device replace operation
3043          *    that replaces the device object associated with the map's stripes,
3044          *    because the device object's id can change at any time during that
3045          *    final phase of the device replace operation
3046          *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3047          *    replaced device and then see it with an ID of
3048          *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3049          *    the device item, which does not exists on the chunk btree.
3050          *    The finishing phase of device replace acquires both the
3051          *    device_list_mutex and the chunk_mutex, in that order, so we are
3052          *    safe by just acquiring the chunk_mutex.
3053          */
3054         trans->removing_chunk = true;
3055         mutex_lock(&fs_info->chunk_mutex);
3056
3057         check_system_chunk(trans, map->type);
3058
3059         ret = remove_chunk_item(trans, map, chunk_offset);
3060         /*
3061          * Normally we should not get -ENOSPC since we reserved space before
3062          * through the call to check_system_chunk().
3063          *
3064          * Despite our system space_info having enough free space, we may not
3065          * be able to allocate extents from its block groups, because all have
3066          * an incompatible profile, which will force us to allocate a new system
3067          * block group with the right profile, or right after we called
3068          * check_system_space() above, a scrub turned the only system block group
3069          * with enough free space into RO mode.
3070          * This is explained with more detail at do_chunk_alloc().
3071          *
3072          * So if we get -ENOSPC, allocate a new system chunk and retry once.
3073          */
3074         if (ret == -ENOSPC) {
3075                 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3076                 struct btrfs_block_group *sys_bg;
3077
3078                 sys_bg = btrfs_alloc_chunk(trans, sys_flags);
3079                 if (IS_ERR(sys_bg)) {
3080                         ret = PTR_ERR(sys_bg);
3081                         btrfs_abort_transaction(trans, ret);
3082                         goto out;
3083                 }
3084
3085                 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3086                 if (ret) {
3087                         btrfs_abort_transaction(trans, ret);
3088                         goto out;
3089                 }
3090
3091                 ret = remove_chunk_item(trans, map, chunk_offset);
3092                 if (ret) {
3093                         btrfs_abort_transaction(trans, ret);
3094                         goto out;
3095                 }
3096         } else if (ret) {
3097                 btrfs_abort_transaction(trans, ret);
3098                 goto out;
3099         }
3100
3101         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3102
3103         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3104                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3105                 if (ret) {
3106                         btrfs_abort_transaction(trans, ret);
3107                         goto out;
3108                 }
3109         }
3110
3111         mutex_unlock(&fs_info->chunk_mutex);
3112         trans->removing_chunk = false;
3113
3114         /*
3115          * We are done with chunk btree updates and deletions, so release the
3116          * system space we previously reserved (with check_system_chunk()).
3117          */
3118         btrfs_trans_release_chunk_metadata(trans);
3119
3120         ret = btrfs_remove_block_group(trans, chunk_offset, em);
3121         if (ret) {
3122                 btrfs_abort_transaction(trans, ret);
3123                 goto out;
3124         }
3125
3126 out:
3127         if (trans->removing_chunk) {
3128                 mutex_unlock(&fs_info->chunk_mutex);
3129                 trans->removing_chunk = false;
3130         }
3131         /* once for us */
3132         free_extent_map(em);
3133         return ret;
3134 }
3135
3136 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3137 {
3138         struct btrfs_root *root = fs_info->chunk_root;
3139         struct btrfs_trans_handle *trans;
3140         struct btrfs_block_group *block_group;
3141         u64 length;
3142         int ret;
3143
3144         /*
3145          * Prevent races with automatic removal of unused block groups.
3146          * After we relocate and before we remove the chunk with offset
3147          * chunk_offset, automatic removal of the block group can kick in,
3148          * resulting in a failure when calling btrfs_remove_chunk() below.
3149          *
3150          * Make sure to acquire this mutex before doing a tree search (dev
3151          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3152          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3153          * we release the path used to search the chunk/dev tree and before
3154          * the current task acquires this mutex and calls us.
3155          */
3156         lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3157
3158         /* step one, relocate all the extents inside this chunk */
3159         btrfs_scrub_pause(fs_info);
3160         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3161         btrfs_scrub_continue(fs_info);
3162         if (ret)
3163                 return ret;
3164
3165         block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3166         if (!block_group)
3167                 return -ENOENT;
3168         btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3169         length = block_group->length;
3170         btrfs_put_block_group(block_group);
3171
3172         /*
3173          * On a zoned file system, discard the whole block group, this will
3174          * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3175          * resetting the zone fails, don't treat it as a fatal problem from the
3176          * filesystem's point of view.
3177          */
3178         if (btrfs_is_zoned(fs_info)) {
3179                 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3180                 if (ret)
3181                         btrfs_info(fs_info,
3182                                 "failed to reset zone %llu after relocation",
3183                                 chunk_offset);
3184         }
3185
3186         trans = btrfs_start_trans_remove_block_group(root->fs_info,
3187                                                      chunk_offset);
3188         if (IS_ERR(trans)) {
3189                 ret = PTR_ERR(trans);
3190                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3191                 return ret;
3192         }
3193
3194         /*
3195          * step two, delete the device extents and the
3196          * chunk tree entries
3197          */
3198         ret = btrfs_remove_chunk(trans, chunk_offset);
3199         btrfs_end_transaction(trans);
3200         return ret;
3201 }
3202
3203 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3204 {
3205         struct btrfs_root *chunk_root = fs_info->chunk_root;
3206         struct btrfs_path *path;
3207         struct extent_buffer *leaf;
3208         struct btrfs_chunk *chunk;
3209         struct btrfs_key key;
3210         struct btrfs_key found_key;
3211         u64 chunk_type;
3212         bool retried = false;
3213         int failed = 0;
3214         int ret;
3215
3216         path = btrfs_alloc_path();
3217         if (!path)
3218                 return -ENOMEM;
3219
3220 again:
3221         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3222         key.offset = (u64)-1;
3223         key.type = BTRFS_CHUNK_ITEM_KEY;
3224
3225         while (1) {
3226                 mutex_lock(&fs_info->reclaim_bgs_lock);
3227                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3228                 if (ret < 0) {
3229                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3230                         goto error;
3231                 }
3232                 BUG_ON(ret == 0); /* Corruption */
3233
3234                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3235                                           key.type);
3236                 if (ret)
3237                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3238                 if (ret < 0)
3239                         goto error;
3240                 if (ret > 0)
3241                         break;
3242
3243                 leaf = path->nodes[0];
3244                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3245
3246                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3247                                        struct btrfs_chunk);
3248                 chunk_type = btrfs_chunk_type(leaf, chunk);
3249                 btrfs_release_path(path);
3250
3251                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3252                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3253                         if (ret == -ENOSPC)
3254                                 failed++;
3255                         else
3256                                 BUG_ON(ret);
3257                 }
3258                 mutex_unlock(&fs_info->reclaim_bgs_lock);
3259
3260                 if (found_key.offset == 0)
3261                         break;
3262                 key.offset = found_key.offset - 1;
3263         }
3264         ret = 0;
3265         if (failed && !retried) {
3266                 failed = 0;
3267                 retried = true;
3268                 goto again;
3269         } else if (WARN_ON(failed && retried)) {
3270                 ret = -ENOSPC;
3271         }
3272 error:
3273         btrfs_free_path(path);
3274         return ret;
3275 }
3276
3277 /*
3278  * return 1 : allocate a data chunk successfully,
3279  * return <0: errors during allocating a data chunk,
3280  * return 0 : no need to allocate a data chunk.
3281  */
3282 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3283                                       u64 chunk_offset)
3284 {
3285         struct btrfs_block_group *cache;
3286         u64 bytes_used;
3287         u64 chunk_type;
3288
3289         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3290         ASSERT(cache);
3291         chunk_type = cache->flags;
3292         btrfs_put_block_group(cache);
3293
3294         if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3295                 return 0;
3296
3297         spin_lock(&fs_info->data_sinfo->lock);
3298         bytes_used = fs_info->data_sinfo->bytes_used;
3299         spin_unlock(&fs_info->data_sinfo->lock);
3300
3301         if (!bytes_used) {
3302                 struct btrfs_trans_handle *trans;
3303                 int ret;
3304
3305                 trans = btrfs_join_transaction(fs_info->tree_root);
3306                 if (IS_ERR(trans))
3307                         return PTR_ERR(trans);
3308
3309                 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3310                 btrfs_end_transaction(trans);
3311                 if (ret < 0)
3312                         return ret;
3313                 return 1;
3314         }
3315
3316         return 0;
3317 }
3318
3319 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3320                                struct btrfs_balance_control *bctl)
3321 {
3322         struct btrfs_root *root = fs_info->tree_root;
3323         struct btrfs_trans_handle *trans;
3324         struct btrfs_balance_item *item;
3325         struct btrfs_disk_balance_args disk_bargs;
3326         struct btrfs_path *path;
3327         struct extent_buffer *leaf;
3328         struct btrfs_key key;
3329         int ret, err;
3330
3331         path = btrfs_alloc_path();
3332         if (!path)
3333                 return -ENOMEM;
3334
3335         trans = btrfs_start_transaction(root, 0);
3336         if (IS_ERR(trans)) {
3337                 btrfs_free_path(path);
3338                 return PTR_ERR(trans);
3339         }
3340
3341         key.objectid = BTRFS_BALANCE_OBJECTID;
3342         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3343         key.offset = 0;
3344
3345         ret = btrfs_insert_empty_item(trans, root, path, &key,
3346                                       sizeof(*item));
3347         if (ret)
3348                 goto out;
3349
3350         leaf = path->nodes[0];
3351         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3352
3353         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3354
3355         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3356         btrfs_set_balance_data(leaf, item, &disk_bargs);
3357         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3358         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3359         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3360         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3361
3362         btrfs_set_balance_flags(leaf, item, bctl->flags);
3363
3364         btrfs_mark_buffer_dirty(leaf);
3365 out:
3366         btrfs_free_path(path);
3367         err = btrfs_commit_transaction(trans);
3368         if (err && !ret)
3369                 ret = err;
3370         return ret;
3371 }
3372
3373 static int del_balance_item(struct btrfs_fs_info *fs_info)
3374 {
3375         struct btrfs_root *root = fs_info->tree_root;
3376         struct btrfs_trans_handle *trans;
3377         struct btrfs_path *path;
3378         struct btrfs_key key;
3379         int ret, err;
3380
3381         path = btrfs_alloc_path();
3382         if (!path)
3383                 return -ENOMEM;
3384
3385         trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3386         if (IS_ERR(trans)) {
3387                 btrfs_free_path(path);
3388                 return PTR_ERR(trans);
3389         }
3390
3391         key.objectid = BTRFS_BALANCE_OBJECTID;
3392         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3393         key.offset = 0;
3394
3395         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3396         if (ret < 0)
3397                 goto out;
3398         if (ret > 0) {
3399                 ret = -ENOENT;
3400                 goto out;
3401         }
3402
3403         ret = btrfs_del_item(trans, root, path);
3404 out:
3405         btrfs_free_path(path);
3406         err = btrfs_commit_transaction(trans);
3407         if (err && !ret)
3408                 ret = err;
3409         return ret;
3410 }
3411
3412 /*
3413  * This is a heuristic used to reduce the number of chunks balanced on
3414  * resume after balance was interrupted.
3415  */
3416 static void update_balance_args(struct btrfs_balance_control *bctl)
3417 {
3418         /*
3419          * Turn on soft mode for chunk types that were being converted.
3420          */
3421         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3422                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3423         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3424                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3425         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3426                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3427
3428         /*
3429          * Turn on usage filter if is not already used.  The idea is
3430          * that chunks that we have already balanced should be
3431          * reasonably full.  Don't do it for chunks that are being
3432          * converted - that will keep us from relocating unconverted
3433          * (albeit full) chunks.
3434          */
3435         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3436             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3437             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3438                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3439                 bctl->data.usage = 90;
3440         }
3441         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3442             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3443             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3444                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3445                 bctl->sys.usage = 90;
3446         }
3447         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3448             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3449             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3450                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3451                 bctl->meta.usage = 90;
3452         }
3453 }
3454
3455 /*
3456  * Clear the balance status in fs_info and delete the balance item from disk.
3457  */
3458 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3459 {
3460         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3461         int ret;
3462
3463         BUG_ON(!fs_info->balance_ctl);
3464
3465         spin_lock(&fs_info->balance_lock);
3466         fs_info->balance_ctl = NULL;
3467         spin_unlock(&fs_info->balance_lock);
3468
3469         kfree(bctl);
3470         ret = del_balance_item(fs_info);
3471         if (ret)
3472                 btrfs_handle_fs_error(fs_info, ret, NULL);
3473 }
3474
3475 /*
3476  * Balance filters.  Return 1 if chunk should be filtered out
3477  * (should not be balanced).
3478  */
3479 static int chunk_profiles_filter(u64 chunk_type,
3480                                  struct btrfs_balance_args *bargs)
3481 {
3482         chunk_type = chunk_to_extended(chunk_type) &
3483                                 BTRFS_EXTENDED_PROFILE_MASK;
3484
3485         if (bargs->profiles & chunk_type)
3486                 return 0;
3487
3488         return 1;
3489 }
3490
3491 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3492                               struct btrfs_balance_args *bargs)
3493 {
3494         struct btrfs_block_group *cache;
3495         u64 chunk_used;
3496         u64 user_thresh_min;
3497         u64 user_thresh_max;
3498         int ret = 1;
3499
3500         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3501         chunk_used = cache->used;
3502
3503         if (bargs->usage_min == 0)
3504                 user_thresh_min = 0;
3505         else
3506                 user_thresh_min = div_factor_fine(cache->length,
3507                                                   bargs->usage_min);
3508
3509         if (bargs->usage_max == 0)
3510                 user_thresh_max = 1;
3511         else if (bargs->usage_max > 100)
3512                 user_thresh_max = cache->length;
3513         else
3514                 user_thresh_max = div_factor_fine(cache->length,
3515                                                   bargs->usage_max);
3516
3517         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3518                 ret = 0;
3519
3520         btrfs_put_block_group(cache);
3521         return ret;
3522 }
3523
3524 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3525                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3526 {
3527         struct btrfs_block_group *cache;
3528         u64 chunk_used, user_thresh;
3529         int ret = 1;
3530
3531         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3532         chunk_used = cache->used;
3533
3534         if (bargs->usage_min == 0)
3535                 user_thresh = 1;
3536         else if (bargs->usage > 100)
3537                 user_thresh = cache->length;
3538         else
3539                 user_thresh = div_factor_fine(cache->length, bargs->usage);
3540
3541         if (chunk_used < user_thresh)
3542                 ret = 0;
3543
3544         btrfs_put_block_group(cache);
3545         return ret;
3546 }
3547
3548 static int chunk_devid_filter(struct extent_buffer *leaf,
3549                               struct btrfs_chunk *chunk,
3550                               struct btrfs_balance_args *bargs)
3551 {
3552         struct btrfs_stripe *stripe;
3553         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3554         int i;
3555
3556         for (i = 0; i < num_stripes; i++) {
3557                 stripe = btrfs_stripe_nr(chunk, i);
3558                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3559                         return 0;
3560         }
3561
3562         return 1;
3563 }
3564
3565 static u64 calc_data_stripes(u64 type, int num_stripes)
3566 {
3567         const int index = btrfs_bg_flags_to_raid_index(type);
3568         const int ncopies = btrfs_raid_array[index].ncopies;
3569         const int nparity = btrfs_raid_array[index].nparity;
3570
3571         return (num_stripes - nparity) / ncopies;
3572 }
3573
3574 /* [pstart, pend) */
3575 static int chunk_drange_filter(struct extent_buffer *leaf,
3576                                struct btrfs_chunk *chunk,
3577                                struct btrfs_balance_args *bargs)
3578 {
3579         struct btrfs_stripe *stripe;
3580         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3581         u64 stripe_offset;
3582         u64 stripe_length;
3583         u64 type;
3584         int factor;
3585         int i;
3586
3587         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3588                 return 0;
3589
3590         type = btrfs_chunk_type(leaf, chunk);
3591         factor = calc_data_stripes(type, num_stripes);
3592
3593         for (i = 0; i < num_stripes; i++) {
3594                 stripe = btrfs_stripe_nr(chunk, i);
3595                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3596                         continue;
3597
3598                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3599                 stripe_length = btrfs_chunk_length(leaf, chunk);
3600                 stripe_length = div_u64(stripe_length, factor);
3601
3602                 if (stripe_offset < bargs->pend &&
3603                     stripe_offset + stripe_length > bargs->pstart)
3604                         return 0;
3605         }
3606
3607         return 1;
3608 }
3609
3610 /* [vstart, vend) */
3611 static int chunk_vrange_filter(struct extent_buffer *leaf,
3612                                struct btrfs_chunk *chunk,
3613                                u64 chunk_offset,
3614                                struct btrfs_balance_args *bargs)
3615 {
3616         if (chunk_offset < bargs->vend &&
3617             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3618                 /* at least part of the chunk is inside this vrange */
3619                 return 0;
3620
3621         return 1;
3622 }
3623
3624 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3625                                struct btrfs_chunk *chunk,
3626                                struct btrfs_balance_args *bargs)
3627 {
3628         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3629
3630         if (bargs->stripes_min <= num_stripes
3631                         && num_stripes <= bargs->stripes_max)
3632                 return 0;
3633
3634         return 1;
3635 }
3636
3637 static int chunk_soft_convert_filter(u64 chunk_type,
3638                                      struct btrfs_balance_args *bargs)
3639 {
3640         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3641                 return 0;
3642
3643         chunk_type = chunk_to_extended(chunk_type) &
3644                                 BTRFS_EXTENDED_PROFILE_MASK;
3645
3646         if (bargs->target == chunk_type)
3647                 return 1;
3648
3649         return 0;
3650 }
3651
3652 static int should_balance_chunk(struct extent_buffer *leaf,
3653                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3654 {
3655         struct btrfs_fs_info *fs_info = leaf->fs_info;
3656         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3657         struct btrfs_balance_args *bargs = NULL;
3658         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3659
3660         /* type filter */
3661         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3662               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3663                 return 0;
3664         }
3665
3666         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3667                 bargs = &bctl->data;
3668         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3669                 bargs = &bctl->sys;
3670         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3671                 bargs = &bctl->meta;
3672
3673         /* profiles filter */
3674         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3675             chunk_profiles_filter(chunk_type, bargs)) {
3676                 return 0;
3677         }
3678
3679         /* usage filter */
3680         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3681             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3682                 return 0;
3683         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3684             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3685                 return 0;
3686         }
3687
3688         /* devid filter */
3689         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3690             chunk_devid_filter(leaf, chunk, bargs)) {
3691                 return 0;
3692         }
3693
3694         /* drange filter, makes sense only with devid filter */
3695         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3696             chunk_drange_filter(leaf, chunk, bargs)) {
3697                 return 0;
3698         }
3699
3700         /* vrange filter */
3701         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3702             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3703                 return 0;
3704         }
3705
3706         /* stripes filter */
3707         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3708             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3709                 return 0;
3710         }
3711
3712         /* soft profile changing mode */
3713         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3714             chunk_soft_convert_filter(chunk_type, bargs)) {
3715                 return 0;
3716         }
3717
3718         /*
3719          * limited by count, must be the last filter
3720          */
3721         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3722                 if (bargs->limit == 0)
3723                         return 0;
3724                 else
3725                         bargs->limit--;
3726         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3727                 /*
3728                  * Same logic as the 'limit' filter; the minimum cannot be
3729                  * determined here because we do not have the global information
3730                  * about the count of all chunks that satisfy the filters.
3731                  */
3732                 if (bargs->limit_max == 0)
3733                         return 0;
3734                 else
3735                         bargs->limit_max--;
3736         }
3737
3738         return 1;
3739 }
3740
3741 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3742 {
3743         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3744         struct btrfs_root *chunk_root = fs_info->chunk_root;
3745         u64 chunk_type;
3746         struct btrfs_chunk *chunk;
3747         struct btrfs_path *path = NULL;
3748         struct btrfs_key key;
3749         struct btrfs_key found_key;
3750         struct extent_buffer *leaf;
3751         int slot;
3752         int ret;
3753         int enospc_errors = 0;
3754         bool counting = true;
3755         /* The single value limit and min/max limits use the same bytes in the */
3756         u64 limit_data = bctl->data.limit;
3757         u64 limit_meta = bctl->meta.limit;
3758         u64 limit_sys = bctl->sys.limit;
3759         u32 count_data = 0;
3760         u32 count_meta = 0;
3761         u32 count_sys = 0;
3762         int chunk_reserved = 0;
3763
3764         path = btrfs_alloc_path();
3765         if (!path) {
3766                 ret = -ENOMEM;
3767                 goto error;
3768         }
3769
3770         /* zero out stat counters */
3771         spin_lock(&fs_info->balance_lock);
3772         memset(&bctl->stat, 0, sizeof(bctl->stat));
3773         spin_unlock(&fs_info->balance_lock);
3774 again:
3775         if (!counting) {
3776                 /*
3777                  * The single value limit and min/max limits use the same bytes
3778                  * in the
3779                  */
3780                 bctl->data.limit = limit_data;
3781                 bctl->meta.limit = limit_meta;
3782                 bctl->sys.limit = limit_sys;
3783         }
3784         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3785         key.offset = (u64)-1;
3786         key.type = BTRFS_CHUNK_ITEM_KEY;
3787
3788         while (1) {
3789                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3790                     atomic_read(&fs_info->balance_cancel_req)) {
3791                         ret = -ECANCELED;
3792                         goto error;
3793                 }
3794
3795                 mutex_lock(&fs_info->reclaim_bgs_lock);
3796                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3797                 if (ret < 0) {
3798                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3799                         goto error;
3800                 }
3801
3802                 /*
3803                  * this shouldn't happen, it means the last relocate
3804                  * failed
3805                  */
3806                 if (ret == 0)
3807                         BUG(); /* FIXME break ? */
3808
3809                 ret = btrfs_previous_item(chunk_root, path, 0,
3810                                           BTRFS_CHUNK_ITEM_KEY);
3811                 if (ret) {
3812                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3813                         ret = 0;
3814                         break;
3815                 }
3816
3817                 leaf = path->nodes[0];
3818                 slot = path->slots[0];
3819                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3820
3821                 if (found_key.objectid != key.objectid) {
3822                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3823                         break;
3824                 }
3825
3826                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3827                 chunk_type = btrfs_chunk_type(leaf, chunk);
3828
3829                 if (!counting) {
3830                         spin_lock(&fs_info->balance_lock);
3831                         bctl->stat.considered++;
3832                         spin_unlock(&fs_info->balance_lock);
3833                 }
3834
3835                 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3836
3837                 btrfs_release_path(path);
3838                 if (!ret) {
3839                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3840                         goto loop;
3841                 }
3842
3843                 if (counting) {
3844                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3845                         spin_lock(&fs_info->balance_lock);
3846                         bctl->stat.expected++;
3847                         spin_unlock(&fs_info->balance_lock);
3848
3849                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3850                                 count_data++;
3851                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3852                                 count_sys++;
3853                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3854                                 count_meta++;
3855
3856                         goto loop;
3857                 }
3858
3859                 /*
3860                  * Apply limit_min filter, no need to check if the LIMITS
3861                  * filter is used, limit_min is 0 by default
3862                  */
3863                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3864                                         count_data < bctl->data.limit_min)
3865                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3866                                         count_meta < bctl->meta.limit_min)
3867                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3868                                         count_sys < bctl->sys.limit_min)) {
3869                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3870                         goto loop;
3871                 }
3872
3873                 if (!chunk_reserved) {
3874                         /*
3875                          * We may be relocating the only data chunk we have,
3876                          * which could potentially end up with losing data's
3877                          * raid profile, so lets allocate an empty one in
3878                          * advance.
3879                          */
3880                         ret = btrfs_may_alloc_data_chunk(fs_info,
3881                                                          found_key.offset);
3882                         if (ret < 0) {
3883                                 mutex_unlock(&fs_info->reclaim_bgs_lock);
3884                                 goto error;
3885                         } else if (ret == 1) {
3886                                 chunk_reserved = 1;
3887                         }
3888                 }
3889
3890                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3891                 mutex_unlock(&fs_info->reclaim_bgs_lock);
3892                 if (ret == -ENOSPC) {
3893                         enospc_errors++;
3894                 } else if (ret == -ETXTBSY) {
3895                         btrfs_info(fs_info,
3896            "skipping relocation of block group %llu due to active swapfile",
3897                                    found_key.offset);
3898                         ret = 0;
3899                 } else if (ret) {
3900                         goto error;
3901                 } else {
3902                         spin_lock(&fs_info->balance_lock);
3903                         bctl->stat.completed++;
3904                         spin_unlock(&fs_info->balance_lock);
3905                 }
3906 loop:
3907                 if (found_key.offset == 0)
3908                         break;
3909                 key.offset = found_key.offset - 1;
3910         }
3911
3912         if (counting) {
3913                 btrfs_release_path(path);
3914                 counting = false;
3915                 goto again;
3916         }
3917 error:
3918         btrfs_free_path(path);
3919         if (enospc_errors) {
3920                 btrfs_info(fs_info, "%d enospc errors during balance",
3921                            enospc_errors);
3922                 if (!ret)
3923                         ret = -ENOSPC;
3924         }
3925
3926         return ret;
3927 }
3928
3929 /**
3930  * alloc_profile_is_valid - see if a given profile is valid and reduced
3931  * @flags: profile to validate
3932  * @extended: if true @flags is treated as an extended profile
3933  */
3934 static int alloc_profile_is_valid(u64 flags, int extended)
3935 {
3936         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3937                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3938
3939         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3940
3941         /* 1) check that all other bits are zeroed */
3942         if (flags & ~mask)
3943                 return 0;
3944
3945         /* 2) see if profile is reduced */
3946         if (flags == 0)
3947                 return !extended; /* "0" is valid for usual profiles */
3948
3949         return has_single_bit_set(flags);
3950 }
3951
3952 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3953 {
3954         /* cancel requested || normal exit path */
3955         return atomic_read(&fs_info->balance_cancel_req) ||
3956                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3957                  atomic_read(&fs_info->balance_cancel_req) == 0);
3958 }
3959
3960 /*
3961  * Validate target profile against allowed profiles and return true if it's OK.
3962  * Otherwise print the error message and return false.
3963  */
3964 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3965                 const struct btrfs_balance_args *bargs,
3966                 u64 allowed, const char *type)
3967 {
3968         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3969                 return true;
3970
3971         /* Profile is valid and does not have bits outside of the allowed set */
3972         if (alloc_profile_is_valid(bargs->target, 1) &&
3973             (bargs->target & ~allowed) == 0)
3974                 return true;
3975
3976         btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3977                         type, btrfs_bg_type_to_raid_name(bargs->target));
3978         return false;
3979 }
3980
3981 /*
3982  * Fill @buf with textual description of balance filter flags @bargs, up to
3983  * @size_buf including the terminating null. The output may be trimmed if it
3984  * does not fit into the provided buffer.
3985  */
3986 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3987                                  u32 size_buf)
3988 {
3989         int ret;
3990         u32 size_bp = size_buf;
3991         char *bp = buf;
3992         u64 flags = bargs->flags;
3993         char tmp_buf[128] = {'\0'};
3994
3995         if (!flags)
3996                 return;
3997
3998 #define CHECK_APPEND_NOARG(a)                                           \
3999         do {                                                            \
4000                 ret = snprintf(bp, size_bp, (a));                       \
4001                 if (ret < 0 || ret >= size_bp)                          \
4002                         goto out_overflow;                              \
4003                 size_bp -= ret;                                         \
4004                 bp += ret;                                              \
4005         } while (0)
4006
4007 #define CHECK_APPEND_1ARG(a, v1)                                        \
4008         do {                                                            \
4009                 ret = snprintf(bp, size_bp, (a), (v1));                 \
4010                 if (ret < 0 || ret >= size_bp)                          \
4011                         goto out_overflow;                              \
4012                 size_bp -= ret;                                         \
4013                 bp += ret;                                              \
4014         } while (0)
4015
4016 #define CHECK_APPEND_2ARG(a, v1, v2)                                    \
4017         do {                                                            \
4018                 ret = snprintf(bp, size_bp, (a), (v1), (v2));           \
4019                 if (ret < 0 || ret >= size_bp)                          \
4020                         goto out_overflow;                              \
4021                 size_bp -= ret;                                         \
4022                 bp += ret;                                              \
4023         } while (0)
4024
4025         if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4026                 CHECK_APPEND_1ARG("convert=%s,",
4027                                   btrfs_bg_type_to_raid_name(bargs->target));
4028
4029         if (flags & BTRFS_BALANCE_ARGS_SOFT)
4030                 CHECK_APPEND_NOARG("soft,");
4031
4032         if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4033                 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4034                                             sizeof(tmp_buf));
4035                 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4036         }
4037
4038         if (flags & BTRFS_BALANCE_ARGS_USAGE)
4039                 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4040
4041         if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4042                 CHECK_APPEND_2ARG("usage=%u..%u,",
4043                                   bargs->usage_min, bargs->usage_max);
4044
4045         if (flags & BTRFS_BALANCE_ARGS_DEVID)
4046                 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4047
4048         if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4049                 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4050                                   bargs->pstart, bargs->pend);
4051
4052         if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4053                 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4054                                   bargs->vstart, bargs->vend);
4055
4056         if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4057                 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4058
4059         if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4060                 CHECK_APPEND_2ARG("limit=%u..%u,",
4061                                 bargs->limit_min, bargs->limit_max);
4062
4063         if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4064                 CHECK_APPEND_2ARG("stripes=%u..%u,",
4065                                   bargs->stripes_min, bargs->stripes_max);
4066
4067 #undef CHECK_APPEND_2ARG
4068 #undef CHECK_APPEND_1ARG
4069 #undef CHECK_APPEND_NOARG
4070
4071 out_overflow:
4072
4073         if (size_bp < size_buf)
4074                 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4075         else
4076                 buf[0] = '\0';
4077 }
4078
4079 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4080 {
4081         u32 size_buf = 1024;
4082         char tmp_buf[192] = {'\0'};
4083         char *buf;
4084         char *bp;
4085         u32 size_bp = size_buf;
4086         int ret;
4087         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4088
4089         buf = kzalloc(size_buf, GFP_KERNEL);
4090         if (!buf)
4091                 return;
4092
4093         bp = buf;
4094
4095 #define CHECK_APPEND_1ARG(a, v1)                                        \
4096         do {                                                            \
4097                 ret = snprintf(bp, size_bp, (a), (v1));                 \
4098                 if (ret < 0 || ret >= size_bp)                          \
4099                         goto out_overflow;                              \
4100                 size_bp -= ret;                                         \
4101                 bp += ret;                                              \
4102         } while (0)
4103
4104         if (bctl->flags & BTRFS_BALANCE_FORCE)
4105                 CHECK_APPEND_1ARG("%s", "-f ");
4106
4107         if (bctl->flags & BTRFS_BALANCE_DATA) {
4108                 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4109                 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4110         }
4111
4112         if (bctl->flags & BTRFS_BALANCE_METADATA) {
4113                 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4114                 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4115         }
4116
4117         if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4118                 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4119                 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4120         }
4121
4122 #undef CHECK_APPEND_1ARG
4123
4124 out_overflow:
4125
4126         if (size_bp < size_buf)
4127                 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4128         btrfs_info(fs_info, "balance: %s %s",
4129                    (bctl->flags & BTRFS_BALANCE_RESUME) ?
4130                    "resume" : "start", buf);
4131
4132         kfree(buf);
4133 }
4134
4135 /*
4136  * Should be called with balance mutexe held
4137  */
4138 int btrfs_balance(struct btrfs_fs_info *fs_info,
4139                   struct btrfs_balance_control *bctl,
4140                   struct btrfs_ioctl_balance_args *bargs)
4141 {
4142         u64 meta_target, data_target;
4143         u64 allowed;
4144         int mixed = 0;
4145         int ret;
4146         u64 num_devices;
4147         unsigned seq;
4148         bool reducing_redundancy;
4149         int i;
4150
4151         if (btrfs_fs_closing(fs_info) ||
4152             atomic_read(&fs_info->balance_pause_req) ||
4153             btrfs_should_cancel_balance(fs_info)) {
4154                 ret = -EINVAL;
4155                 goto out;
4156         }
4157
4158         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4159         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4160                 mixed = 1;
4161
4162         /*
4163          * In case of mixed groups both data and meta should be picked,
4164          * and identical options should be given for both of them.
4165          */
4166         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4167         if (mixed && (bctl->flags & allowed)) {
4168                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4169                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4170                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4171                         btrfs_err(fs_info,
4172           "balance: mixed groups data and metadata options must be the same");
4173                         ret = -EINVAL;
4174                         goto out;
4175                 }
4176         }
4177
4178         /*
4179          * rw_devices will not change at the moment, device add/delete/replace
4180          * are exclusive
4181          */
4182         num_devices = fs_info->fs_devices->rw_devices;
4183
4184         /*
4185          * SINGLE profile on-disk has no profile bit, but in-memory we have a
4186          * special bit for it, to make it easier to distinguish.  Thus we need
4187          * to set it manually, or balance would refuse the profile.
4188          */
4189         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4190         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4191                 if (num_devices >= btrfs_raid_array[i].devs_min)
4192                         allowed |= btrfs_raid_array[i].bg_flag;
4193
4194         if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4195             !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4196             !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4197                 ret = -EINVAL;
4198                 goto out;
4199         }
4200
4201         /*
4202          * Allow to reduce metadata or system integrity only if force set for
4203          * profiles with redundancy (copies, parity)
4204          */
4205         allowed = 0;
4206         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4207                 if (btrfs_raid_array[i].ncopies >= 2 ||
4208                     btrfs_raid_array[i].tolerated_failures >= 1)
4209                         allowed |= btrfs_raid_array[i].bg_flag;
4210         }
4211         do {
4212                 seq = read_seqbegin(&fs_info->profiles_lock);
4213
4214                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4215                      (fs_info->avail_system_alloc_bits & allowed) &&
4216                      !(bctl->sys.target & allowed)) ||
4217                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4218                      (fs_info->avail_metadata_alloc_bits & allowed) &&
4219                      !(bctl->meta.target & allowed)))
4220                         reducing_redundancy = true;
4221                 else
4222                         reducing_redundancy = false;
4223
4224                 /* if we're not converting, the target field is uninitialized */
4225                 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4226                         bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4227                 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4228                         bctl->data.target : fs_info->avail_data_alloc_bits;
4229         } while (read_seqretry(&fs_info->profiles_lock, seq));
4230
4231         if (reducing_redundancy) {
4232                 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4233                         btrfs_info(fs_info,
4234                            "balance: force reducing metadata redundancy");
4235                 } else {
4236                         btrfs_err(fs_info,
4237         "balance: reduces metadata redundancy, use --force if you want this");
4238                         ret = -EINVAL;
4239                         goto out;
4240                 }
4241         }
4242
4243         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4244                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4245                 btrfs_warn(fs_info,
4246         "balance: metadata profile %s has lower redundancy than data profile %s",
4247                                 btrfs_bg_type_to_raid_name(meta_target),
4248                                 btrfs_bg_type_to_raid_name(data_target));
4249         }
4250
4251         ret = insert_balance_item(fs_info, bctl);
4252         if (ret && ret != -EEXIST)
4253                 goto out;
4254
4255         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4256                 BUG_ON(ret == -EEXIST);
4257                 BUG_ON(fs_info->balance_ctl);
4258                 spin_lock(&fs_info->balance_lock);
4259                 fs_info->balance_ctl = bctl;
4260                 spin_unlock(&fs_info->balance_lock);
4261         } else {
4262                 BUG_ON(ret != -EEXIST);
4263                 spin_lock(&fs_info->balance_lock);
4264                 update_balance_args(bctl);
4265                 spin_unlock(&fs_info->balance_lock);
4266         }
4267
4268         ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4269         set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4270         describe_balance_start_or_resume(fs_info);
4271         mutex_unlock(&fs_info->balance_mutex);
4272
4273         ret = __btrfs_balance(fs_info);
4274
4275         mutex_lock(&fs_info->balance_mutex);
4276         if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4277                 btrfs_info(fs_info, "balance: paused");
4278         /*
4279          * Balance can be canceled by:
4280          *
4281          * - Regular cancel request
4282          *   Then ret == -ECANCELED and balance_cancel_req > 0
4283          *
4284          * - Fatal signal to "btrfs" process
4285          *   Either the signal caught by wait_reserve_ticket() and callers
4286          *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4287          *   got -ECANCELED.
4288          *   Either way, in this case balance_cancel_req = 0, and
4289          *   ret == -EINTR or ret == -ECANCELED.
4290          *
4291          * So here we only check the return value to catch canceled balance.
4292          */
4293         else if (ret == -ECANCELED || ret == -EINTR)
4294                 btrfs_info(fs_info, "balance: canceled");
4295         else
4296                 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4297
4298         clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4299
4300         if (bargs) {
4301                 memset(bargs, 0, sizeof(*bargs));
4302                 btrfs_update_ioctl_balance_args(fs_info, bargs);
4303         }
4304
4305         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4306             balance_need_close(fs_info)) {
4307                 reset_balance_state(fs_info);
4308                 btrfs_exclop_finish(fs_info);
4309         }
4310
4311         wake_up(&fs_info->balance_wait_q);
4312
4313         return ret;
4314 out:
4315         if (bctl->flags & BTRFS_BALANCE_RESUME)
4316                 reset_balance_state(fs_info);
4317         else
4318                 kfree(bctl);
4319         btrfs_exclop_finish(fs_info);
4320
4321         return ret;
4322 }
4323
4324 static int balance_kthread(void *data)
4325 {
4326         struct btrfs_fs_info *fs_info = data;
4327         int ret = 0;
4328
4329         mutex_lock(&fs_info->balance_mutex);
4330         if (fs_info->balance_ctl)
4331                 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4332         mutex_unlock(&fs_info->balance_mutex);
4333
4334         return ret;
4335 }
4336
4337 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4338 {
4339         struct task_struct *tsk;
4340
4341         mutex_lock(&fs_info->balance_mutex);
4342         if (!fs_info->balance_ctl) {
4343                 mutex_unlock(&fs_info->balance_mutex);
4344                 return 0;
4345         }
4346         mutex_unlock(&fs_info->balance_mutex);
4347
4348         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4349                 btrfs_info(fs_info, "balance: resume skipped");
4350                 return 0;
4351         }
4352
4353         /*
4354          * A ro->rw remount sequence should continue with the paused balance
4355          * regardless of who pauses it, system or the user as of now, so set
4356          * the resume flag.
4357          */
4358         spin_lock(&fs_info->balance_lock);
4359         fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4360         spin_unlock(&fs_info->balance_lock);
4361
4362         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4363         return PTR_ERR_OR_ZERO(tsk);
4364 }
4365
4366 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4367 {
4368         struct btrfs_balance_control *bctl;
4369         struct btrfs_balance_item *item;
4370         struct btrfs_disk_balance_args disk_bargs;
4371         struct btrfs_path *path;
4372         struct extent_buffer *leaf;
4373         struct btrfs_key key;
4374         int ret;
4375
4376         path = btrfs_alloc_path();
4377         if (!path)
4378                 return -ENOMEM;
4379
4380         key.objectid = BTRFS_BALANCE_OBJECTID;
4381         key.type = BTRFS_TEMPORARY_ITEM_KEY;
4382         key.offset = 0;
4383
4384         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4385         if (ret < 0)
4386                 goto out;
4387         if (ret > 0) { /* ret = -ENOENT; */
4388                 ret = 0;
4389                 goto out;
4390         }
4391
4392         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4393         if (!bctl) {
4394                 ret = -ENOMEM;
4395                 goto out;
4396         }
4397
4398         leaf = path->nodes[0];
4399         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4400
4401         bctl->flags = btrfs_balance_flags(leaf, item);
4402         bctl->flags |= BTRFS_BALANCE_RESUME;
4403
4404         btrfs_balance_data(leaf, item, &disk_bargs);
4405         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4406         btrfs_balance_meta(leaf, item, &disk_bargs);
4407         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4408         btrfs_balance_sys(leaf, item, &disk_bargs);
4409         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4410
4411         /*
4412          * This should never happen, as the paused balance state is recovered
4413          * during mount without any chance of other exclusive ops to collide.
4414          *
4415          * This gives the exclusive op status to balance and keeps in paused
4416          * state until user intervention (cancel or umount). If the ownership
4417          * cannot be assigned, show a message but do not fail. The balance
4418          * is in a paused state and must have fs_info::balance_ctl properly
4419          * set up.
4420          */
4421         if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4422                 btrfs_warn(fs_info,
4423         "balance: cannot set exclusive op status, resume manually");
4424
4425         btrfs_release_path(path);
4426
4427         mutex_lock(&fs_info->balance_mutex);
4428         BUG_ON(fs_info->balance_ctl);
4429         spin_lock(&fs_info->balance_lock);
4430         fs_info->balance_ctl = bctl;
4431         spin_unlock(&fs_info->balance_lock);
4432         mutex_unlock(&fs_info->balance_mutex);
4433 out:
4434         btrfs_free_path(path);
4435         return ret;
4436 }
4437
4438 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4439 {
4440         int ret = 0;
4441
4442         mutex_lock(&fs_info->balance_mutex);
4443         if (!fs_info->balance_ctl) {
4444                 mutex_unlock(&fs_info->balance_mutex);
4445                 return -ENOTCONN;
4446         }
4447
4448         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4449                 atomic_inc(&fs_info->balance_pause_req);
4450                 mutex_unlock(&fs_info->balance_mutex);
4451
4452                 wait_event(fs_info->balance_wait_q,
4453                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4454
4455                 mutex_lock(&fs_info->balance_mutex);
4456                 /* we are good with balance_ctl ripped off from under us */
4457                 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4458                 atomic_dec(&fs_info->balance_pause_req);
4459         } else {
4460                 ret = -ENOTCONN;
4461         }
4462
4463         mutex_unlock(&fs_info->balance_mutex);
4464         return ret;
4465 }
4466
4467 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4468 {
4469         mutex_lock(&fs_info->balance_mutex);
4470         if (!fs_info->balance_ctl) {
4471                 mutex_unlock(&fs_info->balance_mutex);
4472                 return -ENOTCONN;
4473         }
4474
4475         /*
4476          * A paused balance with the item stored on disk can be resumed at
4477          * mount time if the mount is read-write. Otherwise it's still paused
4478          * and we must not allow cancelling as it deletes the item.
4479          */
4480         if (sb_rdonly(fs_info->sb)) {
4481                 mutex_unlock(&fs_info->balance_mutex);
4482                 return -EROFS;
4483         }
4484
4485         atomic_inc(&fs_info->balance_cancel_req);
4486         /*
4487          * if we are running just wait and return, balance item is
4488          * deleted in btrfs_balance in this case
4489          */
4490         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4491                 mutex_unlock(&fs_info->balance_mutex);
4492                 wait_event(fs_info->balance_wait_q,
4493                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4494                 mutex_lock(&fs_info->balance_mutex);
4495         } else {
4496                 mutex_unlock(&fs_info->balance_mutex);
4497                 /*
4498                  * Lock released to allow other waiters to continue, we'll
4499                  * reexamine the status again.
4500                  */
4501                 mutex_lock(&fs_info->balance_mutex);
4502
4503                 if (fs_info->balance_ctl) {
4504                         reset_balance_state(fs_info);
4505                         btrfs_exclop_finish(fs_info);
4506                         btrfs_info(fs_info, "balance: canceled");
4507                 }
4508         }
4509
4510         BUG_ON(fs_info->balance_ctl ||
4511                 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4512         atomic_dec(&fs_info->balance_cancel_req);
4513         mutex_unlock(&fs_info->balance_mutex);
4514         return 0;
4515 }
4516
4517 int btrfs_uuid_scan_kthread(void *data)
4518 {
4519         struct btrfs_fs_info *fs_info = data;
4520         struct btrfs_root *root = fs_info->tree_root;
4521         struct btrfs_key key;
4522         struct btrfs_path *path = NULL;
4523         int ret = 0;
4524         struct extent_buffer *eb;
4525         int slot;
4526         struct btrfs_root_item root_item;
4527         u32 item_size;
4528         struct btrfs_trans_handle *trans = NULL;
4529         bool closing = false;
4530
4531         path = btrfs_alloc_path();
4532         if (!path) {
4533                 ret = -ENOMEM;
4534                 goto out;
4535         }
4536
4537         key.objectid = 0;
4538         key.type = BTRFS_ROOT_ITEM_KEY;
4539         key.offset = 0;
4540
4541         while (1) {
4542                 if (btrfs_fs_closing(fs_info)) {
4543                         closing = true;
4544                         break;
4545                 }
4546                 ret = btrfs_search_forward(root, &key, path,
4547                                 BTRFS_OLDEST_GENERATION);
4548                 if (ret) {
4549                         if (ret > 0)
4550                                 ret = 0;
4551                         break;
4552                 }
4553
4554                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4555                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4556                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4557                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4558                         goto skip;
4559
4560                 eb = path->nodes[0];
4561                 slot = path->slots[0];
4562                 item_size = btrfs_item_size_nr(eb, slot);
4563                 if (item_size < sizeof(root_item))
4564                         goto skip;
4565
4566                 read_extent_buffer(eb, &root_item,
4567                                    btrfs_item_ptr_offset(eb, slot),
4568                                    (int)sizeof(root_item));
4569                 if (btrfs_root_refs(&root_item) == 0)
4570                         goto skip;
4571
4572                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4573                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4574                         if (trans)
4575                                 goto update_tree;
4576
4577                         btrfs_release_path(path);
4578                         /*
4579                          * 1 - subvol uuid item
4580                          * 1 - received_subvol uuid item
4581                          */
4582                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4583                         if (IS_ERR(trans)) {
4584                                 ret = PTR_ERR(trans);
4585                                 break;
4586                         }
4587                         continue;
4588                 } else {
4589                         goto skip;
4590                 }
4591 update_tree:
4592                 btrfs_release_path(path);
4593                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4594                         ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4595                                                   BTRFS_UUID_KEY_SUBVOL,
4596                                                   key.objectid);
4597                         if (ret < 0) {
4598                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4599                                         ret);
4600                                 break;
4601                         }
4602                 }
4603
4604                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4605                         ret = btrfs_uuid_tree_add(trans,
4606                                                   root_item.received_uuid,
4607                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4608                                                   key.objectid);
4609                         if (ret < 0) {
4610                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4611                                         ret);
4612                                 break;
4613                         }
4614                 }
4615
4616 skip:
4617                 btrfs_release_path(path);
4618                 if (trans) {
4619                         ret = btrfs_end_transaction(trans);
4620                         trans = NULL;
4621                         if (ret)
4622                                 break;
4623                 }
4624
4625                 if (key.offset < (u64)-1) {
4626                         key.offset++;
4627                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4628                         key.offset = 0;
4629                         key.type = BTRFS_ROOT_ITEM_KEY;
4630                 } else if (key.objectid < (u64)-1) {
4631                         key.offset = 0;
4632                         key.type = BTRFS_ROOT_ITEM_KEY;
4633                         key.objectid++;
4634                 } else {
4635                         break;
4636                 }
4637                 cond_resched();
4638         }
4639
4640 out:
4641         btrfs_free_path(path);
4642         if (trans && !IS_ERR(trans))
4643                 btrfs_end_transaction(trans);
4644         if (ret)
4645                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4646         else if (!closing)
4647                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4648         up(&fs_info->uuid_tree_rescan_sem);
4649         return 0;
4650 }
4651
4652 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4653 {
4654         struct btrfs_trans_handle *trans;
4655         struct btrfs_root *tree_root = fs_info->tree_root;
4656         struct btrfs_root *uuid_root;
4657         struct task_struct *task;
4658         int ret;
4659
4660         /*
4661          * 1 - root node
4662          * 1 - root item
4663          */
4664         trans = btrfs_start_transaction(tree_root, 2);
4665         if (IS_ERR(trans))
4666                 return PTR_ERR(trans);
4667
4668         uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4669         if (IS_ERR(uuid_root)) {
4670                 ret = PTR_ERR(uuid_root);
4671                 btrfs_abort_transaction(trans, ret);
4672                 btrfs_end_transaction(trans);
4673                 return ret;
4674         }
4675
4676         fs_info->uuid_root = uuid_root;
4677
4678         ret = btrfs_commit_transaction(trans);
4679         if (ret)
4680                 return ret;
4681
4682         down(&fs_info->uuid_tree_rescan_sem);
4683         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4684         if (IS_ERR(task)) {
4685                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4686                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4687                 up(&fs_info->uuid_tree_rescan_sem);
4688                 return PTR_ERR(task);
4689         }
4690
4691         return 0;
4692 }
4693
4694 /*
4695  * shrinking a device means finding all of the device extents past
4696  * the new size, and then following the back refs to the chunks.
4697  * The chunk relocation code actually frees the device extent
4698  */
4699 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4700 {
4701         struct btrfs_fs_info *fs_info = device->fs_info;
4702         struct btrfs_root *root = fs_info->dev_root;
4703         struct btrfs_trans_handle *trans;
4704         struct btrfs_dev_extent *dev_extent = NULL;
4705         struct btrfs_path *path;
4706         u64 length;
4707         u64 chunk_offset;
4708         int ret;
4709         int slot;
4710         int failed = 0;
4711         bool retried = false;
4712         struct extent_buffer *l;
4713         struct btrfs_key key;
4714         struct btrfs_super_block *super_copy = fs_info->super_copy;
4715         u64 old_total = btrfs_super_total_bytes(super_copy);
4716         u64 old_size = btrfs_device_get_total_bytes(device);
4717         u64 diff;
4718         u64 start;
4719
4720         new_size = round_down(new_size, fs_info->sectorsize);
4721         start = new_size;
4722         diff = round_down(old_size - new_size, fs_info->sectorsize);
4723
4724         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4725                 return -EINVAL;
4726
4727         path = btrfs_alloc_path();
4728         if (!path)
4729                 return -ENOMEM;
4730
4731         path->reada = READA_BACK;
4732
4733         trans = btrfs_start_transaction(root, 0);
4734         if (IS_ERR(trans)) {
4735                 btrfs_free_path(path);
4736                 return PTR_ERR(trans);
4737         }
4738
4739         mutex_lock(&fs_info->chunk_mutex);
4740
4741         btrfs_device_set_total_bytes(device, new_size);
4742         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4743                 device->fs_devices->total_rw_bytes -= diff;
4744                 atomic64_sub(diff, &fs_info->free_chunk_space);
4745         }
4746
4747         /*
4748          * Once the device's size has been set to the new size, ensure all
4749          * in-memory chunks are synced to disk so that the loop below sees them
4750          * and relocates them accordingly.
4751          */
4752         if (contains_pending_extent(device, &start, diff)) {
4753                 mutex_unlock(&fs_info->chunk_mutex);
4754                 ret = btrfs_commit_transaction(trans);
4755                 if (ret)
4756                         goto done;
4757         } else {
4758                 mutex_unlock(&fs_info->chunk_mutex);
4759                 btrfs_end_transaction(trans);
4760         }
4761
4762 again:
4763         key.objectid = device->devid;
4764         key.offset = (u64)-1;
4765         key.type = BTRFS_DEV_EXTENT_KEY;
4766
4767         do {
4768                 mutex_lock(&fs_info->reclaim_bgs_lock);
4769                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4770                 if (ret < 0) {
4771                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4772                         goto done;
4773                 }
4774
4775                 ret = btrfs_previous_item(root, path, 0, key.type);
4776                 if (ret) {
4777                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4778                         if (ret < 0)
4779                                 goto done;
4780                         ret = 0;
4781                         btrfs_release_path(path);
4782                         break;
4783                 }
4784
4785                 l = path->nodes[0];
4786                 slot = path->slots[0];
4787                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4788
4789                 if (key.objectid != device->devid) {
4790                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4791                         btrfs_release_path(path);
4792                         break;
4793                 }
4794
4795                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4796                 length = btrfs_dev_extent_length(l, dev_extent);
4797
4798                 if (key.offset + length <= new_size) {
4799                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4800                         btrfs_release_path(path);
4801                         break;
4802                 }
4803
4804                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4805                 btrfs_release_path(path);
4806
4807                 /*
4808                  * We may be relocating the only data chunk we have,
4809                  * which could potentially end up with losing data's
4810                  * raid profile, so lets allocate an empty one in
4811                  * advance.
4812                  */
4813                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4814                 if (ret < 0) {
4815                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4816                         goto done;
4817                 }
4818
4819                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4820                 mutex_unlock(&fs_info->reclaim_bgs_lock);
4821                 if (ret == -ENOSPC) {
4822                         failed++;
4823                 } else if (ret) {
4824                         if (ret == -ETXTBSY) {
4825                                 btrfs_warn(fs_info,
4826                    "could not shrink block group %llu due to active swapfile",
4827                                            chunk_offset);
4828                         }
4829                         goto done;
4830                 }
4831         } while (key.offset-- > 0);
4832
4833         if (failed && !retried) {
4834                 failed = 0;
4835                 retried = true;
4836                 goto again;
4837         } else if (failed && retried) {
4838                 ret = -ENOSPC;
4839                 goto done;
4840         }
4841
4842         /* Shrinking succeeded, else we would be at "done". */
4843         trans = btrfs_start_transaction(root, 0);
4844         if (IS_ERR(trans)) {
4845                 ret = PTR_ERR(trans);
4846                 goto done;
4847         }
4848
4849         mutex_lock(&fs_info->chunk_mutex);
4850         /* Clear all state bits beyond the shrunk device size */
4851         clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4852                           CHUNK_STATE_MASK);
4853
4854         btrfs_device_set_disk_total_bytes(device, new_size);
4855         if (list_empty(&device->post_commit_list))
4856                 list_add_tail(&device->post_commit_list,
4857                               &trans->transaction->dev_update_list);
4858
4859         WARN_ON(diff > old_total);
4860         btrfs_set_super_total_bytes(super_copy,
4861                         round_down(old_total - diff, fs_info->sectorsize));
4862         mutex_unlock(&fs_info->chunk_mutex);
4863
4864         /* Now btrfs_update_device() will change the on-disk size. */
4865         ret = btrfs_update_device(trans, device);
4866         if (ret < 0) {
4867                 btrfs_abort_transaction(trans, ret);
4868                 btrfs_end_transaction(trans);
4869         } else {
4870                 ret = btrfs_commit_transaction(trans);
4871         }
4872 done:
4873         btrfs_free_path(path);
4874         if (ret) {
4875                 mutex_lock(&fs_info->chunk_mutex);
4876                 btrfs_device_set_total_bytes(device, old_size);
4877                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4878                         device->fs_devices->total_rw_bytes += diff;
4879                 atomic64_add(diff, &fs_info->free_chunk_space);
4880                 mutex_unlock(&fs_info->chunk_mutex);
4881         }
4882         return ret;
4883 }
4884
4885 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4886                            struct btrfs_key *key,
4887                            struct btrfs_chunk *chunk, int item_size)
4888 {
4889         struct btrfs_super_block *super_copy = fs_info->super_copy;
4890         struct btrfs_disk_key disk_key;
4891         u32 array_size;
4892         u8 *ptr;
4893
4894         lockdep_assert_held(&fs_info->chunk_mutex);
4895
4896         array_size = btrfs_super_sys_array_size(super_copy);
4897         if (array_size + item_size + sizeof(disk_key)
4898                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
4899                 return -EFBIG;
4900
4901         ptr = super_copy->sys_chunk_array + array_size;
4902         btrfs_cpu_key_to_disk(&disk_key, key);
4903         memcpy(ptr, &disk_key, sizeof(disk_key));
4904         ptr += sizeof(disk_key);
4905         memcpy(ptr, chunk, item_size);
4906         item_size += sizeof(disk_key);
4907         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4908
4909         return 0;
4910 }
4911
4912 /*
4913  * sort the devices in descending order by max_avail, total_avail
4914  */
4915 static int btrfs_cmp_device_info(const void *a, const void *b)
4916 {
4917         const struct btrfs_device_info *di_a = a;
4918         const struct btrfs_device_info *di_b = b;
4919
4920         if (di_a->max_avail > di_b->max_avail)
4921                 return -1;
4922         if (di_a->max_avail < di_b->max_avail)
4923                 return 1;
4924         if (di_a->total_avail > di_b->total_avail)
4925                 return -1;
4926         if (di_a->total_avail < di_b->total_avail)
4927                 return 1;
4928         return 0;
4929 }
4930
4931 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4932 {
4933         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4934                 return;
4935
4936         btrfs_set_fs_incompat(info, RAID56);
4937 }
4938
4939 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4940 {
4941         if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4942                 return;
4943
4944         btrfs_set_fs_incompat(info, RAID1C34);
4945 }
4946
4947 /*
4948  * Structure used internally for __btrfs_alloc_chunk() function.
4949  * Wraps needed parameters.
4950  */
4951 struct alloc_chunk_ctl {
4952         u64 start;
4953         u64 type;
4954         /* Total number of stripes to allocate */
4955         int num_stripes;
4956         /* sub_stripes info for map */
4957         int sub_stripes;
4958         /* Stripes per device */
4959         int dev_stripes;
4960         /* Maximum number of devices to use */
4961         int devs_max;
4962         /* Minimum number of devices to use */
4963         int devs_min;
4964         /* ndevs has to be a multiple of this */
4965         int devs_increment;
4966         /* Number of copies */
4967         int ncopies;
4968         /* Number of stripes worth of bytes to store parity information */
4969         int nparity;
4970         u64 max_stripe_size;
4971         u64 max_chunk_size;
4972         u64 dev_extent_min;
4973         u64 stripe_size;
4974         u64 chunk_size;
4975         int ndevs;
4976 };
4977
4978 static void init_alloc_chunk_ctl_policy_regular(
4979                                 struct btrfs_fs_devices *fs_devices,
4980                                 struct alloc_chunk_ctl *ctl)
4981 {
4982         u64 type = ctl->type;
4983
4984         if (type & BTRFS_BLOCK_GROUP_DATA) {
4985                 ctl->max_stripe_size = SZ_1G;
4986                 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4987         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4988                 /* For larger filesystems, use larger metadata chunks */
4989                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4990                         ctl->max_stripe_size = SZ_1G;
4991                 else
4992                         ctl->max_stripe_size = SZ_256M;
4993                 ctl->max_chunk_size = ctl->max_stripe_size;
4994         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4995                 ctl->max_stripe_size = SZ_32M;
4996                 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4997                 ctl->devs_max = min_t(int, ctl->devs_max,
4998                                       BTRFS_MAX_DEVS_SYS_CHUNK);
4999         } else {
5000                 BUG();
5001         }
5002
5003         /* We don't want a chunk larger than 10% of writable space */
5004         ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5005                                   ctl->max_chunk_size);
5006         ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5007 }
5008
5009 static void init_alloc_chunk_ctl_policy_zoned(
5010                                       struct btrfs_fs_devices *fs_devices,
5011                                       struct alloc_chunk_ctl *ctl)
5012 {
5013         u64 zone_size = fs_devices->fs_info->zone_size;
5014         u64 limit;
5015         int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5016         int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5017         u64 min_chunk_size = min_data_stripes * zone_size;
5018         u64 type = ctl->type;
5019
5020         ctl->max_stripe_size = zone_size;
5021         if (type & BTRFS_BLOCK_GROUP_DATA) {
5022                 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5023                                                  zone_size);
5024         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5025                 ctl->max_chunk_size = ctl->max_stripe_size;
5026         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5027                 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5028                 ctl->devs_max = min_t(int, ctl->devs_max,
5029                                       BTRFS_MAX_DEVS_SYS_CHUNK);
5030         } else {
5031                 BUG();
5032         }
5033
5034         /* We don't want a chunk larger than 10% of writable space */
5035         limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5036                                zone_size),
5037                     min_chunk_size);
5038         ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5039         ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5040 }
5041
5042 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5043                                  struct alloc_chunk_ctl *ctl)
5044 {
5045         int index = btrfs_bg_flags_to_raid_index(ctl->type);
5046
5047         ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5048         ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5049         ctl->devs_max = btrfs_raid_array[index].devs_max;
5050         if (!ctl->devs_max)
5051                 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5052         ctl->devs_min = btrfs_raid_array[index].devs_min;
5053         ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5054         ctl->ncopies = btrfs_raid_array[index].ncopies;
5055         ctl->nparity = btrfs_raid_array[index].nparity;
5056         ctl->ndevs = 0;
5057
5058         switch (fs_devices->chunk_alloc_policy) {
5059         case BTRFS_CHUNK_ALLOC_REGULAR:
5060                 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5061                 break;
5062         case BTRFS_CHUNK_ALLOC_ZONED:
5063                 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5064                 break;
5065         default:
5066                 BUG();
5067         }
5068 }
5069
5070 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5071                               struct alloc_chunk_ctl *ctl,
5072                               struct btrfs_device_info *devices_info)
5073 {
5074         struct btrfs_fs_info *info = fs_devices->fs_info;
5075         struct btrfs_device *device;
5076         u64 total_avail;
5077         u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5078         int ret;
5079         int ndevs = 0;
5080         u64 max_avail;
5081         u64 dev_offset;
5082
5083         /*
5084          * in the first pass through the devices list, we gather information
5085          * about the available holes on each device.
5086          */
5087         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5088                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5089                         WARN(1, KERN_ERR
5090                                "BTRFS: read-only device in alloc_list\n");
5091                         continue;
5092                 }
5093
5094                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5095                                         &device->dev_state) ||
5096                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5097                         continue;
5098
5099                 if (device->total_bytes > device->bytes_used)
5100                         total_avail = device->total_bytes - device->bytes_used;
5101                 else
5102                         total_avail = 0;
5103
5104                 /* If there is no space on this device, skip it. */
5105                 if (total_avail < ctl->dev_extent_min)
5106                         continue;
5107
5108                 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5109                                            &max_avail);
5110                 if (ret && ret != -ENOSPC)
5111                         return ret;
5112
5113                 if (ret == 0)
5114                         max_avail = dev_extent_want;
5115
5116                 if (max_avail < ctl->dev_extent_min) {
5117                         if (btrfs_test_opt(info, ENOSPC_DEBUG))
5118                                 btrfs_debug(info,
5119                         "%s: devid %llu has no free space, have=%llu want=%llu",
5120                                             __func__, device->devid, max_avail,
5121                                             ctl->dev_extent_min);
5122                         continue;
5123                 }
5124
5125                 if (ndevs == fs_devices->rw_devices) {
5126                         WARN(1, "%s: found more than %llu devices\n",
5127                              __func__, fs_devices->rw_devices);
5128                         break;
5129                 }
5130                 devices_info[ndevs].dev_offset = dev_offset;
5131                 devices_info[ndevs].max_avail = max_avail;
5132                 devices_info[ndevs].total_avail = total_avail;
5133                 devices_info[ndevs].dev = device;
5134                 ++ndevs;
5135         }
5136         ctl->ndevs = ndevs;
5137
5138         /*
5139          * now sort the devices by hole size / available space
5140          */
5141         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5142              btrfs_cmp_device_info, NULL);
5143
5144         return 0;
5145 }
5146
5147 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5148                                       struct btrfs_device_info *devices_info)
5149 {
5150         /* Number of stripes that count for block group size */
5151         int data_stripes;
5152
5153         /*
5154          * The primary goal is to maximize the number of stripes, so use as
5155          * many devices as possible, even if the stripes are not maximum sized.
5156          *
5157          * The DUP profile stores more than one stripe per device, the
5158          * max_avail is the total size so we have to adjust.
5159          */
5160         ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5161                                    ctl->dev_stripes);
5162         ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5163
5164         /* This will have to be fixed for RAID1 and RAID10 over more drives */
5165         data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5166
5167         /*
5168          * Use the number of data stripes to figure out how big this chunk is
5169          * really going to be in terms of logical address space, and compare
5170          * that answer with the max chunk size. If it's higher, we try to
5171          * reduce stripe_size.
5172          */
5173         if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5174                 /*
5175                  * Reduce stripe_size, round it up to a 16MB boundary again and
5176                  * then use it, unless it ends up being even bigger than the
5177                  * previous value we had already.
5178                  */
5179                 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5180                                                         data_stripes), SZ_16M),
5181                                        ctl->stripe_size);
5182         }
5183
5184         /* Align to BTRFS_STRIPE_LEN */
5185         ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5186         ctl->chunk_size = ctl->stripe_size * data_stripes;
5187
5188         return 0;
5189 }
5190
5191 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5192                                     struct btrfs_device_info *devices_info)
5193 {
5194         u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5195         /* Number of stripes that count for block group size */
5196         int data_stripes;
5197
5198         /*
5199          * It should hold because:
5200          *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5201          */
5202         ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5203
5204         ctl->stripe_size = zone_size;
5205         ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5206         data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5207
5208         /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5209         if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5210                 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5211                                              ctl->stripe_size) + ctl->nparity,
5212                                      ctl->dev_stripes);
5213                 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5214                 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5215                 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5216         }
5217
5218         ctl->chunk_size = ctl->stripe_size * data_stripes;
5219
5220         return 0;
5221 }
5222
5223 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5224                               struct alloc_chunk_ctl *ctl,
5225                               struct btrfs_device_info *devices_info)
5226 {
5227         struct btrfs_fs_info *info = fs_devices->fs_info;
5228
5229         /*
5230          * Round down to number of usable stripes, devs_increment can be any
5231          * number so we can't use round_down() that requires power of 2, while
5232          * rounddown is safe.
5233          */
5234         ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5235
5236         if (ctl->ndevs < ctl->devs_min) {
5237                 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5238                         btrfs_debug(info,
5239         "%s: not enough devices with free space: have=%d minimum required=%d",
5240                                     __func__, ctl->ndevs, ctl->devs_min);
5241                 }
5242                 return -ENOSPC;
5243         }
5244
5245         ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5246
5247         switch (fs_devices->chunk_alloc_policy) {
5248         case BTRFS_CHUNK_ALLOC_REGULAR:
5249                 return decide_stripe_size_regular(ctl, devices_info);
5250         case BTRFS_CHUNK_ALLOC_ZONED:
5251                 return decide_stripe_size_zoned(ctl, devices_info);
5252         default:
5253                 BUG();
5254         }
5255 }
5256
5257 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5258                         struct alloc_chunk_ctl *ctl,
5259                         struct btrfs_device_info *devices_info)
5260 {
5261         struct btrfs_fs_info *info = trans->fs_info;
5262         struct map_lookup *map = NULL;
5263         struct extent_map_tree *em_tree;
5264         struct btrfs_block_group *block_group;
5265         struct extent_map *em;
5266         u64 start = ctl->start;
5267         u64 type = ctl->type;
5268         int ret;
5269         int i;
5270         int j;
5271
5272         map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5273         if (!map)
5274                 return ERR_PTR(-ENOMEM);
5275         map->num_stripes = ctl->num_stripes;
5276
5277         for (i = 0; i < ctl->ndevs; ++i) {
5278                 for (j = 0; j < ctl->dev_stripes; ++j) {
5279                         int s = i * ctl->dev_stripes + j;
5280                         map->stripes[s].dev = devices_info[i].dev;
5281                         map->stripes[s].physical = devices_info[i].dev_offset +
5282                                                    j * ctl->stripe_size;
5283                 }
5284         }
5285         map->stripe_len = BTRFS_STRIPE_LEN;
5286         map->io_align = BTRFS_STRIPE_LEN;
5287         map->io_width = BTRFS_STRIPE_LEN;
5288         map->type = type;
5289         map->sub_stripes = ctl->sub_stripes;
5290
5291         trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5292
5293         em = alloc_extent_map();
5294         if (!em) {
5295                 kfree(map);
5296                 return ERR_PTR(-ENOMEM);
5297         }
5298         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5299         em->map_lookup = map;
5300         em->start = start;
5301         em->len = ctl->chunk_size;
5302         em->block_start = 0;
5303         em->block_len = em->len;
5304         em->orig_block_len = ctl->stripe_size;
5305
5306         em_tree = &info->mapping_tree;
5307         write_lock(&em_tree->lock);
5308         ret = add_extent_mapping(em_tree, em, 0);
5309         if (ret) {
5310                 write_unlock(&em_tree->lock);
5311                 free_extent_map(em);
5312                 return ERR_PTR(ret);
5313         }
5314         write_unlock(&em_tree->lock);
5315
5316         block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5317         if (IS_ERR(block_group))
5318                 goto error_del_extent;
5319
5320         for (i = 0; i < map->num_stripes; i++) {
5321                 struct btrfs_device *dev = map->stripes[i].dev;
5322
5323                 btrfs_device_set_bytes_used(dev,
5324                                             dev->bytes_used + ctl->stripe_size);
5325                 if (list_empty(&dev->post_commit_list))
5326                         list_add_tail(&dev->post_commit_list,
5327                                       &trans->transaction->dev_update_list);
5328         }
5329
5330         atomic64_sub(ctl->stripe_size * map->num_stripes,
5331                      &info->free_chunk_space);
5332
5333         free_extent_map(em);
5334         check_raid56_incompat_flag(info, type);
5335         check_raid1c34_incompat_flag(info, type);
5336
5337         return block_group;
5338
5339 error_del_extent:
5340         write_lock(&em_tree->lock);
5341         remove_extent_mapping(em_tree, em);
5342         write_unlock(&em_tree->lock);
5343
5344         /* One for our allocation */
5345         free_extent_map(em);
5346         /* One for the tree reference */
5347         free_extent_map(em);
5348
5349         return block_group;
5350 }
5351
5352 struct btrfs_block_group *btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5353                                             u64 type)
5354 {
5355         struct btrfs_fs_info *info = trans->fs_info;
5356         struct btrfs_fs_devices *fs_devices = info->fs_devices;
5357         struct btrfs_device_info *devices_info = NULL;
5358         struct alloc_chunk_ctl ctl;
5359         struct btrfs_block_group *block_group;
5360         int ret;
5361
5362         lockdep_assert_held(&info->chunk_mutex);
5363
5364         if (!alloc_profile_is_valid(type, 0)) {
5365                 ASSERT(0);
5366                 return ERR_PTR(-EINVAL);
5367         }
5368
5369         if (list_empty(&fs_devices->alloc_list)) {
5370                 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5371                         btrfs_debug(info, "%s: no writable device", __func__);
5372                 return ERR_PTR(-ENOSPC);
5373         }
5374
5375         if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5376                 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5377                 ASSERT(0);
5378                 return ERR_PTR(-EINVAL);
5379         }
5380
5381         ctl.start = find_next_chunk(info);
5382         ctl.type = type;
5383         init_alloc_chunk_ctl(fs_devices, &ctl);
5384
5385         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5386                                GFP_NOFS);
5387         if (!devices_info)
5388                 return ERR_PTR(-ENOMEM);
5389
5390         ret = gather_device_info(fs_devices, &ctl, devices_info);
5391         if (ret < 0) {
5392                 block_group = ERR_PTR(ret);
5393                 goto out;
5394         }
5395
5396         ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5397         if (ret < 0) {
5398                 block_group = ERR_PTR(ret);
5399                 goto out;
5400         }
5401
5402         block_group = create_chunk(trans, &ctl, devices_info);
5403
5404 out:
5405         kfree(devices_info);
5406         return block_group;
5407 }
5408
5409 /*
5410  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5411  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5412  * chunks.
5413  *
5414  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5415  * phases.
5416  */
5417 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5418                                      struct btrfs_block_group *bg)
5419 {
5420         struct btrfs_fs_info *fs_info = trans->fs_info;
5421         struct btrfs_root *extent_root = fs_info->extent_root;
5422         struct btrfs_root *chunk_root = fs_info->chunk_root;
5423         struct btrfs_key key;
5424         struct btrfs_chunk *chunk;
5425         struct btrfs_stripe *stripe;
5426         struct extent_map *em;
5427         struct map_lookup *map;
5428         size_t item_size;
5429         int i;
5430         int ret;
5431
5432         /*
5433          * We take the chunk_mutex for 2 reasons:
5434          *
5435          * 1) Updates and insertions in the chunk btree must be done while holding
5436          *    the chunk_mutex, as well as updating the system chunk array in the
5437          *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5438          *    details;
5439          *
5440          * 2) To prevent races with the final phase of a device replace operation
5441          *    that replaces the device object associated with the map's stripes,
5442          *    because the device object's id can change at any time during that
5443          *    final phase of the device replace operation
5444          *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5445          *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5446          *    which would cause a failure when updating the device item, which does
5447          *    not exists, or persisting a stripe of the chunk item with such ID.
5448          *    Here we can't use the device_list_mutex because our caller already
5449          *    has locked the chunk_mutex, and the final phase of device replace
5450          *    acquires both mutexes - first the device_list_mutex and then the
5451          *    chunk_mutex. Using any of those two mutexes protects us from a
5452          *    concurrent device replace.
5453          */
5454         lockdep_assert_held(&fs_info->chunk_mutex);
5455
5456         em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5457         if (IS_ERR(em)) {
5458                 ret = PTR_ERR(em);
5459                 btrfs_abort_transaction(trans, ret);
5460                 return ret;
5461         }
5462
5463         map = em->map_lookup;
5464         item_size = btrfs_chunk_item_size(map->num_stripes);
5465
5466         chunk = kzalloc(item_size, GFP_NOFS);
5467         if (!chunk) {
5468                 ret = -ENOMEM;
5469                 btrfs_abort_transaction(trans, ret);
5470                 goto out;
5471         }
5472
5473         for (i = 0; i < map->num_stripes; i++) {
5474                 struct btrfs_device *device = map->stripes[i].dev;
5475
5476                 ret = btrfs_update_device(trans, device);
5477                 if (ret)
5478                         goto out;
5479         }
5480
5481         stripe = &chunk->stripe;
5482         for (i = 0; i < map->num_stripes; i++) {
5483                 struct btrfs_device *device = map->stripes[i].dev;
5484                 const u64 dev_offset = map->stripes[i].physical;
5485
5486                 btrfs_set_stack_stripe_devid(stripe, device->devid);
5487                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5488                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5489                 stripe++;
5490         }
5491
5492         btrfs_set_stack_chunk_length(chunk, bg->length);
5493         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5494         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5495         btrfs_set_stack_chunk_type(chunk, map->type);
5496         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5497         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5498         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5499         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5500         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5501
5502         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5503         key.type = BTRFS_CHUNK_ITEM_KEY;
5504         key.offset = bg->start;
5505
5506         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5507         if (ret)
5508                 goto out;
5509
5510         bg->chunk_item_inserted = 1;
5511
5512         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5513                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5514                 if (ret)
5515                         goto out;
5516         }
5517
5518 out:
5519         kfree(chunk);
5520         free_extent_map(em);
5521         return ret;
5522 }
5523
5524 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5525 {
5526         struct btrfs_fs_info *fs_info = trans->fs_info;
5527         u64 alloc_profile;
5528         struct btrfs_block_group *meta_bg;
5529         struct btrfs_block_group *sys_bg;
5530
5531         /*
5532          * When adding a new device for sprouting, the seed device is read-only
5533          * so we must first allocate a metadata and a system chunk. But before
5534          * adding the block group items to the extent, device and chunk btrees,
5535          * we must first:
5536          *
5537          * 1) Create both chunks without doing any changes to the btrees, as
5538          *    otherwise we would get -ENOSPC since the block groups from the
5539          *    seed device are read-only;
5540          *
5541          * 2) Add the device item for the new sprout device - finishing the setup
5542          *    of a new block group requires updating the device item in the chunk
5543          *    btree, so it must exist when we attempt to do it. The previous step
5544          *    ensures this does not fail with -ENOSPC.
5545          *
5546          * After that we can add the block group items to their btrees:
5547          * update existing device item in the chunk btree, add a new block group
5548          * item to the extent btree, add a new chunk item to the chunk btree and
5549          * finally add the new device extent items to the devices btree.
5550          */
5551
5552         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5553         meta_bg = btrfs_alloc_chunk(trans, alloc_profile);
5554         if (IS_ERR(meta_bg))
5555                 return PTR_ERR(meta_bg);
5556
5557         alloc_profile = btrfs_system_alloc_profile(fs_info);
5558         sys_bg = btrfs_alloc_chunk(trans, alloc_profile);
5559         if (IS_ERR(sys_bg))
5560                 return PTR_ERR(sys_bg);
5561
5562         return 0;
5563 }
5564
5565 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5566 {
5567         const int index = btrfs_bg_flags_to_raid_index(map->type);
5568
5569         return btrfs_raid_array[index].tolerated_failures;
5570 }
5571
5572 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5573 {
5574         struct extent_map *em;
5575         struct map_lookup *map;
5576         int readonly = 0;
5577         int miss_ndevs = 0;
5578         int i;
5579
5580         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5581         if (IS_ERR(em))
5582                 return 1;
5583
5584         map = em->map_lookup;
5585         for (i = 0; i < map->num_stripes; i++) {
5586                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5587                                         &map->stripes[i].dev->dev_state)) {
5588                         miss_ndevs++;
5589                         continue;
5590                 }
5591                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5592                                         &map->stripes[i].dev->dev_state)) {
5593                         readonly = 1;
5594                         goto end;
5595                 }
5596         }
5597
5598         /*
5599          * If the number of missing devices is larger than max errors,
5600          * we can not write the data into that chunk successfully, so
5601          * set it readonly.
5602          */
5603         if (miss_ndevs > btrfs_chunk_max_errors(map))
5604                 readonly = 1;
5605 end:
5606         free_extent_map(em);
5607         return readonly;
5608 }
5609
5610 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5611 {
5612         struct extent_map *em;
5613
5614         while (1) {
5615                 write_lock(&tree->lock);
5616                 em = lookup_extent_mapping(tree, 0, (u64)-1);
5617                 if (em)
5618                         remove_extent_mapping(tree, em);
5619                 write_unlock(&tree->lock);
5620                 if (!em)
5621                         break;
5622                 /* once for us */
5623                 free_extent_map(em);
5624                 /* once for the tree */
5625                 free_extent_map(em);
5626         }
5627 }
5628
5629 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5630 {
5631         struct extent_map *em;
5632         struct map_lookup *map;
5633         int ret;
5634
5635         em = btrfs_get_chunk_map(fs_info, logical, len);
5636         if (IS_ERR(em))
5637                 /*
5638                  * We could return errors for these cases, but that could get
5639                  * ugly and we'd probably do the same thing which is just not do
5640                  * anything else and exit, so return 1 so the callers don't try
5641                  * to use other copies.
5642                  */
5643                 return 1;
5644
5645         map = em->map_lookup;
5646         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5647                 ret = map->num_stripes;
5648         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5649                 ret = map->sub_stripes;
5650         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5651                 ret = 2;
5652         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5653                 /*
5654                  * There could be two corrupted data stripes, we need
5655                  * to loop retry in order to rebuild the correct data.
5656                  *
5657                  * Fail a stripe at a time on every retry except the
5658                  * stripe under reconstruction.
5659                  */
5660                 ret = map->num_stripes;
5661         else
5662                 ret = 1;
5663         free_extent_map(em);
5664
5665         down_read(&fs_info->dev_replace.rwsem);
5666         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5667             fs_info->dev_replace.tgtdev)
5668                 ret++;
5669         up_read(&fs_info->dev_replace.rwsem);
5670
5671         return ret;
5672 }
5673
5674 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5675                                     u64 logical)
5676 {
5677         struct extent_map *em;
5678         struct map_lookup *map;
5679         unsigned long len = fs_info->sectorsize;
5680
5681         em = btrfs_get_chunk_map(fs_info, logical, len);
5682
5683         if (!WARN_ON(IS_ERR(em))) {
5684                 map = em->map_lookup;
5685                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5686                         len = map->stripe_len * nr_data_stripes(map);
5687                 free_extent_map(em);
5688         }
5689         return len;
5690 }
5691
5692 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5693 {
5694         struct extent_map *em;
5695         struct map_lookup *map;
5696         int ret = 0;
5697
5698         em = btrfs_get_chunk_map(fs_info, logical, len);
5699
5700         if(!WARN_ON(IS_ERR(em))) {
5701                 map = em->map_lookup;
5702                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5703                         ret = 1;
5704                 free_extent_map(em);
5705         }
5706         return ret;
5707 }
5708
5709 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5710                             struct map_lookup *map, int first,
5711                             int dev_replace_is_ongoing)
5712 {
5713         int i;
5714         int num_stripes;
5715         int preferred_mirror;
5716         int tolerance;
5717         struct btrfs_device *srcdev;
5718
5719         ASSERT((map->type &
5720                  (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5721
5722         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5723                 num_stripes = map->sub_stripes;
5724         else
5725                 num_stripes = map->num_stripes;
5726
5727         switch (fs_info->fs_devices->read_policy) {
5728         default:
5729                 /* Shouldn't happen, just warn and use pid instead of failing */
5730                 btrfs_warn_rl(fs_info,
5731                               "unknown read_policy type %u, reset to pid",
5732                               fs_info->fs_devices->read_policy);
5733                 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5734                 fallthrough;
5735         case BTRFS_READ_POLICY_PID:
5736                 preferred_mirror = first + (current->pid % num_stripes);
5737                 break;
5738         }
5739
5740         if (dev_replace_is_ongoing &&
5741             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5742              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5743                 srcdev = fs_info->dev_replace.srcdev;
5744         else
5745                 srcdev = NULL;
5746
5747         /*
5748          * try to avoid the drive that is the source drive for a
5749          * dev-replace procedure, only choose it if no other non-missing
5750          * mirror is available
5751          */
5752         for (tolerance = 0; tolerance < 2; tolerance++) {
5753                 if (map->stripes[preferred_mirror].dev->bdev &&
5754                     (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5755                         return preferred_mirror;
5756                 for (i = first; i < first + num_stripes; i++) {
5757                         if (map->stripes[i].dev->bdev &&
5758                             (tolerance || map->stripes[i].dev != srcdev))
5759                                 return i;
5760                 }
5761         }
5762
5763         /* we couldn't find one that doesn't fail.  Just return something
5764          * and the io error handling code will clean up eventually
5765          */
5766         return preferred_mirror;
5767 }
5768
5769 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5770 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5771 {
5772         int i;
5773         int again = 1;
5774
5775         while (again) {
5776                 again = 0;
5777                 for (i = 0; i < num_stripes - 1; i++) {
5778                         /* Swap if parity is on a smaller index */
5779                         if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5780                                 swap(bbio->stripes[i], bbio->stripes[i + 1]);
5781                                 swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5782                                 again = 1;
5783                         }
5784                 }
5785         }
5786 }
5787
5788 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5789 {
5790         struct btrfs_bio *bbio = kzalloc(
5791                  /* the size of the btrfs_bio */
5792                 sizeof(struct btrfs_bio) +
5793                 /* plus the variable array for the stripes */
5794                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5795                 /* plus the variable array for the tgt dev */
5796                 sizeof(int) * (real_stripes) +
5797                 /*
5798                  * plus the raid_map, which includes both the tgt dev
5799                  * and the stripes
5800                  */
5801                 sizeof(u64) * (total_stripes),
5802                 GFP_NOFS|__GFP_NOFAIL);
5803
5804         atomic_set(&bbio->error, 0);
5805         refcount_set(&bbio->refs, 1);
5806
5807         bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5808         bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5809
5810         return bbio;
5811 }
5812
5813 void btrfs_get_bbio(struct btrfs_bio *bbio)
5814 {
5815         WARN_ON(!refcount_read(&bbio->refs));
5816         refcount_inc(&bbio->refs);
5817 }
5818
5819 void btrfs_put_bbio(struct btrfs_bio *bbio)
5820 {
5821         if (!bbio)
5822                 return;
5823         if (refcount_dec_and_test(&bbio->refs))
5824                 kfree(bbio);
5825 }
5826
5827 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5828 /*
5829  * Please note that, discard won't be sent to target device of device
5830  * replace.
5831  */
5832 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5833                                          u64 logical, u64 *length_ret,
5834                                          struct btrfs_bio **bbio_ret)
5835 {
5836         struct extent_map *em;
5837         struct map_lookup *map;
5838         struct btrfs_bio *bbio;
5839         u64 length = *length_ret;
5840         u64 offset;
5841         u64 stripe_nr;
5842         u64 stripe_nr_end;
5843         u64 stripe_end_offset;
5844         u64 stripe_cnt;
5845         u64 stripe_len;
5846         u64 stripe_offset;
5847         u64 num_stripes;
5848         u32 stripe_index;
5849         u32 factor = 0;
5850         u32 sub_stripes = 0;
5851         u64 stripes_per_dev = 0;
5852         u32 remaining_stripes = 0;
5853         u32 last_stripe = 0;
5854         int ret = 0;
5855         int i;
5856
5857         /* discard always return a bbio */
5858         ASSERT(bbio_ret);
5859
5860         em = btrfs_get_chunk_map(fs_info, logical, length);
5861         if (IS_ERR(em))
5862                 return PTR_ERR(em);
5863
5864         map = em->map_lookup;
5865         /* we don't discard raid56 yet */
5866         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5867                 ret = -EOPNOTSUPP;
5868                 goto out;
5869         }
5870
5871         offset = logical - em->start;
5872         length = min_t(u64, em->start + em->len - logical, length);
5873         *length_ret = length;
5874
5875         stripe_len = map->stripe_len;
5876         /*
5877          * stripe_nr counts the total number of stripes we have to stride
5878          * to get to this block
5879          */
5880         stripe_nr = div64_u64(offset, stripe_len);
5881
5882         /* stripe_offset is the offset of this block in its stripe */
5883         stripe_offset = offset - stripe_nr * stripe_len;
5884
5885         stripe_nr_end = round_up(offset + length, map->stripe_len);
5886         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5887         stripe_cnt = stripe_nr_end - stripe_nr;
5888         stripe_end_offset = stripe_nr_end * map->stripe_len -
5889                             (offset + length);
5890         /*
5891          * after this, stripe_nr is the number of stripes on this
5892          * device we have to walk to find the data, and stripe_index is
5893          * the number of our device in the stripe array
5894          */
5895         num_stripes = 1;
5896         stripe_index = 0;
5897         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5898                          BTRFS_BLOCK_GROUP_RAID10)) {
5899                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5900                         sub_stripes = 1;
5901                 else
5902                         sub_stripes = map->sub_stripes;
5903
5904                 factor = map->num_stripes / sub_stripes;
5905                 num_stripes = min_t(u64, map->num_stripes,
5906                                     sub_stripes * stripe_cnt);
5907                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5908                 stripe_index *= sub_stripes;
5909                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5910                                               &remaining_stripes);
5911                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5912                 last_stripe *= sub_stripes;
5913         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5914                                 BTRFS_BLOCK_GROUP_DUP)) {
5915                 num_stripes = map->num_stripes;
5916         } else {
5917                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5918                                         &stripe_index);
5919         }
5920
5921         bbio = alloc_btrfs_bio(num_stripes, 0);
5922         if (!bbio) {
5923                 ret = -ENOMEM;
5924                 goto out;
5925         }
5926
5927         for (i = 0; i < num_stripes; i++) {
5928                 bbio->stripes[i].physical =
5929                         map->stripes[stripe_index].physical +
5930                         stripe_offset + stripe_nr * map->stripe_len;
5931                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5932
5933                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5934                                  BTRFS_BLOCK_GROUP_RAID10)) {
5935                         bbio->stripes[i].length = stripes_per_dev *
5936                                 map->stripe_len;
5937
5938                         if (i / sub_stripes < remaining_stripes)
5939                                 bbio->stripes[i].length +=
5940                                         map->stripe_len;
5941
5942                         /*
5943                          * Special for the first stripe and
5944                          * the last stripe:
5945                          *
5946                          * |-------|...|-------|
5947                          *     |----------|
5948                          *    off     end_off
5949                          */
5950                         if (i < sub_stripes)
5951                                 bbio->stripes[i].length -=
5952                                         stripe_offset;
5953
5954                         if (stripe_index >= last_stripe &&
5955                             stripe_index <= (last_stripe +
5956                                              sub_stripes - 1))
5957                                 bbio->stripes[i].length -=
5958                                         stripe_end_offset;
5959
5960                         if (i == sub_stripes - 1)
5961                                 stripe_offset = 0;
5962                 } else {
5963                         bbio->stripes[i].length = length;
5964                 }
5965
5966                 stripe_index++;
5967                 if (stripe_index == map->num_stripes) {
5968                         stripe_index = 0;
5969                         stripe_nr++;
5970                 }
5971         }
5972
5973         *bbio_ret = bbio;
5974         bbio->map_type = map->type;
5975         bbio->num_stripes = num_stripes;
5976 out:
5977         free_extent_map(em);
5978         return ret;
5979 }
5980
5981 /*
5982  * In dev-replace case, for repair case (that's the only case where the mirror
5983  * is selected explicitly when calling btrfs_map_block), blocks left of the
5984  * left cursor can also be read from the target drive.
5985  *
5986  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5987  * array of stripes.
5988  * For READ, it also needs to be supported using the same mirror number.
5989  *
5990  * If the requested block is not left of the left cursor, EIO is returned. This
5991  * can happen because btrfs_num_copies() returns one more in the dev-replace
5992  * case.
5993  */
5994 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5995                                          u64 logical, u64 length,
5996                                          u64 srcdev_devid, int *mirror_num,
5997                                          u64 *physical)
5998 {
5999         struct btrfs_bio *bbio = NULL;
6000         int num_stripes;
6001         int index_srcdev = 0;
6002         int found = 0;
6003         u64 physical_of_found = 0;
6004         int i;
6005         int ret = 0;
6006
6007         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6008                                 logical, &length, &bbio, 0, 0);
6009         if (ret) {
6010                 ASSERT(bbio == NULL);
6011                 return ret;
6012         }
6013
6014         num_stripes = bbio->num_stripes;
6015         if (*mirror_num > num_stripes) {
6016                 /*
6017                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6018                  * that means that the requested area is not left of the left
6019                  * cursor
6020                  */
6021                 btrfs_put_bbio(bbio);
6022                 return -EIO;
6023         }
6024
6025         /*
6026          * process the rest of the function using the mirror_num of the source
6027          * drive. Therefore look it up first.  At the end, patch the device
6028          * pointer to the one of the target drive.
6029          */
6030         for (i = 0; i < num_stripes; i++) {
6031                 if (bbio->stripes[i].dev->devid != srcdev_devid)
6032                         continue;
6033
6034                 /*
6035                  * In case of DUP, in order to keep it simple, only add the
6036                  * mirror with the lowest physical address
6037                  */
6038                 if (found &&
6039                     physical_of_found <= bbio->stripes[i].physical)
6040                         continue;
6041
6042                 index_srcdev = i;
6043                 found = 1;
6044                 physical_of_found = bbio->stripes[i].physical;
6045         }
6046
6047         btrfs_put_bbio(bbio);
6048
6049         ASSERT(found);
6050         if (!found)
6051                 return -EIO;
6052
6053         *mirror_num = index_srcdev + 1;
6054         *physical = physical_of_found;
6055         return ret;
6056 }
6057
6058 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6059 {
6060         struct btrfs_block_group *cache;
6061         bool ret;
6062
6063         /* Non zoned filesystem does not use "to_copy" flag */
6064         if (!btrfs_is_zoned(fs_info))
6065                 return false;
6066
6067         cache = btrfs_lookup_block_group(fs_info, logical);
6068
6069         spin_lock(&cache->lock);
6070         ret = cache->to_copy;
6071         spin_unlock(&cache->lock);
6072
6073         btrfs_put_block_group(cache);
6074         return ret;
6075 }
6076
6077 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6078                                       struct btrfs_bio **bbio_ret,
6079                                       struct btrfs_dev_replace *dev_replace,
6080                                       u64 logical,
6081                                       int *num_stripes_ret, int *max_errors_ret)
6082 {
6083         struct btrfs_bio *bbio = *bbio_ret;
6084         u64 srcdev_devid = dev_replace->srcdev->devid;
6085         int tgtdev_indexes = 0;
6086         int num_stripes = *num_stripes_ret;
6087         int max_errors = *max_errors_ret;
6088         int i;
6089
6090         if (op == BTRFS_MAP_WRITE) {
6091                 int index_where_to_add;
6092
6093                 /*
6094                  * A block group which have "to_copy" set will eventually
6095                  * copied by dev-replace process. We can avoid cloning IO here.
6096                  */
6097                 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6098                         return;
6099
6100                 /*
6101                  * duplicate the write operations while the dev replace
6102                  * procedure is running. Since the copying of the old disk to
6103                  * the new disk takes place at run time while the filesystem is
6104                  * mounted writable, the regular write operations to the old
6105                  * disk have to be duplicated to go to the new disk as well.
6106                  *
6107                  * Note that device->missing is handled by the caller, and that
6108                  * the write to the old disk is already set up in the stripes
6109                  * array.
6110                  */
6111                 index_where_to_add = num_stripes;
6112                 for (i = 0; i < num_stripes; i++) {
6113                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
6114                                 /* write to new disk, too */
6115                                 struct btrfs_bio_stripe *new =
6116                                         bbio->stripes + index_where_to_add;
6117                                 struct btrfs_bio_stripe *old =
6118                                         bbio->stripes + i;
6119
6120                                 new->physical = old->physical;
6121                                 new->length = old->length;
6122                                 new->dev = dev_replace->tgtdev;
6123                                 bbio->tgtdev_map[i] = index_where_to_add;
6124                                 index_where_to_add++;
6125                                 max_errors++;
6126                                 tgtdev_indexes++;
6127                         }
6128                 }
6129                 num_stripes = index_where_to_add;
6130         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6131                 int index_srcdev = 0;
6132                 int found = 0;
6133                 u64 physical_of_found = 0;
6134
6135                 /*
6136                  * During the dev-replace procedure, the target drive can also
6137                  * be used to read data in case it is needed to repair a corrupt
6138                  * block elsewhere. This is possible if the requested area is
6139                  * left of the left cursor. In this area, the target drive is a
6140                  * full copy of the source drive.
6141                  */
6142                 for (i = 0; i < num_stripes; i++) {
6143                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
6144                                 /*
6145                                  * In case of DUP, in order to keep it simple,
6146                                  * only add the mirror with the lowest physical
6147                                  * address
6148                                  */
6149                                 if (found &&
6150                                     physical_of_found <=
6151                                      bbio->stripes[i].physical)
6152                                         continue;
6153                                 index_srcdev = i;
6154                                 found = 1;
6155                                 physical_of_found = bbio->stripes[i].physical;
6156                         }
6157                 }
6158                 if (found) {
6159                         struct btrfs_bio_stripe *tgtdev_stripe =
6160                                 bbio->stripes + num_stripes;
6161
6162                         tgtdev_stripe->physical = physical_of_found;
6163                         tgtdev_stripe->length =
6164                                 bbio->stripes[index_srcdev].length;
6165                         tgtdev_stripe->dev = dev_replace->tgtdev;
6166                         bbio->tgtdev_map[index_srcdev] = num_stripes;
6167
6168                         tgtdev_indexes++;
6169                         num_stripes++;
6170                 }
6171         }
6172
6173         *num_stripes_ret = num_stripes;
6174         *max_errors_ret = max_errors;
6175         bbio->num_tgtdevs = tgtdev_indexes;
6176         *bbio_ret = bbio;
6177 }
6178
6179 static bool need_full_stripe(enum btrfs_map_op op)
6180 {
6181         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6182 }
6183
6184 /*
6185  * Calculate the geometry of a particular (address, len) tuple. This
6186  * information is used to calculate how big a particular bio can get before it
6187  * straddles a stripe.
6188  *
6189  * @fs_info: the filesystem
6190  * @em:      mapping containing the logical extent
6191  * @op:      type of operation - write or read
6192  * @logical: address that we want to figure out the geometry of
6193  * @io_geom: pointer used to return values
6194  *
6195  * Returns < 0 in case a chunk for the given logical address cannot be found,
6196  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6197  */
6198 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6199                           enum btrfs_map_op op, u64 logical,
6200                           struct btrfs_io_geometry *io_geom)
6201 {
6202         struct map_lookup *map;
6203         u64 len;
6204         u64 offset;
6205         u64 stripe_offset;
6206         u64 stripe_nr;
6207         u64 stripe_len;
6208         u64 raid56_full_stripe_start = (u64)-1;
6209         int data_stripes;
6210
6211         ASSERT(op != BTRFS_MAP_DISCARD);
6212
6213         map = em->map_lookup;
6214         /* Offset of this logical address in the chunk */
6215         offset = logical - em->start;
6216         /* Len of a stripe in a chunk */
6217         stripe_len = map->stripe_len;
6218         /* Stripe where this block falls in */
6219         stripe_nr = div64_u64(offset, stripe_len);
6220         /* Offset of stripe in the chunk */
6221         stripe_offset = stripe_nr * stripe_len;
6222         if (offset < stripe_offset) {
6223                 btrfs_crit(fs_info,
6224 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6225                         stripe_offset, offset, em->start, logical, stripe_len);
6226                 return -EINVAL;
6227         }
6228
6229         /* stripe_offset is the offset of this block in its stripe */
6230         stripe_offset = offset - stripe_offset;
6231         data_stripes = nr_data_stripes(map);
6232
6233         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6234                 u64 max_len = stripe_len - stripe_offset;
6235
6236                 /*
6237                  * In case of raid56, we need to know the stripe aligned start
6238                  */
6239                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6240                         unsigned long full_stripe_len = stripe_len * data_stripes;
6241                         raid56_full_stripe_start = offset;
6242
6243                         /*
6244                          * Allow a write of a full stripe, but make sure we
6245                          * don't allow straddling of stripes
6246                          */
6247                         raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6248                                         full_stripe_len);
6249                         raid56_full_stripe_start *= full_stripe_len;
6250
6251                         /*
6252                          * For writes to RAID[56], allow a full stripeset across
6253                          * all disks. For other RAID types and for RAID[56]
6254                          * reads, just allow a single stripe (on a single disk).
6255                          */
6256                         if (op == BTRFS_MAP_WRITE) {
6257                                 max_len = stripe_len * data_stripes -
6258                                           (offset - raid56_full_stripe_start);
6259                         }
6260                 }
6261                 len = min_t(u64, em->len - offset, max_len);
6262         } else {
6263                 len = em->len - offset;
6264         }
6265
6266         io_geom->len = len;
6267         io_geom->offset = offset;
6268         io_geom->stripe_len = stripe_len;
6269         io_geom->stripe_nr = stripe_nr;
6270         io_geom->stripe_offset = stripe_offset;
6271         io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6272
6273         return 0;
6274 }
6275
6276 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6277                              enum btrfs_map_op op,
6278                              u64 logical, u64 *length,
6279                              struct btrfs_bio **bbio_ret,
6280                              int mirror_num, int need_raid_map)
6281 {
6282         struct extent_map *em;
6283         struct map_lookup *map;
6284         u64 stripe_offset;
6285         u64 stripe_nr;
6286         u64 stripe_len;
6287         u32 stripe_index;
6288         int data_stripes;
6289         int i;
6290         int ret = 0;
6291         int num_stripes;
6292         int max_errors = 0;
6293         int tgtdev_indexes = 0;
6294         struct btrfs_bio *bbio = NULL;
6295         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6296         int dev_replace_is_ongoing = 0;
6297         int num_alloc_stripes;
6298         int patch_the_first_stripe_for_dev_replace = 0;
6299         u64 physical_to_patch_in_first_stripe = 0;
6300         u64 raid56_full_stripe_start = (u64)-1;
6301         struct btrfs_io_geometry geom;
6302
6303         ASSERT(bbio_ret);
6304         ASSERT(op != BTRFS_MAP_DISCARD);
6305
6306         em = btrfs_get_chunk_map(fs_info, logical, *length);
6307         ASSERT(!IS_ERR(em));
6308
6309         ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6310         if (ret < 0)
6311                 return ret;
6312
6313         map = em->map_lookup;
6314
6315         *length = geom.len;
6316         stripe_len = geom.stripe_len;
6317         stripe_nr = geom.stripe_nr;
6318         stripe_offset = geom.stripe_offset;
6319         raid56_full_stripe_start = geom.raid56_stripe_offset;
6320         data_stripes = nr_data_stripes(map);
6321
6322         down_read(&dev_replace->rwsem);
6323         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6324         /*
6325          * Hold the semaphore for read during the whole operation, write is
6326          * requested at commit time but must wait.
6327          */
6328         if (!dev_replace_is_ongoing)
6329                 up_read(&dev_replace->rwsem);
6330
6331         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6332             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6333                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6334                                                     dev_replace->srcdev->devid,
6335                                                     &mirror_num,
6336                                             &physical_to_patch_in_first_stripe);
6337                 if (ret)
6338                         goto out;
6339                 else
6340                         patch_the_first_stripe_for_dev_replace = 1;
6341         } else if (mirror_num > map->num_stripes) {
6342                 mirror_num = 0;
6343         }
6344
6345         num_stripes = 1;
6346         stripe_index = 0;
6347         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6348                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6349                                 &stripe_index);
6350                 if (!need_full_stripe(op))
6351                         mirror_num = 1;
6352         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6353                 if (need_full_stripe(op))
6354                         num_stripes = map->num_stripes;
6355                 else if (mirror_num)
6356                         stripe_index = mirror_num - 1;
6357                 else {
6358                         stripe_index = find_live_mirror(fs_info, map, 0,
6359                                             dev_replace_is_ongoing);
6360                         mirror_num = stripe_index + 1;
6361                 }
6362
6363         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6364                 if (need_full_stripe(op)) {
6365                         num_stripes = map->num_stripes;
6366                 } else if (mirror_num) {
6367                         stripe_index = mirror_num - 1;
6368                 } else {
6369                         mirror_num = 1;
6370                 }
6371
6372         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6373                 u32 factor = map->num_stripes / map->sub_stripes;
6374
6375                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6376                 stripe_index *= map->sub_stripes;
6377
6378                 if (need_full_stripe(op))
6379                         num_stripes = map->sub_stripes;
6380                 else if (mirror_num)
6381                         stripe_index += mirror_num - 1;
6382                 else {
6383                         int old_stripe_index = stripe_index;
6384                         stripe_index = find_live_mirror(fs_info, map,
6385                                               stripe_index,
6386                                               dev_replace_is_ongoing);
6387                         mirror_num = stripe_index - old_stripe_index + 1;
6388                 }
6389
6390         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6391                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6392                         /* push stripe_nr back to the start of the full stripe */
6393                         stripe_nr = div64_u64(raid56_full_stripe_start,
6394                                         stripe_len * data_stripes);
6395
6396                         /* RAID[56] write or recovery. Return all stripes */
6397                         num_stripes = map->num_stripes;
6398                         max_errors = nr_parity_stripes(map);
6399
6400                         *length = map->stripe_len;
6401                         stripe_index = 0;
6402                         stripe_offset = 0;
6403                 } else {
6404                         /*
6405                          * Mirror #0 or #1 means the original data block.
6406                          * Mirror #2 is RAID5 parity block.
6407                          * Mirror #3 is RAID6 Q block.
6408                          */
6409                         stripe_nr = div_u64_rem(stripe_nr,
6410                                         data_stripes, &stripe_index);
6411                         if (mirror_num > 1)
6412                                 stripe_index = data_stripes + mirror_num - 2;
6413
6414                         /* We distribute the parity blocks across stripes */
6415                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6416                                         &stripe_index);
6417                         if (!need_full_stripe(op) && mirror_num <= 1)
6418                                 mirror_num = 1;
6419                 }
6420         } else {
6421                 /*
6422                  * after this, stripe_nr is the number of stripes on this
6423                  * device we have to walk to find the data, and stripe_index is
6424                  * the number of our device in the stripe array
6425                  */
6426                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6427                                 &stripe_index);
6428                 mirror_num = stripe_index + 1;
6429         }
6430         if (stripe_index >= map->num_stripes) {
6431                 btrfs_crit(fs_info,
6432                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6433                            stripe_index, map->num_stripes);
6434                 ret = -EINVAL;
6435                 goto out;
6436         }
6437
6438         num_alloc_stripes = num_stripes;
6439         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6440                 if (op == BTRFS_MAP_WRITE)
6441                         num_alloc_stripes <<= 1;
6442                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6443                         num_alloc_stripes++;
6444                 tgtdev_indexes = num_stripes;
6445         }
6446
6447         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6448         if (!bbio) {
6449                 ret = -ENOMEM;
6450                 goto out;
6451         }
6452
6453         for (i = 0; i < num_stripes; i++) {
6454                 bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6455                         stripe_offset + stripe_nr * map->stripe_len;
6456                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6457                 stripe_index++;
6458         }
6459
6460         /* build raid_map */
6461         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6462             (need_full_stripe(op) || mirror_num > 1)) {
6463                 u64 tmp;
6464                 unsigned rot;
6465
6466                 /* Work out the disk rotation on this stripe-set */
6467                 div_u64_rem(stripe_nr, num_stripes, &rot);
6468
6469                 /* Fill in the logical address of each stripe */
6470                 tmp = stripe_nr * data_stripes;
6471                 for (i = 0; i < data_stripes; i++)
6472                         bbio->raid_map[(i+rot) % num_stripes] =
6473                                 em->start + (tmp + i) * map->stripe_len;
6474
6475                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6476                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6477                         bbio->raid_map[(i+rot+1) % num_stripes] =
6478                                 RAID6_Q_STRIPE;
6479
6480                 sort_parity_stripes(bbio, num_stripes);
6481         }
6482
6483         if (need_full_stripe(op))
6484                 max_errors = btrfs_chunk_max_errors(map);
6485
6486         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6487             need_full_stripe(op)) {
6488                 handle_ops_on_dev_replace(op, &bbio, dev_replace, logical,
6489                                           &num_stripes, &max_errors);
6490         }
6491
6492         *bbio_ret = bbio;
6493         bbio->map_type = map->type;
6494         bbio->num_stripes = num_stripes;
6495         bbio->max_errors = max_errors;
6496         bbio->mirror_num = mirror_num;
6497
6498         /*
6499          * this is the case that REQ_READ && dev_replace_is_ongoing &&
6500          * mirror_num == num_stripes + 1 && dev_replace target drive is
6501          * available as a mirror
6502          */
6503         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6504                 WARN_ON(num_stripes > 1);
6505                 bbio->stripes[0].dev = dev_replace->tgtdev;
6506                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6507                 bbio->mirror_num = map->num_stripes + 1;
6508         }
6509 out:
6510         if (dev_replace_is_ongoing) {
6511                 lockdep_assert_held(&dev_replace->rwsem);
6512                 /* Unlock and let waiting writers proceed */
6513                 up_read(&dev_replace->rwsem);
6514         }
6515         free_extent_map(em);
6516         return ret;
6517 }
6518
6519 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6520                       u64 logical, u64 *length,
6521                       struct btrfs_bio **bbio_ret, int mirror_num)
6522 {
6523         if (op == BTRFS_MAP_DISCARD)
6524                 return __btrfs_map_block_for_discard(fs_info, logical,
6525                                                      length, bbio_ret);
6526
6527         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6528                                  mirror_num, 0);
6529 }
6530
6531 /* For Scrub/replace */
6532 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6533                      u64 logical, u64 *length,
6534                      struct btrfs_bio **bbio_ret)
6535 {
6536         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6537 }
6538
6539 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6540 {
6541         bio->bi_private = bbio->private;
6542         bio->bi_end_io = bbio->end_io;
6543         bio_endio(bio);
6544
6545         btrfs_put_bbio(bbio);
6546 }
6547
6548 static void btrfs_end_bio(struct bio *bio)
6549 {
6550         struct btrfs_bio *bbio = bio->bi_private;
6551         int is_orig_bio = 0;
6552
6553         if (bio->bi_status) {
6554                 atomic_inc(&bbio->error);
6555                 if (bio->bi_status == BLK_STS_IOERR ||
6556                     bio->bi_status == BLK_STS_TARGET) {
6557                         struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6558
6559                         ASSERT(dev->bdev);
6560                         if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6561                                 btrfs_dev_stat_inc_and_print(dev,
6562                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6563                         else if (!(bio->bi_opf & REQ_RAHEAD))
6564                                 btrfs_dev_stat_inc_and_print(dev,
6565                                                 BTRFS_DEV_STAT_READ_ERRS);
6566                         if (bio->bi_opf & REQ_PREFLUSH)
6567                                 btrfs_dev_stat_inc_and_print(dev,
6568                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6569                 }
6570         }
6571
6572         if (bio == bbio->orig_bio)
6573                 is_orig_bio = 1;
6574
6575         btrfs_bio_counter_dec(bbio->fs_info);
6576
6577         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6578                 if (!is_orig_bio) {
6579                         bio_put(bio);
6580                         bio = bbio->orig_bio;
6581                 }
6582
6583                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6584                 /* only send an error to the higher layers if it is
6585                  * beyond the tolerance of the btrfs bio
6586                  */
6587                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6588                         bio->bi_status = BLK_STS_IOERR;
6589                 } else {
6590                         /*
6591                          * this bio is actually up to date, we didn't
6592                          * go over the max number of errors
6593                          */
6594                         bio->bi_status = BLK_STS_OK;
6595                 }
6596
6597                 btrfs_end_bbio(bbio, bio);
6598         } else if (!is_orig_bio) {
6599                 bio_put(bio);
6600         }
6601 }
6602
6603 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6604                               u64 physical, struct btrfs_device *dev)
6605 {
6606         struct btrfs_fs_info *fs_info = bbio->fs_info;
6607
6608         bio->bi_private = bbio;
6609         btrfs_io_bio(bio)->device = dev;
6610         bio->bi_end_io = btrfs_end_bio;
6611         bio->bi_iter.bi_sector = physical >> 9;
6612         /*
6613          * For zone append writing, bi_sector must point the beginning of the
6614          * zone
6615          */
6616         if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6617                 if (btrfs_dev_is_sequential(dev, physical)) {
6618                         u64 zone_start = round_down(physical, fs_info->zone_size);
6619
6620                         bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6621                 } else {
6622                         bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6623                         bio->bi_opf |= REQ_OP_WRITE;
6624                 }
6625         }
6626         btrfs_debug_in_rcu(fs_info,
6627         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6628                 bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6629                 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6630                 dev->devid, bio->bi_iter.bi_size);
6631         bio_set_dev(bio, dev->bdev);
6632
6633         btrfs_bio_counter_inc_noblocked(fs_info);
6634
6635         btrfsic_submit_bio(bio);
6636 }
6637
6638 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6639 {
6640         atomic_inc(&bbio->error);
6641         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6642                 /* Should be the original bio. */
6643                 WARN_ON(bio != bbio->orig_bio);
6644
6645                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6646                 bio->bi_iter.bi_sector = logical >> 9;
6647                 if (atomic_read(&bbio->error) > bbio->max_errors)
6648                         bio->bi_status = BLK_STS_IOERR;
6649                 else
6650                         bio->bi_status = BLK_STS_OK;
6651                 btrfs_end_bbio(bbio, bio);
6652         }
6653 }
6654
6655 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6656                            int mirror_num)
6657 {
6658         struct btrfs_device *dev;
6659         struct bio *first_bio = bio;
6660         u64 logical = bio->bi_iter.bi_sector << 9;
6661         u64 length = 0;
6662         u64 map_length;
6663         int ret;
6664         int dev_nr;
6665         int total_devs;
6666         struct btrfs_bio *bbio = NULL;
6667
6668         length = bio->bi_iter.bi_size;
6669         map_length = length;
6670
6671         btrfs_bio_counter_inc_blocked(fs_info);
6672         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6673                                 &map_length, &bbio, mirror_num, 1);
6674         if (ret) {
6675                 btrfs_bio_counter_dec(fs_info);
6676                 return errno_to_blk_status(ret);
6677         }
6678
6679         total_devs = bbio->num_stripes;
6680         bbio->orig_bio = first_bio;
6681         bbio->private = first_bio->bi_private;
6682         bbio->end_io = first_bio->bi_end_io;
6683         bbio->fs_info = fs_info;
6684         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6685
6686         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6687             ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6688                 /* In this case, map_length has been set to the length of
6689                    a single stripe; not the whole write */
6690                 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6691                         ret = raid56_parity_write(fs_info, bio, bbio,
6692                                                   map_length);
6693                 } else {
6694                         ret = raid56_parity_recover(fs_info, bio, bbio,
6695                                                     map_length, mirror_num, 1);
6696                 }
6697
6698                 btrfs_bio_counter_dec(fs_info);
6699                 return errno_to_blk_status(ret);
6700         }
6701
6702         if (map_length < length) {
6703                 btrfs_crit(fs_info,
6704                            "mapping failed logical %llu bio len %llu len %llu",
6705                            logical, length, map_length);
6706                 BUG();
6707         }
6708
6709         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6710                 dev = bbio->stripes[dev_nr].dev;
6711                 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6712                                                    &dev->dev_state) ||
6713                     (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
6714                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6715                         bbio_error(bbio, first_bio, logical);
6716                         continue;
6717                 }
6718
6719                 if (dev_nr < total_devs - 1)
6720                         bio = btrfs_bio_clone(first_bio);
6721                 else
6722                         bio = first_bio;
6723
6724                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6725         }
6726         btrfs_bio_counter_dec(fs_info);
6727         return BLK_STS_OK;
6728 }
6729
6730 /*
6731  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6732  * return NULL.
6733  *
6734  * If devid and uuid are both specified, the match must be exact, otherwise
6735  * only devid is used.
6736  */
6737 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6738                                        u64 devid, u8 *uuid, u8 *fsid)
6739 {
6740         struct btrfs_device *device;
6741         struct btrfs_fs_devices *seed_devs;
6742
6743         if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6744                 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6745                         if (device->devid == devid &&
6746                             (!uuid || memcmp(device->uuid, uuid,
6747                                              BTRFS_UUID_SIZE) == 0))
6748                                 return device;
6749                 }
6750         }
6751
6752         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6753                 if (!fsid ||
6754                     !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6755                         list_for_each_entry(device, &seed_devs->devices,
6756                                             dev_list) {
6757                                 if (device->devid == devid &&
6758                                     (!uuid || memcmp(device->uuid, uuid,
6759                                                      BTRFS_UUID_SIZE) == 0))
6760                                         return device;
6761                         }
6762                 }
6763         }
6764
6765         return NULL;
6766 }
6767
6768 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6769                                             u64 devid, u8 *dev_uuid)
6770 {
6771         struct btrfs_device *device;
6772         unsigned int nofs_flag;
6773
6774         /*
6775          * We call this under the chunk_mutex, so we want to use NOFS for this
6776          * allocation, however we don't want to change btrfs_alloc_device() to
6777          * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6778          * places.
6779          */
6780         nofs_flag = memalloc_nofs_save();
6781         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6782         memalloc_nofs_restore(nofs_flag);
6783         if (IS_ERR(device))
6784                 return device;
6785
6786         list_add(&device->dev_list, &fs_devices->devices);
6787         device->fs_devices = fs_devices;
6788         fs_devices->num_devices++;
6789
6790         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6791         fs_devices->missing_devices++;
6792
6793         return device;
6794 }
6795
6796 /**
6797  * btrfs_alloc_device - allocate struct btrfs_device
6798  * @fs_info:    used only for generating a new devid, can be NULL if
6799  *              devid is provided (i.e. @devid != NULL).
6800  * @devid:      a pointer to devid for this device.  If NULL a new devid
6801  *              is generated.
6802  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6803  *              is generated.
6804  *
6805  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6806  * on error.  Returned struct is not linked onto any lists and must be
6807  * destroyed with btrfs_free_device.
6808  */
6809 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6810                                         const u64 *devid,
6811                                         const u8 *uuid)
6812 {
6813         struct btrfs_device *dev;
6814         u64 tmp;
6815
6816         if (WARN_ON(!devid && !fs_info))
6817                 return ERR_PTR(-EINVAL);
6818
6819         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6820         if (!dev)
6821                 return ERR_PTR(-ENOMEM);
6822
6823         /*
6824          * Preallocate a bio that's always going to be used for flushing device
6825          * barriers and matches the device lifespan
6826          */
6827         dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
6828         if (!dev->flush_bio) {
6829                 kfree(dev);
6830                 return ERR_PTR(-ENOMEM);
6831         }
6832
6833         INIT_LIST_HEAD(&dev->dev_list);
6834         INIT_LIST_HEAD(&dev->dev_alloc_list);
6835         INIT_LIST_HEAD(&dev->post_commit_list);
6836
6837         atomic_set(&dev->reada_in_flight, 0);
6838         atomic_set(&dev->dev_stats_ccnt, 0);
6839         btrfs_device_data_ordered_init(dev);
6840         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6841         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6842         extent_io_tree_init(fs_info, &dev->alloc_state,
6843                             IO_TREE_DEVICE_ALLOC_STATE, NULL);
6844
6845         if (devid)
6846                 tmp = *devid;
6847         else {
6848                 int ret;
6849
6850                 ret = find_next_devid(fs_info, &tmp);
6851                 if (ret) {
6852                         btrfs_free_device(dev);
6853                         return ERR_PTR(ret);
6854                 }
6855         }
6856         dev->devid = tmp;
6857
6858         if (uuid)
6859                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6860         else
6861                 generate_random_uuid(dev->uuid);
6862
6863         return dev;
6864 }
6865
6866 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6867                                         u64 devid, u8 *uuid, bool error)
6868 {
6869         if (error)
6870                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6871                               devid, uuid);
6872         else
6873                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6874                               devid, uuid);
6875 }
6876
6877 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6878 {
6879         const int data_stripes = calc_data_stripes(type, num_stripes);
6880
6881         return div_u64(chunk_len, data_stripes);
6882 }
6883
6884 #if BITS_PER_LONG == 32
6885 /*
6886  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6887  * can't be accessed on 32bit systems.
6888  *
6889  * This function do mount time check to reject the fs if it already has
6890  * metadata chunk beyond that limit.
6891  */
6892 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6893                                   u64 logical, u64 length, u64 type)
6894 {
6895         if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6896                 return 0;
6897
6898         if (logical + length < MAX_LFS_FILESIZE)
6899                 return 0;
6900
6901         btrfs_err_32bit_limit(fs_info);
6902         return -EOVERFLOW;
6903 }
6904
6905 /*
6906  * This is to give early warning for any metadata chunk reaching
6907  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6908  * Although we can still access the metadata, it's not going to be possible
6909  * once the limit is reached.
6910  */
6911 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6912                                   u64 logical, u64 length, u64 type)
6913 {
6914         if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6915                 return;
6916
6917         if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6918                 return;
6919
6920         btrfs_warn_32bit_limit(fs_info);
6921 }
6922 #endif
6923
6924 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6925                           struct btrfs_chunk *chunk)
6926 {
6927         struct btrfs_fs_info *fs_info = leaf->fs_info;
6928         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6929         struct map_lookup *map;
6930         struct extent_map *em;
6931         u64 logical;
6932         u64 length;
6933         u64 devid;
6934         u64 type;
6935         u8 uuid[BTRFS_UUID_SIZE];
6936         int num_stripes;
6937         int ret;
6938         int i;
6939
6940         logical = key->offset;
6941         length = btrfs_chunk_length(leaf, chunk);
6942         type = btrfs_chunk_type(leaf, chunk);
6943         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6944
6945 #if BITS_PER_LONG == 32
6946         ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6947         if (ret < 0)
6948                 return ret;
6949         warn_32bit_meta_chunk(fs_info, logical, length, type);
6950 #endif
6951
6952         /*
6953          * Only need to verify chunk item if we're reading from sys chunk array,
6954          * as chunk item in tree block is already verified by tree-checker.
6955          */
6956         if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6957                 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6958                 if (ret)
6959                         return ret;
6960         }
6961
6962         read_lock(&map_tree->lock);
6963         em = lookup_extent_mapping(map_tree, logical, 1);
6964         read_unlock(&map_tree->lock);
6965
6966         /* already mapped? */
6967         if (em && em->start <= logical && em->start + em->len > logical) {
6968                 free_extent_map(em);
6969                 return 0;
6970         } else if (em) {
6971                 free_extent_map(em);
6972         }
6973
6974         em = alloc_extent_map();
6975         if (!em)
6976                 return -ENOMEM;
6977         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6978         if (!map) {
6979                 free_extent_map(em);
6980                 return -ENOMEM;
6981         }
6982
6983         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6984         em->map_lookup = map;
6985         em->start = logical;
6986         em->len = length;
6987         em->orig_start = 0;
6988         em->block_start = 0;
6989         em->block_len = em->len;
6990
6991         map->num_stripes = num_stripes;
6992         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6993         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6994         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6995         map->type = type;
6996         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6997         map->verified_stripes = 0;
6998         em->orig_block_len = calc_stripe_length(type, em->len,
6999                                                 map->num_stripes);
7000         for (i = 0; i < num_stripes; i++) {
7001                 map->stripes[i].physical =
7002                         btrfs_stripe_offset_nr(leaf, chunk, i);
7003                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7004                 read_extent_buffer(leaf, uuid, (unsigned long)
7005                                    btrfs_stripe_dev_uuid_nr(chunk, i),
7006                                    BTRFS_UUID_SIZE);
7007                 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
7008                                                         devid, uuid, NULL);
7009                 if (!map->stripes[i].dev &&
7010                     !btrfs_test_opt(fs_info, DEGRADED)) {
7011                         free_extent_map(em);
7012                         btrfs_report_missing_device(fs_info, devid, uuid, true);
7013                         return -ENOENT;
7014                 }
7015                 if (!map->stripes[i].dev) {
7016                         map->stripes[i].dev =
7017                                 add_missing_dev(fs_info->fs_devices, devid,
7018                                                 uuid);
7019                         if (IS_ERR(map->stripes[i].dev)) {
7020                                 free_extent_map(em);
7021                                 btrfs_err(fs_info,
7022                                         "failed to init missing dev %llu: %ld",
7023                                         devid, PTR_ERR(map->stripes[i].dev));
7024                                 return PTR_ERR(map->stripes[i].dev);
7025                         }
7026                         btrfs_report_missing_device(fs_info, devid, uuid, false);
7027                 }
7028                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7029                                 &(map->stripes[i].dev->dev_state));
7030
7031         }
7032
7033         write_lock(&map_tree->lock);
7034         ret = add_extent_mapping(map_tree, em, 0);
7035         write_unlock(&map_tree->lock);
7036         if (ret < 0) {
7037                 btrfs_err(fs_info,
7038                           "failed to add chunk map, start=%llu len=%llu: %d",
7039                           em->start, em->len, ret);
7040         }
7041         free_extent_map(em);
7042
7043         return ret;
7044 }
7045
7046 static void fill_device_from_item(struct extent_buffer *leaf,
7047                                  struct btrfs_dev_item *dev_item,
7048                                  struct btrfs_device *device)
7049 {
7050         unsigned long ptr;
7051
7052         device->devid = btrfs_device_id(leaf, dev_item);
7053         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7054         device->total_bytes = device->disk_total_bytes;
7055         device->commit_total_bytes = device->disk_total_bytes;
7056         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7057         device->commit_bytes_used = device->bytes_used;
7058         device->type = btrfs_device_type(leaf, dev_item);
7059         device->io_align = btrfs_device_io_align(leaf, dev_item);
7060         device->io_width = btrfs_device_io_width(leaf, dev_item);
7061         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7062         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7063         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7064
7065         ptr = btrfs_device_uuid(dev_item);
7066         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7067 }
7068
7069 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7070                                                   u8 *fsid)
7071 {
7072         struct btrfs_fs_devices *fs_devices;
7073         int ret;
7074
7075         lockdep_assert_held(&uuid_mutex);
7076         ASSERT(fsid);
7077
7078         /* This will match only for multi-device seed fs */
7079         list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7080                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7081                         return fs_devices;
7082
7083
7084         fs_devices = find_fsid(fsid, NULL);
7085         if (!fs_devices) {
7086                 if (!btrfs_test_opt(fs_info, DEGRADED))
7087                         return ERR_PTR(-ENOENT);
7088
7089                 fs_devices = alloc_fs_devices(fsid, NULL);
7090                 if (IS_ERR(fs_devices))
7091                         return fs_devices;
7092
7093                 fs_devices->seeding = true;
7094                 fs_devices->opened = 1;
7095                 return fs_devices;
7096         }
7097
7098         /*
7099          * Upon first call for a seed fs fsid, just create a private copy of the
7100          * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7101          */
7102         fs_devices = clone_fs_devices(fs_devices);
7103         if (IS_ERR(fs_devices))
7104                 return fs_devices;
7105
7106         ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7107         if (ret) {
7108                 free_fs_devices(fs_devices);
7109                 return ERR_PTR(ret);
7110         }
7111
7112         if (!fs_devices->seeding) {
7113                 close_fs_devices(fs_devices);
7114                 free_fs_devices(fs_devices);
7115                 return ERR_PTR(-EINVAL);
7116         }
7117
7118         list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7119
7120         return fs_devices;
7121 }
7122
7123 static int read_one_dev(struct extent_buffer *leaf,
7124                         struct btrfs_dev_item *dev_item)
7125 {
7126         struct btrfs_fs_info *fs_info = leaf->fs_info;
7127         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7128         struct btrfs_device *device;
7129         u64 devid;
7130         int ret;
7131         u8 fs_uuid[BTRFS_FSID_SIZE];
7132         u8 dev_uuid[BTRFS_UUID_SIZE];
7133
7134         devid = btrfs_device_id(leaf, dev_item);
7135         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7136                            BTRFS_UUID_SIZE);
7137         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7138                            BTRFS_FSID_SIZE);
7139
7140         if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7141                 fs_devices = open_seed_devices(fs_info, fs_uuid);
7142                 if (IS_ERR(fs_devices))
7143                         return PTR_ERR(fs_devices);
7144         }
7145
7146         device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
7147                                    fs_uuid);
7148         if (!device) {
7149                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7150                         btrfs_report_missing_device(fs_info, devid,
7151                                                         dev_uuid, true);
7152                         return -ENOENT;
7153                 }
7154
7155                 device = add_missing_dev(fs_devices, devid, dev_uuid);
7156                 if (IS_ERR(device)) {
7157                         btrfs_err(fs_info,
7158                                 "failed to add missing dev %llu: %ld",
7159                                 devid, PTR_ERR(device));
7160                         return PTR_ERR(device);
7161                 }
7162                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7163         } else {
7164                 if (!device->bdev) {
7165                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
7166                                 btrfs_report_missing_device(fs_info,
7167                                                 devid, dev_uuid, true);
7168                                 return -ENOENT;
7169                         }
7170                         btrfs_report_missing_device(fs_info, devid,
7171                                                         dev_uuid, false);
7172                 }
7173
7174                 if (!device->bdev &&
7175                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7176                         /*
7177                          * this happens when a device that was properly setup
7178                          * in the device info lists suddenly goes bad.
7179                          * device->bdev is NULL, and so we have to set
7180                          * device->missing to one here
7181                          */
7182                         device->fs_devices->missing_devices++;
7183                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7184                 }
7185
7186                 /* Move the device to its own fs_devices */
7187                 if (device->fs_devices != fs_devices) {
7188                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7189                                                         &device->dev_state));
7190
7191                         list_move(&device->dev_list, &fs_devices->devices);
7192                         device->fs_devices->num_devices--;
7193                         fs_devices->num_devices++;
7194
7195                         device->fs_devices->missing_devices--;
7196                         fs_devices->missing_devices++;
7197
7198                         device->fs_devices = fs_devices;
7199                 }
7200         }
7201
7202         if (device->fs_devices != fs_info->fs_devices) {
7203                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7204                 if (device->generation !=
7205                     btrfs_device_generation(leaf, dev_item))
7206                         return -EINVAL;
7207         }
7208
7209         fill_device_from_item(leaf, dev_item, device);
7210         if (device->bdev) {
7211                 u64 max_total_bytes = i_size_read(device->bdev->bd_inode);
7212
7213                 if (device->total_bytes > max_total_bytes) {
7214                         btrfs_err(fs_info,
7215                         "device total_bytes should be at most %llu but found %llu",
7216                                   max_total_bytes, device->total_bytes);
7217                         return -EINVAL;
7218                 }
7219         }
7220         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7221         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7222            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7223                 device->fs_devices->total_rw_bytes += device->total_bytes;
7224                 atomic64_add(device->total_bytes - device->bytes_used,
7225                                 &fs_info->free_chunk_space);
7226         }
7227         ret = 0;
7228         return ret;
7229 }
7230
7231 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7232 {
7233         struct btrfs_root *root = fs_info->tree_root;
7234         struct btrfs_super_block *super_copy = fs_info->super_copy;
7235         struct extent_buffer *sb;
7236         struct btrfs_disk_key *disk_key;
7237         struct btrfs_chunk *chunk;
7238         u8 *array_ptr;
7239         unsigned long sb_array_offset;
7240         int ret = 0;
7241         u32 num_stripes;
7242         u32 array_size;
7243         u32 len = 0;
7244         u32 cur_offset;
7245         u64 type;
7246         struct btrfs_key key;
7247
7248         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7249         /*
7250          * This will create extent buffer of nodesize, superblock size is
7251          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7252          * overallocate but we can keep it as-is, only the first page is used.
7253          */
7254         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7255                                           root->root_key.objectid, 0);
7256         if (IS_ERR(sb))
7257                 return PTR_ERR(sb);
7258         set_extent_buffer_uptodate(sb);
7259         /*
7260          * The sb extent buffer is artificial and just used to read the system array.
7261          * set_extent_buffer_uptodate() call does not properly mark all it's
7262          * pages up-to-date when the page is larger: extent does not cover the
7263          * whole page and consequently check_page_uptodate does not find all
7264          * the page's extents up-to-date (the hole beyond sb),
7265          * write_extent_buffer then triggers a WARN_ON.
7266          *
7267          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7268          * but sb spans only this function. Add an explicit SetPageUptodate call
7269          * to silence the warning eg. on PowerPC 64.
7270          */
7271         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7272                 SetPageUptodate(sb->pages[0]);
7273
7274         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7275         array_size = btrfs_super_sys_array_size(super_copy);
7276
7277         array_ptr = super_copy->sys_chunk_array;
7278         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7279         cur_offset = 0;
7280
7281         while (cur_offset < array_size) {
7282                 disk_key = (struct btrfs_disk_key *)array_ptr;
7283                 len = sizeof(*disk_key);
7284                 if (cur_offset + len > array_size)
7285                         goto out_short_read;
7286
7287                 btrfs_disk_key_to_cpu(&key, disk_key);
7288
7289                 array_ptr += len;
7290                 sb_array_offset += len;
7291                 cur_offset += len;
7292
7293                 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7294                         btrfs_err(fs_info,
7295                             "unexpected item type %u in sys_array at offset %u",
7296                                   (u32)key.type, cur_offset);
7297                         ret = -EIO;
7298                         break;
7299                 }
7300
7301                 chunk = (struct btrfs_chunk *)sb_array_offset;
7302                 /*
7303                  * At least one btrfs_chunk with one stripe must be present,
7304                  * exact stripe count check comes afterwards
7305                  */
7306                 len = btrfs_chunk_item_size(1);
7307                 if (cur_offset + len > array_size)
7308                         goto out_short_read;
7309
7310                 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7311                 if (!num_stripes) {
7312                         btrfs_err(fs_info,
7313                         "invalid number of stripes %u in sys_array at offset %u",
7314                                   num_stripes, cur_offset);
7315                         ret = -EIO;
7316                         break;
7317                 }
7318
7319                 type = btrfs_chunk_type(sb, chunk);
7320                 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7321                         btrfs_err(fs_info,
7322                         "invalid chunk type %llu in sys_array at offset %u",
7323                                   type, cur_offset);
7324                         ret = -EIO;
7325                         break;
7326                 }
7327
7328                 len = btrfs_chunk_item_size(num_stripes);
7329                 if (cur_offset + len > array_size)
7330                         goto out_short_read;
7331
7332                 ret = read_one_chunk(&key, sb, chunk);
7333                 if (ret)
7334                         break;
7335
7336                 array_ptr += len;
7337                 sb_array_offset += len;
7338                 cur_offset += len;
7339         }
7340         clear_extent_buffer_uptodate(sb);
7341         free_extent_buffer_stale(sb);
7342         return ret;
7343
7344 out_short_read:
7345         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7346                         len, cur_offset);
7347         clear_extent_buffer_uptodate(sb);
7348         free_extent_buffer_stale(sb);
7349         return -EIO;
7350 }
7351
7352 /*
7353  * Check if all chunks in the fs are OK for read-write degraded mount
7354  *
7355  * If the @failing_dev is specified, it's accounted as missing.
7356  *
7357  * Return true if all chunks meet the minimal RW mount requirements.
7358  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7359  */
7360 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7361                                         struct btrfs_device *failing_dev)
7362 {
7363         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7364         struct extent_map *em;
7365         u64 next_start = 0;
7366         bool ret = true;
7367
7368         read_lock(&map_tree->lock);
7369         em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7370         read_unlock(&map_tree->lock);
7371         /* No chunk at all? Return false anyway */
7372         if (!em) {
7373                 ret = false;
7374                 goto out;
7375         }
7376         while (em) {
7377                 struct map_lookup *map;
7378                 int missing = 0;
7379                 int max_tolerated;
7380                 int i;
7381
7382                 map = em->map_lookup;
7383                 max_tolerated =
7384                         btrfs_get_num_tolerated_disk_barrier_failures(
7385                                         map->type);
7386                 for (i = 0; i < map->num_stripes; i++) {
7387                         struct btrfs_device *dev = map->stripes[i].dev;
7388
7389                         if (!dev || !dev->bdev ||
7390                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7391                             dev->last_flush_error)
7392                                 missing++;
7393                         else if (failing_dev && failing_dev == dev)
7394                                 missing++;
7395                 }
7396                 if (missing > max_tolerated) {
7397                         if (!failing_dev)
7398                                 btrfs_warn(fs_info,
7399         "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7400                                    em->start, missing, max_tolerated);
7401                         free_extent_map(em);
7402                         ret = false;
7403                         goto out;
7404                 }
7405                 next_start = extent_map_end(em);
7406                 free_extent_map(em);
7407
7408                 read_lock(&map_tree->lock);
7409                 em = lookup_extent_mapping(map_tree, next_start,
7410                                            (u64)(-1) - next_start);
7411                 read_unlock(&map_tree->lock);
7412         }
7413 out:
7414         return ret;
7415 }
7416
7417 static void readahead_tree_node_children(struct extent_buffer *node)
7418 {
7419         int i;
7420         const int nr_items = btrfs_header_nritems(node);
7421
7422         for (i = 0; i < nr_items; i++)
7423                 btrfs_readahead_node_child(node, i);
7424 }
7425
7426 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7427 {
7428         struct btrfs_root *root = fs_info->chunk_root;
7429         struct btrfs_path *path;
7430         struct extent_buffer *leaf;
7431         struct btrfs_key key;
7432         struct btrfs_key found_key;
7433         int ret;
7434         int slot;
7435         u64 total_dev = 0;
7436         u64 last_ra_node = 0;
7437
7438         path = btrfs_alloc_path();
7439         if (!path)
7440                 return -ENOMEM;
7441
7442         /*
7443          * uuid_mutex is needed only if we are mounting a sprout FS
7444          * otherwise we don't need it.
7445          */
7446         mutex_lock(&uuid_mutex);
7447
7448         /*
7449          * It is possible for mount and umount to race in such a way that
7450          * we execute this code path, but open_fs_devices failed to clear
7451          * total_rw_bytes. We certainly want it cleared before reading the
7452          * device items, so clear it here.
7453          */
7454         fs_info->fs_devices->total_rw_bytes = 0;
7455
7456         /*
7457          * Read all device items, and then all the chunk items. All
7458          * device items are found before any chunk item (their object id
7459          * is smaller than the lowest possible object id for a chunk
7460          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7461          */
7462         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7463         key.offset = 0;
7464         key.type = 0;
7465         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7466         if (ret < 0)
7467                 goto error;
7468         while (1) {
7469                 struct extent_buffer *node;
7470
7471                 leaf = path->nodes[0];
7472                 slot = path->slots[0];
7473                 if (slot >= btrfs_header_nritems(leaf)) {
7474                         ret = btrfs_next_leaf(root, path);
7475                         if (ret == 0)
7476                                 continue;
7477                         if (ret < 0)
7478                                 goto error;
7479                         break;
7480                 }
7481                 /*
7482                  * The nodes on level 1 are not locked but we don't need to do
7483                  * that during mount time as nothing else can access the tree
7484                  */
7485                 node = path->nodes[1];
7486                 if (node) {
7487                         if (last_ra_node != node->start) {
7488                                 readahead_tree_node_children(node);
7489                                 last_ra_node = node->start;
7490                         }
7491                 }
7492                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7493                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7494                         struct btrfs_dev_item *dev_item;
7495                         dev_item = btrfs_item_ptr(leaf, slot,
7496                                                   struct btrfs_dev_item);
7497                         ret = read_one_dev(leaf, dev_item);
7498                         if (ret)
7499                                 goto error;
7500                         total_dev++;
7501                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7502                         struct btrfs_chunk *chunk;
7503
7504                         /*
7505                          * We are only called at mount time, so no need to take
7506                          * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7507                          * we always lock first fs_info->chunk_mutex before
7508                          * acquiring any locks on the chunk tree. This is a
7509                          * requirement for chunk allocation, see the comment on
7510                          * top of btrfs_chunk_alloc() for details.
7511                          */
7512                         ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7513                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7514                         ret = read_one_chunk(&found_key, leaf, chunk);
7515                         if (ret)
7516                                 goto error;
7517                 }
7518                 path->slots[0]++;
7519         }
7520
7521         /*
7522          * After loading chunk tree, we've got all device information,
7523          * do another round of validation checks.
7524          */
7525         if (total_dev != fs_info->fs_devices->total_devices) {
7526                 btrfs_err(fs_info,
7527            "super_num_devices %llu mismatch with num_devices %llu found here",
7528                           btrfs_super_num_devices(fs_info->super_copy),
7529                           total_dev);
7530                 ret = -EINVAL;
7531                 goto error;
7532         }
7533         if (btrfs_super_total_bytes(fs_info->super_copy) <
7534             fs_info->fs_devices->total_rw_bytes) {
7535                 btrfs_err(fs_info,
7536         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7537                           btrfs_super_total_bytes(fs_info->super_copy),
7538                           fs_info->fs_devices->total_rw_bytes);
7539                 ret = -EINVAL;
7540                 goto error;
7541         }
7542         ret = 0;
7543 error:
7544         mutex_unlock(&uuid_mutex);
7545
7546         btrfs_free_path(path);
7547         return ret;
7548 }
7549
7550 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7551 {
7552         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7553         struct btrfs_device *device;
7554
7555         fs_devices->fs_info = fs_info;
7556
7557         mutex_lock(&fs_devices->device_list_mutex);
7558         list_for_each_entry(device, &fs_devices->devices, dev_list)
7559                 device->fs_info = fs_info;
7560
7561         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7562                 list_for_each_entry(device, &seed_devs->devices, dev_list)
7563                         device->fs_info = fs_info;
7564
7565                 seed_devs->fs_info = fs_info;
7566         }
7567         mutex_unlock(&fs_devices->device_list_mutex);
7568 }
7569
7570 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7571                                  const struct btrfs_dev_stats_item *ptr,
7572                                  int index)
7573 {
7574         u64 val;
7575
7576         read_extent_buffer(eb, &val,
7577                            offsetof(struct btrfs_dev_stats_item, values) +
7578                             ((unsigned long)ptr) + (index * sizeof(u64)),
7579                            sizeof(val));
7580         return val;
7581 }
7582
7583 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7584                                       struct btrfs_dev_stats_item *ptr,
7585                                       int index, u64 val)
7586 {
7587         write_extent_buffer(eb, &val,
7588                             offsetof(struct btrfs_dev_stats_item, values) +
7589                              ((unsigned long)ptr) + (index * sizeof(u64)),
7590                             sizeof(val));
7591 }
7592
7593 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7594                                        struct btrfs_path *path)
7595 {
7596         struct btrfs_dev_stats_item *ptr;
7597         struct extent_buffer *eb;
7598         struct btrfs_key key;
7599         int item_size;
7600         int i, ret, slot;
7601
7602         if (!device->fs_info->dev_root)
7603                 return 0;
7604
7605         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7606         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7607         key.offset = device->devid;
7608         ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7609         if (ret) {
7610                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7611                         btrfs_dev_stat_set(device, i, 0);
7612                 device->dev_stats_valid = 1;
7613                 btrfs_release_path(path);
7614                 return ret < 0 ? ret : 0;
7615         }
7616         slot = path->slots[0];
7617         eb = path->nodes[0];
7618         item_size = btrfs_item_size_nr(eb, slot);
7619
7620         ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7621
7622         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7623                 if (item_size >= (1 + i) * sizeof(__le64))
7624                         btrfs_dev_stat_set(device, i,
7625                                            btrfs_dev_stats_value(eb, ptr, i));
7626                 else
7627                         btrfs_dev_stat_set(device, i, 0);
7628         }
7629
7630         device->dev_stats_valid = 1;
7631         btrfs_dev_stat_print_on_load(device);
7632         btrfs_release_path(path);
7633
7634         return 0;
7635 }
7636
7637 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7638 {
7639         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7640         struct btrfs_device *device;
7641         struct btrfs_path *path = NULL;
7642         int ret = 0;
7643
7644         path = btrfs_alloc_path();
7645         if (!path)
7646                 return -ENOMEM;
7647
7648         mutex_lock(&fs_devices->device_list_mutex);
7649         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7650                 ret = btrfs_device_init_dev_stats(device, path);
7651                 if (ret)
7652                         goto out;
7653         }
7654         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7655                 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7656                         ret = btrfs_device_init_dev_stats(device, path);
7657                         if (ret)
7658                                 goto out;
7659                 }
7660         }
7661 out:
7662         mutex_unlock(&fs_devices->device_list_mutex);
7663
7664         btrfs_free_path(path);
7665         return ret;
7666 }
7667
7668 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7669                                 struct btrfs_device *device)
7670 {
7671         struct btrfs_fs_info *fs_info = trans->fs_info;
7672         struct btrfs_root *dev_root = fs_info->dev_root;
7673         struct btrfs_path *path;
7674         struct btrfs_key key;
7675         struct extent_buffer *eb;
7676         struct btrfs_dev_stats_item *ptr;
7677         int ret;
7678         int i;
7679
7680         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7681         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7682         key.offset = device->devid;
7683
7684         path = btrfs_alloc_path();
7685         if (!path)
7686                 return -ENOMEM;
7687         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7688         if (ret < 0) {
7689                 btrfs_warn_in_rcu(fs_info,
7690                         "error %d while searching for dev_stats item for device %s",
7691                               ret, rcu_str_deref(device->name));
7692                 goto out;
7693         }
7694
7695         if (ret == 0 &&
7696             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7697                 /* need to delete old one and insert a new one */
7698                 ret = btrfs_del_item(trans, dev_root, path);
7699                 if (ret != 0) {
7700                         btrfs_warn_in_rcu(fs_info,
7701                                 "delete too small dev_stats item for device %s failed %d",
7702                                       rcu_str_deref(device->name), ret);
7703                         goto out;
7704                 }
7705                 ret = 1;
7706         }
7707
7708         if (ret == 1) {
7709                 /* need to insert a new item */
7710                 btrfs_release_path(path);
7711                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7712                                               &key, sizeof(*ptr));
7713                 if (ret < 0) {
7714                         btrfs_warn_in_rcu(fs_info,
7715                                 "insert dev_stats item for device %s failed %d",
7716                                 rcu_str_deref(device->name), ret);
7717                         goto out;
7718                 }
7719         }
7720
7721         eb = path->nodes[0];
7722         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7723         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7724                 btrfs_set_dev_stats_value(eb, ptr, i,
7725                                           btrfs_dev_stat_read(device, i));
7726         btrfs_mark_buffer_dirty(eb);
7727
7728 out:
7729         btrfs_free_path(path);
7730         return ret;
7731 }
7732
7733 /*
7734  * called from commit_transaction. Writes all changed device stats to disk.
7735  */
7736 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7737 {
7738         struct btrfs_fs_info *fs_info = trans->fs_info;
7739         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7740         struct btrfs_device *device;
7741         int stats_cnt;
7742         int ret = 0;
7743
7744         mutex_lock(&fs_devices->device_list_mutex);
7745         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7746                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7747                 if (!device->dev_stats_valid || stats_cnt == 0)
7748                         continue;
7749
7750
7751                 /*
7752                  * There is a LOAD-LOAD control dependency between the value of
7753                  * dev_stats_ccnt and updating the on-disk values which requires
7754                  * reading the in-memory counters. Such control dependencies
7755                  * require explicit read memory barriers.
7756                  *
7757                  * This memory barriers pairs with smp_mb__before_atomic in
7758                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7759                  * barrier implied by atomic_xchg in
7760                  * btrfs_dev_stats_read_and_reset
7761                  */
7762                 smp_rmb();
7763
7764                 ret = update_dev_stat_item(trans, device);
7765                 if (!ret)
7766                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7767         }
7768         mutex_unlock(&fs_devices->device_list_mutex);
7769
7770         return ret;
7771 }
7772
7773 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7774 {
7775         btrfs_dev_stat_inc(dev, index);
7776         btrfs_dev_stat_print_on_error(dev);
7777 }
7778
7779 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7780 {
7781         if (!dev->dev_stats_valid)
7782                 return;
7783         btrfs_err_rl_in_rcu(dev->fs_info,
7784                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7785                            rcu_str_deref(dev->name),
7786                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7787                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7788                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7789                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7790                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7791 }
7792
7793 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7794 {
7795         int i;
7796
7797         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7798                 if (btrfs_dev_stat_read(dev, i) != 0)
7799                         break;
7800         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7801                 return; /* all values == 0, suppress message */
7802
7803         btrfs_info_in_rcu(dev->fs_info,
7804                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7805                rcu_str_deref(dev->name),
7806                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7807                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7808                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7809                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7810                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7811 }
7812
7813 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7814                         struct btrfs_ioctl_get_dev_stats *stats)
7815 {
7816         struct btrfs_device *dev;
7817         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7818         int i;
7819
7820         mutex_lock(&fs_devices->device_list_mutex);
7821         dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL);
7822         mutex_unlock(&fs_devices->device_list_mutex);
7823
7824         if (!dev) {
7825                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7826                 return -ENODEV;
7827         } else if (!dev->dev_stats_valid) {
7828                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7829                 return -ENODEV;
7830         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7831                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7832                         if (stats->nr_items > i)
7833                                 stats->values[i] =
7834                                         btrfs_dev_stat_read_and_reset(dev, i);
7835                         else
7836                                 btrfs_dev_stat_set(dev, i, 0);
7837                 }
7838                 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7839                            current->comm, task_pid_nr(current));
7840         } else {
7841                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7842                         if (stats->nr_items > i)
7843                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7844         }
7845         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7846                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7847         return 0;
7848 }
7849
7850 /*
7851  * Update the size and bytes used for each device where it changed.  This is
7852  * delayed since we would otherwise get errors while writing out the
7853  * superblocks.
7854  *
7855  * Must be invoked during transaction commit.
7856  */
7857 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7858 {
7859         struct btrfs_device *curr, *next;
7860
7861         ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7862
7863         if (list_empty(&trans->dev_update_list))
7864                 return;
7865
7866         /*
7867          * We don't need the device_list_mutex here.  This list is owned by the
7868          * transaction and the transaction must complete before the device is
7869          * released.
7870          */
7871         mutex_lock(&trans->fs_info->chunk_mutex);
7872         list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7873                                  post_commit_list) {
7874                 list_del_init(&curr->post_commit_list);
7875                 curr->commit_total_bytes = curr->disk_total_bytes;
7876                 curr->commit_bytes_used = curr->bytes_used;
7877         }
7878         mutex_unlock(&trans->fs_info->chunk_mutex);
7879 }
7880
7881 /*
7882  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7883  */
7884 int btrfs_bg_type_to_factor(u64 flags)
7885 {
7886         const int index = btrfs_bg_flags_to_raid_index(flags);
7887
7888         return btrfs_raid_array[index].ncopies;
7889 }
7890
7891
7892
7893 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7894                                  u64 chunk_offset, u64 devid,
7895                                  u64 physical_offset, u64 physical_len)
7896 {
7897         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7898         struct extent_map *em;
7899         struct map_lookup *map;
7900         struct btrfs_device *dev;
7901         u64 stripe_len;
7902         bool found = false;
7903         int ret = 0;
7904         int i;
7905
7906         read_lock(&em_tree->lock);
7907         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7908         read_unlock(&em_tree->lock);
7909
7910         if (!em) {
7911                 btrfs_err(fs_info,
7912 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7913                           physical_offset, devid);
7914                 ret = -EUCLEAN;
7915                 goto out;
7916         }
7917
7918         map = em->map_lookup;
7919         stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7920         if (physical_len != stripe_len) {
7921                 btrfs_err(fs_info,
7922 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7923                           physical_offset, devid, em->start, physical_len,
7924                           stripe_len);
7925                 ret = -EUCLEAN;
7926                 goto out;
7927         }
7928
7929         for (i = 0; i < map->num_stripes; i++) {
7930                 if (map->stripes[i].dev->devid == devid &&
7931                     map->stripes[i].physical == physical_offset) {
7932                         found = true;
7933                         if (map->verified_stripes >= map->num_stripes) {
7934                                 btrfs_err(fs_info,
7935                                 "too many dev extents for chunk %llu found",
7936                                           em->start);
7937                                 ret = -EUCLEAN;
7938                                 goto out;
7939                         }
7940                         map->verified_stripes++;
7941                         break;
7942                 }
7943         }
7944         if (!found) {
7945                 btrfs_err(fs_info,
7946         "dev extent physical offset %llu devid %llu has no corresponding chunk",
7947                         physical_offset, devid);
7948                 ret = -EUCLEAN;
7949         }
7950
7951         /* Make sure no dev extent is beyond device boundary */
7952         dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
7953         if (!dev) {
7954                 btrfs_err(fs_info, "failed to find devid %llu", devid);
7955                 ret = -EUCLEAN;
7956                 goto out;
7957         }
7958
7959         if (physical_offset + physical_len > dev->disk_total_bytes) {
7960                 btrfs_err(fs_info,
7961 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7962                           devid, physical_offset, physical_len,
7963                           dev->disk_total_bytes);
7964                 ret = -EUCLEAN;
7965                 goto out;
7966         }
7967
7968         if (dev->zone_info) {
7969                 u64 zone_size = dev->zone_info->zone_size;
7970
7971                 if (!IS_ALIGNED(physical_offset, zone_size) ||
7972                     !IS_ALIGNED(physical_len, zone_size)) {
7973                         btrfs_err(fs_info,
7974 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7975                                   devid, physical_offset, physical_len);
7976                         ret = -EUCLEAN;
7977                         goto out;
7978                 }
7979         }
7980
7981 out:
7982         free_extent_map(em);
7983         return ret;
7984 }
7985
7986 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7987 {
7988         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7989         struct extent_map *em;
7990         struct rb_node *node;
7991         int ret = 0;
7992
7993         read_lock(&em_tree->lock);
7994         for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7995                 em = rb_entry(node, struct extent_map, rb_node);
7996                 if (em->map_lookup->num_stripes !=
7997                     em->map_lookup->verified_stripes) {
7998                         btrfs_err(fs_info,
7999                         "chunk %llu has missing dev extent, have %d expect %d",
8000                                   em->start, em->map_lookup->verified_stripes,
8001                                   em->map_lookup->num_stripes);
8002                         ret = -EUCLEAN;
8003                         goto out;
8004                 }
8005         }
8006 out:
8007         read_unlock(&em_tree->lock);
8008         return ret;
8009 }
8010
8011 /*
8012  * Ensure that all dev extents are mapped to correct chunk, otherwise
8013  * later chunk allocation/free would cause unexpected behavior.
8014  *
8015  * NOTE: This will iterate through the whole device tree, which should be of
8016  * the same size level as the chunk tree.  This slightly increases mount time.
8017  */
8018 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8019 {
8020         struct btrfs_path *path;
8021         struct btrfs_root *root = fs_info->dev_root;
8022         struct btrfs_key key;
8023         u64 prev_devid = 0;
8024         u64 prev_dev_ext_end = 0;
8025         int ret = 0;
8026
8027         /*
8028          * We don't have a dev_root because we mounted with ignorebadroots and
8029          * failed to load the root, so we want to skip the verification in this
8030          * case for sure.
8031          *
8032          * However if the dev root is fine, but the tree itself is corrupted
8033          * we'd still fail to mount.  This verification is only to make sure
8034          * writes can happen safely, so instead just bypass this check
8035          * completely in the case of IGNOREBADROOTS.
8036          */
8037         if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8038                 return 0;
8039
8040         key.objectid = 1;
8041         key.type = BTRFS_DEV_EXTENT_KEY;
8042         key.offset = 0;
8043
8044         path = btrfs_alloc_path();
8045         if (!path)
8046                 return -ENOMEM;
8047
8048         path->reada = READA_FORWARD;
8049         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8050         if (ret < 0)
8051                 goto out;
8052
8053         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8054                 ret = btrfs_next_leaf(root, path);
8055                 if (ret < 0)
8056                         goto out;
8057                 /* No dev extents at all? Not good */
8058                 if (ret > 0) {
8059                         ret = -EUCLEAN;
8060                         goto out;
8061                 }
8062         }
8063         while (1) {
8064                 struct extent_buffer *leaf = path->nodes[0];
8065                 struct btrfs_dev_extent *dext;
8066                 int slot = path->slots[0];
8067                 u64 chunk_offset;
8068                 u64 physical_offset;
8069                 u64 physical_len;
8070                 u64 devid;
8071
8072                 btrfs_item_key_to_cpu(leaf, &key, slot);
8073                 if (key.type != BTRFS_DEV_EXTENT_KEY)
8074                         break;
8075                 devid = key.objectid;
8076                 physical_offset = key.offset;
8077
8078                 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8079                 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8080                 physical_len = btrfs_dev_extent_length(leaf, dext);
8081
8082                 /* Check if this dev extent overlaps with the previous one */
8083                 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8084                         btrfs_err(fs_info,
8085 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8086                                   devid, physical_offset, prev_dev_ext_end);
8087                         ret = -EUCLEAN;
8088                         goto out;
8089                 }
8090
8091                 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8092                                             physical_offset, physical_len);
8093                 if (ret < 0)
8094                         goto out;
8095                 prev_devid = devid;
8096                 prev_dev_ext_end = physical_offset + physical_len;
8097
8098                 ret = btrfs_next_item(root, path);
8099                 if (ret < 0)
8100                         goto out;
8101                 if (ret > 0) {
8102                         ret = 0;
8103                         break;
8104                 }
8105         }
8106
8107         /* Ensure all chunks have corresponding dev extents */
8108         ret = verify_chunk_dev_extent_mapping(fs_info);
8109 out:
8110         btrfs_free_path(path);
8111         return ret;
8112 }
8113
8114 /*
8115  * Check whether the given block group or device is pinned by any inode being
8116  * used as a swapfile.
8117  */
8118 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8119 {
8120         struct btrfs_swapfile_pin *sp;
8121         struct rb_node *node;
8122
8123         spin_lock(&fs_info->swapfile_pins_lock);
8124         node = fs_info->swapfile_pins.rb_node;
8125         while (node) {
8126                 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8127                 if (ptr < sp->ptr)
8128                         node = node->rb_left;
8129                 else if (ptr > sp->ptr)
8130                         node = node->rb_right;
8131                 else
8132                         break;
8133         }
8134         spin_unlock(&fs_info->swapfile_pins_lock);
8135         return node != NULL;
8136 }
8137
8138 static int relocating_repair_kthread(void *data)
8139 {
8140         struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8141         struct btrfs_fs_info *fs_info = cache->fs_info;
8142         u64 target;
8143         int ret = 0;
8144
8145         target = cache->start;
8146         btrfs_put_block_group(cache);
8147
8148         if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8149                 btrfs_info(fs_info,
8150                            "zoned: skip relocating block group %llu to repair: EBUSY",
8151                            target);
8152                 return -EBUSY;
8153         }
8154
8155         mutex_lock(&fs_info->reclaim_bgs_lock);
8156
8157         /* Ensure block group still exists */
8158         cache = btrfs_lookup_block_group(fs_info, target);
8159         if (!cache)
8160                 goto out;
8161
8162         if (!cache->relocating_repair)
8163                 goto out;
8164
8165         ret = btrfs_may_alloc_data_chunk(fs_info, target);
8166         if (ret < 0)
8167                 goto out;
8168
8169         btrfs_info(fs_info,
8170                    "zoned: relocating block group %llu to repair IO failure",
8171                    target);
8172         ret = btrfs_relocate_chunk(fs_info, target);
8173
8174 out:
8175         if (cache)
8176                 btrfs_put_block_group(cache);
8177         mutex_unlock(&fs_info->reclaim_bgs_lock);
8178         btrfs_exclop_finish(fs_info);
8179
8180         return ret;
8181 }
8182
8183 int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8184 {
8185         struct btrfs_block_group *cache;
8186
8187         /* Do not attempt to repair in degraded state */
8188         if (btrfs_test_opt(fs_info, DEGRADED))
8189                 return 0;
8190
8191         cache = btrfs_lookup_block_group(fs_info, logical);
8192         if (!cache)
8193                 return 0;
8194
8195         spin_lock(&cache->lock);
8196         if (cache->relocating_repair) {
8197                 spin_unlock(&cache->lock);
8198                 btrfs_put_block_group(cache);
8199                 return 0;
8200         }
8201         cache->relocating_repair = 1;
8202         spin_unlock(&cache->lock);
8203
8204         kthread_run(relocating_repair_kthread, cache,
8205                     "btrfs-relocating-repair");
8206
8207         return 0;
8208 }