bdi: initialize ->ra_pages and ->io_pages in bdi_init
[linux-2.6-microblaze.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/ratelimit.h>
11 #include <linux/kthread.h>
12 #include <linux/raid/pq.h>
13 #include <linux/semaphore.h>
14 #include <linux/uuid.h>
15 #include <linux/list_sort.h>
16 #include "misc.h"
17 #include "ctree.h"
18 #include "extent_map.h"
19 #include "disk-io.h"
20 #include "transaction.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "async-thread.h"
25 #include "check-integrity.h"
26 #include "rcu-string.h"
27 #include "dev-replace.h"
28 #include "sysfs.h"
29 #include "tree-checker.h"
30 #include "space-info.h"
31 #include "block-group.h"
32 #include "discard.h"
33
34 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
35         [BTRFS_RAID_RAID10] = {
36                 .sub_stripes    = 2,
37                 .dev_stripes    = 1,
38                 .devs_max       = 0,    /* 0 == as many as possible */
39                 .devs_min       = 4,
40                 .tolerated_failures = 1,
41                 .devs_increment = 2,
42                 .ncopies        = 2,
43                 .nparity        = 0,
44                 .raid_name      = "raid10",
45                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID10,
46                 .mindev_error   = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
47         },
48         [BTRFS_RAID_RAID1] = {
49                 .sub_stripes    = 1,
50                 .dev_stripes    = 1,
51                 .devs_max       = 2,
52                 .devs_min       = 2,
53                 .tolerated_failures = 1,
54                 .devs_increment = 2,
55                 .ncopies        = 2,
56                 .nparity        = 0,
57                 .raid_name      = "raid1",
58                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1,
59                 .mindev_error   = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
60         },
61         [BTRFS_RAID_RAID1C3] = {
62                 .sub_stripes    = 1,
63                 .dev_stripes    = 1,
64                 .devs_max       = 3,
65                 .devs_min       = 3,
66                 .tolerated_failures = 2,
67                 .devs_increment = 3,
68                 .ncopies        = 3,
69                 .nparity        = 0,
70                 .raid_name      = "raid1c3",
71                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C3,
72                 .mindev_error   = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
73         },
74         [BTRFS_RAID_RAID1C4] = {
75                 .sub_stripes    = 1,
76                 .dev_stripes    = 1,
77                 .devs_max       = 4,
78                 .devs_min       = 4,
79                 .tolerated_failures = 3,
80                 .devs_increment = 4,
81                 .ncopies        = 4,
82                 .nparity        = 0,
83                 .raid_name      = "raid1c4",
84                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C4,
85                 .mindev_error   = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
86         },
87         [BTRFS_RAID_DUP] = {
88                 .sub_stripes    = 1,
89                 .dev_stripes    = 2,
90                 .devs_max       = 1,
91                 .devs_min       = 1,
92                 .tolerated_failures = 0,
93                 .devs_increment = 1,
94                 .ncopies        = 2,
95                 .nparity        = 0,
96                 .raid_name      = "dup",
97                 .bg_flag        = BTRFS_BLOCK_GROUP_DUP,
98                 .mindev_error   = 0,
99         },
100         [BTRFS_RAID_RAID0] = {
101                 .sub_stripes    = 1,
102                 .dev_stripes    = 1,
103                 .devs_max       = 0,
104                 .devs_min       = 2,
105                 .tolerated_failures = 0,
106                 .devs_increment = 1,
107                 .ncopies        = 1,
108                 .nparity        = 0,
109                 .raid_name      = "raid0",
110                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID0,
111                 .mindev_error   = 0,
112         },
113         [BTRFS_RAID_SINGLE] = {
114                 .sub_stripes    = 1,
115                 .dev_stripes    = 1,
116                 .devs_max       = 1,
117                 .devs_min       = 1,
118                 .tolerated_failures = 0,
119                 .devs_increment = 1,
120                 .ncopies        = 1,
121                 .nparity        = 0,
122                 .raid_name      = "single",
123                 .bg_flag        = 0,
124                 .mindev_error   = 0,
125         },
126         [BTRFS_RAID_RAID5] = {
127                 .sub_stripes    = 1,
128                 .dev_stripes    = 1,
129                 .devs_max       = 0,
130                 .devs_min       = 2,
131                 .tolerated_failures = 1,
132                 .devs_increment = 1,
133                 .ncopies        = 1,
134                 .nparity        = 1,
135                 .raid_name      = "raid5",
136                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID5,
137                 .mindev_error   = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
138         },
139         [BTRFS_RAID_RAID6] = {
140                 .sub_stripes    = 1,
141                 .dev_stripes    = 1,
142                 .devs_max       = 0,
143                 .devs_min       = 3,
144                 .tolerated_failures = 2,
145                 .devs_increment = 1,
146                 .ncopies        = 1,
147                 .nparity        = 2,
148                 .raid_name      = "raid6",
149                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID6,
150                 .mindev_error   = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
151         },
152 };
153
154 const char *btrfs_bg_type_to_raid_name(u64 flags)
155 {
156         const int index = btrfs_bg_flags_to_raid_index(flags);
157
158         if (index >= BTRFS_NR_RAID_TYPES)
159                 return NULL;
160
161         return btrfs_raid_array[index].raid_name;
162 }
163
164 /*
165  * Fill @buf with textual description of @bg_flags, no more than @size_buf
166  * bytes including terminating null byte.
167  */
168 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
169 {
170         int i;
171         int ret;
172         char *bp = buf;
173         u64 flags = bg_flags;
174         u32 size_bp = size_buf;
175
176         if (!flags) {
177                 strcpy(bp, "NONE");
178                 return;
179         }
180
181 #define DESCRIBE_FLAG(flag, desc)                                               \
182         do {                                                            \
183                 if (flags & (flag)) {                                   \
184                         ret = snprintf(bp, size_bp, "%s|", (desc));     \
185                         if (ret < 0 || ret >= size_bp)                  \
186                                 goto out_overflow;                      \
187                         size_bp -= ret;                                 \
188                         bp += ret;                                      \
189                         flags &= ~(flag);                               \
190                 }                                                       \
191         } while (0)
192
193         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
194         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
195         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
196
197         DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
198         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
199                 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
200                               btrfs_raid_array[i].raid_name);
201 #undef DESCRIBE_FLAG
202
203         if (flags) {
204                 ret = snprintf(bp, size_bp, "0x%llx|", flags);
205                 size_bp -= ret;
206         }
207
208         if (size_bp < size_buf)
209                 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
210
211         /*
212          * The text is trimmed, it's up to the caller to provide sufficiently
213          * large buffer
214          */
215 out_overflow:;
216 }
217
218 static int init_first_rw_device(struct btrfs_trans_handle *trans);
219 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
220 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
221 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
222 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
223                              enum btrfs_map_op op,
224                              u64 logical, u64 *length,
225                              struct btrfs_bio **bbio_ret,
226                              int mirror_num, int need_raid_map);
227
228 /*
229  * Device locking
230  * ==============
231  *
232  * There are several mutexes that protect manipulation of devices and low-level
233  * structures like chunks but not block groups, extents or files
234  *
235  * uuid_mutex (global lock)
236  * ------------------------
237  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
238  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
239  * device) or requested by the device= mount option
240  *
241  * the mutex can be very coarse and can cover long-running operations
242  *
243  * protects: updates to fs_devices counters like missing devices, rw devices,
244  * seeding, structure cloning, opening/closing devices at mount/umount time
245  *
246  * global::fs_devs - add, remove, updates to the global list
247  *
248  * does not protect: manipulation of the fs_devices::devices list in general
249  * but in mount context it could be used to exclude list modifications by eg.
250  * scan ioctl
251  *
252  * btrfs_device::name - renames (write side), read is RCU
253  *
254  * fs_devices::device_list_mutex (per-fs, with RCU)
255  * ------------------------------------------------
256  * protects updates to fs_devices::devices, ie. adding and deleting
257  *
258  * simple list traversal with read-only actions can be done with RCU protection
259  *
260  * may be used to exclude some operations from running concurrently without any
261  * modifications to the list (see write_all_supers)
262  *
263  * Is not required at mount and close times, because our device list is
264  * protected by the uuid_mutex at that point.
265  *
266  * balance_mutex
267  * -------------
268  * protects balance structures (status, state) and context accessed from
269  * several places (internally, ioctl)
270  *
271  * chunk_mutex
272  * -----------
273  * protects chunks, adding or removing during allocation, trim or when a new
274  * device is added/removed. Additionally it also protects post_commit_list of
275  * individual devices, since they can be added to the transaction's
276  * post_commit_list only with chunk_mutex held.
277  *
278  * cleaner_mutex
279  * -------------
280  * a big lock that is held by the cleaner thread and prevents running subvolume
281  * cleaning together with relocation or delayed iputs
282  *
283  *
284  * Lock nesting
285  * ============
286  *
287  * uuid_mutex
288  *   device_list_mutex
289  *     chunk_mutex
290  *   balance_mutex
291  *
292  *
293  * Exclusive operations, BTRFS_FS_EXCL_OP
294  * ======================================
295  *
296  * Maintains the exclusivity of the following operations that apply to the
297  * whole filesystem and cannot run in parallel.
298  *
299  * - Balance (*)
300  * - Device add
301  * - Device remove
302  * - Device replace (*)
303  * - Resize
304  *
305  * The device operations (as above) can be in one of the following states:
306  *
307  * - Running state
308  * - Paused state
309  * - Completed state
310  *
311  * Only device operations marked with (*) can go into the Paused state for the
312  * following reasons:
313  *
314  * - ioctl (only Balance can be Paused through ioctl)
315  * - filesystem remounted as read-only
316  * - filesystem unmounted and mounted as read-only
317  * - system power-cycle and filesystem mounted as read-only
318  * - filesystem or device errors leading to forced read-only
319  *
320  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
321  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
322  * A device operation in Paused or Running state can be canceled or resumed
323  * either by ioctl (Balance only) or when remounted as read-write.
324  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
325  * completed.
326  */
327
328 DEFINE_MUTEX(uuid_mutex);
329 static LIST_HEAD(fs_uuids);
330 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
331 {
332         return &fs_uuids;
333 }
334
335 /*
336  * alloc_fs_devices - allocate struct btrfs_fs_devices
337  * @fsid:               if not NULL, copy the UUID to fs_devices::fsid
338  * @metadata_fsid:      if not NULL, copy the UUID to fs_devices::metadata_fsid
339  *
340  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
341  * The returned struct is not linked onto any lists and can be destroyed with
342  * kfree() right away.
343  */
344 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
345                                                  const u8 *metadata_fsid)
346 {
347         struct btrfs_fs_devices *fs_devs;
348
349         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
350         if (!fs_devs)
351                 return ERR_PTR(-ENOMEM);
352
353         mutex_init(&fs_devs->device_list_mutex);
354
355         INIT_LIST_HEAD(&fs_devs->devices);
356         INIT_LIST_HEAD(&fs_devs->alloc_list);
357         INIT_LIST_HEAD(&fs_devs->fs_list);
358         if (fsid)
359                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
360
361         if (metadata_fsid)
362                 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
363         else if (fsid)
364                 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
365
366         return fs_devs;
367 }
368
369 void btrfs_free_device(struct btrfs_device *device)
370 {
371         WARN_ON(!list_empty(&device->post_commit_list));
372         rcu_string_free(device->name);
373         extent_io_tree_release(&device->alloc_state);
374         bio_put(device->flush_bio);
375         kfree(device);
376 }
377
378 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
379 {
380         struct btrfs_device *device;
381         WARN_ON(fs_devices->opened);
382         while (!list_empty(&fs_devices->devices)) {
383                 device = list_entry(fs_devices->devices.next,
384                                     struct btrfs_device, dev_list);
385                 list_del(&device->dev_list);
386                 btrfs_free_device(device);
387         }
388         kfree(fs_devices);
389 }
390
391 void __exit btrfs_cleanup_fs_uuids(void)
392 {
393         struct btrfs_fs_devices *fs_devices;
394
395         while (!list_empty(&fs_uuids)) {
396                 fs_devices = list_entry(fs_uuids.next,
397                                         struct btrfs_fs_devices, fs_list);
398                 list_del(&fs_devices->fs_list);
399                 free_fs_devices(fs_devices);
400         }
401 }
402
403 /*
404  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
405  * Returned struct is not linked onto any lists and must be destroyed using
406  * btrfs_free_device.
407  */
408 static struct btrfs_device *__alloc_device(void)
409 {
410         struct btrfs_device *dev;
411
412         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
413         if (!dev)
414                 return ERR_PTR(-ENOMEM);
415
416         /*
417          * Preallocate a bio that's always going to be used for flushing device
418          * barriers and matches the device lifespan
419          */
420         dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
421         if (!dev->flush_bio) {
422                 kfree(dev);
423                 return ERR_PTR(-ENOMEM);
424         }
425
426         INIT_LIST_HEAD(&dev->dev_list);
427         INIT_LIST_HEAD(&dev->dev_alloc_list);
428         INIT_LIST_HEAD(&dev->post_commit_list);
429
430         atomic_set(&dev->reada_in_flight, 0);
431         atomic_set(&dev->dev_stats_ccnt, 0);
432         btrfs_device_data_ordered_init(dev);
433         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
434         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
435         extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
436
437         return dev;
438 }
439
440 static noinline struct btrfs_fs_devices *find_fsid(
441                 const u8 *fsid, const u8 *metadata_fsid)
442 {
443         struct btrfs_fs_devices *fs_devices;
444
445         ASSERT(fsid);
446
447         /* Handle non-split brain cases */
448         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
449                 if (metadata_fsid) {
450                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
451                             && memcmp(metadata_fsid, fs_devices->metadata_uuid,
452                                       BTRFS_FSID_SIZE) == 0)
453                                 return fs_devices;
454                 } else {
455                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
456                                 return fs_devices;
457                 }
458         }
459         return NULL;
460 }
461
462 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
463                                 struct btrfs_super_block *disk_super)
464 {
465
466         struct btrfs_fs_devices *fs_devices;
467
468         /*
469          * Handle scanned device having completed its fsid change but
470          * belonging to a fs_devices that was created by first scanning
471          * a device which didn't have its fsid/metadata_uuid changed
472          * at all and the CHANGING_FSID_V2 flag set.
473          */
474         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
475                 if (fs_devices->fsid_change &&
476                     memcmp(disk_super->metadata_uuid, fs_devices->fsid,
477                            BTRFS_FSID_SIZE) == 0 &&
478                     memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
479                            BTRFS_FSID_SIZE) == 0) {
480                         return fs_devices;
481                 }
482         }
483         /*
484          * Handle scanned device having completed its fsid change but
485          * belonging to a fs_devices that was created by a device that
486          * has an outdated pair of fsid/metadata_uuid and
487          * CHANGING_FSID_V2 flag set.
488          */
489         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
490                 if (fs_devices->fsid_change &&
491                     memcmp(fs_devices->metadata_uuid,
492                            fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
493                     memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
494                            BTRFS_FSID_SIZE) == 0) {
495                         return fs_devices;
496                 }
497         }
498
499         return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
500 }
501
502
503 static int
504 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
505                       int flush, struct block_device **bdev,
506                       struct btrfs_super_block **disk_super)
507 {
508         int ret;
509
510         *bdev = blkdev_get_by_path(device_path, flags, holder);
511
512         if (IS_ERR(*bdev)) {
513                 ret = PTR_ERR(*bdev);
514                 goto error;
515         }
516
517         if (flush)
518                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
519         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
520         if (ret) {
521                 blkdev_put(*bdev, flags);
522                 goto error;
523         }
524         invalidate_bdev(*bdev);
525         *disk_super = btrfs_read_dev_super(*bdev);
526         if (IS_ERR(*disk_super)) {
527                 ret = PTR_ERR(*disk_super);
528                 blkdev_put(*bdev, flags);
529                 goto error;
530         }
531
532         return 0;
533
534 error:
535         *bdev = NULL;
536         return ret;
537 }
538
539 static bool device_path_matched(const char *path, struct btrfs_device *device)
540 {
541         int found;
542
543         rcu_read_lock();
544         found = strcmp(rcu_str_deref(device->name), path);
545         rcu_read_unlock();
546
547         return found == 0;
548 }
549
550 /*
551  *  Search and remove all stale (devices which are not mounted) devices.
552  *  When both inputs are NULL, it will search and release all stale devices.
553  *  path:       Optional. When provided will it release all unmounted devices
554  *              matching this path only.
555  *  skip_dev:   Optional. Will skip this device when searching for the stale
556  *              devices.
557  *  Return:     0 for success or if @path is NULL.
558  *              -EBUSY if @path is a mounted device.
559  *              -ENOENT if @path does not match any device in the list.
560  */
561 static int btrfs_free_stale_devices(const char *path,
562                                      struct btrfs_device *skip_device)
563 {
564         struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
565         struct btrfs_device *device, *tmp_device;
566         int ret = 0;
567
568         if (path)
569                 ret = -ENOENT;
570
571         list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
572
573                 mutex_lock(&fs_devices->device_list_mutex);
574                 list_for_each_entry_safe(device, tmp_device,
575                                          &fs_devices->devices, dev_list) {
576                         if (skip_device && skip_device == device)
577                                 continue;
578                         if (path && !device->name)
579                                 continue;
580                         if (path && !device_path_matched(path, device))
581                                 continue;
582                         if (fs_devices->opened) {
583                                 /* for an already deleted device return 0 */
584                                 if (path && ret != 0)
585                                         ret = -EBUSY;
586                                 break;
587                         }
588
589                         /* delete the stale device */
590                         fs_devices->num_devices--;
591                         list_del(&device->dev_list);
592                         btrfs_free_device(device);
593
594                         ret = 0;
595                         if (fs_devices->num_devices == 0)
596                                 break;
597                 }
598                 mutex_unlock(&fs_devices->device_list_mutex);
599
600                 if (fs_devices->num_devices == 0) {
601                         btrfs_sysfs_remove_fsid(fs_devices);
602                         list_del(&fs_devices->fs_list);
603                         free_fs_devices(fs_devices);
604                 }
605         }
606
607         return ret;
608 }
609
610 /*
611  * This is only used on mount, and we are protected from competing things
612  * messing with our fs_devices by the uuid_mutex, thus we do not need the
613  * fs_devices->device_list_mutex here.
614  */
615 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
616                         struct btrfs_device *device, fmode_t flags,
617                         void *holder)
618 {
619         struct request_queue *q;
620         struct block_device *bdev;
621         struct btrfs_super_block *disk_super;
622         u64 devid;
623         int ret;
624
625         if (device->bdev)
626                 return -EINVAL;
627         if (!device->name)
628                 return -EINVAL;
629
630         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
631                                     &bdev, &disk_super);
632         if (ret)
633                 return ret;
634
635         devid = btrfs_stack_device_id(&disk_super->dev_item);
636         if (devid != device->devid)
637                 goto error_free_page;
638
639         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
640                 goto error_free_page;
641
642         device->generation = btrfs_super_generation(disk_super);
643
644         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
645                 if (btrfs_super_incompat_flags(disk_super) &
646                     BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
647                         pr_err(
648                 "BTRFS: Invalid seeding and uuid-changed device detected\n");
649                         goto error_free_page;
650                 }
651
652                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
653                 fs_devices->seeding = true;
654         } else {
655                 if (bdev_read_only(bdev))
656                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
657                 else
658                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
659         }
660
661         q = bdev_get_queue(bdev);
662         if (!blk_queue_nonrot(q))
663                 fs_devices->rotating = true;
664
665         device->bdev = bdev;
666         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
667         device->mode = flags;
668
669         fs_devices->open_devices++;
670         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
671             device->devid != BTRFS_DEV_REPLACE_DEVID) {
672                 fs_devices->rw_devices++;
673                 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
674         }
675         btrfs_release_disk_super(disk_super);
676
677         return 0;
678
679 error_free_page:
680         btrfs_release_disk_super(disk_super);
681         blkdev_put(bdev, flags);
682
683         return -EINVAL;
684 }
685
686 /*
687  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
688  * being created with a disk that has already completed its fsid change. Such
689  * disk can belong to an fs which has its FSID changed or to one which doesn't.
690  * Handle both cases here.
691  */
692 static struct btrfs_fs_devices *find_fsid_inprogress(
693                                         struct btrfs_super_block *disk_super)
694 {
695         struct btrfs_fs_devices *fs_devices;
696
697         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
698                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
699                            BTRFS_FSID_SIZE) != 0 &&
700                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
701                            BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
702                         return fs_devices;
703                 }
704         }
705
706         return find_fsid(disk_super->fsid, NULL);
707 }
708
709
710 static struct btrfs_fs_devices *find_fsid_changed(
711                                         struct btrfs_super_block *disk_super)
712 {
713         struct btrfs_fs_devices *fs_devices;
714
715         /*
716          * Handles the case where scanned device is part of an fs that had
717          * multiple successful changes of FSID but curently device didn't
718          * observe it. Meaning our fsid will be different than theirs. We need
719          * to handle two subcases :
720          *  1 - The fs still continues to have different METADATA/FSID uuids.
721          *  2 - The fs is switched back to its original FSID (METADATA/FSID
722          *  are equal).
723          */
724         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
725                 /* Changed UUIDs */
726                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
727                            BTRFS_FSID_SIZE) != 0 &&
728                     memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
729                            BTRFS_FSID_SIZE) == 0 &&
730                     memcmp(fs_devices->fsid, disk_super->fsid,
731                            BTRFS_FSID_SIZE) != 0)
732                         return fs_devices;
733
734                 /* Unchanged UUIDs */
735                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
736                            BTRFS_FSID_SIZE) == 0 &&
737                     memcmp(fs_devices->fsid, disk_super->metadata_uuid,
738                            BTRFS_FSID_SIZE) == 0)
739                         return fs_devices;
740         }
741
742         return NULL;
743 }
744
745 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
746                                 struct btrfs_super_block *disk_super)
747 {
748         struct btrfs_fs_devices *fs_devices;
749
750         /*
751          * Handle the case where the scanned device is part of an fs whose last
752          * metadata UUID change reverted it to the original FSID. At the same
753          * time * fs_devices was first created by another constitutent device
754          * which didn't fully observe the operation. This results in an
755          * btrfs_fs_devices created with metadata/fsid different AND
756          * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
757          * fs_devices equal to the FSID of the disk.
758          */
759         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
760                 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
761                            BTRFS_FSID_SIZE) != 0 &&
762                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
763                            BTRFS_FSID_SIZE) == 0 &&
764                     fs_devices->fsid_change)
765                         return fs_devices;
766         }
767
768         return NULL;
769 }
770 /*
771  * Add new device to list of registered devices
772  *
773  * Returns:
774  * device pointer which was just added or updated when successful
775  * error pointer when failed
776  */
777 static noinline struct btrfs_device *device_list_add(const char *path,
778                            struct btrfs_super_block *disk_super,
779                            bool *new_device_added)
780 {
781         struct btrfs_device *device;
782         struct btrfs_fs_devices *fs_devices = NULL;
783         struct rcu_string *name;
784         u64 found_transid = btrfs_super_generation(disk_super);
785         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
786         bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
787                 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
788         bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
789                                         BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
790
791         if (fsid_change_in_progress) {
792                 if (!has_metadata_uuid)
793                         fs_devices = find_fsid_inprogress(disk_super);
794                 else
795                         fs_devices = find_fsid_changed(disk_super);
796         } else if (has_metadata_uuid) {
797                 fs_devices = find_fsid_with_metadata_uuid(disk_super);
798         } else {
799                 fs_devices = find_fsid_reverted_metadata(disk_super);
800                 if (!fs_devices)
801                         fs_devices = find_fsid(disk_super->fsid, NULL);
802         }
803
804
805         if (!fs_devices) {
806                 if (has_metadata_uuid)
807                         fs_devices = alloc_fs_devices(disk_super->fsid,
808                                                       disk_super->metadata_uuid);
809                 else
810                         fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
811
812                 if (IS_ERR(fs_devices))
813                         return ERR_CAST(fs_devices);
814
815                 fs_devices->fsid_change = fsid_change_in_progress;
816
817                 mutex_lock(&fs_devices->device_list_mutex);
818                 list_add(&fs_devices->fs_list, &fs_uuids);
819
820                 device = NULL;
821         } else {
822                 mutex_lock(&fs_devices->device_list_mutex);
823                 device = btrfs_find_device(fs_devices, devid,
824                                 disk_super->dev_item.uuid, NULL, false);
825
826                 /*
827                  * If this disk has been pulled into an fs devices created by
828                  * a device which had the CHANGING_FSID_V2 flag then replace the
829                  * metadata_uuid/fsid values of the fs_devices.
830                  */
831                 if (fs_devices->fsid_change &&
832                     found_transid > fs_devices->latest_generation) {
833                         memcpy(fs_devices->fsid, disk_super->fsid,
834                                         BTRFS_FSID_SIZE);
835
836                         if (has_metadata_uuid)
837                                 memcpy(fs_devices->metadata_uuid,
838                                        disk_super->metadata_uuid,
839                                        BTRFS_FSID_SIZE);
840                         else
841                                 memcpy(fs_devices->metadata_uuid,
842                                        disk_super->fsid, BTRFS_FSID_SIZE);
843
844                         fs_devices->fsid_change = false;
845                 }
846         }
847
848         if (!device) {
849                 if (fs_devices->opened) {
850                         mutex_unlock(&fs_devices->device_list_mutex);
851                         return ERR_PTR(-EBUSY);
852                 }
853
854                 device = btrfs_alloc_device(NULL, &devid,
855                                             disk_super->dev_item.uuid);
856                 if (IS_ERR(device)) {
857                         mutex_unlock(&fs_devices->device_list_mutex);
858                         /* we can safely leave the fs_devices entry around */
859                         return device;
860                 }
861
862                 name = rcu_string_strdup(path, GFP_NOFS);
863                 if (!name) {
864                         btrfs_free_device(device);
865                         mutex_unlock(&fs_devices->device_list_mutex);
866                         return ERR_PTR(-ENOMEM);
867                 }
868                 rcu_assign_pointer(device->name, name);
869
870                 list_add_rcu(&device->dev_list, &fs_devices->devices);
871                 fs_devices->num_devices++;
872
873                 device->fs_devices = fs_devices;
874                 *new_device_added = true;
875
876                 if (disk_super->label[0])
877                         pr_info(
878         "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
879                                 disk_super->label, devid, found_transid, path,
880                                 current->comm, task_pid_nr(current));
881                 else
882                         pr_info(
883         "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
884                                 disk_super->fsid, devid, found_transid, path,
885                                 current->comm, task_pid_nr(current));
886
887         } else if (!device->name || strcmp(device->name->str, path)) {
888                 /*
889                  * When FS is already mounted.
890                  * 1. If you are here and if the device->name is NULL that
891                  *    means this device was missing at time of FS mount.
892                  * 2. If you are here and if the device->name is different
893                  *    from 'path' that means either
894                  *      a. The same device disappeared and reappeared with
895                  *         different name. or
896                  *      b. The missing-disk-which-was-replaced, has
897                  *         reappeared now.
898                  *
899                  * We must allow 1 and 2a above. But 2b would be a spurious
900                  * and unintentional.
901                  *
902                  * Further in case of 1 and 2a above, the disk at 'path'
903                  * would have missed some transaction when it was away and
904                  * in case of 2a the stale bdev has to be updated as well.
905                  * 2b must not be allowed at all time.
906                  */
907
908                 /*
909                  * For now, we do allow update to btrfs_fs_device through the
910                  * btrfs dev scan cli after FS has been mounted.  We're still
911                  * tracking a problem where systems fail mount by subvolume id
912                  * when we reject replacement on a mounted FS.
913                  */
914                 if (!fs_devices->opened && found_transid < device->generation) {
915                         /*
916                          * That is if the FS is _not_ mounted and if you
917                          * are here, that means there is more than one
918                          * disk with same uuid and devid.We keep the one
919                          * with larger generation number or the last-in if
920                          * generation are equal.
921                          */
922                         mutex_unlock(&fs_devices->device_list_mutex);
923                         return ERR_PTR(-EEXIST);
924                 }
925
926                 /*
927                  * We are going to replace the device path for a given devid,
928                  * make sure it's the same device if the device is mounted
929                  */
930                 if (device->bdev) {
931                         struct block_device *path_bdev;
932
933                         path_bdev = lookup_bdev(path);
934                         if (IS_ERR(path_bdev)) {
935                                 mutex_unlock(&fs_devices->device_list_mutex);
936                                 return ERR_CAST(path_bdev);
937                         }
938
939                         if (device->bdev != path_bdev) {
940                                 bdput(path_bdev);
941                                 mutex_unlock(&fs_devices->device_list_mutex);
942                                 btrfs_warn_in_rcu(device->fs_info,
943                         "duplicate device fsid:devid for %pU:%llu old:%s new:%s",
944                                         disk_super->fsid, devid,
945                                         rcu_str_deref(device->name), path);
946                                 return ERR_PTR(-EEXIST);
947                         }
948                         bdput(path_bdev);
949                         btrfs_info_in_rcu(device->fs_info,
950                                 "device fsid %pU devid %llu moved old:%s new:%s",
951                                 disk_super->fsid, devid,
952                                 rcu_str_deref(device->name), path);
953                 }
954
955                 name = rcu_string_strdup(path, GFP_NOFS);
956                 if (!name) {
957                         mutex_unlock(&fs_devices->device_list_mutex);
958                         return ERR_PTR(-ENOMEM);
959                 }
960                 rcu_string_free(device->name);
961                 rcu_assign_pointer(device->name, name);
962                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
963                         fs_devices->missing_devices--;
964                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
965                 }
966         }
967
968         /*
969          * Unmount does not free the btrfs_device struct but would zero
970          * generation along with most of the other members. So just update
971          * it back. We need it to pick the disk with largest generation
972          * (as above).
973          */
974         if (!fs_devices->opened) {
975                 device->generation = found_transid;
976                 fs_devices->latest_generation = max_t(u64, found_transid,
977                                                 fs_devices->latest_generation);
978         }
979
980         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
981
982         mutex_unlock(&fs_devices->device_list_mutex);
983         return device;
984 }
985
986 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
987 {
988         struct btrfs_fs_devices *fs_devices;
989         struct btrfs_device *device;
990         struct btrfs_device *orig_dev;
991         int ret = 0;
992
993         fs_devices = alloc_fs_devices(orig->fsid, NULL);
994         if (IS_ERR(fs_devices))
995                 return fs_devices;
996
997         mutex_lock(&orig->device_list_mutex);
998         fs_devices->total_devices = orig->total_devices;
999
1000         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1001                 struct rcu_string *name;
1002
1003                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1004                                             orig_dev->uuid);
1005                 if (IS_ERR(device)) {
1006                         ret = PTR_ERR(device);
1007                         goto error;
1008                 }
1009
1010                 /*
1011                  * This is ok to do without rcu read locked because we hold the
1012                  * uuid mutex so nothing we touch in here is going to disappear.
1013                  */
1014                 if (orig_dev->name) {
1015                         name = rcu_string_strdup(orig_dev->name->str,
1016                                         GFP_KERNEL);
1017                         if (!name) {
1018                                 btrfs_free_device(device);
1019                                 ret = -ENOMEM;
1020                                 goto error;
1021                         }
1022                         rcu_assign_pointer(device->name, name);
1023                 }
1024
1025                 list_add(&device->dev_list, &fs_devices->devices);
1026                 device->fs_devices = fs_devices;
1027                 fs_devices->num_devices++;
1028         }
1029         mutex_unlock(&orig->device_list_mutex);
1030         return fs_devices;
1031 error:
1032         mutex_unlock(&orig->device_list_mutex);
1033         free_fs_devices(fs_devices);
1034         return ERR_PTR(ret);
1035 }
1036
1037 /*
1038  * After we have read the system tree and know devids belonging to
1039  * this filesystem, remove the device which does not belong there.
1040  */
1041 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1042 {
1043         struct btrfs_device *device, *next;
1044         struct btrfs_device *latest_dev = NULL;
1045
1046         mutex_lock(&uuid_mutex);
1047 again:
1048         /* This is the initialized path, it is safe to release the devices. */
1049         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1050                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1051                                                         &device->dev_state)) {
1052                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1053                              &device->dev_state) &&
1054                             !test_bit(BTRFS_DEV_STATE_MISSING,
1055                                       &device->dev_state) &&
1056                              (!latest_dev ||
1057                               device->generation > latest_dev->generation)) {
1058                                 latest_dev = device;
1059                         }
1060                         continue;
1061                 }
1062
1063                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1064                         /*
1065                          * In the first step, keep the device which has
1066                          * the correct fsid and the devid that is used
1067                          * for the dev_replace procedure.
1068                          * In the second step, the dev_replace state is
1069                          * read from the device tree and it is known
1070                          * whether the procedure is really active or
1071                          * not, which means whether this device is
1072                          * used or whether it should be removed.
1073                          */
1074                         if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1075                                                   &device->dev_state)) {
1076                                 continue;
1077                         }
1078                 }
1079                 if (device->bdev) {
1080                         blkdev_put(device->bdev, device->mode);
1081                         device->bdev = NULL;
1082                         fs_devices->open_devices--;
1083                 }
1084                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1085                         list_del_init(&device->dev_alloc_list);
1086                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1087                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1088                                       &device->dev_state))
1089                                 fs_devices->rw_devices--;
1090                 }
1091                 list_del_init(&device->dev_list);
1092                 fs_devices->num_devices--;
1093                 btrfs_free_device(device);
1094         }
1095
1096         if (fs_devices->seed) {
1097                 fs_devices = fs_devices->seed;
1098                 goto again;
1099         }
1100
1101         fs_devices->latest_bdev = latest_dev->bdev;
1102
1103         mutex_unlock(&uuid_mutex);
1104 }
1105
1106 static void btrfs_close_bdev(struct btrfs_device *device)
1107 {
1108         if (!device->bdev)
1109                 return;
1110
1111         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1112                 sync_blockdev(device->bdev);
1113                 invalidate_bdev(device->bdev);
1114         }
1115
1116         blkdev_put(device->bdev, device->mode);
1117 }
1118
1119 static void btrfs_close_one_device(struct btrfs_device *device)
1120 {
1121         struct btrfs_fs_devices *fs_devices = device->fs_devices;
1122
1123         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1124             device->devid != BTRFS_DEV_REPLACE_DEVID) {
1125                 list_del_init(&device->dev_alloc_list);
1126                 fs_devices->rw_devices--;
1127         }
1128
1129         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1130                 fs_devices->missing_devices--;
1131
1132         btrfs_close_bdev(device);
1133         if (device->bdev) {
1134                 fs_devices->open_devices--;
1135                 device->bdev = NULL;
1136         }
1137         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1138
1139         device->fs_info = NULL;
1140         atomic_set(&device->dev_stats_ccnt, 0);
1141         extent_io_tree_release(&device->alloc_state);
1142
1143         /* Verify the device is back in a pristine state  */
1144         ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1145         ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1146         ASSERT(list_empty(&device->dev_alloc_list));
1147         ASSERT(list_empty(&device->post_commit_list));
1148         ASSERT(atomic_read(&device->reada_in_flight) == 0);
1149 }
1150
1151 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1152 {
1153         struct btrfs_device *device, *tmp;
1154
1155         if (--fs_devices->opened > 0)
1156                 return 0;
1157
1158         mutex_lock(&fs_devices->device_list_mutex);
1159         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1160                 btrfs_close_one_device(device);
1161         }
1162         mutex_unlock(&fs_devices->device_list_mutex);
1163
1164         WARN_ON(fs_devices->open_devices);
1165         WARN_ON(fs_devices->rw_devices);
1166         fs_devices->opened = 0;
1167         fs_devices->seeding = false;
1168
1169         return 0;
1170 }
1171
1172 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1173 {
1174         struct btrfs_fs_devices *seed_devices = NULL;
1175         int ret;
1176
1177         mutex_lock(&uuid_mutex);
1178         ret = close_fs_devices(fs_devices);
1179         if (!fs_devices->opened) {
1180                 seed_devices = fs_devices->seed;
1181                 fs_devices->seed = NULL;
1182         }
1183         mutex_unlock(&uuid_mutex);
1184
1185         while (seed_devices) {
1186                 fs_devices = seed_devices;
1187                 seed_devices = fs_devices->seed;
1188                 close_fs_devices(fs_devices);
1189                 free_fs_devices(fs_devices);
1190         }
1191         return ret;
1192 }
1193
1194 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1195                                 fmode_t flags, void *holder)
1196 {
1197         struct btrfs_device *device;
1198         struct btrfs_device *latest_dev = NULL;
1199
1200         flags |= FMODE_EXCL;
1201
1202         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1203                 /* Just open everything we can; ignore failures here */
1204                 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1205                         continue;
1206
1207                 if (!latest_dev ||
1208                     device->generation > latest_dev->generation)
1209                         latest_dev = device;
1210         }
1211         if (fs_devices->open_devices == 0)
1212                 return -EINVAL;
1213
1214         fs_devices->opened = 1;
1215         fs_devices->latest_bdev = latest_dev->bdev;
1216         fs_devices->total_rw_bytes = 0;
1217         fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1218
1219         return 0;
1220 }
1221
1222 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1223 {
1224         struct btrfs_device *dev1, *dev2;
1225
1226         dev1 = list_entry(a, struct btrfs_device, dev_list);
1227         dev2 = list_entry(b, struct btrfs_device, dev_list);
1228
1229         if (dev1->devid < dev2->devid)
1230                 return -1;
1231         else if (dev1->devid > dev2->devid)
1232                 return 1;
1233         return 0;
1234 }
1235
1236 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1237                        fmode_t flags, void *holder)
1238 {
1239         int ret;
1240
1241         lockdep_assert_held(&uuid_mutex);
1242         /*
1243          * The device_list_mutex cannot be taken here in case opening the
1244          * underlying device takes further locks like bd_mutex.
1245          *
1246          * We also don't need the lock here as this is called during mount and
1247          * exclusion is provided by uuid_mutex
1248          */
1249
1250         if (fs_devices->opened) {
1251                 fs_devices->opened++;
1252                 ret = 0;
1253         } else {
1254                 list_sort(NULL, &fs_devices->devices, devid_cmp);
1255                 ret = open_fs_devices(fs_devices, flags, holder);
1256         }
1257
1258         return ret;
1259 }
1260
1261 void btrfs_release_disk_super(struct btrfs_super_block *super)
1262 {
1263         struct page *page = virt_to_page(super);
1264
1265         put_page(page);
1266 }
1267
1268 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1269                                                        u64 bytenr)
1270 {
1271         struct btrfs_super_block *disk_super;
1272         struct page *page;
1273         void *p;
1274         pgoff_t index;
1275
1276         /* make sure our super fits in the device */
1277         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1278                 return ERR_PTR(-EINVAL);
1279
1280         /* make sure our super fits in the page */
1281         if (sizeof(*disk_super) > PAGE_SIZE)
1282                 return ERR_PTR(-EINVAL);
1283
1284         /* make sure our super doesn't straddle pages on disk */
1285         index = bytenr >> PAGE_SHIFT;
1286         if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1287                 return ERR_PTR(-EINVAL);
1288
1289         /* pull in the page with our super */
1290         page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1291
1292         if (IS_ERR(page))
1293                 return ERR_CAST(page);
1294
1295         p = page_address(page);
1296
1297         /* align our pointer to the offset of the super block */
1298         disk_super = p + offset_in_page(bytenr);
1299
1300         if (btrfs_super_bytenr(disk_super) != bytenr ||
1301             btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1302                 btrfs_release_disk_super(p);
1303                 return ERR_PTR(-EINVAL);
1304         }
1305
1306         if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1307                 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1308
1309         return disk_super;
1310 }
1311
1312 int btrfs_forget_devices(const char *path)
1313 {
1314         int ret;
1315
1316         mutex_lock(&uuid_mutex);
1317         ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1318         mutex_unlock(&uuid_mutex);
1319
1320         return ret;
1321 }
1322
1323 /*
1324  * Look for a btrfs signature on a device. This may be called out of the mount path
1325  * and we are not allowed to call set_blocksize during the scan. The superblock
1326  * is read via pagecache
1327  */
1328 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1329                                            void *holder)
1330 {
1331         struct btrfs_super_block *disk_super;
1332         bool new_device_added = false;
1333         struct btrfs_device *device = NULL;
1334         struct block_device *bdev;
1335         u64 bytenr;
1336
1337         lockdep_assert_held(&uuid_mutex);
1338
1339         /*
1340          * we would like to check all the supers, but that would make
1341          * a btrfs mount succeed after a mkfs from a different FS.
1342          * So, we need to add a special mount option to scan for
1343          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1344          */
1345         bytenr = btrfs_sb_offset(0);
1346         flags |= FMODE_EXCL;
1347
1348         bdev = blkdev_get_by_path(path, flags, holder);
1349         if (IS_ERR(bdev))
1350                 return ERR_CAST(bdev);
1351
1352         disk_super = btrfs_read_disk_super(bdev, bytenr);
1353         if (IS_ERR(disk_super)) {
1354                 device = ERR_CAST(disk_super);
1355                 goto error_bdev_put;
1356         }
1357
1358         device = device_list_add(path, disk_super, &new_device_added);
1359         if (!IS_ERR(device)) {
1360                 if (new_device_added)
1361                         btrfs_free_stale_devices(path, device);
1362         }
1363
1364         btrfs_release_disk_super(disk_super);
1365
1366 error_bdev_put:
1367         blkdev_put(bdev, flags);
1368
1369         return device;
1370 }
1371
1372 /*
1373  * Try to find a chunk that intersects [start, start + len] range and when one
1374  * such is found, record the end of it in *start
1375  */
1376 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1377                                     u64 len)
1378 {
1379         u64 physical_start, physical_end;
1380
1381         lockdep_assert_held(&device->fs_info->chunk_mutex);
1382
1383         if (!find_first_extent_bit(&device->alloc_state, *start,
1384                                    &physical_start, &physical_end,
1385                                    CHUNK_ALLOCATED, NULL)) {
1386
1387                 if (in_range(physical_start, *start, len) ||
1388                     in_range(*start, physical_start,
1389                              physical_end - physical_start)) {
1390                         *start = physical_end + 1;
1391                         return true;
1392                 }
1393         }
1394         return false;
1395 }
1396
1397 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1398 {
1399         switch (device->fs_devices->chunk_alloc_policy) {
1400         case BTRFS_CHUNK_ALLOC_REGULAR:
1401                 /*
1402                  * We don't want to overwrite the superblock on the drive nor
1403                  * any area used by the boot loader (grub for example), so we
1404                  * make sure to start at an offset of at least 1MB.
1405                  */
1406                 return max_t(u64, start, SZ_1M);
1407         default:
1408                 BUG();
1409         }
1410 }
1411
1412 /**
1413  * dev_extent_hole_check - check if specified hole is suitable for allocation
1414  * @device:     the device which we have the hole
1415  * @hole_start: starting position of the hole
1416  * @hole_size:  the size of the hole
1417  * @num_bytes:  the size of the free space that we need
1418  *
1419  * This function may modify @hole_start and @hole_end to reflect the suitable
1420  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1421  */
1422 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1423                                   u64 *hole_size, u64 num_bytes)
1424 {
1425         bool changed = false;
1426         u64 hole_end = *hole_start + *hole_size;
1427
1428         /*
1429          * Check before we set max_hole_start, otherwise we could end up
1430          * sending back this offset anyway.
1431          */
1432         if (contains_pending_extent(device, hole_start, *hole_size)) {
1433                 if (hole_end >= *hole_start)
1434                         *hole_size = hole_end - *hole_start;
1435                 else
1436                         *hole_size = 0;
1437                 changed = true;
1438         }
1439
1440         switch (device->fs_devices->chunk_alloc_policy) {
1441         case BTRFS_CHUNK_ALLOC_REGULAR:
1442                 /* No extra check */
1443                 break;
1444         default:
1445                 BUG();
1446         }
1447
1448         return changed;
1449 }
1450
1451 /*
1452  * find_free_dev_extent_start - find free space in the specified device
1453  * @device:       the device which we search the free space in
1454  * @num_bytes:    the size of the free space that we need
1455  * @search_start: the position from which to begin the search
1456  * @start:        store the start of the free space.
1457  * @len:          the size of the free space. that we find, or the size
1458  *                of the max free space if we don't find suitable free space
1459  *
1460  * this uses a pretty simple search, the expectation is that it is
1461  * called very infrequently and that a given device has a small number
1462  * of extents
1463  *
1464  * @start is used to store the start of the free space if we find. But if we
1465  * don't find suitable free space, it will be used to store the start position
1466  * of the max free space.
1467  *
1468  * @len is used to store the size of the free space that we find.
1469  * But if we don't find suitable free space, it is used to store the size of
1470  * the max free space.
1471  *
1472  * NOTE: This function will search *commit* root of device tree, and does extra
1473  * check to ensure dev extents are not double allocated.
1474  * This makes the function safe to allocate dev extents but may not report
1475  * correct usable device space, as device extent freed in current transaction
1476  * is not reported as avaiable.
1477  */
1478 static int find_free_dev_extent_start(struct btrfs_device *device,
1479                                 u64 num_bytes, u64 search_start, u64 *start,
1480                                 u64 *len)
1481 {
1482         struct btrfs_fs_info *fs_info = device->fs_info;
1483         struct btrfs_root *root = fs_info->dev_root;
1484         struct btrfs_key key;
1485         struct btrfs_dev_extent *dev_extent;
1486         struct btrfs_path *path;
1487         u64 hole_size;
1488         u64 max_hole_start;
1489         u64 max_hole_size;
1490         u64 extent_end;
1491         u64 search_end = device->total_bytes;
1492         int ret;
1493         int slot;
1494         struct extent_buffer *l;
1495
1496         search_start = dev_extent_search_start(device, search_start);
1497
1498         path = btrfs_alloc_path();
1499         if (!path)
1500                 return -ENOMEM;
1501
1502         max_hole_start = search_start;
1503         max_hole_size = 0;
1504
1505 again:
1506         if (search_start >= search_end ||
1507                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1508                 ret = -ENOSPC;
1509                 goto out;
1510         }
1511
1512         path->reada = READA_FORWARD;
1513         path->search_commit_root = 1;
1514         path->skip_locking = 1;
1515
1516         key.objectid = device->devid;
1517         key.offset = search_start;
1518         key.type = BTRFS_DEV_EXTENT_KEY;
1519
1520         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1521         if (ret < 0)
1522                 goto out;
1523         if (ret > 0) {
1524                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1525                 if (ret < 0)
1526                         goto out;
1527         }
1528
1529         while (1) {
1530                 l = path->nodes[0];
1531                 slot = path->slots[0];
1532                 if (slot >= btrfs_header_nritems(l)) {
1533                         ret = btrfs_next_leaf(root, path);
1534                         if (ret == 0)
1535                                 continue;
1536                         if (ret < 0)
1537                                 goto out;
1538
1539                         break;
1540                 }
1541                 btrfs_item_key_to_cpu(l, &key, slot);
1542
1543                 if (key.objectid < device->devid)
1544                         goto next;
1545
1546                 if (key.objectid > device->devid)
1547                         break;
1548
1549                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1550                         goto next;
1551
1552                 if (key.offset > search_start) {
1553                         hole_size = key.offset - search_start;
1554                         dev_extent_hole_check(device, &search_start, &hole_size,
1555                                               num_bytes);
1556
1557                         if (hole_size > max_hole_size) {
1558                                 max_hole_start = search_start;
1559                                 max_hole_size = hole_size;
1560                         }
1561
1562                         /*
1563                          * If this free space is greater than which we need,
1564                          * it must be the max free space that we have found
1565                          * until now, so max_hole_start must point to the start
1566                          * of this free space and the length of this free space
1567                          * is stored in max_hole_size. Thus, we return
1568                          * max_hole_start and max_hole_size and go back to the
1569                          * caller.
1570                          */
1571                         if (hole_size >= num_bytes) {
1572                                 ret = 0;
1573                                 goto out;
1574                         }
1575                 }
1576
1577                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1578                 extent_end = key.offset + btrfs_dev_extent_length(l,
1579                                                                   dev_extent);
1580                 if (extent_end > search_start)
1581                         search_start = extent_end;
1582 next:
1583                 path->slots[0]++;
1584                 cond_resched();
1585         }
1586
1587         /*
1588          * At this point, search_start should be the end of
1589          * allocated dev extents, and when shrinking the device,
1590          * search_end may be smaller than search_start.
1591          */
1592         if (search_end > search_start) {
1593                 hole_size = search_end - search_start;
1594                 if (dev_extent_hole_check(device, &search_start, &hole_size,
1595                                           num_bytes)) {
1596                         btrfs_release_path(path);
1597                         goto again;
1598                 }
1599
1600                 if (hole_size > max_hole_size) {
1601                         max_hole_start = search_start;
1602                         max_hole_size = hole_size;
1603                 }
1604         }
1605
1606         /* See above. */
1607         if (max_hole_size < num_bytes)
1608                 ret = -ENOSPC;
1609         else
1610                 ret = 0;
1611
1612 out:
1613         btrfs_free_path(path);
1614         *start = max_hole_start;
1615         if (len)
1616                 *len = max_hole_size;
1617         return ret;
1618 }
1619
1620 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1621                          u64 *start, u64 *len)
1622 {
1623         /* FIXME use last free of some kind */
1624         return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1625 }
1626
1627 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1628                           struct btrfs_device *device,
1629                           u64 start, u64 *dev_extent_len)
1630 {
1631         struct btrfs_fs_info *fs_info = device->fs_info;
1632         struct btrfs_root *root = fs_info->dev_root;
1633         int ret;
1634         struct btrfs_path *path;
1635         struct btrfs_key key;
1636         struct btrfs_key found_key;
1637         struct extent_buffer *leaf = NULL;
1638         struct btrfs_dev_extent *extent = NULL;
1639
1640         path = btrfs_alloc_path();
1641         if (!path)
1642                 return -ENOMEM;
1643
1644         key.objectid = device->devid;
1645         key.offset = start;
1646         key.type = BTRFS_DEV_EXTENT_KEY;
1647 again:
1648         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1649         if (ret > 0) {
1650                 ret = btrfs_previous_item(root, path, key.objectid,
1651                                           BTRFS_DEV_EXTENT_KEY);
1652                 if (ret)
1653                         goto out;
1654                 leaf = path->nodes[0];
1655                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1656                 extent = btrfs_item_ptr(leaf, path->slots[0],
1657                                         struct btrfs_dev_extent);
1658                 BUG_ON(found_key.offset > start || found_key.offset +
1659                        btrfs_dev_extent_length(leaf, extent) < start);
1660                 key = found_key;
1661                 btrfs_release_path(path);
1662                 goto again;
1663         } else if (ret == 0) {
1664                 leaf = path->nodes[0];
1665                 extent = btrfs_item_ptr(leaf, path->slots[0],
1666                                         struct btrfs_dev_extent);
1667         } else {
1668                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1669                 goto out;
1670         }
1671
1672         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1673
1674         ret = btrfs_del_item(trans, root, path);
1675         if (ret) {
1676                 btrfs_handle_fs_error(fs_info, ret,
1677                                       "Failed to remove dev extent item");
1678         } else {
1679                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1680         }
1681 out:
1682         btrfs_free_path(path);
1683         return ret;
1684 }
1685
1686 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1687                                   struct btrfs_device *device,
1688                                   u64 chunk_offset, u64 start, u64 num_bytes)
1689 {
1690         int ret;
1691         struct btrfs_path *path;
1692         struct btrfs_fs_info *fs_info = device->fs_info;
1693         struct btrfs_root *root = fs_info->dev_root;
1694         struct btrfs_dev_extent *extent;
1695         struct extent_buffer *leaf;
1696         struct btrfs_key key;
1697
1698         WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1699         WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1700         path = btrfs_alloc_path();
1701         if (!path)
1702                 return -ENOMEM;
1703
1704         key.objectid = device->devid;
1705         key.offset = start;
1706         key.type = BTRFS_DEV_EXTENT_KEY;
1707         ret = btrfs_insert_empty_item(trans, root, path, &key,
1708                                       sizeof(*extent));
1709         if (ret)
1710                 goto out;
1711
1712         leaf = path->nodes[0];
1713         extent = btrfs_item_ptr(leaf, path->slots[0],
1714                                 struct btrfs_dev_extent);
1715         btrfs_set_dev_extent_chunk_tree(leaf, extent,
1716                                         BTRFS_CHUNK_TREE_OBJECTID);
1717         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1718                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1719         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1720
1721         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1722         btrfs_mark_buffer_dirty(leaf);
1723 out:
1724         btrfs_free_path(path);
1725         return ret;
1726 }
1727
1728 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1729 {
1730         struct extent_map_tree *em_tree;
1731         struct extent_map *em;
1732         struct rb_node *n;
1733         u64 ret = 0;
1734
1735         em_tree = &fs_info->mapping_tree;
1736         read_lock(&em_tree->lock);
1737         n = rb_last(&em_tree->map.rb_root);
1738         if (n) {
1739                 em = rb_entry(n, struct extent_map, rb_node);
1740                 ret = em->start + em->len;
1741         }
1742         read_unlock(&em_tree->lock);
1743
1744         return ret;
1745 }
1746
1747 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1748                                     u64 *devid_ret)
1749 {
1750         int ret;
1751         struct btrfs_key key;
1752         struct btrfs_key found_key;
1753         struct btrfs_path *path;
1754
1755         path = btrfs_alloc_path();
1756         if (!path)
1757                 return -ENOMEM;
1758
1759         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1760         key.type = BTRFS_DEV_ITEM_KEY;
1761         key.offset = (u64)-1;
1762
1763         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1764         if (ret < 0)
1765                 goto error;
1766
1767         if (ret == 0) {
1768                 /* Corruption */
1769                 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1770                 ret = -EUCLEAN;
1771                 goto error;
1772         }
1773
1774         ret = btrfs_previous_item(fs_info->chunk_root, path,
1775                                   BTRFS_DEV_ITEMS_OBJECTID,
1776                                   BTRFS_DEV_ITEM_KEY);
1777         if (ret) {
1778                 *devid_ret = 1;
1779         } else {
1780                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1781                                       path->slots[0]);
1782                 *devid_ret = found_key.offset + 1;
1783         }
1784         ret = 0;
1785 error:
1786         btrfs_free_path(path);
1787         return ret;
1788 }
1789
1790 /*
1791  * the device information is stored in the chunk root
1792  * the btrfs_device struct should be fully filled in
1793  */
1794 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1795                             struct btrfs_device *device)
1796 {
1797         int ret;
1798         struct btrfs_path *path;
1799         struct btrfs_dev_item *dev_item;
1800         struct extent_buffer *leaf;
1801         struct btrfs_key key;
1802         unsigned long ptr;
1803
1804         path = btrfs_alloc_path();
1805         if (!path)
1806                 return -ENOMEM;
1807
1808         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1809         key.type = BTRFS_DEV_ITEM_KEY;
1810         key.offset = device->devid;
1811
1812         ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1813                                       &key, sizeof(*dev_item));
1814         if (ret)
1815                 goto out;
1816
1817         leaf = path->nodes[0];
1818         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1819
1820         btrfs_set_device_id(leaf, dev_item, device->devid);
1821         btrfs_set_device_generation(leaf, dev_item, 0);
1822         btrfs_set_device_type(leaf, dev_item, device->type);
1823         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1824         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1825         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1826         btrfs_set_device_total_bytes(leaf, dev_item,
1827                                      btrfs_device_get_disk_total_bytes(device));
1828         btrfs_set_device_bytes_used(leaf, dev_item,
1829                                     btrfs_device_get_bytes_used(device));
1830         btrfs_set_device_group(leaf, dev_item, 0);
1831         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1832         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1833         btrfs_set_device_start_offset(leaf, dev_item, 0);
1834
1835         ptr = btrfs_device_uuid(dev_item);
1836         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1837         ptr = btrfs_device_fsid(dev_item);
1838         write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1839                             ptr, BTRFS_FSID_SIZE);
1840         btrfs_mark_buffer_dirty(leaf);
1841
1842         ret = 0;
1843 out:
1844         btrfs_free_path(path);
1845         return ret;
1846 }
1847
1848 /*
1849  * Function to update ctime/mtime for a given device path.
1850  * Mainly used for ctime/mtime based probe like libblkid.
1851  */
1852 static void update_dev_time(const char *path_name)
1853 {
1854         struct file *filp;
1855
1856         filp = filp_open(path_name, O_RDWR, 0);
1857         if (IS_ERR(filp))
1858                 return;
1859         file_update_time(filp);
1860         filp_close(filp, NULL);
1861 }
1862
1863 static int btrfs_rm_dev_item(struct btrfs_device *device)
1864 {
1865         struct btrfs_root *root = device->fs_info->chunk_root;
1866         int ret;
1867         struct btrfs_path *path;
1868         struct btrfs_key key;
1869         struct btrfs_trans_handle *trans;
1870
1871         path = btrfs_alloc_path();
1872         if (!path)
1873                 return -ENOMEM;
1874
1875         trans = btrfs_start_transaction(root, 0);
1876         if (IS_ERR(trans)) {
1877                 btrfs_free_path(path);
1878                 return PTR_ERR(trans);
1879         }
1880         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1881         key.type = BTRFS_DEV_ITEM_KEY;
1882         key.offset = device->devid;
1883
1884         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1885         if (ret) {
1886                 if (ret > 0)
1887                         ret = -ENOENT;
1888                 btrfs_abort_transaction(trans, ret);
1889                 btrfs_end_transaction(trans);
1890                 goto out;
1891         }
1892
1893         ret = btrfs_del_item(trans, root, path);
1894         if (ret) {
1895                 btrfs_abort_transaction(trans, ret);
1896                 btrfs_end_transaction(trans);
1897         }
1898
1899 out:
1900         btrfs_free_path(path);
1901         if (!ret)
1902                 ret = btrfs_commit_transaction(trans);
1903         return ret;
1904 }
1905
1906 /*
1907  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1908  * filesystem. It's up to the caller to adjust that number regarding eg. device
1909  * replace.
1910  */
1911 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1912                 u64 num_devices)
1913 {
1914         u64 all_avail;
1915         unsigned seq;
1916         int i;
1917
1918         do {
1919                 seq = read_seqbegin(&fs_info->profiles_lock);
1920
1921                 all_avail = fs_info->avail_data_alloc_bits |
1922                             fs_info->avail_system_alloc_bits |
1923                             fs_info->avail_metadata_alloc_bits;
1924         } while (read_seqretry(&fs_info->profiles_lock, seq));
1925
1926         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1927                 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1928                         continue;
1929
1930                 if (num_devices < btrfs_raid_array[i].devs_min) {
1931                         int ret = btrfs_raid_array[i].mindev_error;
1932
1933                         if (ret)
1934                                 return ret;
1935                 }
1936         }
1937
1938         return 0;
1939 }
1940
1941 static struct btrfs_device * btrfs_find_next_active_device(
1942                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1943 {
1944         struct btrfs_device *next_device;
1945
1946         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1947                 if (next_device != device &&
1948                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1949                     && next_device->bdev)
1950                         return next_device;
1951         }
1952
1953         return NULL;
1954 }
1955
1956 /*
1957  * Helper function to check if the given device is part of s_bdev / latest_bdev
1958  * and replace it with the provided or the next active device, in the context
1959  * where this function called, there should be always be another device (or
1960  * this_dev) which is active.
1961  */
1962 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1963                                      struct btrfs_device *this_dev)
1964 {
1965         struct btrfs_fs_info *fs_info = device->fs_info;
1966         struct btrfs_device *next_device;
1967
1968         if (this_dev)
1969                 next_device = this_dev;
1970         else
1971                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1972                                                                 device);
1973         ASSERT(next_device);
1974
1975         if (fs_info->sb->s_bdev &&
1976                         (fs_info->sb->s_bdev == device->bdev))
1977                 fs_info->sb->s_bdev = next_device->bdev;
1978
1979         if (fs_info->fs_devices->latest_bdev == device->bdev)
1980                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1981 }
1982
1983 /*
1984  * Return btrfs_fs_devices::num_devices excluding the device that's being
1985  * currently replaced.
1986  */
1987 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1988 {
1989         u64 num_devices = fs_info->fs_devices->num_devices;
1990
1991         down_read(&fs_info->dev_replace.rwsem);
1992         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1993                 ASSERT(num_devices > 1);
1994                 num_devices--;
1995         }
1996         up_read(&fs_info->dev_replace.rwsem);
1997
1998         return num_devices;
1999 }
2000
2001 static void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2002                                       struct block_device *bdev,
2003                                       const char *device_path)
2004 {
2005         struct btrfs_super_block *disk_super;
2006         int copy_num;
2007
2008         if (!bdev)
2009                 return;
2010
2011         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2012                 struct page *page;
2013                 int ret;
2014
2015                 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2016                 if (IS_ERR(disk_super))
2017                         continue;
2018
2019                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2020
2021                 page = virt_to_page(disk_super);
2022                 set_page_dirty(page);
2023                 lock_page(page);
2024                 /* write_on_page() unlocks the page */
2025                 ret = write_one_page(page);
2026                 if (ret)
2027                         btrfs_warn(fs_info,
2028                                 "error clearing superblock number %d (%d)",
2029                                 copy_num, ret);
2030                 btrfs_release_disk_super(disk_super);
2031
2032         }
2033
2034         /* Notify udev that device has changed */
2035         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2036
2037         /* Update ctime/mtime for device path for libblkid */
2038         update_dev_time(device_path);
2039 }
2040
2041 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2042                 u64 devid)
2043 {
2044         struct btrfs_device *device;
2045         struct btrfs_fs_devices *cur_devices;
2046         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2047         u64 num_devices;
2048         int ret = 0;
2049
2050         mutex_lock(&uuid_mutex);
2051
2052         num_devices = btrfs_num_devices(fs_info);
2053
2054         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2055         if (ret)
2056                 goto out;
2057
2058         device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2059
2060         if (IS_ERR(device)) {
2061                 if (PTR_ERR(device) == -ENOENT &&
2062                     strcmp(device_path, "missing") == 0)
2063                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2064                 else
2065                         ret = PTR_ERR(device);
2066                 goto out;
2067         }
2068
2069         if (btrfs_pinned_by_swapfile(fs_info, device)) {
2070                 btrfs_warn_in_rcu(fs_info,
2071                   "cannot remove device %s (devid %llu) due to active swapfile",
2072                                   rcu_str_deref(device->name), device->devid);
2073                 ret = -ETXTBSY;
2074                 goto out;
2075         }
2076
2077         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2078                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2079                 goto out;
2080         }
2081
2082         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2083             fs_info->fs_devices->rw_devices == 1) {
2084                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2085                 goto out;
2086         }
2087
2088         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2089                 mutex_lock(&fs_info->chunk_mutex);
2090                 list_del_init(&device->dev_alloc_list);
2091                 device->fs_devices->rw_devices--;
2092                 mutex_unlock(&fs_info->chunk_mutex);
2093         }
2094
2095         mutex_unlock(&uuid_mutex);
2096         ret = btrfs_shrink_device(device, 0);
2097         mutex_lock(&uuid_mutex);
2098         if (ret)
2099                 goto error_undo;
2100
2101         /*
2102          * TODO: the superblock still includes this device in its num_devices
2103          * counter although write_all_supers() is not locked out. This
2104          * could give a filesystem state which requires a degraded mount.
2105          */
2106         ret = btrfs_rm_dev_item(device);
2107         if (ret)
2108                 goto error_undo;
2109
2110         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2111         btrfs_scrub_cancel_dev(device);
2112
2113         /*
2114          * the device list mutex makes sure that we don't change
2115          * the device list while someone else is writing out all
2116          * the device supers. Whoever is writing all supers, should
2117          * lock the device list mutex before getting the number of
2118          * devices in the super block (super_copy). Conversely,
2119          * whoever updates the number of devices in the super block
2120          * (super_copy) should hold the device list mutex.
2121          */
2122
2123         /*
2124          * In normal cases the cur_devices == fs_devices. But in case
2125          * of deleting a seed device, the cur_devices should point to
2126          * its own fs_devices listed under the fs_devices->seed.
2127          */
2128         cur_devices = device->fs_devices;
2129         mutex_lock(&fs_devices->device_list_mutex);
2130         list_del_rcu(&device->dev_list);
2131
2132         cur_devices->num_devices--;
2133         cur_devices->total_devices--;
2134         /* Update total_devices of the parent fs_devices if it's seed */
2135         if (cur_devices != fs_devices)
2136                 fs_devices->total_devices--;
2137
2138         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2139                 cur_devices->missing_devices--;
2140
2141         btrfs_assign_next_active_device(device, NULL);
2142
2143         if (device->bdev) {
2144                 cur_devices->open_devices--;
2145                 /* remove sysfs entry */
2146                 btrfs_sysfs_remove_devices_dir(fs_devices, device);
2147         }
2148
2149         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2150         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2151         mutex_unlock(&fs_devices->device_list_mutex);
2152
2153         /*
2154          * at this point, the device is zero sized and detached from
2155          * the devices list.  All that's left is to zero out the old
2156          * supers and free the device.
2157          */
2158         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2159                 btrfs_scratch_superblocks(fs_info, device->bdev,
2160                                           device->name->str);
2161
2162         btrfs_close_bdev(device);
2163         synchronize_rcu();
2164         btrfs_free_device(device);
2165
2166         if (cur_devices->open_devices == 0) {
2167                 while (fs_devices) {
2168                         if (fs_devices->seed == cur_devices) {
2169                                 fs_devices->seed = cur_devices->seed;
2170                                 break;
2171                         }
2172                         fs_devices = fs_devices->seed;
2173                 }
2174                 cur_devices->seed = NULL;
2175                 close_fs_devices(cur_devices);
2176                 free_fs_devices(cur_devices);
2177         }
2178
2179 out:
2180         mutex_unlock(&uuid_mutex);
2181         return ret;
2182
2183 error_undo:
2184         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2185                 mutex_lock(&fs_info->chunk_mutex);
2186                 list_add(&device->dev_alloc_list,
2187                          &fs_devices->alloc_list);
2188                 device->fs_devices->rw_devices++;
2189                 mutex_unlock(&fs_info->chunk_mutex);
2190         }
2191         goto out;
2192 }
2193
2194 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2195 {
2196         struct btrfs_fs_devices *fs_devices;
2197
2198         lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2199
2200         /*
2201          * in case of fs with no seed, srcdev->fs_devices will point
2202          * to fs_devices of fs_info. However when the dev being replaced is
2203          * a seed dev it will point to the seed's local fs_devices. In short
2204          * srcdev will have its correct fs_devices in both the cases.
2205          */
2206         fs_devices = srcdev->fs_devices;
2207
2208         list_del_rcu(&srcdev->dev_list);
2209         list_del(&srcdev->dev_alloc_list);
2210         fs_devices->num_devices--;
2211         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2212                 fs_devices->missing_devices--;
2213
2214         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2215                 fs_devices->rw_devices--;
2216
2217         if (srcdev->bdev)
2218                 fs_devices->open_devices--;
2219 }
2220
2221 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2222 {
2223         struct btrfs_fs_info *fs_info = srcdev->fs_info;
2224         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2225
2226         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2227                 /* zero out the old super if it is writable */
2228                 btrfs_scratch_superblocks(fs_info, srcdev->bdev,
2229                                           srcdev->name->str);
2230         }
2231
2232         btrfs_close_bdev(srcdev);
2233         synchronize_rcu();
2234         btrfs_free_device(srcdev);
2235
2236         /* if this is no devs we rather delete the fs_devices */
2237         if (!fs_devices->num_devices) {
2238                 struct btrfs_fs_devices *tmp_fs_devices;
2239
2240                 /*
2241                  * On a mounted FS, num_devices can't be zero unless it's a
2242                  * seed. In case of a seed device being replaced, the replace
2243                  * target added to the sprout FS, so there will be no more
2244                  * device left under the seed FS.
2245                  */
2246                 ASSERT(fs_devices->seeding);
2247
2248                 tmp_fs_devices = fs_info->fs_devices;
2249                 while (tmp_fs_devices) {
2250                         if (tmp_fs_devices->seed == fs_devices) {
2251                                 tmp_fs_devices->seed = fs_devices->seed;
2252                                 break;
2253                         }
2254                         tmp_fs_devices = tmp_fs_devices->seed;
2255                 }
2256                 fs_devices->seed = NULL;
2257                 close_fs_devices(fs_devices);
2258                 free_fs_devices(fs_devices);
2259         }
2260 }
2261
2262 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2263 {
2264         struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2265
2266         mutex_lock(&fs_devices->device_list_mutex);
2267
2268         btrfs_sysfs_remove_devices_dir(fs_devices, tgtdev);
2269
2270         if (tgtdev->bdev)
2271                 fs_devices->open_devices--;
2272
2273         fs_devices->num_devices--;
2274
2275         btrfs_assign_next_active_device(tgtdev, NULL);
2276
2277         list_del_rcu(&tgtdev->dev_list);
2278
2279         mutex_unlock(&fs_devices->device_list_mutex);
2280
2281         /*
2282          * The update_dev_time() with in btrfs_scratch_superblocks()
2283          * may lead to a call to btrfs_show_devname() which will try
2284          * to hold device_list_mutex. And here this device
2285          * is already out of device list, so we don't have to hold
2286          * the device_list_mutex lock.
2287          */
2288         btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2289                                   tgtdev->name->str);
2290
2291         btrfs_close_bdev(tgtdev);
2292         synchronize_rcu();
2293         btrfs_free_device(tgtdev);
2294 }
2295
2296 static struct btrfs_device *btrfs_find_device_by_path(
2297                 struct btrfs_fs_info *fs_info, const char *device_path)
2298 {
2299         int ret = 0;
2300         struct btrfs_super_block *disk_super;
2301         u64 devid;
2302         u8 *dev_uuid;
2303         struct block_device *bdev;
2304         struct btrfs_device *device;
2305
2306         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2307                                     fs_info->bdev_holder, 0, &bdev, &disk_super);
2308         if (ret)
2309                 return ERR_PTR(ret);
2310
2311         devid = btrfs_stack_device_id(&disk_super->dev_item);
2312         dev_uuid = disk_super->dev_item.uuid;
2313         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2314                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2315                                            disk_super->metadata_uuid, true);
2316         else
2317                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2318                                            disk_super->fsid, true);
2319
2320         btrfs_release_disk_super(disk_super);
2321         if (!device)
2322                 device = ERR_PTR(-ENOENT);
2323         blkdev_put(bdev, FMODE_READ);
2324         return device;
2325 }
2326
2327 /*
2328  * Lookup a device given by device id, or the path if the id is 0.
2329  */
2330 struct btrfs_device *btrfs_find_device_by_devspec(
2331                 struct btrfs_fs_info *fs_info, u64 devid,
2332                 const char *device_path)
2333 {
2334         struct btrfs_device *device;
2335
2336         if (devid) {
2337                 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2338                                            NULL, true);
2339                 if (!device)
2340                         return ERR_PTR(-ENOENT);
2341                 return device;
2342         }
2343
2344         if (!device_path || !device_path[0])
2345                 return ERR_PTR(-EINVAL);
2346
2347         if (strcmp(device_path, "missing") == 0) {
2348                 /* Find first missing device */
2349                 list_for_each_entry(device, &fs_info->fs_devices->devices,
2350                                     dev_list) {
2351                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2352                                      &device->dev_state) && !device->bdev)
2353                                 return device;
2354                 }
2355                 return ERR_PTR(-ENOENT);
2356         }
2357
2358         return btrfs_find_device_by_path(fs_info, device_path);
2359 }
2360
2361 /*
2362  * does all the dirty work required for changing file system's UUID.
2363  */
2364 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2365 {
2366         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2367         struct btrfs_fs_devices *old_devices;
2368         struct btrfs_fs_devices *seed_devices;
2369         struct btrfs_super_block *disk_super = fs_info->super_copy;
2370         struct btrfs_device *device;
2371         u64 super_flags;
2372
2373         lockdep_assert_held(&uuid_mutex);
2374         if (!fs_devices->seeding)
2375                 return -EINVAL;
2376
2377         seed_devices = alloc_fs_devices(NULL, NULL);
2378         if (IS_ERR(seed_devices))
2379                 return PTR_ERR(seed_devices);
2380
2381         old_devices = clone_fs_devices(fs_devices);
2382         if (IS_ERR(old_devices)) {
2383                 kfree(seed_devices);
2384                 return PTR_ERR(old_devices);
2385         }
2386
2387         list_add(&old_devices->fs_list, &fs_uuids);
2388
2389         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2390         seed_devices->opened = 1;
2391         INIT_LIST_HEAD(&seed_devices->devices);
2392         INIT_LIST_HEAD(&seed_devices->alloc_list);
2393         mutex_init(&seed_devices->device_list_mutex);
2394
2395         mutex_lock(&fs_devices->device_list_mutex);
2396         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2397                               synchronize_rcu);
2398         list_for_each_entry(device, &seed_devices->devices, dev_list)
2399                 device->fs_devices = seed_devices;
2400
2401         mutex_lock(&fs_info->chunk_mutex);
2402         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2403         mutex_unlock(&fs_info->chunk_mutex);
2404
2405         fs_devices->seeding = false;
2406         fs_devices->num_devices = 0;
2407         fs_devices->open_devices = 0;
2408         fs_devices->missing_devices = 0;
2409         fs_devices->rotating = false;
2410         fs_devices->seed = seed_devices;
2411
2412         generate_random_uuid(fs_devices->fsid);
2413         memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2414         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2415         mutex_unlock(&fs_devices->device_list_mutex);
2416
2417         super_flags = btrfs_super_flags(disk_super) &
2418                       ~BTRFS_SUPER_FLAG_SEEDING;
2419         btrfs_set_super_flags(disk_super, super_flags);
2420
2421         return 0;
2422 }
2423
2424 /*
2425  * Store the expected generation for seed devices in device items.
2426  */
2427 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2428 {
2429         struct btrfs_fs_info *fs_info = trans->fs_info;
2430         struct btrfs_root *root = fs_info->chunk_root;
2431         struct btrfs_path *path;
2432         struct extent_buffer *leaf;
2433         struct btrfs_dev_item *dev_item;
2434         struct btrfs_device *device;
2435         struct btrfs_key key;
2436         u8 fs_uuid[BTRFS_FSID_SIZE];
2437         u8 dev_uuid[BTRFS_UUID_SIZE];
2438         u64 devid;
2439         int ret;
2440
2441         path = btrfs_alloc_path();
2442         if (!path)
2443                 return -ENOMEM;
2444
2445         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2446         key.offset = 0;
2447         key.type = BTRFS_DEV_ITEM_KEY;
2448
2449         while (1) {
2450                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2451                 if (ret < 0)
2452                         goto error;
2453
2454                 leaf = path->nodes[0];
2455 next_slot:
2456                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2457                         ret = btrfs_next_leaf(root, path);
2458                         if (ret > 0)
2459                                 break;
2460                         if (ret < 0)
2461                                 goto error;
2462                         leaf = path->nodes[0];
2463                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2464                         btrfs_release_path(path);
2465                         continue;
2466                 }
2467
2468                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2469                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2470                     key.type != BTRFS_DEV_ITEM_KEY)
2471                         break;
2472
2473                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2474                                           struct btrfs_dev_item);
2475                 devid = btrfs_device_id(leaf, dev_item);
2476                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2477                                    BTRFS_UUID_SIZE);
2478                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2479                                    BTRFS_FSID_SIZE);
2480                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2481                                            fs_uuid, true);
2482                 BUG_ON(!device); /* Logic error */
2483
2484                 if (device->fs_devices->seeding) {
2485                         btrfs_set_device_generation(leaf, dev_item,
2486                                                     device->generation);
2487                         btrfs_mark_buffer_dirty(leaf);
2488                 }
2489
2490                 path->slots[0]++;
2491                 goto next_slot;
2492         }
2493         ret = 0;
2494 error:
2495         btrfs_free_path(path);
2496         return ret;
2497 }
2498
2499 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2500 {
2501         struct btrfs_root *root = fs_info->dev_root;
2502         struct request_queue *q;
2503         struct btrfs_trans_handle *trans;
2504         struct btrfs_device *device;
2505         struct block_device *bdev;
2506         struct super_block *sb = fs_info->sb;
2507         struct rcu_string *name;
2508         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2509         u64 orig_super_total_bytes;
2510         u64 orig_super_num_devices;
2511         int seeding_dev = 0;
2512         int ret = 0;
2513         bool unlocked = false;
2514
2515         if (sb_rdonly(sb) && !fs_devices->seeding)
2516                 return -EROFS;
2517
2518         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2519                                   fs_info->bdev_holder);
2520         if (IS_ERR(bdev))
2521                 return PTR_ERR(bdev);
2522
2523         if (fs_devices->seeding) {
2524                 seeding_dev = 1;
2525                 down_write(&sb->s_umount);
2526                 mutex_lock(&uuid_mutex);
2527         }
2528
2529         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2530
2531         mutex_lock(&fs_devices->device_list_mutex);
2532         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2533                 if (device->bdev == bdev) {
2534                         ret = -EEXIST;
2535                         mutex_unlock(
2536                                 &fs_devices->device_list_mutex);
2537                         goto error;
2538                 }
2539         }
2540         mutex_unlock(&fs_devices->device_list_mutex);
2541
2542         device = btrfs_alloc_device(fs_info, NULL, NULL);
2543         if (IS_ERR(device)) {
2544                 /* we can safely leave the fs_devices entry around */
2545                 ret = PTR_ERR(device);
2546                 goto error;
2547         }
2548
2549         name = rcu_string_strdup(device_path, GFP_KERNEL);
2550         if (!name) {
2551                 ret = -ENOMEM;
2552                 goto error_free_device;
2553         }
2554         rcu_assign_pointer(device->name, name);
2555
2556         trans = btrfs_start_transaction(root, 0);
2557         if (IS_ERR(trans)) {
2558                 ret = PTR_ERR(trans);
2559                 goto error_free_device;
2560         }
2561
2562         q = bdev_get_queue(bdev);
2563         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2564         device->generation = trans->transid;
2565         device->io_width = fs_info->sectorsize;
2566         device->io_align = fs_info->sectorsize;
2567         device->sector_size = fs_info->sectorsize;
2568         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2569                                          fs_info->sectorsize);
2570         device->disk_total_bytes = device->total_bytes;
2571         device->commit_total_bytes = device->total_bytes;
2572         device->fs_info = fs_info;
2573         device->bdev = bdev;
2574         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2575         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2576         device->mode = FMODE_EXCL;
2577         device->dev_stats_valid = 1;
2578         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2579
2580         if (seeding_dev) {
2581                 sb->s_flags &= ~SB_RDONLY;
2582                 ret = btrfs_prepare_sprout(fs_info);
2583                 if (ret) {
2584                         btrfs_abort_transaction(trans, ret);
2585                         goto error_trans;
2586                 }
2587         }
2588
2589         device->fs_devices = fs_devices;
2590
2591         mutex_lock(&fs_devices->device_list_mutex);
2592         mutex_lock(&fs_info->chunk_mutex);
2593         list_add_rcu(&device->dev_list, &fs_devices->devices);
2594         list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2595         fs_devices->num_devices++;
2596         fs_devices->open_devices++;
2597         fs_devices->rw_devices++;
2598         fs_devices->total_devices++;
2599         fs_devices->total_rw_bytes += device->total_bytes;
2600
2601         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2602
2603         if (!blk_queue_nonrot(q))
2604                 fs_devices->rotating = true;
2605
2606         orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2607         btrfs_set_super_total_bytes(fs_info->super_copy,
2608                 round_down(orig_super_total_bytes + device->total_bytes,
2609                            fs_info->sectorsize));
2610
2611         orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2612         btrfs_set_super_num_devices(fs_info->super_copy,
2613                                     orig_super_num_devices + 1);
2614
2615         /* add sysfs device entry */
2616         btrfs_sysfs_add_devices_dir(fs_devices, device);
2617
2618         /*
2619          * we've got more storage, clear any full flags on the space
2620          * infos
2621          */
2622         btrfs_clear_space_info_full(fs_info);
2623
2624         mutex_unlock(&fs_info->chunk_mutex);
2625         mutex_unlock(&fs_devices->device_list_mutex);
2626
2627         if (seeding_dev) {
2628                 mutex_lock(&fs_info->chunk_mutex);
2629                 ret = init_first_rw_device(trans);
2630                 mutex_unlock(&fs_info->chunk_mutex);
2631                 if (ret) {
2632                         btrfs_abort_transaction(trans, ret);
2633                         goto error_sysfs;
2634                 }
2635         }
2636
2637         ret = btrfs_add_dev_item(trans, device);
2638         if (ret) {
2639                 btrfs_abort_transaction(trans, ret);
2640                 goto error_sysfs;
2641         }
2642
2643         if (seeding_dev) {
2644                 ret = btrfs_finish_sprout(trans);
2645                 if (ret) {
2646                         btrfs_abort_transaction(trans, ret);
2647                         goto error_sysfs;
2648                 }
2649
2650                 btrfs_sysfs_update_sprout_fsid(fs_devices,
2651                                 fs_info->fs_devices->fsid);
2652         }
2653
2654         ret = btrfs_commit_transaction(trans);
2655
2656         if (seeding_dev) {
2657                 mutex_unlock(&uuid_mutex);
2658                 up_write(&sb->s_umount);
2659                 unlocked = true;
2660
2661                 if (ret) /* transaction commit */
2662                         return ret;
2663
2664                 ret = btrfs_relocate_sys_chunks(fs_info);
2665                 if (ret < 0)
2666                         btrfs_handle_fs_error(fs_info, ret,
2667                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2668                 trans = btrfs_attach_transaction(root);
2669                 if (IS_ERR(trans)) {
2670                         if (PTR_ERR(trans) == -ENOENT)
2671                                 return 0;
2672                         ret = PTR_ERR(trans);
2673                         trans = NULL;
2674                         goto error_sysfs;
2675                 }
2676                 ret = btrfs_commit_transaction(trans);
2677         }
2678
2679         /*
2680          * Now that we have written a new super block to this device, check all
2681          * other fs_devices list if device_path alienates any other scanned
2682          * device.
2683          * We can ignore the return value as it typically returns -EINVAL and
2684          * only succeeds if the device was an alien.
2685          */
2686         btrfs_forget_devices(device_path);
2687
2688         /* Update ctime/mtime for blkid or udev */
2689         update_dev_time(device_path);
2690
2691         return ret;
2692
2693 error_sysfs:
2694         btrfs_sysfs_remove_devices_dir(fs_devices, device);
2695         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2696         mutex_lock(&fs_info->chunk_mutex);
2697         list_del_rcu(&device->dev_list);
2698         list_del(&device->dev_alloc_list);
2699         fs_info->fs_devices->num_devices--;
2700         fs_info->fs_devices->open_devices--;
2701         fs_info->fs_devices->rw_devices--;
2702         fs_info->fs_devices->total_devices--;
2703         fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2704         atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2705         btrfs_set_super_total_bytes(fs_info->super_copy,
2706                                     orig_super_total_bytes);
2707         btrfs_set_super_num_devices(fs_info->super_copy,
2708                                     orig_super_num_devices);
2709         mutex_unlock(&fs_info->chunk_mutex);
2710         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2711 error_trans:
2712         if (seeding_dev)
2713                 sb->s_flags |= SB_RDONLY;
2714         if (trans)
2715                 btrfs_end_transaction(trans);
2716 error_free_device:
2717         btrfs_free_device(device);
2718 error:
2719         blkdev_put(bdev, FMODE_EXCL);
2720         if (seeding_dev && !unlocked) {
2721                 mutex_unlock(&uuid_mutex);
2722                 up_write(&sb->s_umount);
2723         }
2724         return ret;
2725 }
2726
2727 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2728                                         struct btrfs_device *device)
2729 {
2730         int ret;
2731         struct btrfs_path *path;
2732         struct btrfs_root *root = device->fs_info->chunk_root;
2733         struct btrfs_dev_item *dev_item;
2734         struct extent_buffer *leaf;
2735         struct btrfs_key key;
2736
2737         path = btrfs_alloc_path();
2738         if (!path)
2739                 return -ENOMEM;
2740
2741         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2742         key.type = BTRFS_DEV_ITEM_KEY;
2743         key.offset = device->devid;
2744
2745         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2746         if (ret < 0)
2747                 goto out;
2748
2749         if (ret > 0) {
2750                 ret = -ENOENT;
2751                 goto out;
2752         }
2753
2754         leaf = path->nodes[0];
2755         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2756
2757         btrfs_set_device_id(leaf, dev_item, device->devid);
2758         btrfs_set_device_type(leaf, dev_item, device->type);
2759         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2760         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2761         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2762         btrfs_set_device_total_bytes(leaf, dev_item,
2763                                      btrfs_device_get_disk_total_bytes(device));
2764         btrfs_set_device_bytes_used(leaf, dev_item,
2765                                     btrfs_device_get_bytes_used(device));
2766         btrfs_mark_buffer_dirty(leaf);
2767
2768 out:
2769         btrfs_free_path(path);
2770         return ret;
2771 }
2772
2773 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2774                       struct btrfs_device *device, u64 new_size)
2775 {
2776         struct btrfs_fs_info *fs_info = device->fs_info;
2777         struct btrfs_super_block *super_copy = fs_info->super_copy;
2778         u64 old_total;
2779         u64 diff;
2780
2781         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2782                 return -EACCES;
2783
2784         new_size = round_down(new_size, fs_info->sectorsize);
2785
2786         mutex_lock(&fs_info->chunk_mutex);
2787         old_total = btrfs_super_total_bytes(super_copy);
2788         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2789
2790         if (new_size <= device->total_bytes ||
2791             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2792                 mutex_unlock(&fs_info->chunk_mutex);
2793                 return -EINVAL;
2794         }
2795
2796         btrfs_set_super_total_bytes(super_copy,
2797                         round_down(old_total + diff, fs_info->sectorsize));
2798         device->fs_devices->total_rw_bytes += diff;
2799
2800         btrfs_device_set_total_bytes(device, new_size);
2801         btrfs_device_set_disk_total_bytes(device, new_size);
2802         btrfs_clear_space_info_full(device->fs_info);
2803         if (list_empty(&device->post_commit_list))
2804                 list_add_tail(&device->post_commit_list,
2805                               &trans->transaction->dev_update_list);
2806         mutex_unlock(&fs_info->chunk_mutex);
2807
2808         return btrfs_update_device(trans, device);
2809 }
2810
2811 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2812 {
2813         struct btrfs_fs_info *fs_info = trans->fs_info;
2814         struct btrfs_root *root = fs_info->chunk_root;
2815         int ret;
2816         struct btrfs_path *path;
2817         struct btrfs_key key;
2818
2819         path = btrfs_alloc_path();
2820         if (!path)
2821                 return -ENOMEM;
2822
2823         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2824         key.offset = chunk_offset;
2825         key.type = BTRFS_CHUNK_ITEM_KEY;
2826
2827         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2828         if (ret < 0)
2829                 goto out;
2830         else if (ret > 0) { /* Logic error or corruption */
2831                 btrfs_handle_fs_error(fs_info, -ENOENT,
2832                                       "Failed lookup while freeing chunk.");
2833                 ret = -ENOENT;
2834                 goto out;
2835         }
2836
2837         ret = btrfs_del_item(trans, root, path);
2838         if (ret < 0)
2839                 btrfs_handle_fs_error(fs_info, ret,
2840                                       "Failed to delete chunk item.");
2841 out:
2842         btrfs_free_path(path);
2843         return ret;
2844 }
2845
2846 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2847 {
2848         struct btrfs_super_block *super_copy = fs_info->super_copy;
2849         struct btrfs_disk_key *disk_key;
2850         struct btrfs_chunk *chunk;
2851         u8 *ptr;
2852         int ret = 0;
2853         u32 num_stripes;
2854         u32 array_size;
2855         u32 len = 0;
2856         u32 cur;
2857         struct btrfs_key key;
2858
2859         mutex_lock(&fs_info->chunk_mutex);
2860         array_size = btrfs_super_sys_array_size(super_copy);
2861
2862         ptr = super_copy->sys_chunk_array;
2863         cur = 0;
2864
2865         while (cur < array_size) {
2866                 disk_key = (struct btrfs_disk_key *)ptr;
2867                 btrfs_disk_key_to_cpu(&key, disk_key);
2868
2869                 len = sizeof(*disk_key);
2870
2871                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2872                         chunk = (struct btrfs_chunk *)(ptr + len);
2873                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2874                         len += btrfs_chunk_item_size(num_stripes);
2875                 } else {
2876                         ret = -EIO;
2877                         break;
2878                 }
2879                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2880                     key.offset == chunk_offset) {
2881                         memmove(ptr, ptr + len, array_size - (cur + len));
2882                         array_size -= len;
2883                         btrfs_set_super_sys_array_size(super_copy, array_size);
2884                 } else {
2885                         ptr += len;
2886                         cur += len;
2887                 }
2888         }
2889         mutex_unlock(&fs_info->chunk_mutex);
2890         return ret;
2891 }
2892
2893 /*
2894  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2895  * @logical: Logical block offset in bytes.
2896  * @length: Length of extent in bytes.
2897  *
2898  * Return: Chunk mapping or ERR_PTR.
2899  */
2900 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2901                                        u64 logical, u64 length)
2902 {
2903         struct extent_map_tree *em_tree;
2904         struct extent_map *em;
2905
2906         em_tree = &fs_info->mapping_tree;
2907         read_lock(&em_tree->lock);
2908         em = lookup_extent_mapping(em_tree, logical, length);
2909         read_unlock(&em_tree->lock);
2910
2911         if (!em) {
2912                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2913                            logical, length);
2914                 return ERR_PTR(-EINVAL);
2915         }
2916
2917         if (em->start > logical || em->start + em->len < logical) {
2918                 btrfs_crit(fs_info,
2919                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2920                            logical, length, em->start, em->start + em->len);
2921                 free_extent_map(em);
2922                 return ERR_PTR(-EINVAL);
2923         }
2924
2925         /* callers are responsible for dropping em's ref. */
2926         return em;
2927 }
2928
2929 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2930 {
2931         struct btrfs_fs_info *fs_info = trans->fs_info;
2932         struct extent_map *em;
2933         struct map_lookup *map;
2934         u64 dev_extent_len = 0;
2935         int i, ret = 0;
2936         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2937
2938         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2939         if (IS_ERR(em)) {
2940                 /*
2941                  * This is a logic error, but we don't want to just rely on the
2942                  * user having built with ASSERT enabled, so if ASSERT doesn't
2943                  * do anything we still error out.
2944                  */
2945                 ASSERT(0);
2946                 return PTR_ERR(em);
2947         }
2948         map = em->map_lookup;
2949         mutex_lock(&fs_info->chunk_mutex);
2950         check_system_chunk(trans, map->type);
2951         mutex_unlock(&fs_info->chunk_mutex);
2952
2953         /*
2954          * Take the device list mutex to prevent races with the final phase of
2955          * a device replace operation that replaces the device object associated
2956          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2957          */
2958         mutex_lock(&fs_devices->device_list_mutex);
2959         for (i = 0; i < map->num_stripes; i++) {
2960                 struct btrfs_device *device = map->stripes[i].dev;
2961                 ret = btrfs_free_dev_extent(trans, device,
2962                                             map->stripes[i].physical,
2963                                             &dev_extent_len);
2964                 if (ret) {
2965                         mutex_unlock(&fs_devices->device_list_mutex);
2966                         btrfs_abort_transaction(trans, ret);
2967                         goto out;
2968                 }
2969
2970                 if (device->bytes_used > 0) {
2971                         mutex_lock(&fs_info->chunk_mutex);
2972                         btrfs_device_set_bytes_used(device,
2973                                         device->bytes_used - dev_extent_len);
2974                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2975                         btrfs_clear_space_info_full(fs_info);
2976                         mutex_unlock(&fs_info->chunk_mutex);
2977                 }
2978
2979                 ret = btrfs_update_device(trans, device);
2980                 if (ret) {
2981                         mutex_unlock(&fs_devices->device_list_mutex);
2982                         btrfs_abort_transaction(trans, ret);
2983                         goto out;
2984                 }
2985         }
2986         mutex_unlock(&fs_devices->device_list_mutex);
2987
2988         ret = btrfs_free_chunk(trans, chunk_offset);
2989         if (ret) {
2990                 btrfs_abort_transaction(trans, ret);
2991                 goto out;
2992         }
2993
2994         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2995
2996         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2997                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2998                 if (ret) {
2999                         btrfs_abort_transaction(trans, ret);
3000                         goto out;
3001                 }
3002         }
3003
3004         ret = btrfs_remove_block_group(trans, chunk_offset, em);
3005         if (ret) {
3006                 btrfs_abort_transaction(trans, ret);
3007                 goto out;
3008         }
3009
3010 out:
3011         /* once for us */
3012         free_extent_map(em);
3013         return ret;
3014 }
3015
3016 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3017 {
3018         struct btrfs_root *root = fs_info->chunk_root;
3019         struct btrfs_trans_handle *trans;
3020         struct btrfs_block_group *block_group;
3021         int ret;
3022
3023         /*
3024          * Prevent races with automatic removal of unused block groups.
3025          * After we relocate and before we remove the chunk with offset
3026          * chunk_offset, automatic removal of the block group can kick in,
3027          * resulting in a failure when calling btrfs_remove_chunk() below.
3028          *
3029          * Make sure to acquire this mutex before doing a tree search (dev
3030          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3031          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3032          * we release the path used to search the chunk/dev tree and before
3033          * the current task acquires this mutex and calls us.
3034          */
3035         lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3036
3037         /* step one, relocate all the extents inside this chunk */
3038         btrfs_scrub_pause(fs_info);
3039         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3040         btrfs_scrub_continue(fs_info);
3041         if (ret)
3042                 return ret;
3043
3044         block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3045         if (!block_group)
3046                 return -ENOENT;
3047         btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3048         btrfs_put_block_group(block_group);
3049
3050         trans = btrfs_start_trans_remove_block_group(root->fs_info,
3051                                                      chunk_offset);
3052         if (IS_ERR(trans)) {
3053                 ret = PTR_ERR(trans);
3054                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3055                 return ret;
3056         }
3057
3058         /*
3059          * step two, delete the device extents and the
3060          * chunk tree entries
3061          */
3062         ret = btrfs_remove_chunk(trans, chunk_offset);
3063         btrfs_end_transaction(trans);
3064         return ret;
3065 }
3066
3067 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3068 {
3069         struct btrfs_root *chunk_root = fs_info->chunk_root;
3070         struct btrfs_path *path;
3071         struct extent_buffer *leaf;
3072         struct btrfs_chunk *chunk;
3073         struct btrfs_key key;
3074         struct btrfs_key found_key;
3075         u64 chunk_type;
3076         bool retried = false;
3077         int failed = 0;
3078         int ret;
3079
3080         path = btrfs_alloc_path();
3081         if (!path)
3082                 return -ENOMEM;
3083
3084 again:
3085         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3086         key.offset = (u64)-1;
3087         key.type = BTRFS_CHUNK_ITEM_KEY;
3088
3089         while (1) {
3090                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3091                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3092                 if (ret < 0) {
3093                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3094                         goto error;
3095                 }
3096                 BUG_ON(ret == 0); /* Corruption */
3097
3098                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3099                                           key.type);
3100                 if (ret)
3101                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3102                 if (ret < 0)
3103                         goto error;
3104                 if (ret > 0)
3105                         break;
3106
3107                 leaf = path->nodes[0];
3108                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3109
3110                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3111                                        struct btrfs_chunk);
3112                 chunk_type = btrfs_chunk_type(leaf, chunk);
3113                 btrfs_release_path(path);
3114
3115                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3116                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3117                         if (ret == -ENOSPC)
3118                                 failed++;
3119                         else
3120                                 BUG_ON(ret);
3121                 }
3122                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3123
3124                 if (found_key.offset == 0)
3125                         break;
3126                 key.offset = found_key.offset - 1;
3127         }
3128         ret = 0;
3129         if (failed && !retried) {
3130                 failed = 0;
3131                 retried = true;
3132                 goto again;
3133         } else if (WARN_ON(failed && retried)) {
3134                 ret = -ENOSPC;
3135         }
3136 error:
3137         btrfs_free_path(path);
3138         return ret;
3139 }
3140
3141 /*
3142  * return 1 : allocate a data chunk successfully,
3143  * return <0: errors during allocating a data chunk,
3144  * return 0 : no need to allocate a data chunk.
3145  */
3146 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3147                                       u64 chunk_offset)
3148 {
3149         struct btrfs_block_group *cache;
3150         u64 bytes_used;
3151         u64 chunk_type;
3152
3153         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3154         ASSERT(cache);
3155         chunk_type = cache->flags;
3156         btrfs_put_block_group(cache);
3157
3158         if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3159                 return 0;
3160
3161         spin_lock(&fs_info->data_sinfo->lock);
3162         bytes_used = fs_info->data_sinfo->bytes_used;
3163         spin_unlock(&fs_info->data_sinfo->lock);
3164
3165         if (!bytes_used) {
3166                 struct btrfs_trans_handle *trans;
3167                 int ret;
3168
3169                 trans = btrfs_join_transaction(fs_info->tree_root);
3170                 if (IS_ERR(trans))
3171                         return PTR_ERR(trans);
3172
3173                 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3174                 btrfs_end_transaction(trans);
3175                 if (ret < 0)
3176                         return ret;
3177                 return 1;
3178         }
3179
3180         return 0;
3181 }
3182
3183 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3184                                struct btrfs_balance_control *bctl)
3185 {
3186         struct btrfs_root *root = fs_info->tree_root;
3187         struct btrfs_trans_handle *trans;
3188         struct btrfs_balance_item *item;
3189         struct btrfs_disk_balance_args disk_bargs;
3190         struct btrfs_path *path;
3191         struct extent_buffer *leaf;
3192         struct btrfs_key key;
3193         int ret, err;
3194
3195         path = btrfs_alloc_path();
3196         if (!path)
3197                 return -ENOMEM;
3198
3199         trans = btrfs_start_transaction(root, 0);
3200         if (IS_ERR(trans)) {
3201                 btrfs_free_path(path);
3202                 return PTR_ERR(trans);
3203         }
3204
3205         key.objectid = BTRFS_BALANCE_OBJECTID;
3206         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3207         key.offset = 0;
3208
3209         ret = btrfs_insert_empty_item(trans, root, path, &key,
3210                                       sizeof(*item));
3211         if (ret)
3212                 goto out;
3213
3214         leaf = path->nodes[0];
3215         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3216
3217         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3218
3219         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3220         btrfs_set_balance_data(leaf, item, &disk_bargs);
3221         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3222         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3223         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3224         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3225
3226         btrfs_set_balance_flags(leaf, item, bctl->flags);
3227
3228         btrfs_mark_buffer_dirty(leaf);
3229 out:
3230         btrfs_free_path(path);
3231         err = btrfs_commit_transaction(trans);
3232         if (err && !ret)
3233                 ret = err;
3234         return ret;
3235 }
3236
3237 static int del_balance_item(struct btrfs_fs_info *fs_info)
3238 {
3239         struct btrfs_root *root = fs_info->tree_root;
3240         struct btrfs_trans_handle *trans;
3241         struct btrfs_path *path;
3242         struct btrfs_key key;
3243         int ret, err;
3244
3245         path = btrfs_alloc_path();
3246         if (!path)
3247                 return -ENOMEM;
3248
3249         trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3250         if (IS_ERR(trans)) {
3251                 btrfs_free_path(path);
3252                 return PTR_ERR(trans);
3253         }
3254
3255         key.objectid = BTRFS_BALANCE_OBJECTID;
3256         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3257         key.offset = 0;
3258
3259         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3260         if (ret < 0)
3261                 goto out;
3262         if (ret > 0) {
3263                 ret = -ENOENT;
3264                 goto out;
3265         }
3266
3267         ret = btrfs_del_item(trans, root, path);
3268 out:
3269         btrfs_free_path(path);
3270         err = btrfs_commit_transaction(trans);
3271         if (err && !ret)
3272                 ret = err;
3273         return ret;
3274 }
3275
3276 /*
3277  * This is a heuristic used to reduce the number of chunks balanced on
3278  * resume after balance was interrupted.
3279  */
3280 static void update_balance_args(struct btrfs_balance_control *bctl)
3281 {
3282         /*
3283          * Turn on soft mode for chunk types that were being converted.
3284          */
3285         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3286                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3287         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3288                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3289         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3290                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3291
3292         /*
3293          * Turn on usage filter if is not already used.  The idea is
3294          * that chunks that we have already balanced should be
3295          * reasonably full.  Don't do it for chunks that are being
3296          * converted - that will keep us from relocating unconverted
3297          * (albeit full) chunks.
3298          */
3299         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3300             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3301             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3302                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3303                 bctl->data.usage = 90;
3304         }
3305         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3306             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3307             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3308                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3309                 bctl->sys.usage = 90;
3310         }
3311         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3312             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3313             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3314                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3315                 bctl->meta.usage = 90;
3316         }
3317 }
3318
3319 /*
3320  * Clear the balance status in fs_info and delete the balance item from disk.
3321  */
3322 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3323 {
3324         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3325         int ret;
3326
3327         BUG_ON(!fs_info->balance_ctl);
3328
3329         spin_lock(&fs_info->balance_lock);
3330         fs_info->balance_ctl = NULL;
3331         spin_unlock(&fs_info->balance_lock);
3332
3333         kfree(bctl);
3334         ret = del_balance_item(fs_info);
3335         if (ret)
3336                 btrfs_handle_fs_error(fs_info, ret, NULL);
3337 }
3338
3339 /*
3340  * Balance filters.  Return 1 if chunk should be filtered out
3341  * (should not be balanced).
3342  */
3343 static int chunk_profiles_filter(u64 chunk_type,
3344                                  struct btrfs_balance_args *bargs)
3345 {
3346         chunk_type = chunk_to_extended(chunk_type) &
3347                                 BTRFS_EXTENDED_PROFILE_MASK;
3348
3349         if (bargs->profiles & chunk_type)
3350                 return 0;
3351
3352         return 1;
3353 }
3354
3355 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3356                               struct btrfs_balance_args *bargs)
3357 {
3358         struct btrfs_block_group *cache;
3359         u64 chunk_used;
3360         u64 user_thresh_min;
3361         u64 user_thresh_max;
3362         int ret = 1;
3363
3364         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3365         chunk_used = cache->used;
3366
3367         if (bargs->usage_min == 0)
3368                 user_thresh_min = 0;
3369         else
3370                 user_thresh_min = div_factor_fine(cache->length,
3371                                                   bargs->usage_min);
3372
3373         if (bargs->usage_max == 0)
3374                 user_thresh_max = 1;
3375         else if (bargs->usage_max > 100)
3376                 user_thresh_max = cache->length;
3377         else
3378                 user_thresh_max = div_factor_fine(cache->length,
3379                                                   bargs->usage_max);
3380
3381         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3382                 ret = 0;
3383
3384         btrfs_put_block_group(cache);
3385         return ret;
3386 }
3387
3388 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3389                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3390 {
3391         struct btrfs_block_group *cache;
3392         u64 chunk_used, user_thresh;
3393         int ret = 1;
3394
3395         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3396         chunk_used = cache->used;
3397
3398         if (bargs->usage_min == 0)
3399                 user_thresh = 1;
3400         else if (bargs->usage > 100)
3401                 user_thresh = cache->length;
3402         else
3403                 user_thresh = div_factor_fine(cache->length, bargs->usage);
3404
3405         if (chunk_used < user_thresh)
3406                 ret = 0;
3407
3408         btrfs_put_block_group(cache);
3409         return ret;
3410 }
3411
3412 static int chunk_devid_filter(struct extent_buffer *leaf,
3413                               struct btrfs_chunk *chunk,
3414                               struct btrfs_balance_args *bargs)
3415 {
3416         struct btrfs_stripe *stripe;
3417         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3418         int i;
3419
3420         for (i = 0; i < num_stripes; i++) {
3421                 stripe = btrfs_stripe_nr(chunk, i);
3422                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3423                         return 0;
3424         }
3425
3426         return 1;
3427 }
3428
3429 static u64 calc_data_stripes(u64 type, int num_stripes)
3430 {
3431         const int index = btrfs_bg_flags_to_raid_index(type);
3432         const int ncopies = btrfs_raid_array[index].ncopies;
3433         const int nparity = btrfs_raid_array[index].nparity;
3434
3435         if (nparity)
3436                 return num_stripes - nparity;
3437         else
3438                 return num_stripes / ncopies;
3439 }
3440
3441 /* [pstart, pend) */
3442 static int chunk_drange_filter(struct extent_buffer *leaf,
3443                                struct btrfs_chunk *chunk,
3444                                struct btrfs_balance_args *bargs)
3445 {
3446         struct btrfs_stripe *stripe;
3447         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3448         u64 stripe_offset;
3449         u64 stripe_length;
3450         u64 type;
3451         int factor;
3452         int i;
3453
3454         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3455                 return 0;
3456
3457         type = btrfs_chunk_type(leaf, chunk);
3458         factor = calc_data_stripes(type, num_stripes);
3459
3460         for (i = 0; i < num_stripes; i++) {
3461                 stripe = btrfs_stripe_nr(chunk, i);
3462                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3463                         continue;
3464
3465                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3466                 stripe_length = btrfs_chunk_length(leaf, chunk);
3467                 stripe_length = div_u64(stripe_length, factor);
3468
3469                 if (stripe_offset < bargs->pend &&
3470                     stripe_offset + stripe_length > bargs->pstart)
3471                         return 0;
3472         }
3473
3474         return 1;
3475 }
3476
3477 /* [vstart, vend) */
3478 static int chunk_vrange_filter(struct extent_buffer *leaf,
3479                                struct btrfs_chunk *chunk,
3480                                u64 chunk_offset,
3481                                struct btrfs_balance_args *bargs)
3482 {
3483         if (chunk_offset < bargs->vend &&
3484             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3485                 /* at least part of the chunk is inside this vrange */
3486                 return 0;
3487
3488         return 1;
3489 }
3490
3491 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3492                                struct btrfs_chunk *chunk,
3493                                struct btrfs_balance_args *bargs)
3494 {
3495         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3496
3497         if (bargs->stripes_min <= num_stripes
3498                         && num_stripes <= bargs->stripes_max)
3499                 return 0;
3500
3501         return 1;
3502 }
3503
3504 static int chunk_soft_convert_filter(u64 chunk_type,
3505                                      struct btrfs_balance_args *bargs)
3506 {
3507         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3508                 return 0;
3509
3510         chunk_type = chunk_to_extended(chunk_type) &
3511                                 BTRFS_EXTENDED_PROFILE_MASK;
3512
3513         if (bargs->target == chunk_type)
3514                 return 1;
3515
3516         return 0;
3517 }
3518
3519 static int should_balance_chunk(struct extent_buffer *leaf,
3520                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3521 {
3522         struct btrfs_fs_info *fs_info = leaf->fs_info;
3523         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3524         struct btrfs_balance_args *bargs = NULL;
3525         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3526
3527         /* type filter */
3528         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3529               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3530                 return 0;
3531         }
3532
3533         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3534                 bargs = &bctl->data;
3535         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3536                 bargs = &bctl->sys;
3537         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3538                 bargs = &bctl->meta;
3539
3540         /* profiles filter */
3541         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3542             chunk_profiles_filter(chunk_type, bargs)) {
3543                 return 0;
3544         }
3545
3546         /* usage filter */
3547         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3548             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3549                 return 0;
3550         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3551             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3552                 return 0;
3553         }
3554
3555         /* devid filter */
3556         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3557             chunk_devid_filter(leaf, chunk, bargs)) {
3558                 return 0;
3559         }
3560
3561         /* drange filter, makes sense only with devid filter */
3562         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3563             chunk_drange_filter(leaf, chunk, bargs)) {
3564                 return 0;
3565         }
3566
3567         /* vrange filter */
3568         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3569             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3570                 return 0;
3571         }
3572
3573         /* stripes filter */
3574         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3575             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3576                 return 0;
3577         }
3578
3579         /* soft profile changing mode */
3580         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3581             chunk_soft_convert_filter(chunk_type, bargs)) {
3582                 return 0;
3583         }
3584
3585         /*
3586          * limited by count, must be the last filter
3587          */
3588         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3589                 if (bargs->limit == 0)
3590                         return 0;
3591                 else
3592                         bargs->limit--;
3593         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3594                 /*
3595                  * Same logic as the 'limit' filter; the minimum cannot be
3596                  * determined here because we do not have the global information
3597                  * about the count of all chunks that satisfy the filters.
3598                  */
3599                 if (bargs->limit_max == 0)
3600                         return 0;
3601                 else
3602                         bargs->limit_max--;
3603         }
3604
3605         return 1;
3606 }
3607
3608 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3609 {
3610         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3611         struct btrfs_root *chunk_root = fs_info->chunk_root;
3612         u64 chunk_type;
3613         struct btrfs_chunk *chunk;
3614         struct btrfs_path *path = NULL;
3615         struct btrfs_key key;
3616         struct btrfs_key found_key;
3617         struct extent_buffer *leaf;
3618         int slot;
3619         int ret;
3620         int enospc_errors = 0;
3621         bool counting = true;
3622         /* The single value limit and min/max limits use the same bytes in the */
3623         u64 limit_data = bctl->data.limit;
3624         u64 limit_meta = bctl->meta.limit;
3625         u64 limit_sys = bctl->sys.limit;
3626         u32 count_data = 0;
3627         u32 count_meta = 0;
3628         u32 count_sys = 0;
3629         int chunk_reserved = 0;
3630
3631         path = btrfs_alloc_path();
3632         if (!path) {
3633                 ret = -ENOMEM;
3634                 goto error;
3635         }
3636
3637         /* zero out stat counters */
3638         spin_lock(&fs_info->balance_lock);
3639         memset(&bctl->stat, 0, sizeof(bctl->stat));
3640         spin_unlock(&fs_info->balance_lock);
3641 again:
3642         if (!counting) {
3643                 /*
3644                  * The single value limit and min/max limits use the same bytes
3645                  * in the
3646                  */
3647                 bctl->data.limit = limit_data;
3648                 bctl->meta.limit = limit_meta;
3649                 bctl->sys.limit = limit_sys;
3650         }
3651         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3652         key.offset = (u64)-1;
3653         key.type = BTRFS_CHUNK_ITEM_KEY;
3654
3655         while (1) {
3656                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3657                     atomic_read(&fs_info->balance_cancel_req)) {
3658                         ret = -ECANCELED;
3659                         goto error;
3660                 }
3661
3662                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3663                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3664                 if (ret < 0) {
3665                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3666                         goto error;
3667                 }
3668
3669                 /*
3670                  * this shouldn't happen, it means the last relocate
3671                  * failed
3672                  */
3673                 if (ret == 0)
3674                         BUG(); /* FIXME break ? */
3675
3676                 ret = btrfs_previous_item(chunk_root, path, 0,
3677                                           BTRFS_CHUNK_ITEM_KEY);
3678                 if (ret) {
3679                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3680                         ret = 0;
3681                         break;
3682                 }
3683
3684                 leaf = path->nodes[0];
3685                 slot = path->slots[0];
3686                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3687
3688                 if (found_key.objectid != key.objectid) {
3689                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3690                         break;
3691                 }
3692
3693                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3694                 chunk_type = btrfs_chunk_type(leaf, chunk);
3695
3696                 if (!counting) {
3697                         spin_lock(&fs_info->balance_lock);
3698                         bctl->stat.considered++;
3699                         spin_unlock(&fs_info->balance_lock);
3700                 }
3701
3702                 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3703
3704                 btrfs_release_path(path);
3705                 if (!ret) {
3706                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3707                         goto loop;
3708                 }
3709
3710                 if (counting) {
3711                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3712                         spin_lock(&fs_info->balance_lock);
3713                         bctl->stat.expected++;
3714                         spin_unlock(&fs_info->balance_lock);
3715
3716                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3717                                 count_data++;
3718                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3719                                 count_sys++;
3720                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3721                                 count_meta++;
3722
3723                         goto loop;
3724                 }
3725
3726                 /*
3727                  * Apply limit_min filter, no need to check if the LIMITS
3728                  * filter is used, limit_min is 0 by default
3729                  */
3730                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3731                                         count_data < bctl->data.limit_min)
3732                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3733                                         count_meta < bctl->meta.limit_min)
3734                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3735                                         count_sys < bctl->sys.limit_min)) {
3736                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3737                         goto loop;
3738                 }
3739
3740                 if (!chunk_reserved) {
3741                         /*
3742                          * We may be relocating the only data chunk we have,
3743                          * which could potentially end up with losing data's
3744                          * raid profile, so lets allocate an empty one in
3745                          * advance.
3746                          */
3747                         ret = btrfs_may_alloc_data_chunk(fs_info,
3748                                                          found_key.offset);
3749                         if (ret < 0) {
3750                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3751                                 goto error;
3752                         } else if (ret == 1) {
3753                                 chunk_reserved = 1;
3754                         }
3755                 }
3756
3757                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3758                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3759                 if (ret == -ENOSPC) {
3760                         enospc_errors++;
3761                 } else if (ret == -ETXTBSY) {
3762                         btrfs_info(fs_info,
3763            "skipping relocation of block group %llu due to active swapfile",
3764                                    found_key.offset);
3765                         ret = 0;
3766                 } else if (ret) {
3767                         goto error;
3768                 } else {
3769                         spin_lock(&fs_info->balance_lock);
3770                         bctl->stat.completed++;
3771                         spin_unlock(&fs_info->balance_lock);
3772                 }
3773 loop:
3774                 if (found_key.offset == 0)
3775                         break;
3776                 key.offset = found_key.offset - 1;
3777         }
3778
3779         if (counting) {
3780                 btrfs_release_path(path);
3781                 counting = false;
3782                 goto again;
3783         }
3784 error:
3785         btrfs_free_path(path);
3786         if (enospc_errors) {
3787                 btrfs_info(fs_info, "%d enospc errors during balance",
3788                            enospc_errors);
3789                 if (!ret)
3790                         ret = -ENOSPC;
3791         }
3792
3793         return ret;
3794 }
3795
3796 /**
3797  * alloc_profile_is_valid - see if a given profile is valid and reduced
3798  * @flags: profile to validate
3799  * @extended: if true @flags is treated as an extended profile
3800  */
3801 static int alloc_profile_is_valid(u64 flags, int extended)
3802 {
3803         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3804                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3805
3806         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3807
3808         /* 1) check that all other bits are zeroed */
3809         if (flags & ~mask)
3810                 return 0;
3811
3812         /* 2) see if profile is reduced */
3813         if (flags == 0)
3814                 return !extended; /* "0" is valid for usual profiles */
3815
3816         return has_single_bit_set(flags);
3817 }
3818
3819 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3820 {
3821         /* cancel requested || normal exit path */
3822         return atomic_read(&fs_info->balance_cancel_req) ||
3823                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3824                  atomic_read(&fs_info->balance_cancel_req) == 0);
3825 }
3826
3827 /*
3828  * Validate target profile against allowed profiles and return true if it's OK.
3829  * Otherwise print the error message and return false.
3830  */
3831 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3832                 const struct btrfs_balance_args *bargs,
3833                 u64 allowed, const char *type)
3834 {
3835         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3836                 return true;
3837
3838         /* Profile is valid and does not have bits outside of the allowed set */
3839         if (alloc_profile_is_valid(bargs->target, 1) &&
3840             (bargs->target & ~allowed) == 0)
3841                 return true;
3842
3843         btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3844                         type, btrfs_bg_type_to_raid_name(bargs->target));
3845         return false;
3846 }
3847
3848 /*
3849  * Fill @buf with textual description of balance filter flags @bargs, up to
3850  * @size_buf including the terminating null. The output may be trimmed if it
3851  * does not fit into the provided buffer.
3852  */
3853 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3854                                  u32 size_buf)
3855 {
3856         int ret;
3857         u32 size_bp = size_buf;
3858         char *bp = buf;
3859         u64 flags = bargs->flags;
3860         char tmp_buf[128] = {'\0'};
3861
3862         if (!flags)
3863                 return;
3864
3865 #define CHECK_APPEND_NOARG(a)                                           \
3866         do {                                                            \
3867                 ret = snprintf(bp, size_bp, (a));                       \
3868                 if (ret < 0 || ret >= size_bp)                          \
3869                         goto out_overflow;                              \
3870                 size_bp -= ret;                                         \
3871                 bp += ret;                                              \
3872         } while (0)
3873
3874 #define CHECK_APPEND_1ARG(a, v1)                                        \
3875         do {                                                            \
3876                 ret = snprintf(bp, size_bp, (a), (v1));                 \
3877                 if (ret < 0 || ret >= size_bp)                          \
3878                         goto out_overflow;                              \
3879                 size_bp -= ret;                                         \
3880                 bp += ret;                                              \
3881         } while (0)
3882
3883 #define CHECK_APPEND_2ARG(a, v1, v2)                                    \
3884         do {                                                            \
3885                 ret = snprintf(bp, size_bp, (a), (v1), (v2));           \
3886                 if (ret < 0 || ret >= size_bp)                          \
3887                         goto out_overflow;                              \
3888                 size_bp -= ret;                                         \
3889                 bp += ret;                                              \
3890         } while (0)
3891
3892         if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3893                 CHECK_APPEND_1ARG("convert=%s,",
3894                                   btrfs_bg_type_to_raid_name(bargs->target));
3895
3896         if (flags & BTRFS_BALANCE_ARGS_SOFT)
3897                 CHECK_APPEND_NOARG("soft,");
3898
3899         if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3900                 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3901                                             sizeof(tmp_buf));
3902                 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3903         }
3904
3905         if (flags & BTRFS_BALANCE_ARGS_USAGE)
3906                 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3907
3908         if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3909                 CHECK_APPEND_2ARG("usage=%u..%u,",
3910                                   bargs->usage_min, bargs->usage_max);
3911
3912         if (flags & BTRFS_BALANCE_ARGS_DEVID)
3913                 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3914
3915         if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3916                 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3917                                   bargs->pstart, bargs->pend);
3918
3919         if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3920                 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3921                                   bargs->vstart, bargs->vend);
3922
3923         if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3924                 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3925
3926         if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3927                 CHECK_APPEND_2ARG("limit=%u..%u,",
3928                                 bargs->limit_min, bargs->limit_max);
3929
3930         if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3931                 CHECK_APPEND_2ARG("stripes=%u..%u,",
3932                                   bargs->stripes_min, bargs->stripes_max);
3933
3934 #undef CHECK_APPEND_2ARG
3935 #undef CHECK_APPEND_1ARG
3936 #undef CHECK_APPEND_NOARG
3937
3938 out_overflow:
3939
3940         if (size_bp < size_buf)
3941                 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3942         else
3943                 buf[0] = '\0';
3944 }
3945
3946 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3947 {
3948         u32 size_buf = 1024;
3949         char tmp_buf[192] = {'\0'};
3950         char *buf;
3951         char *bp;
3952         u32 size_bp = size_buf;
3953         int ret;
3954         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3955
3956         buf = kzalloc(size_buf, GFP_KERNEL);
3957         if (!buf)
3958                 return;
3959
3960         bp = buf;
3961
3962 #define CHECK_APPEND_1ARG(a, v1)                                        \
3963         do {                                                            \
3964                 ret = snprintf(bp, size_bp, (a), (v1));                 \
3965                 if (ret < 0 || ret >= size_bp)                          \
3966                         goto out_overflow;                              \
3967                 size_bp -= ret;                                         \
3968                 bp += ret;                                              \
3969         } while (0)
3970
3971         if (bctl->flags & BTRFS_BALANCE_FORCE)
3972                 CHECK_APPEND_1ARG("%s", "-f ");
3973
3974         if (bctl->flags & BTRFS_BALANCE_DATA) {
3975                 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
3976                 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
3977         }
3978
3979         if (bctl->flags & BTRFS_BALANCE_METADATA) {
3980                 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
3981                 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
3982         }
3983
3984         if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
3985                 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
3986                 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
3987         }
3988
3989 #undef CHECK_APPEND_1ARG
3990
3991 out_overflow:
3992
3993         if (size_bp < size_buf)
3994                 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
3995         btrfs_info(fs_info, "balance: %s %s",
3996                    (bctl->flags & BTRFS_BALANCE_RESUME) ?
3997                    "resume" : "start", buf);
3998
3999         kfree(buf);
4000 }
4001
4002 /*
4003  * Should be called with balance mutexe held
4004  */
4005 int btrfs_balance(struct btrfs_fs_info *fs_info,
4006                   struct btrfs_balance_control *bctl,
4007                   struct btrfs_ioctl_balance_args *bargs)
4008 {
4009         u64 meta_target, data_target;
4010         u64 allowed;
4011         int mixed = 0;
4012         int ret;
4013         u64 num_devices;
4014         unsigned seq;
4015         bool reducing_redundancy;
4016         int i;
4017
4018         if (btrfs_fs_closing(fs_info) ||
4019             atomic_read(&fs_info->balance_pause_req) ||
4020             btrfs_should_cancel_balance(fs_info)) {
4021                 ret = -EINVAL;
4022                 goto out;
4023         }
4024
4025         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4026         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4027                 mixed = 1;
4028
4029         /*
4030          * In case of mixed groups both data and meta should be picked,
4031          * and identical options should be given for both of them.
4032          */
4033         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4034         if (mixed && (bctl->flags & allowed)) {
4035                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4036                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4037                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4038                         btrfs_err(fs_info,
4039           "balance: mixed groups data and metadata options must be the same");
4040                         ret = -EINVAL;
4041                         goto out;
4042                 }
4043         }
4044
4045         /*
4046          * rw_devices will not change at the moment, device add/delete/replace
4047          * are excluded by EXCL_OP
4048          */
4049         num_devices = fs_info->fs_devices->rw_devices;
4050
4051         /*
4052          * SINGLE profile on-disk has no profile bit, but in-memory we have a
4053          * special bit for it, to make it easier to distinguish.  Thus we need
4054          * to set it manually, or balance would refuse the profile.
4055          */
4056         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4057         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4058                 if (num_devices >= btrfs_raid_array[i].devs_min)
4059                         allowed |= btrfs_raid_array[i].bg_flag;
4060
4061         if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4062             !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4063             !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4064                 ret = -EINVAL;
4065                 goto out;
4066         }
4067
4068         /*
4069          * Allow to reduce metadata or system integrity only if force set for
4070          * profiles with redundancy (copies, parity)
4071          */
4072         allowed = 0;
4073         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4074                 if (btrfs_raid_array[i].ncopies >= 2 ||
4075                     btrfs_raid_array[i].tolerated_failures >= 1)
4076                         allowed |= btrfs_raid_array[i].bg_flag;
4077         }
4078         do {
4079                 seq = read_seqbegin(&fs_info->profiles_lock);
4080
4081                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4082                      (fs_info->avail_system_alloc_bits & allowed) &&
4083                      !(bctl->sys.target & allowed)) ||
4084                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4085                      (fs_info->avail_metadata_alloc_bits & allowed) &&
4086                      !(bctl->meta.target & allowed)))
4087                         reducing_redundancy = true;
4088                 else
4089                         reducing_redundancy = false;
4090
4091                 /* if we're not converting, the target field is uninitialized */
4092                 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4093                         bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4094                 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4095                         bctl->data.target : fs_info->avail_data_alloc_bits;
4096         } while (read_seqretry(&fs_info->profiles_lock, seq));
4097
4098         if (reducing_redundancy) {
4099                 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4100                         btrfs_info(fs_info,
4101                            "balance: force reducing metadata redundancy");
4102                 } else {
4103                         btrfs_err(fs_info,
4104         "balance: reduces metadata redundancy, use --force if you want this");
4105                         ret = -EINVAL;
4106                         goto out;
4107                 }
4108         }
4109
4110         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4111                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4112                 btrfs_warn(fs_info,
4113         "balance: metadata profile %s has lower redundancy than data profile %s",
4114                                 btrfs_bg_type_to_raid_name(meta_target),
4115                                 btrfs_bg_type_to_raid_name(data_target));
4116         }
4117
4118         if (fs_info->send_in_progress) {
4119                 btrfs_warn_rl(fs_info,
4120 "cannot run balance while send operations are in progress (%d in progress)",
4121                               fs_info->send_in_progress);
4122                 ret = -EAGAIN;
4123                 goto out;
4124         }
4125
4126         ret = insert_balance_item(fs_info, bctl);
4127         if (ret && ret != -EEXIST)
4128                 goto out;
4129
4130         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4131                 BUG_ON(ret == -EEXIST);
4132                 BUG_ON(fs_info->balance_ctl);
4133                 spin_lock(&fs_info->balance_lock);
4134                 fs_info->balance_ctl = bctl;
4135                 spin_unlock(&fs_info->balance_lock);
4136         } else {
4137                 BUG_ON(ret != -EEXIST);
4138                 spin_lock(&fs_info->balance_lock);
4139                 update_balance_args(bctl);
4140                 spin_unlock(&fs_info->balance_lock);
4141         }
4142
4143         ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4144         set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4145         describe_balance_start_or_resume(fs_info);
4146         mutex_unlock(&fs_info->balance_mutex);
4147
4148         ret = __btrfs_balance(fs_info);
4149
4150         mutex_lock(&fs_info->balance_mutex);
4151         if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4152                 btrfs_info(fs_info, "balance: paused");
4153         /*
4154          * Balance can be canceled by:
4155          *
4156          * - Regular cancel request
4157          *   Then ret == -ECANCELED and balance_cancel_req > 0
4158          *
4159          * - Fatal signal to "btrfs" process
4160          *   Either the signal caught by wait_reserve_ticket() and callers
4161          *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4162          *   got -ECANCELED.
4163          *   Either way, in this case balance_cancel_req = 0, and
4164          *   ret == -EINTR or ret == -ECANCELED.
4165          *
4166          * So here we only check the return value to catch canceled balance.
4167          */
4168         else if (ret == -ECANCELED || ret == -EINTR)
4169                 btrfs_info(fs_info, "balance: canceled");
4170         else
4171                 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4172
4173         clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4174
4175         if (bargs) {
4176                 memset(bargs, 0, sizeof(*bargs));
4177                 btrfs_update_ioctl_balance_args(fs_info, bargs);
4178         }
4179
4180         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4181             balance_need_close(fs_info)) {
4182                 reset_balance_state(fs_info);
4183                 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4184         }
4185
4186         wake_up(&fs_info->balance_wait_q);
4187
4188         return ret;
4189 out:
4190         if (bctl->flags & BTRFS_BALANCE_RESUME)
4191                 reset_balance_state(fs_info);
4192         else
4193                 kfree(bctl);
4194         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4195
4196         return ret;
4197 }
4198
4199 static int balance_kthread(void *data)
4200 {
4201         struct btrfs_fs_info *fs_info = data;
4202         int ret = 0;
4203
4204         mutex_lock(&fs_info->balance_mutex);
4205         if (fs_info->balance_ctl)
4206                 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4207         mutex_unlock(&fs_info->balance_mutex);
4208
4209         return ret;
4210 }
4211
4212 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4213 {
4214         struct task_struct *tsk;
4215
4216         mutex_lock(&fs_info->balance_mutex);
4217         if (!fs_info->balance_ctl) {
4218                 mutex_unlock(&fs_info->balance_mutex);
4219                 return 0;
4220         }
4221         mutex_unlock(&fs_info->balance_mutex);
4222
4223         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4224                 btrfs_info(fs_info, "balance: resume skipped");
4225                 return 0;
4226         }
4227
4228         /*
4229          * A ro->rw remount sequence should continue with the paused balance
4230          * regardless of who pauses it, system or the user as of now, so set
4231          * the resume flag.
4232          */
4233         spin_lock(&fs_info->balance_lock);
4234         fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4235         spin_unlock(&fs_info->balance_lock);
4236
4237         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4238         return PTR_ERR_OR_ZERO(tsk);
4239 }
4240
4241 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4242 {
4243         struct btrfs_balance_control *bctl;
4244         struct btrfs_balance_item *item;
4245         struct btrfs_disk_balance_args disk_bargs;
4246         struct btrfs_path *path;
4247         struct extent_buffer *leaf;
4248         struct btrfs_key key;
4249         int ret;
4250
4251         path = btrfs_alloc_path();
4252         if (!path)
4253                 return -ENOMEM;
4254
4255         key.objectid = BTRFS_BALANCE_OBJECTID;
4256         key.type = BTRFS_TEMPORARY_ITEM_KEY;
4257         key.offset = 0;
4258
4259         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4260         if (ret < 0)
4261                 goto out;
4262         if (ret > 0) { /* ret = -ENOENT; */
4263                 ret = 0;
4264                 goto out;
4265         }
4266
4267         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4268         if (!bctl) {
4269                 ret = -ENOMEM;
4270                 goto out;
4271         }
4272
4273         leaf = path->nodes[0];
4274         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4275
4276         bctl->flags = btrfs_balance_flags(leaf, item);
4277         bctl->flags |= BTRFS_BALANCE_RESUME;
4278
4279         btrfs_balance_data(leaf, item, &disk_bargs);
4280         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4281         btrfs_balance_meta(leaf, item, &disk_bargs);
4282         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4283         btrfs_balance_sys(leaf, item, &disk_bargs);
4284         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4285
4286         /*
4287          * This should never happen, as the paused balance state is recovered
4288          * during mount without any chance of other exclusive ops to collide.
4289          *
4290          * This gives the exclusive op status to balance and keeps in paused
4291          * state until user intervention (cancel or umount). If the ownership
4292          * cannot be assigned, show a message but do not fail. The balance
4293          * is in a paused state and must have fs_info::balance_ctl properly
4294          * set up.
4295          */
4296         if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4297                 btrfs_warn(fs_info,
4298         "balance: cannot set exclusive op status, resume manually");
4299
4300         mutex_lock(&fs_info->balance_mutex);
4301         BUG_ON(fs_info->balance_ctl);
4302         spin_lock(&fs_info->balance_lock);
4303         fs_info->balance_ctl = bctl;
4304         spin_unlock(&fs_info->balance_lock);
4305         mutex_unlock(&fs_info->balance_mutex);
4306 out:
4307         btrfs_free_path(path);
4308         return ret;
4309 }
4310
4311 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4312 {
4313         int ret = 0;
4314
4315         mutex_lock(&fs_info->balance_mutex);
4316         if (!fs_info->balance_ctl) {
4317                 mutex_unlock(&fs_info->balance_mutex);
4318                 return -ENOTCONN;
4319         }
4320
4321         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4322                 atomic_inc(&fs_info->balance_pause_req);
4323                 mutex_unlock(&fs_info->balance_mutex);
4324
4325                 wait_event(fs_info->balance_wait_q,
4326                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4327
4328                 mutex_lock(&fs_info->balance_mutex);
4329                 /* we are good with balance_ctl ripped off from under us */
4330                 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4331                 atomic_dec(&fs_info->balance_pause_req);
4332         } else {
4333                 ret = -ENOTCONN;
4334         }
4335
4336         mutex_unlock(&fs_info->balance_mutex);
4337         return ret;
4338 }
4339
4340 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4341 {
4342         mutex_lock(&fs_info->balance_mutex);
4343         if (!fs_info->balance_ctl) {
4344                 mutex_unlock(&fs_info->balance_mutex);
4345                 return -ENOTCONN;
4346         }
4347
4348         /*
4349          * A paused balance with the item stored on disk can be resumed at
4350          * mount time if the mount is read-write. Otherwise it's still paused
4351          * and we must not allow cancelling as it deletes the item.
4352          */
4353         if (sb_rdonly(fs_info->sb)) {
4354                 mutex_unlock(&fs_info->balance_mutex);
4355                 return -EROFS;
4356         }
4357
4358         atomic_inc(&fs_info->balance_cancel_req);
4359         /*
4360          * if we are running just wait and return, balance item is
4361          * deleted in btrfs_balance in this case
4362          */
4363         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4364                 mutex_unlock(&fs_info->balance_mutex);
4365                 wait_event(fs_info->balance_wait_q,
4366                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4367                 mutex_lock(&fs_info->balance_mutex);
4368         } else {
4369                 mutex_unlock(&fs_info->balance_mutex);
4370                 /*
4371                  * Lock released to allow other waiters to continue, we'll
4372                  * reexamine the status again.
4373                  */
4374                 mutex_lock(&fs_info->balance_mutex);
4375
4376                 if (fs_info->balance_ctl) {
4377                         reset_balance_state(fs_info);
4378                         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4379                         btrfs_info(fs_info, "balance: canceled");
4380                 }
4381         }
4382
4383         BUG_ON(fs_info->balance_ctl ||
4384                 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4385         atomic_dec(&fs_info->balance_cancel_req);
4386         mutex_unlock(&fs_info->balance_mutex);
4387         return 0;
4388 }
4389
4390 int btrfs_uuid_scan_kthread(void *data)
4391 {
4392         struct btrfs_fs_info *fs_info = data;
4393         struct btrfs_root *root = fs_info->tree_root;
4394         struct btrfs_key key;
4395         struct btrfs_path *path = NULL;
4396         int ret = 0;
4397         struct extent_buffer *eb;
4398         int slot;
4399         struct btrfs_root_item root_item;
4400         u32 item_size;
4401         struct btrfs_trans_handle *trans = NULL;
4402         bool closing = false;
4403
4404         path = btrfs_alloc_path();
4405         if (!path) {
4406                 ret = -ENOMEM;
4407                 goto out;
4408         }
4409
4410         key.objectid = 0;
4411         key.type = BTRFS_ROOT_ITEM_KEY;
4412         key.offset = 0;
4413
4414         while (1) {
4415                 if (btrfs_fs_closing(fs_info)) {
4416                         closing = true;
4417                         break;
4418                 }
4419                 ret = btrfs_search_forward(root, &key, path,
4420                                 BTRFS_OLDEST_GENERATION);
4421                 if (ret) {
4422                         if (ret > 0)
4423                                 ret = 0;
4424                         break;
4425                 }
4426
4427                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4428                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4429                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4430                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4431                         goto skip;
4432
4433                 eb = path->nodes[0];
4434                 slot = path->slots[0];
4435                 item_size = btrfs_item_size_nr(eb, slot);
4436                 if (item_size < sizeof(root_item))
4437                         goto skip;
4438
4439                 read_extent_buffer(eb, &root_item,
4440                                    btrfs_item_ptr_offset(eb, slot),
4441                                    (int)sizeof(root_item));
4442                 if (btrfs_root_refs(&root_item) == 0)
4443                         goto skip;
4444
4445                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4446                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4447                         if (trans)
4448                                 goto update_tree;
4449
4450                         btrfs_release_path(path);
4451                         /*
4452                          * 1 - subvol uuid item
4453                          * 1 - received_subvol uuid item
4454                          */
4455                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4456                         if (IS_ERR(trans)) {
4457                                 ret = PTR_ERR(trans);
4458                                 break;
4459                         }
4460                         continue;
4461                 } else {
4462                         goto skip;
4463                 }
4464 update_tree:
4465                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4466                         ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4467                                                   BTRFS_UUID_KEY_SUBVOL,
4468                                                   key.objectid);
4469                         if (ret < 0) {
4470                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4471                                         ret);
4472                                 break;
4473                         }
4474                 }
4475
4476                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4477                         ret = btrfs_uuid_tree_add(trans,
4478                                                   root_item.received_uuid,
4479                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4480                                                   key.objectid);
4481                         if (ret < 0) {
4482                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4483                                         ret);
4484                                 break;
4485                         }
4486                 }
4487
4488 skip:
4489                 if (trans) {
4490                         ret = btrfs_end_transaction(trans);
4491                         trans = NULL;
4492                         if (ret)
4493                                 break;
4494                 }
4495
4496                 btrfs_release_path(path);
4497                 if (key.offset < (u64)-1) {
4498                         key.offset++;
4499                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4500                         key.offset = 0;
4501                         key.type = BTRFS_ROOT_ITEM_KEY;
4502                 } else if (key.objectid < (u64)-1) {
4503                         key.offset = 0;
4504                         key.type = BTRFS_ROOT_ITEM_KEY;
4505                         key.objectid++;
4506                 } else {
4507                         break;
4508                 }
4509                 cond_resched();
4510         }
4511
4512 out:
4513         btrfs_free_path(path);
4514         if (trans && !IS_ERR(trans))
4515                 btrfs_end_transaction(trans);
4516         if (ret)
4517                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4518         else if (!closing)
4519                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4520         up(&fs_info->uuid_tree_rescan_sem);
4521         return 0;
4522 }
4523
4524 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4525 {
4526         struct btrfs_trans_handle *trans;
4527         struct btrfs_root *tree_root = fs_info->tree_root;
4528         struct btrfs_root *uuid_root;
4529         struct task_struct *task;
4530         int ret;
4531
4532         /*
4533          * 1 - root node
4534          * 1 - root item
4535          */
4536         trans = btrfs_start_transaction(tree_root, 2);
4537         if (IS_ERR(trans))
4538                 return PTR_ERR(trans);
4539
4540         uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4541         if (IS_ERR(uuid_root)) {
4542                 ret = PTR_ERR(uuid_root);
4543                 btrfs_abort_transaction(trans, ret);
4544                 btrfs_end_transaction(trans);
4545                 return ret;
4546         }
4547
4548         fs_info->uuid_root = uuid_root;
4549
4550         ret = btrfs_commit_transaction(trans);
4551         if (ret)
4552                 return ret;
4553
4554         down(&fs_info->uuid_tree_rescan_sem);
4555         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4556         if (IS_ERR(task)) {
4557                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4558                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4559                 up(&fs_info->uuid_tree_rescan_sem);
4560                 return PTR_ERR(task);
4561         }
4562
4563         return 0;
4564 }
4565
4566 /*
4567  * shrinking a device means finding all of the device extents past
4568  * the new size, and then following the back refs to the chunks.
4569  * The chunk relocation code actually frees the device extent
4570  */
4571 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4572 {
4573         struct btrfs_fs_info *fs_info = device->fs_info;
4574         struct btrfs_root *root = fs_info->dev_root;
4575         struct btrfs_trans_handle *trans;
4576         struct btrfs_dev_extent *dev_extent = NULL;
4577         struct btrfs_path *path;
4578         u64 length;
4579         u64 chunk_offset;
4580         int ret;
4581         int slot;
4582         int failed = 0;
4583         bool retried = false;
4584         struct extent_buffer *l;
4585         struct btrfs_key key;
4586         struct btrfs_super_block *super_copy = fs_info->super_copy;
4587         u64 old_total = btrfs_super_total_bytes(super_copy);
4588         u64 old_size = btrfs_device_get_total_bytes(device);
4589         u64 diff;
4590         u64 start;
4591
4592         new_size = round_down(new_size, fs_info->sectorsize);
4593         start = new_size;
4594         diff = round_down(old_size - new_size, fs_info->sectorsize);
4595
4596         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4597                 return -EINVAL;
4598
4599         path = btrfs_alloc_path();
4600         if (!path)
4601                 return -ENOMEM;
4602
4603         path->reada = READA_BACK;
4604
4605         trans = btrfs_start_transaction(root, 0);
4606         if (IS_ERR(trans)) {
4607                 btrfs_free_path(path);
4608                 return PTR_ERR(trans);
4609         }
4610
4611         mutex_lock(&fs_info->chunk_mutex);
4612
4613         btrfs_device_set_total_bytes(device, new_size);
4614         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4615                 device->fs_devices->total_rw_bytes -= diff;
4616                 atomic64_sub(diff, &fs_info->free_chunk_space);
4617         }
4618
4619         /*
4620          * Once the device's size has been set to the new size, ensure all
4621          * in-memory chunks are synced to disk so that the loop below sees them
4622          * and relocates them accordingly.
4623          */
4624         if (contains_pending_extent(device, &start, diff)) {
4625                 mutex_unlock(&fs_info->chunk_mutex);
4626                 ret = btrfs_commit_transaction(trans);
4627                 if (ret)
4628                         goto done;
4629         } else {
4630                 mutex_unlock(&fs_info->chunk_mutex);
4631                 btrfs_end_transaction(trans);
4632         }
4633
4634 again:
4635         key.objectid = device->devid;
4636         key.offset = (u64)-1;
4637         key.type = BTRFS_DEV_EXTENT_KEY;
4638
4639         do {
4640                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4641                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4642                 if (ret < 0) {
4643                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4644                         goto done;
4645                 }
4646
4647                 ret = btrfs_previous_item(root, path, 0, key.type);
4648                 if (ret)
4649                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4650                 if (ret < 0)
4651                         goto done;
4652                 if (ret) {
4653                         ret = 0;
4654                         btrfs_release_path(path);
4655                         break;
4656                 }
4657
4658                 l = path->nodes[0];
4659                 slot = path->slots[0];
4660                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4661
4662                 if (key.objectid != device->devid) {
4663                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4664                         btrfs_release_path(path);
4665                         break;
4666                 }
4667
4668                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4669                 length = btrfs_dev_extent_length(l, dev_extent);
4670
4671                 if (key.offset + length <= new_size) {
4672                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4673                         btrfs_release_path(path);
4674                         break;
4675                 }
4676
4677                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4678                 btrfs_release_path(path);
4679
4680                 /*
4681                  * We may be relocating the only data chunk we have,
4682                  * which could potentially end up with losing data's
4683                  * raid profile, so lets allocate an empty one in
4684                  * advance.
4685                  */
4686                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4687                 if (ret < 0) {
4688                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4689                         goto done;
4690                 }
4691
4692                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4693                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4694                 if (ret == -ENOSPC) {
4695                         failed++;
4696                 } else if (ret) {
4697                         if (ret == -ETXTBSY) {
4698                                 btrfs_warn(fs_info,
4699                    "could not shrink block group %llu due to active swapfile",
4700                                            chunk_offset);
4701                         }
4702                         goto done;
4703                 }
4704         } while (key.offset-- > 0);
4705
4706         if (failed && !retried) {
4707                 failed = 0;
4708                 retried = true;
4709                 goto again;
4710         } else if (failed && retried) {
4711                 ret = -ENOSPC;
4712                 goto done;
4713         }
4714
4715         /* Shrinking succeeded, else we would be at "done". */
4716         trans = btrfs_start_transaction(root, 0);
4717         if (IS_ERR(trans)) {
4718                 ret = PTR_ERR(trans);
4719                 goto done;
4720         }
4721
4722         mutex_lock(&fs_info->chunk_mutex);
4723         /* Clear all state bits beyond the shrunk device size */
4724         clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4725                           CHUNK_STATE_MASK);
4726
4727         btrfs_device_set_disk_total_bytes(device, new_size);
4728         if (list_empty(&device->post_commit_list))
4729                 list_add_tail(&device->post_commit_list,
4730                               &trans->transaction->dev_update_list);
4731
4732         WARN_ON(diff > old_total);
4733         btrfs_set_super_total_bytes(super_copy,
4734                         round_down(old_total - diff, fs_info->sectorsize));
4735         mutex_unlock(&fs_info->chunk_mutex);
4736
4737         /* Now btrfs_update_device() will change the on-disk size. */
4738         ret = btrfs_update_device(trans, device);
4739         if (ret < 0) {
4740                 btrfs_abort_transaction(trans, ret);
4741                 btrfs_end_transaction(trans);
4742         } else {
4743                 ret = btrfs_commit_transaction(trans);
4744         }
4745 done:
4746         btrfs_free_path(path);
4747         if (ret) {
4748                 mutex_lock(&fs_info->chunk_mutex);
4749                 btrfs_device_set_total_bytes(device, old_size);
4750                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4751                         device->fs_devices->total_rw_bytes += diff;
4752                 atomic64_add(diff, &fs_info->free_chunk_space);
4753                 mutex_unlock(&fs_info->chunk_mutex);
4754         }
4755         return ret;
4756 }
4757
4758 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4759                            struct btrfs_key *key,
4760                            struct btrfs_chunk *chunk, int item_size)
4761 {
4762         struct btrfs_super_block *super_copy = fs_info->super_copy;
4763         struct btrfs_disk_key disk_key;
4764         u32 array_size;
4765         u8 *ptr;
4766
4767         mutex_lock(&fs_info->chunk_mutex);
4768         array_size = btrfs_super_sys_array_size(super_copy);
4769         if (array_size + item_size + sizeof(disk_key)
4770                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4771                 mutex_unlock(&fs_info->chunk_mutex);
4772                 return -EFBIG;
4773         }
4774
4775         ptr = super_copy->sys_chunk_array + array_size;
4776         btrfs_cpu_key_to_disk(&disk_key, key);
4777         memcpy(ptr, &disk_key, sizeof(disk_key));
4778         ptr += sizeof(disk_key);
4779         memcpy(ptr, chunk, item_size);
4780         item_size += sizeof(disk_key);
4781         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4782         mutex_unlock(&fs_info->chunk_mutex);
4783
4784         return 0;
4785 }
4786
4787 /*
4788  * sort the devices in descending order by max_avail, total_avail
4789  */
4790 static int btrfs_cmp_device_info(const void *a, const void *b)
4791 {
4792         const struct btrfs_device_info *di_a = a;
4793         const struct btrfs_device_info *di_b = b;
4794
4795         if (di_a->max_avail > di_b->max_avail)
4796                 return -1;
4797         if (di_a->max_avail < di_b->max_avail)
4798                 return 1;
4799         if (di_a->total_avail > di_b->total_avail)
4800                 return -1;
4801         if (di_a->total_avail < di_b->total_avail)
4802                 return 1;
4803         return 0;
4804 }
4805
4806 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4807 {
4808         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4809                 return;
4810
4811         btrfs_set_fs_incompat(info, RAID56);
4812 }
4813
4814 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4815 {
4816         if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4817                 return;
4818
4819         btrfs_set_fs_incompat(info, RAID1C34);
4820 }
4821
4822 /*
4823  * Structure used internally for __btrfs_alloc_chunk() function.
4824  * Wraps needed parameters.
4825  */
4826 struct alloc_chunk_ctl {
4827         u64 start;
4828         u64 type;
4829         /* Total number of stripes to allocate */
4830         int num_stripes;
4831         /* sub_stripes info for map */
4832         int sub_stripes;
4833         /* Stripes per device */
4834         int dev_stripes;
4835         /* Maximum number of devices to use */
4836         int devs_max;
4837         /* Minimum number of devices to use */
4838         int devs_min;
4839         /* ndevs has to be a multiple of this */
4840         int devs_increment;
4841         /* Number of copies */
4842         int ncopies;
4843         /* Number of stripes worth of bytes to store parity information */
4844         int nparity;
4845         u64 max_stripe_size;
4846         u64 max_chunk_size;
4847         u64 dev_extent_min;
4848         u64 stripe_size;
4849         u64 chunk_size;
4850         int ndevs;
4851 };
4852
4853 static void init_alloc_chunk_ctl_policy_regular(
4854                                 struct btrfs_fs_devices *fs_devices,
4855                                 struct alloc_chunk_ctl *ctl)
4856 {
4857         u64 type = ctl->type;
4858
4859         if (type & BTRFS_BLOCK_GROUP_DATA) {
4860                 ctl->max_stripe_size = SZ_1G;
4861                 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4862         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4863                 /* For larger filesystems, use larger metadata chunks */
4864                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4865                         ctl->max_stripe_size = SZ_1G;
4866                 else
4867                         ctl->max_stripe_size = SZ_256M;
4868                 ctl->max_chunk_size = ctl->max_stripe_size;
4869         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4870                 ctl->max_stripe_size = SZ_32M;
4871                 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4872                 ctl->devs_max = min_t(int, ctl->devs_max,
4873                                       BTRFS_MAX_DEVS_SYS_CHUNK);
4874         } else {
4875                 BUG();
4876         }
4877
4878         /* We don't want a chunk larger than 10% of writable space */
4879         ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4880                                   ctl->max_chunk_size);
4881         ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
4882 }
4883
4884 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
4885                                  struct alloc_chunk_ctl *ctl)
4886 {
4887         int index = btrfs_bg_flags_to_raid_index(ctl->type);
4888
4889         ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
4890         ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
4891         ctl->devs_max = btrfs_raid_array[index].devs_max;
4892         if (!ctl->devs_max)
4893                 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
4894         ctl->devs_min = btrfs_raid_array[index].devs_min;
4895         ctl->devs_increment = btrfs_raid_array[index].devs_increment;
4896         ctl->ncopies = btrfs_raid_array[index].ncopies;
4897         ctl->nparity = btrfs_raid_array[index].nparity;
4898         ctl->ndevs = 0;
4899
4900         switch (fs_devices->chunk_alloc_policy) {
4901         case BTRFS_CHUNK_ALLOC_REGULAR:
4902                 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
4903                 break;
4904         default:
4905                 BUG();
4906         }
4907 }
4908
4909 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
4910                               struct alloc_chunk_ctl *ctl,
4911                               struct btrfs_device_info *devices_info)
4912 {
4913         struct btrfs_fs_info *info = fs_devices->fs_info;
4914         struct btrfs_device *device;
4915         u64 total_avail;
4916         u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
4917         int ret;
4918         int ndevs = 0;
4919         u64 max_avail;
4920         u64 dev_offset;
4921
4922         /*
4923          * in the first pass through the devices list, we gather information
4924          * about the available holes on each device.
4925          */
4926         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4927                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4928                         WARN(1, KERN_ERR
4929                                "BTRFS: read-only device in alloc_list\n");
4930                         continue;
4931                 }
4932
4933                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4934                                         &device->dev_state) ||
4935                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4936                         continue;
4937
4938                 if (device->total_bytes > device->bytes_used)
4939                         total_avail = device->total_bytes - device->bytes_used;
4940                 else
4941                         total_avail = 0;
4942
4943                 /* If there is no space on this device, skip it. */
4944                 if (total_avail < ctl->dev_extent_min)
4945                         continue;
4946
4947                 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
4948                                            &max_avail);
4949                 if (ret && ret != -ENOSPC)
4950                         return ret;
4951
4952                 if (ret == 0)
4953                         max_avail = dev_extent_want;
4954
4955                 if (max_avail < ctl->dev_extent_min) {
4956                         if (btrfs_test_opt(info, ENOSPC_DEBUG))
4957                                 btrfs_debug(info,
4958                         "%s: devid %llu has no free space, have=%llu want=%llu",
4959                                             __func__, device->devid, max_avail,
4960                                             ctl->dev_extent_min);
4961                         continue;
4962                 }
4963
4964                 if (ndevs == fs_devices->rw_devices) {
4965                         WARN(1, "%s: found more than %llu devices\n",
4966                              __func__, fs_devices->rw_devices);
4967                         break;
4968                 }
4969                 devices_info[ndevs].dev_offset = dev_offset;
4970                 devices_info[ndevs].max_avail = max_avail;
4971                 devices_info[ndevs].total_avail = total_avail;
4972                 devices_info[ndevs].dev = device;
4973                 ++ndevs;
4974         }
4975         ctl->ndevs = ndevs;
4976
4977         /*
4978          * now sort the devices by hole size / available space
4979          */
4980         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4981              btrfs_cmp_device_info, NULL);
4982
4983         return 0;
4984 }
4985
4986 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
4987                                       struct btrfs_device_info *devices_info)
4988 {
4989         /* Number of stripes that count for block group size */
4990         int data_stripes;
4991
4992         /*
4993          * The primary goal is to maximize the number of stripes, so use as
4994          * many devices as possible, even if the stripes are not maximum sized.
4995          *
4996          * The DUP profile stores more than one stripe per device, the
4997          * max_avail is the total size so we have to adjust.
4998          */
4999         ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5000                                    ctl->dev_stripes);
5001         ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5002
5003         /* This will have to be fixed for RAID1 and RAID10 over more drives */
5004         data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5005
5006         /*
5007          * Use the number of data stripes to figure out how big this chunk is
5008          * really going to be in terms of logical address space, and compare
5009          * that answer with the max chunk size. If it's higher, we try to
5010          * reduce stripe_size.
5011          */
5012         if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5013                 /*
5014                  * Reduce stripe_size, round it up to a 16MB boundary again and
5015                  * then use it, unless it ends up being even bigger than the
5016                  * previous value we had already.
5017                  */
5018                 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5019                                                         data_stripes), SZ_16M),
5020                                        ctl->stripe_size);
5021         }
5022
5023         /* Align to BTRFS_STRIPE_LEN */
5024         ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5025         ctl->chunk_size = ctl->stripe_size * data_stripes;
5026
5027         return 0;
5028 }
5029
5030 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5031                               struct alloc_chunk_ctl *ctl,
5032                               struct btrfs_device_info *devices_info)
5033 {
5034         struct btrfs_fs_info *info = fs_devices->fs_info;
5035
5036         /*
5037          * Round down to number of usable stripes, devs_increment can be any
5038          * number so we can't use round_down() that requires power of 2, while
5039          * rounddown is safe.
5040          */
5041         ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5042
5043         if (ctl->ndevs < ctl->devs_min) {
5044                 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5045                         btrfs_debug(info,
5046         "%s: not enough devices with free space: have=%d minimum required=%d",
5047                                     __func__, ctl->ndevs, ctl->devs_min);
5048                 }
5049                 return -ENOSPC;
5050         }
5051
5052         ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5053
5054         switch (fs_devices->chunk_alloc_policy) {
5055         case BTRFS_CHUNK_ALLOC_REGULAR:
5056                 return decide_stripe_size_regular(ctl, devices_info);
5057         default:
5058                 BUG();
5059         }
5060 }
5061
5062 static int create_chunk(struct btrfs_trans_handle *trans,
5063                         struct alloc_chunk_ctl *ctl,
5064                         struct btrfs_device_info *devices_info)
5065 {
5066         struct btrfs_fs_info *info = trans->fs_info;
5067         struct map_lookup *map = NULL;
5068         struct extent_map_tree *em_tree;
5069         struct extent_map *em;
5070         u64 start = ctl->start;
5071         u64 type = ctl->type;
5072         int ret;
5073         int i;
5074         int j;
5075
5076         map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5077         if (!map)
5078                 return -ENOMEM;
5079         map->num_stripes = ctl->num_stripes;
5080
5081         for (i = 0; i < ctl->ndevs; ++i) {
5082                 for (j = 0; j < ctl->dev_stripes; ++j) {
5083                         int s = i * ctl->dev_stripes + j;
5084                         map->stripes[s].dev = devices_info[i].dev;
5085                         map->stripes[s].physical = devices_info[i].dev_offset +
5086                                                    j * ctl->stripe_size;
5087                 }
5088         }
5089         map->stripe_len = BTRFS_STRIPE_LEN;
5090         map->io_align = BTRFS_STRIPE_LEN;
5091         map->io_width = BTRFS_STRIPE_LEN;
5092         map->type = type;
5093         map->sub_stripes = ctl->sub_stripes;
5094
5095         trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5096
5097         em = alloc_extent_map();
5098         if (!em) {
5099                 kfree(map);
5100                 return -ENOMEM;
5101         }
5102         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5103         em->map_lookup = map;
5104         em->start = start;
5105         em->len = ctl->chunk_size;
5106         em->block_start = 0;
5107         em->block_len = em->len;
5108         em->orig_block_len = ctl->stripe_size;
5109
5110         em_tree = &info->mapping_tree;
5111         write_lock(&em_tree->lock);
5112         ret = add_extent_mapping(em_tree, em, 0);
5113         if (ret) {
5114                 write_unlock(&em_tree->lock);
5115                 free_extent_map(em);
5116                 return ret;
5117         }
5118         write_unlock(&em_tree->lock);
5119
5120         ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5121         if (ret)
5122                 goto error_del_extent;
5123
5124         for (i = 0; i < map->num_stripes; i++) {
5125                 struct btrfs_device *dev = map->stripes[i].dev;
5126
5127                 btrfs_device_set_bytes_used(dev,
5128                                             dev->bytes_used + ctl->stripe_size);
5129                 if (list_empty(&dev->post_commit_list))
5130                         list_add_tail(&dev->post_commit_list,
5131                                       &trans->transaction->dev_update_list);
5132         }
5133
5134         atomic64_sub(ctl->stripe_size * map->num_stripes,
5135                      &info->free_chunk_space);
5136
5137         free_extent_map(em);
5138         check_raid56_incompat_flag(info, type);
5139         check_raid1c34_incompat_flag(info, type);
5140
5141         return 0;
5142
5143 error_del_extent:
5144         write_lock(&em_tree->lock);
5145         remove_extent_mapping(em_tree, em);
5146         write_unlock(&em_tree->lock);
5147
5148         /* One for our allocation */
5149         free_extent_map(em);
5150         /* One for the tree reference */
5151         free_extent_map(em);
5152
5153         return ret;
5154 }
5155
5156 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5157 {
5158         struct btrfs_fs_info *info = trans->fs_info;
5159         struct btrfs_fs_devices *fs_devices = info->fs_devices;
5160         struct btrfs_device_info *devices_info = NULL;
5161         struct alloc_chunk_ctl ctl;
5162         int ret;
5163
5164         lockdep_assert_held(&info->chunk_mutex);
5165
5166         if (!alloc_profile_is_valid(type, 0)) {
5167                 ASSERT(0);
5168                 return -EINVAL;
5169         }
5170
5171         if (list_empty(&fs_devices->alloc_list)) {
5172                 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5173                         btrfs_debug(info, "%s: no writable device", __func__);
5174                 return -ENOSPC;
5175         }
5176
5177         if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5178                 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5179                 ASSERT(0);
5180                 return -EINVAL;
5181         }
5182
5183         ctl.start = find_next_chunk(info);
5184         ctl.type = type;
5185         init_alloc_chunk_ctl(fs_devices, &ctl);
5186
5187         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5188                                GFP_NOFS);
5189         if (!devices_info)
5190                 return -ENOMEM;
5191
5192         ret = gather_device_info(fs_devices, &ctl, devices_info);
5193         if (ret < 0)
5194                 goto out;
5195
5196         ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5197         if (ret < 0)
5198                 goto out;
5199
5200         ret = create_chunk(trans, &ctl, devices_info);
5201
5202 out:
5203         kfree(devices_info);
5204         return ret;
5205 }
5206
5207 /*
5208  * Chunk allocation falls into two parts. The first part does work
5209  * that makes the new allocated chunk usable, but does not do any operation
5210  * that modifies the chunk tree. The second part does the work that
5211  * requires modifying the chunk tree. This division is important for the
5212  * bootstrap process of adding storage to a seed btrfs.
5213  */
5214 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5215                              u64 chunk_offset, u64 chunk_size)
5216 {
5217         struct btrfs_fs_info *fs_info = trans->fs_info;
5218         struct btrfs_root *extent_root = fs_info->extent_root;
5219         struct btrfs_root *chunk_root = fs_info->chunk_root;
5220         struct btrfs_key key;
5221         struct btrfs_device *device;
5222         struct btrfs_chunk *chunk;
5223         struct btrfs_stripe *stripe;
5224         struct extent_map *em;
5225         struct map_lookup *map;
5226         size_t item_size;
5227         u64 dev_offset;
5228         u64 stripe_size;
5229         int i = 0;
5230         int ret = 0;
5231
5232         em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5233         if (IS_ERR(em))
5234                 return PTR_ERR(em);
5235
5236         map = em->map_lookup;
5237         item_size = btrfs_chunk_item_size(map->num_stripes);
5238         stripe_size = em->orig_block_len;
5239
5240         chunk = kzalloc(item_size, GFP_NOFS);
5241         if (!chunk) {
5242                 ret = -ENOMEM;
5243                 goto out;
5244         }
5245
5246         /*
5247          * Take the device list mutex to prevent races with the final phase of
5248          * a device replace operation that replaces the device object associated
5249          * with the map's stripes, because the device object's id can change
5250          * at any time during that final phase of the device replace operation
5251          * (dev-replace.c:btrfs_dev_replace_finishing()).
5252          */
5253         mutex_lock(&fs_info->fs_devices->device_list_mutex);
5254         for (i = 0; i < map->num_stripes; i++) {
5255                 device = map->stripes[i].dev;
5256                 dev_offset = map->stripes[i].physical;
5257
5258                 ret = btrfs_update_device(trans, device);
5259                 if (ret)
5260                         break;
5261                 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5262                                              dev_offset, stripe_size);
5263                 if (ret)
5264                         break;
5265         }
5266         if (ret) {
5267                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5268                 goto out;
5269         }
5270
5271         stripe = &chunk->stripe;
5272         for (i = 0; i < map->num_stripes; i++) {
5273                 device = map->stripes[i].dev;
5274                 dev_offset = map->stripes[i].physical;
5275
5276                 btrfs_set_stack_stripe_devid(stripe, device->devid);
5277                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5278                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5279                 stripe++;
5280         }
5281         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5282
5283         btrfs_set_stack_chunk_length(chunk, chunk_size);
5284         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5285         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5286         btrfs_set_stack_chunk_type(chunk, map->type);
5287         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5288         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5289         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5290         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5291         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5292
5293         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5294         key.type = BTRFS_CHUNK_ITEM_KEY;
5295         key.offset = chunk_offset;
5296
5297         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5298         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5299                 /*
5300                  * TODO: Cleanup of inserted chunk root in case of
5301                  * failure.
5302                  */
5303                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5304         }
5305
5306 out:
5307         kfree(chunk);
5308         free_extent_map(em);
5309         return ret;
5310 }
5311
5312 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5313 {
5314         struct btrfs_fs_info *fs_info = trans->fs_info;
5315         u64 alloc_profile;
5316         int ret;
5317
5318         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5319         ret = btrfs_alloc_chunk(trans, alloc_profile);
5320         if (ret)
5321                 return ret;
5322
5323         alloc_profile = btrfs_system_alloc_profile(fs_info);
5324         ret = btrfs_alloc_chunk(trans, alloc_profile);
5325         return ret;
5326 }
5327
5328 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5329 {
5330         const int index = btrfs_bg_flags_to_raid_index(map->type);
5331
5332         return btrfs_raid_array[index].tolerated_failures;
5333 }
5334
5335 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5336 {
5337         struct extent_map *em;
5338         struct map_lookup *map;
5339         int readonly = 0;
5340         int miss_ndevs = 0;
5341         int i;
5342
5343         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5344         if (IS_ERR(em))
5345                 return 1;
5346
5347         map = em->map_lookup;
5348         for (i = 0; i < map->num_stripes; i++) {
5349                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5350                                         &map->stripes[i].dev->dev_state)) {
5351                         miss_ndevs++;
5352                         continue;
5353                 }
5354                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5355                                         &map->stripes[i].dev->dev_state)) {
5356                         readonly = 1;
5357                         goto end;
5358                 }
5359         }
5360
5361         /*
5362          * If the number of missing devices is larger than max errors,
5363          * we can not write the data into that chunk successfully, so
5364          * set it readonly.
5365          */
5366         if (miss_ndevs > btrfs_chunk_max_errors(map))
5367                 readonly = 1;
5368 end:
5369         free_extent_map(em);
5370         return readonly;
5371 }
5372
5373 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5374 {
5375         struct extent_map *em;
5376
5377         while (1) {
5378                 write_lock(&tree->lock);
5379                 em = lookup_extent_mapping(tree, 0, (u64)-1);
5380                 if (em)
5381                         remove_extent_mapping(tree, em);
5382                 write_unlock(&tree->lock);
5383                 if (!em)
5384                         break;
5385                 /* once for us */
5386                 free_extent_map(em);
5387                 /* once for the tree */
5388                 free_extent_map(em);
5389         }
5390 }
5391
5392 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5393 {
5394         struct extent_map *em;
5395         struct map_lookup *map;
5396         int ret;
5397
5398         em = btrfs_get_chunk_map(fs_info, logical, len);
5399         if (IS_ERR(em))
5400                 /*
5401                  * We could return errors for these cases, but that could get
5402                  * ugly and we'd probably do the same thing which is just not do
5403                  * anything else and exit, so return 1 so the callers don't try
5404                  * to use other copies.
5405                  */
5406                 return 1;
5407
5408         map = em->map_lookup;
5409         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5410                 ret = map->num_stripes;
5411         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5412                 ret = map->sub_stripes;
5413         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5414                 ret = 2;
5415         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5416                 /*
5417                  * There could be two corrupted data stripes, we need
5418                  * to loop retry in order to rebuild the correct data.
5419                  *
5420                  * Fail a stripe at a time on every retry except the
5421                  * stripe under reconstruction.
5422                  */
5423                 ret = map->num_stripes;
5424         else
5425                 ret = 1;
5426         free_extent_map(em);
5427
5428         down_read(&fs_info->dev_replace.rwsem);
5429         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5430             fs_info->dev_replace.tgtdev)
5431                 ret++;
5432         up_read(&fs_info->dev_replace.rwsem);
5433
5434         return ret;
5435 }
5436
5437 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5438                                     u64 logical)
5439 {
5440         struct extent_map *em;
5441         struct map_lookup *map;
5442         unsigned long len = fs_info->sectorsize;
5443
5444         em = btrfs_get_chunk_map(fs_info, logical, len);
5445
5446         if (!WARN_ON(IS_ERR(em))) {
5447                 map = em->map_lookup;
5448                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5449                         len = map->stripe_len * nr_data_stripes(map);
5450                 free_extent_map(em);
5451         }
5452         return len;
5453 }
5454
5455 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5456 {
5457         struct extent_map *em;
5458         struct map_lookup *map;
5459         int ret = 0;
5460
5461         em = btrfs_get_chunk_map(fs_info, logical, len);
5462
5463         if(!WARN_ON(IS_ERR(em))) {
5464                 map = em->map_lookup;
5465                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5466                         ret = 1;
5467                 free_extent_map(em);
5468         }
5469         return ret;
5470 }
5471
5472 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5473                             struct map_lookup *map, int first,
5474                             int dev_replace_is_ongoing)
5475 {
5476         int i;
5477         int num_stripes;
5478         int preferred_mirror;
5479         int tolerance;
5480         struct btrfs_device *srcdev;
5481
5482         ASSERT((map->type &
5483                  (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5484
5485         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5486                 num_stripes = map->sub_stripes;
5487         else
5488                 num_stripes = map->num_stripes;
5489
5490         preferred_mirror = first + current->pid % num_stripes;
5491
5492         if (dev_replace_is_ongoing &&
5493             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5494              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5495                 srcdev = fs_info->dev_replace.srcdev;
5496         else
5497                 srcdev = NULL;
5498
5499         /*
5500          * try to avoid the drive that is the source drive for a
5501          * dev-replace procedure, only choose it if no other non-missing
5502          * mirror is available
5503          */
5504         for (tolerance = 0; tolerance < 2; tolerance++) {
5505                 if (map->stripes[preferred_mirror].dev->bdev &&
5506                     (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5507                         return preferred_mirror;
5508                 for (i = first; i < first + num_stripes; i++) {
5509                         if (map->stripes[i].dev->bdev &&
5510                             (tolerance || map->stripes[i].dev != srcdev))
5511                                 return i;
5512                 }
5513         }
5514
5515         /* we couldn't find one that doesn't fail.  Just return something
5516          * and the io error handling code will clean up eventually
5517          */
5518         return preferred_mirror;
5519 }
5520
5521 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5522 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5523 {
5524         int i;
5525         int again = 1;
5526
5527         while (again) {
5528                 again = 0;
5529                 for (i = 0; i < num_stripes - 1; i++) {
5530                         /* Swap if parity is on a smaller index */
5531                         if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5532                                 swap(bbio->stripes[i], bbio->stripes[i + 1]);
5533                                 swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5534                                 again = 1;
5535                         }
5536                 }
5537         }
5538 }
5539
5540 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5541 {
5542         struct btrfs_bio *bbio = kzalloc(
5543                  /* the size of the btrfs_bio */
5544                 sizeof(struct btrfs_bio) +
5545                 /* plus the variable array for the stripes */
5546                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5547                 /* plus the variable array for the tgt dev */
5548                 sizeof(int) * (real_stripes) +
5549                 /*
5550                  * plus the raid_map, which includes both the tgt dev
5551                  * and the stripes
5552                  */
5553                 sizeof(u64) * (total_stripes),
5554                 GFP_NOFS|__GFP_NOFAIL);
5555
5556         atomic_set(&bbio->error, 0);
5557         refcount_set(&bbio->refs, 1);
5558
5559         bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5560         bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5561
5562         return bbio;
5563 }
5564
5565 void btrfs_get_bbio(struct btrfs_bio *bbio)
5566 {
5567         WARN_ON(!refcount_read(&bbio->refs));
5568         refcount_inc(&bbio->refs);
5569 }
5570
5571 void btrfs_put_bbio(struct btrfs_bio *bbio)
5572 {
5573         if (!bbio)
5574                 return;
5575         if (refcount_dec_and_test(&bbio->refs))
5576                 kfree(bbio);
5577 }
5578
5579 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5580 /*
5581  * Please note that, discard won't be sent to target device of device
5582  * replace.
5583  */
5584 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5585                                          u64 logical, u64 *length_ret,
5586                                          struct btrfs_bio **bbio_ret)
5587 {
5588         struct extent_map *em;
5589         struct map_lookup *map;
5590         struct btrfs_bio *bbio;
5591         u64 length = *length_ret;
5592         u64 offset;
5593         u64 stripe_nr;
5594         u64 stripe_nr_end;
5595         u64 stripe_end_offset;
5596         u64 stripe_cnt;
5597         u64 stripe_len;
5598         u64 stripe_offset;
5599         u64 num_stripes;
5600         u32 stripe_index;
5601         u32 factor = 0;
5602         u32 sub_stripes = 0;
5603         u64 stripes_per_dev = 0;
5604         u32 remaining_stripes = 0;
5605         u32 last_stripe = 0;
5606         int ret = 0;
5607         int i;
5608
5609         /* discard always return a bbio */
5610         ASSERT(bbio_ret);
5611
5612         em = btrfs_get_chunk_map(fs_info, logical, length);
5613         if (IS_ERR(em))
5614                 return PTR_ERR(em);
5615
5616         map = em->map_lookup;
5617         /* we don't discard raid56 yet */
5618         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5619                 ret = -EOPNOTSUPP;
5620                 goto out;
5621         }
5622
5623         offset = logical - em->start;
5624         length = min_t(u64, em->start + em->len - logical, length);
5625         *length_ret = length;
5626
5627         stripe_len = map->stripe_len;
5628         /*
5629          * stripe_nr counts the total number of stripes we have to stride
5630          * to get to this block
5631          */
5632         stripe_nr = div64_u64(offset, stripe_len);
5633
5634         /* stripe_offset is the offset of this block in its stripe */
5635         stripe_offset = offset - stripe_nr * stripe_len;
5636
5637         stripe_nr_end = round_up(offset + length, map->stripe_len);
5638         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5639         stripe_cnt = stripe_nr_end - stripe_nr;
5640         stripe_end_offset = stripe_nr_end * map->stripe_len -
5641                             (offset + length);
5642         /*
5643          * after this, stripe_nr is the number of stripes on this
5644          * device we have to walk to find the data, and stripe_index is
5645          * the number of our device in the stripe array
5646          */
5647         num_stripes = 1;
5648         stripe_index = 0;
5649         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5650                          BTRFS_BLOCK_GROUP_RAID10)) {
5651                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5652                         sub_stripes = 1;
5653                 else
5654                         sub_stripes = map->sub_stripes;
5655
5656                 factor = map->num_stripes / sub_stripes;
5657                 num_stripes = min_t(u64, map->num_stripes,
5658                                     sub_stripes * stripe_cnt);
5659                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5660                 stripe_index *= sub_stripes;
5661                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5662                                               &remaining_stripes);
5663                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5664                 last_stripe *= sub_stripes;
5665         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5666                                 BTRFS_BLOCK_GROUP_DUP)) {
5667                 num_stripes = map->num_stripes;
5668         } else {
5669                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5670                                         &stripe_index);
5671         }
5672
5673         bbio = alloc_btrfs_bio(num_stripes, 0);
5674         if (!bbio) {
5675                 ret = -ENOMEM;
5676                 goto out;
5677         }
5678
5679         for (i = 0; i < num_stripes; i++) {
5680                 bbio->stripes[i].physical =
5681                         map->stripes[stripe_index].physical +
5682                         stripe_offset + stripe_nr * map->stripe_len;
5683                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5684
5685                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5686                                  BTRFS_BLOCK_GROUP_RAID10)) {
5687                         bbio->stripes[i].length = stripes_per_dev *
5688                                 map->stripe_len;
5689
5690                         if (i / sub_stripes < remaining_stripes)
5691                                 bbio->stripes[i].length +=
5692                                         map->stripe_len;
5693
5694                         /*
5695                          * Special for the first stripe and
5696                          * the last stripe:
5697                          *
5698                          * |-------|...|-------|
5699                          *     |----------|
5700                          *    off     end_off
5701                          */
5702                         if (i < sub_stripes)
5703                                 bbio->stripes[i].length -=
5704                                         stripe_offset;
5705
5706                         if (stripe_index >= last_stripe &&
5707                             stripe_index <= (last_stripe +
5708                                              sub_stripes - 1))
5709                                 bbio->stripes[i].length -=
5710                                         stripe_end_offset;
5711
5712                         if (i == sub_stripes - 1)
5713                                 stripe_offset = 0;
5714                 } else {
5715                         bbio->stripes[i].length = length;
5716                 }
5717
5718                 stripe_index++;
5719                 if (stripe_index == map->num_stripes) {
5720                         stripe_index = 0;
5721                         stripe_nr++;
5722                 }
5723         }
5724
5725         *bbio_ret = bbio;
5726         bbio->map_type = map->type;
5727         bbio->num_stripes = num_stripes;
5728 out:
5729         free_extent_map(em);
5730         return ret;
5731 }
5732
5733 /*
5734  * In dev-replace case, for repair case (that's the only case where the mirror
5735  * is selected explicitly when calling btrfs_map_block), blocks left of the
5736  * left cursor can also be read from the target drive.
5737  *
5738  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5739  * array of stripes.
5740  * For READ, it also needs to be supported using the same mirror number.
5741  *
5742  * If the requested block is not left of the left cursor, EIO is returned. This
5743  * can happen because btrfs_num_copies() returns one more in the dev-replace
5744  * case.
5745  */
5746 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5747                                          u64 logical, u64 length,
5748                                          u64 srcdev_devid, int *mirror_num,
5749                                          u64 *physical)
5750 {
5751         struct btrfs_bio *bbio = NULL;
5752         int num_stripes;
5753         int index_srcdev = 0;
5754         int found = 0;
5755         u64 physical_of_found = 0;
5756         int i;
5757         int ret = 0;
5758
5759         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5760                                 logical, &length, &bbio, 0, 0);
5761         if (ret) {
5762                 ASSERT(bbio == NULL);
5763                 return ret;
5764         }
5765
5766         num_stripes = bbio->num_stripes;
5767         if (*mirror_num > num_stripes) {
5768                 /*
5769                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5770                  * that means that the requested area is not left of the left
5771                  * cursor
5772                  */
5773                 btrfs_put_bbio(bbio);
5774                 return -EIO;
5775         }
5776
5777         /*
5778          * process the rest of the function using the mirror_num of the source
5779          * drive. Therefore look it up first.  At the end, patch the device
5780          * pointer to the one of the target drive.
5781          */
5782         for (i = 0; i < num_stripes; i++) {
5783                 if (bbio->stripes[i].dev->devid != srcdev_devid)
5784                         continue;
5785
5786                 /*
5787                  * In case of DUP, in order to keep it simple, only add the
5788                  * mirror with the lowest physical address
5789                  */
5790                 if (found &&
5791                     physical_of_found <= bbio->stripes[i].physical)
5792                         continue;
5793
5794                 index_srcdev = i;
5795                 found = 1;
5796                 physical_of_found = bbio->stripes[i].physical;
5797         }
5798
5799         btrfs_put_bbio(bbio);
5800
5801         ASSERT(found);
5802         if (!found)
5803                 return -EIO;
5804
5805         *mirror_num = index_srcdev + 1;
5806         *physical = physical_of_found;
5807         return ret;
5808 }
5809
5810 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5811                                       struct btrfs_bio **bbio_ret,
5812                                       struct btrfs_dev_replace *dev_replace,
5813                                       int *num_stripes_ret, int *max_errors_ret)
5814 {
5815         struct btrfs_bio *bbio = *bbio_ret;
5816         u64 srcdev_devid = dev_replace->srcdev->devid;
5817         int tgtdev_indexes = 0;
5818         int num_stripes = *num_stripes_ret;
5819         int max_errors = *max_errors_ret;
5820         int i;
5821
5822         if (op == BTRFS_MAP_WRITE) {
5823                 int index_where_to_add;
5824
5825                 /*
5826                  * duplicate the write operations while the dev replace
5827                  * procedure is running. Since the copying of the old disk to
5828                  * the new disk takes place at run time while the filesystem is
5829                  * mounted writable, the regular write operations to the old
5830                  * disk have to be duplicated to go to the new disk as well.
5831                  *
5832                  * Note that device->missing is handled by the caller, and that
5833                  * the write to the old disk is already set up in the stripes
5834                  * array.
5835                  */
5836                 index_where_to_add = num_stripes;
5837                 for (i = 0; i < num_stripes; i++) {
5838                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5839                                 /* write to new disk, too */
5840                                 struct btrfs_bio_stripe *new =
5841                                         bbio->stripes + index_where_to_add;
5842                                 struct btrfs_bio_stripe *old =
5843                                         bbio->stripes + i;
5844
5845                                 new->physical = old->physical;
5846                                 new->length = old->length;
5847                                 new->dev = dev_replace->tgtdev;
5848                                 bbio->tgtdev_map[i] = index_where_to_add;
5849                                 index_where_to_add++;
5850                                 max_errors++;
5851                                 tgtdev_indexes++;
5852                         }
5853                 }
5854                 num_stripes = index_where_to_add;
5855         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5856                 int index_srcdev = 0;
5857                 int found = 0;
5858                 u64 physical_of_found = 0;
5859
5860                 /*
5861                  * During the dev-replace procedure, the target drive can also
5862                  * be used to read data in case it is needed to repair a corrupt
5863                  * block elsewhere. This is possible if the requested area is
5864                  * left of the left cursor. In this area, the target drive is a
5865                  * full copy of the source drive.
5866                  */
5867                 for (i = 0; i < num_stripes; i++) {
5868                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5869                                 /*
5870                                  * In case of DUP, in order to keep it simple,
5871                                  * only add the mirror with the lowest physical
5872                                  * address
5873                                  */
5874                                 if (found &&
5875                                     physical_of_found <=
5876                                      bbio->stripes[i].physical)
5877                                         continue;
5878                                 index_srcdev = i;
5879                                 found = 1;
5880                                 physical_of_found = bbio->stripes[i].physical;
5881                         }
5882                 }
5883                 if (found) {
5884                         struct btrfs_bio_stripe *tgtdev_stripe =
5885                                 bbio->stripes + num_stripes;
5886
5887                         tgtdev_stripe->physical = physical_of_found;
5888                         tgtdev_stripe->length =
5889                                 bbio->stripes[index_srcdev].length;
5890                         tgtdev_stripe->dev = dev_replace->tgtdev;
5891                         bbio->tgtdev_map[index_srcdev] = num_stripes;
5892
5893                         tgtdev_indexes++;
5894                         num_stripes++;
5895                 }
5896         }
5897
5898         *num_stripes_ret = num_stripes;
5899         *max_errors_ret = max_errors;
5900         bbio->num_tgtdevs = tgtdev_indexes;
5901         *bbio_ret = bbio;
5902 }
5903
5904 static bool need_full_stripe(enum btrfs_map_op op)
5905 {
5906         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5907 }
5908
5909 /*
5910  * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5911  *                     tuple. This information is used to calculate how big a
5912  *                     particular bio can get before it straddles a stripe.
5913  *
5914  * @fs_info - the filesystem
5915  * @logical - address that we want to figure out the geometry of
5916  * @len     - the length of IO we are going to perform, starting at @logical
5917  * @op      - type of operation - write or read
5918  * @io_geom - pointer used to return values
5919  *
5920  * Returns < 0 in case a chunk for the given logical address cannot be found,
5921  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5922  */
5923 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5924                         u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5925 {
5926         struct extent_map *em;
5927         struct map_lookup *map;
5928         u64 offset;
5929         u64 stripe_offset;
5930         u64 stripe_nr;
5931         u64 stripe_len;
5932         u64 raid56_full_stripe_start = (u64)-1;
5933         int data_stripes;
5934         int ret = 0;
5935
5936         ASSERT(op != BTRFS_MAP_DISCARD);
5937
5938         em = btrfs_get_chunk_map(fs_info, logical, len);
5939         if (IS_ERR(em))
5940                 return PTR_ERR(em);
5941
5942         map = em->map_lookup;
5943         /* Offset of this logical address in the chunk */
5944         offset = logical - em->start;
5945         /* Len of a stripe in a chunk */
5946         stripe_len = map->stripe_len;
5947         /* Stripe wher this block falls in */
5948         stripe_nr = div64_u64(offset, stripe_len);
5949         /* Offset of stripe in the chunk */
5950         stripe_offset = stripe_nr * stripe_len;
5951         if (offset < stripe_offset) {
5952                 btrfs_crit(fs_info,
5953 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5954                         stripe_offset, offset, em->start, logical, stripe_len);
5955                 ret = -EINVAL;
5956                 goto out;
5957         }
5958
5959         /* stripe_offset is the offset of this block in its stripe */
5960         stripe_offset = offset - stripe_offset;
5961         data_stripes = nr_data_stripes(map);
5962
5963         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5964                 u64 max_len = stripe_len - stripe_offset;
5965
5966                 /*
5967                  * In case of raid56, we need to know the stripe aligned start
5968                  */
5969                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5970                         unsigned long full_stripe_len = stripe_len * data_stripes;
5971                         raid56_full_stripe_start = offset;
5972
5973                         /*
5974                          * Allow a write of a full stripe, but make sure we
5975                          * don't allow straddling of stripes
5976                          */
5977                         raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5978                                         full_stripe_len);
5979                         raid56_full_stripe_start *= full_stripe_len;
5980
5981                         /*
5982                          * For writes to RAID[56], allow a full stripeset across
5983                          * all disks. For other RAID types and for RAID[56]
5984                          * reads, just allow a single stripe (on a single disk).
5985                          */
5986                         if (op == BTRFS_MAP_WRITE) {
5987                                 max_len = stripe_len * data_stripes -
5988                                           (offset - raid56_full_stripe_start);
5989                         }
5990                 }
5991                 len = min_t(u64, em->len - offset, max_len);
5992         } else {
5993                 len = em->len - offset;
5994         }
5995
5996         io_geom->len = len;
5997         io_geom->offset = offset;
5998         io_geom->stripe_len = stripe_len;
5999         io_geom->stripe_nr = stripe_nr;
6000         io_geom->stripe_offset = stripe_offset;
6001         io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6002
6003 out:
6004         /* once for us */
6005         free_extent_map(em);
6006         return ret;
6007 }
6008
6009 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6010                              enum btrfs_map_op op,
6011                              u64 logical, u64 *length,
6012                              struct btrfs_bio **bbio_ret,
6013                              int mirror_num, int need_raid_map)
6014 {
6015         struct extent_map *em;
6016         struct map_lookup *map;
6017         u64 stripe_offset;
6018         u64 stripe_nr;
6019         u64 stripe_len;
6020         u32 stripe_index;
6021         int data_stripes;
6022         int i;
6023         int ret = 0;
6024         int num_stripes;
6025         int max_errors = 0;
6026         int tgtdev_indexes = 0;
6027         struct btrfs_bio *bbio = NULL;
6028         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6029         int dev_replace_is_ongoing = 0;
6030         int num_alloc_stripes;
6031         int patch_the_first_stripe_for_dev_replace = 0;
6032         u64 physical_to_patch_in_first_stripe = 0;
6033         u64 raid56_full_stripe_start = (u64)-1;
6034         struct btrfs_io_geometry geom;
6035
6036         ASSERT(bbio_ret);
6037         ASSERT(op != BTRFS_MAP_DISCARD);
6038
6039         ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
6040         if (ret < 0)
6041                 return ret;
6042
6043         em = btrfs_get_chunk_map(fs_info, logical, *length);
6044         ASSERT(!IS_ERR(em));
6045         map = em->map_lookup;
6046
6047         *length = geom.len;
6048         stripe_len = geom.stripe_len;
6049         stripe_nr = geom.stripe_nr;
6050         stripe_offset = geom.stripe_offset;
6051         raid56_full_stripe_start = geom.raid56_stripe_offset;
6052         data_stripes = nr_data_stripes(map);
6053
6054         down_read(&dev_replace->rwsem);
6055         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6056         /*
6057          * Hold the semaphore for read during the whole operation, write is
6058          * requested at commit time but must wait.
6059          */
6060         if (!dev_replace_is_ongoing)
6061                 up_read(&dev_replace->rwsem);
6062
6063         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6064             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6065                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6066                                                     dev_replace->srcdev->devid,
6067                                                     &mirror_num,
6068                                             &physical_to_patch_in_first_stripe);
6069                 if (ret)
6070                         goto out;
6071                 else
6072                         patch_the_first_stripe_for_dev_replace = 1;
6073         } else if (mirror_num > map->num_stripes) {
6074                 mirror_num = 0;
6075         }
6076
6077         num_stripes = 1;
6078         stripe_index = 0;
6079         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6080                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6081                                 &stripe_index);
6082                 if (!need_full_stripe(op))
6083                         mirror_num = 1;
6084         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6085                 if (need_full_stripe(op))
6086                         num_stripes = map->num_stripes;
6087                 else if (mirror_num)
6088                         stripe_index = mirror_num - 1;
6089                 else {
6090                         stripe_index = find_live_mirror(fs_info, map, 0,
6091                                             dev_replace_is_ongoing);
6092                         mirror_num = stripe_index + 1;
6093                 }
6094
6095         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6096                 if (need_full_stripe(op)) {
6097                         num_stripes = map->num_stripes;
6098                 } else if (mirror_num) {
6099                         stripe_index = mirror_num - 1;
6100                 } else {
6101                         mirror_num = 1;
6102                 }
6103
6104         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6105                 u32 factor = map->num_stripes / map->sub_stripes;
6106
6107                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6108                 stripe_index *= map->sub_stripes;
6109
6110                 if (need_full_stripe(op))
6111                         num_stripes = map->sub_stripes;
6112                 else if (mirror_num)
6113                         stripe_index += mirror_num - 1;
6114                 else {
6115                         int old_stripe_index = stripe_index;
6116                         stripe_index = find_live_mirror(fs_info, map,
6117                                               stripe_index,
6118                                               dev_replace_is_ongoing);
6119                         mirror_num = stripe_index - old_stripe_index + 1;
6120                 }
6121
6122         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6123                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6124                         /* push stripe_nr back to the start of the full stripe */
6125                         stripe_nr = div64_u64(raid56_full_stripe_start,
6126                                         stripe_len * data_stripes);
6127
6128                         /* RAID[56] write or recovery. Return all stripes */
6129                         num_stripes = map->num_stripes;
6130                         max_errors = nr_parity_stripes(map);
6131
6132                         *length = map->stripe_len;
6133                         stripe_index = 0;
6134                         stripe_offset = 0;
6135                 } else {
6136                         /*
6137                          * Mirror #0 or #1 means the original data block.
6138                          * Mirror #2 is RAID5 parity block.
6139                          * Mirror #3 is RAID6 Q block.
6140                          */
6141                         stripe_nr = div_u64_rem(stripe_nr,
6142                                         data_stripes, &stripe_index);
6143                         if (mirror_num > 1)
6144                                 stripe_index = data_stripes + mirror_num - 2;
6145
6146                         /* We distribute the parity blocks across stripes */
6147                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6148                                         &stripe_index);
6149                         if (!need_full_stripe(op) && mirror_num <= 1)
6150                                 mirror_num = 1;
6151                 }
6152         } else {
6153                 /*
6154                  * after this, stripe_nr is the number of stripes on this
6155                  * device we have to walk to find the data, and stripe_index is
6156                  * the number of our device in the stripe array
6157                  */
6158                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6159                                 &stripe_index);
6160                 mirror_num = stripe_index + 1;
6161         }
6162         if (stripe_index >= map->num_stripes) {
6163                 btrfs_crit(fs_info,
6164                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6165                            stripe_index, map->num_stripes);
6166                 ret = -EINVAL;
6167                 goto out;
6168         }
6169
6170         num_alloc_stripes = num_stripes;
6171         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6172                 if (op == BTRFS_MAP_WRITE)
6173                         num_alloc_stripes <<= 1;
6174                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6175                         num_alloc_stripes++;
6176                 tgtdev_indexes = num_stripes;
6177         }
6178
6179         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6180         if (!bbio) {
6181                 ret = -ENOMEM;
6182                 goto out;
6183         }
6184
6185         for (i = 0; i < num_stripes; i++) {
6186                 bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6187                         stripe_offset + stripe_nr * map->stripe_len;
6188                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6189                 stripe_index++;
6190         }
6191
6192         /* build raid_map */
6193         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6194             (need_full_stripe(op) || mirror_num > 1)) {
6195                 u64 tmp;
6196                 unsigned rot;
6197
6198                 /* Work out the disk rotation on this stripe-set */
6199                 div_u64_rem(stripe_nr, num_stripes, &rot);
6200
6201                 /* Fill in the logical address of each stripe */
6202                 tmp = stripe_nr * data_stripes;
6203                 for (i = 0; i < data_stripes; i++)
6204                         bbio->raid_map[(i+rot) % num_stripes] =
6205                                 em->start + (tmp + i) * map->stripe_len;
6206
6207                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6208                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6209                         bbio->raid_map[(i+rot+1) % num_stripes] =
6210                                 RAID6_Q_STRIPE;
6211
6212                 sort_parity_stripes(bbio, num_stripes);
6213         }
6214
6215         if (need_full_stripe(op))
6216                 max_errors = btrfs_chunk_max_errors(map);
6217
6218         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6219             need_full_stripe(op)) {
6220                 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6221                                           &max_errors);
6222         }
6223
6224         *bbio_ret = bbio;
6225         bbio->map_type = map->type;
6226         bbio->num_stripes = num_stripes;
6227         bbio->max_errors = max_errors;
6228         bbio->mirror_num = mirror_num;
6229
6230         /*
6231          * this is the case that REQ_READ && dev_replace_is_ongoing &&
6232          * mirror_num == num_stripes + 1 && dev_replace target drive is
6233          * available as a mirror
6234          */
6235         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6236                 WARN_ON(num_stripes > 1);
6237                 bbio->stripes[0].dev = dev_replace->tgtdev;
6238                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6239                 bbio->mirror_num = map->num_stripes + 1;
6240         }
6241 out:
6242         if (dev_replace_is_ongoing) {
6243                 lockdep_assert_held(&dev_replace->rwsem);
6244                 /* Unlock and let waiting writers proceed */
6245                 up_read(&dev_replace->rwsem);
6246         }
6247         free_extent_map(em);
6248         return ret;
6249 }
6250
6251 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6252                       u64 logical, u64 *length,
6253                       struct btrfs_bio **bbio_ret, int mirror_num)
6254 {
6255         if (op == BTRFS_MAP_DISCARD)
6256                 return __btrfs_map_block_for_discard(fs_info, logical,
6257                                                      length, bbio_ret);
6258
6259         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6260                                  mirror_num, 0);
6261 }
6262
6263 /* For Scrub/replace */
6264 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6265                      u64 logical, u64 *length,
6266                      struct btrfs_bio **bbio_ret)
6267 {
6268         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6269 }
6270
6271 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6272 {
6273         bio->bi_private = bbio->private;
6274         bio->bi_end_io = bbio->end_io;
6275         bio_endio(bio);
6276
6277         btrfs_put_bbio(bbio);
6278 }
6279
6280 static void btrfs_end_bio(struct bio *bio)
6281 {
6282         struct btrfs_bio *bbio = bio->bi_private;
6283         int is_orig_bio = 0;
6284
6285         if (bio->bi_status) {
6286                 atomic_inc(&bbio->error);
6287                 if (bio->bi_status == BLK_STS_IOERR ||
6288                     bio->bi_status == BLK_STS_TARGET) {
6289                         struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6290
6291                         ASSERT(dev->bdev);
6292                         if (bio_op(bio) == REQ_OP_WRITE)
6293                                 btrfs_dev_stat_inc_and_print(dev,
6294                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6295                         else if (!(bio->bi_opf & REQ_RAHEAD))
6296                                 btrfs_dev_stat_inc_and_print(dev,
6297                                                 BTRFS_DEV_STAT_READ_ERRS);
6298                         if (bio->bi_opf & REQ_PREFLUSH)
6299                                 btrfs_dev_stat_inc_and_print(dev,
6300                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6301                 }
6302         }
6303
6304         if (bio == bbio->orig_bio)
6305                 is_orig_bio = 1;
6306
6307         btrfs_bio_counter_dec(bbio->fs_info);
6308
6309         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6310                 if (!is_orig_bio) {
6311                         bio_put(bio);
6312                         bio = bbio->orig_bio;
6313                 }
6314
6315                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6316                 /* only send an error to the higher layers if it is
6317                  * beyond the tolerance of the btrfs bio
6318                  */
6319                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6320                         bio->bi_status = BLK_STS_IOERR;
6321                 } else {
6322                         /*
6323                          * this bio is actually up to date, we didn't
6324                          * go over the max number of errors
6325                          */
6326                         bio->bi_status = BLK_STS_OK;
6327                 }
6328
6329                 btrfs_end_bbio(bbio, bio);
6330         } else if (!is_orig_bio) {
6331                 bio_put(bio);
6332         }
6333 }
6334
6335 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6336                               u64 physical, struct btrfs_device *dev)
6337 {
6338         struct btrfs_fs_info *fs_info = bbio->fs_info;
6339
6340         bio->bi_private = bbio;
6341         btrfs_io_bio(bio)->device = dev;
6342         bio->bi_end_io = btrfs_end_bio;
6343         bio->bi_iter.bi_sector = physical >> 9;
6344         btrfs_debug_in_rcu(fs_info,
6345         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6346                 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6347                 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6348                 dev->devid, bio->bi_iter.bi_size);
6349         bio_set_dev(bio, dev->bdev);
6350
6351         btrfs_bio_counter_inc_noblocked(fs_info);
6352
6353         btrfsic_submit_bio(bio);
6354 }
6355
6356 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6357 {
6358         atomic_inc(&bbio->error);
6359         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6360                 /* Should be the original bio. */
6361                 WARN_ON(bio != bbio->orig_bio);
6362
6363                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6364                 bio->bi_iter.bi_sector = logical >> 9;
6365                 if (atomic_read(&bbio->error) > bbio->max_errors)
6366                         bio->bi_status = BLK_STS_IOERR;
6367                 else
6368                         bio->bi_status = BLK_STS_OK;
6369                 btrfs_end_bbio(bbio, bio);
6370         }
6371 }
6372
6373 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6374                            int mirror_num)
6375 {
6376         struct btrfs_device *dev;
6377         struct bio *first_bio = bio;
6378         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6379         u64 length = 0;
6380         u64 map_length;
6381         int ret;
6382         int dev_nr;
6383         int total_devs;
6384         struct btrfs_bio *bbio = NULL;
6385
6386         length = bio->bi_iter.bi_size;
6387         map_length = length;
6388
6389         btrfs_bio_counter_inc_blocked(fs_info);
6390         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6391                                 &map_length, &bbio, mirror_num, 1);
6392         if (ret) {
6393                 btrfs_bio_counter_dec(fs_info);
6394                 return errno_to_blk_status(ret);
6395         }
6396
6397         total_devs = bbio->num_stripes;
6398         bbio->orig_bio = first_bio;
6399         bbio->private = first_bio->bi_private;
6400         bbio->end_io = first_bio->bi_end_io;
6401         bbio->fs_info = fs_info;
6402         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6403
6404         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6405             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6406                 /* In this case, map_length has been set to the length of
6407                    a single stripe; not the whole write */
6408                 if (bio_op(bio) == REQ_OP_WRITE) {
6409                         ret = raid56_parity_write(fs_info, bio, bbio,
6410                                                   map_length);
6411                 } else {
6412                         ret = raid56_parity_recover(fs_info, bio, bbio,
6413                                                     map_length, mirror_num, 1);
6414                 }
6415
6416                 btrfs_bio_counter_dec(fs_info);
6417                 return errno_to_blk_status(ret);
6418         }
6419
6420         if (map_length < length) {
6421                 btrfs_crit(fs_info,
6422                            "mapping failed logical %llu bio len %llu len %llu",
6423                            logical, length, map_length);
6424                 BUG();
6425         }
6426
6427         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6428                 dev = bbio->stripes[dev_nr].dev;
6429                 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6430                                                    &dev->dev_state) ||
6431                     (bio_op(first_bio) == REQ_OP_WRITE &&
6432                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6433                         bbio_error(bbio, first_bio, logical);
6434                         continue;
6435                 }
6436
6437                 if (dev_nr < total_devs - 1)
6438                         bio = btrfs_bio_clone(first_bio);
6439                 else
6440                         bio = first_bio;
6441
6442                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6443         }
6444         btrfs_bio_counter_dec(fs_info);
6445         return BLK_STS_OK;
6446 }
6447
6448 /*
6449  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6450  * return NULL.
6451  *
6452  * If devid and uuid are both specified, the match must be exact, otherwise
6453  * only devid is used.
6454  *
6455  * If @seed is true, traverse through the seed devices.
6456  */
6457 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6458                                        u64 devid, u8 *uuid, u8 *fsid,
6459                                        bool seed)
6460 {
6461         struct btrfs_device *device;
6462
6463         while (fs_devices) {
6464                 if (!fsid ||
6465                     !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6466                         list_for_each_entry(device, &fs_devices->devices,
6467                                             dev_list) {
6468                                 if (device->devid == devid &&
6469                                     (!uuid || memcmp(device->uuid, uuid,
6470                                                      BTRFS_UUID_SIZE) == 0))
6471                                         return device;
6472                         }
6473                 }
6474                 if (seed)
6475                         fs_devices = fs_devices->seed;
6476                 else
6477                         return NULL;
6478         }
6479         return NULL;
6480 }
6481
6482 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6483                                             u64 devid, u8 *dev_uuid)
6484 {
6485         struct btrfs_device *device;
6486
6487         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6488         if (IS_ERR(device))
6489                 return device;
6490
6491         list_add(&device->dev_list, &fs_devices->devices);
6492         device->fs_devices = fs_devices;
6493         fs_devices->num_devices++;
6494
6495         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6496         fs_devices->missing_devices++;
6497
6498         return device;
6499 }
6500
6501 /**
6502  * btrfs_alloc_device - allocate struct btrfs_device
6503  * @fs_info:    used only for generating a new devid, can be NULL if
6504  *              devid is provided (i.e. @devid != NULL).
6505  * @devid:      a pointer to devid for this device.  If NULL a new devid
6506  *              is generated.
6507  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6508  *              is generated.
6509  *
6510  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6511  * on error.  Returned struct is not linked onto any lists and must be
6512  * destroyed with btrfs_free_device.
6513  */
6514 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6515                                         const u64 *devid,
6516                                         const u8 *uuid)
6517 {
6518         struct btrfs_device *dev;
6519         u64 tmp;
6520
6521         if (WARN_ON(!devid && !fs_info))
6522                 return ERR_PTR(-EINVAL);
6523
6524         dev = __alloc_device();
6525         if (IS_ERR(dev))
6526                 return dev;
6527
6528         if (devid)
6529                 tmp = *devid;
6530         else {
6531                 int ret;
6532
6533                 ret = find_next_devid(fs_info, &tmp);
6534                 if (ret) {
6535                         btrfs_free_device(dev);
6536                         return ERR_PTR(ret);
6537                 }
6538         }
6539         dev->devid = tmp;
6540
6541         if (uuid)
6542                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6543         else
6544                 generate_random_uuid(dev->uuid);
6545
6546         return dev;
6547 }
6548
6549 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6550                                         u64 devid, u8 *uuid, bool error)
6551 {
6552         if (error)
6553                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6554                               devid, uuid);
6555         else
6556                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6557                               devid, uuid);
6558 }
6559
6560 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6561 {
6562         int index = btrfs_bg_flags_to_raid_index(type);
6563         int ncopies = btrfs_raid_array[index].ncopies;
6564         const int nparity = btrfs_raid_array[index].nparity;
6565         int data_stripes;
6566
6567         if (nparity)
6568                 data_stripes = num_stripes - nparity;
6569         else
6570                 data_stripes = num_stripes / ncopies;
6571
6572         return div_u64(chunk_len, data_stripes);
6573 }
6574
6575 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6576                           struct btrfs_chunk *chunk)
6577 {
6578         struct btrfs_fs_info *fs_info = leaf->fs_info;
6579         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6580         struct map_lookup *map;
6581         struct extent_map *em;
6582         u64 logical;
6583         u64 length;
6584         u64 devid;
6585         u8 uuid[BTRFS_UUID_SIZE];
6586         int num_stripes;
6587         int ret;
6588         int i;
6589
6590         logical = key->offset;
6591         length = btrfs_chunk_length(leaf, chunk);
6592         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6593
6594         /*
6595          * Only need to verify chunk item if we're reading from sys chunk array,
6596          * as chunk item in tree block is already verified by tree-checker.
6597          */
6598         if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6599                 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6600                 if (ret)
6601                         return ret;
6602         }
6603
6604         read_lock(&map_tree->lock);
6605         em = lookup_extent_mapping(map_tree, logical, 1);
6606         read_unlock(&map_tree->lock);
6607
6608         /* already mapped? */
6609         if (em && em->start <= logical && em->start + em->len > logical) {
6610                 free_extent_map(em);
6611                 return 0;
6612         } else if (em) {
6613                 free_extent_map(em);
6614         }
6615
6616         em = alloc_extent_map();
6617         if (!em)
6618                 return -ENOMEM;
6619         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6620         if (!map) {
6621                 free_extent_map(em);
6622                 return -ENOMEM;
6623         }
6624
6625         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6626         em->map_lookup = map;
6627         em->start = logical;
6628         em->len = length;
6629         em->orig_start = 0;
6630         em->block_start = 0;
6631         em->block_len = em->len;
6632
6633         map->num_stripes = num_stripes;
6634         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6635         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6636         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6637         map->type = btrfs_chunk_type(leaf, chunk);
6638         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6639         map->verified_stripes = 0;
6640         em->orig_block_len = calc_stripe_length(map->type, em->len,
6641                                                 map->num_stripes);
6642         for (i = 0; i < num_stripes; i++) {
6643                 map->stripes[i].physical =
6644                         btrfs_stripe_offset_nr(leaf, chunk, i);
6645                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6646                 read_extent_buffer(leaf, uuid, (unsigned long)
6647                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6648                                    BTRFS_UUID_SIZE);
6649                 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6650                                                         devid, uuid, NULL, true);
6651                 if (!map->stripes[i].dev &&
6652                     !btrfs_test_opt(fs_info, DEGRADED)) {
6653                         free_extent_map(em);
6654                         btrfs_report_missing_device(fs_info, devid, uuid, true);
6655                         return -ENOENT;
6656                 }
6657                 if (!map->stripes[i].dev) {
6658                         map->stripes[i].dev =
6659                                 add_missing_dev(fs_info->fs_devices, devid,
6660                                                 uuid);
6661                         if (IS_ERR(map->stripes[i].dev)) {
6662                                 free_extent_map(em);
6663                                 btrfs_err(fs_info,
6664                                         "failed to init missing dev %llu: %ld",
6665                                         devid, PTR_ERR(map->stripes[i].dev));
6666                                 return PTR_ERR(map->stripes[i].dev);
6667                         }
6668                         btrfs_report_missing_device(fs_info, devid, uuid, false);
6669                 }
6670                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6671                                 &(map->stripes[i].dev->dev_state));
6672
6673         }
6674
6675         write_lock(&map_tree->lock);
6676         ret = add_extent_mapping(map_tree, em, 0);
6677         write_unlock(&map_tree->lock);
6678         if (ret < 0) {
6679                 btrfs_err(fs_info,
6680                           "failed to add chunk map, start=%llu len=%llu: %d",
6681                           em->start, em->len, ret);
6682         }
6683         free_extent_map(em);
6684
6685         return ret;
6686 }
6687
6688 static void fill_device_from_item(struct extent_buffer *leaf,
6689                                  struct btrfs_dev_item *dev_item,
6690                                  struct btrfs_device *device)
6691 {
6692         unsigned long ptr;
6693
6694         device->devid = btrfs_device_id(leaf, dev_item);
6695         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6696         device->total_bytes = device->disk_total_bytes;
6697         device->commit_total_bytes = device->disk_total_bytes;
6698         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6699         device->commit_bytes_used = device->bytes_used;
6700         device->type = btrfs_device_type(leaf, dev_item);
6701         device->io_align = btrfs_device_io_align(leaf, dev_item);
6702         device->io_width = btrfs_device_io_width(leaf, dev_item);
6703         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6704         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6705         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6706
6707         ptr = btrfs_device_uuid(dev_item);
6708         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6709 }
6710
6711 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6712                                                   u8 *fsid)
6713 {
6714         struct btrfs_fs_devices *fs_devices;
6715         int ret;
6716
6717         lockdep_assert_held(&uuid_mutex);
6718         ASSERT(fsid);
6719
6720         fs_devices = fs_info->fs_devices->seed;
6721         while (fs_devices) {
6722                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6723                         return fs_devices;
6724
6725                 fs_devices = fs_devices->seed;
6726         }
6727
6728         fs_devices = find_fsid(fsid, NULL);
6729         if (!fs_devices) {
6730                 if (!btrfs_test_opt(fs_info, DEGRADED))
6731                         return ERR_PTR(-ENOENT);
6732
6733                 fs_devices = alloc_fs_devices(fsid, NULL);
6734                 if (IS_ERR(fs_devices))
6735                         return fs_devices;
6736
6737                 fs_devices->seeding = true;
6738                 fs_devices->opened = 1;
6739                 return fs_devices;
6740         }
6741
6742         fs_devices = clone_fs_devices(fs_devices);
6743         if (IS_ERR(fs_devices))
6744                 return fs_devices;
6745
6746         ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6747         if (ret) {
6748                 free_fs_devices(fs_devices);
6749                 fs_devices = ERR_PTR(ret);
6750                 goto out;
6751         }
6752
6753         if (!fs_devices->seeding) {
6754                 close_fs_devices(fs_devices);
6755                 free_fs_devices(fs_devices);
6756                 fs_devices = ERR_PTR(-EINVAL);
6757                 goto out;
6758         }
6759
6760         fs_devices->seed = fs_info->fs_devices->seed;
6761         fs_info->fs_devices->seed = fs_devices;
6762 out:
6763         return fs_devices;
6764 }
6765
6766 static int read_one_dev(struct extent_buffer *leaf,
6767                         struct btrfs_dev_item *dev_item)
6768 {
6769         struct btrfs_fs_info *fs_info = leaf->fs_info;
6770         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6771         struct btrfs_device *device;
6772         u64 devid;
6773         int ret;
6774         u8 fs_uuid[BTRFS_FSID_SIZE];
6775         u8 dev_uuid[BTRFS_UUID_SIZE];
6776
6777         devid = btrfs_device_id(leaf, dev_item);
6778         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6779                            BTRFS_UUID_SIZE);
6780         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6781                            BTRFS_FSID_SIZE);
6782
6783         if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6784                 fs_devices = open_seed_devices(fs_info, fs_uuid);
6785                 if (IS_ERR(fs_devices))
6786                         return PTR_ERR(fs_devices);
6787         }
6788
6789         device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6790                                    fs_uuid, true);
6791         if (!device) {
6792                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6793                         btrfs_report_missing_device(fs_info, devid,
6794                                                         dev_uuid, true);
6795                         return -ENOENT;
6796                 }
6797
6798                 device = add_missing_dev(fs_devices, devid, dev_uuid);
6799                 if (IS_ERR(device)) {
6800                         btrfs_err(fs_info,
6801                                 "failed to add missing dev %llu: %ld",
6802                                 devid, PTR_ERR(device));
6803                         return PTR_ERR(device);
6804                 }
6805                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6806         } else {
6807                 if (!device->bdev) {
6808                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
6809                                 btrfs_report_missing_device(fs_info,
6810                                                 devid, dev_uuid, true);
6811                                 return -ENOENT;
6812                         }
6813                         btrfs_report_missing_device(fs_info, devid,
6814                                                         dev_uuid, false);
6815                 }
6816
6817                 if (!device->bdev &&
6818                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6819                         /*
6820                          * this happens when a device that was properly setup
6821                          * in the device info lists suddenly goes bad.
6822                          * device->bdev is NULL, and so we have to set
6823                          * device->missing to one here
6824                          */
6825                         device->fs_devices->missing_devices++;
6826                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6827                 }
6828
6829                 /* Move the device to its own fs_devices */
6830                 if (device->fs_devices != fs_devices) {
6831                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6832                                                         &device->dev_state));
6833
6834                         list_move(&device->dev_list, &fs_devices->devices);
6835                         device->fs_devices->num_devices--;
6836                         fs_devices->num_devices++;
6837
6838                         device->fs_devices->missing_devices--;
6839                         fs_devices->missing_devices++;
6840
6841                         device->fs_devices = fs_devices;
6842                 }
6843         }
6844
6845         if (device->fs_devices != fs_info->fs_devices) {
6846                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6847                 if (device->generation !=
6848                     btrfs_device_generation(leaf, dev_item))
6849                         return -EINVAL;
6850         }
6851
6852         fill_device_from_item(leaf, dev_item, device);
6853         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6854         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6855            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6856                 device->fs_devices->total_rw_bytes += device->total_bytes;
6857                 atomic64_add(device->total_bytes - device->bytes_used,
6858                                 &fs_info->free_chunk_space);
6859         }
6860         ret = 0;
6861         return ret;
6862 }
6863
6864 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6865 {
6866         struct btrfs_root *root = fs_info->tree_root;
6867         struct btrfs_super_block *super_copy = fs_info->super_copy;
6868         struct extent_buffer *sb;
6869         struct btrfs_disk_key *disk_key;
6870         struct btrfs_chunk *chunk;
6871         u8 *array_ptr;
6872         unsigned long sb_array_offset;
6873         int ret = 0;
6874         u32 num_stripes;
6875         u32 array_size;
6876         u32 len = 0;
6877         u32 cur_offset;
6878         u64 type;
6879         struct btrfs_key key;
6880
6881         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6882         /*
6883          * This will create extent buffer of nodesize, superblock size is
6884          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6885          * overallocate but we can keep it as-is, only the first page is used.
6886          */
6887         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6888         if (IS_ERR(sb))
6889                 return PTR_ERR(sb);
6890         set_extent_buffer_uptodate(sb);
6891         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6892         /*
6893          * The sb extent buffer is artificial and just used to read the system array.
6894          * set_extent_buffer_uptodate() call does not properly mark all it's
6895          * pages up-to-date when the page is larger: extent does not cover the
6896          * whole page and consequently check_page_uptodate does not find all
6897          * the page's extents up-to-date (the hole beyond sb),
6898          * write_extent_buffer then triggers a WARN_ON.
6899          *
6900          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6901          * but sb spans only this function. Add an explicit SetPageUptodate call
6902          * to silence the warning eg. on PowerPC 64.
6903          */
6904         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6905                 SetPageUptodate(sb->pages[0]);
6906
6907         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6908         array_size = btrfs_super_sys_array_size(super_copy);
6909
6910         array_ptr = super_copy->sys_chunk_array;
6911         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6912         cur_offset = 0;
6913
6914         while (cur_offset < array_size) {
6915                 disk_key = (struct btrfs_disk_key *)array_ptr;
6916                 len = sizeof(*disk_key);
6917                 if (cur_offset + len > array_size)
6918                         goto out_short_read;
6919
6920                 btrfs_disk_key_to_cpu(&key, disk_key);
6921
6922                 array_ptr += len;
6923                 sb_array_offset += len;
6924                 cur_offset += len;
6925
6926                 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
6927                         btrfs_err(fs_info,
6928                             "unexpected item type %u in sys_array at offset %u",
6929                                   (u32)key.type, cur_offset);
6930                         ret = -EIO;
6931                         break;
6932                 }
6933
6934                 chunk = (struct btrfs_chunk *)sb_array_offset;
6935                 /*
6936                  * At least one btrfs_chunk with one stripe must be present,
6937                  * exact stripe count check comes afterwards
6938                  */
6939                 len = btrfs_chunk_item_size(1);
6940                 if (cur_offset + len > array_size)
6941                         goto out_short_read;
6942
6943                 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6944                 if (!num_stripes) {
6945                         btrfs_err(fs_info,
6946                         "invalid number of stripes %u in sys_array at offset %u",
6947                                   num_stripes, cur_offset);
6948                         ret = -EIO;
6949                         break;
6950                 }
6951
6952                 type = btrfs_chunk_type(sb, chunk);
6953                 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6954                         btrfs_err(fs_info,
6955                         "invalid chunk type %llu in sys_array at offset %u",
6956                                   type, cur_offset);
6957                         ret = -EIO;
6958                         break;
6959                 }
6960
6961                 len = btrfs_chunk_item_size(num_stripes);
6962                 if (cur_offset + len > array_size)
6963                         goto out_short_read;
6964
6965                 ret = read_one_chunk(&key, sb, chunk);
6966                 if (ret)
6967                         break;
6968
6969                 array_ptr += len;
6970                 sb_array_offset += len;
6971                 cur_offset += len;
6972         }
6973         clear_extent_buffer_uptodate(sb);
6974         free_extent_buffer_stale(sb);
6975         return ret;
6976
6977 out_short_read:
6978         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6979                         len, cur_offset);
6980         clear_extent_buffer_uptodate(sb);
6981         free_extent_buffer_stale(sb);
6982         return -EIO;
6983 }
6984
6985 /*
6986  * Check if all chunks in the fs are OK for read-write degraded mount
6987  *
6988  * If the @failing_dev is specified, it's accounted as missing.
6989  *
6990  * Return true if all chunks meet the minimal RW mount requirements.
6991  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6992  */
6993 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6994                                         struct btrfs_device *failing_dev)
6995 {
6996         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6997         struct extent_map *em;
6998         u64 next_start = 0;
6999         bool ret = true;
7000
7001         read_lock(&map_tree->lock);
7002         em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7003         read_unlock(&map_tree->lock);
7004         /* No chunk at all? Return false anyway */
7005         if (!em) {
7006                 ret = false;
7007                 goto out;
7008         }
7009         while (em) {
7010                 struct map_lookup *map;
7011                 int missing = 0;
7012                 int max_tolerated;
7013                 int i;
7014
7015                 map = em->map_lookup;
7016                 max_tolerated =
7017                         btrfs_get_num_tolerated_disk_barrier_failures(
7018                                         map->type);
7019                 for (i = 0; i < map->num_stripes; i++) {
7020                         struct btrfs_device *dev = map->stripes[i].dev;
7021
7022                         if (!dev || !dev->bdev ||
7023                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7024                             dev->last_flush_error)
7025                                 missing++;
7026                         else if (failing_dev && failing_dev == dev)
7027                                 missing++;
7028                 }
7029                 if (missing > max_tolerated) {
7030                         if (!failing_dev)
7031                                 btrfs_warn(fs_info,
7032         "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7033                                    em->start, missing, max_tolerated);
7034                         free_extent_map(em);
7035                         ret = false;
7036                         goto out;
7037                 }
7038                 next_start = extent_map_end(em);
7039                 free_extent_map(em);
7040
7041                 read_lock(&map_tree->lock);
7042                 em = lookup_extent_mapping(map_tree, next_start,
7043                                            (u64)(-1) - next_start);
7044                 read_unlock(&map_tree->lock);
7045         }
7046 out:
7047         return ret;
7048 }
7049
7050 static void readahead_tree_node_children(struct extent_buffer *node)
7051 {
7052         int i;
7053         const int nr_items = btrfs_header_nritems(node);
7054
7055         for (i = 0; i < nr_items; i++) {
7056                 u64 start;
7057
7058                 start = btrfs_node_blockptr(node, i);
7059                 readahead_tree_block(node->fs_info, start);
7060         }
7061 }
7062
7063 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7064 {
7065         struct btrfs_root *root = fs_info->chunk_root;
7066         struct btrfs_path *path;
7067         struct extent_buffer *leaf;
7068         struct btrfs_key key;
7069         struct btrfs_key found_key;
7070         int ret;
7071         int slot;
7072         u64 total_dev = 0;
7073         u64 last_ra_node = 0;
7074
7075         path = btrfs_alloc_path();
7076         if (!path)
7077                 return -ENOMEM;
7078
7079         /*
7080          * uuid_mutex is needed only if we are mounting a sprout FS
7081          * otherwise we don't need it.
7082          */
7083         mutex_lock(&uuid_mutex);
7084
7085         /*
7086          * It is possible for mount and umount to race in such a way that
7087          * we execute this code path, but open_fs_devices failed to clear
7088          * total_rw_bytes. We certainly want it cleared before reading the
7089          * device items, so clear it here.
7090          */
7091         fs_info->fs_devices->total_rw_bytes = 0;
7092
7093         /*
7094          * Read all device items, and then all the chunk items. All
7095          * device items are found before any chunk item (their object id
7096          * is smaller than the lowest possible object id for a chunk
7097          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7098          */
7099         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7100         key.offset = 0;
7101         key.type = 0;
7102         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7103         if (ret < 0)
7104                 goto error;
7105         while (1) {
7106                 struct extent_buffer *node;
7107
7108                 leaf = path->nodes[0];
7109                 slot = path->slots[0];
7110                 if (slot >= btrfs_header_nritems(leaf)) {
7111                         ret = btrfs_next_leaf(root, path);
7112                         if (ret == 0)
7113                                 continue;
7114                         if (ret < 0)
7115                                 goto error;
7116                         break;
7117                 }
7118                 /*
7119                  * The nodes on level 1 are not locked but we don't need to do
7120                  * that during mount time as nothing else can access the tree
7121                  */
7122                 node = path->nodes[1];
7123                 if (node) {
7124                         if (last_ra_node != node->start) {
7125                                 readahead_tree_node_children(node);
7126                                 last_ra_node = node->start;
7127                         }
7128                 }
7129                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7130                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7131                         struct btrfs_dev_item *dev_item;
7132                         dev_item = btrfs_item_ptr(leaf, slot,
7133                                                   struct btrfs_dev_item);
7134                         ret = read_one_dev(leaf, dev_item);
7135                         if (ret)
7136                                 goto error;
7137                         total_dev++;
7138                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7139                         struct btrfs_chunk *chunk;
7140                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7141                         mutex_lock(&fs_info->chunk_mutex);
7142                         ret = read_one_chunk(&found_key, leaf, chunk);
7143                         mutex_unlock(&fs_info->chunk_mutex);
7144                         if (ret)
7145                                 goto error;
7146                 }
7147                 path->slots[0]++;
7148         }
7149
7150         /*
7151          * After loading chunk tree, we've got all device information,
7152          * do another round of validation checks.
7153          */
7154         if (total_dev != fs_info->fs_devices->total_devices) {
7155                 btrfs_err(fs_info,
7156            "super_num_devices %llu mismatch with num_devices %llu found here",
7157                           btrfs_super_num_devices(fs_info->super_copy),
7158                           total_dev);
7159                 ret = -EINVAL;
7160                 goto error;
7161         }
7162         if (btrfs_super_total_bytes(fs_info->super_copy) <
7163             fs_info->fs_devices->total_rw_bytes) {
7164                 btrfs_err(fs_info,
7165         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7166                           btrfs_super_total_bytes(fs_info->super_copy),
7167                           fs_info->fs_devices->total_rw_bytes);
7168                 ret = -EINVAL;
7169                 goto error;
7170         }
7171         ret = 0;
7172 error:
7173         mutex_unlock(&uuid_mutex);
7174
7175         btrfs_free_path(path);
7176         return ret;
7177 }
7178
7179 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7180 {
7181         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7182         struct btrfs_device *device;
7183
7184         while (fs_devices) {
7185                 mutex_lock(&fs_devices->device_list_mutex);
7186                 list_for_each_entry(device, &fs_devices->devices, dev_list)
7187                         device->fs_info = fs_info;
7188                 mutex_unlock(&fs_devices->device_list_mutex);
7189
7190                 fs_devices = fs_devices->seed;
7191         }
7192 }
7193
7194 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7195                                  const struct btrfs_dev_stats_item *ptr,
7196                                  int index)
7197 {
7198         u64 val;
7199
7200         read_extent_buffer(eb, &val,
7201                            offsetof(struct btrfs_dev_stats_item, values) +
7202                             ((unsigned long)ptr) + (index * sizeof(u64)),
7203                            sizeof(val));
7204         return val;
7205 }
7206
7207 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7208                                       struct btrfs_dev_stats_item *ptr,
7209                                       int index, u64 val)
7210 {
7211         write_extent_buffer(eb, &val,
7212                             offsetof(struct btrfs_dev_stats_item, values) +
7213                              ((unsigned long)ptr) + (index * sizeof(u64)),
7214                             sizeof(val));
7215 }
7216
7217 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7218 {
7219         struct btrfs_key key;
7220         struct btrfs_root *dev_root = fs_info->dev_root;
7221         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7222         struct extent_buffer *eb;
7223         int slot;
7224         int ret = 0;
7225         struct btrfs_device *device;
7226         struct btrfs_path *path = NULL;
7227         int i;
7228
7229         path = btrfs_alloc_path();
7230         if (!path)
7231                 return -ENOMEM;
7232
7233         mutex_lock(&fs_devices->device_list_mutex);
7234         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7235                 int item_size;
7236                 struct btrfs_dev_stats_item *ptr;
7237
7238                 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7239                 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7240                 key.offset = device->devid;
7241                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7242                 if (ret) {
7243                         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7244                                 btrfs_dev_stat_set(device, i, 0);
7245                         device->dev_stats_valid = 1;
7246                         btrfs_release_path(path);
7247                         continue;
7248                 }
7249                 slot = path->slots[0];
7250                 eb = path->nodes[0];
7251                 item_size = btrfs_item_size_nr(eb, slot);
7252
7253                 ptr = btrfs_item_ptr(eb, slot,
7254                                      struct btrfs_dev_stats_item);
7255
7256                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7257                         if (item_size >= (1 + i) * sizeof(__le64))
7258                                 btrfs_dev_stat_set(device, i,
7259                                         btrfs_dev_stats_value(eb, ptr, i));
7260                         else
7261                                 btrfs_dev_stat_set(device, i, 0);
7262                 }
7263
7264                 device->dev_stats_valid = 1;
7265                 btrfs_dev_stat_print_on_load(device);
7266                 btrfs_release_path(path);
7267         }
7268         mutex_unlock(&fs_devices->device_list_mutex);
7269
7270         btrfs_free_path(path);
7271         return ret < 0 ? ret : 0;
7272 }
7273
7274 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7275                                 struct btrfs_device *device)
7276 {
7277         struct btrfs_fs_info *fs_info = trans->fs_info;
7278         struct btrfs_root *dev_root = fs_info->dev_root;
7279         struct btrfs_path *path;
7280         struct btrfs_key key;
7281         struct extent_buffer *eb;
7282         struct btrfs_dev_stats_item *ptr;
7283         int ret;
7284         int i;
7285
7286         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7287         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7288         key.offset = device->devid;
7289
7290         path = btrfs_alloc_path();
7291         if (!path)
7292                 return -ENOMEM;
7293         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7294         if (ret < 0) {
7295                 btrfs_warn_in_rcu(fs_info,
7296                         "error %d while searching for dev_stats item for device %s",
7297                               ret, rcu_str_deref(device->name));
7298                 goto out;
7299         }
7300
7301         if (ret == 0 &&
7302             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7303                 /* need to delete old one and insert a new one */
7304                 ret = btrfs_del_item(trans, dev_root, path);
7305                 if (ret != 0) {
7306                         btrfs_warn_in_rcu(fs_info,
7307                                 "delete too small dev_stats item for device %s failed %d",
7308                                       rcu_str_deref(device->name), ret);
7309                         goto out;
7310                 }
7311                 ret = 1;
7312         }
7313
7314         if (ret == 1) {
7315                 /* need to insert a new item */
7316                 btrfs_release_path(path);
7317                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7318                                               &key, sizeof(*ptr));
7319                 if (ret < 0) {
7320                         btrfs_warn_in_rcu(fs_info,
7321                                 "insert dev_stats item for device %s failed %d",
7322                                 rcu_str_deref(device->name), ret);
7323                         goto out;
7324                 }
7325         }
7326
7327         eb = path->nodes[0];
7328         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7329         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7330                 btrfs_set_dev_stats_value(eb, ptr, i,
7331                                           btrfs_dev_stat_read(device, i));
7332         btrfs_mark_buffer_dirty(eb);
7333
7334 out:
7335         btrfs_free_path(path);
7336         return ret;
7337 }
7338
7339 /*
7340  * called from commit_transaction. Writes all changed device stats to disk.
7341  */
7342 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7343 {
7344         struct btrfs_fs_info *fs_info = trans->fs_info;
7345         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7346         struct btrfs_device *device;
7347         int stats_cnt;
7348         int ret = 0;
7349
7350         mutex_lock(&fs_devices->device_list_mutex);
7351         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7352                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7353                 if (!device->dev_stats_valid || stats_cnt == 0)
7354                         continue;
7355
7356
7357                 /*
7358                  * There is a LOAD-LOAD control dependency between the value of
7359                  * dev_stats_ccnt and updating the on-disk values which requires
7360                  * reading the in-memory counters. Such control dependencies
7361                  * require explicit read memory barriers.
7362                  *
7363                  * This memory barriers pairs with smp_mb__before_atomic in
7364                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7365                  * barrier implied by atomic_xchg in
7366                  * btrfs_dev_stats_read_and_reset
7367                  */
7368                 smp_rmb();
7369
7370                 ret = update_dev_stat_item(trans, device);
7371                 if (!ret)
7372                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7373         }
7374         mutex_unlock(&fs_devices->device_list_mutex);
7375
7376         return ret;
7377 }
7378
7379 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7380 {
7381         btrfs_dev_stat_inc(dev, index);
7382         btrfs_dev_stat_print_on_error(dev);
7383 }
7384
7385 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7386 {
7387         if (!dev->dev_stats_valid)
7388                 return;
7389         btrfs_err_rl_in_rcu(dev->fs_info,
7390                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7391                            rcu_str_deref(dev->name),
7392                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7393                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7394                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7395                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7396                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7397 }
7398
7399 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7400 {
7401         int i;
7402
7403         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7404                 if (btrfs_dev_stat_read(dev, i) != 0)
7405                         break;
7406         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7407                 return; /* all values == 0, suppress message */
7408
7409         btrfs_info_in_rcu(dev->fs_info,
7410                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7411                rcu_str_deref(dev->name),
7412                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7413                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7414                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7415                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7416                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7417 }
7418
7419 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7420                         struct btrfs_ioctl_get_dev_stats *stats)
7421 {
7422         struct btrfs_device *dev;
7423         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7424         int i;
7425
7426         mutex_lock(&fs_devices->device_list_mutex);
7427         dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7428                                 true);
7429         mutex_unlock(&fs_devices->device_list_mutex);
7430
7431         if (!dev) {
7432                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7433                 return -ENODEV;
7434         } else if (!dev->dev_stats_valid) {
7435                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7436                 return -ENODEV;
7437         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7438                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7439                         if (stats->nr_items > i)
7440                                 stats->values[i] =
7441                                         btrfs_dev_stat_read_and_reset(dev, i);
7442                         else
7443                                 btrfs_dev_stat_set(dev, i, 0);
7444                 }
7445                 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7446                            current->comm, task_pid_nr(current));
7447         } else {
7448                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7449                         if (stats->nr_items > i)
7450                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7451         }
7452         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7453                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7454         return 0;
7455 }
7456
7457 /*
7458  * Update the size and bytes used for each device where it changed.  This is
7459  * delayed since we would otherwise get errors while writing out the
7460  * superblocks.
7461  *
7462  * Must be invoked during transaction commit.
7463  */
7464 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7465 {
7466         struct btrfs_device *curr, *next;
7467
7468         ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7469
7470         if (list_empty(&trans->dev_update_list))
7471                 return;
7472
7473         /*
7474          * We don't need the device_list_mutex here.  This list is owned by the
7475          * transaction and the transaction must complete before the device is
7476          * released.
7477          */
7478         mutex_lock(&trans->fs_info->chunk_mutex);
7479         list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7480                                  post_commit_list) {
7481                 list_del_init(&curr->post_commit_list);
7482                 curr->commit_total_bytes = curr->disk_total_bytes;
7483                 curr->commit_bytes_used = curr->bytes_used;
7484         }
7485         mutex_unlock(&trans->fs_info->chunk_mutex);
7486 }
7487
7488 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7489 {
7490         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7491         while (fs_devices) {
7492                 fs_devices->fs_info = fs_info;
7493                 fs_devices = fs_devices->seed;
7494         }
7495 }
7496
7497 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7498 {
7499         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7500         while (fs_devices) {
7501                 fs_devices->fs_info = NULL;
7502                 fs_devices = fs_devices->seed;
7503         }
7504 }
7505
7506 /*
7507  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7508  */
7509 int btrfs_bg_type_to_factor(u64 flags)
7510 {
7511         const int index = btrfs_bg_flags_to_raid_index(flags);
7512
7513         return btrfs_raid_array[index].ncopies;
7514 }
7515
7516
7517
7518 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7519                                  u64 chunk_offset, u64 devid,
7520                                  u64 physical_offset, u64 physical_len)
7521 {
7522         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7523         struct extent_map *em;
7524         struct map_lookup *map;
7525         struct btrfs_device *dev;
7526         u64 stripe_len;
7527         bool found = false;
7528         int ret = 0;
7529         int i;
7530
7531         read_lock(&em_tree->lock);
7532         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7533         read_unlock(&em_tree->lock);
7534
7535         if (!em) {
7536                 btrfs_err(fs_info,
7537 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7538                           physical_offset, devid);
7539                 ret = -EUCLEAN;
7540                 goto out;
7541         }
7542
7543         map = em->map_lookup;
7544         stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7545         if (physical_len != stripe_len) {
7546                 btrfs_err(fs_info,
7547 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7548                           physical_offset, devid, em->start, physical_len,
7549                           stripe_len);
7550                 ret = -EUCLEAN;
7551                 goto out;
7552         }
7553
7554         for (i = 0; i < map->num_stripes; i++) {
7555                 if (map->stripes[i].dev->devid == devid &&
7556                     map->stripes[i].physical == physical_offset) {
7557                         found = true;
7558                         if (map->verified_stripes >= map->num_stripes) {
7559                                 btrfs_err(fs_info,
7560                                 "too many dev extents for chunk %llu found",
7561                                           em->start);
7562                                 ret = -EUCLEAN;
7563                                 goto out;
7564                         }
7565                         map->verified_stripes++;
7566                         break;
7567                 }
7568         }
7569         if (!found) {
7570                 btrfs_err(fs_info,
7571         "dev extent physical offset %llu devid %llu has no corresponding chunk",
7572                         physical_offset, devid);
7573                 ret = -EUCLEAN;
7574         }
7575
7576         /* Make sure no dev extent is beyond device bondary */
7577         dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7578         if (!dev) {
7579                 btrfs_err(fs_info, "failed to find devid %llu", devid);
7580                 ret = -EUCLEAN;
7581                 goto out;
7582         }
7583
7584         /* It's possible this device is a dummy for seed device */
7585         if (dev->disk_total_bytes == 0) {
7586                 dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
7587                                         NULL, false);
7588                 if (!dev) {
7589                         btrfs_err(fs_info, "failed to find seed devid %llu",
7590                                   devid);
7591                         ret = -EUCLEAN;
7592                         goto out;
7593                 }
7594         }
7595
7596         if (physical_offset + physical_len > dev->disk_total_bytes) {
7597                 btrfs_err(fs_info,
7598 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7599                           devid, physical_offset, physical_len,
7600                           dev->disk_total_bytes);
7601                 ret = -EUCLEAN;
7602                 goto out;
7603         }
7604 out:
7605         free_extent_map(em);
7606         return ret;
7607 }
7608
7609 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7610 {
7611         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7612         struct extent_map *em;
7613         struct rb_node *node;
7614         int ret = 0;
7615
7616         read_lock(&em_tree->lock);
7617         for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7618                 em = rb_entry(node, struct extent_map, rb_node);
7619                 if (em->map_lookup->num_stripes !=
7620                     em->map_lookup->verified_stripes) {
7621                         btrfs_err(fs_info,
7622                         "chunk %llu has missing dev extent, have %d expect %d",
7623                                   em->start, em->map_lookup->verified_stripes,
7624                                   em->map_lookup->num_stripes);
7625                         ret = -EUCLEAN;
7626                         goto out;
7627                 }
7628         }
7629 out:
7630         read_unlock(&em_tree->lock);
7631         return ret;
7632 }
7633
7634 /*
7635  * Ensure that all dev extents are mapped to correct chunk, otherwise
7636  * later chunk allocation/free would cause unexpected behavior.
7637  *
7638  * NOTE: This will iterate through the whole device tree, which should be of
7639  * the same size level as the chunk tree.  This slightly increases mount time.
7640  */
7641 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7642 {
7643         struct btrfs_path *path;
7644         struct btrfs_root *root = fs_info->dev_root;
7645         struct btrfs_key key;
7646         u64 prev_devid = 0;
7647         u64 prev_dev_ext_end = 0;
7648         int ret = 0;
7649
7650         key.objectid = 1;
7651         key.type = BTRFS_DEV_EXTENT_KEY;
7652         key.offset = 0;
7653
7654         path = btrfs_alloc_path();
7655         if (!path)
7656                 return -ENOMEM;
7657
7658         path->reada = READA_FORWARD;
7659         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7660         if (ret < 0)
7661                 goto out;
7662
7663         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7664                 ret = btrfs_next_item(root, path);
7665                 if (ret < 0)
7666                         goto out;
7667                 /* No dev extents at all? Not good */
7668                 if (ret > 0) {
7669                         ret = -EUCLEAN;
7670                         goto out;
7671                 }
7672         }
7673         while (1) {
7674                 struct extent_buffer *leaf = path->nodes[0];
7675                 struct btrfs_dev_extent *dext;
7676                 int slot = path->slots[0];
7677                 u64 chunk_offset;
7678                 u64 physical_offset;
7679                 u64 physical_len;
7680                 u64 devid;
7681
7682                 btrfs_item_key_to_cpu(leaf, &key, slot);
7683                 if (key.type != BTRFS_DEV_EXTENT_KEY)
7684                         break;
7685                 devid = key.objectid;
7686                 physical_offset = key.offset;
7687
7688                 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7689                 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7690                 physical_len = btrfs_dev_extent_length(leaf, dext);
7691
7692                 /* Check if this dev extent overlaps with the previous one */
7693                 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7694                         btrfs_err(fs_info,
7695 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7696                                   devid, physical_offset, prev_dev_ext_end);
7697                         ret = -EUCLEAN;
7698                         goto out;
7699                 }
7700
7701                 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7702                                             physical_offset, physical_len);
7703                 if (ret < 0)
7704                         goto out;
7705                 prev_devid = devid;
7706                 prev_dev_ext_end = physical_offset + physical_len;
7707
7708                 ret = btrfs_next_item(root, path);
7709                 if (ret < 0)
7710                         goto out;
7711                 if (ret > 0) {
7712                         ret = 0;
7713                         break;
7714                 }
7715         }
7716
7717         /* Ensure all chunks have corresponding dev extents */
7718         ret = verify_chunk_dev_extent_mapping(fs_info);
7719 out:
7720         btrfs_free_path(path);
7721         return ret;
7722 }
7723
7724 /*
7725  * Check whether the given block group or device is pinned by any inode being
7726  * used as a swapfile.
7727  */
7728 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7729 {
7730         struct btrfs_swapfile_pin *sp;
7731         struct rb_node *node;
7732
7733         spin_lock(&fs_info->swapfile_pins_lock);
7734         node = fs_info->swapfile_pins.rb_node;
7735         while (node) {
7736                 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7737                 if (ptr < sp->ptr)
7738                         node = node->rb_left;
7739                 else if (ptr > sp->ptr)
7740                         node = node->rb_right;
7741                 else
7742                         break;
7743         }
7744         spin_unlock(&fs_info->swapfile_pins_lock);
7745         return node != NULL;
7746 }