Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[linux-2.6-microblaze.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33 #include "discard.h"
34
35 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
36         [BTRFS_RAID_RAID10] = {
37                 .sub_stripes    = 2,
38                 .dev_stripes    = 1,
39                 .devs_max       = 0,    /* 0 == as many as possible */
40                 .devs_min       = 4,
41                 .tolerated_failures = 1,
42                 .devs_increment = 2,
43                 .ncopies        = 2,
44                 .nparity        = 0,
45                 .raid_name      = "raid10",
46                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID10,
47                 .mindev_error   = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
48         },
49         [BTRFS_RAID_RAID1] = {
50                 .sub_stripes    = 1,
51                 .dev_stripes    = 1,
52                 .devs_max       = 2,
53                 .devs_min       = 2,
54                 .tolerated_failures = 1,
55                 .devs_increment = 2,
56                 .ncopies        = 2,
57                 .nparity        = 0,
58                 .raid_name      = "raid1",
59                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1,
60                 .mindev_error   = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
61         },
62         [BTRFS_RAID_RAID1C3] = {
63                 .sub_stripes    = 1,
64                 .dev_stripes    = 1,
65                 .devs_max       = 3,
66                 .devs_min       = 3,
67                 .tolerated_failures = 2,
68                 .devs_increment = 3,
69                 .ncopies        = 3,
70                 .nparity        = 0,
71                 .raid_name      = "raid1c3",
72                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C3,
73                 .mindev_error   = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
74         },
75         [BTRFS_RAID_RAID1C4] = {
76                 .sub_stripes    = 1,
77                 .dev_stripes    = 1,
78                 .devs_max       = 4,
79                 .devs_min       = 4,
80                 .tolerated_failures = 3,
81                 .devs_increment = 4,
82                 .ncopies        = 4,
83                 .nparity        = 0,
84                 .raid_name      = "raid1c4",
85                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C4,
86                 .mindev_error   = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
87         },
88         [BTRFS_RAID_DUP] = {
89                 .sub_stripes    = 1,
90                 .dev_stripes    = 2,
91                 .devs_max       = 1,
92                 .devs_min       = 1,
93                 .tolerated_failures = 0,
94                 .devs_increment = 1,
95                 .ncopies        = 2,
96                 .nparity        = 0,
97                 .raid_name      = "dup",
98                 .bg_flag        = BTRFS_BLOCK_GROUP_DUP,
99                 .mindev_error   = 0,
100         },
101         [BTRFS_RAID_RAID0] = {
102                 .sub_stripes    = 1,
103                 .dev_stripes    = 1,
104                 .devs_max       = 0,
105                 .devs_min       = 2,
106                 .tolerated_failures = 0,
107                 .devs_increment = 1,
108                 .ncopies        = 1,
109                 .nparity        = 0,
110                 .raid_name      = "raid0",
111                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID0,
112                 .mindev_error   = 0,
113         },
114         [BTRFS_RAID_SINGLE] = {
115                 .sub_stripes    = 1,
116                 .dev_stripes    = 1,
117                 .devs_max       = 1,
118                 .devs_min       = 1,
119                 .tolerated_failures = 0,
120                 .devs_increment = 1,
121                 .ncopies        = 1,
122                 .nparity        = 0,
123                 .raid_name      = "single",
124                 .bg_flag        = 0,
125                 .mindev_error   = 0,
126         },
127         [BTRFS_RAID_RAID5] = {
128                 .sub_stripes    = 1,
129                 .dev_stripes    = 1,
130                 .devs_max       = 0,
131                 .devs_min       = 2,
132                 .tolerated_failures = 1,
133                 .devs_increment = 1,
134                 .ncopies        = 1,
135                 .nparity        = 1,
136                 .raid_name      = "raid5",
137                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID5,
138                 .mindev_error   = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
139         },
140         [BTRFS_RAID_RAID6] = {
141                 .sub_stripes    = 1,
142                 .dev_stripes    = 1,
143                 .devs_max       = 0,
144                 .devs_min       = 3,
145                 .tolerated_failures = 2,
146                 .devs_increment = 1,
147                 .ncopies        = 1,
148                 .nparity        = 2,
149                 .raid_name      = "raid6",
150                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID6,
151                 .mindev_error   = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
152         },
153 };
154
155 const char *btrfs_bg_type_to_raid_name(u64 flags)
156 {
157         const int index = btrfs_bg_flags_to_raid_index(flags);
158
159         if (index >= BTRFS_NR_RAID_TYPES)
160                 return NULL;
161
162         return btrfs_raid_array[index].raid_name;
163 }
164
165 /*
166  * Fill @buf with textual description of @bg_flags, no more than @size_buf
167  * bytes including terminating null byte.
168  */
169 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
170 {
171         int i;
172         int ret;
173         char *bp = buf;
174         u64 flags = bg_flags;
175         u32 size_bp = size_buf;
176
177         if (!flags) {
178                 strcpy(bp, "NONE");
179                 return;
180         }
181
182 #define DESCRIBE_FLAG(flag, desc)                                               \
183         do {                                                            \
184                 if (flags & (flag)) {                                   \
185                         ret = snprintf(bp, size_bp, "%s|", (desc));     \
186                         if (ret < 0 || ret >= size_bp)                  \
187                                 goto out_overflow;                      \
188                         size_bp -= ret;                                 \
189                         bp += ret;                                      \
190                         flags &= ~(flag);                               \
191                 }                                                       \
192         } while (0)
193
194         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
195         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
196         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
197
198         DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
199         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
200                 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
201                               btrfs_raid_array[i].raid_name);
202 #undef DESCRIBE_FLAG
203
204         if (flags) {
205                 ret = snprintf(bp, size_bp, "0x%llx|", flags);
206                 size_bp -= ret;
207         }
208
209         if (size_bp < size_buf)
210                 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
211
212         /*
213          * The text is trimmed, it's up to the caller to provide sufficiently
214          * large buffer
215          */
216 out_overflow:;
217 }
218
219 static int init_first_rw_device(struct btrfs_trans_handle *trans);
220 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
221 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
222 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
223 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
224                              enum btrfs_map_op op,
225                              u64 logical, u64 *length,
226                              struct btrfs_bio **bbio_ret,
227                              int mirror_num, int need_raid_map);
228
229 /*
230  * Device locking
231  * ==============
232  *
233  * There are several mutexes that protect manipulation of devices and low-level
234  * structures like chunks but not block groups, extents or files
235  *
236  * uuid_mutex (global lock)
237  * ------------------------
238  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
239  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
240  * device) or requested by the device= mount option
241  *
242  * the mutex can be very coarse and can cover long-running operations
243  *
244  * protects: updates to fs_devices counters like missing devices, rw devices,
245  * seeding, structure cloning, opening/closing devices at mount/umount time
246  *
247  * global::fs_devs - add, remove, updates to the global list
248  *
249  * does not protect: manipulation of the fs_devices::devices list in general
250  * but in mount context it could be used to exclude list modifications by eg.
251  * scan ioctl
252  *
253  * btrfs_device::name - renames (write side), read is RCU
254  *
255  * fs_devices::device_list_mutex (per-fs, with RCU)
256  * ------------------------------------------------
257  * protects updates to fs_devices::devices, ie. adding and deleting
258  *
259  * simple list traversal with read-only actions can be done with RCU protection
260  *
261  * may be used to exclude some operations from running concurrently without any
262  * modifications to the list (see write_all_supers)
263  *
264  * Is not required at mount and close times, because our device list is
265  * protected by the uuid_mutex at that point.
266  *
267  * balance_mutex
268  * -------------
269  * protects balance structures (status, state) and context accessed from
270  * several places (internally, ioctl)
271  *
272  * chunk_mutex
273  * -----------
274  * protects chunks, adding or removing during allocation, trim or when a new
275  * device is added/removed. Additionally it also protects post_commit_list of
276  * individual devices, since they can be added to the transaction's
277  * post_commit_list only with chunk_mutex held.
278  *
279  * cleaner_mutex
280  * -------------
281  * a big lock that is held by the cleaner thread and prevents running subvolume
282  * cleaning together with relocation or delayed iputs
283  *
284  *
285  * Lock nesting
286  * ============
287  *
288  * uuid_mutex
289  *   device_list_mutex
290  *     chunk_mutex
291  *   balance_mutex
292  *
293  *
294  * Exclusive operations, BTRFS_FS_EXCL_OP
295  * ======================================
296  *
297  * Maintains the exclusivity of the following operations that apply to the
298  * whole filesystem and cannot run in parallel.
299  *
300  * - Balance (*)
301  * - Device add
302  * - Device remove
303  * - Device replace (*)
304  * - Resize
305  *
306  * The device operations (as above) can be in one of the following states:
307  *
308  * - Running state
309  * - Paused state
310  * - Completed state
311  *
312  * Only device operations marked with (*) can go into the Paused state for the
313  * following reasons:
314  *
315  * - ioctl (only Balance can be Paused through ioctl)
316  * - filesystem remounted as read-only
317  * - filesystem unmounted and mounted as read-only
318  * - system power-cycle and filesystem mounted as read-only
319  * - filesystem or device errors leading to forced read-only
320  *
321  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
322  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
323  * A device operation in Paused or Running state can be canceled or resumed
324  * either by ioctl (Balance only) or when remounted as read-write.
325  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
326  * completed.
327  */
328
329 DEFINE_MUTEX(uuid_mutex);
330 static LIST_HEAD(fs_uuids);
331 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
332 {
333         return &fs_uuids;
334 }
335
336 /*
337  * alloc_fs_devices - allocate struct btrfs_fs_devices
338  * @fsid:               if not NULL, copy the UUID to fs_devices::fsid
339  * @metadata_fsid:      if not NULL, copy the UUID to fs_devices::metadata_fsid
340  *
341  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
342  * The returned struct is not linked onto any lists and can be destroyed with
343  * kfree() right away.
344  */
345 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
346                                                  const u8 *metadata_fsid)
347 {
348         struct btrfs_fs_devices *fs_devs;
349
350         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
351         if (!fs_devs)
352                 return ERR_PTR(-ENOMEM);
353
354         mutex_init(&fs_devs->device_list_mutex);
355
356         INIT_LIST_HEAD(&fs_devs->devices);
357         INIT_LIST_HEAD(&fs_devs->alloc_list);
358         INIT_LIST_HEAD(&fs_devs->fs_list);
359         if (fsid)
360                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
361
362         if (metadata_fsid)
363                 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
364         else if (fsid)
365                 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
366
367         return fs_devs;
368 }
369
370 void btrfs_free_device(struct btrfs_device *device)
371 {
372         WARN_ON(!list_empty(&device->post_commit_list));
373         rcu_string_free(device->name);
374         extent_io_tree_release(&device->alloc_state);
375         bio_put(device->flush_bio);
376         kfree(device);
377 }
378
379 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
380 {
381         struct btrfs_device *device;
382         WARN_ON(fs_devices->opened);
383         while (!list_empty(&fs_devices->devices)) {
384                 device = list_entry(fs_devices->devices.next,
385                                     struct btrfs_device, dev_list);
386                 list_del(&device->dev_list);
387                 btrfs_free_device(device);
388         }
389         kfree(fs_devices);
390 }
391
392 void __exit btrfs_cleanup_fs_uuids(void)
393 {
394         struct btrfs_fs_devices *fs_devices;
395
396         while (!list_empty(&fs_uuids)) {
397                 fs_devices = list_entry(fs_uuids.next,
398                                         struct btrfs_fs_devices, fs_list);
399                 list_del(&fs_devices->fs_list);
400                 free_fs_devices(fs_devices);
401         }
402 }
403
404 /*
405  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
406  * Returned struct is not linked onto any lists and must be destroyed using
407  * btrfs_free_device.
408  */
409 static struct btrfs_device *__alloc_device(void)
410 {
411         struct btrfs_device *dev;
412
413         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
414         if (!dev)
415                 return ERR_PTR(-ENOMEM);
416
417         /*
418          * Preallocate a bio that's always going to be used for flushing device
419          * barriers and matches the device lifespan
420          */
421         dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
422         if (!dev->flush_bio) {
423                 kfree(dev);
424                 return ERR_PTR(-ENOMEM);
425         }
426
427         INIT_LIST_HEAD(&dev->dev_list);
428         INIT_LIST_HEAD(&dev->dev_alloc_list);
429         INIT_LIST_HEAD(&dev->post_commit_list);
430
431         atomic_set(&dev->reada_in_flight, 0);
432         atomic_set(&dev->dev_stats_ccnt, 0);
433         btrfs_device_data_ordered_init(dev);
434         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
435         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
436         extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
437
438         return dev;
439 }
440
441 static noinline struct btrfs_fs_devices *find_fsid(
442                 const u8 *fsid, const u8 *metadata_fsid)
443 {
444         struct btrfs_fs_devices *fs_devices;
445
446         ASSERT(fsid);
447
448         /* Handle non-split brain cases */
449         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
450                 if (metadata_fsid) {
451                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
452                             && memcmp(metadata_fsid, fs_devices->metadata_uuid,
453                                       BTRFS_FSID_SIZE) == 0)
454                                 return fs_devices;
455                 } else {
456                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
457                                 return fs_devices;
458                 }
459         }
460         return NULL;
461 }
462
463 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
464                                 struct btrfs_super_block *disk_super)
465 {
466
467         struct btrfs_fs_devices *fs_devices;
468
469         /*
470          * Handle scanned device having completed its fsid change but
471          * belonging to a fs_devices that was created by first scanning
472          * a device which didn't have its fsid/metadata_uuid changed
473          * at all and the CHANGING_FSID_V2 flag set.
474          */
475         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
476                 if (fs_devices->fsid_change &&
477                     memcmp(disk_super->metadata_uuid, fs_devices->fsid,
478                            BTRFS_FSID_SIZE) == 0 &&
479                     memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
480                            BTRFS_FSID_SIZE) == 0) {
481                         return fs_devices;
482                 }
483         }
484         /*
485          * Handle scanned device having completed its fsid change but
486          * belonging to a fs_devices that was created by a device that
487          * has an outdated pair of fsid/metadata_uuid and
488          * CHANGING_FSID_V2 flag set.
489          */
490         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
491                 if (fs_devices->fsid_change &&
492                     memcmp(fs_devices->metadata_uuid,
493                            fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
494                     memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
495                            BTRFS_FSID_SIZE) == 0) {
496                         return fs_devices;
497                 }
498         }
499
500         return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
501 }
502
503
504 static int
505 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
506                       int flush, struct block_device **bdev,
507                       struct btrfs_super_block **disk_super)
508 {
509         int ret;
510
511         *bdev = blkdev_get_by_path(device_path, flags, holder);
512
513         if (IS_ERR(*bdev)) {
514                 ret = PTR_ERR(*bdev);
515                 goto error;
516         }
517
518         if (flush)
519                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
520         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
521         if (ret) {
522                 blkdev_put(*bdev, flags);
523                 goto error;
524         }
525         invalidate_bdev(*bdev);
526         *disk_super = btrfs_read_dev_super(*bdev);
527         if (IS_ERR(*disk_super)) {
528                 ret = PTR_ERR(*disk_super);
529                 blkdev_put(*bdev, flags);
530                 goto error;
531         }
532
533         return 0;
534
535 error:
536         *bdev = NULL;
537         return ret;
538 }
539
540 static bool device_path_matched(const char *path, struct btrfs_device *device)
541 {
542         int found;
543
544         rcu_read_lock();
545         found = strcmp(rcu_str_deref(device->name), path);
546         rcu_read_unlock();
547
548         return found == 0;
549 }
550
551 /*
552  *  Search and remove all stale (devices which are not mounted) devices.
553  *  When both inputs are NULL, it will search and release all stale devices.
554  *  path:       Optional. When provided will it release all unmounted devices
555  *              matching this path only.
556  *  skip_dev:   Optional. Will skip this device when searching for the stale
557  *              devices.
558  *  Return:     0 for success or if @path is NULL.
559  *              -EBUSY if @path is a mounted device.
560  *              -ENOENT if @path does not match any device in the list.
561  */
562 static int btrfs_free_stale_devices(const char *path,
563                                      struct btrfs_device *skip_device)
564 {
565         struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
566         struct btrfs_device *device, *tmp_device;
567         int ret = 0;
568
569         if (path)
570                 ret = -ENOENT;
571
572         list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
573
574                 mutex_lock(&fs_devices->device_list_mutex);
575                 list_for_each_entry_safe(device, tmp_device,
576                                          &fs_devices->devices, dev_list) {
577                         if (skip_device && skip_device == device)
578                                 continue;
579                         if (path && !device->name)
580                                 continue;
581                         if (path && !device_path_matched(path, device))
582                                 continue;
583                         if (fs_devices->opened) {
584                                 /* for an already deleted device return 0 */
585                                 if (path && ret != 0)
586                                         ret = -EBUSY;
587                                 break;
588                         }
589
590                         /* delete the stale device */
591                         fs_devices->num_devices--;
592                         list_del(&device->dev_list);
593                         btrfs_free_device(device);
594
595                         ret = 0;
596                         if (fs_devices->num_devices == 0)
597                                 break;
598                 }
599                 mutex_unlock(&fs_devices->device_list_mutex);
600
601                 if (fs_devices->num_devices == 0) {
602                         btrfs_sysfs_remove_fsid(fs_devices);
603                         list_del(&fs_devices->fs_list);
604                         free_fs_devices(fs_devices);
605                 }
606         }
607
608         return ret;
609 }
610
611 /*
612  * This is only used on mount, and we are protected from competing things
613  * messing with our fs_devices by the uuid_mutex, thus we do not need the
614  * fs_devices->device_list_mutex here.
615  */
616 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
617                         struct btrfs_device *device, fmode_t flags,
618                         void *holder)
619 {
620         struct request_queue *q;
621         struct block_device *bdev;
622         struct btrfs_super_block *disk_super;
623         u64 devid;
624         int ret;
625
626         if (device->bdev)
627                 return -EINVAL;
628         if (!device->name)
629                 return -EINVAL;
630
631         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
632                                     &bdev, &disk_super);
633         if (ret)
634                 return ret;
635
636         devid = btrfs_stack_device_id(&disk_super->dev_item);
637         if (devid != device->devid)
638                 goto error_free_page;
639
640         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
641                 goto error_free_page;
642
643         device->generation = btrfs_super_generation(disk_super);
644
645         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
646                 if (btrfs_super_incompat_flags(disk_super) &
647                     BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
648                         pr_err(
649                 "BTRFS: Invalid seeding and uuid-changed device detected\n");
650                         goto error_free_page;
651                 }
652
653                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
654                 fs_devices->seeding = true;
655         } else {
656                 if (bdev_read_only(bdev))
657                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
658                 else
659                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
660         }
661
662         q = bdev_get_queue(bdev);
663         if (!blk_queue_nonrot(q))
664                 fs_devices->rotating = true;
665
666         device->bdev = bdev;
667         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
668         device->mode = flags;
669
670         fs_devices->open_devices++;
671         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
672             device->devid != BTRFS_DEV_REPLACE_DEVID) {
673                 fs_devices->rw_devices++;
674                 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
675         }
676         btrfs_release_disk_super(disk_super);
677
678         return 0;
679
680 error_free_page:
681         btrfs_release_disk_super(disk_super);
682         blkdev_put(bdev, flags);
683
684         return -EINVAL;
685 }
686
687 /*
688  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
689  * being created with a disk that has already completed its fsid change. Such
690  * disk can belong to an fs which has its FSID changed or to one which doesn't.
691  * Handle both cases here.
692  */
693 static struct btrfs_fs_devices *find_fsid_inprogress(
694                                         struct btrfs_super_block *disk_super)
695 {
696         struct btrfs_fs_devices *fs_devices;
697
698         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
699                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
700                            BTRFS_FSID_SIZE) != 0 &&
701                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
702                            BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
703                         return fs_devices;
704                 }
705         }
706
707         return find_fsid(disk_super->fsid, NULL);
708 }
709
710
711 static struct btrfs_fs_devices *find_fsid_changed(
712                                         struct btrfs_super_block *disk_super)
713 {
714         struct btrfs_fs_devices *fs_devices;
715
716         /*
717          * Handles the case where scanned device is part of an fs that had
718          * multiple successful changes of FSID but curently device didn't
719          * observe it. Meaning our fsid will be different than theirs. We need
720          * to handle two subcases :
721          *  1 - The fs still continues to have different METADATA/FSID uuids.
722          *  2 - The fs is switched back to its original FSID (METADATA/FSID
723          *  are equal).
724          */
725         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
726                 /* Changed UUIDs */
727                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
728                            BTRFS_FSID_SIZE) != 0 &&
729                     memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
730                            BTRFS_FSID_SIZE) == 0 &&
731                     memcmp(fs_devices->fsid, disk_super->fsid,
732                            BTRFS_FSID_SIZE) != 0)
733                         return fs_devices;
734
735                 /* Unchanged UUIDs */
736                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
737                            BTRFS_FSID_SIZE) == 0 &&
738                     memcmp(fs_devices->fsid, disk_super->metadata_uuid,
739                            BTRFS_FSID_SIZE) == 0)
740                         return fs_devices;
741         }
742
743         return NULL;
744 }
745
746 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
747                                 struct btrfs_super_block *disk_super)
748 {
749         struct btrfs_fs_devices *fs_devices;
750
751         /*
752          * Handle the case where the scanned device is part of an fs whose last
753          * metadata UUID change reverted it to the original FSID. At the same
754          * time * fs_devices was first created by another constitutent device
755          * which didn't fully observe the operation. This results in an
756          * btrfs_fs_devices created with metadata/fsid different AND
757          * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
758          * fs_devices equal to the FSID of the disk.
759          */
760         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
761                 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
762                            BTRFS_FSID_SIZE) != 0 &&
763                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
764                            BTRFS_FSID_SIZE) == 0 &&
765                     fs_devices->fsid_change)
766                         return fs_devices;
767         }
768
769         return NULL;
770 }
771 /*
772  * Add new device to list of registered devices
773  *
774  * Returns:
775  * device pointer which was just added or updated when successful
776  * error pointer when failed
777  */
778 static noinline struct btrfs_device *device_list_add(const char *path,
779                            struct btrfs_super_block *disk_super,
780                            bool *new_device_added)
781 {
782         struct btrfs_device *device;
783         struct btrfs_fs_devices *fs_devices = NULL;
784         struct rcu_string *name;
785         u64 found_transid = btrfs_super_generation(disk_super);
786         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
787         bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
788                 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
789         bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
790                                         BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
791
792         if (fsid_change_in_progress) {
793                 if (!has_metadata_uuid)
794                         fs_devices = find_fsid_inprogress(disk_super);
795                 else
796                         fs_devices = find_fsid_changed(disk_super);
797         } else if (has_metadata_uuid) {
798                 fs_devices = find_fsid_with_metadata_uuid(disk_super);
799         } else {
800                 fs_devices = find_fsid_reverted_metadata(disk_super);
801                 if (!fs_devices)
802                         fs_devices = find_fsid(disk_super->fsid, NULL);
803         }
804
805
806         if (!fs_devices) {
807                 if (has_metadata_uuid)
808                         fs_devices = alloc_fs_devices(disk_super->fsid,
809                                                       disk_super->metadata_uuid);
810                 else
811                         fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
812
813                 if (IS_ERR(fs_devices))
814                         return ERR_CAST(fs_devices);
815
816                 fs_devices->fsid_change = fsid_change_in_progress;
817
818                 mutex_lock(&fs_devices->device_list_mutex);
819                 list_add(&fs_devices->fs_list, &fs_uuids);
820
821                 device = NULL;
822         } else {
823                 mutex_lock(&fs_devices->device_list_mutex);
824                 device = btrfs_find_device(fs_devices, devid,
825                                 disk_super->dev_item.uuid, NULL, false);
826
827                 /*
828                  * If this disk has been pulled into an fs devices created by
829                  * a device which had the CHANGING_FSID_V2 flag then replace the
830                  * metadata_uuid/fsid values of the fs_devices.
831                  */
832                 if (fs_devices->fsid_change &&
833                     found_transid > fs_devices->latest_generation) {
834                         memcpy(fs_devices->fsid, disk_super->fsid,
835                                         BTRFS_FSID_SIZE);
836
837                         if (has_metadata_uuid)
838                                 memcpy(fs_devices->metadata_uuid,
839                                        disk_super->metadata_uuid,
840                                        BTRFS_FSID_SIZE);
841                         else
842                                 memcpy(fs_devices->metadata_uuid,
843                                        disk_super->fsid, BTRFS_FSID_SIZE);
844
845                         fs_devices->fsid_change = false;
846                 }
847         }
848
849         if (!device) {
850                 if (fs_devices->opened) {
851                         mutex_unlock(&fs_devices->device_list_mutex);
852                         return ERR_PTR(-EBUSY);
853                 }
854
855                 device = btrfs_alloc_device(NULL, &devid,
856                                             disk_super->dev_item.uuid);
857                 if (IS_ERR(device)) {
858                         mutex_unlock(&fs_devices->device_list_mutex);
859                         /* we can safely leave the fs_devices entry around */
860                         return device;
861                 }
862
863                 name = rcu_string_strdup(path, GFP_NOFS);
864                 if (!name) {
865                         btrfs_free_device(device);
866                         mutex_unlock(&fs_devices->device_list_mutex);
867                         return ERR_PTR(-ENOMEM);
868                 }
869                 rcu_assign_pointer(device->name, name);
870
871                 list_add_rcu(&device->dev_list, &fs_devices->devices);
872                 fs_devices->num_devices++;
873
874                 device->fs_devices = fs_devices;
875                 *new_device_added = true;
876
877                 if (disk_super->label[0])
878                         pr_info(
879         "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
880                                 disk_super->label, devid, found_transid, path,
881                                 current->comm, task_pid_nr(current));
882                 else
883                         pr_info(
884         "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
885                                 disk_super->fsid, devid, found_transid, path,
886                                 current->comm, task_pid_nr(current));
887
888         } else if (!device->name || strcmp(device->name->str, path)) {
889                 /*
890                  * When FS is already mounted.
891                  * 1. If you are here and if the device->name is NULL that
892                  *    means this device was missing at time of FS mount.
893                  * 2. If you are here and if the device->name is different
894                  *    from 'path' that means either
895                  *      a. The same device disappeared and reappeared with
896                  *         different name. or
897                  *      b. The missing-disk-which-was-replaced, has
898                  *         reappeared now.
899                  *
900                  * We must allow 1 and 2a above. But 2b would be a spurious
901                  * and unintentional.
902                  *
903                  * Further in case of 1 and 2a above, the disk at 'path'
904                  * would have missed some transaction when it was away and
905                  * in case of 2a the stale bdev has to be updated as well.
906                  * 2b must not be allowed at all time.
907                  */
908
909                 /*
910                  * For now, we do allow update to btrfs_fs_device through the
911                  * btrfs dev scan cli after FS has been mounted.  We're still
912                  * tracking a problem where systems fail mount by subvolume id
913                  * when we reject replacement on a mounted FS.
914                  */
915                 if (!fs_devices->opened && found_transid < device->generation) {
916                         /*
917                          * That is if the FS is _not_ mounted and if you
918                          * are here, that means there is more than one
919                          * disk with same uuid and devid.We keep the one
920                          * with larger generation number or the last-in if
921                          * generation are equal.
922                          */
923                         mutex_unlock(&fs_devices->device_list_mutex);
924                         return ERR_PTR(-EEXIST);
925                 }
926
927                 /*
928                  * We are going to replace the device path for a given devid,
929                  * make sure it's the same device if the device is mounted
930                  */
931                 if (device->bdev) {
932                         struct block_device *path_bdev;
933
934                         path_bdev = lookup_bdev(path);
935                         if (IS_ERR(path_bdev)) {
936                                 mutex_unlock(&fs_devices->device_list_mutex);
937                                 return ERR_CAST(path_bdev);
938                         }
939
940                         if (device->bdev != path_bdev) {
941                                 bdput(path_bdev);
942                                 mutex_unlock(&fs_devices->device_list_mutex);
943                                 btrfs_warn_in_rcu(device->fs_info,
944                         "duplicate device fsid:devid for %pU:%llu old:%s new:%s",
945                                         disk_super->fsid, devid,
946                                         rcu_str_deref(device->name), path);
947                                 return ERR_PTR(-EEXIST);
948                         }
949                         bdput(path_bdev);
950                         btrfs_info_in_rcu(device->fs_info,
951                                 "device fsid %pU devid %llu moved old:%s new:%s",
952                                 disk_super->fsid, devid,
953                                 rcu_str_deref(device->name), path);
954                 }
955
956                 name = rcu_string_strdup(path, GFP_NOFS);
957                 if (!name) {
958                         mutex_unlock(&fs_devices->device_list_mutex);
959                         return ERR_PTR(-ENOMEM);
960                 }
961                 rcu_string_free(device->name);
962                 rcu_assign_pointer(device->name, name);
963                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
964                         fs_devices->missing_devices--;
965                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
966                 }
967         }
968
969         /*
970          * Unmount does not free the btrfs_device struct but would zero
971          * generation along with most of the other members. So just update
972          * it back. We need it to pick the disk with largest generation
973          * (as above).
974          */
975         if (!fs_devices->opened) {
976                 device->generation = found_transid;
977                 fs_devices->latest_generation = max_t(u64, found_transid,
978                                                 fs_devices->latest_generation);
979         }
980
981         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
982
983         mutex_unlock(&fs_devices->device_list_mutex);
984         return device;
985 }
986
987 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
988 {
989         struct btrfs_fs_devices *fs_devices;
990         struct btrfs_device *device;
991         struct btrfs_device *orig_dev;
992         int ret = 0;
993
994         fs_devices = alloc_fs_devices(orig->fsid, NULL);
995         if (IS_ERR(fs_devices))
996                 return fs_devices;
997
998         mutex_lock(&orig->device_list_mutex);
999         fs_devices->total_devices = orig->total_devices;
1000
1001         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1002                 struct rcu_string *name;
1003
1004                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1005                                             orig_dev->uuid);
1006                 if (IS_ERR(device)) {
1007                         ret = PTR_ERR(device);
1008                         goto error;
1009                 }
1010
1011                 /*
1012                  * This is ok to do without rcu read locked because we hold the
1013                  * uuid mutex so nothing we touch in here is going to disappear.
1014                  */
1015                 if (orig_dev->name) {
1016                         name = rcu_string_strdup(orig_dev->name->str,
1017                                         GFP_KERNEL);
1018                         if (!name) {
1019                                 btrfs_free_device(device);
1020                                 ret = -ENOMEM;
1021                                 goto error;
1022                         }
1023                         rcu_assign_pointer(device->name, name);
1024                 }
1025
1026                 list_add(&device->dev_list, &fs_devices->devices);
1027                 device->fs_devices = fs_devices;
1028                 fs_devices->num_devices++;
1029         }
1030         mutex_unlock(&orig->device_list_mutex);
1031         return fs_devices;
1032 error:
1033         mutex_unlock(&orig->device_list_mutex);
1034         free_fs_devices(fs_devices);
1035         return ERR_PTR(ret);
1036 }
1037
1038 /*
1039  * After we have read the system tree and know devids belonging to
1040  * this filesystem, remove the device which does not belong there.
1041  */
1042 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1043 {
1044         struct btrfs_device *device, *next;
1045         struct btrfs_device *latest_dev = NULL;
1046
1047         mutex_lock(&uuid_mutex);
1048 again:
1049         /* This is the initialized path, it is safe to release the devices. */
1050         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1051                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1052                                                         &device->dev_state)) {
1053                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1054                              &device->dev_state) &&
1055                             !test_bit(BTRFS_DEV_STATE_MISSING,
1056                                       &device->dev_state) &&
1057                              (!latest_dev ||
1058                               device->generation > latest_dev->generation)) {
1059                                 latest_dev = device;
1060                         }
1061                         continue;
1062                 }
1063
1064                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1065                         /*
1066                          * In the first step, keep the device which has
1067                          * the correct fsid and the devid that is used
1068                          * for the dev_replace procedure.
1069                          * In the second step, the dev_replace state is
1070                          * read from the device tree and it is known
1071                          * whether the procedure is really active or
1072                          * not, which means whether this device is
1073                          * used or whether it should be removed.
1074                          */
1075                         if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1076                                                   &device->dev_state)) {
1077                                 continue;
1078                         }
1079                 }
1080                 if (device->bdev) {
1081                         blkdev_put(device->bdev, device->mode);
1082                         device->bdev = NULL;
1083                         fs_devices->open_devices--;
1084                 }
1085                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1086                         list_del_init(&device->dev_alloc_list);
1087                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1088                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1089                                       &device->dev_state))
1090                                 fs_devices->rw_devices--;
1091                 }
1092                 list_del_init(&device->dev_list);
1093                 fs_devices->num_devices--;
1094                 btrfs_free_device(device);
1095         }
1096
1097         if (fs_devices->seed) {
1098                 fs_devices = fs_devices->seed;
1099                 goto again;
1100         }
1101
1102         fs_devices->latest_bdev = latest_dev->bdev;
1103
1104         mutex_unlock(&uuid_mutex);
1105 }
1106
1107 static void btrfs_close_bdev(struct btrfs_device *device)
1108 {
1109         if (!device->bdev)
1110                 return;
1111
1112         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1113                 sync_blockdev(device->bdev);
1114                 invalidate_bdev(device->bdev);
1115         }
1116
1117         blkdev_put(device->bdev, device->mode);
1118 }
1119
1120 static void btrfs_close_one_device(struct btrfs_device *device)
1121 {
1122         struct btrfs_fs_devices *fs_devices = device->fs_devices;
1123
1124         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1125             device->devid != BTRFS_DEV_REPLACE_DEVID) {
1126                 list_del_init(&device->dev_alloc_list);
1127                 fs_devices->rw_devices--;
1128         }
1129
1130         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1131                 fs_devices->missing_devices--;
1132
1133         btrfs_close_bdev(device);
1134         if (device->bdev) {
1135                 fs_devices->open_devices--;
1136                 device->bdev = NULL;
1137         }
1138         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1139
1140         device->fs_info = NULL;
1141         atomic_set(&device->dev_stats_ccnt, 0);
1142         extent_io_tree_release(&device->alloc_state);
1143
1144         /* Verify the device is back in a pristine state  */
1145         ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1146         ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1147         ASSERT(list_empty(&device->dev_alloc_list));
1148         ASSERT(list_empty(&device->post_commit_list));
1149         ASSERT(atomic_read(&device->reada_in_flight) == 0);
1150 }
1151
1152 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1153 {
1154         struct btrfs_device *device, *tmp;
1155
1156         if (--fs_devices->opened > 0)
1157                 return 0;
1158
1159         mutex_lock(&fs_devices->device_list_mutex);
1160         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1161                 btrfs_close_one_device(device);
1162         }
1163         mutex_unlock(&fs_devices->device_list_mutex);
1164
1165         WARN_ON(fs_devices->open_devices);
1166         WARN_ON(fs_devices->rw_devices);
1167         fs_devices->opened = 0;
1168         fs_devices->seeding = false;
1169
1170         return 0;
1171 }
1172
1173 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1174 {
1175         struct btrfs_fs_devices *seed_devices = NULL;
1176         int ret;
1177
1178         mutex_lock(&uuid_mutex);
1179         ret = close_fs_devices(fs_devices);
1180         if (!fs_devices->opened) {
1181                 seed_devices = fs_devices->seed;
1182                 fs_devices->seed = NULL;
1183         }
1184         mutex_unlock(&uuid_mutex);
1185
1186         while (seed_devices) {
1187                 fs_devices = seed_devices;
1188                 seed_devices = fs_devices->seed;
1189                 close_fs_devices(fs_devices);
1190                 free_fs_devices(fs_devices);
1191         }
1192         return ret;
1193 }
1194
1195 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1196                                 fmode_t flags, void *holder)
1197 {
1198         struct btrfs_device *device;
1199         struct btrfs_device *latest_dev = NULL;
1200
1201         flags |= FMODE_EXCL;
1202
1203         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1204                 /* Just open everything we can; ignore failures here */
1205                 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1206                         continue;
1207
1208                 if (!latest_dev ||
1209                     device->generation > latest_dev->generation)
1210                         latest_dev = device;
1211         }
1212         if (fs_devices->open_devices == 0)
1213                 return -EINVAL;
1214
1215         fs_devices->opened = 1;
1216         fs_devices->latest_bdev = latest_dev->bdev;
1217         fs_devices->total_rw_bytes = 0;
1218         fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1219
1220         return 0;
1221 }
1222
1223 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1224 {
1225         struct btrfs_device *dev1, *dev2;
1226
1227         dev1 = list_entry(a, struct btrfs_device, dev_list);
1228         dev2 = list_entry(b, struct btrfs_device, dev_list);
1229
1230         if (dev1->devid < dev2->devid)
1231                 return -1;
1232         else if (dev1->devid > dev2->devid)
1233                 return 1;
1234         return 0;
1235 }
1236
1237 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1238                        fmode_t flags, void *holder)
1239 {
1240         int ret;
1241
1242         lockdep_assert_held(&uuid_mutex);
1243         /*
1244          * The device_list_mutex cannot be taken here in case opening the
1245          * underlying device takes further locks like bd_mutex.
1246          *
1247          * We also don't need the lock here as this is called during mount and
1248          * exclusion is provided by uuid_mutex
1249          */
1250
1251         if (fs_devices->opened) {
1252                 fs_devices->opened++;
1253                 ret = 0;
1254         } else {
1255                 list_sort(NULL, &fs_devices->devices, devid_cmp);
1256                 ret = open_fs_devices(fs_devices, flags, holder);
1257         }
1258
1259         return ret;
1260 }
1261
1262 void btrfs_release_disk_super(struct btrfs_super_block *super)
1263 {
1264         struct page *page = virt_to_page(super);
1265
1266         put_page(page);
1267 }
1268
1269 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1270                                                        u64 bytenr)
1271 {
1272         struct btrfs_super_block *disk_super;
1273         struct page *page;
1274         void *p;
1275         pgoff_t index;
1276
1277         /* make sure our super fits in the device */
1278         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1279                 return ERR_PTR(-EINVAL);
1280
1281         /* make sure our super fits in the page */
1282         if (sizeof(*disk_super) > PAGE_SIZE)
1283                 return ERR_PTR(-EINVAL);
1284
1285         /* make sure our super doesn't straddle pages on disk */
1286         index = bytenr >> PAGE_SHIFT;
1287         if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1288                 return ERR_PTR(-EINVAL);
1289
1290         /* pull in the page with our super */
1291         page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1292
1293         if (IS_ERR(page))
1294                 return ERR_CAST(page);
1295
1296         p = page_address(page);
1297
1298         /* align our pointer to the offset of the super block */
1299         disk_super = p + offset_in_page(bytenr);
1300
1301         if (btrfs_super_bytenr(disk_super) != bytenr ||
1302             btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1303                 btrfs_release_disk_super(p);
1304                 return ERR_PTR(-EINVAL);
1305         }
1306
1307         if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1308                 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1309
1310         return disk_super;
1311 }
1312
1313 int btrfs_forget_devices(const char *path)
1314 {
1315         int ret;
1316
1317         mutex_lock(&uuid_mutex);
1318         ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1319         mutex_unlock(&uuid_mutex);
1320
1321         return ret;
1322 }
1323
1324 /*
1325  * Look for a btrfs signature on a device. This may be called out of the mount path
1326  * and we are not allowed to call set_blocksize during the scan. The superblock
1327  * is read via pagecache
1328  */
1329 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1330                                            void *holder)
1331 {
1332         struct btrfs_super_block *disk_super;
1333         bool new_device_added = false;
1334         struct btrfs_device *device = NULL;
1335         struct block_device *bdev;
1336         u64 bytenr;
1337
1338         lockdep_assert_held(&uuid_mutex);
1339
1340         /*
1341          * we would like to check all the supers, but that would make
1342          * a btrfs mount succeed after a mkfs from a different FS.
1343          * So, we need to add a special mount option to scan for
1344          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1345          */
1346         bytenr = btrfs_sb_offset(0);
1347         flags |= FMODE_EXCL;
1348
1349         bdev = blkdev_get_by_path(path, flags, holder);
1350         if (IS_ERR(bdev))
1351                 return ERR_CAST(bdev);
1352
1353         disk_super = btrfs_read_disk_super(bdev, bytenr);
1354         if (IS_ERR(disk_super)) {
1355                 device = ERR_CAST(disk_super);
1356                 goto error_bdev_put;
1357         }
1358
1359         device = device_list_add(path, disk_super, &new_device_added);
1360         if (!IS_ERR(device)) {
1361                 if (new_device_added)
1362                         btrfs_free_stale_devices(path, device);
1363         }
1364
1365         btrfs_release_disk_super(disk_super);
1366
1367 error_bdev_put:
1368         blkdev_put(bdev, flags);
1369
1370         return device;
1371 }
1372
1373 /*
1374  * Try to find a chunk that intersects [start, start + len] range and when one
1375  * such is found, record the end of it in *start
1376  */
1377 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1378                                     u64 len)
1379 {
1380         u64 physical_start, physical_end;
1381
1382         lockdep_assert_held(&device->fs_info->chunk_mutex);
1383
1384         if (!find_first_extent_bit(&device->alloc_state, *start,
1385                                    &physical_start, &physical_end,
1386                                    CHUNK_ALLOCATED, NULL)) {
1387
1388                 if (in_range(physical_start, *start, len) ||
1389                     in_range(*start, physical_start,
1390                              physical_end - physical_start)) {
1391                         *start = physical_end + 1;
1392                         return true;
1393                 }
1394         }
1395         return false;
1396 }
1397
1398 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1399 {
1400         switch (device->fs_devices->chunk_alloc_policy) {
1401         case BTRFS_CHUNK_ALLOC_REGULAR:
1402                 /*
1403                  * We don't want to overwrite the superblock on the drive nor
1404                  * any area used by the boot loader (grub for example), so we
1405                  * make sure to start at an offset of at least 1MB.
1406                  */
1407                 return max_t(u64, start, SZ_1M);
1408         default:
1409                 BUG();
1410         }
1411 }
1412
1413 /**
1414  * dev_extent_hole_check - check if specified hole is suitable for allocation
1415  * @device:     the device which we have the hole
1416  * @hole_start: starting position of the hole
1417  * @hole_size:  the size of the hole
1418  * @num_bytes:  the size of the free space that we need
1419  *
1420  * This function may modify @hole_start and @hole_end to reflect the suitable
1421  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1422  */
1423 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1424                                   u64 *hole_size, u64 num_bytes)
1425 {
1426         bool changed = false;
1427         u64 hole_end = *hole_start + *hole_size;
1428
1429         /*
1430          * Check before we set max_hole_start, otherwise we could end up
1431          * sending back this offset anyway.
1432          */
1433         if (contains_pending_extent(device, hole_start, *hole_size)) {
1434                 if (hole_end >= *hole_start)
1435                         *hole_size = hole_end - *hole_start;
1436                 else
1437                         *hole_size = 0;
1438                 changed = true;
1439         }
1440
1441         switch (device->fs_devices->chunk_alloc_policy) {
1442         case BTRFS_CHUNK_ALLOC_REGULAR:
1443                 /* No extra check */
1444                 break;
1445         default:
1446                 BUG();
1447         }
1448
1449         return changed;
1450 }
1451
1452 /*
1453  * find_free_dev_extent_start - find free space in the specified device
1454  * @device:       the device which we search the free space in
1455  * @num_bytes:    the size of the free space that we need
1456  * @search_start: the position from which to begin the search
1457  * @start:        store the start of the free space.
1458  * @len:          the size of the free space. that we find, or the size
1459  *                of the max free space if we don't find suitable free space
1460  *
1461  * this uses a pretty simple search, the expectation is that it is
1462  * called very infrequently and that a given device has a small number
1463  * of extents
1464  *
1465  * @start is used to store the start of the free space if we find. But if we
1466  * don't find suitable free space, it will be used to store the start position
1467  * of the max free space.
1468  *
1469  * @len is used to store the size of the free space that we find.
1470  * But if we don't find suitable free space, it is used to store the size of
1471  * the max free space.
1472  *
1473  * NOTE: This function will search *commit* root of device tree, and does extra
1474  * check to ensure dev extents are not double allocated.
1475  * This makes the function safe to allocate dev extents but may not report
1476  * correct usable device space, as device extent freed in current transaction
1477  * is not reported as avaiable.
1478  */
1479 static int find_free_dev_extent_start(struct btrfs_device *device,
1480                                 u64 num_bytes, u64 search_start, u64 *start,
1481                                 u64 *len)
1482 {
1483         struct btrfs_fs_info *fs_info = device->fs_info;
1484         struct btrfs_root *root = fs_info->dev_root;
1485         struct btrfs_key key;
1486         struct btrfs_dev_extent *dev_extent;
1487         struct btrfs_path *path;
1488         u64 hole_size;
1489         u64 max_hole_start;
1490         u64 max_hole_size;
1491         u64 extent_end;
1492         u64 search_end = device->total_bytes;
1493         int ret;
1494         int slot;
1495         struct extent_buffer *l;
1496
1497         search_start = dev_extent_search_start(device, search_start);
1498
1499         path = btrfs_alloc_path();
1500         if (!path)
1501                 return -ENOMEM;
1502
1503         max_hole_start = search_start;
1504         max_hole_size = 0;
1505
1506 again:
1507         if (search_start >= search_end ||
1508                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1509                 ret = -ENOSPC;
1510                 goto out;
1511         }
1512
1513         path->reada = READA_FORWARD;
1514         path->search_commit_root = 1;
1515         path->skip_locking = 1;
1516
1517         key.objectid = device->devid;
1518         key.offset = search_start;
1519         key.type = BTRFS_DEV_EXTENT_KEY;
1520
1521         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1522         if (ret < 0)
1523                 goto out;
1524         if (ret > 0) {
1525                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1526                 if (ret < 0)
1527                         goto out;
1528         }
1529
1530         while (1) {
1531                 l = path->nodes[0];
1532                 slot = path->slots[0];
1533                 if (slot >= btrfs_header_nritems(l)) {
1534                         ret = btrfs_next_leaf(root, path);
1535                         if (ret == 0)
1536                                 continue;
1537                         if (ret < 0)
1538                                 goto out;
1539
1540                         break;
1541                 }
1542                 btrfs_item_key_to_cpu(l, &key, slot);
1543
1544                 if (key.objectid < device->devid)
1545                         goto next;
1546
1547                 if (key.objectid > device->devid)
1548                         break;
1549
1550                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1551                         goto next;
1552
1553                 if (key.offset > search_start) {
1554                         hole_size = key.offset - search_start;
1555                         dev_extent_hole_check(device, &search_start, &hole_size,
1556                                               num_bytes);
1557
1558                         if (hole_size > max_hole_size) {
1559                                 max_hole_start = search_start;
1560                                 max_hole_size = hole_size;
1561                         }
1562
1563                         /*
1564                          * If this free space is greater than which we need,
1565                          * it must be the max free space that we have found
1566                          * until now, so max_hole_start must point to the start
1567                          * of this free space and the length of this free space
1568                          * is stored in max_hole_size. Thus, we return
1569                          * max_hole_start and max_hole_size and go back to the
1570                          * caller.
1571                          */
1572                         if (hole_size >= num_bytes) {
1573                                 ret = 0;
1574                                 goto out;
1575                         }
1576                 }
1577
1578                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1579                 extent_end = key.offset + btrfs_dev_extent_length(l,
1580                                                                   dev_extent);
1581                 if (extent_end > search_start)
1582                         search_start = extent_end;
1583 next:
1584                 path->slots[0]++;
1585                 cond_resched();
1586         }
1587
1588         /*
1589          * At this point, search_start should be the end of
1590          * allocated dev extents, and when shrinking the device,
1591          * search_end may be smaller than search_start.
1592          */
1593         if (search_end > search_start) {
1594                 hole_size = search_end - search_start;
1595                 if (dev_extent_hole_check(device, &search_start, &hole_size,
1596                                           num_bytes)) {
1597                         btrfs_release_path(path);
1598                         goto again;
1599                 }
1600
1601                 if (hole_size > max_hole_size) {
1602                         max_hole_start = search_start;
1603                         max_hole_size = hole_size;
1604                 }
1605         }
1606
1607         /* See above. */
1608         if (max_hole_size < num_bytes)
1609                 ret = -ENOSPC;
1610         else
1611                 ret = 0;
1612
1613 out:
1614         btrfs_free_path(path);
1615         *start = max_hole_start;
1616         if (len)
1617                 *len = max_hole_size;
1618         return ret;
1619 }
1620
1621 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1622                          u64 *start, u64 *len)
1623 {
1624         /* FIXME use last free of some kind */
1625         return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1626 }
1627
1628 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1629                           struct btrfs_device *device,
1630                           u64 start, u64 *dev_extent_len)
1631 {
1632         struct btrfs_fs_info *fs_info = device->fs_info;
1633         struct btrfs_root *root = fs_info->dev_root;
1634         int ret;
1635         struct btrfs_path *path;
1636         struct btrfs_key key;
1637         struct btrfs_key found_key;
1638         struct extent_buffer *leaf = NULL;
1639         struct btrfs_dev_extent *extent = NULL;
1640
1641         path = btrfs_alloc_path();
1642         if (!path)
1643                 return -ENOMEM;
1644
1645         key.objectid = device->devid;
1646         key.offset = start;
1647         key.type = BTRFS_DEV_EXTENT_KEY;
1648 again:
1649         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1650         if (ret > 0) {
1651                 ret = btrfs_previous_item(root, path, key.objectid,
1652                                           BTRFS_DEV_EXTENT_KEY);
1653                 if (ret)
1654                         goto out;
1655                 leaf = path->nodes[0];
1656                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1657                 extent = btrfs_item_ptr(leaf, path->slots[0],
1658                                         struct btrfs_dev_extent);
1659                 BUG_ON(found_key.offset > start || found_key.offset +
1660                        btrfs_dev_extent_length(leaf, extent) < start);
1661                 key = found_key;
1662                 btrfs_release_path(path);
1663                 goto again;
1664         } else if (ret == 0) {
1665                 leaf = path->nodes[0];
1666                 extent = btrfs_item_ptr(leaf, path->slots[0],
1667                                         struct btrfs_dev_extent);
1668         } else {
1669                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1670                 goto out;
1671         }
1672
1673         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1674
1675         ret = btrfs_del_item(trans, root, path);
1676         if (ret) {
1677                 btrfs_handle_fs_error(fs_info, ret,
1678                                       "Failed to remove dev extent item");
1679         } else {
1680                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1681         }
1682 out:
1683         btrfs_free_path(path);
1684         return ret;
1685 }
1686
1687 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1688                                   struct btrfs_device *device,
1689                                   u64 chunk_offset, u64 start, u64 num_bytes)
1690 {
1691         int ret;
1692         struct btrfs_path *path;
1693         struct btrfs_fs_info *fs_info = device->fs_info;
1694         struct btrfs_root *root = fs_info->dev_root;
1695         struct btrfs_dev_extent *extent;
1696         struct extent_buffer *leaf;
1697         struct btrfs_key key;
1698
1699         WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1700         WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1701         path = btrfs_alloc_path();
1702         if (!path)
1703                 return -ENOMEM;
1704
1705         key.objectid = device->devid;
1706         key.offset = start;
1707         key.type = BTRFS_DEV_EXTENT_KEY;
1708         ret = btrfs_insert_empty_item(trans, root, path, &key,
1709                                       sizeof(*extent));
1710         if (ret)
1711                 goto out;
1712
1713         leaf = path->nodes[0];
1714         extent = btrfs_item_ptr(leaf, path->slots[0],
1715                                 struct btrfs_dev_extent);
1716         btrfs_set_dev_extent_chunk_tree(leaf, extent,
1717                                         BTRFS_CHUNK_TREE_OBJECTID);
1718         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1719                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1720         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1721
1722         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1723         btrfs_mark_buffer_dirty(leaf);
1724 out:
1725         btrfs_free_path(path);
1726         return ret;
1727 }
1728
1729 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1730 {
1731         struct extent_map_tree *em_tree;
1732         struct extent_map *em;
1733         struct rb_node *n;
1734         u64 ret = 0;
1735
1736         em_tree = &fs_info->mapping_tree;
1737         read_lock(&em_tree->lock);
1738         n = rb_last(&em_tree->map.rb_root);
1739         if (n) {
1740                 em = rb_entry(n, struct extent_map, rb_node);
1741                 ret = em->start + em->len;
1742         }
1743         read_unlock(&em_tree->lock);
1744
1745         return ret;
1746 }
1747
1748 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1749                                     u64 *devid_ret)
1750 {
1751         int ret;
1752         struct btrfs_key key;
1753         struct btrfs_key found_key;
1754         struct btrfs_path *path;
1755
1756         path = btrfs_alloc_path();
1757         if (!path)
1758                 return -ENOMEM;
1759
1760         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1761         key.type = BTRFS_DEV_ITEM_KEY;
1762         key.offset = (u64)-1;
1763
1764         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1765         if (ret < 0)
1766                 goto error;
1767
1768         if (ret == 0) {
1769                 /* Corruption */
1770                 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1771                 ret = -EUCLEAN;
1772                 goto error;
1773         }
1774
1775         ret = btrfs_previous_item(fs_info->chunk_root, path,
1776                                   BTRFS_DEV_ITEMS_OBJECTID,
1777                                   BTRFS_DEV_ITEM_KEY);
1778         if (ret) {
1779                 *devid_ret = 1;
1780         } else {
1781                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1782                                       path->slots[0]);
1783                 *devid_ret = found_key.offset + 1;
1784         }
1785         ret = 0;
1786 error:
1787         btrfs_free_path(path);
1788         return ret;
1789 }
1790
1791 /*
1792  * the device information is stored in the chunk root
1793  * the btrfs_device struct should be fully filled in
1794  */
1795 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1796                             struct btrfs_device *device)
1797 {
1798         int ret;
1799         struct btrfs_path *path;
1800         struct btrfs_dev_item *dev_item;
1801         struct extent_buffer *leaf;
1802         struct btrfs_key key;
1803         unsigned long ptr;
1804
1805         path = btrfs_alloc_path();
1806         if (!path)
1807                 return -ENOMEM;
1808
1809         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1810         key.type = BTRFS_DEV_ITEM_KEY;
1811         key.offset = device->devid;
1812
1813         ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1814                                       &key, sizeof(*dev_item));
1815         if (ret)
1816                 goto out;
1817
1818         leaf = path->nodes[0];
1819         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1820
1821         btrfs_set_device_id(leaf, dev_item, device->devid);
1822         btrfs_set_device_generation(leaf, dev_item, 0);
1823         btrfs_set_device_type(leaf, dev_item, device->type);
1824         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1825         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1826         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1827         btrfs_set_device_total_bytes(leaf, dev_item,
1828                                      btrfs_device_get_disk_total_bytes(device));
1829         btrfs_set_device_bytes_used(leaf, dev_item,
1830                                     btrfs_device_get_bytes_used(device));
1831         btrfs_set_device_group(leaf, dev_item, 0);
1832         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1833         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1834         btrfs_set_device_start_offset(leaf, dev_item, 0);
1835
1836         ptr = btrfs_device_uuid(dev_item);
1837         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1838         ptr = btrfs_device_fsid(dev_item);
1839         write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1840                             ptr, BTRFS_FSID_SIZE);
1841         btrfs_mark_buffer_dirty(leaf);
1842
1843         ret = 0;
1844 out:
1845         btrfs_free_path(path);
1846         return ret;
1847 }
1848
1849 /*
1850  * Function to update ctime/mtime for a given device path.
1851  * Mainly used for ctime/mtime based probe like libblkid.
1852  */
1853 static void update_dev_time(const char *path_name)
1854 {
1855         struct file *filp;
1856
1857         filp = filp_open(path_name, O_RDWR, 0);
1858         if (IS_ERR(filp))
1859                 return;
1860         file_update_time(filp);
1861         filp_close(filp, NULL);
1862 }
1863
1864 static int btrfs_rm_dev_item(struct btrfs_device *device)
1865 {
1866         struct btrfs_root *root = device->fs_info->chunk_root;
1867         int ret;
1868         struct btrfs_path *path;
1869         struct btrfs_key key;
1870         struct btrfs_trans_handle *trans;
1871
1872         path = btrfs_alloc_path();
1873         if (!path)
1874                 return -ENOMEM;
1875
1876         trans = btrfs_start_transaction(root, 0);
1877         if (IS_ERR(trans)) {
1878                 btrfs_free_path(path);
1879                 return PTR_ERR(trans);
1880         }
1881         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1882         key.type = BTRFS_DEV_ITEM_KEY;
1883         key.offset = device->devid;
1884
1885         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1886         if (ret) {
1887                 if (ret > 0)
1888                         ret = -ENOENT;
1889                 btrfs_abort_transaction(trans, ret);
1890                 btrfs_end_transaction(trans);
1891                 goto out;
1892         }
1893
1894         ret = btrfs_del_item(trans, root, path);
1895         if (ret) {
1896                 btrfs_abort_transaction(trans, ret);
1897                 btrfs_end_transaction(trans);
1898         }
1899
1900 out:
1901         btrfs_free_path(path);
1902         if (!ret)
1903                 ret = btrfs_commit_transaction(trans);
1904         return ret;
1905 }
1906
1907 /*
1908  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1909  * filesystem. It's up to the caller to adjust that number regarding eg. device
1910  * replace.
1911  */
1912 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1913                 u64 num_devices)
1914 {
1915         u64 all_avail;
1916         unsigned seq;
1917         int i;
1918
1919         do {
1920                 seq = read_seqbegin(&fs_info->profiles_lock);
1921
1922                 all_avail = fs_info->avail_data_alloc_bits |
1923                             fs_info->avail_system_alloc_bits |
1924                             fs_info->avail_metadata_alloc_bits;
1925         } while (read_seqretry(&fs_info->profiles_lock, seq));
1926
1927         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1928                 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1929                         continue;
1930
1931                 if (num_devices < btrfs_raid_array[i].devs_min) {
1932                         int ret = btrfs_raid_array[i].mindev_error;
1933
1934                         if (ret)
1935                                 return ret;
1936                 }
1937         }
1938
1939         return 0;
1940 }
1941
1942 static struct btrfs_device * btrfs_find_next_active_device(
1943                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1944 {
1945         struct btrfs_device *next_device;
1946
1947         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1948                 if (next_device != device &&
1949                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1950                     && next_device->bdev)
1951                         return next_device;
1952         }
1953
1954         return NULL;
1955 }
1956
1957 /*
1958  * Helper function to check if the given device is part of s_bdev / latest_bdev
1959  * and replace it with the provided or the next active device, in the context
1960  * where this function called, there should be always be another device (or
1961  * this_dev) which is active.
1962  */
1963 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1964                                      struct btrfs_device *this_dev)
1965 {
1966         struct btrfs_fs_info *fs_info = device->fs_info;
1967         struct btrfs_device *next_device;
1968
1969         if (this_dev)
1970                 next_device = this_dev;
1971         else
1972                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1973                                                                 device);
1974         ASSERT(next_device);
1975
1976         if (fs_info->sb->s_bdev &&
1977                         (fs_info->sb->s_bdev == device->bdev))
1978                 fs_info->sb->s_bdev = next_device->bdev;
1979
1980         if (fs_info->fs_devices->latest_bdev == device->bdev)
1981                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1982 }
1983
1984 /*
1985  * Return btrfs_fs_devices::num_devices excluding the device that's being
1986  * currently replaced.
1987  */
1988 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1989 {
1990         u64 num_devices = fs_info->fs_devices->num_devices;
1991
1992         down_read(&fs_info->dev_replace.rwsem);
1993         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1994                 ASSERT(num_devices > 1);
1995                 num_devices--;
1996         }
1997         up_read(&fs_info->dev_replace.rwsem);
1998
1999         return num_devices;
2000 }
2001
2002 static void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2003                                       struct block_device *bdev,
2004                                       const char *device_path)
2005 {
2006         struct btrfs_super_block *disk_super;
2007         int copy_num;
2008
2009         if (!bdev)
2010                 return;
2011
2012         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2013                 struct page *page;
2014                 int ret;
2015
2016                 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2017                 if (IS_ERR(disk_super))
2018                         continue;
2019
2020                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2021
2022                 page = virt_to_page(disk_super);
2023                 set_page_dirty(page);
2024                 lock_page(page);
2025                 /* write_on_page() unlocks the page */
2026                 ret = write_one_page(page);
2027                 if (ret)
2028                         btrfs_warn(fs_info,
2029                                 "error clearing superblock number %d (%d)",
2030                                 copy_num, ret);
2031                 btrfs_release_disk_super(disk_super);
2032
2033         }
2034
2035         /* Notify udev that device has changed */
2036         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2037
2038         /* Update ctime/mtime for device path for libblkid */
2039         update_dev_time(device_path);
2040 }
2041
2042 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2043                 u64 devid)
2044 {
2045         struct btrfs_device *device;
2046         struct btrfs_fs_devices *cur_devices;
2047         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2048         u64 num_devices;
2049         int ret = 0;
2050
2051         mutex_lock(&uuid_mutex);
2052
2053         num_devices = btrfs_num_devices(fs_info);
2054
2055         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2056         if (ret)
2057                 goto out;
2058
2059         device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2060
2061         if (IS_ERR(device)) {
2062                 if (PTR_ERR(device) == -ENOENT &&
2063                     strcmp(device_path, "missing") == 0)
2064                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2065                 else
2066                         ret = PTR_ERR(device);
2067                 goto out;
2068         }
2069
2070         if (btrfs_pinned_by_swapfile(fs_info, device)) {
2071                 btrfs_warn_in_rcu(fs_info,
2072                   "cannot remove device %s (devid %llu) due to active swapfile",
2073                                   rcu_str_deref(device->name), device->devid);
2074                 ret = -ETXTBSY;
2075                 goto out;
2076         }
2077
2078         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2079                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2080                 goto out;
2081         }
2082
2083         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2084             fs_info->fs_devices->rw_devices == 1) {
2085                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2086                 goto out;
2087         }
2088
2089         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2090                 mutex_lock(&fs_info->chunk_mutex);
2091                 list_del_init(&device->dev_alloc_list);
2092                 device->fs_devices->rw_devices--;
2093                 mutex_unlock(&fs_info->chunk_mutex);
2094         }
2095
2096         mutex_unlock(&uuid_mutex);
2097         ret = btrfs_shrink_device(device, 0);
2098         mutex_lock(&uuid_mutex);
2099         if (ret)
2100                 goto error_undo;
2101
2102         /*
2103          * TODO: the superblock still includes this device in its num_devices
2104          * counter although write_all_supers() is not locked out. This
2105          * could give a filesystem state which requires a degraded mount.
2106          */
2107         ret = btrfs_rm_dev_item(device);
2108         if (ret)
2109                 goto error_undo;
2110
2111         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2112         btrfs_scrub_cancel_dev(device);
2113
2114         /*
2115          * the device list mutex makes sure that we don't change
2116          * the device list while someone else is writing out all
2117          * the device supers. Whoever is writing all supers, should
2118          * lock the device list mutex before getting the number of
2119          * devices in the super block (super_copy). Conversely,
2120          * whoever updates the number of devices in the super block
2121          * (super_copy) should hold the device list mutex.
2122          */
2123
2124         /*
2125          * In normal cases the cur_devices == fs_devices. But in case
2126          * of deleting a seed device, the cur_devices should point to
2127          * its own fs_devices listed under the fs_devices->seed.
2128          */
2129         cur_devices = device->fs_devices;
2130         mutex_lock(&fs_devices->device_list_mutex);
2131         list_del_rcu(&device->dev_list);
2132
2133         cur_devices->num_devices--;
2134         cur_devices->total_devices--;
2135         /* Update total_devices of the parent fs_devices if it's seed */
2136         if (cur_devices != fs_devices)
2137                 fs_devices->total_devices--;
2138
2139         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2140                 cur_devices->missing_devices--;
2141
2142         btrfs_assign_next_active_device(device, NULL);
2143
2144         if (device->bdev) {
2145                 cur_devices->open_devices--;
2146                 /* remove sysfs entry */
2147                 btrfs_sysfs_remove_devices_dir(fs_devices, device);
2148         }
2149
2150         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2151         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2152         mutex_unlock(&fs_devices->device_list_mutex);
2153
2154         /*
2155          * at this point, the device is zero sized and detached from
2156          * the devices list.  All that's left is to zero out the old
2157          * supers and free the device.
2158          */
2159         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2160                 btrfs_scratch_superblocks(fs_info, device->bdev,
2161                                           device->name->str);
2162
2163         btrfs_close_bdev(device);
2164         synchronize_rcu();
2165         btrfs_free_device(device);
2166
2167         if (cur_devices->open_devices == 0) {
2168                 while (fs_devices) {
2169                         if (fs_devices->seed == cur_devices) {
2170                                 fs_devices->seed = cur_devices->seed;
2171                                 break;
2172                         }
2173                         fs_devices = fs_devices->seed;
2174                 }
2175                 cur_devices->seed = NULL;
2176                 close_fs_devices(cur_devices);
2177                 free_fs_devices(cur_devices);
2178         }
2179
2180 out:
2181         mutex_unlock(&uuid_mutex);
2182         return ret;
2183
2184 error_undo:
2185         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2186                 mutex_lock(&fs_info->chunk_mutex);
2187                 list_add(&device->dev_alloc_list,
2188                          &fs_devices->alloc_list);
2189                 device->fs_devices->rw_devices++;
2190                 mutex_unlock(&fs_info->chunk_mutex);
2191         }
2192         goto out;
2193 }
2194
2195 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2196 {
2197         struct btrfs_fs_devices *fs_devices;
2198
2199         lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2200
2201         /*
2202          * in case of fs with no seed, srcdev->fs_devices will point
2203          * to fs_devices of fs_info. However when the dev being replaced is
2204          * a seed dev it will point to the seed's local fs_devices. In short
2205          * srcdev will have its correct fs_devices in both the cases.
2206          */
2207         fs_devices = srcdev->fs_devices;
2208
2209         list_del_rcu(&srcdev->dev_list);
2210         list_del(&srcdev->dev_alloc_list);
2211         fs_devices->num_devices--;
2212         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2213                 fs_devices->missing_devices--;
2214
2215         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2216                 fs_devices->rw_devices--;
2217
2218         if (srcdev->bdev)
2219                 fs_devices->open_devices--;
2220 }
2221
2222 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2223 {
2224         struct btrfs_fs_info *fs_info = srcdev->fs_info;
2225         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2226
2227         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2228                 /* zero out the old super if it is writable */
2229                 btrfs_scratch_superblocks(fs_info, srcdev->bdev,
2230                                           srcdev->name->str);
2231         }
2232
2233         btrfs_close_bdev(srcdev);
2234         synchronize_rcu();
2235         btrfs_free_device(srcdev);
2236
2237         /* if this is no devs we rather delete the fs_devices */
2238         if (!fs_devices->num_devices) {
2239                 struct btrfs_fs_devices *tmp_fs_devices;
2240
2241                 /*
2242                  * On a mounted FS, num_devices can't be zero unless it's a
2243                  * seed. In case of a seed device being replaced, the replace
2244                  * target added to the sprout FS, so there will be no more
2245                  * device left under the seed FS.
2246                  */
2247                 ASSERT(fs_devices->seeding);
2248
2249                 tmp_fs_devices = fs_info->fs_devices;
2250                 while (tmp_fs_devices) {
2251                         if (tmp_fs_devices->seed == fs_devices) {
2252                                 tmp_fs_devices->seed = fs_devices->seed;
2253                                 break;
2254                         }
2255                         tmp_fs_devices = tmp_fs_devices->seed;
2256                 }
2257                 fs_devices->seed = NULL;
2258                 close_fs_devices(fs_devices);
2259                 free_fs_devices(fs_devices);
2260         }
2261 }
2262
2263 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2264 {
2265         struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2266
2267         mutex_lock(&fs_devices->device_list_mutex);
2268
2269         btrfs_sysfs_remove_devices_dir(fs_devices, tgtdev);
2270
2271         if (tgtdev->bdev)
2272                 fs_devices->open_devices--;
2273
2274         fs_devices->num_devices--;
2275
2276         btrfs_assign_next_active_device(tgtdev, NULL);
2277
2278         list_del_rcu(&tgtdev->dev_list);
2279
2280         mutex_unlock(&fs_devices->device_list_mutex);
2281
2282         /*
2283          * The update_dev_time() with in btrfs_scratch_superblocks()
2284          * may lead to a call to btrfs_show_devname() which will try
2285          * to hold device_list_mutex. And here this device
2286          * is already out of device list, so we don't have to hold
2287          * the device_list_mutex lock.
2288          */
2289         btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2290                                   tgtdev->name->str);
2291
2292         btrfs_close_bdev(tgtdev);
2293         synchronize_rcu();
2294         btrfs_free_device(tgtdev);
2295 }
2296
2297 static struct btrfs_device *btrfs_find_device_by_path(
2298                 struct btrfs_fs_info *fs_info, const char *device_path)
2299 {
2300         int ret = 0;
2301         struct btrfs_super_block *disk_super;
2302         u64 devid;
2303         u8 *dev_uuid;
2304         struct block_device *bdev;
2305         struct btrfs_device *device;
2306
2307         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2308                                     fs_info->bdev_holder, 0, &bdev, &disk_super);
2309         if (ret)
2310                 return ERR_PTR(ret);
2311
2312         devid = btrfs_stack_device_id(&disk_super->dev_item);
2313         dev_uuid = disk_super->dev_item.uuid;
2314         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2315                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2316                                            disk_super->metadata_uuid, true);
2317         else
2318                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2319                                            disk_super->fsid, true);
2320
2321         btrfs_release_disk_super(disk_super);
2322         if (!device)
2323                 device = ERR_PTR(-ENOENT);
2324         blkdev_put(bdev, FMODE_READ);
2325         return device;
2326 }
2327
2328 /*
2329  * Lookup a device given by device id, or the path if the id is 0.
2330  */
2331 struct btrfs_device *btrfs_find_device_by_devspec(
2332                 struct btrfs_fs_info *fs_info, u64 devid,
2333                 const char *device_path)
2334 {
2335         struct btrfs_device *device;
2336
2337         if (devid) {
2338                 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2339                                            NULL, true);
2340                 if (!device)
2341                         return ERR_PTR(-ENOENT);
2342                 return device;
2343         }
2344
2345         if (!device_path || !device_path[0])
2346                 return ERR_PTR(-EINVAL);
2347
2348         if (strcmp(device_path, "missing") == 0) {
2349                 /* Find first missing device */
2350                 list_for_each_entry(device, &fs_info->fs_devices->devices,
2351                                     dev_list) {
2352                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2353                                      &device->dev_state) && !device->bdev)
2354                                 return device;
2355                 }
2356                 return ERR_PTR(-ENOENT);
2357         }
2358
2359         return btrfs_find_device_by_path(fs_info, device_path);
2360 }
2361
2362 /*
2363  * does all the dirty work required for changing file system's UUID.
2364  */
2365 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2366 {
2367         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2368         struct btrfs_fs_devices *old_devices;
2369         struct btrfs_fs_devices *seed_devices;
2370         struct btrfs_super_block *disk_super = fs_info->super_copy;
2371         struct btrfs_device *device;
2372         u64 super_flags;
2373
2374         lockdep_assert_held(&uuid_mutex);
2375         if (!fs_devices->seeding)
2376                 return -EINVAL;
2377
2378         seed_devices = alloc_fs_devices(NULL, NULL);
2379         if (IS_ERR(seed_devices))
2380                 return PTR_ERR(seed_devices);
2381
2382         old_devices = clone_fs_devices(fs_devices);
2383         if (IS_ERR(old_devices)) {
2384                 kfree(seed_devices);
2385                 return PTR_ERR(old_devices);
2386         }
2387
2388         list_add(&old_devices->fs_list, &fs_uuids);
2389
2390         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2391         seed_devices->opened = 1;
2392         INIT_LIST_HEAD(&seed_devices->devices);
2393         INIT_LIST_HEAD(&seed_devices->alloc_list);
2394         mutex_init(&seed_devices->device_list_mutex);
2395
2396         mutex_lock(&fs_devices->device_list_mutex);
2397         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2398                               synchronize_rcu);
2399         list_for_each_entry(device, &seed_devices->devices, dev_list)
2400                 device->fs_devices = seed_devices;
2401
2402         mutex_lock(&fs_info->chunk_mutex);
2403         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2404         mutex_unlock(&fs_info->chunk_mutex);
2405
2406         fs_devices->seeding = false;
2407         fs_devices->num_devices = 0;
2408         fs_devices->open_devices = 0;
2409         fs_devices->missing_devices = 0;
2410         fs_devices->rotating = false;
2411         fs_devices->seed = seed_devices;
2412
2413         generate_random_uuid(fs_devices->fsid);
2414         memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2415         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2416         mutex_unlock(&fs_devices->device_list_mutex);
2417
2418         super_flags = btrfs_super_flags(disk_super) &
2419                       ~BTRFS_SUPER_FLAG_SEEDING;
2420         btrfs_set_super_flags(disk_super, super_flags);
2421
2422         return 0;
2423 }
2424
2425 /*
2426  * Store the expected generation for seed devices in device items.
2427  */
2428 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2429 {
2430         struct btrfs_fs_info *fs_info = trans->fs_info;
2431         struct btrfs_root *root = fs_info->chunk_root;
2432         struct btrfs_path *path;
2433         struct extent_buffer *leaf;
2434         struct btrfs_dev_item *dev_item;
2435         struct btrfs_device *device;
2436         struct btrfs_key key;
2437         u8 fs_uuid[BTRFS_FSID_SIZE];
2438         u8 dev_uuid[BTRFS_UUID_SIZE];
2439         u64 devid;
2440         int ret;
2441
2442         path = btrfs_alloc_path();
2443         if (!path)
2444                 return -ENOMEM;
2445
2446         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2447         key.offset = 0;
2448         key.type = BTRFS_DEV_ITEM_KEY;
2449
2450         while (1) {
2451                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2452                 if (ret < 0)
2453                         goto error;
2454
2455                 leaf = path->nodes[0];
2456 next_slot:
2457                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2458                         ret = btrfs_next_leaf(root, path);
2459                         if (ret > 0)
2460                                 break;
2461                         if (ret < 0)
2462                                 goto error;
2463                         leaf = path->nodes[0];
2464                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2465                         btrfs_release_path(path);
2466                         continue;
2467                 }
2468
2469                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2470                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2471                     key.type != BTRFS_DEV_ITEM_KEY)
2472                         break;
2473
2474                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2475                                           struct btrfs_dev_item);
2476                 devid = btrfs_device_id(leaf, dev_item);
2477                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2478                                    BTRFS_UUID_SIZE);
2479                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2480                                    BTRFS_FSID_SIZE);
2481                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2482                                            fs_uuid, true);
2483                 BUG_ON(!device); /* Logic error */
2484
2485                 if (device->fs_devices->seeding) {
2486                         btrfs_set_device_generation(leaf, dev_item,
2487                                                     device->generation);
2488                         btrfs_mark_buffer_dirty(leaf);
2489                 }
2490
2491                 path->slots[0]++;
2492                 goto next_slot;
2493         }
2494         ret = 0;
2495 error:
2496         btrfs_free_path(path);
2497         return ret;
2498 }
2499
2500 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2501 {
2502         struct btrfs_root *root = fs_info->dev_root;
2503         struct request_queue *q;
2504         struct btrfs_trans_handle *trans;
2505         struct btrfs_device *device;
2506         struct block_device *bdev;
2507         struct super_block *sb = fs_info->sb;
2508         struct rcu_string *name;
2509         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2510         u64 orig_super_total_bytes;
2511         u64 orig_super_num_devices;
2512         int seeding_dev = 0;
2513         int ret = 0;
2514         bool unlocked = false;
2515
2516         if (sb_rdonly(sb) && !fs_devices->seeding)
2517                 return -EROFS;
2518
2519         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2520                                   fs_info->bdev_holder);
2521         if (IS_ERR(bdev))
2522                 return PTR_ERR(bdev);
2523
2524         if (fs_devices->seeding) {
2525                 seeding_dev = 1;
2526                 down_write(&sb->s_umount);
2527                 mutex_lock(&uuid_mutex);
2528         }
2529
2530         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2531
2532         mutex_lock(&fs_devices->device_list_mutex);
2533         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2534                 if (device->bdev == bdev) {
2535                         ret = -EEXIST;
2536                         mutex_unlock(
2537                                 &fs_devices->device_list_mutex);
2538                         goto error;
2539                 }
2540         }
2541         mutex_unlock(&fs_devices->device_list_mutex);
2542
2543         device = btrfs_alloc_device(fs_info, NULL, NULL);
2544         if (IS_ERR(device)) {
2545                 /* we can safely leave the fs_devices entry around */
2546                 ret = PTR_ERR(device);
2547                 goto error;
2548         }
2549
2550         name = rcu_string_strdup(device_path, GFP_KERNEL);
2551         if (!name) {
2552                 ret = -ENOMEM;
2553                 goto error_free_device;
2554         }
2555         rcu_assign_pointer(device->name, name);
2556
2557         trans = btrfs_start_transaction(root, 0);
2558         if (IS_ERR(trans)) {
2559                 ret = PTR_ERR(trans);
2560                 goto error_free_device;
2561         }
2562
2563         q = bdev_get_queue(bdev);
2564         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2565         device->generation = trans->transid;
2566         device->io_width = fs_info->sectorsize;
2567         device->io_align = fs_info->sectorsize;
2568         device->sector_size = fs_info->sectorsize;
2569         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2570                                          fs_info->sectorsize);
2571         device->disk_total_bytes = device->total_bytes;
2572         device->commit_total_bytes = device->total_bytes;
2573         device->fs_info = fs_info;
2574         device->bdev = bdev;
2575         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2576         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2577         device->mode = FMODE_EXCL;
2578         device->dev_stats_valid = 1;
2579         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2580
2581         if (seeding_dev) {
2582                 sb->s_flags &= ~SB_RDONLY;
2583                 ret = btrfs_prepare_sprout(fs_info);
2584                 if (ret) {
2585                         btrfs_abort_transaction(trans, ret);
2586                         goto error_trans;
2587                 }
2588         }
2589
2590         device->fs_devices = fs_devices;
2591
2592         mutex_lock(&fs_devices->device_list_mutex);
2593         mutex_lock(&fs_info->chunk_mutex);
2594         list_add_rcu(&device->dev_list, &fs_devices->devices);
2595         list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2596         fs_devices->num_devices++;
2597         fs_devices->open_devices++;
2598         fs_devices->rw_devices++;
2599         fs_devices->total_devices++;
2600         fs_devices->total_rw_bytes += device->total_bytes;
2601
2602         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2603
2604         if (!blk_queue_nonrot(q))
2605                 fs_devices->rotating = true;
2606
2607         orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2608         btrfs_set_super_total_bytes(fs_info->super_copy,
2609                 round_down(orig_super_total_bytes + device->total_bytes,
2610                            fs_info->sectorsize));
2611
2612         orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2613         btrfs_set_super_num_devices(fs_info->super_copy,
2614                                     orig_super_num_devices + 1);
2615
2616         /* add sysfs device entry */
2617         btrfs_sysfs_add_devices_dir(fs_devices, device);
2618
2619         /*
2620          * we've got more storage, clear any full flags on the space
2621          * infos
2622          */
2623         btrfs_clear_space_info_full(fs_info);
2624
2625         mutex_unlock(&fs_info->chunk_mutex);
2626         mutex_unlock(&fs_devices->device_list_mutex);
2627
2628         if (seeding_dev) {
2629                 mutex_lock(&fs_info->chunk_mutex);
2630                 ret = init_first_rw_device(trans);
2631                 mutex_unlock(&fs_info->chunk_mutex);
2632                 if (ret) {
2633                         btrfs_abort_transaction(trans, ret);
2634                         goto error_sysfs;
2635                 }
2636         }
2637
2638         ret = btrfs_add_dev_item(trans, device);
2639         if (ret) {
2640                 btrfs_abort_transaction(trans, ret);
2641                 goto error_sysfs;
2642         }
2643
2644         if (seeding_dev) {
2645                 ret = btrfs_finish_sprout(trans);
2646                 if (ret) {
2647                         btrfs_abort_transaction(trans, ret);
2648                         goto error_sysfs;
2649                 }
2650
2651                 btrfs_sysfs_update_sprout_fsid(fs_devices,
2652                                 fs_info->fs_devices->fsid);
2653         }
2654
2655         ret = btrfs_commit_transaction(trans);
2656
2657         if (seeding_dev) {
2658                 mutex_unlock(&uuid_mutex);
2659                 up_write(&sb->s_umount);
2660                 unlocked = true;
2661
2662                 if (ret) /* transaction commit */
2663                         return ret;
2664
2665                 ret = btrfs_relocate_sys_chunks(fs_info);
2666                 if (ret < 0)
2667                         btrfs_handle_fs_error(fs_info, ret,
2668                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2669                 trans = btrfs_attach_transaction(root);
2670                 if (IS_ERR(trans)) {
2671                         if (PTR_ERR(trans) == -ENOENT)
2672                                 return 0;
2673                         ret = PTR_ERR(trans);
2674                         trans = NULL;
2675                         goto error_sysfs;
2676                 }
2677                 ret = btrfs_commit_transaction(trans);
2678         }
2679
2680         /*
2681          * Now that we have written a new super block to this device, check all
2682          * other fs_devices list if device_path alienates any other scanned
2683          * device.
2684          * We can ignore the return value as it typically returns -EINVAL and
2685          * only succeeds if the device was an alien.
2686          */
2687         btrfs_forget_devices(device_path);
2688
2689         /* Update ctime/mtime for blkid or udev */
2690         update_dev_time(device_path);
2691
2692         return ret;
2693
2694 error_sysfs:
2695         btrfs_sysfs_remove_devices_dir(fs_devices, device);
2696         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2697         mutex_lock(&fs_info->chunk_mutex);
2698         list_del_rcu(&device->dev_list);
2699         list_del(&device->dev_alloc_list);
2700         fs_info->fs_devices->num_devices--;
2701         fs_info->fs_devices->open_devices--;
2702         fs_info->fs_devices->rw_devices--;
2703         fs_info->fs_devices->total_devices--;
2704         fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2705         atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2706         btrfs_set_super_total_bytes(fs_info->super_copy,
2707                                     orig_super_total_bytes);
2708         btrfs_set_super_num_devices(fs_info->super_copy,
2709                                     orig_super_num_devices);
2710         mutex_unlock(&fs_info->chunk_mutex);
2711         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2712 error_trans:
2713         if (seeding_dev)
2714                 sb->s_flags |= SB_RDONLY;
2715         if (trans)
2716                 btrfs_end_transaction(trans);
2717 error_free_device:
2718         btrfs_free_device(device);
2719 error:
2720         blkdev_put(bdev, FMODE_EXCL);
2721         if (seeding_dev && !unlocked) {
2722                 mutex_unlock(&uuid_mutex);
2723                 up_write(&sb->s_umount);
2724         }
2725         return ret;
2726 }
2727
2728 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2729                                         struct btrfs_device *device)
2730 {
2731         int ret;
2732         struct btrfs_path *path;
2733         struct btrfs_root *root = device->fs_info->chunk_root;
2734         struct btrfs_dev_item *dev_item;
2735         struct extent_buffer *leaf;
2736         struct btrfs_key key;
2737
2738         path = btrfs_alloc_path();
2739         if (!path)
2740                 return -ENOMEM;
2741
2742         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2743         key.type = BTRFS_DEV_ITEM_KEY;
2744         key.offset = device->devid;
2745
2746         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2747         if (ret < 0)
2748                 goto out;
2749
2750         if (ret > 0) {
2751                 ret = -ENOENT;
2752                 goto out;
2753         }
2754
2755         leaf = path->nodes[0];
2756         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2757
2758         btrfs_set_device_id(leaf, dev_item, device->devid);
2759         btrfs_set_device_type(leaf, dev_item, device->type);
2760         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2761         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2762         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2763         btrfs_set_device_total_bytes(leaf, dev_item,
2764                                      btrfs_device_get_disk_total_bytes(device));
2765         btrfs_set_device_bytes_used(leaf, dev_item,
2766                                     btrfs_device_get_bytes_used(device));
2767         btrfs_mark_buffer_dirty(leaf);
2768
2769 out:
2770         btrfs_free_path(path);
2771         return ret;
2772 }
2773
2774 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2775                       struct btrfs_device *device, u64 new_size)
2776 {
2777         struct btrfs_fs_info *fs_info = device->fs_info;
2778         struct btrfs_super_block *super_copy = fs_info->super_copy;
2779         u64 old_total;
2780         u64 diff;
2781
2782         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2783                 return -EACCES;
2784
2785         new_size = round_down(new_size, fs_info->sectorsize);
2786
2787         mutex_lock(&fs_info->chunk_mutex);
2788         old_total = btrfs_super_total_bytes(super_copy);
2789         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2790
2791         if (new_size <= device->total_bytes ||
2792             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2793                 mutex_unlock(&fs_info->chunk_mutex);
2794                 return -EINVAL;
2795         }
2796
2797         btrfs_set_super_total_bytes(super_copy,
2798                         round_down(old_total + diff, fs_info->sectorsize));
2799         device->fs_devices->total_rw_bytes += diff;
2800
2801         btrfs_device_set_total_bytes(device, new_size);
2802         btrfs_device_set_disk_total_bytes(device, new_size);
2803         btrfs_clear_space_info_full(device->fs_info);
2804         if (list_empty(&device->post_commit_list))
2805                 list_add_tail(&device->post_commit_list,
2806                               &trans->transaction->dev_update_list);
2807         mutex_unlock(&fs_info->chunk_mutex);
2808
2809         return btrfs_update_device(trans, device);
2810 }
2811
2812 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2813 {
2814         struct btrfs_fs_info *fs_info = trans->fs_info;
2815         struct btrfs_root *root = fs_info->chunk_root;
2816         int ret;
2817         struct btrfs_path *path;
2818         struct btrfs_key key;
2819
2820         path = btrfs_alloc_path();
2821         if (!path)
2822                 return -ENOMEM;
2823
2824         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2825         key.offset = chunk_offset;
2826         key.type = BTRFS_CHUNK_ITEM_KEY;
2827
2828         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2829         if (ret < 0)
2830                 goto out;
2831         else if (ret > 0) { /* Logic error or corruption */
2832                 btrfs_handle_fs_error(fs_info, -ENOENT,
2833                                       "Failed lookup while freeing chunk.");
2834                 ret = -ENOENT;
2835                 goto out;
2836         }
2837
2838         ret = btrfs_del_item(trans, root, path);
2839         if (ret < 0)
2840                 btrfs_handle_fs_error(fs_info, ret,
2841                                       "Failed to delete chunk item.");
2842 out:
2843         btrfs_free_path(path);
2844         return ret;
2845 }
2846
2847 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2848 {
2849         struct btrfs_super_block *super_copy = fs_info->super_copy;
2850         struct btrfs_disk_key *disk_key;
2851         struct btrfs_chunk *chunk;
2852         u8 *ptr;
2853         int ret = 0;
2854         u32 num_stripes;
2855         u32 array_size;
2856         u32 len = 0;
2857         u32 cur;
2858         struct btrfs_key key;
2859
2860         mutex_lock(&fs_info->chunk_mutex);
2861         array_size = btrfs_super_sys_array_size(super_copy);
2862
2863         ptr = super_copy->sys_chunk_array;
2864         cur = 0;
2865
2866         while (cur < array_size) {
2867                 disk_key = (struct btrfs_disk_key *)ptr;
2868                 btrfs_disk_key_to_cpu(&key, disk_key);
2869
2870                 len = sizeof(*disk_key);
2871
2872                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2873                         chunk = (struct btrfs_chunk *)(ptr + len);
2874                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2875                         len += btrfs_chunk_item_size(num_stripes);
2876                 } else {
2877                         ret = -EIO;
2878                         break;
2879                 }
2880                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2881                     key.offset == chunk_offset) {
2882                         memmove(ptr, ptr + len, array_size - (cur + len));
2883                         array_size -= len;
2884                         btrfs_set_super_sys_array_size(super_copy, array_size);
2885                 } else {
2886                         ptr += len;
2887                         cur += len;
2888                 }
2889         }
2890         mutex_unlock(&fs_info->chunk_mutex);
2891         return ret;
2892 }
2893
2894 /*
2895  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2896  * @logical: Logical block offset in bytes.
2897  * @length: Length of extent in bytes.
2898  *
2899  * Return: Chunk mapping or ERR_PTR.
2900  */
2901 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2902                                        u64 logical, u64 length)
2903 {
2904         struct extent_map_tree *em_tree;
2905         struct extent_map *em;
2906
2907         em_tree = &fs_info->mapping_tree;
2908         read_lock(&em_tree->lock);
2909         em = lookup_extent_mapping(em_tree, logical, length);
2910         read_unlock(&em_tree->lock);
2911
2912         if (!em) {
2913                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2914                            logical, length);
2915                 return ERR_PTR(-EINVAL);
2916         }
2917
2918         if (em->start > logical || em->start + em->len < logical) {
2919                 btrfs_crit(fs_info,
2920                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2921                            logical, length, em->start, em->start + em->len);
2922                 free_extent_map(em);
2923                 return ERR_PTR(-EINVAL);
2924         }
2925
2926         /* callers are responsible for dropping em's ref. */
2927         return em;
2928 }
2929
2930 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2931 {
2932         struct btrfs_fs_info *fs_info = trans->fs_info;
2933         struct extent_map *em;
2934         struct map_lookup *map;
2935         u64 dev_extent_len = 0;
2936         int i, ret = 0;
2937         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2938
2939         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2940         if (IS_ERR(em)) {
2941                 /*
2942                  * This is a logic error, but we don't want to just rely on the
2943                  * user having built with ASSERT enabled, so if ASSERT doesn't
2944                  * do anything we still error out.
2945                  */
2946                 ASSERT(0);
2947                 return PTR_ERR(em);
2948         }
2949         map = em->map_lookup;
2950         mutex_lock(&fs_info->chunk_mutex);
2951         check_system_chunk(trans, map->type);
2952         mutex_unlock(&fs_info->chunk_mutex);
2953
2954         /*
2955          * Take the device list mutex to prevent races with the final phase of
2956          * a device replace operation that replaces the device object associated
2957          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2958          */
2959         mutex_lock(&fs_devices->device_list_mutex);
2960         for (i = 0; i < map->num_stripes; i++) {
2961                 struct btrfs_device *device = map->stripes[i].dev;
2962                 ret = btrfs_free_dev_extent(trans, device,
2963                                             map->stripes[i].physical,
2964                                             &dev_extent_len);
2965                 if (ret) {
2966                         mutex_unlock(&fs_devices->device_list_mutex);
2967                         btrfs_abort_transaction(trans, ret);
2968                         goto out;
2969                 }
2970
2971                 if (device->bytes_used > 0) {
2972                         mutex_lock(&fs_info->chunk_mutex);
2973                         btrfs_device_set_bytes_used(device,
2974                                         device->bytes_used - dev_extent_len);
2975                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2976                         btrfs_clear_space_info_full(fs_info);
2977                         mutex_unlock(&fs_info->chunk_mutex);
2978                 }
2979
2980                 ret = btrfs_update_device(trans, device);
2981                 if (ret) {
2982                         mutex_unlock(&fs_devices->device_list_mutex);
2983                         btrfs_abort_transaction(trans, ret);
2984                         goto out;
2985                 }
2986         }
2987         mutex_unlock(&fs_devices->device_list_mutex);
2988
2989         ret = btrfs_free_chunk(trans, chunk_offset);
2990         if (ret) {
2991                 btrfs_abort_transaction(trans, ret);
2992                 goto out;
2993         }
2994
2995         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2996
2997         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2998                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2999                 if (ret) {
3000                         btrfs_abort_transaction(trans, ret);
3001                         goto out;
3002                 }
3003         }
3004
3005         ret = btrfs_remove_block_group(trans, chunk_offset, em);
3006         if (ret) {
3007                 btrfs_abort_transaction(trans, ret);
3008                 goto out;
3009         }
3010
3011 out:
3012         /* once for us */
3013         free_extent_map(em);
3014         return ret;
3015 }
3016
3017 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3018 {
3019         struct btrfs_root *root = fs_info->chunk_root;
3020         struct btrfs_trans_handle *trans;
3021         struct btrfs_block_group *block_group;
3022         int ret;
3023
3024         /*
3025          * Prevent races with automatic removal of unused block groups.
3026          * After we relocate and before we remove the chunk with offset
3027          * chunk_offset, automatic removal of the block group can kick in,
3028          * resulting in a failure when calling btrfs_remove_chunk() below.
3029          *
3030          * Make sure to acquire this mutex before doing a tree search (dev
3031          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3032          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3033          * we release the path used to search the chunk/dev tree and before
3034          * the current task acquires this mutex and calls us.
3035          */
3036         lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3037
3038         /* step one, relocate all the extents inside this chunk */
3039         btrfs_scrub_pause(fs_info);
3040         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3041         btrfs_scrub_continue(fs_info);
3042         if (ret)
3043                 return ret;
3044
3045         block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3046         if (!block_group)
3047                 return -ENOENT;
3048         btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3049         btrfs_put_block_group(block_group);
3050
3051         trans = btrfs_start_trans_remove_block_group(root->fs_info,
3052                                                      chunk_offset);
3053         if (IS_ERR(trans)) {
3054                 ret = PTR_ERR(trans);
3055                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3056                 return ret;
3057         }
3058
3059         /*
3060          * step two, delete the device extents and the
3061          * chunk tree entries
3062          */
3063         ret = btrfs_remove_chunk(trans, chunk_offset);
3064         btrfs_end_transaction(trans);
3065         return ret;
3066 }
3067
3068 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3069 {
3070         struct btrfs_root *chunk_root = fs_info->chunk_root;
3071         struct btrfs_path *path;
3072         struct extent_buffer *leaf;
3073         struct btrfs_chunk *chunk;
3074         struct btrfs_key key;
3075         struct btrfs_key found_key;
3076         u64 chunk_type;
3077         bool retried = false;
3078         int failed = 0;
3079         int ret;
3080
3081         path = btrfs_alloc_path();
3082         if (!path)
3083                 return -ENOMEM;
3084
3085 again:
3086         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3087         key.offset = (u64)-1;
3088         key.type = BTRFS_CHUNK_ITEM_KEY;
3089
3090         while (1) {
3091                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3092                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3093                 if (ret < 0) {
3094                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3095                         goto error;
3096                 }
3097                 BUG_ON(ret == 0); /* Corruption */
3098
3099                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3100                                           key.type);
3101                 if (ret)
3102                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3103                 if (ret < 0)
3104                         goto error;
3105                 if (ret > 0)
3106                         break;
3107
3108                 leaf = path->nodes[0];
3109                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3110
3111                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3112                                        struct btrfs_chunk);
3113                 chunk_type = btrfs_chunk_type(leaf, chunk);
3114                 btrfs_release_path(path);
3115
3116                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3117                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3118                         if (ret == -ENOSPC)
3119                                 failed++;
3120                         else
3121                                 BUG_ON(ret);
3122                 }
3123                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3124
3125                 if (found_key.offset == 0)
3126                         break;
3127                 key.offset = found_key.offset - 1;
3128         }
3129         ret = 0;
3130         if (failed && !retried) {
3131                 failed = 0;
3132                 retried = true;
3133                 goto again;
3134         } else if (WARN_ON(failed && retried)) {
3135                 ret = -ENOSPC;
3136         }
3137 error:
3138         btrfs_free_path(path);
3139         return ret;
3140 }
3141
3142 /*
3143  * return 1 : allocate a data chunk successfully,
3144  * return <0: errors during allocating a data chunk,
3145  * return 0 : no need to allocate a data chunk.
3146  */
3147 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3148                                       u64 chunk_offset)
3149 {
3150         struct btrfs_block_group *cache;
3151         u64 bytes_used;
3152         u64 chunk_type;
3153
3154         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3155         ASSERT(cache);
3156         chunk_type = cache->flags;
3157         btrfs_put_block_group(cache);
3158
3159         if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3160                 return 0;
3161
3162         spin_lock(&fs_info->data_sinfo->lock);
3163         bytes_used = fs_info->data_sinfo->bytes_used;
3164         spin_unlock(&fs_info->data_sinfo->lock);
3165
3166         if (!bytes_used) {
3167                 struct btrfs_trans_handle *trans;
3168                 int ret;
3169
3170                 trans = btrfs_join_transaction(fs_info->tree_root);
3171                 if (IS_ERR(trans))
3172                         return PTR_ERR(trans);
3173
3174                 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3175                 btrfs_end_transaction(trans);
3176                 if (ret < 0)
3177                         return ret;
3178                 return 1;
3179         }
3180
3181         return 0;
3182 }
3183
3184 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3185                                struct btrfs_balance_control *bctl)
3186 {
3187         struct btrfs_root *root = fs_info->tree_root;
3188         struct btrfs_trans_handle *trans;
3189         struct btrfs_balance_item *item;
3190         struct btrfs_disk_balance_args disk_bargs;
3191         struct btrfs_path *path;
3192         struct extent_buffer *leaf;
3193         struct btrfs_key key;
3194         int ret, err;
3195
3196         path = btrfs_alloc_path();
3197         if (!path)
3198                 return -ENOMEM;
3199
3200         trans = btrfs_start_transaction(root, 0);
3201         if (IS_ERR(trans)) {
3202                 btrfs_free_path(path);
3203                 return PTR_ERR(trans);
3204         }
3205
3206         key.objectid = BTRFS_BALANCE_OBJECTID;
3207         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3208         key.offset = 0;
3209
3210         ret = btrfs_insert_empty_item(trans, root, path, &key,
3211                                       sizeof(*item));
3212         if (ret)
3213                 goto out;
3214
3215         leaf = path->nodes[0];
3216         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3217
3218         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3219
3220         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3221         btrfs_set_balance_data(leaf, item, &disk_bargs);
3222         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3223         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3224         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3225         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3226
3227         btrfs_set_balance_flags(leaf, item, bctl->flags);
3228
3229         btrfs_mark_buffer_dirty(leaf);
3230 out:
3231         btrfs_free_path(path);
3232         err = btrfs_commit_transaction(trans);
3233         if (err && !ret)
3234                 ret = err;
3235         return ret;
3236 }
3237
3238 static int del_balance_item(struct btrfs_fs_info *fs_info)
3239 {
3240         struct btrfs_root *root = fs_info->tree_root;
3241         struct btrfs_trans_handle *trans;
3242         struct btrfs_path *path;
3243         struct btrfs_key key;
3244         int ret, err;
3245
3246         path = btrfs_alloc_path();
3247         if (!path)
3248                 return -ENOMEM;
3249
3250         trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3251         if (IS_ERR(trans)) {
3252                 btrfs_free_path(path);
3253                 return PTR_ERR(trans);
3254         }
3255
3256         key.objectid = BTRFS_BALANCE_OBJECTID;
3257         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3258         key.offset = 0;
3259
3260         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3261         if (ret < 0)
3262                 goto out;
3263         if (ret > 0) {
3264                 ret = -ENOENT;
3265                 goto out;
3266         }
3267
3268         ret = btrfs_del_item(trans, root, path);
3269 out:
3270         btrfs_free_path(path);
3271         err = btrfs_commit_transaction(trans);
3272         if (err && !ret)
3273                 ret = err;
3274         return ret;
3275 }
3276
3277 /*
3278  * This is a heuristic used to reduce the number of chunks balanced on
3279  * resume after balance was interrupted.
3280  */
3281 static void update_balance_args(struct btrfs_balance_control *bctl)
3282 {
3283         /*
3284          * Turn on soft mode for chunk types that were being converted.
3285          */
3286         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3287                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3288         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3289                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3290         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3291                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3292
3293         /*
3294          * Turn on usage filter if is not already used.  The idea is
3295          * that chunks that we have already balanced should be
3296          * reasonably full.  Don't do it for chunks that are being
3297          * converted - that will keep us from relocating unconverted
3298          * (albeit full) chunks.
3299          */
3300         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3301             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3302             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3303                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3304                 bctl->data.usage = 90;
3305         }
3306         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3307             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3308             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3309                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3310                 bctl->sys.usage = 90;
3311         }
3312         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3313             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3314             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3315                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3316                 bctl->meta.usage = 90;
3317         }
3318 }
3319
3320 /*
3321  * Clear the balance status in fs_info and delete the balance item from disk.
3322  */
3323 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3324 {
3325         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3326         int ret;
3327
3328         BUG_ON(!fs_info->balance_ctl);
3329
3330         spin_lock(&fs_info->balance_lock);
3331         fs_info->balance_ctl = NULL;
3332         spin_unlock(&fs_info->balance_lock);
3333
3334         kfree(bctl);
3335         ret = del_balance_item(fs_info);
3336         if (ret)
3337                 btrfs_handle_fs_error(fs_info, ret, NULL);
3338 }
3339
3340 /*
3341  * Balance filters.  Return 1 if chunk should be filtered out
3342  * (should not be balanced).
3343  */
3344 static int chunk_profiles_filter(u64 chunk_type,
3345                                  struct btrfs_balance_args *bargs)
3346 {
3347         chunk_type = chunk_to_extended(chunk_type) &
3348                                 BTRFS_EXTENDED_PROFILE_MASK;
3349
3350         if (bargs->profiles & chunk_type)
3351                 return 0;
3352
3353         return 1;
3354 }
3355
3356 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3357                               struct btrfs_balance_args *bargs)
3358 {
3359         struct btrfs_block_group *cache;
3360         u64 chunk_used;
3361         u64 user_thresh_min;
3362         u64 user_thresh_max;
3363         int ret = 1;
3364
3365         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3366         chunk_used = cache->used;
3367
3368         if (bargs->usage_min == 0)
3369                 user_thresh_min = 0;
3370         else
3371                 user_thresh_min = div_factor_fine(cache->length,
3372                                                   bargs->usage_min);
3373
3374         if (bargs->usage_max == 0)
3375                 user_thresh_max = 1;
3376         else if (bargs->usage_max > 100)
3377                 user_thresh_max = cache->length;
3378         else
3379                 user_thresh_max = div_factor_fine(cache->length,
3380                                                   bargs->usage_max);
3381
3382         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3383                 ret = 0;
3384
3385         btrfs_put_block_group(cache);
3386         return ret;
3387 }
3388
3389 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3390                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3391 {
3392         struct btrfs_block_group *cache;
3393         u64 chunk_used, user_thresh;
3394         int ret = 1;
3395
3396         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3397         chunk_used = cache->used;
3398
3399         if (bargs->usage_min == 0)
3400                 user_thresh = 1;
3401         else if (bargs->usage > 100)
3402                 user_thresh = cache->length;
3403         else
3404                 user_thresh = div_factor_fine(cache->length, bargs->usage);
3405
3406         if (chunk_used < user_thresh)
3407                 ret = 0;
3408
3409         btrfs_put_block_group(cache);
3410         return ret;
3411 }
3412
3413 static int chunk_devid_filter(struct extent_buffer *leaf,
3414                               struct btrfs_chunk *chunk,
3415                               struct btrfs_balance_args *bargs)
3416 {
3417         struct btrfs_stripe *stripe;
3418         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3419         int i;
3420
3421         for (i = 0; i < num_stripes; i++) {
3422                 stripe = btrfs_stripe_nr(chunk, i);
3423                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3424                         return 0;
3425         }
3426
3427         return 1;
3428 }
3429
3430 static u64 calc_data_stripes(u64 type, int num_stripes)
3431 {
3432         const int index = btrfs_bg_flags_to_raid_index(type);
3433         const int ncopies = btrfs_raid_array[index].ncopies;
3434         const int nparity = btrfs_raid_array[index].nparity;
3435
3436         if (nparity)
3437                 return num_stripes - nparity;
3438         else
3439                 return num_stripes / ncopies;
3440 }
3441
3442 /* [pstart, pend) */
3443 static int chunk_drange_filter(struct extent_buffer *leaf,
3444                                struct btrfs_chunk *chunk,
3445                                struct btrfs_balance_args *bargs)
3446 {
3447         struct btrfs_stripe *stripe;
3448         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3449         u64 stripe_offset;
3450         u64 stripe_length;
3451         u64 type;
3452         int factor;
3453         int i;
3454
3455         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3456                 return 0;
3457
3458         type = btrfs_chunk_type(leaf, chunk);
3459         factor = calc_data_stripes(type, num_stripes);
3460
3461         for (i = 0; i < num_stripes; i++) {
3462                 stripe = btrfs_stripe_nr(chunk, i);
3463                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3464                         continue;
3465
3466                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3467                 stripe_length = btrfs_chunk_length(leaf, chunk);
3468                 stripe_length = div_u64(stripe_length, factor);
3469
3470                 if (stripe_offset < bargs->pend &&
3471                     stripe_offset + stripe_length > bargs->pstart)
3472                         return 0;
3473         }
3474
3475         return 1;
3476 }
3477
3478 /* [vstart, vend) */
3479 static int chunk_vrange_filter(struct extent_buffer *leaf,
3480                                struct btrfs_chunk *chunk,
3481                                u64 chunk_offset,
3482                                struct btrfs_balance_args *bargs)
3483 {
3484         if (chunk_offset < bargs->vend &&
3485             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3486                 /* at least part of the chunk is inside this vrange */
3487                 return 0;
3488
3489         return 1;
3490 }
3491
3492 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3493                                struct btrfs_chunk *chunk,
3494                                struct btrfs_balance_args *bargs)
3495 {
3496         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3497
3498         if (bargs->stripes_min <= num_stripes
3499                         && num_stripes <= bargs->stripes_max)
3500                 return 0;
3501
3502         return 1;
3503 }
3504
3505 static int chunk_soft_convert_filter(u64 chunk_type,
3506                                      struct btrfs_balance_args *bargs)
3507 {
3508         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3509                 return 0;
3510
3511         chunk_type = chunk_to_extended(chunk_type) &
3512                                 BTRFS_EXTENDED_PROFILE_MASK;
3513
3514         if (bargs->target == chunk_type)
3515                 return 1;
3516
3517         return 0;
3518 }
3519
3520 static int should_balance_chunk(struct extent_buffer *leaf,
3521                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3522 {
3523         struct btrfs_fs_info *fs_info = leaf->fs_info;
3524         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3525         struct btrfs_balance_args *bargs = NULL;
3526         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3527
3528         /* type filter */
3529         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3530               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3531                 return 0;
3532         }
3533
3534         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3535                 bargs = &bctl->data;
3536         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3537                 bargs = &bctl->sys;
3538         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3539                 bargs = &bctl->meta;
3540
3541         /* profiles filter */
3542         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3543             chunk_profiles_filter(chunk_type, bargs)) {
3544                 return 0;
3545         }
3546
3547         /* usage filter */
3548         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3549             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3550                 return 0;
3551         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3552             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3553                 return 0;
3554         }
3555
3556         /* devid filter */
3557         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3558             chunk_devid_filter(leaf, chunk, bargs)) {
3559                 return 0;
3560         }
3561
3562         /* drange filter, makes sense only with devid filter */
3563         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3564             chunk_drange_filter(leaf, chunk, bargs)) {
3565                 return 0;
3566         }
3567
3568         /* vrange filter */
3569         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3570             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3571                 return 0;
3572         }
3573
3574         /* stripes filter */
3575         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3576             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3577                 return 0;
3578         }
3579
3580         /* soft profile changing mode */
3581         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3582             chunk_soft_convert_filter(chunk_type, bargs)) {
3583                 return 0;
3584         }
3585
3586         /*
3587          * limited by count, must be the last filter
3588          */
3589         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3590                 if (bargs->limit == 0)
3591                         return 0;
3592                 else
3593                         bargs->limit--;
3594         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3595                 /*
3596                  * Same logic as the 'limit' filter; the minimum cannot be
3597                  * determined here because we do not have the global information
3598                  * about the count of all chunks that satisfy the filters.
3599                  */
3600                 if (bargs->limit_max == 0)
3601                         return 0;
3602                 else
3603                         bargs->limit_max--;
3604         }
3605
3606         return 1;
3607 }
3608
3609 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3610 {
3611         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3612         struct btrfs_root *chunk_root = fs_info->chunk_root;
3613         u64 chunk_type;
3614         struct btrfs_chunk *chunk;
3615         struct btrfs_path *path = NULL;
3616         struct btrfs_key key;
3617         struct btrfs_key found_key;
3618         struct extent_buffer *leaf;
3619         int slot;
3620         int ret;
3621         int enospc_errors = 0;
3622         bool counting = true;
3623         /* The single value limit and min/max limits use the same bytes in the */
3624         u64 limit_data = bctl->data.limit;
3625         u64 limit_meta = bctl->meta.limit;
3626         u64 limit_sys = bctl->sys.limit;
3627         u32 count_data = 0;
3628         u32 count_meta = 0;
3629         u32 count_sys = 0;
3630         int chunk_reserved = 0;
3631
3632         path = btrfs_alloc_path();
3633         if (!path) {
3634                 ret = -ENOMEM;
3635                 goto error;
3636         }
3637
3638         /* zero out stat counters */
3639         spin_lock(&fs_info->balance_lock);
3640         memset(&bctl->stat, 0, sizeof(bctl->stat));
3641         spin_unlock(&fs_info->balance_lock);
3642 again:
3643         if (!counting) {
3644                 /*
3645                  * The single value limit and min/max limits use the same bytes
3646                  * in the
3647                  */
3648                 bctl->data.limit = limit_data;
3649                 bctl->meta.limit = limit_meta;
3650                 bctl->sys.limit = limit_sys;
3651         }
3652         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3653         key.offset = (u64)-1;
3654         key.type = BTRFS_CHUNK_ITEM_KEY;
3655
3656         while (1) {
3657                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3658                     atomic_read(&fs_info->balance_cancel_req)) {
3659                         ret = -ECANCELED;
3660                         goto error;
3661                 }
3662
3663                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3664                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3665                 if (ret < 0) {
3666                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3667                         goto error;
3668                 }
3669
3670                 /*
3671                  * this shouldn't happen, it means the last relocate
3672                  * failed
3673                  */
3674                 if (ret == 0)
3675                         BUG(); /* FIXME break ? */
3676
3677                 ret = btrfs_previous_item(chunk_root, path, 0,
3678                                           BTRFS_CHUNK_ITEM_KEY);
3679                 if (ret) {
3680                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3681                         ret = 0;
3682                         break;
3683                 }
3684
3685                 leaf = path->nodes[0];
3686                 slot = path->slots[0];
3687                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3688
3689                 if (found_key.objectid != key.objectid) {
3690                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3691                         break;
3692                 }
3693
3694                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3695                 chunk_type = btrfs_chunk_type(leaf, chunk);
3696
3697                 if (!counting) {
3698                         spin_lock(&fs_info->balance_lock);
3699                         bctl->stat.considered++;
3700                         spin_unlock(&fs_info->balance_lock);
3701                 }
3702
3703                 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3704
3705                 btrfs_release_path(path);
3706                 if (!ret) {
3707                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3708                         goto loop;
3709                 }
3710
3711                 if (counting) {
3712                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3713                         spin_lock(&fs_info->balance_lock);
3714                         bctl->stat.expected++;
3715                         spin_unlock(&fs_info->balance_lock);
3716
3717                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3718                                 count_data++;
3719                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3720                                 count_sys++;
3721                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3722                                 count_meta++;
3723
3724                         goto loop;
3725                 }
3726
3727                 /*
3728                  * Apply limit_min filter, no need to check if the LIMITS
3729                  * filter is used, limit_min is 0 by default
3730                  */
3731                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3732                                         count_data < bctl->data.limit_min)
3733                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3734                                         count_meta < bctl->meta.limit_min)
3735                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3736                                         count_sys < bctl->sys.limit_min)) {
3737                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3738                         goto loop;
3739                 }
3740
3741                 if (!chunk_reserved) {
3742                         /*
3743                          * We may be relocating the only data chunk we have,
3744                          * which could potentially end up with losing data's
3745                          * raid profile, so lets allocate an empty one in
3746                          * advance.
3747                          */
3748                         ret = btrfs_may_alloc_data_chunk(fs_info,
3749                                                          found_key.offset);
3750                         if (ret < 0) {
3751                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3752                                 goto error;
3753                         } else if (ret == 1) {
3754                                 chunk_reserved = 1;
3755                         }
3756                 }
3757
3758                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3759                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3760                 if (ret == -ENOSPC) {
3761                         enospc_errors++;
3762                 } else if (ret == -ETXTBSY) {
3763                         btrfs_info(fs_info,
3764            "skipping relocation of block group %llu due to active swapfile",
3765                                    found_key.offset);
3766                         ret = 0;
3767                 } else if (ret) {
3768                         goto error;
3769                 } else {
3770                         spin_lock(&fs_info->balance_lock);
3771                         bctl->stat.completed++;
3772                         spin_unlock(&fs_info->balance_lock);
3773                 }
3774 loop:
3775                 if (found_key.offset == 0)
3776                         break;
3777                 key.offset = found_key.offset - 1;
3778         }
3779
3780         if (counting) {
3781                 btrfs_release_path(path);
3782                 counting = false;
3783                 goto again;
3784         }
3785 error:
3786         btrfs_free_path(path);
3787         if (enospc_errors) {
3788                 btrfs_info(fs_info, "%d enospc errors during balance",
3789                            enospc_errors);
3790                 if (!ret)
3791                         ret = -ENOSPC;
3792         }
3793
3794         return ret;
3795 }
3796
3797 /**
3798  * alloc_profile_is_valid - see if a given profile is valid and reduced
3799  * @flags: profile to validate
3800  * @extended: if true @flags is treated as an extended profile
3801  */
3802 static int alloc_profile_is_valid(u64 flags, int extended)
3803 {
3804         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3805                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3806
3807         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3808
3809         /* 1) check that all other bits are zeroed */
3810         if (flags & ~mask)
3811                 return 0;
3812
3813         /* 2) see if profile is reduced */
3814         if (flags == 0)
3815                 return !extended; /* "0" is valid for usual profiles */
3816
3817         return has_single_bit_set(flags);
3818 }
3819
3820 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3821 {
3822         /* cancel requested || normal exit path */
3823         return atomic_read(&fs_info->balance_cancel_req) ||
3824                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3825                  atomic_read(&fs_info->balance_cancel_req) == 0);
3826 }
3827
3828 /*
3829  * Validate target profile against allowed profiles and return true if it's OK.
3830  * Otherwise print the error message and return false.
3831  */
3832 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3833                 const struct btrfs_balance_args *bargs,
3834                 u64 allowed, const char *type)
3835 {
3836         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3837                 return true;
3838
3839         /* Profile is valid and does not have bits outside of the allowed set */
3840         if (alloc_profile_is_valid(bargs->target, 1) &&
3841             (bargs->target & ~allowed) == 0)
3842                 return true;
3843
3844         btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3845                         type, btrfs_bg_type_to_raid_name(bargs->target));
3846         return false;
3847 }
3848
3849 /*
3850  * Fill @buf with textual description of balance filter flags @bargs, up to
3851  * @size_buf including the terminating null. The output may be trimmed if it
3852  * does not fit into the provided buffer.
3853  */
3854 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3855                                  u32 size_buf)
3856 {
3857         int ret;
3858         u32 size_bp = size_buf;
3859         char *bp = buf;
3860         u64 flags = bargs->flags;
3861         char tmp_buf[128] = {'\0'};
3862
3863         if (!flags)
3864                 return;
3865
3866 #define CHECK_APPEND_NOARG(a)                                           \
3867         do {                                                            \
3868                 ret = snprintf(bp, size_bp, (a));                       \
3869                 if (ret < 0 || ret >= size_bp)                          \
3870                         goto out_overflow;                              \
3871                 size_bp -= ret;                                         \
3872                 bp += ret;                                              \
3873         } while (0)
3874
3875 #define CHECK_APPEND_1ARG(a, v1)                                        \
3876         do {                                                            \
3877                 ret = snprintf(bp, size_bp, (a), (v1));                 \
3878                 if (ret < 0 || ret >= size_bp)                          \
3879                         goto out_overflow;                              \
3880                 size_bp -= ret;                                         \
3881                 bp += ret;                                              \
3882         } while (0)
3883
3884 #define CHECK_APPEND_2ARG(a, v1, v2)                                    \
3885         do {                                                            \
3886                 ret = snprintf(bp, size_bp, (a), (v1), (v2));           \
3887                 if (ret < 0 || ret >= size_bp)                          \
3888                         goto out_overflow;                              \
3889                 size_bp -= ret;                                         \
3890                 bp += ret;                                              \
3891         } while (0)
3892
3893         if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3894                 CHECK_APPEND_1ARG("convert=%s,",
3895                                   btrfs_bg_type_to_raid_name(bargs->target));
3896
3897         if (flags & BTRFS_BALANCE_ARGS_SOFT)
3898                 CHECK_APPEND_NOARG("soft,");
3899
3900         if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3901                 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3902                                             sizeof(tmp_buf));
3903                 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3904         }
3905
3906         if (flags & BTRFS_BALANCE_ARGS_USAGE)
3907                 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3908
3909         if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3910                 CHECK_APPEND_2ARG("usage=%u..%u,",
3911                                   bargs->usage_min, bargs->usage_max);
3912
3913         if (flags & BTRFS_BALANCE_ARGS_DEVID)
3914                 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3915
3916         if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3917                 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3918                                   bargs->pstart, bargs->pend);
3919
3920         if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3921                 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3922                                   bargs->vstart, bargs->vend);
3923
3924         if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3925                 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3926
3927         if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3928                 CHECK_APPEND_2ARG("limit=%u..%u,",
3929                                 bargs->limit_min, bargs->limit_max);
3930
3931         if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3932                 CHECK_APPEND_2ARG("stripes=%u..%u,",
3933                                   bargs->stripes_min, bargs->stripes_max);
3934
3935 #undef CHECK_APPEND_2ARG
3936 #undef CHECK_APPEND_1ARG
3937 #undef CHECK_APPEND_NOARG
3938
3939 out_overflow:
3940
3941         if (size_bp < size_buf)
3942                 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3943         else
3944                 buf[0] = '\0';
3945 }
3946
3947 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3948 {
3949         u32 size_buf = 1024;
3950         char tmp_buf[192] = {'\0'};
3951         char *buf;
3952         char *bp;
3953         u32 size_bp = size_buf;
3954         int ret;
3955         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3956
3957         buf = kzalloc(size_buf, GFP_KERNEL);
3958         if (!buf)
3959                 return;
3960
3961         bp = buf;
3962
3963 #define CHECK_APPEND_1ARG(a, v1)                                        \
3964         do {                                                            \
3965                 ret = snprintf(bp, size_bp, (a), (v1));                 \
3966                 if (ret < 0 || ret >= size_bp)                          \
3967                         goto out_overflow;                              \
3968                 size_bp -= ret;                                         \
3969                 bp += ret;                                              \
3970         } while (0)
3971
3972         if (bctl->flags & BTRFS_BALANCE_FORCE)
3973                 CHECK_APPEND_1ARG("%s", "-f ");
3974
3975         if (bctl->flags & BTRFS_BALANCE_DATA) {
3976                 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
3977                 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
3978         }
3979
3980         if (bctl->flags & BTRFS_BALANCE_METADATA) {
3981                 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
3982                 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
3983         }
3984
3985         if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
3986                 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
3987                 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
3988         }
3989
3990 #undef CHECK_APPEND_1ARG
3991
3992 out_overflow:
3993
3994         if (size_bp < size_buf)
3995                 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
3996         btrfs_info(fs_info, "balance: %s %s",
3997                    (bctl->flags & BTRFS_BALANCE_RESUME) ?
3998                    "resume" : "start", buf);
3999
4000         kfree(buf);
4001 }
4002
4003 /*
4004  * Should be called with balance mutexe held
4005  */
4006 int btrfs_balance(struct btrfs_fs_info *fs_info,
4007                   struct btrfs_balance_control *bctl,
4008                   struct btrfs_ioctl_balance_args *bargs)
4009 {
4010         u64 meta_target, data_target;
4011         u64 allowed;
4012         int mixed = 0;
4013         int ret;
4014         u64 num_devices;
4015         unsigned seq;
4016         bool reducing_redundancy;
4017         int i;
4018
4019         if (btrfs_fs_closing(fs_info) ||
4020             atomic_read(&fs_info->balance_pause_req) ||
4021             btrfs_should_cancel_balance(fs_info)) {
4022                 ret = -EINVAL;
4023                 goto out;
4024         }
4025
4026         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4027         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4028                 mixed = 1;
4029
4030         /*
4031          * In case of mixed groups both data and meta should be picked,
4032          * and identical options should be given for both of them.
4033          */
4034         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4035         if (mixed && (bctl->flags & allowed)) {
4036                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4037                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4038                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4039                         btrfs_err(fs_info,
4040           "balance: mixed groups data and metadata options must be the same");
4041                         ret = -EINVAL;
4042                         goto out;
4043                 }
4044         }
4045
4046         /*
4047          * rw_devices will not change at the moment, device add/delete/replace
4048          * are excluded by EXCL_OP
4049          */
4050         num_devices = fs_info->fs_devices->rw_devices;
4051
4052         /*
4053          * SINGLE profile on-disk has no profile bit, but in-memory we have a
4054          * special bit for it, to make it easier to distinguish.  Thus we need
4055          * to set it manually, or balance would refuse the profile.
4056          */
4057         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4058         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4059                 if (num_devices >= btrfs_raid_array[i].devs_min)
4060                         allowed |= btrfs_raid_array[i].bg_flag;
4061
4062         if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4063             !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4064             !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4065                 ret = -EINVAL;
4066                 goto out;
4067         }
4068
4069         /*
4070          * Allow to reduce metadata or system integrity only if force set for
4071          * profiles with redundancy (copies, parity)
4072          */
4073         allowed = 0;
4074         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4075                 if (btrfs_raid_array[i].ncopies >= 2 ||
4076                     btrfs_raid_array[i].tolerated_failures >= 1)
4077                         allowed |= btrfs_raid_array[i].bg_flag;
4078         }
4079         do {
4080                 seq = read_seqbegin(&fs_info->profiles_lock);
4081
4082                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4083                      (fs_info->avail_system_alloc_bits & allowed) &&
4084                      !(bctl->sys.target & allowed)) ||
4085                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4086                      (fs_info->avail_metadata_alloc_bits & allowed) &&
4087                      !(bctl->meta.target & allowed)))
4088                         reducing_redundancy = true;
4089                 else
4090                         reducing_redundancy = false;
4091
4092                 /* if we're not converting, the target field is uninitialized */
4093                 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4094                         bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4095                 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4096                         bctl->data.target : fs_info->avail_data_alloc_bits;
4097         } while (read_seqretry(&fs_info->profiles_lock, seq));
4098
4099         if (reducing_redundancy) {
4100                 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4101                         btrfs_info(fs_info,
4102                            "balance: force reducing metadata redundancy");
4103                 } else {
4104                         btrfs_err(fs_info,
4105         "balance: reduces metadata redundancy, use --force if you want this");
4106                         ret = -EINVAL;
4107                         goto out;
4108                 }
4109         }
4110
4111         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4112                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4113                 btrfs_warn(fs_info,
4114         "balance: metadata profile %s has lower redundancy than data profile %s",
4115                                 btrfs_bg_type_to_raid_name(meta_target),
4116                                 btrfs_bg_type_to_raid_name(data_target));
4117         }
4118
4119         if (fs_info->send_in_progress) {
4120                 btrfs_warn_rl(fs_info,
4121 "cannot run balance while send operations are in progress (%d in progress)",
4122                               fs_info->send_in_progress);
4123                 ret = -EAGAIN;
4124                 goto out;
4125         }
4126
4127         ret = insert_balance_item(fs_info, bctl);
4128         if (ret && ret != -EEXIST)
4129                 goto out;
4130
4131         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4132                 BUG_ON(ret == -EEXIST);
4133                 BUG_ON(fs_info->balance_ctl);
4134                 spin_lock(&fs_info->balance_lock);
4135                 fs_info->balance_ctl = bctl;
4136                 spin_unlock(&fs_info->balance_lock);
4137         } else {
4138                 BUG_ON(ret != -EEXIST);
4139                 spin_lock(&fs_info->balance_lock);
4140                 update_balance_args(bctl);
4141                 spin_unlock(&fs_info->balance_lock);
4142         }
4143
4144         ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4145         set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4146         describe_balance_start_or_resume(fs_info);
4147         mutex_unlock(&fs_info->balance_mutex);
4148
4149         ret = __btrfs_balance(fs_info);
4150
4151         mutex_lock(&fs_info->balance_mutex);
4152         if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4153                 btrfs_info(fs_info, "balance: paused");
4154         /*
4155          * Balance can be canceled by:
4156          *
4157          * - Regular cancel request
4158          *   Then ret == -ECANCELED and balance_cancel_req > 0
4159          *
4160          * - Fatal signal to "btrfs" process
4161          *   Either the signal caught by wait_reserve_ticket() and callers
4162          *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4163          *   got -ECANCELED.
4164          *   Either way, in this case balance_cancel_req = 0, and
4165          *   ret == -EINTR or ret == -ECANCELED.
4166          *
4167          * So here we only check the return value to catch canceled balance.
4168          */
4169         else if (ret == -ECANCELED || ret == -EINTR)
4170                 btrfs_info(fs_info, "balance: canceled");
4171         else
4172                 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4173
4174         clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4175
4176         if (bargs) {
4177                 memset(bargs, 0, sizeof(*bargs));
4178                 btrfs_update_ioctl_balance_args(fs_info, bargs);
4179         }
4180
4181         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4182             balance_need_close(fs_info)) {
4183                 reset_balance_state(fs_info);
4184                 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4185         }
4186
4187         wake_up(&fs_info->balance_wait_q);
4188
4189         return ret;
4190 out:
4191         if (bctl->flags & BTRFS_BALANCE_RESUME)
4192                 reset_balance_state(fs_info);
4193         else
4194                 kfree(bctl);
4195         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4196
4197         return ret;
4198 }
4199
4200 static int balance_kthread(void *data)
4201 {
4202         struct btrfs_fs_info *fs_info = data;
4203         int ret = 0;
4204
4205         mutex_lock(&fs_info->balance_mutex);
4206         if (fs_info->balance_ctl)
4207                 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4208         mutex_unlock(&fs_info->balance_mutex);
4209
4210         return ret;
4211 }
4212
4213 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4214 {
4215         struct task_struct *tsk;
4216
4217         mutex_lock(&fs_info->balance_mutex);
4218         if (!fs_info->balance_ctl) {
4219                 mutex_unlock(&fs_info->balance_mutex);
4220                 return 0;
4221         }
4222         mutex_unlock(&fs_info->balance_mutex);
4223
4224         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4225                 btrfs_info(fs_info, "balance: resume skipped");
4226                 return 0;
4227         }
4228
4229         /*
4230          * A ro->rw remount sequence should continue with the paused balance
4231          * regardless of who pauses it, system or the user as of now, so set
4232          * the resume flag.
4233          */
4234         spin_lock(&fs_info->balance_lock);
4235         fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4236         spin_unlock(&fs_info->balance_lock);
4237
4238         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4239         return PTR_ERR_OR_ZERO(tsk);
4240 }
4241
4242 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4243 {
4244         struct btrfs_balance_control *bctl;
4245         struct btrfs_balance_item *item;
4246         struct btrfs_disk_balance_args disk_bargs;
4247         struct btrfs_path *path;
4248         struct extent_buffer *leaf;
4249         struct btrfs_key key;
4250         int ret;
4251
4252         path = btrfs_alloc_path();
4253         if (!path)
4254                 return -ENOMEM;
4255
4256         key.objectid = BTRFS_BALANCE_OBJECTID;
4257         key.type = BTRFS_TEMPORARY_ITEM_KEY;
4258         key.offset = 0;
4259
4260         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4261         if (ret < 0)
4262                 goto out;
4263         if (ret > 0) { /* ret = -ENOENT; */
4264                 ret = 0;
4265                 goto out;
4266         }
4267
4268         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4269         if (!bctl) {
4270                 ret = -ENOMEM;
4271                 goto out;
4272         }
4273
4274         leaf = path->nodes[0];
4275         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4276
4277         bctl->flags = btrfs_balance_flags(leaf, item);
4278         bctl->flags |= BTRFS_BALANCE_RESUME;
4279
4280         btrfs_balance_data(leaf, item, &disk_bargs);
4281         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4282         btrfs_balance_meta(leaf, item, &disk_bargs);
4283         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4284         btrfs_balance_sys(leaf, item, &disk_bargs);
4285         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4286
4287         /*
4288          * This should never happen, as the paused balance state is recovered
4289          * during mount without any chance of other exclusive ops to collide.
4290          *
4291          * This gives the exclusive op status to balance and keeps in paused
4292          * state until user intervention (cancel or umount). If the ownership
4293          * cannot be assigned, show a message but do not fail. The balance
4294          * is in a paused state and must have fs_info::balance_ctl properly
4295          * set up.
4296          */
4297         if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4298                 btrfs_warn(fs_info,
4299         "balance: cannot set exclusive op status, resume manually");
4300
4301         mutex_lock(&fs_info->balance_mutex);
4302         BUG_ON(fs_info->balance_ctl);
4303         spin_lock(&fs_info->balance_lock);
4304         fs_info->balance_ctl = bctl;
4305         spin_unlock(&fs_info->balance_lock);
4306         mutex_unlock(&fs_info->balance_mutex);
4307 out:
4308         btrfs_free_path(path);
4309         return ret;
4310 }
4311
4312 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4313 {
4314         int ret = 0;
4315
4316         mutex_lock(&fs_info->balance_mutex);
4317         if (!fs_info->balance_ctl) {
4318                 mutex_unlock(&fs_info->balance_mutex);
4319                 return -ENOTCONN;
4320         }
4321
4322         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4323                 atomic_inc(&fs_info->balance_pause_req);
4324                 mutex_unlock(&fs_info->balance_mutex);
4325
4326                 wait_event(fs_info->balance_wait_q,
4327                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4328
4329                 mutex_lock(&fs_info->balance_mutex);
4330                 /* we are good with balance_ctl ripped off from under us */
4331                 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4332                 atomic_dec(&fs_info->balance_pause_req);
4333         } else {
4334                 ret = -ENOTCONN;
4335         }
4336
4337         mutex_unlock(&fs_info->balance_mutex);
4338         return ret;
4339 }
4340
4341 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4342 {
4343         mutex_lock(&fs_info->balance_mutex);
4344         if (!fs_info->balance_ctl) {
4345                 mutex_unlock(&fs_info->balance_mutex);
4346                 return -ENOTCONN;
4347         }
4348
4349         /*
4350          * A paused balance with the item stored on disk can be resumed at
4351          * mount time if the mount is read-write. Otherwise it's still paused
4352          * and we must not allow cancelling as it deletes the item.
4353          */
4354         if (sb_rdonly(fs_info->sb)) {
4355                 mutex_unlock(&fs_info->balance_mutex);
4356                 return -EROFS;
4357         }
4358
4359         atomic_inc(&fs_info->balance_cancel_req);
4360         /*
4361          * if we are running just wait and return, balance item is
4362          * deleted in btrfs_balance in this case
4363          */
4364         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4365                 mutex_unlock(&fs_info->balance_mutex);
4366                 wait_event(fs_info->balance_wait_q,
4367                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4368                 mutex_lock(&fs_info->balance_mutex);
4369         } else {
4370                 mutex_unlock(&fs_info->balance_mutex);
4371                 /*
4372                  * Lock released to allow other waiters to continue, we'll
4373                  * reexamine the status again.
4374                  */
4375                 mutex_lock(&fs_info->balance_mutex);
4376
4377                 if (fs_info->balance_ctl) {
4378                         reset_balance_state(fs_info);
4379                         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4380                         btrfs_info(fs_info, "balance: canceled");
4381                 }
4382         }
4383
4384         BUG_ON(fs_info->balance_ctl ||
4385                 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4386         atomic_dec(&fs_info->balance_cancel_req);
4387         mutex_unlock(&fs_info->balance_mutex);
4388         return 0;
4389 }
4390
4391 int btrfs_uuid_scan_kthread(void *data)
4392 {
4393         struct btrfs_fs_info *fs_info = data;
4394         struct btrfs_root *root = fs_info->tree_root;
4395         struct btrfs_key key;
4396         struct btrfs_path *path = NULL;
4397         int ret = 0;
4398         struct extent_buffer *eb;
4399         int slot;
4400         struct btrfs_root_item root_item;
4401         u32 item_size;
4402         struct btrfs_trans_handle *trans = NULL;
4403         bool closing = false;
4404
4405         path = btrfs_alloc_path();
4406         if (!path) {
4407                 ret = -ENOMEM;
4408                 goto out;
4409         }
4410
4411         key.objectid = 0;
4412         key.type = BTRFS_ROOT_ITEM_KEY;
4413         key.offset = 0;
4414
4415         while (1) {
4416                 if (btrfs_fs_closing(fs_info)) {
4417                         closing = true;
4418                         break;
4419                 }
4420                 ret = btrfs_search_forward(root, &key, path,
4421                                 BTRFS_OLDEST_GENERATION);
4422                 if (ret) {
4423                         if (ret > 0)
4424                                 ret = 0;
4425                         break;
4426                 }
4427
4428                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4429                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4430                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4431                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4432                         goto skip;
4433
4434                 eb = path->nodes[0];
4435                 slot = path->slots[0];
4436                 item_size = btrfs_item_size_nr(eb, slot);
4437                 if (item_size < sizeof(root_item))
4438                         goto skip;
4439
4440                 read_extent_buffer(eb, &root_item,
4441                                    btrfs_item_ptr_offset(eb, slot),
4442                                    (int)sizeof(root_item));
4443                 if (btrfs_root_refs(&root_item) == 0)
4444                         goto skip;
4445
4446                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4447                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4448                         if (trans)
4449                                 goto update_tree;
4450
4451                         btrfs_release_path(path);
4452                         /*
4453                          * 1 - subvol uuid item
4454                          * 1 - received_subvol uuid item
4455                          */
4456                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4457                         if (IS_ERR(trans)) {
4458                                 ret = PTR_ERR(trans);
4459                                 break;
4460                         }
4461                         continue;
4462                 } else {
4463                         goto skip;
4464                 }
4465 update_tree:
4466                 btrfs_release_path(path);
4467                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4468                         ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4469                                                   BTRFS_UUID_KEY_SUBVOL,
4470                                                   key.objectid);
4471                         if (ret < 0) {
4472                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4473                                         ret);
4474                                 break;
4475                         }
4476                 }
4477
4478                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4479                         ret = btrfs_uuid_tree_add(trans,
4480                                                   root_item.received_uuid,
4481                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4482                                                   key.objectid);
4483                         if (ret < 0) {
4484                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4485                                         ret);
4486                                 break;
4487                         }
4488                 }
4489
4490 skip:
4491                 btrfs_release_path(path);
4492                 if (trans) {
4493                         ret = btrfs_end_transaction(trans);
4494                         trans = NULL;
4495                         if (ret)
4496                                 break;
4497                 }
4498
4499                 if (key.offset < (u64)-1) {
4500                         key.offset++;
4501                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4502                         key.offset = 0;
4503                         key.type = BTRFS_ROOT_ITEM_KEY;
4504                 } else if (key.objectid < (u64)-1) {
4505                         key.offset = 0;
4506                         key.type = BTRFS_ROOT_ITEM_KEY;
4507                         key.objectid++;
4508                 } else {
4509                         break;
4510                 }
4511                 cond_resched();
4512         }
4513
4514 out:
4515         btrfs_free_path(path);
4516         if (trans && !IS_ERR(trans))
4517                 btrfs_end_transaction(trans);
4518         if (ret)
4519                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4520         else if (!closing)
4521                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4522         up(&fs_info->uuid_tree_rescan_sem);
4523         return 0;
4524 }
4525
4526 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4527 {
4528         struct btrfs_trans_handle *trans;
4529         struct btrfs_root *tree_root = fs_info->tree_root;
4530         struct btrfs_root *uuid_root;
4531         struct task_struct *task;
4532         int ret;
4533
4534         /*
4535          * 1 - root node
4536          * 1 - root item
4537          */
4538         trans = btrfs_start_transaction(tree_root, 2);
4539         if (IS_ERR(trans))
4540                 return PTR_ERR(trans);
4541
4542         uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4543         if (IS_ERR(uuid_root)) {
4544                 ret = PTR_ERR(uuid_root);
4545                 btrfs_abort_transaction(trans, ret);
4546                 btrfs_end_transaction(trans);
4547                 return ret;
4548         }
4549
4550         fs_info->uuid_root = uuid_root;
4551
4552         ret = btrfs_commit_transaction(trans);
4553         if (ret)
4554                 return ret;
4555
4556         down(&fs_info->uuid_tree_rescan_sem);
4557         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4558         if (IS_ERR(task)) {
4559                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4560                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4561                 up(&fs_info->uuid_tree_rescan_sem);
4562                 return PTR_ERR(task);
4563         }
4564
4565         return 0;
4566 }
4567
4568 /*
4569  * shrinking a device means finding all of the device extents past
4570  * the new size, and then following the back refs to the chunks.
4571  * The chunk relocation code actually frees the device extent
4572  */
4573 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4574 {
4575         struct btrfs_fs_info *fs_info = device->fs_info;
4576         struct btrfs_root *root = fs_info->dev_root;
4577         struct btrfs_trans_handle *trans;
4578         struct btrfs_dev_extent *dev_extent = NULL;
4579         struct btrfs_path *path;
4580         u64 length;
4581         u64 chunk_offset;
4582         int ret;
4583         int slot;
4584         int failed = 0;
4585         bool retried = false;
4586         struct extent_buffer *l;
4587         struct btrfs_key key;
4588         struct btrfs_super_block *super_copy = fs_info->super_copy;
4589         u64 old_total = btrfs_super_total_bytes(super_copy);
4590         u64 old_size = btrfs_device_get_total_bytes(device);
4591         u64 diff;
4592         u64 start;
4593
4594         new_size = round_down(new_size, fs_info->sectorsize);
4595         start = new_size;
4596         diff = round_down(old_size - new_size, fs_info->sectorsize);
4597
4598         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4599                 return -EINVAL;
4600
4601         path = btrfs_alloc_path();
4602         if (!path)
4603                 return -ENOMEM;
4604
4605         path->reada = READA_BACK;
4606
4607         trans = btrfs_start_transaction(root, 0);
4608         if (IS_ERR(trans)) {
4609                 btrfs_free_path(path);
4610                 return PTR_ERR(trans);
4611         }
4612
4613         mutex_lock(&fs_info->chunk_mutex);
4614
4615         btrfs_device_set_total_bytes(device, new_size);
4616         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4617                 device->fs_devices->total_rw_bytes -= diff;
4618                 atomic64_sub(diff, &fs_info->free_chunk_space);
4619         }
4620
4621         /*
4622          * Once the device's size has been set to the new size, ensure all
4623          * in-memory chunks are synced to disk so that the loop below sees them
4624          * and relocates them accordingly.
4625          */
4626         if (contains_pending_extent(device, &start, diff)) {
4627                 mutex_unlock(&fs_info->chunk_mutex);
4628                 ret = btrfs_commit_transaction(trans);
4629                 if (ret)
4630                         goto done;
4631         } else {
4632                 mutex_unlock(&fs_info->chunk_mutex);
4633                 btrfs_end_transaction(trans);
4634         }
4635
4636 again:
4637         key.objectid = device->devid;
4638         key.offset = (u64)-1;
4639         key.type = BTRFS_DEV_EXTENT_KEY;
4640
4641         do {
4642                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4643                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4644                 if (ret < 0) {
4645                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4646                         goto done;
4647                 }
4648
4649                 ret = btrfs_previous_item(root, path, 0, key.type);
4650                 if (ret)
4651                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4652                 if (ret < 0)
4653                         goto done;
4654                 if (ret) {
4655                         ret = 0;
4656                         btrfs_release_path(path);
4657                         break;
4658                 }
4659
4660                 l = path->nodes[0];
4661                 slot = path->slots[0];
4662                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4663
4664                 if (key.objectid != device->devid) {
4665                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4666                         btrfs_release_path(path);
4667                         break;
4668                 }
4669
4670                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4671                 length = btrfs_dev_extent_length(l, dev_extent);
4672
4673                 if (key.offset + length <= new_size) {
4674                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4675                         btrfs_release_path(path);
4676                         break;
4677                 }
4678
4679                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4680                 btrfs_release_path(path);
4681
4682                 /*
4683                  * We may be relocating the only data chunk we have,
4684                  * which could potentially end up with losing data's
4685                  * raid profile, so lets allocate an empty one in
4686                  * advance.
4687                  */
4688                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4689                 if (ret < 0) {
4690                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4691                         goto done;
4692                 }
4693
4694                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4695                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4696                 if (ret == -ENOSPC) {
4697                         failed++;
4698                 } else if (ret) {
4699                         if (ret == -ETXTBSY) {
4700                                 btrfs_warn(fs_info,
4701                    "could not shrink block group %llu due to active swapfile",
4702                                            chunk_offset);
4703                         }
4704                         goto done;
4705                 }
4706         } while (key.offset-- > 0);
4707
4708         if (failed && !retried) {
4709                 failed = 0;
4710                 retried = true;
4711                 goto again;
4712         } else if (failed && retried) {
4713                 ret = -ENOSPC;
4714                 goto done;
4715         }
4716
4717         /* Shrinking succeeded, else we would be at "done". */
4718         trans = btrfs_start_transaction(root, 0);
4719         if (IS_ERR(trans)) {
4720                 ret = PTR_ERR(trans);
4721                 goto done;
4722         }
4723
4724         mutex_lock(&fs_info->chunk_mutex);
4725         /* Clear all state bits beyond the shrunk device size */
4726         clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4727                           CHUNK_STATE_MASK);
4728
4729         btrfs_device_set_disk_total_bytes(device, new_size);
4730         if (list_empty(&device->post_commit_list))
4731                 list_add_tail(&device->post_commit_list,
4732                               &trans->transaction->dev_update_list);
4733
4734         WARN_ON(diff > old_total);
4735         btrfs_set_super_total_bytes(super_copy,
4736                         round_down(old_total - diff, fs_info->sectorsize));
4737         mutex_unlock(&fs_info->chunk_mutex);
4738
4739         /* Now btrfs_update_device() will change the on-disk size. */
4740         ret = btrfs_update_device(trans, device);
4741         if (ret < 0) {
4742                 btrfs_abort_transaction(trans, ret);
4743                 btrfs_end_transaction(trans);
4744         } else {
4745                 ret = btrfs_commit_transaction(trans);
4746         }
4747 done:
4748         btrfs_free_path(path);
4749         if (ret) {
4750                 mutex_lock(&fs_info->chunk_mutex);
4751                 btrfs_device_set_total_bytes(device, old_size);
4752                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4753                         device->fs_devices->total_rw_bytes += diff;
4754                 atomic64_add(diff, &fs_info->free_chunk_space);
4755                 mutex_unlock(&fs_info->chunk_mutex);
4756         }
4757         return ret;
4758 }
4759
4760 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4761                            struct btrfs_key *key,
4762                            struct btrfs_chunk *chunk, int item_size)
4763 {
4764         struct btrfs_super_block *super_copy = fs_info->super_copy;
4765         struct btrfs_disk_key disk_key;
4766         u32 array_size;
4767         u8 *ptr;
4768
4769         mutex_lock(&fs_info->chunk_mutex);
4770         array_size = btrfs_super_sys_array_size(super_copy);
4771         if (array_size + item_size + sizeof(disk_key)
4772                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4773                 mutex_unlock(&fs_info->chunk_mutex);
4774                 return -EFBIG;
4775         }
4776
4777         ptr = super_copy->sys_chunk_array + array_size;
4778         btrfs_cpu_key_to_disk(&disk_key, key);
4779         memcpy(ptr, &disk_key, sizeof(disk_key));
4780         ptr += sizeof(disk_key);
4781         memcpy(ptr, chunk, item_size);
4782         item_size += sizeof(disk_key);
4783         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4784         mutex_unlock(&fs_info->chunk_mutex);
4785
4786         return 0;
4787 }
4788
4789 /*
4790  * sort the devices in descending order by max_avail, total_avail
4791  */
4792 static int btrfs_cmp_device_info(const void *a, const void *b)
4793 {
4794         const struct btrfs_device_info *di_a = a;
4795         const struct btrfs_device_info *di_b = b;
4796
4797         if (di_a->max_avail > di_b->max_avail)
4798                 return -1;
4799         if (di_a->max_avail < di_b->max_avail)
4800                 return 1;
4801         if (di_a->total_avail > di_b->total_avail)
4802                 return -1;
4803         if (di_a->total_avail < di_b->total_avail)
4804                 return 1;
4805         return 0;
4806 }
4807
4808 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4809 {
4810         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4811                 return;
4812
4813         btrfs_set_fs_incompat(info, RAID56);
4814 }
4815
4816 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4817 {
4818         if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4819                 return;
4820
4821         btrfs_set_fs_incompat(info, RAID1C34);
4822 }
4823
4824 /*
4825  * Structure used internally for __btrfs_alloc_chunk() function.
4826  * Wraps needed parameters.
4827  */
4828 struct alloc_chunk_ctl {
4829         u64 start;
4830         u64 type;
4831         /* Total number of stripes to allocate */
4832         int num_stripes;
4833         /* sub_stripes info for map */
4834         int sub_stripes;
4835         /* Stripes per device */
4836         int dev_stripes;
4837         /* Maximum number of devices to use */
4838         int devs_max;
4839         /* Minimum number of devices to use */
4840         int devs_min;
4841         /* ndevs has to be a multiple of this */
4842         int devs_increment;
4843         /* Number of copies */
4844         int ncopies;
4845         /* Number of stripes worth of bytes to store parity information */
4846         int nparity;
4847         u64 max_stripe_size;
4848         u64 max_chunk_size;
4849         u64 dev_extent_min;
4850         u64 stripe_size;
4851         u64 chunk_size;
4852         int ndevs;
4853 };
4854
4855 static void init_alloc_chunk_ctl_policy_regular(
4856                                 struct btrfs_fs_devices *fs_devices,
4857                                 struct alloc_chunk_ctl *ctl)
4858 {
4859         u64 type = ctl->type;
4860
4861         if (type & BTRFS_BLOCK_GROUP_DATA) {
4862                 ctl->max_stripe_size = SZ_1G;
4863                 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4864         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4865                 /* For larger filesystems, use larger metadata chunks */
4866                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4867                         ctl->max_stripe_size = SZ_1G;
4868                 else
4869                         ctl->max_stripe_size = SZ_256M;
4870                 ctl->max_chunk_size = ctl->max_stripe_size;
4871         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4872                 ctl->max_stripe_size = SZ_32M;
4873                 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4874                 ctl->devs_max = min_t(int, ctl->devs_max,
4875                                       BTRFS_MAX_DEVS_SYS_CHUNK);
4876         } else {
4877                 BUG();
4878         }
4879
4880         /* We don't want a chunk larger than 10% of writable space */
4881         ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4882                                   ctl->max_chunk_size);
4883         ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
4884 }
4885
4886 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
4887                                  struct alloc_chunk_ctl *ctl)
4888 {
4889         int index = btrfs_bg_flags_to_raid_index(ctl->type);
4890
4891         ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
4892         ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
4893         ctl->devs_max = btrfs_raid_array[index].devs_max;
4894         if (!ctl->devs_max)
4895                 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
4896         ctl->devs_min = btrfs_raid_array[index].devs_min;
4897         ctl->devs_increment = btrfs_raid_array[index].devs_increment;
4898         ctl->ncopies = btrfs_raid_array[index].ncopies;
4899         ctl->nparity = btrfs_raid_array[index].nparity;
4900         ctl->ndevs = 0;
4901
4902         switch (fs_devices->chunk_alloc_policy) {
4903         case BTRFS_CHUNK_ALLOC_REGULAR:
4904                 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
4905                 break;
4906         default:
4907                 BUG();
4908         }
4909 }
4910
4911 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
4912                               struct alloc_chunk_ctl *ctl,
4913                               struct btrfs_device_info *devices_info)
4914 {
4915         struct btrfs_fs_info *info = fs_devices->fs_info;
4916         struct btrfs_device *device;
4917         u64 total_avail;
4918         u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
4919         int ret;
4920         int ndevs = 0;
4921         u64 max_avail;
4922         u64 dev_offset;
4923
4924         /*
4925          * in the first pass through the devices list, we gather information
4926          * about the available holes on each device.
4927          */
4928         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4929                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4930                         WARN(1, KERN_ERR
4931                                "BTRFS: read-only device in alloc_list\n");
4932                         continue;
4933                 }
4934
4935                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4936                                         &device->dev_state) ||
4937                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4938                         continue;
4939
4940                 if (device->total_bytes > device->bytes_used)
4941                         total_avail = device->total_bytes - device->bytes_used;
4942                 else
4943                         total_avail = 0;
4944
4945                 /* If there is no space on this device, skip it. */
4946                 if (total_avail < ctl->dev_extent_min)
4947                         continue;
4948
4949                 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
4950                                            &max_avail);
4951                 if (ret && ret != -ENOSPC)
4952                         return ret;
4953
4954                 if (ret == 0)
4955                         max_avail = dev_extent_want;
4956
4957                 if (max_avail < ctl->dev_extent_min) {
4958                         if (btrfs_test_opt(info, ENOSPC_DEBUG))
4959                                 btrfs_debug(info,
4960                         "%s: devid %llu has no free space, have=%llu want=%llu",
4961                                             __func__, device->devid, max_avail,
4962                                             ctl->dev_extent_min);
4963                         continue;
4964                 }
4965
4966                 if (ndevs == fs_devices->rw_devices) {
4967                         WARN(1, "%s: found more than %llu devices\n",
4968                              __func__, fs_devices->rw_devices);
4969                         break;
4970                 }
4971                 devices_info[ndevs].dev_offset = dev_offset;
4972                 devices_info[ndevs].max_avail = max_avail;
4973                 devices_info[ndevs].total_avail = total_avail;
4974                 devices_info[ndevs].dev = device;
4975                 ++ndevs;
4976         }
4977         ctl->ndevs = ndevs;
4978
4979         /*
4980          * now sort the devices by hole size / available space
4981          */
4982         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4983              btrfs_cmp_device_info, NULL);
4984
4985         return 0;
4986 }
4987
4988 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
4989                                       struct btrfs_device_info *devices_info)
4990 {
4991         /* Number of stripes that count for block group size */
4992         int data_stripes;
4993
4994         /*
4995          * The primary goal is to maximize the number of stripes, so use as
4996          * many devices as possible, even if the stripes are not maximum sized.
4997          *
4998          * The DUP profile stores more than one stripe per device, the
4999          * max_avail is the total size so we have to adjust.
5000          */
5001         ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5002                                    ctl->dev_stripes);
5003         ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5004
5005         /* This will have to be fixed for RAID1 and RAID10 over more drives */
5006         data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5007
5008         /*
5009          * Use the number of data stripes to figure out how big this chunk is
5010          * really going to be in terms of logical address space, and compare
5011          * that answer with the max chunk size. If it's higher, we try to
5012          * reduce stripe_size.
5013          */
5014         if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5015                 /*
5016                  * Reduce stripe_size, round it up to a 16MB boundary again and
5017                  * then use it, unless it ends up being even bigger than the
5018                  * previous value we had already.
5019                  */
5020                 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5021                                                         data_stripes), SZ_16M),
5022                                        ctl->stripe_size);
5023         }
5024
5025         /* Align to BTRFS_STRIPE_LEN */
5026         ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5027         ctl->chunk_size = ctl->stripe_size * data_stripes;
5028
5029         return 0;
5030 }
5031
5032 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5033                               struct alloc_chunk_ctl *ctl,
5034                               struct btrfs_device_info *devices_info)
5035 {
5036         struct btrfs_fs_info *info = fs_devices->fs_info;
5037
5038         /*
5039          * Round down to number of usable stripes, devs_increment can be any
5040          * number so we can't use round_down() that requires power of 2, while
5041          * rounddown is safe.
5042          */
5043         ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5044
5045         if (ctl->ndevs < ctl->devs_min) {
5046                 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5047                         btrfs_debug(info,
5048         "%s: not enough devices with free space: have=%d minimum required=%d",
5049                                     __func__, ctl->ndevs, ctl->devs_min);
5050                 }
5051                 return -ENOSPC;
5052         }
5053
5054         ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5055
5056         switch (fs_devices->chunk_alloc_policy) {
5057         case BTRFS_CHUNK_ALLOC_REGULAR:
5058                 return decide_stripe_size_regular(ctl, devices_info);
5059         default:
5060                 BUG();
5061         }
5062 }
5063
5064 static int create_chunk(struct btrfs_trans_handle *trans,
5065                         struct alloc_chunk_ctl *ctl,
5066                         struct btrfs_device_info *devices_info)
5067 {
5068         struct btrfs_fs_info *info = trans->fs_info;
5069         struct map_lookup *map = NULL;
5070         struct extent_map_tree *em_tree;
5071         struct extent_map *em;
5072         u64 start = ctl->start;
5073         u64 type = ctl->type;
5074         int ret;
5075         int i;
5076         int j;
5077
5078         map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5079         if (!map)
5080                 return -ENOMEM;
5081         map->num_stripes = ctl->num_stripes;
5082
5083         for (i = 0; i < ctl->ndevs; ++i) {
5084                 for (j = 0; j < ctl->dev_stripes; ++j) {
5085                         int s = i * ctl->dev_stripes + j;
5086                         map->stripes[s].dev = devices_info[i].dev;
5087                         map->stripes[s].physical = devices_info[i].dev_offset +
5088                                                    j * ctl->stripe_size;
5089                 }
5090         }
5091         map->stripe_len = BTRFS_STRIPE_LEN;
5092         map->io_align = BTRFS_STRIPE_LEN;
5093         map->io_width = BTRFS_STRIPE_LEN;
5094         map->type = type;
5095         map->sub_stripes = ctl->sub_stripes;
5096
5097         trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5098
5099         em = alloc_extent_map();
5100         if (!em) {
5101                 kfree(map);
5102                 return -ENOMEM;
5103         }
5104         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5105         em->map_lookup = map;
5106         em->start = start;
5107         em->len = ctl->chunk_size;
5108         em->block_start = 0;
5109         em->block_len = em->len;
5110         em->orig_block_len = ctl->stripe_size;
5111
5112         em_tree = &info->mapping_tree;
5113         write_lock(&em_tree->lock);
5114         ret = add_extent_mapping(em_tree, em, 0);
5115         if (ret) {
5116                 write_unlock(&em_tree->lock);
5117                 free_extent_map(em);
5118                 return ret;
5119         }
5120         write_unlock(&em_tree->lock);
5121
5122         ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5123         if (ret)
5124                 goto error_del_extent;
5125
5126         for (i = 0; i < map->num_stripes; i++) {
5127                 struct btrfs_device *dev = map->stripes[i].dev;
5128
5129                 btrfs_device_set_bytes_used(dev,
5130                                             dev->bytes_used + ctl->stripe_size);
5131                 if (list_empty(&dev->post_commit_list))
5132                         list_add_tail(&dev->post_commit_list,
5133                                       &trans->transaction->dev_update_list);
5134         }
5135
5136         atomic64_sub(ctl->stripe_size * map->num_stripes,
5137                      &info->free_chunk_space);
5138
5139         free_extent_map(em);
5140         check_raid56_incompat_flag(info, type);
5141         check_raid1c34_incompat_flag(info, type);
5142
5143         return 0;
5144
5145 error_del_extent:
5146         write_lock(&em_tree->lock);
5147         remove_extent_mapping(em_tree, em);
5148         write_unlock(&em_tree->lock);
5149
5150         /* One for our allocation */
5151         free_extent_map(em);
5152         /* One for the tree reference */
5153         free_extent_map(em);
5154
5155         return ret;
5156 }
5157
5158 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5159 {
5160         struct btrfs_fs_info *info = trans->fs_info;
5161         struct btrfs_fs_devices *fs_devices = info->fs_devices;
5162         struct btrfs_device_info *devices_info = NULL;
5163         struct alloc_chunk_ctl ctl;
5164         int ret;
5165
5166         lockdep_assert_held(&info->chunk_mutex);
5167
5168         if (!alloc_profile_is_valid(type, 0)) {
5169                 ASSERT(0);
5170                 return -EINVAL;
5171         }
5172
5173         if (list_empty(&fs_devices->alloc_list)) {
5174                 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5175                         btrfs_debug(info, "%s: no writable device", __func__);
5176                 return -ENOSPC;
5177         }
5178
5179         if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5180                 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5181                 ASSERT(0);
5182                 return -EINVAL;
5183         }
5184
5185         ctl.start = find_next_chunk(info);
5186         ctl.type = type;
5187         init_alloc_chunk_ctl(fs_devices, &ctl);
5188
5189         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5190                                GFP_NOFS);
5191         if (!devices_info)
5192                 return -ENOMEM;
5193
5194         ret = gather_device_info(fs_devices, &ctl, devices_info);
5195         if (ret < 0)
5196                 goto out;
5197
5198         ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5199         if (ret < 0)
5200                 goto out;
5201
5202         ret = create_chunk(trans, &ctl, devices_info);
5203
5204 out:
5205         kfree(devices_info);
5206         return ret;
5207 }
5208
5209 /*
5210  * Chunk allocation falls into two parts. The first part does work
5211  * that makes the new allocated chunk usable, but does not do any operation
5212  * that modifies the chunk tree. The second part does the work that
5213  * requires modifying the chunk tree. This division is important for the
5214  * bootstrap process of adding storage to a seed btrfs.
5215  */
5216 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5217                              u64 chunk_offset, u64 chunk_size)
5218 {
5219         struct btrfs_fs_info *fs_info = trans->fs_info;
5220         struct btrfs_root *extent_root = fs_info->extent_root;
5221         struct btrfs_root *chunk_root = fs_info->chunk_root;
5222         struct btrfs_key key;
5223         struct btrfs_device *device;
5224         struct btrfs_chunk *chunk;
5225         struct btrfs_stripe *stripe;
5226         struct extent_map *em;
5227         struct map_lookup *map;
5228         size_t item_size;
5229         u64 dev_offset;
5230         u64 stripe_size;
5231         int i = 0;
5232         int ret = 0;
5233
5234         em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5235         if (IS_ERR(em))
5236                 return PTR_ERR(em);
5237
5238         map = em->map_lookup;
5239         item_size = btrfs_chunk_item_size(map->num_stripes);
5240         stripe_size = em->orig_block_len;
5241
5242         chunk = kzalloc(item_size, GFP_NOFS);
5243         if (!chunk) {
5244                 ret = -ENOMEM;
5245                 goto out;
5246         }
5247
5248         /*
5249          * Take the device list mutex to prevent races with the final phase of
5250          * a device replace operation that replaces the device object associated
5251          * with the map's stripes, because the device object's id can change
5252          * at any time during that final phase of the device replace operation
5253          * (dev-replace.c:btrfs_dev_replace_finishing()).
5254          */
5255         mutex_lock(&fs_info->fs_devices->device_list_mutex);
5256         for (i = 0; i < map->num_stripes; i++) {
5257                 device = map->stripes[i].dev;
5258                 dev_offset = map->stripes[i].physical;
5259
5260                 ret = btrfs_update_device(trans, device);
5261                 if (ret)
5262                         break;
5263                 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5264                                              dev_offset, stripe_size);
5265                 if (ret)
5266                         break;
5267         }
5268         if (ret) {
5269                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5270                 goto out;
5271         }
5272
5273         stripe = &chunk->stripe;
5274         for (i = 0; i < map->num_stripes; i++) {
5275                 device = map->stripes[i].dev;
5276                 dev_offset = map->stripes[i].physical;
5277
5278                 btrfs_set_stack_stripe_devid(stripe, device->devid);
5279                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5280                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5281                 stripe++;
5282         }
5283         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5284
5285         btrfs_set_stack_chunk_length(chunk, chunk_size);
5286         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5287         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5288         btrfs_set_stack_chunk_type(chunk, map->type);
5289         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5290         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5291         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5292         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5293         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5294
5295         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5296         key.type = BTRFS_CHUNK_ITEM_KEY;
5297         key.offset = chunk_offset;
5298
5299         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5300         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5301                 /*
5302                  * TODO: Cleanup of inserted chunk root in case of
5303                  * failure.
5304                  */
5305                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5306         }
5307
5308 out:
5309         kfree(chunk);
5310         free_extent_map(em);
5311         return ret;
5312 }
5313
5314 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5315 {
5316         struct btrfs_fs_info *fs_info = trans->fs_info;
5317         u64 alloc_profile;
5318         int ret;
5319
5320         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5321         ret = btrfs_alloc_chunk(trans, alloc_profile);
5322         if (ret)
5323                 return ret;
5324
5325         alloc_profile = btrfs_system_alloc_profile(fs_info);
5326         ret = btrfs_alloc_chunk(trans, alloc_profile);
5327         return ret;
5328 }
5329
5330 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5331 {
5332         const int index = btrfs_bg_flags_to_raid_index(map->type);
5333
5334         return btrfs_raid_array[index].tolerated_failures;
5335 }
5336
5337 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5338 {
5339         struct extent_map *em;
5340         struct map_lookup *map;
5341         int readonly = 0;
5342         int miss_ndevs = 0;
5343         int i;
5344
5345         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5346         if (IS_ERR(em))
5347                 return 1;
5348
5349         map = em->map_lookup;
5350         for (i = 0; i < map->num_stripes; i++) {
5351                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5352                                         &map->stripes[i].dev->dev_state)) {
5353                         miss_ndevs++;
5354                         continue;
5355                 }
5356                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5357                                         &map->stripes[i].dev->dev_state)) {
5358                         readonly = 1;
5359                         goto end;
5360                 }
5361         }
5362
5363         /*
5364          * If the number of missing devices is larger than max errors,
5365          * we can not write the data into that chunk successfully, so
5366          * set it readonly.
5367          */
5368         if (miss_ndevs > btrfs_chunk_max_errors(map))
5369                 readonly = 1;
5370 end:
5371         free_extent_map(em);
5372         return readonly;
5373 }
5374
5375 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5376 {
5377         struct extent_map *em;
5378
5379         while (1) {
5380                 write_lock(&tree->lock);
5381                 em = lookup_extent_mapping(tree, 0, (u64)-1);
5382                 if (em)
5383                         remove_extent_mapping(tree, em);
5384                 write_unlock(&tree->lock);
5385                 if (!em)
5386                         break;
5387                 /* once for us */
5388                 free_extent_map(em);
5389                 /* once for the tree */
5390                 free_extent_map(em);
5391         }
5392 }
5393
5394 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5395 {
5396         struct extent_map *em;
5397         struct map_lookup *map;
5398         int ret;
5399
5400         em = btrfs_get_chunk_map(fs_info, logical, len);
5401         if (IS_ERR(em))
5402                 /*
5403                  * We could return errors for these cases, but that could get
5404                  * ugly and we'd probably do the same thing which is just not do
5405                  * anything else and exit, so return 1 so the callers don't try
5406                  * to use other copies.
5407                  */
5408                 return 1;
5409
5410         map = em->map_lookup;
5411         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5412                 ret = map->num_stripes;
5413         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5414                 ret = map->sub_stripes;
5415         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5416                 ret = 2;
5417         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5418                 /*
5419                  * There could be two corrupted data stripes, we need
5420                  * to loop retry in order to rebuild the correct data.
5421                  *
5422                  * Fail a stripe at a time on every retry except the
5423                  * stripe under reconstruction.
5424                  */
5425                 ret = map->num_stripes;
5426         else
5427                 ret = 1;
5428         free_extent_map(em);
5429
5430         down_read(&fs_info->dev_replace.rwsem);
5431         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5432             fs_info->dev_replace.tgtdev)
5433                 ret++;
5434         up_read(&fs_info->dev_replace.rwsem);
5435
5436         return ret;
5437 }
5438
5439 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5440                                     u64 logical)
5441 {
5442         struct extent_map *em;
5443         struct map_lookup *map;
5444         unsigned long len = fs_info->sectorsize;
5445
5446         em = btrfs_get_chunk_map(fs_info, logical, len);
5447
5448         if (!WARN_ON(IS_ERR(em))) {
5449                 map = em->map_lookup;
5450                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5451                         len = map->stripe_len * nr_data_stripes(map);
5452                 free_extent_map(em);
5453         }
5454         return len;
5455 }
5456
5457 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5458 {
5459         struct extent_map *em;
5460         struct map_lookup *map;
5461         int ret = 0;
5462
5463         em = btrfs_get_chunk_map(fs_info, logical, len);
5464
5465         if(!WARN_ON(IS_ERR(em))) {
5466                 map = em->map_lookup;
5467                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5468                         ret = 1;
5469                 free_extent_map(em);
5470         }
5471         return ret;
5472 }
5473
5474 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5475                             struct map_lookup *map, int first,
5476                             int dev_replace_is_ongoing)
5477 {
5478         int i;
5479         int num_stripes;
5480         int preferred_mirror;
5481         int tolerance;
5482         struct btrfs_device *srcdev;
5483
5484         ASSERT((map->type &
5485                  (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5486
5487         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5488                 num_stripes = map->sub_stripes;
5489         else
5490                 num_stripes = map->num_stripes;
5491
5492         preferred_mirror = first + current->pid % num_stripes;
5493
5494         if (dev_replace_is_ongoing &&
5495             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5496              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5497                 srcdev = fs_info->dev_replace.srcdev;
5498         else
5499                 srcdev = NULL;
5500
5501         /*
5502          * try to avoid the drive that is the source drive for a
5503          * dev-replace procedure, only choose it if no other non-missing
5504          * mirror is available
5505          */
5506         for (tolerance = 0; tolerance < 2; tolerance++) {
5507                 if (map->stripes[preferred_mirror].dev->bdev &&
5508                     (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5509                         return preferred_mirror;
5510                 for (i = first; i < first + num_stripes; i++) {
5511                         if (map->stripes[i].dev->bdev &&
5512                             (tolerance || map->stripes[i].dev != srcdev))
5513                                 return i;
5514                 }
5515         }
5516
5517         /* we couldn't find one that doesn't fail.  Just return something
5518          * and the io error handling code will clean up eventually
5519          */
5520         return preferred_mirror;
5521 }
5522
5523 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5524 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5525 {
5526         int i;
5527         int again = 1;
5528
5529         while (again) {
5530                 again = 0;
5531                 for (i = 0; i < num_stripes - 1; i++) {
5532                         /* Swap if parity is on a smaller index */
5533                         if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5534                                 swap(bbio->stripes[i], bbio->stripes[i + 1]);
5535                                 swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5536                                 again = 1;
5537                         }
5538                 }
5539         }
5540 }
5541
5542 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5543 {
5544         struct btrfs_bio *bbio = kzalloc(
5545                  /* the size of the btrfs_bio */
5546                 sizeof(struct btrfs_bio) +
5547                 /* plus the variable array for the stripes */
5548                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5549                 /* plus the variable array for the tgt dev */
5550                 sizeof(int) * (real_stripes) +
5551                 /*
5552                  * plus the raid_map, which includes both the tgt dev
5553                  * and the stripes
5554                  */
5555                 sizeof(u64) * (total_stripes),
5556                 GFP_NOFS|__GFP_NOFAIL);
5557
5558         atomic_set(&bbio->error, 0);
5559         refcount_set(&bbio->refs, 1);
5560
5561         bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5562         bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5563
5564         return bbio;
5565 }
5566
5567 void btrfs_get_bbio(struct btrfs_bio *bbio)
5568 {
5569         WARN_ON(!refcount_read(&bbio->refs));
5570         refcount_inc(&bbio->refs);
5571 }
5572
5573 void btrfs_put_bbio(struct btrfs_bio *bbio)
5574 {
5575         if (!bbio)
5576                 return;
5577         if (refcount_dec_and_test(&bbio->refs))
5578                 kfree(bbio);
5579 }
5580
5581 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5582 /*
5583  * Please note that, discard won't be sent to target device of device
5584  * replace.
5585  */
5586 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5587                                          u64 logical, u64 *length_ret,
5588                                          struct btrfs_bio **bbio_ret)
5589 {
5590         struct extent_map *em;
5591         struct map_lookup *map;
5592         struct btrfs_bio *bbio;
5593         u64 length = *length_ret;
5594         u64 offset;
5595         u64 stripe_nr;
5596         u64 stripe_nr_end;
5597         u64 stripe_end_offset;
5598         u64 stripe_cnt;
5599         u64 stripe_len;
5600         u64 stripe_offset;
5601         u64 num_stripes;
5602         u32 stripe_index;
5603         u32 factor = 0;
5604         u32 sub_stripes = 0;
5605         u64 stripes_per_dev = 0;
5606         u32 remaining_stripes = 0;
5607         u32 last_stripe = 0;
5608         int ret = 0;
5609         int i;
5610
5611         /* discard always return a bbio */
5612         ASSERT(bbio_ret);
5613
5614         em = btrfs_get_chunk_map(fs_info, logical, length);
5615         if (IS_ERR(em))
5616                 return PTR_ERR(em);
5617
5618         map = em->map_lookup;
5619         /* we don't discard raid56 yet */
5620         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5621                 ret = -EOPNOTSUPP;
5622                 goto out;
5623         }
5624
5625         offset = logical - em->start;
5626         length = min_t(u64, em->start + em->len - logical, length);
5627         *length_ret = length;
5628
5629         stripe_len = map->stripe_len;
5630         /*
5631          * stripe_nr counts the total number of stripes we have to stride
5632          * to get to this block
5633          */
5634         stripe_nr = div64_u64(offset, stripe_len);
5635
5636         /* stripe_offset is the offset of this block in its stripe */
5637         stripe_offset = offset - stripe_nr * stripe_len;
5638
5639         stripe_nr_end = round_up(offset + length, map->stripe_len);
5640         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5641         stripe_cnt = stripe_nr_end - stripe_nr;
5642         stripe_end_offset = stripe_nr_end * map->stripe_len -
5643                             (offset + length);
5644         /*
5645          * after this, stripe_nr is the number of stripes on this
5646          * device we have to walk to find the data, and stripe_index is
5647          * the number of our device in the stripe array
5648          */
5649         num_stripes = 1;
5650         stripe_index = 0;
5651         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5652                          BTRFS_BLOCK_GROUP_RAID10)) {
5653                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5654                         sub_stripes = 1;
5655                 else
5656                         sub_stripes = map->sub_stripes;
5657
5658                 factor = map->num_stripes / sub_stripes;
5659                 num_stripes = min_t(u64, map->num_stripes,
5660                                     sub_stripes * stripe_cnt);
5661                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5662                 stripe_index *= sub_stripes;
5663                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5664                                               &remaining_stripes);
5665                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5666                 last_stripe *= sub_stripes;
5667         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5668                                 BTRFS_BLOCK_GROUP_DUP)) {
5669                 num_stripes = map->num_stripes;
5670         } else {
5671                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5672                                         &stripe_index);
5673         }
5674
5675         bbio = alloc_btrfs_bio(num_stripes, 0);
5676         if (!bbio) {
5677                 ret = -ENOMEM;
5678                 goto out;
5679         }
5680
5681         for (i = 0; i < num_stripes; i++) {
5682                 bbio->stripes[i].physical =
5683                         map->stripes[stripe_index].physical +
5684                         stripe_offset + stripe_nr * map->stripe_len;
5685                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5686
5687                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5688                                  BTRFS_BLOCK_GROUP_RAID10)) {
5689                         bbio->stripes[i].length = stripes_per_dev *
5690                                 map->stripe_len;
5691
5692                         if (i / sub_stripes < remaining_stripes)
5693                                 bbio->stripes[i].length +=
5694                                         map->stripe_len;
5695
5696                         /*
5697                          * Special for the first stripe and
5698                          * the last stripe:
5699                          *
5700                          * |-------|...|-------|
5701                          *     |----------|
5702                          *    off     end_off
5703                          */
5704                         if (i < sub_stripes)
5705                                 bbio->stripes[i].length -=
5706                                         stripe_offset;
5707
5708                         if (stripe_index >= last_stripe &&
5709                             stripe_index <= (last_stripe +
5710                                              sub_stripes - 1))
5711                                 bbio->stripes[i].length -=
5712                                         stripe_end_offset;
5713
5714                         if (i == sub_stripes - 1)
5715                                 stripe_offset = 0;
5716                 } else {
5717                         bbio->stripes[i].length = length;
5718                 }
5719
5720                 stripe_index++;
5721                 if (stripe_index == map->num_stripes) {
5722                         stripe_index = 0;
5723                         stripe_nr++;
5724                 }
5725         }
5726
5727         *bbio_ret = bbio;
5728         bbio->map_type = map->type;
5729         bbio->num_stripes = num_stripes;
5730 out:
5731         free_extent_map(em);
5732         return ret;
5733 }
5734
5735 /*
5736  * In dev-replace case, for repair case (that's the only case where the mirror
5737  * is selected explicitly when calling btrfs_map_block), blocks left of the
5738  * left cursor can also be read from the target drive.
5739  *
5740  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5741  * array of stripes.
5742  * For READ, it also needs to be supported using the same mirror number.
5743  *
5744  * If the requested block is not left of the left cursor, EIO is returned. This
5745  * can happen because btrfs_num_copies() returns one more in the dev-replace
5746  * case.
5747  */
5748 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5749                                          u64 logical, u64 length,
5750                                          u64 srcdev_devid, int *mirror_num,
5751                                          u64 *physical)
5752 {
5753         struct btrfs_bio *bbio = NULL;
5754         int num_stripes;
5755         int index_srcdev = 0;
5756         int found = 0;
5757         u64 physical_of_found = 0;
5758         int i;
5759         int ret = 0;
5760
5761         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5762                                 logical, &length, &bbio, 0, 0);
5763         if (ret) {
5764                 ASSERT(bbio == NULL);
5765                 return ret;
5766         }
5767
5768         num_stripes = bbio->num_stripes;
5769         if (*mirror_num > num_stripes) {
5770                 /*
5771                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5772                  * that means that the requested area is not left of the left
5773                  * cursor
5774                  */
5775                 btrfs_put_bbio(bbio);
5776                 return -EIO;
5777         }
5778
5779         /*
5780          * process the rest of the function using the mirror_num of the source
5781          * drive. Therefore look it up first.  At the end, patch the device
5782          * pointer to the one of the target drive.
5783          */
5784         for (i = 0; i < num_stripes; i++) {
5785                 if (bbio->stripes[i].dev->devid != srcdev_devid)
5786                         continue;
5787
5788                 /*
5789                  * In case of DUP, in order to keep it simple, only add the
5790                  * mirror with the lowest physical address
5791                  */
5792                 if (found &&
5793                     physical_of_found <= bbio->stripes[i].physical)
5794                         continue;
5795
5796                 index_srcdev = i;
5797                 found = 1;
5798                 physical_of_found = bbio->stripes[i].physical;
5799         }
5800
5801         btrfs_put_bbio(bbio);
5802
5803         ASSERT(found);
5804         if (!found)
5805                 return -EIO;
5806
5807         *mirror_num = index_srcdev + 1;
5808         *physical = physical_of_found;
5809         return ret;
5810 }
5811
5812 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5813                                       struct btrfs_bio **bbio_ret,
5814                                       struct btrfs_dev_replace *dev_replace,
5815                                       int *num_stripes_ret, int *max_errors_ret)
5816 {
5817         struct btrfs_bio *bbio = *bbio_ret;
5818         u64 srcdev_devid = dev_replace->srcdev->devid;
5819         int tgtdev_indexes = 0;
5820         int num_stripes = *num_stripes_ret;
5821         int max_errors = *max_errors_ret;
5822         int i;
5823
5824         if (op == BTRFS_MAP_WRITE) {
5825                 int index_where_to_add;
5826
5827                 /*
5828                  * duplicate the write operations while the dev replace
5829                  * procedure is running. Since the copying of the old disk to
5830                  * the new disk takes place at run time while the filesystem is
5831                  * mounted writable, the regular write operations to the old
5832                  * disk have to be duplicated to go to the new disk as well.
5833                  *
5834                  * Note that device->missing is handled by the caller, and that
5835                  * the write to the old disk is already set up in the stripes
5836                  * array.
5837                  */
5838                 index_where_to_add = num_stripes;
5839                 for (i = 0; i < num_stripes; i++) {
5840                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5841                                 /* write to new disk, too */
5842                                 struct btrfs_bio_stripe *new =
5843                                         bbio->stripes + index_where_to_add;
5844                                 struct btrfs_bio_stripe *old =
5845                                         bbio->stripes + i;
5846
5847                                 new->physical = old->physical;
5848                                 new->length = old->length;
5849                                 new->dev = dev_replace->tgtdev;
5850                                 bbio->tgtdev_map[i] = index_where_to_add;
5851                                 index_where_to_add++;
5852                                 max_errors++;
5853                                 tgtdev_indexes++;
5854                         }
5855                 }
5856                 num_stripes = index_where_to_add;
5857         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5858                 int index_srcdev = 0;
5859                 int found = 0;
5860                 u64 physical_of_found = 0;
5861
5862                 /*
5863                  * During the dev-replace procedure, the target drive can also
5864                  * be used to read data in case it is needed to repair a corrupt
5865                  * block elsewhere. This is possible if the requested area is
5866                  * left of the left cursor. In this area, the target drive is a
5867                  * full copy of the source drive.
5868                  */
5869                 for (i = 0; i < num_stripes; i++) {
5870                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5871                                 /*
5872                                  * In case of DUP, in order to keep it simple,
5873                                  * only add the mirror with the lowest physical
5874                                  * address
5875                                  */
5876                                 if (found &&
5877                                     physical_of_found <=
5878                                      bbio->stripes[i].physical)
5879                                         continue;
5880                                 index_srcdev = i;
5881                                 found = 1;
5882                                 physical_of_found = bbio->stripes[i].physical;
5883                         }
5884                 }
5885                 if (found) {
5886                         struct btrfs_bio_stripe *tgtdev_stripe =
5887                                 bbio->stripes + num_stripes;
5888
5889                         tgtdev_stripe->physical = physical_of_found;
5890                         tgtdev_stripe->length =
5891                                 bbio->stripes[index_srcdev].length;
5892                         tgtdev_stripe->dev = dev_replace->tgtdev;
5893                         bbio->tgtdev_map[index_srcdev] = num_stripes;
5894
5895                         tgtdev_indexes++;
5896                         num_stripes++;
5897                 }
5898         }
5899
5900         *num_stripes_ret = num_stripes;
5901         *max_errors_ret = max_errors;
5902         bbio->num_tgtdevs = tgtdev_indexes;
5903         *bbio_ret = bbio;
5904 }
5905
5906 static bool need_full_stripe(enum btrfs_map_op op)
5907 {
5908         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5909 }
5910
5911 /*
5912  * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5913  *                     tuple. This information is used to calculate how big a
5914  *                     particular bio can get before it straddles a stripe.
5915  *
5916  * @fs_info - the filesystem
5917  * @logical - address that we want to figure out the geometry of
5918  * @len     - the length of IO we are going to perform, starting at @logical
5919  * @op      - type of operation - write or read
5920  * @io_geom - pointer used to return values
5921  *
5922  * Returns < 0 in case a chunk for the given logical address cannot be found,
5923  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5924  */
5925 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5926                         u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5927 {
5928         struct extent_map *em;
5929         struct map_lookup *map;
5930         u64 offset;
5931         u64 stripe_offset;
5932         u64 stripe_nr;
5933         u64 stripe_len;
5934         u64 raid56_full_stripe_start = (u64)-1;
5935         int data_stripes;
5936         int ret = 0;
5937
5938         ASSERT(op != BTRFS_MAP_DISCARD);
5939
5940         em = btrfs_get_chunk_map(fs_info, logical, len);
5941         if (IS_ERR(em))
5942                 return PTR_ERR(em);
5943
5944         map = em->map_lookup;
5945         /* Offset of this logical address in the chunk */
5946         offset = logical - em->start;
5947         /* Len of a stripe in a chunk */
5948         stripe_len = map->stripe_len;
5949         /* Stripe wher this block falls in */
5950         stripe_nr = div64_u64(offset, stripe_len);
5951         /* Offset of stripe in the chunk */
5952         stripe_offset = stripe_nr * stripe_len;
5953         if (offset < stripe_offset) {
5954                 btrfs_crit(fs_info,
5955 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5956                         stripe_offset, offset, em->start, logical, stripe_len);
5957                 ret = -EINVAL;
5958                 goto out;
5959         }
5960
5961         /* stripe_offset is the offset of this block in its stripe */
5962         stripe_offset = offset - stripe_offset;
5963         data_stripes = nr_data_stripes(map);
5964
5965         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5966                 u64 max_len = stripe_len - stripe_offset;
5967
5968                 /*
5969                  * In case of raid56, we need to know the stripe aligned start
5970                  */
5971                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5972                         unsigned long full_stripe_len = stripe_len * data_stripes;
5973                         raid56_full_stripe_start = offset;
5974
5975                         /*
5976                          * Allow a write of a full stripe, but make sure we
5977                          * don't allow straddling of stripes
5978                          */
5979                         raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5980                                         full_stripe_len);
5981                         raid56_full_stripe_start *= full_stripe_len;
5982
5983                         /*
5984                          * For writes to RAID[56], allow a full stripeset across
5985                          * all disks. For other RAID types and for RAID[56]
5986                          * reads, just allow a single stripe (on a single disk).
5987                          */
5988                         if (op == BTRFS_MAP_WRITE) {
5989                                 max_len = stripe_len * data_stripes -
5990                                           (offset - raid56_full_stripe_start);
5991                         }
5992                 }
5993                 len = min_t(u64, em->len - offset, max_len);
5994         } else {
5995                 len = em->len - offset;
5996         }
5997
5998         io_geom->len = len;
5999         io_geom->offset = offset;
6000         io_geom->stripe_len = stripe_len;
6001         io_geom->stripe_nr = stripe_nr;
6002         io_geom->stripe_offset = stripe_offset;
6003         io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6004
6005 out:
6006         /* once for us */
6007         free_extent_map(em);
6008         return ret;
6009 }
6010
6011 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6012                              enum btrfs_map_op op,
6013                              u64 logical, u64 *length,
6014                              struct btrfs_bio **bbio_ret,
6015                              int mirror_num, int need_raid_map)
6016 {
6017         struct extent_map *em;
6018         struct map_lookup *map;
6019         u64 stripe_offset;
6020         u64 stripe_nr;
6021         u64 stripe_len;
6022         u32 stripe_index;
6023         int data_stripes;
6024         int i;
6025         int ret = 0;
6026         int num_stripes;
6027         int max_errors = 0;
6028         int tgtdev_indexes = 0;
6029         struct btrfs_bio *bbio = NULL;
6030         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6031         int dev_replace_is_ongoing = 0;
6032         int num_alloc_stripes;
6033         int patch_the_first_stripe_for_dev_replace = 0;
6034         u64 physical_to_patch_in_first_stripe = 0;
6035         u64 raid56_full_stripe_start = (u64)-1;
6036         struct btrfs_io_geometry geom;
6037
6038         ASSERT(bbio_ret);
6039         ASSERT(op != BTRFS_MAP_DISCARD);
6040
6041         ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
6042         if (ret < 0)
6043                 return ret;
6044
6045         em = btrfs_get_chunk_map(fs_info, logical, *length);
6046         ASSERT(!IS_ERR(em));
6047         map = em->map_lookup;
6048
6049         *length = geom.len;
6050         stripe_len = geom.stripe_len;
6051         stripe_nr = geom.stripe_nr;
6052         stripe_offset = geom.stripe_offset;
6053         raid56_full_stripe_start = geom.raid56_stripe_offset;
6054         data_stripes = nr_data_stripes(map);
6055
6056         down_read(&dev_replace->rwsem);
6057         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6058         /*
6059          * Hold the semaphore for read during the whole operation, write is
6060          * requested at commit time but must wait.
6061          */
6062         if (!dev_replace_is_ongoing)
6063                 up_read(&dev_replace->rwsem);
6064
6065         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6066             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6067                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6068                                                     dev_replace->srcdev->devid,
6069                                                     &mirror_num,
6070                                             &physical_to_patch_in_first_stripe);
6071                 if (ret)
6072                         goto out;
6073                 else
6074                         patch_the_first_stripe_for_dev_replace = 1;
6075         } else if (mirror_num > map->num_stripes) {
6076                 mirror_num = 0;
6077         }
6078
6079         num_stripes = 1;
6080         stripe_index = 0;
6081         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6082                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6083                                 &stripe_index);
6084                 if (!need_full_stripe(op))
6085                         mirror_num = 1;
6086         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6087                 if (need_full_stripe(op))
6088                         num_stripes = map->num_stripes;
6089                 else if (mirror_num)
6090                         stripe_index = mirror_num - 1;
6091                 else {
6092                         stripe_index = find_live_mirror(fs_info, map, 0,
6093                                             dev_replace_is_ongoing);
6094                         mirror_num = stripe_index + 1;
6095                 }
6096
6097         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6098                 if (need_full_stripe(op)) {
6099                         num_stripes = map->num_stripes;
6100                 } else if (mirror_num) {
6101                         stripe_index = mirror_num - 1;
6102                 } else {
6103                         mirror_num = 1;
6104                 }
6105
6106         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6107                 u32 factor = map->num_stripes / map->sub_stripes;
6108
6109                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6110                 stripe_index *= map->sub_stripes;
6111
6112                 if (need_full_stripe(op))
6113                         num_stripes = map->sub_stripes;
6114                 else if (mirror_num)
6115                         stripe_index += mirror_num - 1;
6116                 else {
6117                         int old_stripe_index = stripe_index;
6118                         stripe_index = find_live_mirror(fs_info, map,
6119                                               stripe_index,
6120                                               dev_replace_is_ongoing);
6121                         mirror_num = stripe_index - old_stripe_index + 1;
6122                 }
6123
6124         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6125                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6126                         /* push stripe_nr back to the start of the full stripe */
6127                         stripe_nr = div64_u64(raid56_full_stripe_start,
6128                                         stripe_len * data_stripes);
6129
6130                         /* RAID[56] write or recovery. Return all stripes */
6131                         num_stripes = map->num_stripes;
6132                         max_errors = nr_parity_stripes(map);
6133
6134                         *length = map->stripe_len;
6135                         stripe_index = 0;
6136                         stripe_offset = 0;
6137                 } else {
6138                         /*
6139                          * Mirror #0 or #1 means the original data block.
6140                          * Mirror #2 is RAID5 parity block.
6141                          * Mirror #3 is RAID6 Q block.
6142                          */
6143                         stripe_nr = div_u64_rem(stripe_nr,
6144                                         data_stripes, &stripe_index);
6145                         if (mirror_num > 1)
6146                                 stripe_index = data_stripes + mirror_num - 2;
6147
6148                         /* We distribute the parity blocks across stripes */
6149                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6150                                         &stripe_index);
6151                         if (!need_full_stripe(op) && mirror_num <= 1)
6152                                 mirror_num = 1;
6153                 }
6154         } else {
6155                 /*
6156                  * after this, stripe_nr is the number of stripes on this
6157                  * device we have to walk to find the data, and stripe_index is
6158                  * the number of our device in the stripe array
6159                  */
6160                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6161                                 &stripe_index);
6162                 mirror_num = stripe_index + 1;
6163         }
6164         if (stripe_index >= map->num_stripes) {
6165                 btrfs_crit(fs_info,
6166                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6167                            stripe_index, map->num_stripes);
6168                 ret = -EINVAL;
6169                 goto out;
6170         }
6171
6172         num_alloc_stripes = num_stripes;
6173         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6174                 if (op == BTRFS_MAP_WRITE)
6175                         num_alloc_stripes <<= 1;
6176                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6177                         num_alloc_stripes++;
6178                 tgtdev_indexes = num_stripes;
6179         }
6180
6181         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6182         if (!bbio) {
6183                 ret = -ENOMEM;
6184                 goto out;
6185         }
6186
6187         for (i = 0; i < num_stripes; i++) {
6188                 bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6189                         stripe_offset + stripe_nr * map->stripe_len;
6190                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6191                 stripe_index++;
6192         }
6193
6194         /* build raid_map */
6195         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6196             (need_full_stripe(op) || mirror_num > 1)) {
6197                 u64 tmp;
6198                 unsigned rot;
6199
6200                 /* Work out the disk rotation on this stripe-set */
6201                 div_u64_rem(stripe_nr, num_stripes, &rot);
6202
6203                 /* Fill in the logical address of each stripe */
6204                 tmp = stripe_nr * data_stripes;
6205                 for (i = 0; i < data_stripes; i++)
6206                         bbio->raid_map[(i+rot) % num_stripes] =
6207                                 em->start + (tmp + i) * map->stripe_len;
6208
6209                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6210                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6211                         bbio->raid_map[(i+rot+1) % num_stripes] =
6212                                 RAID6_Q_STRIPE;
6213
6214                 sort_parity_stripes(bbio, num_stripes);
6215         }
6216
6217         if (need_full_stripe(op))
6218                 max_errors = btrfs_chunk_max_errors(map);
6219
6220         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6221             need_full_stripe(op)) {
6222                 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6223                                           &max_errors);
6224         }
6225
6226         *bbio_ret = bbio;
6227         bbio->map_type = map->type;
6228         bbio->num_stripes = num_stripes;
6229         bbio->max_errors = max_errors;
6230         bbio->mirror_num = mirror_num;
6231
6232         /*
6233          * this is the case that REQ_READ && dev_replace_is_ongoing &&
6234          * mirror_num == num_stripes + 1 && dev_replace target drive is
6235          * available as a mirror
6236          */
6237         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6238                 WARN_ON(num_stripes > 1);
6239                 bbio->stripes[0].dev = dev_replace->tgtdev;
6240                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6241                 bbio->mirror_num = map->num_stripes + 1;
6242         }
6243 out:
6244         if (dev_replace_is_ongoing) {
6245                 lockdep_assert_held(&dev_replace->rwsem);
6246                 /* Unlock and let waiting writers proceed */
6247                 up_read(&dev_replace->rwsem);
6248         }
6249         free_extent_map(em);
6250         return ret;
6251 }
6252
6253 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6254                       u64 logical, u64 *length,
6255                       struct btrfs_bio **bbio_ret, int mirror_num)
6256 {
6257         if (op == BTRFS_MAP_DISCARD)
6258                 return __btrfs_map_block_for_discard(fs_info, logical,
6259                                                      length, bbio_ret);
6260
6261         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6262                                  mirror_num, 0);
6263 }
6264
6265 /* For Scrub/replace */
6266 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6267                      u64 logical, u64 *length,
6268                      struct btrfs_bio **bbio_ret)
6269 {
6270         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6271 }
6272
6273 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6274 {
6275         bio->bi_private = bbio->private;
6276         bio->bi_end_io = bbio->end_io;
6277         bio_endio(bio);
6278
6279         btrfs_put_bbio(bbio);
6280 }
6281
6282 static void btrfs_end_bio(struct bio *bio)
6283 {
6284         struct btrfs_bio *bbio = bio->bi_private;
6285         int is_orig_bio = 0;
6286
6287         if (bio->bi_status) {
6288                 atomic_inc(&bbio->error);
6289                 if (bio->bi_status == BLK_STS_IOERR ||
6290                     bio->bi_status == BLK_STS_TARGET) {
6291                         struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6292
6293                         ASSERT(dev->bdev);
6294                         if (bio_op(bio) == REQ_OP_WRITE)
6295                                 btrfs_dev_stat_inc_and_print(dev,
6296                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6297                         else if (!(bio->bi_opf & REQ_RAHEAD))
6298                                 btrfs_dev_stat_inc_and_print(dev,
6299                                                 BTRFS_DEV_STAT_READ_ERRS);
6300                         if (bio->bi_opf & REQ_PREFLUSH)
6301                                 btrfs_dev_stat_inc_and_print(dev,
6302                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6303                 }
6304         }
6305
6306         if (bio == bbio->orig_bio)
6307                 is_orig_bio = 1;
6308
6309         btrfs_bio_counter_dec(bbio->fs_info);
6310
6311         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6312                 if (!is_orig_bio) {
6313                         bio_put(bio);
6314                         bio = bbio->orig_bio;
6315                 }
6316
6317                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6318                 /* only send an error to the higher layers if it is
6319                  * beyond the tolerance of the btrfs bio
6320                  */
6321                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6322                         bio->bi_status = BLK_STS_IOERR;
6323                 } else {
6324                         /*
6325                          * this bio is actually up to date, we didn't
6326                          * go over the max number of errors
6327                          */
6328                         bio->bi_status = BLK_STS_OK;
6329                 }
6330
6331                 btrfs_end_bbio(bbio, bio);
6332         } else if (!is_orig_bio) {
6333                 bio_put(bio);
6334         }
6335 }
6336
6337 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6338                               u64 physical, struct btrfs_device *dev)
6339 {
6340         struct btrfs_fs_info *fs_info = bbio->fs_info;
6341
6342         bio->bi_private = bbio;
6343         btrfs_io_bio(bio)->device = dev;
6344         bio->bi_end_io = btrfs_end_bio;
6345         bio->bi_iter.bi_sector = physical >> 9;
6346         btrfs_debug_in_rcu(fs_info,
6347         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6348                 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6349                 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6350                 dev->devid, bio->bi_iter.bi_size);
6351         bio_set_dev(bio, dev->bdev);
6352
6353         btrfs_bio_counter_inc_noblocked(fs_info);
6354
6355         btrfsic_submit_bio(bio);
6356 }
6357
6358 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6359 {
6360         atomic_inc(&bbio->error);
6361         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6362                 /* Should be the original bio. */
6363                 WARN_ON(bio != bbio->orig_bio);
6364
6365                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6366                 bio->bi_iter.bi_sector = logical >> 9;
6367                 if (atomic_read(&bbio->error) > bbio->max_errors)
6368                         bio->bi_status = BLK_STS_IOERR;
6369                 else
6370                         bio->bi_status = BLK_STS_OK;
6371                 btrfs_end_bbio(bbio, bio);
6372         }
6373 }
6374
6375 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6376                            int mirror_num)
6377 {
6378         struct btrfs_device *dev;
6379         struct bio *first_bio = bio;
6380         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6381         u64 length = 0;
6382         u64 map_length;
6383         int ret;
6384         int dev_nr;
6385         int total_devs;
6386         struct btrfs_bio *bbio = NULL;
6387
6388         length = bio->bi_iter.bi_size;
6389         map_length = length;
6390
6391         btrfs_bio_counter_inc_blocked(fs_info);
6392         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6393                                 &map_length, &bbio, mirror_num, 1);
6394         if (ret) {
6395                 btrfs_bio_counter_dec(fs_info);
6396                 return errno_to_blk_status(ret);
6397         }
6398
6399         total_devs = bbio->num_stripes;
6400         bbio->orig_bio = first_bio;
6401         bbio->private = first_bio->bi_private;
6402         bbio->end_io = first_bio->bi_end_io;
6403         bbio->fs_info = fs_info;
6404         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6405
6406         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6407             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6408                 /* In this case, map_length has been set to the length of
6409                    a single stripe; not the whole write */
6410                 if (bio_op(bio) == REQ_OP_WRITE) {
6411                         ret = raid56_parity_write(fs_info, bio, bbio,
6412                                                   map_length);
6413                 } else {
6414                         ret = raid56_parity_recover(fs_info, bio, bbio,
6415                                                     map_length, mirror_num, 1);
6416                 }
6417
6418                 btrfs_bio_counter_dec(fs_info);
6419                 return errno_to_blk_status(ret);
6420         }
6421
6422         if (map_length < length) {
6423                 btrfs_crit(fs_info,
6424                            "mapping failed logical %llu bio len %llu len %llu",
6425                            logical, length, map_length);
6426                 BUG();
6427         }
6428
6429         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6430                 dev = bbio->stripes[dev_nr].dev;
6431                 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6432                                                    &dev->dev_state) ||
6433                     (bio_op(first_bio) == REQ_OP_WRITE &&
6434                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6435                         bbio_error(bbio, first_bio, logical);
6436                         continue;
6437                 }
6438
6439                 if (dev_nr < total_devs - 1)
6440                         bio = btrfs_bio_clone(first_bio);
6441                 else
6442                         bio = first_bio;
6443
6444                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6445         }
6446         btrfs_bio_counter_dec(fs_info);
6447         return BLK_STS_OK;
6448 }
6449
6450 /*
6451  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6452  * return NULL.
6453  *
6454  * If devid and uuid are both specified, the match must be exact, otherwise
6455  * only devid is used.
6456  *
6457  * If @seed is true, traverse through the seed devices.
6458  */
6459 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6460                                        u64 devid, u8 *uuid, u8 *fsid,
6461                                        bool seed)
6462 {
6463         struct btrfs_device *device;
6464
6465         while (fs_devices) {
6466                 if (!fsid ||
6467                     !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6468                         list_for_each_entry(device, &fs_devices->devices,
6469                                             dev_list) {
6470                                 if (device->devid == devid &&
6471                                     (!uuid || memcmp(device->uuid, uuid,
6472                                                      BTRFS_UUID_SIZE) == 0))
6473                                         return device;
6474                         }
6475                 }
6476                 if (seed)
6477                         fs_devices = fs_devices->seed;
6478                 else
6479                         return NULL;
6480         }
6481         return NULL;
6482 }
6483
6484 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6485                                             u64 devid, u8 *dev_uuid)
6486 {
6487         struct btrfs_device *device;
6488         unsigned int nofs_flag;
6489
6490         /*
6491          * We call this under the chunk_mutex, so we want to use NOFS for this
6492          * allocation, however we don't want to change btrfs_alloc_device() to
6493          * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6494          * places.
6495          */
6496         nofs_flag = memalloc_nofs_save();
6497         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6498         memalloc_nofs_restore(nofs_flag);
6499         if (IS_ERR(device))
6500                 return device;
6501
6502         list_add(&device->dev_list, &fs_devices->devices);
6503         device->fs_devices = fs_devices;
6504         fs_devices->num_devices++;
6505
6506         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6507         fs_devices->missing_devices++;
6508
6509         return device;
6510 }
6511
6512 /**
6513  * btrfs_alloc_device - allocate struct btrfs_device
6514  * @fs_info:    used only for generating a new devid, can be NULL if
6515  *              devid is provided (i.e. @devid != NULL).
6516  * @devid:      a pointer to devid for this device.  If NULL a new devid
6517  *              is generated.
6518  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6519  *              is generated.
6520  *
6521  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6522  * on error.  Returned struct is not linked onto any lists and must be
6523  * destroyed with btrfs_free_device.
6524  */
6525 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6526                                         const u64 *devid,
6527                                         const u8 *uuid)
6528 {
6529         struct btrfs_device *dev;
6530         u64 tmp;
6531
6532         if (WARN_ON(!devid && !fs_info))
6533                 return ERR_PTR(-EINVAL);
6534
6535         dev = __alloc_device();
6536         if (IS_ERR(dev))
6537                 return dev;
6538
6539         if (devid)
6540                 tmp = *devid;
6541         else {
6542                 int ret;
6543
6544                 ret = find_next_devid(fs_info, &tmp);
6545                 if (ret) {
6546                         btrfs_free_device(dev);
6547                         return ERR_PTR(ret);
6548                 }
6549         }
6550         dev->devid = tmp;
6551
6552         if (uuid)
6553                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6554         else
6555                 generate_random_uuid(dev->uuid);
6556
6557         return dev;
6558 }
6559
6560 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6561                                         u64 devid, u8 *uuid, bool error)
6562 {
6563         if (error)
6564                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6565                               devid, uuid);
6566         else
6567                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6568                               devid, uuid);
6569 }
6570
6571 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6572 {
6573         int index = btrfs_bg_flags_to_raid_index(type);
6574         int ncopies = btrfs_raid_array[index].ncopies;
6575         const int nparity = btrfs_raid_array[index].nparity;
6576         int data_stripes;
6577
6578         if (nparity)
6579                 data_stripes = num_stripes - nparity;
6580         else
6581                 data_stripes = num_stripes / ncopies;
6582
6583         return div_u64(chunk_len, data_stripes);
6584 }
6585
6586 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6587                           struct btrfs_chunk *chunk)
6588 {
6589         struct btrfs_fs_info *fs_info = leaf->fs_info;
6590         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6591         struct map_lookup *map;
6592         struct extent_map *em;
6593         u64 logical;
6594         u64 length;
6595         u64 devid;
6596         u8 uuid[BTRFS_UUID_SIZE];
6597         int num_stripes;
6598         int ret;
6599         int i;
6600
6601         logical = key->offset;
6602         length = btrfs_chunk_length(leaf, chunk);
6603         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6604
6605         /*
6606          * Only need to verify chunk item if we're reading from sys chunk array,
6607          * as chunk item in tree block is already verified by tree-checker.
6608          */
6609         if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6610                 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6611                 if (ret)
6612                         return ret;
6613         }
6614
6615         read_lock(&map_tree->lock);
6616         em = lookup_extent_mapping(map_tree, logical, 1);
6617         read_unlock(&map_tree->lock);
6618
6619         /* already mapped? */
6620         if (em && em->start <= logical && em->start + em->len > logical) {
6621                 free_extent_map(em);
6622                 return 0;
6623         } else if (em) {
6624                 free_extent_map(em);
6625         }
6626
6627         em = alloc_extent_map();
6628         if (!em)
6629                 return -ENOMEM;
6630         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6631         if (!map) {
6632                 free_extent_map(em);
6633                 return -ENOMEM;
6634         }
6635
6636         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6637         em->map_lookup = map;
6638         em->start = logical;
6639         em->len = length;
6640         em->orig_start = 0;
6641         em->block_start = 0;
6642         em->block_len = em->len;
6643
6644         map->num_stripes = num_stripes;
6645         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6646         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6647         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6648         map->type = btrfs_chunk_type(leaf, chunk);
6649         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6650         map->verified_stripes = 0;
6651         em->orig_block_len = calc_stripe_length(map->type, em->len,
6652                                                 map->num_stripes);
6653         for (i = 0; i < num_stripes; i++) {
6654                 map->stripes[i].physical =
6655                         btrfs_stripe_offset_nr(leaf, chunk, i);
6656                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6657                 read_extent_buffer(leaf, uuid, (unsigned long)
6658                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6659                                    BTRFS_UUID_SIZE);
6660                 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6661                                                         devid, uuid, NULL, true);
6662                 if (!map->stripes[i].dev &&
6663                     !btrfs_test_opt(fs_info, DEGRADED)) {
6664                         free_extent_map(em);
6665                         btrfs_report_missing_device(fs_info, devid, uuid, true);
6666                         return -ENOENT;
6667                 }
6668                 if (!map->stripes[i].dev) {
6669                         map->stripes[i].dev =
6670                                 add_missing_dev(fs_info->fs_devices, devid,
6671                                                 uuid);
6672                         if (IS_ERR(map->stripes[i].dev)) {
6673                                 free_extent_map(em);
6674                                 btrfs_err(fs_info,
6675                                         "failed to init missing dev %llu: %ld",
6676                                         devid, PTR_ERR(map->stripes[i].dev));
6677                                 return PTR_ERR(map->stripes[i].dev);
6678                         }
6679                         btrfs_report_missing_device(fs_info, devid, uuid, false);
6680                 }
6681                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6682                                 &(map->stripes[i].dev->dev_state));
6683
6684         }
6685
6686         write_lock(&map_tree->lock);
6687         ret = add_extent_mapping(map_tree, em, 0);
6688         write_unlock(&map_tree->lock);
6689         if (ret < 0) {
6690                 btrfs_err(fs_info,
6691                           "failed to add chunk map, start=%llu len=%llu: %d",
6692                           em->start, em->len, ret);
6693         }
6694         free_extent_map(em);
6695
6696         return ret;
6697 }
6698
6699 static void fill_device_from_item(struct extent_buffer *leaf,
6700                                  struct btrfs_dev_item *dev_item,
6701                                  struct btrfs_device *device)
6702 {
6703         unsigned long ptr;
6704
6705         device->devid = btrfs_device_id(leaf, dev_item);
6706         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6707         device->total_bytes = device->disk_total_bytes;
6708         device->commit_total_bytes = device->disk_total_bytes;
6709         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6710         device->commit_bytes_used = device->bytes_used;
6711         device->type = btrfs_device_type(leaf, dev_item);
6712         device->io_align = btrfs_device_io_align(leaf, dev_item);
6713         device->io_width = btrfs_device_io_width(leaf, dev_item);
6714         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6715         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6716         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6717
6718         ptr = btrfs_device_uuid(dev_item);
6719         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6720 }
6721
6722 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6723                                                   u8 *fsid)
6724 {
6725         struct btrfs_fs_devices *fs_devices;
6726         int ret;
6727
6728         lockdep_assert_held(&uuid_mutex);
6729         ASSERT(fsid);
6730
6731         fs_devices = fs_info->fs_devices->seed;
6732         while (fs_devices) {
6733                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6734                         return fs_devices;
6735
6736                 fs_devices = fs_devices->seed;
6737         }
6738
6739         fs_devices = find_fsid(fsid, NULL);
6740         if (!fs_devices) {
6741                 if (!btrfs_test_opt(fs_info, DEGRADED))
6742                         return ERR_PTR(-ENOENT);
6743
6744                 fs_devices = alloc_fs_devices(fsid, NULL);
6745                 if (IS_ERR(fs_devices))
6746                         return fs_devices;
6747
6748                 fs_devices->seeding = true;
6749                 fs_devices->opened = 1;
6750                 return fs_devices;
6751         }
6752
6753         fs_devices = clone_fs_devices(fs_devices);
6754         if (IS_ERR(fs_devices))
6755                 return fs_devices;
6756
6757         ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6758         if (ret) {
6759                 free_fs_devices(fs_devices);
6760                 fs_devices = ERR_PTR(ret);
6761                 goto out;
6762         }
6763
6764         if (!fs_devices->seeding) {
6765                 close_fs_devices(fs_devices);
6766                 free_fs_devices(fs_devices);
6767                 fs_devices = ERR_PTR(-EINVAL);
6768                 goto out;
6769         }
6770
6771         fs_devices->seed = fs_info->fs_devices->seed;
6772         fs_info->fs_devices->seed = fs_devices;
6773 out:
6774         return fs_devices;
6775 }
6776
6777 static int read_one_dev(struct extent_buffer *leaf,
6778                         struct btrfs_dev_item *dev_item)
6779 {
6780         struct btrfs_fs_info *fs_info = leaf->fs_info;
6781         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6782         struct btrfs_device *device;
6783         u64 devid;
6784         int ret;
6785         u8 fs_uuid[BTRFS_FSID_SIZE];
6786         u8 dev_uuid[BTRFS_UUID_SIZE];
6787
6788         devid = btrfs_device_id(leaf, dev_item);
6789         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6790                            BTRFS_UUID_SIZE);
6791         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6792                            BTRFS_FSID_SIZE);
6793
6794         if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6795                 fs_devices = open_seed_devices(fs_info, fs_uuid);
6796                 if (IS_ERR(fs_devices))
6797                         return PTR_ERR(fs_devices);
6798         }
6799
6800         device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6801                                    fs_uuid, true);
6802         if (!device) {
6803                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6804                         btrfs_report_missing_device(fs_info, devid,
6805                                                         dev_uuid, true);
6806                         return -ENOENT;
6807                 }
6808
6809                 device = add_missing_dev(fs_devices, devid, dev_uuid);
6810                 if (IS_ERR(device)) {
6811                         btrfs_err(fs_info,
6812                                 "failed to add missing dev %llu: %ld",
6813                                 devid, PTR_ERR(device));
6814                         return PTR_ERR(device);
6815                 }
6816                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6817         } else {
6818                 if (!device->bdev) {
6819                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
6820                                 btrfs_report_missing_device(fs_info,
6821                                                 devid, dev_uuid, true);
6822                                 return -ENOENT;
6823                         }
6824                         btrfs_report_missing_device(fs_info, devid,
6825                                                         dev_uuid, false);
6826                 }
6827
6828                 if (!device->bdev &&
6829                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6830                         /*
6831                          * this happens when a device that was properly setup
6832                          * in the device info lists suddenly goes bad.
6833                          * device->bdev is NULL, and so we have to set
6834                          * device->missing to one here
6835                          */
6836                         device->fs_devices->missing_devices++;
6837                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6838                 }
6839
6840                 /* Move the device to its own fs_devices */
6841                 if (device->fs_devices != fs_devices) {
6842                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6843                                                         &device->dev_state));
6844
6845                         list_move(&device->dev_list, &fs_devices->devices);
6846                         device->fs_devices->num_devices--;
6847                         fs_devices->num_devices++;
6848
6849                         device->fs_devices->missing_devices--;
6850                         fs_devices->missing_devices++;
6851
6852                         device->fs_devices = fs_devices;
6853                 }
6854         }
6855
6856         if (device->fs_devices != fs_info->fs_devices) {
6857                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6858                 if (device->generation !=
6859                     btrfs_device_generation(leaf, dev_item))
6860                         return -EINVAL;
6861         }
6862
6863         fill_device_from_item(leaf, dev_item, device);
6864         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6865         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6866            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6867                 device->fs_devices->total_rw_bytes += device->total_bytes;
6868                 atomic64_add(device->total_bytes - device->bytes_used,
6869                                 &fs_info->free_chunk_space);
6870         }
6871         ret = 0;
6872         return ret;
6873 }
6874
6875 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6876 {
6877         struct btrfs_root *root = fs_info->tree_root;
6878         struct btrfs_super_block *super_copy = fs_info->super_copy;
6879         struct extent_buffer *sb;
6880         struct btrfs_disk_key *disk_key;
6881         struct btrfs_chunk *chunk;
6882         u8 *array_ptr;
6883         unsigned long sb_array_offset;
6884         int ret = 0;
6885         u32 num_stripes;
6886         u32 array_size;
6887         u32 len = 0;
6888         u32 cur_offset;
6889         u64 type;
6890         struct btrfs_key key;
6891
6892         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6893         /*
6894          * This will create extent buffer of nodesize, superblock size is
6895          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6896          * overallocate but we can keep it as-is, only the first page is used.
6897          */
6898         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6899         if (IS_ERR(sb))
6900                 return PTR_ERR(sb);
6901         set_extent_buffer_uptodate(sb);
6902         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6903         /*
6904          * The sb extent buffer is artificial and just used to read the system array.
6905          * set_extent_buffer_uptodate() call does not properly mark all it's
6906          * pages up-to-date when the page is larger: extent does not cover the
6907          * whole page and consequently check_page_uptodate does not find all
6908          * the page's extents up-to-date (the hole beyond sb),
6909          * write_extent_buffer then triggers a WARN_ON.
6910          *
6911          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6912          * but sb spans only this function. Add an explicit SetPageUptodate call
6913          * to silence the warning eg. on PowerPC 64.
6914          */
6915         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6916                 SetPageUptodate(sb->pages[0]);
6917
6918         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6919         array_size = btrfs_super_sys_array_size(super_copy);
6920
6921         array_ptr = super_copy->sys_chunk_array;
6922         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6923         cur_offset = 0;
6924
6925         while (cur_offset < array_size) {
6926                 disk_key = (struct btrfs_disk_key *)array_ptr;
6927                 len = sizeof(*disk_key);
6928                 if (cur_offset + len > array_size)
6929                         goto out_short_read;
6930
6931                 btrfs_disk_key_to_cpu(&key, disk_key);
6932
6933                 array_ptr += len;
6934                 sb_array_offset += len;
6935                 cur_offset += len;
6936
6937                 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
6938                         btrfs_err(fs_info,
6939                             "unexpected item type %u in sys_array at offset %u",
6940                                   (u32)key.type, cur_offset);
6941                         ret = -EIO;
6942                         break;
6943                 }
6944
6945                 chunk = (struct btrfs_chunk *)sb_array_offset;
6946                 /*
6947                  * At least one btrfs_chunk with one stripe must be present,
6948                  * exact stripe count check comes afterwards
6949                  */
6950                 len = btrfs_chunk_item_size(1);
6951                 if (cur_offset + len > array_size)
6952                         goto out_short_read;
6953
6954                 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6955                 if (!num_stripes) {
6956                         btrfs_err(fs_info,
6957                         "invalid number of stripes %u in sys_array at offset %u",
6958                                   num_stripes, cur_offset);
6959                         ret = -EIO;
6960                         break;
6961                 }
6962
6963                 type = btrfs_chunk_type(sb, chunk);
6964                 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6965                         btrfs_err(fs_info,
6966                         "invalid chunk type %llu in sys_array at offset %u",
6967                                   type, cur_offset);
6968                         ret = -EIO;
6969                         break;
6970                 }
6971
6972                 len = btrfs_chunk_item_size(num_stripes);
6973                 if (cur_offset + len > array_size)
6974                         goto out_short_read;
6975
6976                 ret = read_one_chunk(&key, sb, chunk);
6977                 if (ret)
6978                         break;
6979
6980                 array_ptr += len;
6981                 sb_array_offset += len;
6982                 cur_offset += len;
6983         }
6984         clear_extent_buffer_uptodate(sb);
6985         free_extent_buffer_stale(sb);
6986         return ret;
6987
6988 out_short_read:
6989         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6990                         len, cur_offset);
6991         clear_extent_buffer_uptodate(sb);
6992         free_extent_buffer_stale(sb);
6993         return -EIO;
6994 }
6995
6996 /*
6997  * Check if all chunks in the fs are OK for read-write degraded mount
6998  *
6999  * If the @failing_dev is specified, it's accounted as missing.
7000  *
7001  * Return true if all chunks meet the minimal RW mount requirements.
7002  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7003  */
7004 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7005                                         struct btrfs_device *failing_dev)
7006 {
7007         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7008         struct extent_map *em;
7009         u64 next_start = 0;
7010         bool ret = true;
7011
7012         read_lock(&map_tree->lock);
7013         em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7014         read_unlock(&map_tree->lock);
7015         /* No chunk at all? Return false anyway */
7016         if (!em) {
7017                 ret = false;
7018                 goto out;
7019         }
7020         while (em) {
7021                 struct map_lookup *map;
7022                 int missing = 0;
7023                 int max_tolerated;
7024                 int i;
7025
7026                 map = em->map_lookup;
7027                 max_tolerated =
7028                         btrfs_get_num_tolerated_disk_barrier_failures(
7029                                         map->type);
7030                 for (i = 0; i < map->num_stripes; i++) {
7031                         struct btrfs_device *dev = map->stripes[i].dev;
7032
7033                         if (!dev || !dev->bdev ||
7034                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7035                             dev->last_flush_error)
7036                                 missing++;
7037                         else if (failing_dev && failing_dev == dev)
7038                                 missing++;
7039                 }
7040                 if (missing > max_tolerated) {
7041                         if (!failing_dev)
7042                                 btrfs_warn(fs_info,
7043         "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7044                                    em->start, missing, max_tolerated);
7045                         free_extent_map(em);
7046                         ret = false;
7047                         goto out;
7048                 }
7049                 next_start = extent_map_end(em);
7050                 free_extent_map(em);
7051
7052                 read_lock(&map_tree->lock);
7053                 em = lookup_extent_mapping(map_tree, next_start,
7054                                            (u64)(-1) - next_start);
7055                 read_unlock(&map_tree->lock);
7056         }
7057 out:
7058         return ret;
7059 }
7060
7061 static void readahead_tree_node_children(struct extent_buffer *node)
7062 {
7063         int i;
7064         const int nr_items = btrfs_header_nritems(node);
7065
7066         for (i = 0; i < nr_items; i++) {
7067                 u64 start;
7068
7069                 start = btrfs_node_blockptr(node, i);
7070                 readahead_tree_block(node->fs_info, start);
7071         }
7072 }
7073
7074 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7075 {
7076         struct btrfs_root *root = fs_info->chunk_root;
7077         struct btrfs_path *path;
7078         struct extent_buffer *leaf;
7079         struct btrfs_key key;
7080         struct btrfs_key found_key;
7081         int ret;
7082         int slot;
7083         u64 total_dev = 0;
7084         u64 last_ra_node = 0;
7085
7086         path = btrfs_alloc_path();
7087         if (!path)
7088                 return -ENOMEM;
7089
7090         /*
7091          * uuid_mutex is needed only if we are mounting a sprout FS
7092          * otherwise we don't need it.
7093          */
7094         mutex_lock(&uuid_mutex);
7095
7096         /*
7097          * It is possible for mount and umount to race in such a way that
7098          * we execute this code path, but open_fs_devices failed to clear
7099          * total_rw_bytes. We certainly want it cleared before reading the
7100          * device items, so clear it here.
7101          */
7102         fs_info->fs_devices->total_rw_bytes = 0;
7103
7104         /*
7105          * Read all device items, and then all the chunk items. All
7106          * device items are found before any chunk item (their object id
7107          * is smaller than the lowest possible object id for a chunk
7108          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7109          */
7110         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7111         key.offset = 0;
7112         key.type = 0;
7113         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7114         if (ret < 0)
7115                 goto error;
7116         while (1) {
7117                 struct extent_buffer *node;
7118
7119                 leaf = path->nodes[0];
7120                 slot = path->slots[0];
7121                 if (slot >= btrfs_header_nritems(leaf)) {
7122                         ret = btrfs_next_leaf(root, path);
7123                         if (ret == 0)
7124                                 continue;
7125                         if (ret < 0)
7126                                 goto error;
7127                         break;
7128                 }
7129                 /*
7130                  * The nodes on level 1 are not locked but we don't need to do
7131                  * that during mount time as nothing else can access the tree
7132                  */
7133                 node = path->nodes[1];
7134                 if (node) {
7135                         if (last_ra_node != node->start) {
7136                                 readahead_tree_node_children(node);
7137                                 last_ra_node = node->start;
7138                         }
7139                 }
7140                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7141                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7142                         struct btrfs_dev_item *dev_item;
7143                         dev_item = btrfs_item_ptr(leaf, slot,
7144                                                   struct btrfs_dev_item);
7145                         ret = read_one_dev(leaf, dev_item);
7146                         if (ret)
7147                                 goto error;
7148                         total_dev++;
7149                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7150                         struct btrfs_chunk *chunk;
7151                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7152                         mutex_lock(&fs_info->chunk_mutex);
7153                         ret = read_one_chunk(&found_key, leaf, chunk);
7154                         mutex_unlock(&fs_info->chunk_mutex);
7155                         if (ret)
7156                                 goto error;
7157                 }
7158                 path->slots[0]++;
7159         }
7160
7161         /*
7162          * After loading chunk tree, we've got all device information,
7163          * do another round of validation checks.
7164          */
7165         if (total_dev != fs_info->fs_devices->total_devices) {
7166                 btrfs_err(fs_info,
7167            "super_num_devices %llu mismatch with num_devices %llu found here",
7168                           btrfs_super_num_devices(fs_info->super_copy),
7169                           total_dev);
7170                 ret = -EINVAL;
7171                 goto error;
7172         }
7173         if (btrfs_super_total_bytes(fs_info->super_copy) <
7174             fs_info->fs_devices->total_rw_bytes) {
7175                 btrfs_err(fs_info,
7176         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7177                           btrfs_super_total_bytes(fs_info->super_copy),
7178                           fs_info->fs_devices->total_rw_bytes);
7179                 ret = -EINVAL;
7180                 goto error;
7181         }
7182         ret = 0;
7183 error:
7184         mutex_unlock(&uuid_mutex);
7185
7186         btrfs_free_path(path);
7187         return ret;
7188 }
7189
7190 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7191 {
7192         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7193         struct btrfs_device *device;
7194
7195         while (fs_devices) {
7196                 mutex_lock(&fs_devices->device_list_mutex);
7197                 list_for_each_entry(device, &fs_devices->devices, dev_list)
7198                         device->fs_info = fs_info;
7199                 mutex_unlock(&fs_devices->device_list_mutex);
7200
7201                 fs_devices = fs_devices->seed;
7202         }
7203 }
7204
7205 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7206                                  const struct btrfs_dev_stats_item *ptr,
7207                                  int index)
7208 {
7209         u64 val;
7210
7211         read_extent_buffer(eb, &val,
7212                            offsetof(struct btrfs_dev_stats_item, values) +
7213                             ((unsigned long)ptr) + (index * sizeof(u64)),
7214                            sizeof(val));
7215         return val;
7216 }
7217
7218 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7219                                       struct btrfs_dev_stats_item *ptr,
7220                                       int index, u64 val)
7221 {
7222         write_extent_buffer(eb, &val,
7223                             offsetof(struct btrfs_dev_stats_item, values) +
7224                              ((unsigned long)ptr) + (index * sizeof(u64)),
7225                             sizeof(val));
7226 }
7227
7228 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7229 {
7230         struct btrfs_key key;
7231         struct btrfs_root *dev_root = fs_info->dev_root;
7232         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7233         struct extent_buffer *eb;
7234         int slot;
7235         int ret = 0;
7236         struct btrfs_device *device;
7237         struct btrfs_path *path = NULL;
7238         int i;
7239
7240         path = btrfs_alloc_path();
7241         if (!path)
7242                 return -ENOMEM;
7243
7244         mutex_lock(&fs_devices->device_list_mutex);
7245         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7246                 int item_size;
7247                 struct btrfs_dev_stats_item *ptr;
7248
7249                 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7250                 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7251                 key.offset = device->devid;
7252                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7253                 if (ret) {
7254                         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7255                                 btrfs_dev_stat_set(device, i, 0);
7256                         device->dev_stats_valid = 1;
7257                         btrfs_release_path(path);
7258                         continue;
7259                 }
7260                 slot = path->slots[0];
7261                 eb = path->nodes[0];
7262                 item_size = btrfs_item_size_nr(eb, slot);
7263
7264                 ptr = btrfs_item_ptr(eb, slot,
7265                                      struct btrfs_dev_stats_item);
7266
7267                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7268                         if (item_size >= (1 + i) * sizeof(__le64))
7269                                 btrfs_dev_stat_set(device, i,
7270                                         btrfs_dev_stats_value(eb, ptr, i));
7271                         else
7272                                 btrfs_dev_stat_set(device, i, 0);
7273                 }
7274
7275                 device->dev_stats_valid = 1;
7276                 btrfs_dev_stat_print_on_load(device);
7277                 btrfs_release_path(path);
7278         }
7279         mutex_unlock(&fs_devices->device_list_mutex);
7280
7281         btrfs_free_path(path);
7282         return ret < 0 ? ret : 0;
7283 }
7284
7285 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7286                                 struct btrfs_device *device)
7287 {
7288         struct btrfs_fs_info *fs_info = trans->fs_info;
7289         struct btrfs_root *dev_root = fs_info->dev_root;
7290         struct btrfs_path *path;
7291         struct btrfs_key key;
7292         struct extent_buffer *eb;
7293         struct btrfs_dev_stats_item *ptr;
7294         int ret;
7295         int i;
7296
7297         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7298         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7299         key.offset = device->devid;
7300
7301         path = btrfs_alloc_path();
7302         if (!path)
7303                 return -ENOMEM;
7304         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7305         if (ret < 0) {
7306                 btrfs_warn_in_rcu(fs_info,
7307                         "error %d while searching for dev_stats item for device %s",
7308                               ret, rcu_str_deref(device->name));
7309                 goto out;
7310         }
7311
7312         if (ret == 0 &&
7313             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7314                 /* need to delete old one and insert a new one */
7315                 ret = btrfs_del_item(trans, dev_root, path);
7316                 if (ret != 0) {
7317                         btrfs_warn_in_rcu(fs_info,
7318                                 "delete too small dev_stats item for device %s failed %d",
7319                                       rcu_str_deref(device->name), ret);
7320                         goto out;
7321                 }
7322                 ret = 1;
7323         }
7324
7325         if (ret == 1) {
7326                 /* need to insert a new item */
7327                 btrfs_release_path(path);
7328                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7329                                               &key, sizeof(*ptr));
7330                 if (ret < 0) {
7331                         btrfs_warn_in_rcu(fs_info,
7332                                 "insert dev_stats item for device %s failed %d",
7333                                 rcu_str_deref(device->name), ret);
7334                         goto out;
7335                 }
7336         }
7337
7338         eb = path->nodes[0];
7339         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7340         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7341                 btrfs_set_dev_stats_value(eb, ptr, i,
7342                                           btrfs_dev_stat_read(device, i));
7343         btrfs_mark_buffer_dirty(eb);
7344
7345 out:
7346         btrfs_free_path(path);
7347         return ret;
7348 }
7349
7350 /*
7351  * called from commit_transaction. Writes all changed device stats to disk.
7352  */
7353 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7354 {
7355         struct btrfs_fs_info *fs_info = trans->fs_info;
7356         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7357         struct btrfs_device *device;
7358         int stats_cnt;
7359         int ret = 0;
7360
7361         mutex_lock(&fs_devices->device_list_mutex);
7362         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7363                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7364                 if (!device->dev_stats_valid || stats_cnt == 0)
7365                         continue;
7366
7367
7368                 /*
7369                  * There is a LOAD-LOAD control dependency between the value of
7370                  * dev_stats_ccnt and updating the on-disk values which requires
7371                  * reading the in-memory counters. Such control dependencies
7372                  * require explicit read memory barriers.
7373                  *
7374                  * This memory barriers pairs with smp_mb__before_atomic in
7375                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7376                  * barrier implied by atomic_xchg in
7377                  * btrfs_dev_stats_read_and_reset
7378                  */
7379                 smp_rmb();
7380
7381                 ret = update_dev_stat_item(trans, device);
7382                 if (!ret)
7383                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7384         }
7385         mutex_unlock(&fs_devices->device_list_mutex);
7386
7387         return ret;
7388 }
7389
7390 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7391 {
7392         btrfs_dev_stat_inc(dev, index);
7393         btrfs_dev_stat_print_on_error(dev);
7394 }
7395
7396 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7397 {
7398         if (!dev->dev_stats_valid)
7399                 return;
7400         btrfs_err_rl_in_rcu(dev->fs_info,
7401                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7402                            rcu_str_deref(dev->name),
7403                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7404                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7405                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7406                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7407                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7408 }
7409
7410 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7411 {
7412         int i;
7413
7414         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7415                 if (btrfs_dev_stat_read(dev, i) != 0)
7416                         break;
7417         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7418                 return; /* all values == 0, suppress message */
7419
7420         btrfs_info_in_rcu(dev->fs_info,
7421                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7422                rcu_str_deref(dev->name),
7423                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7424                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7425                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7426                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7427                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7428 }
7429
7430 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7431                         struct btrfs_ioctl_get_dev_stats *stats)
7432 {
7433         struct btrfs_device *dev;
7434         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7435         int i;
7436
7437         mutex_lock(&fs_devices->device_list_mutex);
7438         dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7439                                 true);
7440         mutex_unlock(&fs_devices->device_list_mutex);
7441
7442         if (!dev) {
7443                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7444                 return -ENODEV;
7445         } else if (!dev->dev_stats_valid) {
7446                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7447                 return -ENODEV;
7448         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7449                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7450                         if (stats->nr_items > i)
7451                                 stats->values[i] =
7452                                         btrfs_dev_stat_read_and_reset(dev, i);
7453                         else
7454                                 btrfs_dev_stat_set(dev, i, 0);
7455                 }
7456                 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7457                            current->comm, task_pid_nr(current));
7458         } else {
7459                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7460                         if (stats->nr_items > i)
7461                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7462         }
7463         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7464                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7465         return 0;
7466 }
7467
7468 /*
7469  * Update the size and bytes used for each device where it changed.  This is
7470  * delayed since we would otherwise get errors while writing out the
7471  * superblocks.
7472  *
7473  * Must be invoked during transaction commit.
7474  */
7475 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7476 {
7477         struct btrfs_device *curr, *next;
7478
7479         ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7480
7481         if (list_empty(&trans->dev_update_list))
7482                 return;
7483
7484         /*
7485          * We don't need the device_list_mutex here.  This list is owned by the
7486          * transaction and the transaction must complete before the device is
7487          * released.
7488          */
7489         mutex_lock(&trans->fs_info->chunk_mutex);
7490         list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7491                                  post_commit_list) {
7492                 list_del_init(&curr->post_commit_list);
7493                 curr->commit_total_bytes = curr->disk_total_bytes;
7494                 curr->commit_bytes_used = curr->bytes_used;
7495         }
7496         mutex_unlock(&trans->fs_info->chunk_mutex);
7497 }
7498
7499 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7500 {
7501         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7502         while (fs_devices) {
7503                 fs_devices->fs_info = fs_info;
7504                 fs_devices = fs_devices->seed;
7505         }
7506 }
7507
7508 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7509 {
7510         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7511         while (fs_devices) {
7512                 fs_devices->fs_info = NULL;
7513                 fs_devices = fs_devices->seed;
7514         }
7515 }
7516
7517 /*
7518  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7519  */
7520 int btrfs_bg_type_to_factor(u64 flags)
7521 {
7522         const int index = btrfs_bg_flags_to_raid_index(flags);
7523
7524         return btrfs_raid_array[index].ncopies;
7525 }
7526
7527
7528
7529 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7530                                  u64 chunk_offset, u64 devid,
7531                                  u64 physical_offset, u64 physical_len)
7532 {
7533         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7534         struct extent_map *em;
7535         struct map_lookup *map;
7536         struct btrfs_device *dev;
7537         u64 stripe_len;
7538         bool found = false;
7539         int ret = 0;
7540         int i;
7541
7542         read_lock(&em_tree->lock);
7543         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7544         read_unlock(&em_tree->lock);
7545
7546         if (!em) {
7547                 btrfs_err(fs_info,
7548 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7549                           physical_offset, devid);
7550                 ret = -EUCLEAN;
7551                 goto out;
7552         }
7553
7554         map = em->map_lookup;
7555         stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7556         if (physical_len != stripe_len) {
7557                 btrfs_err(fs_info,
7558 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7559                           physical_offset, devid, em->start, physical_len,
7560                           stripe_len);
7561                 ret = -EUCLEAN;
7562                 goto out;
7563         }
7564
7565         for (i = 0; i < map->num_stripes; i++) {
7566                 if (map->stripes[i].dev->devid == devid &&
7567                     map->stripes[i].physical == physical_offset) {
7568                         found = true;
7569                         if (map->verified_stripes >= map->num_stripes) {
7570                                 btrfs_err(fs_info,
7571                                 "too many dev extents for chunk %llu found",
7572                                           em->start);
7573                                 ret = -EUCLEAN;
7574                                 goto out;
7575                         }
7576                         map->verified_stripes++;
7577                         break;
7578                 }
7579         }
7580         if (!found) {
7581                 btrfs_err(fs_info,
7582         "dev extent physical offset %llu devid %llu has no corresponding chunk",
7583                         physical_offset, devid);
7584                 ret = -EUCLEAN;
7585         }
7586
7587         /* Make sure no dev extent is beyond device bondary */
7588         dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7589         if (!dev) {
7590                 btrfs_err(fs_info, "failed to find devid %llu", devid);
7591                 ret = -EUCLEAN;
7592                 goto out;
7593         }
7594
7595         /* It's possible this device is a dummy for seed device */
7596         if (dev->disk_total_bytes == 0) {
7597                 dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
7598                                         NULL, false);
7599                 if (!dev) {
7600                         btrfs_err(fs_info, "failed to find seed devid %llu",
7601                                   devid);
7602                         ret = -EUCLEAN;
7603                         goto out;
7604                 }
7605         }
7606
7607         if (physical_offset + physical_len > dev->disk_total_bytes) {
7608                 btrfs_err(fs_info,
7609 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7610                           devid, physical_offset, physical_len,
7611                           dev->disk_total_bytes);
7612                 ret = -EUCLEAN;
7613                 goto out;
7614         }
7615 out:
7616         free_extent_map(em);
7617         return ret;
7618 }
7619
7620 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7621 {
7622         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7623         struct extent_map *em;
7624         struct rb_node *node;
7625         int ret = 0;
7626
7627         read_lock(&em_tree->lock);
7628         for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7629                 em = rb_entry(node, struct extent_map, rb_node);
7630                 if (em->map_lookup->num_stripes !=
7631                     em->map_lookup->verified_stripes) {
7632                         btrfs_err(fs_info,
7633                         "chunk %llu has missing dev extent, have %d expect %d",
7634                                   em->start, em->map_lookup->verified_stripes,
7635                                   em->map_lookup->num_stripes);
7636                         ret = -EUCLEAN;
7637                         goto out;
7638                 }
7639         }
7640 out:
7641         read_unlock(&em_tree->lock);
7642         return ret;
7643 }
7644
7645 /*
7646  * Ensure that all dev extents are mapped to correct chunk, otherwise
7647  * later chunk allocation/free would cause unexpected behavior.
7648  *
7649  * NOTE: This will iterate through the whole device tree, which should be of
7650  * the same size level as the chunk tree.  This slightly increases mount time.
7651  */
7652 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7653 {
7654         struct btrfs_path *path;
7655         struct btrfs_root *root = fs_info->dev_root;
7656         struct btrfs_key key;
7657         u64 prev_devid = 0;
7658         u64 prev_dev_ext_end = 0;
7659         int ret = 0;
7660
7661         key.objectid = 1;
7662         key.type = BTRFS_DEV_EXTENT_KEY;
7663         key.offset = 0;
7664
7665         path = btrfs_alloc_path();
7666         if (!path)
7667                 return -ENOMEM;
7668
7669         path->reada = READA_FORWARD;
7670         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7671         if (ret < 0)
7672                 goto out;
7673
7674         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7675                 ret = btrfs_next_item(root, path);
7676                 if (ret < 0)
7677                         goto out;
7678                 /* No dev extents at all? Not good */
7679                 if (ret > 0) {
7680                         ret = -EUCLEAN;
7681                         goto out;
7682                 }
7683         }
7684         while (1) {
7685                 struct extent_buffer *leaf = path->nodes[0];
7686                 struct btrfs_dev_extent *dext;
7687                 int slot = path->slots[0];
7688                 u64 chunk_offset;
7689                 u64 physical_offset;
7690                 u64 physical_len;
7691                 u64 devid;
7692
7693                 btrfs_item_key_to_cpu(leaf, &key, slot);
7694                 if (key.type != BTRFS_DEV_EXTENT_KEY)
7695                         break;
7696                 devid = key.objectid;
7697                 physical_offset = key.offset;
7698
7699                 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7700                 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7701                 physical_len = btrfs_dev_extent_length(leaf, dext);
7702
7703                 /* Check if this dev extent overlaps with the previous one */
7704                 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7705                         btrfs_err(fs_info,
7706 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7707                                   devid, physical_offset, prev_dev_ext_end);
7708                         ret = -EUCLEAN;
7709                         goto out;
7710                 }
7711
7712                 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7713                                             physical_offset, physical_len);
7714                 if (ret < 0)
7715                         goto out;
7716                 prev_devid = devid;
7717                 prev_dev_ext_end = physical_offset + physical_len;
7718
7719                 ret = btrfs_next_item(root, path);
7720                 if (ret < 0)
7721                         goto out;
7722                 if (ret > 0) {
7723                         ret = 0;
7724                         break;
7725                 }
7726         }
7727
7728         /* Ensure all chunks have corresponding dev extents */
7729         ret = verify_chunk_dev_extent_mapping(fs_info);
7730 out:
7731         btrfs_free_path(path);
7732         return ret;
7733 }
7734
7735 /*
7736  * Check whether the given block group or device is pinned by any inode being
7737  * used as a swapfile.
7738  */
7739 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7740 {
7741         struct btrfs_swapfile_pin *sp;
7742         struct rb_node *node;
7743
7744         spin_lock(&fs_info->swapfile_pins_lock);
7745         node = fs_info->swapfile_pins.rb_node;
7746         while (node) {
7747                 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7748                 if (ptr < sp->ptr)
7749                         node = node->rb_left;
7750                 else if (ptr > sp->ptr)
7751                         node = node->rb_right;
7752                 else
7753                         break;
7754         }
7755         spin_unlock(&fs_info->swapfile_pins_lock);
7756         return node != NULL;
7757 }