Merge tag 'drm-fixes-5.4-2019-10-16' of git://people.freedesktop.org/~agd5f/linux...
[linux-2.6-microblaze.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33
34 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
35         [BTRFS_RAID_RAID10] = {
36                 .sub_stripes    = 2,
37                 .dev_stripes    = 1,
38                 .devs_max       = 0,    /* 0 == as many as possible */
39                 .devs_min       = 4,
40                 .tolerated_failures = 1,
41                 .devs_increment = 2,
42                 .ncopies        = 2,
43                 .nparity        = 0,
44                 .raid_name      = "raid10",
45                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID10,
46                 .mindev_error   = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
47         },
48         [BTRFS_RAID_RAID1] = {
49                 .sub_stripes    = 1,
50                 .dev_stripes    = 1,
51                 .devs_max       = 2,
52                 .devs_min       = 2,
53                 .tolerated_failures = 1,
54                 .devs_increment = 2,
55                 .ncopies        = 2,
56                 .nparity        = 0,
57                 .raid_name      = "raid1",
58                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1,
59                 .mindev_error   = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
60         },
61         [BTRFS_RAID_DUP] = {
62                 .sub_stripes    = 1,
63                 .dev_stripes    = 2,
64                 .devs_max       = 1,
65                 .devs_min       = 1,
66                 .tolerated_failures = 0,
67                 .devs_increment = 1,
68                 .ncopies        = 2,
69                 .nparity        = 0,
70                 .raid_name      = "dup",
71                 .bg_flag        = BTRFS_BLOCK_GROUP_DUP,
72                 .mindev_error   = 0,
73         },
74         [BTRFS_RAID_RAID0] = {
75                 .sub_stripes    = 1,
76                 .dev_stripes    = 1,
77                 .devs_max       = 0,
78                 .devs_min       = 2,
79                 .tolerated_failures = 0,
80                 .devs_increment = 1,
81                 .ncopies        = 1,
82                 .nparity        = 0,
83                 .raid_name      = "raid0",
84                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID0,
85                 .mindev_error   = 0,
86         },
87         [BTRFS_RAID_SINGLE] = {
88                 .sub_stripes    = 1,
89                 .dev_stripes    = 1,
90                 .devs_max       = 1,
91                 .devs_min       = 1,
92                 .tolerated_failures = 0,
93                 .devs_increment = 1,
94                 .ncopies        = 1,
95                 .nparity        = 0,
96                 .raid_name      = "single",
97                 .bg_flag        = 0,
98                 .mindev_error   = 0,
99         },
100         [BTRFS_RAID_RAID5] = {
101                 .sub_stripes    = 1,
102                 .dev_stripes    = 1,
103                 .devs_max       = 0,
104                 .devs_min       = 2,
105                 .tolerated_failures = 1,
106                 .devs_increment = 1,
107                 .ncopies        = 1,
108                 .nparity        = 1,
109                 .raid_name      = "raid5",
110                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID5,
111                 .mindev_error   = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
112         },
113         [BTRFS_RAID_RAID6] = {
114                 .sub_stripes    = 1,
115                 .dev_stripes    = 1,
116                 .devs_max       = 0,
117                 .devs_min       = 3,
118                 .tolerated_failures = 2,
119                 .devs_increment = 1,
120                 .ncopies        = 1,
121                 .nparity        = 2,
122                 .raid_name      = "raid6",
123                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID6,
124                 .mindev_error   = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
125         },
126 };
127
128 const char *btrfs_bg_type_to_raid_name(u64 flags)
129 {
130         const int index = btrfs_bg_flags_to_raid_index(flags);
131
132         if (index >= BTRFS_NR_RAID_TYPES)
133                 return NULL;
134
135         return btrfs_raid_array[index].raid_name;
136 }
137
138 /*
139  * Fill @buf with textual description of @bg_flags, no more than @size_buf
140  * bytes including terminating null byte.
141  */
142 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
143 {
144         int i;
145         int ret;
146         char *bp = buf;
147         u64 flags = bg_flags;
148         u32 size_bp = size_buf;
149
150         if (!flags) {
151                 strcpy(bp, "NONE");
152                 return;
153         }
154
155 #define DESCRIBE_FLAG(flag, desc)                                               \
156         do {                                                            \
157                 if (flags & (flag)) {                                   \
158                         ret = snprintf(bp, size_bp, "%s|", (desc));     \
159                         if (ret < 0 || ret >= size_bp)                  \
160                                 goto out_overflow;                      \
161                         size_bp -= ret;                                 \
162                         bp += ret;                                      \
163                         flags &= ~(flag);                               \
164                 }                                                       \
165         } while (0)
166
167         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
168         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
169         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
170
171         DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
172         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
173                 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
174                               btrfs_raid_array[i].raid_name);
175 #undef DESCRIBE_FLAG
176
177         if (flags) {
178                 ret = snprintf(bp, size_bp, "0x%llx|", flags);
179                 size_bp -= ret;
180         }
181
182         if (size_bp < size_buf)
183                 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
184
185         /*
186          * The text is trimmed, it's up to the caller to provide sufficiently
187          * large buffer
188          */
189 out_overflow:;
190 }
191
192 static int init_first_rw_device(struct btrfs_trans_handle *trans);
193 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
194 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
195 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
196 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
197                              enum btrfs_map_op op,
198                              u64 logical, u64 *length,
199                              struct btrfs_bio **bbio_ret,
200                              int mirror_num, int need_raid_map);
201
202 /*
203  * Device locking
204  * ==============
205  *
206  * There are several mutexes that protect manipulation of devices and low-level
207  * structures like chunks but not block groups, extents or files
208  *
209  * uuid_mutex (global lock)
210  * ------------------------
211  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
212  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
213  * device) or requested by the device= mount option
214  *
215  * the mutex can be very coarse and can cover long-running operations
216  *
217  * protects: updates to fs_devices counters like missing devices, rw devices,
218  * seeding, structure cloning, opening/closing devices at mount/umount time
219  *
220  * global::fs_devs - add, remove, updates to the global list
221  *
222  * does not protect: manipulation of the fs_devices::devices list!
223  *
224  * btrfs_device::name - renames (write side), read is RCU
225  *
226  * fs_devices::device_list_mutex (per-fs, with RCU)
227  * ------------------------------------------------
228  * protects updates to fs_devices::devices, ie. adding and deleting
229  *
230  * simple list traversal with read-only actions can be done with RCU protection
231  *
232  * may be used to exclude some operations from running concurrently without any
233  * modifications to the list (see write_all_supers)
234  *
235  * balance_mutex
236  * -------------
237  * protects balance structures (status, state) and context accessed from
238  * several places (internally, ioctl)
239  *
240  * chunk_mutex
241  * -----------
242  * protects chunks, adding or removing during allocation, trim or when a new
243  * device is added/removed. Additionally it also protects post_commit_list of
244  * individual devices, since they can be added to the transaction's
245  * post_commit_list only with chunk_mutex held.
246  *
247  * cleaner_mutex
248  * -------------
249  * a big lock that is held by the cleaner thread and prevents running subvolume
250  * cleaning together with relocation or delayed iputs
251  *
252  *
253  * Lock nesting
254  * ============
255  *
256  * uuid_mutex
257  *   volume_mutex
258  *     device_list_mutex
259  *       chunk_mutex
260  *     balance_mutex
261  *
262  *
263  * Exclusive operations, BTRFS_FS_EXCL_OP
264  * ======================================
265  *
266  * Maintains the exclusivity of the following operations that apply to the
267  * whole filesystem and cannot run in parallel.
268  *
269  * - Balance (*)
270  * - Device add
271  * - Device remove
272  * - Device replace (*)
273  * - Resize
274  *
275  * The device operations (as above) can be in one of the following states:
276  *
277  * - Running state
278  * - Paused state
279  * - Completed state
280  *
281  * Only device operations marked with (*) can go into the Paused state for the
282  * following reasons:
283  *
284  * - ioctl (only Balance can be Paused through ioctl)
285  * - filesystem remounted as read-only
286  * - filesystem unmounted and mounted as read-only
287  * - system power-cycle and filesystem mounted as read-only
288  * - filesystem or device errors leading to forced read-only
289  *
290  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
291  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
292  * A device operation in Paused or Running state can be canceled or resumed
293  * either by ioctl (Balance only) or when remounted as read-write.
294  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
295  * completed.
296  */
297
298 DEFINE_MUTEX(uuid_mutex);
299 static LIST_HEAD(fs_uuids);
300 struct list_head *btrfs_get_fs_uuids(void)
301 {
302         return &fs_uuids;
303 }
304
305 /*
306  * alloc_fs_devices - allocate struct btrfs_fs_devices
307  * @fsid:               if not NULL, copy the UUID to fs_devices::fsid
308  * @metadata_fsid:      if not NULL, copy the UUID to fs_devices::metadata_fsid
309  *
310  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
311  * The returned struct is not linked onto any lists and can be destroyed with
312  * kfree() right away.
313  */
314 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
315                                                  const u8 *metadata_fsid)
316 {
317         struct btrfs_fs_devices *fs_devs;
318
319         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
320         if (!fs_devs)
321                 return ERR_PTR(-ENOMEM);
322
323         mutex_init(&fs_devs->device_list_mutex);
324
325         INIT_LIST_HEAD(&fs_devs->devices);
326         INIT_LIST_HEAD(&fs_devs->alloc_list);
327         INIT_LIST_HEAD(&fs_devs->fs_list);
328         if (fsid)
329                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
330
331         if (metadata_fsid)
332                 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
333         else if (fsid)
334                 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
335
336         return fs_devs;
337 }
338
339 void btrfs_free_device(struct btrfs_device *device)
340 {
341         WARN_ON(!list_empty(&device->post_commit_list));
342         rcu_string_free(device->name);
343         extent_io_tree_release(&device->alloc_state);
344         bio_put(device->flush_bio);
345         kfree(device);
346 }
347
348 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
349 {
350         struct btrfs_device *device;
351         WARN_ON(fs_devices->opened);
352         while (!list_empty(&fs_devices->devices)) {
353                 device = list_entry(fs_devices->devices.next,
354                                     struct btrfs_device, dev_list);
355                 list_del(&device->dev_list);
356                 btrfs_free_device(device);
357         }
358         kfree(fs_devices);
359 }
360
361 void __exit btrfs_cleanup_fs_uuids(void)
362 {
363         struct btrfs_fs_devices *fs_devices;
364
365         while (!list_empty(&fs_uuids)) {
366                 fs_devices = list_entry(fs_uuids.next,
367                                         struct btrfs_fs_devices, fs_list);
368                 list_del(&fs_devices->fs_list);
369                 free_fs_devices(fs_devices);
370         }
371 }
372
373 /*
374  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
375  * Returned struct is not linked onto any lists and must be destroyed using
376  * btrfs_free_device.
377  */
378 static struct btrfs_device *__alloc_device(void)
379 {
380         struct btrfs_device *dev;
381
382         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
383         if (!dev)
384                 return ERR_PTR(-ENOMEM);
385
386         /*
387          * Preallocate a bio that's always going to be used for flushing device
388          * barriers and matches the device lifespan
389          */
390         dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
391         if (!dev->flush_bio) {
392                 kfree(dev);
393                 return ERR_PTR(-ENOMEM);
394         }
395
396         INIT_LIST_HEAD(&dev->dev_list);
397         INIT_LIST_HEAD(&dev->dev_alloc_list);
398         INIT_LIST_HEAD(&dev->post_commit_list);
399
400         spin_lock_init(&dev->io_lock);
401
402         atomic_set(&dev->reada_in_flight, 0);
403         atomic_set(&dev->dev_stats_ccnt, 0);
404         btrfs_device_data_ordered_init(dev);
405         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
406         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
407         extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
408
409         return dev;
410 }
411
412 static noinline struct btrfs_fs_devices *find_fsid(
413                 const u8 *fsid, const u8 *metadata_fsid)
414 {
415         struct btrfs_fs_devices *fs_devices;
416
417         ASSERT(fsid);
418
419         if (metadata_fsid) {
420                 /*
421                  * Handle scanned device having completed its fsid change but
422                  * belonging to a fs_devices that was created by first scanning
423                  * a device which didn't have its fsid/metadata_uuid changed
424                  * at all and the CHANGING_FSID_V2 flag set.
425                  */
426                 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
427                         if (fs_devices->fsid_change &&
428                             memcmp(metadata_fsid, fs_devices->fsid,
429                                    BTRFS_FSID_SIZE) == 0 &&
430                             memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
431                                    BTRFS_FSID_SIZE) == 0) {
432                                 return fs_devices;
433                         }
434                 }
435                 /*
436                  * Handle scanned device having completed its fsid change but
437                  * belonging to a fs_devices that was created by a device that
438                  * has an outdated pair of fsid/metadata_uuid and
439                  * CHANGING_FSID_V2 flag set.
440                  */
441                 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
442                         if (fs_devices->fsid_change &&
443                             memcmp(fs_devices->metadata_uuid,
444                                    fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
445                             memcmp(metadata_fsid, fs_devices->metadata_uuid,
446                                    BTRFS_FSID_SIZE) == 0) {
447                                 return fs_devices;
448                         }
449                 }
450         }
451
452         /* Handle non-split brain cases */
453         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
454                 if (metadata_fsid) {
455                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
456                             && memcmp(metadata_fsid, fs_devices->metadata_uuid,
457                                       BTRFS_FSID_SIZE) == 0)
458                                 return fs_devices;
459                 } else {
460                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
461                                 return fs_devices;
462                 }
463         }
464         return NULL;
465 }
466
467 static int
468 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
469                       int flush, struct block_device **bdev,
470                       struct buffer_head **bh)
471 {
472         int ret;
473
474         *bdev = blkdev_get_by_path(device_path, flags, holder);
475
476         if (IS_ERR(*bdev)) {
477                 ret = PTR_ERR(*bdev);
478                 goto error;
479         }
480
481         if (flush)
482                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
483         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
484         if (ret) {
485                 blkdev_put(*bdev, flags);
486                 goto error;
487         }
488         invalidate_bdev(*bdev);
489         *bh = btrfs_read_dev_super(*bdev);
490         if (IS_ERR(*bh)) {
491                 ret = PTR_ERR(*bh);
492                 blkdev_put(*bdev, flags);
493                 goto error;
494         }
495
496         return 0;
497
498 error:
499         *bdev = NULL;
500         *bh = NULL;
501         return ret;
502 }
503
504 static void requeue_list(struct btrfs_pending_bios *pending_bios,
505                         struct bio *head, struct bio *tail)
506 {
507
508         struct bio *old_head;
509
510         old_head = pending_bios->head;
511         pending_bios->head = head;
512         if (pending_bios->tail)
513                 tail->bi_next = old_head;
514         else
515                 pending_bios->tail = tail;
516 }
517
518 /*
519  * we try to collect pending bios for a device so we don't get a large
520  * number of procs sending bios down to the same device.  This greatly
521  * improves the schedulers ability to collect and merge the bios.
522  *
523  * But, it also turns into a long list of bios to process and that is sure
524  * to eventually make the worker thread block.  The solution here is to
525  * make some progress and then put this work struct back at the end of
526  * the list if the block device is congested.  This way, multiple devices
527  * can make progress from a single worker thread.
528  */
529 static noinline void run_scheduled_bios(struct btrfs_device *device)
530 {
531         struct btrfs_fs_info *fs_info = device->fs_info;
532         struct bio *pending;
533         struct backing_dev_info *bdi;
534         struct btrfs_pending_bios *pending_bios;
535         struct bio *tail;
536         struct bio *cur;
537         int again = 0;
538         unsigned long num_run;
539         unsigned long batch_run = 0;
540         unsigned long last_waited = 0;
541         int force_reg = 0;
542         int sync_pending = 0;
543         struct blk_plug plug;
544
545         /*
546          * this function runs all the bios we've collected for
547          * a particular device.  We don't want to wander off to
548          * another device without first sending all of these down.
549          * So, setup a plug here and finish it off before we return
550          */
551         blk_start_plug(&plug);
552
553         bdi = device->bdev->bd_bdi;
554
555 loop:
556         spin_lock(&device->io_lock);
557
558 loop_lock:
559         num_run = 0;
560
561         /* take all the bios off the list at once and process them
562          * later on (without the lock held).  But, remember the
563          * tail and other pointers so the bios can be properly reinserted
564          * into the list if we hit congestion
565          */
566         if (!force_reg && device->pending_sync_bios.head) {
567                 pending_bios = &device->pending_sync_bios;
568                 force_reg = 1;
569         } else {
570                 pending_bios = &device->pending_bios;
571                 force_reg = 0;
572         }
573
574         pending = pending_bios->head;
575         tail = pending_bios->tail;
576         WARN_ON(pending && !tail);
577
578         /*
579          * if pending was null this time around, no bios need processing
580          * at all and we can stop.  Otherwise it'll loop back up again
581          * and do an additional check so no bios are missed.
582          *
583          * device->running_pending is used to synchronize with the
584          * schedule_bio code.
585          */
586         if (device->pending_sync_bios.head == NULL &&
587             device->pending_bios.head == NULL) {
588                 again = 0;
589                 device->running_pending = 0;
590         } else {
591                 again = 1;
592                 device->running_pending = 1;
593         }
594
595         pending_bios->head = NULL;
596         pending_bios->tail = NULL;
597
598         spin_unlock(&device->io_lock);
599
600         while (pending) {
601
602                 rmb();
603                 /* we want to work on both lists, but do more bios on the
604                  * sync list than the regular list
605                  */
606                 if ((num_run > 32 &&
607                     pending_bios != &device->pending_sync_bios &&
608                     device->pending_sync_bios.head) ||
609                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
610                     device->pending_bios.head)) {
611                         spin_lock(&device->io_lock);
612                         requeue_list(pending_bios, pending, tail);
613                         goto loop_lock;
614                 }
615
616                 cur = pending;
617                 pending = pending->bi_next;
618                 cur->bi_next = NULL;
619
620                 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
621
622                 /*
623                  * if we're doing the sync list, record that our
624                  * plug has some sync requests on it
625                  *
626                  * If we're doing the regular list and there are
627                  * sync requests sitting around, unplug before
628                  * we add more
629                  */
630                 if (pending_bios == &device->pending_sync_bios) {
631                         sync_pending = 1;
632                 } else if (sync_pending) {
633                         blk_finish_plug(&plug);
634                         blk_start_plug(&plug);
635                         sync_pending = 0;
636                 }
637
638                 btrfsic_submit_bio(cur);
639                 num_run++;
640                 batch_run++;
641
642                 cond_resched();
643
644                 /*
645                  * we made progress, there is more work to do and the bdi
646                  * is now congested.  Back off and let other work structs
647                  * run instead
648                  */
649                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
650                     fs_info->fs_devices->open_devices > 1) {
651                         struct io_context *ioc;
652
653                         ioc = current->io_context;
654
655                         /*
656                          * the main goal here is that we don't want to
657                          * block if we're going to be able to submit
658                          * more requests without blocking.
659                          *
660                          * This code does two great things, it pokes into
661                          * the elevator code from a filesystem _and_
662                          * it makes assumptions about how batching works.
663                          */
664                         if (ioc && ioc->nr_batch_requests > 0 &&
665                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
666                             (last_waited == 0 ||
667                              ioc->last_waited == last_waited)) {
668                                 /*
669                                  * we want to go through our batch of
670                                  * requests and stop.  So, we copy out
671                                  * the ioc->last_waited time and test
672                                  * against it before looping
673                                  */
674                                 last_waited = ioc->last_waited;
675                                 cond_resched();
676                                 continue;
677                         }
678                         spin_lock(&device->io_lock);
679                         requeue_list(pending_bios, pending, tail);
680                         device->running_pending = 1;
681
682                         spin_unlock(&device->io_lock);
683                         btrfs_queue_work(fs_info->submit_workers,
684                                          &device->work);
685                         goto done;
686                 }
687         }
688
689         cond_resched();
690         if (again)
691                 goto loop;
692
693         spin_lock(&device->io_lock);
694         if (device->pending_bios.head || device->pending_sync_bios.head)
695                 goto loop_lock;
696         spin_unlock(&device->io_lock);
697
698 done:
699         blk_finish_plug(&plug);
700 }
701
702 static void pending_bios_fn(struct btrfs_work *work)
703 {
704         struct btrfs_device *device;
705
706         device = container_of(work, struct btrfs_device, work);
707         run_scheduled_bios(device);
708 }
709
710 static bool device_path_matched(const char *path, struct btrfs_device *device)
711 {
712         int found;
713
714         rcu_read_lock();
715         found = strcmp(rcu_str_deref(device->name), path);
716         rcu_read_unlock();
717
718         return found == 0;
719 }
720
721 /*
722  *  Search and remove all stale (devices which are not mounted) devices.
723  *  When both inputs are NULL, it will search and release all stale devices.
724  *  path:       Optional. When provided will it release all unmounted devices
725  *              matching this path only.
726  *  skip_dev:   Optional. Will skip this device when searching for the stale
727  *              devices.
728  *  Return:     0 for success or if @path is NULL.
729  *              -EBUSY if @path is a mounted device.
730  *              -ENOENT if @path does not match any device in the list.
731  */
732 static int btrfs_free_stale_devices(const char *path,
733                                      struct btrfs_device *skip_device)
734 {
735         struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
736         struct btrfs_device *device, *tmp_device;
737         int ret = 0;
738
739         if (path)
740                 ret = -ENOENT;
741
742         list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
743
744                 mutex_lock(&fs_devices->device_list_mutex);
745                 list_for_each_entry_safe(device, tmp_device,
746                                          &fs_devices->devices, dev_list) {
747                         if (skip_device && skip_device == device)
748                                 continue;
749                         if (path && !device->name)
750                                 continue;
751                         if (path && !device_path_matched(path, device))
752                                 continue;
753                         if (fs_devices->opened) {
754                                 /* for an already deleted device return 0 */
755                                 if (path && ret != 0)
756                                         ret = -EBUSY;
757                                 break;
758                         }
759
760                         /* delete the stale device */
761                         fs_devices->num_devices--;
762                         list_del(&device->dev_list);
763                         btrfs_free_device(device);
764
765                         ret = 0;
766                         if (fs_devices->num_devices == 0)
767                                 break;
768                 }
769                 mutex_unlock(&fs_devices->device_list_mutex);
770
771                 if (fs_devices->num_devices == 0) {
772                         btrfs_sysfs_remove_fsid(fs_devices);
773                         list_del(&fs_devices->fs_list);
774                         free_fs_devices(fs_devices);
775                 }
776         }
777
778         return ret;
779 }
780
781 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
782                         struct btrfs_device *device, fmode_t flags,
783                         void *holder)
784 {
785         struct request_queue *q;
786         struct block_device *bdev;
787         struct buffer_head *bh;
788         struct btrfs_super_block *disk_super;
789         u64 devid;
790         int ret;
791
792         if (device->bdev)
793                 return -EINVAL;
794         if (!device->name)
795                 return -EINVAL;
796
797         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
798                                     &bdev, &bh);
799         if (ret)
800                 return ret;
801
802         disk_super = (struct btrfs_super_block *)bh->b_data;
803         devid = btrfs_stack_device_id(&disk_super->dev_item);
804         if (devid != device->devid)
805                 goto error_brelse;
806
807         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
808                 goto error_brelse;
809
810         device->generation = btrfs_super_generation(disk_super);
811
812         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
813                 if (btrfs_super_incompat_flags(disk_super) &
814                     BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
815                         pr_err(
816                 "BTRFS: Invalid seeding and uuid-changed device detected\n");
817                         goto error_brelse;
818                 }
819
820                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
821                 fs_devices->seeding = 1;
822         } else {
823                 if (bdev_read_only(bdev))
824                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
825                 else
826                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
827         }
828
829         q = bdev_get_queue(bdev);
830         if (!blk_queue_nonrot(q))
831                 fs_devices->rotating = 1;
832
833         device->bdev = bdev;
834         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
835         device->mode = flags;
836
837         fs_devices->open_devices++;
838         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
839             device->devid != BTRFS_DEV_REPLACE_DEVID) {
840                 fs_devices->rw_devices++;
841                 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
842         }
843         brelse(bh);
844
845         return 0;
846
847 error_brelse:
848         brelse(bh);
849         blkdev_put(bdev, flags);
850
851         return -EINVAL;
852 }
853
854 /*
855  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
856  * being created with a disk that has already completed its fsid change.
857  */
858 static struct btrfs_fs_devices *find_fsid_inprogress(
859                                         struct btrfs_super_block *disk_super)
860 {
861         struct btrfs_fs_devices *fs_devices;
862
863         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
864                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
865                            BTRFS_FSID_SIZE) != 0 &&
866                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
867                            BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
868                         return fs_devices;
869                 }
870         }
871
872         return NULL;
873 }
874
875
876 static struct btrfs_fs_devices *find_fsid_changed(
877                                         struct btrfs_super_block *disk_super)
878 {
879         struct btrfs_fs_devices *fs_devices;
880
881         /*
882          * Handles the case where scanned device is part of an fs that had
883          * multiple successful changes of FSID but curently device didn't
884          * observe it. Meaning our fsid will be different than theirs.
885          */
886         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
887                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
888                            BTRFS_FSID_SIZE) != 0 &&
889                     memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
890                            BTRFS_FSID_SIZE) == 0 &&
891                     memcmp(fs_devices->fsid, disk_super->fsid,
892                            BTRFS_FSID_SIZE) != 0) {
893                         return fs_devices;
894                 }
895         }
896
897         return NULL;
898 }
899 /*
900  * Add new device to list of registered devices
901  *
902  * Returns:
903  * device pointer which was just added or updated when successful
904  * error pointer when failed
905  */
906 static noinline struct btrfs_device *device_list_add(const char *path,
907                            struct btrfs_super_block *disk_super,
908                            bool *new_device_added)
909 {
910         struct btrfs_device *device;
911         struct btrfs_fs_devices *fs_devices = NULL;
912         struct rcu_string *name;
913         u64 found_transid = btrfs_super_generation(disk_super);
914         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
915         bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
916                 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
917         bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
918                                         BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
919
920         if (fsid_change_in_progress) {
921                 if (!has_metadata_uuid) {
922                         /*
923                          * When we have an image which has CHANGING_FSID_V2 set
924                          * it might belong to either a filesystem which has
925                          * disks with completed fsid change or it might belong
926                          * to fs with no UUID changes in effect, handle both.
927                          */
928                         fs_devices = find_fsid_inprogress(disk_super);
929                         if (!fs_devices)
930                                 fs_devices = find_fsid(disk_super->fsid, NULL);
931                 } else {
932                         fs_devices = find_fsid_changed(disk_super);
933                 }
934         } else if (has_metadata_uuid) {
935                 fs_devices = find_fsid(disk_super->fsid,
936                                        disk_super->metadata_uuid);
937         } else {
938                 fs_devices = find_fsid(disk_super->fsid, NULL);
939         }
940
941
942         if (!fs_devices) {
943                 if (has_metadata_uuid)
944                         fs_devices = alloc_fs_devices(disk_super->fsid,
945                                                       disk_super->metadata_uuid);
946                 else
947                         fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
948
949                 if (IS_ERR(fs_devices))
950                         return ERR_CAST(fs_devices);
951
952                 fs_devices->fsid_change = fsid_change_in_progress;
953
954                 mutex_lock(&fs_devices->device_list_mutex);
955                 list_add(&fs_devices->fs_list, &fs_uuids);
956
957                 device = NULL;
958         } else {
959                 mutex_lock(&fs_devices->device_list_mutex);
960                 device = btrfs_find_device(fs_devices, devid,
961                                 disk_super->dev_item.uuid, NULL, false);
962
963                 /*
964                  * If this disk has been pulled into an fs devices created by
965                  * a device which had the CHANGING_FSID_V2 flag then replace the
966                  * metadata_uuid/fsid values of the fs_devices.
967                  */
968                 if (has_metadata_uuid && fs_devices->fsid_change &&
969                     found_transid > fs_devices->latest_generation) {
970                         memcpy(fs_devices->fsid, disk_super->fsid,
971                                         BTRFS_FSID_SIZE);
972                         memcpy(fs_devices->metadata_uuid,
973                                         disk_super->metadata_uuid, BTRFS_FSID_SIZE);
974
975                         fs_devices->fsid_change = false;
976                 }
977         }
978
979         if (!device) {
980                 if (fs_devices->opened) {
981                         mutex_unlock(&fs_devices->device_list_mutex);
982                         return ERR_PTR(-EBUSY);
983                 }
984
985                 device = btrfs_alloc_device(NULL, &devid,
986                                             disk_super->dev_item.uuid);
987                 if (IS_ERR(device)) {
988                         mutex_unlock(&fs_devices->device_list_mutex);
989                         /* we can safely leave the fs_devices entry around */
990                         return device;
991                 }
992
993                 name = rcu_string_strdup(path, GFP_NOFS);
994                 if (!name) {
995                         btrfs_free_device(device);
996                         mutex_unlock(&fs_devices->device_list_mutex);
997                         return ERR_PTR(-ENOMEM);
998                 }
999                 rcu_assign_pointer(device->name, name);
1000
1001                 list_add_rcu(&device->dev_list, &fs_devices->devices);
1002                 fs_devices->num_devices++;
1003
1004                 device->fs_devices = fs_devices;
1005                 *new_device_added = true;
1006
1007                 if (disk_super->label[0])
1008                         pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
1009                                 disk_super->label, devid, found_transid, path);
1010                 else
1011                         pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
1012                                 disk_super->fsid, devid, found_transid, path);
1013
1014         } else if (!device->name || strcmp(device->name->str, path)) {
1015                 /*
1016                  * When FS is already mounted.
1017                  * 1. If you are here and if the device->name is NULL that
1018                  *    means this device was missing at time of FS mount.
1019                  * 2. If you are here and if the device->name is different
1020                  *    from 'path' that means either
1021                  *      a. The same device disappeared and reappeared with
1022                  *         different name. or
1023                  *      b. The missing-disk-which-was-replaced, has
1024                  *         reappeared now.
1025                  *
1026                  * We must allow 1 and 2a above. But 2b would be a spurious
1027                  * and unintentional.
1028                  *
1029                  * Further in case of 1 and 2a above, the disk at 'path'
1030                  * would have missed some transaction when it was away and
1031                  * in case of 2a the stale bdev has to be updated as well.
1032                  * 2b must not be allowed at all time.
1033                  */
1034
1035                 /*
1036                  * For now, we do allow update to btrfs_fs_device through the
1037                  * btrfs dev scan cli after FS has been mounted.  We're still
1038                  * tracking a problem where systems fail mount by subvolume id
1039                  * when we reject replacement on a mounted FS.
1040                  */
1041                 if (!fs_devices->opened && found_transid < device->generation) {
1042                         /*
1043                          * That is if the FS is _not_ mounted and if you
1044                          * are here, that means there is more than one
1045                          * disk with same uuid and devid.We keep the one
1046                          * with larger generation number or the last-in if
1047                          * generation are equal.
1048                          */
1049                         mutex_unlock(&fs_devices->device_list_mutex);
1050                         return ERR_PTR(-EEXIST);
1051                 }
1052
1053                 /*
1054                  * We are going to replace the device path for a given devid,
1055                  * make sure it's the same device if the device is mounted
1056                  */
1057                 if (device->bdev) {
1058                         struct block_device *path_bdev;
1059
1060                         path_bdev = lookup_bdev(path);
1061                         if (IS_ERR(path_bdev)) {
1062                                 mutex_unlock(&fs_devices->device_list_mutex);
1063                                 return ERR_CAST(path_bdev);
1064                         }
1065
1066                         if (device->bdev != path_bdev) {
1067                                 bdput(path_bdev);
1068                                 mutex_unlock(&fs_devices->device_list_mutex);
1069                                 btrfs_warn_in_rcu(device->fs_info,
1070                         "duplicate device fsid:devid for %pU:%llu old:%s new:%s",
1071                                         disk_super->fsid, devid,
1072                                         rcu_str_deref(device->name), path);
1073                                 return ERR_PTR(-EEXIST);
1074                         }
1075                         bdput(path_bdev);
1076                         btrfs_info_in_rcu(device->fs_info,
1077                                 "device fsid %pU devid %llu moved old:%s new:%s",
1078                                 disk_super->fsid, devid,
1079                                 rcu_str_deref(device->name), path);
1080                 }
1081
1082                 name = rcu_string_strdup(path, GFP_NOFS);
1083                 if (!name) {
1084                         mutex_unlock(&fs_devices->device_list_mutex);
1085                         return ERR_PTR(-ENOMEM);
1086                 }
1087                 rcu_string_free(device->name);
1088                 rcu_assign_pointer(device->name, name);
1089                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1090                         fs_devices->missing_devices--;
1091                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1092                 }
1093         }
1094
1095         /*
1096          * Unmount does not free the btrfs_device struct but would zero
1097          * generation along with most of the other members. So just update
1098          * it back. We need it to pick the disk with largest generation
1099          * (as above).
1100          */
1101         if (!fs_devices->opened) {
1102                 device->generation = found_transid;
1103                 fs_devices->latest_generation = max_t(u64, found_transid,
1104                                                 fs_devices->latest_generation);
1105         }
1106
1107         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
1108
1109         mutex_unlock(&fs_devices->device_list_mutex);
1110         return device;
1111 }
1112
1113 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1114 {
1115         struct btrfs_fs_devices *fs_devices;
1116         struct btrfs_device *device;
1117         struct btrfs_device *orig_dev;
1118         int ret = 0;
1119
1120         fs_devices = alloc_fs_devices(orig->fsid, NULL);
1121         if (IS_ERR(fs_devices))
1122                 return fs_devices;
1123
1124         mutex_lock(&orig->device_list_mutex);
1125         fs_devices->total_devices = orig->total_devices;
1126
1127         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1128                 struct rcu_string *name;
1129
1130                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1131                                             orig_dev->uuid);
1132                 if (IS_ERR(device)) {
1133                         ret = PTR_ERR(device);
1134                         goto error;
1135                 }
1136
1137                 /*
1138                  * This is ok to do without rcu read locked because we hold the
1139                  * uuid mutex so nothing we touch in here is going to disappear.
1140                  */
1141                 if (orig_dev->name) {
1142                         name = rcu_string_strdup(orig_dev->name->str,
1143                                         GFP_KERNEL);
1144                         if (!name) {
1145                                 btrfs_free_device(device);
1146                                 ret = -ENOMEM;
1147                                 goto error;
1148                         }
1149                         rcu_assign_pointer(device->name, name);
1150                 }
1151
1152                 list_add(&device->dev_list, &fs_devices->devices);
1153                 device->fs_devices = fs_devices;
1154                 fs_devices->num_devices++;
1155         }
1156         mutex_unlock(&orig->device_list_mutex);
1157         return fs_devices;
1158 error:
1159         mutex_unlock(&orig->device_list_mutex);
1160         free_fs_devices(fs_devices);
1161         return ERR_PTR(ret);
1162 }
1163
1164 /*
1165  * After we have read the system tree and know devids belonging to
1166  * this filesystem, remove the device which does not belong there.
1167  */
1168 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1169 {
1170         struct btrfs_device *device, *next;
1171         struct btrfs_device *latest_dev = NULL;
1172
1173         mutex_lock(&uuid_mutex);
1174 again:
1175         /* This is the initialized path, it is safe to release the devices. */
1176         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1177                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1178                                                         &device->dev_state)) {
1179                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1180                              &device->dev_state) &&
1181                              (!latest_dev ||
1182                               device->generation > latest_dev->generation)) {
1183                                 latest_dev = device;
1184                         }
1185                         continue;
1186                 }
1187
1188                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1189                         /*
1190                          * In the first step, keep the device which has
1191                          * the correct fsid and the devid that is used
1192                          * for the dev_replace procedure.
1193                          * In the second step, the dev_replace state is
1194                          * read from the device tree and it is known
1195                          * whether the procedure is really active or
1196                          * not, which means whether this device is
1197                          * used or whether it should be removed.
1198                          */
1199                         if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1200                                                   &device->dev_state)) {
1201                                 continue;
1202                         }
1203                 }
1204                 if (device->bdev) {
1205                         blkdev_put(device->bdev, device->mode);
1206                         device->bdev = NULL;
1207                         fs_devices->open_devices--;
1208                 }
1209                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1210                         list_del_init(&device->dev_alloc_list);
1211                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1212                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1213                                       &device->dev_state))
1214                                 fs_devices->rw_devices--;
1215                 }
1216                 list_del_init(&device->dev_list);
1217                 fs_devices->num_devices--;
1218                 btrfs_free_device(device);
1219         }
1220
1221         if (fs_devices->seed) {
1222                 fs_devices = fs_devices->seed;
1223                 goto again;
1224         }
1225
1226         fs_devices->latest_bdev = latest_dev->bdev;
1227
1228         mutex_unlock(&uuid_mutex);
1229 }
1230
1231 static void btrfs_close_bdev(struct btrfs_device *device)
1232 {
1233         if (!device->bdev)
1234                 return;
1235
1236         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1237                 sync_blockdev(device->bdev);
1238                 invalidate_bdev(device->bdev);
1239         }
1240
1241         blkdev_put(device->bdev, device->mode);
1242 }
1243
1244 static void btrfs_close_one_device(struct btrfs_device *device)
1245 {
1246         struct btrfs_fs_devices *fs_devices = device->fs_devices;
1247         struct btrfs_device *new_device;
1248         struct rcu_string *name;
1249
1250         if (device->bdev)
1251                 fs_devices->open_devices--;
1252
1253         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1254             device->devid != BTRFS_DEV_REPLACE_DEVID) {
1255                 list_del_init(&device->dev_alloc_list);
1256                 fs_devices->rw_devices--;
1257         }
1258
1259         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1260                 fs_devices->missing_devices--;
1261
1262         btrfs_close_bdev(device);
1263
1264         new_device = btrfs_alloc_device(NULL, &device->devid,
1265                                         device->uuid);
1266         BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1267
1268         /* Safe because we are under uuid_mutex */
1269         if (device->name) {
1270                 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1271                 BUG_ON(!name); /* -ENOMEM */
1272                 rcu_assign_pointer(new_device->name, name);
1273         }
1274
1275         list_replace_rcu(&device->dev_list, &new_device->dev_list);
1276         new_device->fs_devices = device->fs_devices;
1277
1278         synchronize_rcu();
1279         btrfs_free_device(device);
1280 }
1281
1282 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1283 {
1284         struct btrfs_device *device, *tmp;
1285
1286         if (--fs_devices->opened > 0)
1287                 return 0;
1288
1289         mutex_lock(&fs_devices->device_list_mutex);
1290         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1291                 btrfs_close_one_device(device);
1292         }
1293         mutex_unlock(&fs_devices->device_list_mutex);
1294
1295         WARN_ON(fs_devices->open_devices);
1296         WARN_ON(fs_devices->rw_devices);
1297         fs_devices->opened = 0;
1298         fs_devices->seeding = 0;
1299
1300         return 0;
1301 }
1302
1303 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1304 {
1305         struct btrfs_fs_devices *seed_devices = NULL;
1306         int ret;
1307
1308         mutex_lock(&uuid_mutex);
1309         ret = close_fs_devices(fs_devices);
1310         if (!fs_devices->opened) {
1311                 seed_devices = fs_devices->seed;
1312                 fs_devices->seed = NULL;
1313         }
1314         mutex_unlock(&uuid_mutex);
1315
1316         while (seed_devices) {
1317                 fs_devices = seed_devices;
1318                 seed_devices = fs_devices->seed;
1319                 close_fs_devices(fs_devices);
1320                 free_fs_devices(fs_devices);
1321         }
1322         return ret;
1323 }
1324
1325 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1326                                 fmode_t flags, void *holder)
1327 {
1328         struct btrfs_device *device;
1329         struct btrfs_device *latest_dev = NULL;
1330         int ret = 0;
1331
1332         flags |= FMODE_EXCL;
1333
1334         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1335                 /* Just open everything we can; ignore failures here */
1336                 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1337                         continue;
1338
1339                 if (!latest_dev ||
1340                     device->generation > latest_dev->generation)
1341                         latest_dev = device;
1342         }
1343         if (fs_devices->open_devices == 0) {
1344                 ret = -EINVAL;
1345                 goto out;
1346         }
1347         fs_devices->opened = 1;
1348         fs_devices->latest_bdev = latest_dev->bdev;
1349         fs_devices->total_rw_bytes = 0;
1350 out:
1351         return ret;
1352 }
1353
1354 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1355 {
1356         struct btrfs_device *dev1, *dev2;
1357
1358         dev1 = list_entry(a, struct btrfs_device, dev_list);
1359         dev2 = list_entry(b, struct btrfs_device, dev_list);
1360
1361         if (dev1->devid < dev2->devid)
1362                 return -1;
1363         else if (dev1->devid > dev2->devid)
1364                 return 1;
1365         return 0;
1366 }
1367
1368 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1369                        fmode_t flags, void *holder)
1370 {
1371         int ret;
1372
1373         lockdep_assert_held(&uuid_mutex);
1374
1375         mutex_lock(&fs_devices->device_list_mutex);
1376         if (fs_devices->opened) {
1377                 fs_devices->opened++;
1378                 ret = 0;
1379         } else {
1380                 list_sort(NULL, &fs_devices->devices, devid_cmp);
1381                 ret = open_fs_devices(fs_devices, flags, holder);
1382         }
1383         mutex_unlock(&fs_devices->device_list_mutex);
1384
1385         return ret;
1386 }
1387
1388 static void btrfs_release_disk_super(struct page *page)
1389 {
1390         kunmap(page);
1391         put_page(page);
1392 }
1393
1394 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1395                                  struct page **page,
1396                                  struct btrfs_super_block **disk_super)
1397 {
1398         void *p;
1399         pgoff_t index;
1400
1401         /* make sure our super fits in the device */
1402         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1403                 return 1;
1404
1405         /* make sure our super fits in the page */
1406         if (sizeof(**disk_super) > PAGE_SIZE)
1407                 return 1;
1408
1409         /* make sure our super doesn't straddle pages on disk */
1410         index = bytenr >> PAGE_SHIFT;
1411         if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1412                 return 1;
1413
1414         /* pull in the page with our super */
1415         *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1416                                    index, GFP_KERNEL);
1417
1418         if (IS_ERR_OR_NULL(*page))
1419                 return 1;
1420
1421         p = kmap(*page);
1422
1423         /* align our pointer to the offset of the super block */
1424         *disk_super = p + offset_in_page(bytenr);
1425
1426         if (btrfs_super_bytenr(*disk_super) != bytenr ||
1427             btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1428                 btrfs_release_disk_super(*page);
1429                 return 1;
1430         }
1431
1432         if ((*disk_super)->label[0] &&
1433                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1434                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1435
1436         return 0;
1437 }
1438
1439 int btrfs_forget_devices(const char *path)
1440 {
1441         int ret;
1442
1443         mutex_lock(&uuid_mutex);
1444         ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1445         mutex_unlock(&uuid_mutex);
1446
1447         return ret;
1448 }
1449
1450 /*
1451  * Look for a btrfs signature on a device. This may be called out of the mount path
1452  * and we are not allowed to call set_blocksize during the scan. The superblock
1453  * is read via pagecache
1454  */
1455 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1456                                            void *holder)
1457 {
1458         struct btrfs_super_block *disk_super;
1459         bool new_device_added = false;
1460         struct btrfs_device *device = NULL;
1461         struct block_device *bdev;
1462         struct page *page;
1463         u64 bytenr;
1464
1465         lockdep_assert_held(&uuid_mutex);
1466
1467         /*
1468          * we would like to check all the supers, but that would make
1469          * a btrfs mount succeed after a mkfs from a different FS.
1470          * So, we need to add a special mount option to scan for
1471          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1472          */
1473         bytenr = btrfs_sb_offset(0);
1474         flags |= FMODE_EXCL;
1475
1476         bdev = blkdev_get_by_path(path, flags, holder);
1477         if (IS_ERR(bdev))
1478                 return ERR_CAST(bdev);
1479
1480         if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1481                 device = ERR_PTR(-EINVAL);
1482                 goto error_bdev_put;
1483         }
1484
1485         device = device_list_add(path, disk_super, &new_device_added);
1486         if (!IS_ERR(device)) {
1487                 if (new_device_added)
1488                         btrfs_free_stale_devices(path, device);
1489         }
1490
1491         btrfs_release_disk_super(page);
1492
1493 error_bdev_put:
1494         blkdev_put(bdev, flags);
1495
1496         return device;
1497 }
1498
1499 /*
1500  * Try to find a chunk that intersects [start, start + len] range and when one
1501  * such is found, record the end of it in *start
1502  */
1503 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1504                                     u64 len)
1505 {
1506         u64 physical_start, physical_end;
1507
1508         lockdep_assert_held(&device->fs_info->chunk_mutex);
1509
1510         if (!find_first_extent_bit(&device->alloc_state, *start,
1511                                    &physical_start, &physical_end,
1512                                    CHUNK_ALLOCATED, NULL)) {
1513
1514                 if (in_range(physical_start, *start, len) ||
1515                     in_range(*start, physical_start,
1516                              physical_end - physical_start)) {
1517                         *start = physical_end + 1;
1518                         return true;
1519                 }
1520         }
1521         return false;
1522 }
1523
1524
1525 /*
1526  * find_free_dev_extent_start - find free space in the specified device
1527  * @device:       the device which we search the free space in
1528  * @num_bytes:    the size of the free space that we need
1529  * @search_start: the position from which to begin the search
1530  * @start:        store the start of the free space.
1531  * @len:          the size of the free space. that we find, or the size
1532  *                of the max free space if we don't find suitable free space
1533  *
1534  * this uses a pretty simple search, the expectation is that it is
1535  * called very infrequently and that a given device has a small number
1536  * of extents
1537  *
1538  * @start is used to store the start of the free space if we find. But if we
1539  * don't find suitable free space, it will be used to store the start position
1540  * of the max free space.
1541  *
1542  * @len is used to store the size of the free space that we find.
1543  * But if we don't find suitable free space, it is used to store the size of
1544  * the max free space.
1545  *
1546  * NOTE: This function will search *commit* root of device tree, and does extra
1547  * check to ensure dev extents are not double allocated.
1548  * This makes the function safe to allocate dev extents but may not report
1549  * correct usable device space, as device extent freed in current transaction
1550  * is not reported as avaiable.
1551  */
1552 static int find_free_dev_extent_start(struct btrfs_device *device,
1553                                 u64 num_bytes, u64 search_start, u64 *start,
1554                                 u64 *len)
1555 {
1556         struct btrfs_fs_info *fs_info = device->fs_info;
1557         struct btrfs_root *root = fs_info->dev_root;
1558         struct btrfs_key key;
1559         struct btrfs_dev_extent *dev_extent;
1560         struct btrfs_path *path;
1561         u64 hole_size;
1562         u64 max_hole_start;
1563         u64 max_hole_size;
1564         u64 extent_end;
1565         u64 search_end = device->total_bytes;
1566         int ret;
1567         int slot;
1568         struct extent_buffer *l;
1569
1570         /*
1571          * We don't want to overwrite the superblock on the drive nor any area
1572          * used by the boot loader (grub for example), so we make sure to start
1573          * at an offset of at least 1MB.
1574          */
1575         search_start = max_t(u64, search_start, SZ_1M);
1576
1577         path = btrfs_alloc_path();
1578         if (!path)
1579                 return -ENOMEM;
1580
1581         max_hole_start = search_start;
1582         max_hole_size = 0;
1583
1584 again:
1585         if (search_start >= search_end ||
1586                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1587                 ret = -ENOSPC;
1588                 goto out;
1589         }
1590
1591         path->reada = READA_FORWARD;
1592         path->search_commit_root = 1;
1593         path->skip_locking = 1;
1594
1595         key.objectid = device->devid;
1596         key.offset = search_start;
1597         key.type = BTRFS_DEV_EXTENT_KEY;
1598
1599         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1600         if (ret < 0)
1601                 goto out;
1602         if (ret > 0) {
1603                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1604                 if (ret < 0)
1605                         goto out;
1606         }
1607
1608         while (1) {
1609                 l = path->nodes[0];
1610                 slot = path->slots[0];
1611                 if (slot >= btrfs_header_nritems(l)) {
1612                         ret = btrfs_next_leaf(root, path);
1613                         if (ret == 0)
1614                                 continue;
1615                         if (ret < 0)
1616                                 goto out;
1617
1618                         break;
1619                 }
1620                 btrfs_item_key_to_cpu(l, &key, slot);
1621
1622                 if (key.objectid < device->devid)
1623                         goto next;
1624
1625                 if (key.objectid > device->devid)
1626                         break;
1627
1628                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1629                         goto next;
1630
1631                 if (key.offset > search_start) {
1632                         hole_size = key.offset - search_start;
1633
1634                         /*
1635                          * Have to check before we set max_hole_start, otherwise
1636                          * we could end up sending back this offset anyway.
1637                          */
1638                         if (contains_pending_extent(device, &search_start,
1639                                                     hole_size)) {
1640                                 if (key.offset >= search_start)
1641                                         hole_size = key.offset - search_start;
1642                                 else
1643                                         hole_size = 0;
1644                         }
1645
1646                         if (hole_size > max_hole_size) {
1647                                 max_hole_start = search_start;
1648                                 max_hole_size = hole_size;
1649                         }
1650
1651                         /*
1652                          * If this free space is greater than which we need,
1653                          * it must be the max free space that we have found
1654                          * until now, so max_hole_start must point to the start
1655                          * of this free space and the length of this free space
1656                          * is stored in max_hole_size. Thus, we return
1657                          * max_hole_start and max_hole_size and go back to the
1658                          * caller.
1659                          */
1660                         if (hole_size >= num_bytes) {
1661                                 ret = 0;
1662                                 goto out;
1663                         }
1664                 }
1665
1666                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1667                 extent_end = key.offset + btrfs_dev_extent_length(l,
1668                                                                   dev_extent);
1669                 if (extent_end > search_start)
1670                         search_start = extent_end;
1671 next:
1672                 path->slots[0]++;
1673                 cond_resched();
1674         }
1675
1676         /*
1677          * At this point, search_start should be the end of
1678          * allocated dev extents, and when shrinking the device,
1679          * search_end may be smaller than search_start.
1680          */
1681         if (search_end > search_start) {
1682                 hole_size = search_end - search_start;
1683
1684                 if (contains_pending_extent(device, &search_start, hole_size)) {
1685                         btrfs_release_path(path);
1686                         goto again;
1687                 }
1688
1689                 if (hole_size > max_hole_size) {
1690                         max_hole_start = search_start;
1691                         max_hole_size = hole_size;
1692                 }
1693         }
1694
1695         /* See above. */
1696         if (max_hole_size < num_bytes)
1697                 ret = -ENOSPC;
1698         else
1699                 ret = 0;
1700
1701 out:
1702         btrfs_free_path(path);
1703         *start = max_hole_start;
1704         if (len)
1705                 *len = max_hole_size;
1706         return ret;
1707 }
1708
1709 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1710                          u64 *start, u64 *len)
1711 {
1712         /* FIXME use last free of some kind */
1713         return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1714 }
1715
1716 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1717                           struct btrfs_device *device,
1718                           u64 start, u64 *dev_extent_len)
1719 {
1720         struct btrfs_fs_info *fs_info = device->fs_info;
1721         struct btrfs_root *root = fs_info->dev_root;
1722         int ret;
1723         struct btrfs_path *path;
1724         struct btrfs_key key;
1725         struct btrfs_key found_key;
1726         struct extent_buffer *leaf = NULL;
1727         struct btrfs_dev_extent *extent = NULL;
1728
1729         path = btrfs_alloc_path();
1730         if (!path)
1731                 return -ENOMEM;
1732
1733         key.objectid = device->devid;
1734         key.offset = start;
1735         key.type = BTRFS_DEV_EXTENT_KEY;
1736 again:
1737         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1738         if (ret > 0) {
1739                 ret = btrfs_previous_item(root, path, key.objectid,
1740                                           BTRFS_DEV_EXTENT_KEY);
1741                 if (ret)
1742                         goto out;
1743                 leaf = path->nodes[0];
1744                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1745                 extent = btrfs_item_ptr(leaf, path->slots[0],
1746                                         struct btrfs_dev_extent);
1747                 BUG_ON(found_key.offset > start || found_key.offset +
1748                        btrfs_dev_extent_length(leaf, extent) < start);
1749                 key = found_key;
1750                 btrfs_release_path(path);
1751                 goto again;
1752         } else if (ret == 0) {
1753                 leaf = path->nodes[0];
1754                 extent = btrfs_item_ptr(leaf, path->slots[0],
1755                                         struct btrfs_dev_extent);
1756         } else {
1757                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1758                 goto out;
1759         }
1760
1761         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1762
1763         ret = btrfs_del_item(trans, root, path);
1764         if (ret) {
1765                 btrfs_handle_fs_error(fs_info, ret,
1766                                       "Failed to remove dev extent item");
1767         } else {
1768                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1769         }
1770 out:
1771         btrfs_free_path(path);
1772         return ret;
1773 }
1774
1775 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1776                                   struct btrfs_device *device,
1777                                   u64 chunk_offset, u64 start, u64 num_bytes)
1778 {
1779         int ret;
1780         struct btrfs_path *path;
1781         struct btrfs_fs_info *fs_info = device->fs_info;
1782         struct btrfs_root *root = fs_info->dev_root;
1783         struct btrfs_dev_extent *extent;
1784         struct extent_buffer *leaf;
1785         struct btrfs_key key;
1786
1787         WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1788         WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1789         path = btrfs_alloc_path();
1790         if (!path)
1791                 return -ENOMEM;
1792
1793         key.objectid = device->devid;
1794         key.offset = start;
1795         key.type = BTRFS_DEV_EXTENT_KEY;
1796         ret = btrfs_insert_empty_item(trans, root, path, &key,
1797                                       sizeof(*extent));
1798         if (ret)
1799                 goto out;
1800
1801         leaf = path->nodes[0];
1802         extent = btrfs_item_ptr(leaf, path->slots[0],
1803                                 struct btrfs_dev_extent);
1804         btrfs_set_dev_extent_chunk_tree(leaf, extent,
1805                                         BTRFS_CHUNK_TREE_OBJECTID);
1806         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1807                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1808         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1809
1810         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1811         btrfs_mark_buffer_dirty(leaf);
1812 out:
1813         btrfs_free_path(path);
1814         return ret;
1815 }
1816
1817 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1818 {
1819         struct extent_map_tree *em_tree;
1820         struct extent_map *em;
1821         struct rb_node *n;
1822         u64 ret = 0;
1823
1824         em_tree = &fs_info->mapping_tree;
1825         read_lock(&em_tree->lock);
1826         n = rb_last(&em_tree->map.rb_root);
1827         if (n) {
1828                 em = rb_entry(n, struct extent_map, rb_node);
1829                 ret = em->start + em->len;
1830         }
1831         read_unlock(&em_tree->lock);
1832
1833         return ret;
1834 }
1835
1836 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1837                                     u64 *devid_ret)
1838 {
1839         int ret;
1840         struct btrfs_key key;
1841         struct btrfs_key found_key;
1842         struct btrfs_path *path;
1843
1844         path = btrfs_alloc_path();
1845         if (!path)
1846                 return -ENOMEM;
1847
1848         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1849         key.type = BTRFS_DEV_ITEM_KEY;
1850         key.offset = (u64)-1;
1851
1852         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1853         if (ret < 0)
1854                 goto error;
1855
1856         if (ret == 0) {
1857                 /* Corruption */
1858                 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1859                 ret = -EUCLEAN;
1860                 goto error;
1861         }
1862
1863         ret = btrfs_previous_item(fs_info->chunk_root, path,
1864                                   BTRFS_DEV_ITEMS_OBJECTID,
1865                                   BTRFS_DEV_ITEM_KEY);
1866         if (ret) {
1867                 *devid_ret = 1;
1868         } else {
1869                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1870                                       path->slots[0]);
1871                 *devid_ret = found_key.offset + 1;
1872         }
1873         ret = 0;
1874 error:
1875         btrfs_free_path(path);
1876         return ret;
1877 }
1878
1879 /*
1880  * the device information is stored in the chunk root
1881  * the btrfs_device struct should be fully filled in
1882  */
1883 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1884                             struct btrfs_device *device)
1885 {
1886         int ret;
1887         struct btrfs_path *path;
1888         struct btrfs_dev_item *dev_item;
1889         struct extent_buffer *leaf;
1890         struct btrfs_key key;
1891         unsigned long ptr;
1892
1893         path = btrfs_alloc_path();
1894         if (!path)
1895                 return -ENOMEM;
1896
1897         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1898         key.type = BTRFS_DEV_ITEM_KEY;
1899         key.offset = device->devid;
1900
1901         ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1902                                       &key, sizeof(*dev_item));
1903         if (ret)
1904                 goto out;
1905
1906         leaf = path->nodes[0];
1907         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1908
1909         btrfs_set_device_id(leaf, dev_item, device->devid);
1910         btrfs_set_device_generation(leaf, dev_item, 0);
1911         btrfs_set_device_type(leaf, dev_item, device->type);
1912         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1913         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1914         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1915         btrfs_set_device_total_bytes(leaf, dev_item,
1916                                      btrfs_device_get_disk_total_bytes(device));
1917         btrfs_set_device_bytes_used(leaf, dev_item,
1918                                     btrfs_device_get_bytes_used(device));
1919         btrfs_set_device_group(leaf, dev_item, 0);
1920         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1921         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1922         btrfs_set_device_start_offset(leaf, dev_item, 0);
1923
1924         ptr = btrfs_device_uuid(dev_item);
1925         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1926         ptr = btrfs_device_fsid(dev_item);
1927         write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1928                             ptr, BTRFS_FSID_SIZE);
1929         btrfs_mark_buffer_dirty(leaf);
1930
1931         ret = 0;
1932 out:
1933         btrfs_free_path(path);
1934         return ret;
1935 }
1936
1937 /*
1938  * Function to update ctime/mtime for a given device path.
1939  * Mainly used for ctime/mtime based probe like libblkid.
1940  */
1941 static void update_dev_time(const char *path_name)
1942 {
1943         struct file *filp;
1944
1945         filp = filp_open(path_name, O_RDWR, 0);
1946         if (IS_ERR(filp))
1947                 return;
1948         file_update_time(filp);
1949         filp_close(filp, NULL);
1950 }
1951
1952 static int btrfs_rm_dev_item(struct btrfs_device *device)
1953 {
1954         struct btrfs_root *root = device->fs_info->chunk_root;
1955         int ret;
1956         struct btrfs_path *path;
1957         struct btrfs_key key;
1958         struct btrfs_trans_handle *trans;
1959
1960         path = btrfs_alloc_path();
1961         if (!path)
1962                 return -ENOMEM;
1963
1964         trans = btrfs_start_transaction(root, 0);
1965         if (IS_ERR(trans)) {
1966                 btrfs_free_path(path);
1967                 return PTR_ERR(trans);
1968         }
1969         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1970         key.type = BTRFS_DEV_ITEM_KEY;
1971         key.offset = device->devid;
1972
1973         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1974         if (ret) {
1975                 if (ret > 0)
1976                         ret = -ENOENT;
1977                 btrfs_abort_transaction(trans, ret);
1978                 btrfs_end_transaction(trans);
1979                 goto out;
1980         }
1981
1982         ret = btrfs_del_item(trans, root, path);
1983         if (ret) {
1984                 btrfs_abort_transaction(trans, ret);
1985                 btrfs_end_transaction(trans);
1986         }
1987
1988 out:
1989         btrfs_free_path(path);
1990         if (!ret)
1991                 ret = btrfs_commit_transaction(trans);
1992         return ret;
1993 }
1994
1995 /*
1996  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1997  * filesystem. It's up to the caller to adjust that number regarding eg. device
1998  * replace.
1999  */
2000 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
2001                 u64 num_devices)
2002 {
2003         u64 all_avail;
2004         unsigned seq;
2005         int i;
2006
2007         do {
2008                 seq = read_seqbegin(&fs_info->profiles_lock);
2009
2010                 all_avail = fs_info->avail_data_alloc_bits |
2011                             fs_info->avail_system_alloc_bits |
2012                             fs_info->avail_metadata_alloc_bits;
2013         } while (read_seqretry(&fs_info->profiles_lock, seq));
2014
2015         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2016                 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2017                         continue;
2018
2019                 if (num_devices < btrfs_raid_array[i].devs_min) {
2020                         int ret = btrfs_raid_array[i].mindev_error;
2021
2022                         if (ret)
2023                                 return ret;
2024                 }
2025         }
2026
2027         return 0;
2028 }
2029
2030 static struct btrfs_device * btrfs_find_next_active_device(
2031                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2032 {
2033         struct btrfs_device *next_device;
2034
2035         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2036                 if (next_device != device &&
2037                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2038                     && next_device->bdev)
2039                         return next_device;
2040         }
2041
2042         return NULL;
2043 }
2044
2045 /*
2046  * Helper function to check if the given device is part of s_bdev / latest_bdev
2047  * and replace it with the provided or the next active device, in the context
2048  * where this function called, there should be always be another device (or
2049  * this_dev) which is active.
2050  */
2051 void btrfs_assign_next_active_device(struct btrfs_device *device,
2052                                      struct btrfs_device *this_dev)
2053 {
2054         struct btrfs_fs_info *fs_info = device->fs_info;
2055         struct btrfs_device *next_device;
2056
2057         if (this_dev)
2058                 next_device = this_dev;
2059         else
2060                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2061                                                                 device);
2062         ASSERT(next_device);
2063
2064         if (fs_info->sb->s_bdev &&
2065                         (fs_info->sb->s_bdev == device->bdev))
2066                 fs_info->sb->s_bdev = next_device->bdev;
2067
2068         if (fs_info->fs_devices->latest_bdev == device->bdev)
2069                 fs_info->fs_devices->latest_bdev = next_device->bdev;
2070 }
2071
2072 /*
2073  * Return btrfs_fs_devices::num_devices excluding the device that's being
2074  * currently replaced.
2075  */
2076 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2077 {
2078         u64 num_devices = fs_info->fs_devices->num_devices;
2079
2080         down_read(&fs_info->dev_replace.rwsem);
2081         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2082                 ASSERT(num_devices > 1);
2083                 num_devices--;
2084         }
2085         up_read(&fs_info->dev_replace.rwsem);
2086
2087         return num_devices;
2088 }
2089
2090 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2091                 u64 devid)
2092 {
2093         struct btrfs_device *device;
2094         struct btrfs_fs_devices *cur_devices;
2095         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2096         u64 num_devices;
2097         int ret = 0;
2098
2099         mutex_lock(&uuid_mutex);
2100
2101         num_devices = btrfs_num_devices(fs_info);
2102
2103         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2104         if (ret)
2105                 goto out;
2106
2107         device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2108
2109         if (IS_ERR(device)) {
2110                 if (PTR_ERR(device) == -ENOENT &&
2111                     strcmp(device_path, "missing") == 0)
2112                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2113                 else
2114                         ret = PTR_ERR(device);
2115                 goto out;
2116         }
2117
2118         if (btrfs_pinned_by_swapfile(fs_info, device)) {
2119                 btrfs_warn_in_rcu(fs_info,
2120                   "cannot remove device %s (devid %llu) due to active swapfile",
2121                                   rcu_str_deref(device->name), device->devid);
2122                 ret = -ETXTBSY;
2123                 goto out;
2124         }
2125
2126         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2127                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2128                 goto out;
2129         }
2130
2131         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2132             fs_info->fs_devices->rw_devices == 1) {
2133                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2134                 goto out;
2135         }
2136
2137         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2138                 mutex_lock(&fs_info->chunk_mutex);
2139                 list_del_init(&device->dev_alloc_list);
2140                 device->fs_devices->rw_devices--;
2141                 mutex_unlock(&fs_info->chunk_mutex);
2142         }
2143
2144         mutex_unlock(&uuid_mutex);
2145         ret = btrfs_shrink_device(device, 0);
2146         mutex_lock(&uuid_mutex);
2147         if (ret)
2148                 goto error_undo;
2149
2150         /*
2151          * TODO: the superblock still includes this device in its num_devices
2152          * counter although write_all_supers() is not locked out. This
2153          * could give a filesystem state which requires a degraded mount.
2154          */
2155         ret = btrfs_rm_dev_item(device);
2156         if (ret)
2157                 goto error_undo;
2158
2159         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2160         btrfs_scrub_cancel_dev(device);
2161
2162         /*
2163          * the device list mutex makes sure that we don't change
2164          * the device list while someone else is writing out all
2165          * the device supers. Whoever is writing all supers, should
2166          * lock the device list mutex before getting the number of
2167          * devices in the super block (super_copy). Conversely,
2168          * whoever updates the number of devices in the super block
2169          * (super_copy) should hold the device list mutex.
2170          */
2171
2172         /*
2173          * In normal cases the cur_devices == fs_devices. But in case
2174          * of deleting a seed device, the cur_devices should point to
2175          * its own fs_devices listed under the fs_devices->seed.
2176          */
2177         cur_devices = device->fs_devices;
2178         mutex_lock(&fs_devices->device_list_mutex);
2179         list_del_rcu(&device->dev_list);
2180
2181         cur_devices->num_devices--;
2182         cur_devices->total_devices--;
2183         /* Update total_devices of the parent fs_devices if it's seed */
2184         if (cur_devices != fs_devices)
2185                 fs_devices->total_devices--;
2186
2187         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2188                 cur_devices->missing_devices--;
2189
2190         btrfs_assign_next_active_device(device, NULL);
2191
2192         if (device->bdev) {
2193                 cur_devices->open_devices--;
2194                 /* remove sysfs entry */
2195                 btrfs_sysfs_rm_device_link(fs_devices, device);
2196         }
2197
2198         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2199         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2200         mutex_unlock(&fs_devices->device_list_mutex);
2201
2202         /*
2203          * at this point, the device is zero sized and detached from
2204          * the devices list.  All that's left is to zero out the old
2205          * supers and free the device.
2206          */
2207         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2208                 btrfs_scratch_superblocks(device->bdev, device->name->str);
2209
2210         btrfs_close_bdev(device);
2211         synchronize_rcu();
2212         btrfs_free_device(device);
2213
2214         if (cur_devices->open_devices == 0) {
2215                 while (fs_devices) {
2216                         if (fs_devices->seed == cur_devices) {
2217                                 fs_devices->seed = cur_devices->seed;
2218                                 break;
2219                         }
2220                         fs_devices = fs_devices->seed;
2221                 }
2222                 cur_devices->seed = NULL;
2223                 close_fs_devices(cur_devices);
2224                 free_fs_devices(cur_devices);
2225         }
2226
2227 out:
2228         mutex_unlock(&uuid_mutex);
2229         return ret;
2230
2231 error_undo:
2232         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2233                 mutex_lock(&fs_info->chunk_mutex);
2234                 list_add(&device->dev_alloc_list,
2235                          &fs_devices->alloc_list);
2236                 device->fs_devices->rw_devices++;
2237                 mutex_unlock(&fs_info->chunk_mutex);
2238         }
2239         goto out;
2240 }
2241
2242 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2243 {
2244         struct btrfs_fs_devices *fs_devices;
2245
2246         lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2247
2248         /*
2249          * in case of fs with no seed, srcdev->fs_devices will point
2250          * to fs_devices of fs_info. However when the dev being replaced is
2251          * a seed dev it will point to the seed's local fs_devices. In short
2252          * srcdev will have its correct fs_devices in both the cases.
2253          */
2254         fs_devices = srcdev->fs_devices;
2255
2256         list_del_rcu(&srcdev->dev_list);
2257         list_del(&srcdev->dev_alloc_list);
2258         fs_devices->num_devices--;
2259         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2260                 fs_devices->missing_devices--;
2261
2262         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2263                 fs_devices->rw_devices--;
2264
2265         if (srcdev->bdev)
2266                 fs_devices->open_devices--;
2267 }
2268
2269 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2270 {
2271         struct btrfs_fs_info *fs_info = srcdev->fs_info;
2272         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2273
2274         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2275                 /* zero out the old super if it is writable */
2276                 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2277         }
2278
2279         btrfs_close_bdev(srcdev);
2280         synchronize_rcu();
2281         btrfs_free_device(srcdev);
2282
2283         /* if this is no devs we rather delete the fs_devices */
2284         if (!fs_devices->num_devices) {
2285                 struct btrfs_fs_devices *tmp_fs_devices;
2286
2287                 /*
2288                  * On a mounted FS, num_devices can't be zero unless it's a
2289                  * seed. In case of a seed device being replaced, the replace
2290                  * target added to the sprout FS, so there will be no more
2291                  * device left under the seed FS.
2292                  */
2293                 ASSERT(fs_devices->seeding);
2294
2295                 tmp_fs_devices = fs_info->fs_devices;
2296                 while (tmp_fs_devices) {
2297                         if (tmp_fs_devices->seed == fs_devices) {
2298                                 tmp_fs_devices->seed = fs_devices->seed;
2299                                 break;
2300                         }
2301                         tmp_fs_devices = tmp_fs_devices->seed;
2302                 }
2303                 fs_devices->seed = NULL;
2304                 close_fs_devices(fs_devices);
2305                 free_fs_devices(fs_devices);
2306         }
2307 }
2308
2309 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2310 {
2311         struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2312
2313         WARN_ON(!tgtdev);
2314         mutex_lock(&fs_devices->device_list_mutex);
2315
2316         btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2317
2318         if (tgtdev->bdev)
2319                 fs_devices->open_devices--;
2320
2321         fs_devices->num_devices--;
2322
2323         btrfs_assign_next_active_device(tgtdev, NULL);
2324
2325         list_del_rcu(&tgtdev->dev_list);
2326
2327         mutex_unlock(&fs_devices->device_list_mutex);
2328
2329         /*
2330          * The update_dev_time() with in btrfs_scratch_superblocks()
2331          * may lead to a call to btrfs_show_devname() which will try
2332          * to hold device_list_mutex. And here this device
2333          * is already out of device list, so we don't have to hold
2334          * the device_list_mutex lock.
2335          */
2336         btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2337
2338         btrfs_close_bdev(tgtdev);
2339         synchronize_rcu();
2340         btrfs_free_device(tgtdev);
2341 }
2342
2343 static struct btrfs_device *btrfs_find_device_by_path(
2344                 struct btrfs_fs_info *fs_info, const char *device_path)
2345 {
2346         int ret = 0;
2347         struct btrfs_super_block *disk_super;
2348         u64 devid;
2349         u8 *dev_uuid;
2350         struct block_device *bdev;
2351         struct buffer_head *bh;
2352         struct btrfs_device *device;
2353
2354         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2355                                     fs_info->bdev_holder, 0, &bdev, &bh);
2356         if (ret)
2357                 return ERR_PTR(ret);
2358         disk_super = (struct btrfs_super_block *)bh->b_data;
2359         devid = btrfs_stack_device_id(&disk_super->dev_item);
2360         dev_uuid = disk_super->dev_item.uuid;
2361         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2362                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2363                                            disk_super->metadata_uuid, true);
2364         else
2365                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2366                                            disk_super->fsid, true);
2367
2368         brelse(bh);
2369         if (!device)
2370                 device = ERR_PTR(-ENOENT);
2371         blkdev_put(bdev, FMODE_READ);
2372         return device;
2373 }
2374
2375 /*
2376  * Lookup a device given by device id, or the path if the id is 0.
2377  */
2378 struct btrfs_device *btrfs_find_device_by_devspec(
2379                 struct btrfs_fs_info *fs_info, u64 devid,
2380                 const char *device_path)
2381 {
2382         struct btrfs_device *device;
2383
2384         if (devid) {
2385                 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2386                                            NULL, true);
2387                 if (!device)
2388                         return ERR_PTR(-ENOENT);
2389                 return device;
2390         }
2391
2392         if (!device_path || !device_path[0])
2393                 return ERR_PTR(-EINVAL);
2394
2395         if (strcmp(device_path, "missing") == 0) {
2396                 /* Find first missing device */
2397                 list_for_each_entry(device, &fs_info->fs_devices->devices,
2398                                     dev_list) {
2399                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2400                                      &device->dev_state) && !device->bdev)
2401                                 return device;
2402                 }
2403                 return ERR_PTR(-ENOENT);
2404         }
2405
2406         return btrfs_find_device_by_path(fs_info, device_path);
2407 }
2408
2409 /*
2410  * does all the dirty work required for changing file system's UUID.
2411  */
2412 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2413 {
2414         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2415         struct btrfs_fs_devices *old_devices;
2416         struct btrfs_fs_devices *seed_devices;
2417         struct btrfs_super_block *disk_super = fs_info->super_copy;
2418         struct btrfs_device *device;
2419         u64 super_flags;
2420
2421         lockdep_assert_held(&uuid_mutex);
2422         if (!fs_devices->seeding)
2423                 return -EINVAL;
2424
2425         seed_devices = alloc_fs_devices(NULL, NULL);
2426         if (IS_ERR(seed_devices))
2427                 return PTR_ERR(seed_devices);
2428
2429         old_devices = clone_fs_devices(fs_devices);
2430         if (IS_ERR(old_devices)) {
2431                 kfree(seed_devices);
2432                 return PTR_ERR(old_devices);
2433         }
2434
2435         list_add(&old_devices->fs_list, &fs_uuids);
2436
2437         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2438         seed_devices->opened = 1;
2439         INIT_LIST_HEAD(&seed_devices->devices);
2440         INIT_LIST_HEAD(&seed_devices->alloc_list);
2441         mutex_init(&seed_devices->device_list_mutex);
2442
2443         mutex_lock(&fs_devices->device_list_mutex);
2444         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2445                               synchronize_rcu);
2446         list_for_each_entry(device, &seed_devices->devices, dev_list)
2447                 device->fs_devices = seed_devices;
2448
2449         mutex_lock(&fs_info->chunk_mutex);
2450         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2451         mutex_unlock(&fs_info->chunk_mutex);
2452
2453         fs_devices->seeding = 0;
2454         fs_devices->num_devices = 0;
2455         fs_devices->open_devices = 0;
2456         fs_devices->missing_devices = 0;
2457         fs_devices->rotating = 0;
2458         fs_devices->seed = seed_devices;
2459
2460         generate_random_uuid(fs_devices->fsid);
2461         memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2462         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2463         mutex_unlock(&fs_devices->device_list_mutex);
2464
2465         super_flags = btrfs_super_flags(disk_super) &
2466                       ~BTRFS_SUPER_FLAG_SEEDING;
2467         btrfs_set_super_flags(disk_super, super_flags);
2468
2469         return 0;
2470 }
2471
2472 /*
2473  * Store the expected generation for seed devices in device items.
2474  */
2475 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2476 {
2477         struct btrfs_fs_info *fs_info = trans->fs_info;
2478         struct btrfs_root *root = fs_info->chunk_root;
2479         struct btrfs_path *path;
2480         struct extent_buffer *leaf;
2481         struct btrfs_dev_item *dev_item;
2482         struct btrfs_device *device;
2483         struct btrfs_key key;
2484         u8 fs_uuid[BTRFS_FSID_SIZE];
2485         u8 dev_uuid[BTRFS_UUID_SIZE];
2486         u64 devid;
2487         int ret;
2488
2489         path = btrfs_alloc_path();
2490         if (!path)
2491                 return -ENOMEM;
2492
2493         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2494         key.offset = 0;
2495         key.type = BTRFS_DEV_ITEM_KEY;
2496
2497         while (1) {
2498                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2499                 if (ret < 0)
2500                         goto error;
2501
2502                 leaf = path->nodes[0];
2503 next_slot:
2504                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2505                         ret = btrfs_next_leaf(root, path);
2506                         if (ret > 0)
2507                                 break;
2508                         if (ret < 0)
2509                                 goto error;
2510                         leaf = path->nodes[0];
2511                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2512                         btrfs_release_path(path);
2513                         continue;
2514                 }
2515
2516                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2517                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2518                     key.type != BTRFS_DEV_ITEM_KEY)
2519                         break;
2520
2521                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2522                                           struct btrfs_dev_item);
2523                 devid = btrfs_device_id(leaf, dev_item);
2524                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2525                                    BTRFS_UUID_SIZE);
2526                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2527                                    BTRFS_FSID_SIZE);
2528                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2529                                            fs_uuid, true);
2530                 BUG_ON(!device); /* Logic error */
2531
2532                 if (device->fs_devices->seeding) {
2533                         btrfs_set_device_generation(leaf, dev_item,
2534                                                     device->generation);
2535                         btrfs_mark_buffer_dirty(leaf);
2536                 }
2537
2538                 path->slots[0]++;
2539                 goto next_slot;
2540         }
2541         ret = 0;
2542 error:
2543         btrfs_free_path(path);
2544         return ret;
2545 }
2546
2547 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2548 {
2549         struct btrfs_root *root = fs_info->dev_root;
2550         struct request_queue *q;
2551         struct btrfs_trans_handle *trans;
2552         struct btrfs_device *device;
2553         struct block_device *bdev;
2554         struct super_block *sb = fs_info->sb;
2555         struct rcu_string *name;
2556         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2557         u64 orig_super_total_bytes;
2558         u64 orig_super_num_devices;
2559         int seeding_dev = 0;
2560         int ret = 0;
2561         bool unlocked = false;
2562
2563         if (sb_rdonly(sb) && !fs_devices->seeding)
2564                 return -EROFS;
2565
2566         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2567                                   fs_info->bdev_holder);
2568         if (IS_ERR(bdev))
2569                 return PTR_ERR(bdev);
2570
2571         if (fs_devices->seeding) {
2572                 seeding_dev = 1;
2573                 down_write(&sb->s_umount);
2574                 mutex_lock(&uuid_mutex);
2575         }
2576
2577         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2578
2579         mutex_lock(&fs_devices->device_list_mutex);
2580         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2581                 if (device->bdev == bdev) {
2582                         ret = -EEXIST;
2583                         mutex_unlock(
2584                                 &fs_devices->device_list_mutex);
2585                         goto error;
2586                 }
2587         }
2588         mutex_unlock(&fs_devices->device_list_mutex);
2589
2590         device = btrfs_alloc_device(fs_info, NULL, NULL);
2591         if (IS_ERR(device)) {
2592                 /* we can safely leave the fs_devices entry around */
2593                 ret = PTR_ERR(device);
2594                 goto error;
2595         }
2596
2597         name = rcu_string_strdup(device_path, GFP_KERNEL);
2598         if (!name) {
2599                 ret = -ENOMEM;
2600                 goto error_free_device;
2601         }
2602         rcu_assign_pointer(device->name, name);
2603
2604         trans = btrfs_start_transaction(root, 0);
2605         if (IS_ERR(trans)) {
2606                 ret = PTR_ERR(trans);
2607                 goto error_free_device;
2608         }
2609
2610         q = bdev_get_queue(bdev);
2611         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2612         device->generation = trans->transid;
2613         device->io_width = fs_info->sectorsize;
2614         device->io_align = fs_info->sectorsize;
2615         device->sector_size = fs_info->sectorsize;
2616         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2617                                          fs_info->sectorsize);
2618         device->disk_total_bytes = device->total_bytes;
2619         device->commit_total_bytes = device->total_bytes;
2620         device->fs_info = fs_info;
2621         device->bdev = bdev;
2622         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2623         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2624         device->mode = FMODE_EXCL;
2625         device->dev_stats_valid = 1;
2626         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2627
2628         if (seeding_dev) {
2629                 sb->s_flags &= ~SB_RDONLY;
2630                 ret = btrfs_prepare_sprout(fs_info);
2631                 if (ret) {
2632                         btrfs_abort_transaction(trans, ret);
2633                         goto error_trans;
2634                 }
2635         }
2636
2637         device->fs_devices = fs_devices;
2638
2639         mutex_lock(&fs_devices->device_list_mutex);
2640         mutex_lock(&fs_info->chunk_mutex);
2641         list_add_rcu(&device->dev_list, &fs_devices->devices);
2642         list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2643         fs_devices->num_devices++;
2644         fs_devices->open_devices++;
2645         fs_devices->rw_devices++;
2646         fs_devices->total_devices++;
2647         fs_devices->total_rw_bytes += device->total_bytes;
2648
2649         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2650
2651         if (!blk_queue_nonrot(q))
2652                 fs_devices->rotating = 1;
2653
2654         orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2655         btrfs_set_super_total_bytes(fs_info->super_copy,
2656                 round_down(orig_super_total_bytes + device->total_bytes,
2657                            fs_info->sectorsize));
2658
2659         orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2660         btrfs_set_super_num_devices(fs_info->super_copy,
2661                                     orig_super_num_devices + 1);
2662
2663         /* add sysfs device entry */
2664         btrfs_sysfs_add_device_link(fs_devices, device);
2665
2666         /*
2667          * we've got more storage, clear any full flags on the space
2668          * infos
2669          */
2670         btrfs_clear_space_info_full(fs_info);
2671
2672         mutex_unlock(&fs_info->chunk_mutex);
2673         mutex_unlock(&fs_devices->device_list_mutex);
2674
2675         if (seeding_dev) {
2676                 mutex_lock(&fs_info->chunk_mutex);
2677                 ret = init_first_rw_device(trans);
2678                 mutex_unlock(&fs_info->chunk_mutex);
2679                 if (ret) {
2680                         btrfs_abort_transaction(trans, ret);
2681                         goto error_sysfs;
2682                 }
2683         }
2684
2685         ret = btrfs_add_dev_item(trans, device);
2686         if (ret) {
2687                 btrfs_abort_transaction(trans, ret);
2688                 goto error_sysfs;
2689         }
2690
2691         if (seeding_dev) {
2692                 ret = btrfs_finish_sprout(trans);
2693                 if (ret) {
2694                         btrfs_abort_transaction(trans, ret);
2695                         goto error_sysfs;
2696                 }
2697
2698                 btrfs_sysfs_update_sprout_fsid(fs_devices,
2699                                 fs_info->fs_devices->fsid);
2700         }
2701
2702         ret = btrfs_commit_transaction(trans);
2703
2704         if (seeding_dev) {
2705                 mutex_unlock(&uuid_mutex);
2706                 up_write(&sb->s_umount);
2707                 unlocked = true;
2708
2709                 if (ret) /* transaction commit */
2710                         return ret;
2711
2712                 ret = btrfs_relocate_sys_chunks(fs_info);
2713                 if (ret < 0)
2714                         btrfs_handle_fs_error(fs_info, ret,
2715                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2716                 trans = btrfs_attach_transaction(root);
2717                 if (IS_ERR(trans)) {
2718                         if (PTR_ERR(trans) == -ENOENT)
2719                                 return 0;
2720                         ret = PTR_ERR(trans);
2721                         trans = NULL;
2722                         goto error_sysfs;
2723                 }
2724                 ret = btrfs_commit_transaction(trans);
2725         }
2726
2727         /* Update ctime/mtime for libblkid */
2728         update_dev_time(device_path);
2729         return ret;
2730
2731 error_sysfs:
2732         btrfs_sysfs_rm_device_link(fs_devices, device);
2733         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2734         mutex_lock(&fs_info->chunk_mutex);
2735         list_del_rcu(&device->dev_list);
2736         list_del(&device->dev_alloc_list);
2737         fs_info->fs_devices->num_devices--;
2738         fs_info->fs_devices->open_devices--;
2739         fs_info->fs_devices->rw_devices--;
2740         fs_info->fs_devices->total_devices--;
2741         fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2742         atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2743         btrfs_set_super_total_bytes(fs_info->super_copy,
2744                                     orig_super_total_bytes);
2745         btrfs_set_super_num_devices(fs_info->super_copy,
2746                                     orig_super_num_devices);
2747         mutex_unlock(&fs_info->chunk_mutex);
2748         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2749 error_trans:
2750         if (seeding_dev)
2751                 sb->s_flags |= SB_RDONLY;
2752         if (trans)
2753                 btrfs_end_transaction(trans);
2754 error_free_device:
2755         btrfs_free_device(device);
2756 error:
2757         blkdev_put(bdev, FMODE_EXCL);
2758         if (seeding_dev && !unlocked) {
2759                 mutex_unlock(&uuid_mutex);
2760                 up_write(&sb->s_umount);
2761         }
2762         return ret;
2763 }
2764
2765 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2766                                         struct btrfs_device *device)
2767 {
2768         int ret;
2769         struct btrfs_path *path;
2770         struct btrfs_root *root = device->fs_info->chunk_root;
2771         struct btrfs_dev_item *dev_item;
2772         struct extent_buffer *leaf;
2773         struct btrfs_key key;
2774
2775         path = btrfs_alloc_path();
2776         if (!path)
2777                 return -ENOMEM;
2778
2779         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2780         key.type = BTRFS_DEV_ITEM_KEY;
2781         key.offset = device->devid;
2782
2783         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2784         if (ret < 0)
2785                 goto out;
2786
2787         if (ret > 0) {
2788                 ret = -ENOENT;
2789                 goto out;
2790         }
2791
2792         leaf = path->nodes[0];
2793         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2794
2795         btrfs_set_device_id(leaf, dev_item, device->devid);
2796         btrfs_set_device_type(leaf, dev_item, device->type);
2797         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2798         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2799         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2800         btrfs_set_device_total_bytes(leaf, dev_item,
2801                                      btrfs_device_get_disk_total_bytes(device));
2802         btrfs_set_device_bytes_used(leaf, dev_item,
2803                                     btrfs_device_get_bytes_used(device));
2804         btrfs_mark_buffer_dirty(leaf);
2805
2806 out:
2807         btrfs_free_path(path);
2808         return ret;
2809 }
2810
2811 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2812                       struct btrfs_device *device, u64 new_size)
2813 {
2814         struct btrfs_fs_info *fs_info = device->fs_info;
2815         struct btrfs_super_block *super_copy = fs_info->super_copy;
2816         u64 old_total;
2817         u64 diff;
2818
2819         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2820                 return -EACCES;
2821
2822         new_size = round_down(new_size, fs_info->sectorsize);
2823
2824         mutex_lock(&fs_info->chunk_mutex);
2825         old_total = btrfs_super_total_bytes(super_copy);
2826         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2827
2828         if (new_size <= device->total_bytes ||
2829             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2830                 mutex_unlock(&fs_info->chunk_mutex);
2831                 return -EINVAL;
2832         }
2833
2834         btrfs_set_super_total_bytes(super_copy,
2835                         round_down(old_total + diff, fs_info->sectorsize));
2836         device->fs_devices->total_rw_bytes += diff;
2837
2838         btrfs_device_set_total_bytes(device, new_size);
2839         btrfs_device_set_disk_total_bytes(device, new_size);
2840         btrfs_clear_space_info_full(device->fs_info);
2841         if (list_empty(&device->post_commit_list))
2842                 list_add_tail(&device->post_commit_list,
2843                               &trans->transaction->dev_update_list);
2844         mutex_unlock(&fs_info->chunk_mutex);
2845
2846         return btrfs_update_device(trans, device);
2847 }
2848
2849 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2850 {
2851         struct btrfs_fs_info *fs_info = trans->fs_info;
2852         struct btrfs_root *root = fs_info->chunk_root;
2853         int ret;
2854         struct btrfs_path *path;
2855         struct btrfs_key key;
2856
2857         path = btrfs_alloc_path();
2858         if (!path)
2859                 return -ENOMEM;
2860
2861         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2862         key.offset = chunk_offset;
2863         key.type = BTRFS_CHUNK_ITEM_KEY;
2864
2865         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2866         if (ret < 0)
2867                 goto out;
2868         else if (ret > 0) { /* Logic error or corruption */
2869                 btrfs_handle_fs_error(fs_info, -ENOENT,
2870                                       "Failed lookup while freeing chunk.");
2871                 ret = -ENOENT;
2872                 goto out;
2873         }
2874
2875         ret = btrfs_del_item(trans, root, path);
2876         if (ret < 0)
2877                 btrfs_handle_fs_error(fs_info, ret,
2878                                       "Failed to delete chunk item.");
2879 out:
2880         btrfs_free_path(path);
2881         return ret;
2882 }
2883
2884 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2885 {
2886         struct btrfs_super_block *super_copy = fs_info->super_copy;
2887         struct btrfs_disk_key *disk_key;
2888         struct btrfs_chunk *chunk;
2889         u8 *ptr;
2890         int ret = 0;
2891         u32 num_stripes;
2892         u32 array_size;
2893         u32 len = 0;
2894         u32 cur;
2895         struct btrfs_key key;
2896
2897         mutex_lock(&fs_info->chunk_mutex);
2898         array_size = btrfs_super_sys_array_size(super_copy);
2899
2900         ptr = super_copy->sys_chunk_array;
2901         cur = 0;
2902
2903         while (cur < array_size) {
2904                 disk_key = (struct btrfs_disk_key *)ptr;
2905                 btrfs_disk_key_to_cpu(&key, disk_key);
2906
2907                 len = sizeof(*disk_key);
2908
2909                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2910                         chunk = (struct btrfs_chunk *)(ptr + len);
2911                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2912                         len += btrfs_chunk_item_size(num_stripes);
2913                 } else {
2914                         ret = -EIO;
2915                         break;
2916                 }
2917                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2918                     key.offset == chunk_offset) {
2919                         memmove(ptr, ptr + len, array_size - (cur + len));
2920                         array_size -= len;
2921                         btrfs_set_super_sys_array_size(super_copy, array_size);
2922                 } else {
2923                         ptr += len;
2924                         cur += len;
2925                 }
2926         }
2927         mutex_unlock(&fs_info->chunk_mutex);
2928         return ret;
2929 }
2930
2931 /*
2932  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2933  * @logical: Logical block offset in bytes.
2934  * @length: Length of extent in bytes.
2935  *
2936  * Return: Chunk mapping or ERR_PTR.
2937  */
2938 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2939                                        u64 logical, u64 length)
2940 {
2941         struct extent_map_tree *em_tree;
2942         struct extent_map *em;
2943
2944         em_tree = &fs_info->mapping_tree;
2945         read_lock(&em_tree->lock);
2946         em = lookup_extent_mapping(em_tree, logical, length);
2947         read_unlock(&em_tree->lock);
2948
2949         if (!em) {
2950                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2951                            logical, length);
2952                 return ERR_PTR(-EINVAL);
2953         }
2954
2955         if (em->start > logical || em->start + em->len < logical) {
2956                 btrfs_crit(fs_info,
2957                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2958                            logical, length, em->start, em->start + em->len);
2959                 free_extent_map(em);
2960                 return ERR_PTR(-EINVAL);
2961         }
2962
2963         /* callers are responsible for dropping em's ref. */
2964         return em;
2965 }
2966
2967 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2968 {
2969         struct btrfs_fs_info *fs_info = trans->fs_info;
2970         struct extent_map *em;
2971         struct map_lookup *map;
2972         u64 dev_extent_len = 0;
2973         int i, ret = 0;
2974         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2975
2976         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2977         if (IS_ERR(em)) {
2978                 /*
2979                  * This is a logic error, but we don't want to just rely on the
2980                  * user having built with ASSERT enabled, so if ASSERT doesn't
2981                  * do anything we still error out.
2982                  */
2983                 ASSERT(0);
2984                 return PTR_ERR(em);
2985         }
2986         map = em->map_lookup;
2987         mutex_lock(&fs_info->chunk_mutex);
2988         check_system_chunk(trans, map->type);
2989         mutex_unlock(&fs_info->chunk_mutex);
2990
2991         /*
2992          * Take the device list mutex to prevent races with the final phase of
2993          * a device replace operation that replaces the device object associated
2994          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2995          */
2996         mutex_lock(&fs_devices->device_list_mutex);
2997         for (i = 0; i < map->num_stripes; i++) {
2998                 struct btrfs_device *device = map->stripes[i].dev;
2999                 ret = btrfs_free_dev_extent(trans, device,
3000                                             map->stripes[i].physical,
3001                                             &dev_extent_len);
3002                 if (ret) {
3003                         mutex_unlock(&fs_devices->device_list_mutex);
3004                         btrfs_abort_transaction(trans, ret);
3005                         goto out;
3006                 }
3007
3008                 if (device->bytes_used > 0) {
3009                         mutex_lock(&fs_info->chunk_mutex);
3010                         btrfs_device_set_bytes_used(device,
3011                                         device->bytes_used - dev_extent_len);
3012                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3013                         btrfs_clear_space_info_full(fs_info);
3014                         mutex_unlock(&fs_info->chunk_mutex);
3015                 }
3016
3017                 ret = btrfs_update_device(trans, device);
3018                 if (ret) {
3019                         mutex_unlock(&fs_devices->device_list_mutex);
3020                         btrfs_abort_transaction(trans, ret);
3021                         goto out;
3022                 }
3023         }
3024         mutex_unlock(&fs_devices->device_list_mutex);
3025
3026         ret = btrfs_free_chunk(trans, chunk_offset);
3027         if (ret) {
3028                 btrfs_abort_transaction(trans, ret);
3029                 goto out;
3030         }
3031
3032         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3033
3034         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3035                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3036                 if (ret) {
3037                         btrfs_abort_transaction(trans, ret);
3038                         goto out;
3039                 }
3040         }
3041
3042         ret = btrfs_remove_block_group(trans, chunk_offset, em);
3043         if (ret) {
3044                 btrfs_abort_transaction(trans, ret);
3045                 goto out;
3046         }
3047
3048 out:
3049         /* once for us */
3050         free_extent_map(em);
3051         return ret;
3052 }
3053
3054 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3055 {
3056         struct btrfs_root *root = fs_info->chunk_root;
3057         struct btrfs_trans_handle *trans;
3058         int ret;
3059
3060         /*
3061          * Prevent races with automatic removal of unused block groups.
3062          * After we relocate and before we remove the chunk with offset
3063          * chunk_offset, automatic removal of the block group can kick in,
3064          * resulting in a failure when calling btrfs_remove_chunk() below.
3065          *
3066          * Make sure to acquire this mutex before doing a tree search (dev
3067          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3068          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3069          * we release the path used to search the chunk/dev tree and before
3070          * the current task acquires this mutex and calls us.
3071          */
3072         lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3073
3074         /* step one, relocate all the extents inside this chunk */
3075         btrfs_scrub_pause(fs_info);
3076         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3077         btrfs_scrub_continue(fs_info);
3078         if (ret)
3079                 return ret;
3080
3081         trans = btrfs_start_trans_remove_block_group(root->fs_info,
3082                                                      chunk_offset);
3083         if (IS_ERR(trans)) {
3084                 ret = PTR_ERR(trans);
3085                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3086                 return ret;
3087         }
3088
3089         /*
3090          * step two, delete the device extents and the
3091          * chunk tree entries
3092          */
3093         ret = btrfs_remove_chunk(trans, chunk_offset);
3094         btrfs_end_transaction(trans);
3095         return ret;
3096 }
3097
3098 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3099 {
3100         struct btrfs_root *chunk_root = fs_info->chunk_root;
3101         struct btrfs_path *path;
3102         struct extent_buffer *leaf;
3103         struct btrfs_chunk *chunk;
3104         struct btrfs_key key;
3105         struct btrfs_key found_key;
3106         u64 chunk_type;
3107         bool retried = false;
3108         int failed = 0;
3109         int ret;
3110
3111         path = btrfs_alloc_path();
3112         if (!path)
3113                 return -ENOMEM;
3114
3115 again:
3116         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3117         key.offset = (u64)-1;
3118         key.type = BTRFS_CHUNK_ITEM_KEY;
3119
3120         while (1) {
3121                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3122                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3123                 if (ret < 0) {
3124                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3125                         goto error;
3126                 }
3127                 BUG_ON(ret == 0); /* Corruption */
3128
3129                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3130                                           key.type);
3131                 if (ret)
3132                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3133                 if (ret < 0)
3134                         goto error;
3135                 if (ret > 0)
3136                         break;
3137
3138                 leaf = path->nodes[0];
3139                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3140
3141                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3142                                        struct btrfs_chunk);
3143                 chunk_type = btrfs_chunk_type(leaf, chunk);
3144                 btrfs_release_path(path);
3145
3146                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3147                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3148                         if (ret == -ENOSPC)
3149                                 failed++;
3150                         else
3151                                 BUG_ON(ret);
3152                 }
3153                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3154
3155                 if (found_key.offset == 0)
3156                         break;
3157                 key.offset = found_key.offset - 1;
3158         }
3159         ret = 0;
3160         if (failed && !retried) {
3161                 failed = 0;
3162                 retried = true;
3163                 goto again;
3164         } else if (WARN_ON(failed && retried)) {
3165                 ret = -ENOSPC;
3166         }
3167 error:
3168         btrfs_free_path(path);
3169         return ret;
3170 }
3171
3172 /*
3173  * return 1 : allocate a data chunk successfully,
3174  * return <0: errors during allocating a data chunk,
3175  * return 0 : no need to allocate a data chunk.
3176  */
3177 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3178                                       u64 chunk_offset)
3179 {
3180         struct btrfs_block_group_cache *cache;
3181         u64 bytes_used;
3182         u64 chunk_type;
3183
3184         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3185         ASSERT(cache);
3186         chunk_type = cache->flags;
3187         btrfs_put_block_group(cache);
3188
3189         if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3190                 spin_lock(&fs_info->data_sinfo->lock);
3191                 bytes_used = fs_info->data_sinfo->bytes_used;
3192                 spin_unlock(&fs_info->data_sinfo->lock);
3193
3194                 if (!bytes_used) {
3195                         struct btrfs_trans_handle *trans;
3196                         int ret;
3197
3198                         trans = btrfs_join_transaction(fs_info->tree_root);
3199                         if (IS_ERR(trans))
3200                                 return PTR_ERR(trans);
3201
3202                         ret = btrfs_force_chunk_alloc(trans,
3203                                                       BTRFS_BLOCK_GROUP_DATA);
3204                         btrfs_end_transaction(trans);
3205                         if (ret < 0)
3206                                 return ret;
3207                         return 1;
3208                 }
3209         }
3210         return 0;
3211 }
3212
3213 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3214                                struct btrfs_balance_control *bctl)
3215 {
3216         struct btrfs_root *root = fs_info->tree_root;
3217         struct btrfs_trans_handle *trans;
3218         struct btrfs_balance_item *item;
3219         struct btrfs_disk_balance_args disk_bargs;
3220         struct btrfs_path *path;
3221         struct extent_buffer *leaf;
3222         struct btrfs_key key;
3223         int ret, err;
3224
3225         path = btrfs_alloc_path();
3226         if (!path)
3227                 return -ENOMEM;
3228
3229         trans = btrfs_start_transaction(root, 0);
3230         if (IS_ERR(trans)) {
3231                 btrfs_free_path(path);
3232                 return PTR_ERR(trans);
3233         }
3234
3235         key.objectid = BTRFS_BALANCE_OBJECTID;
3236         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3237         key.offset = 0;
3238
3239         ret = btrfs_insert_empty_item(trans, root, path, &key,
3240                                       sizeof(*item));
3241         if (ret)
3242                 goto out;
3243
3244         leaf = path->nodes[0];
3245         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3246
3247         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3248
3249         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3250         btrfs_set_balance_data(leaf, item, &disk_bargs);
3251         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3252         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3253         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3254         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3255
3256         btrfs_set_balance_flags(leaf, item, bctl->flags);
3257
3258         btrfs_mark_buffer_dirty(leaf);
3259 out:
3260         btrfs_free_path(path);
3261         err = btrfs_commit_transaction(trans);
3262         if (err && !ret)
3263                 ret = err;
3264         return ret;
3265 }
3266
3267 static int del_balance_item(struct btrfs_fs_info *fs_info)
3268 {
3269         struct btrfs_root *root = fs_info->tree_root;
3270         struct btrfs_trans_handle *trans;
3271         struct btrfs_path *path;
3272         struct btrfs_key key;
3273         int ret, err;
3274
3275         path = btrfs_alloc_path();
3276         if (!path)
3277                 return -ENOMEM;
3278
3279         trans = btrfs_start_transaction(root, 0);
3280         if (IS_ERR(trans)) {
3281                 btrfs_free_path(path);
3282                 return PTR_ERR(trans);
3283         }
3284
3285         key.objectid = BTRFS_BALANCE_OBJECTID;
3286         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3287         key.offset = 0;
3288
3289         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3290         if (ret < 0)
3291                 goto out;
3292         if (ret > 0) {
3293                 ret = -ENOENT;
3294                 goto out;
3295         }
3296
3297         ret = btrfs_del_item(trans, root, path);
3298 out:
3299         btrfs_free_path(path);
3300         err = btrfs_commit_transaction(trans);
3301         if (err && !ret)
3302                 ret = err;
3303         return ret;
3304 }
3305
3306 /*
3307  * This is a heuristic used to reduce the number of chunks balanced on
3308  * resume after balance was interrupted.
3309  */
3310 static void update_balance_args(struct btrfs_balance_control *bctl)
3311 {
3312         /*
3313          * Turn on soft mode for chunk types that were being converted.
3314          */
3315         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3316                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3317         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3318                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3319         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3320                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3321
3322         /*
3323          * Turn on usage filter if is not already used.  The idea is
3324          * that chunks that we have already balanced should be
3325          * reasonably full.  Don't do it for chunks that are being
3326          * converted - that will keep us from relocating unconverted
3327          * (albeit full) chunks.
3328          */
3329         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3330             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3331             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3332                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3333                 bctl->data.usage = 90;
3334         }
3335         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3336             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3337             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3338                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3339                 bctl->sys.usage = 90;
3340         }
3341         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3342             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3343             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3344                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3345                 bctl->meta.usage = 90;
3346         }
3347 }
3348
3349 /*
3350  * Clear the balance status in fs_info and delete the balance item from disk.
3351  */
3352 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3353 {
3354         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3355         int ret;
3356
3357         BUG_ON(!fs_info->balance_ctl);
3358
3359         spin_lock(&fs_info->balance_lock);
3360         fs_info->balance_ctl = NULL;
3361         spin_unlock(&fs_info->balance_lock);
3362
3363         kfree(bctl);
3364         ret = del_balance_item(fs_info);
3365         if (ret)
3366                 btrfs_handle_fs_error(fs_info, ret, NULL);
3367 }
3368
3369 /*
3370  * Balance filters.  Return 1 if chunk should be filtered out
3371  * (should not be balanced).
3372  */
3373 static int chunk_profiles_filter(u64 chunk_type,
3374                                  struct btrfs_balance_args *bargs)
3375 {
3376         chunk_type = chunk_to_extended(chunk_type) &
3377                                 BTRFS_EXTENDED_PROFILE_MASK;
3378
3379         if (bargs->profiles & chunk_type)
3380                 return 0;
3381
3382         return 1;
3383 }
3384
3385 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3386                               struct btrfs_balance_args *bargs)
3387 {
3388         struct btrfs_block_group_cache *cache;
3389         u64 chunk_used;
3390         u64 user_thresh_min;
3391         u64 user_thresh_max;
3392         int ret = 1;
3393
3394         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3395         chunk_used = btrfs_block_group_used(&cache->item);
3396
3397         if (bargs->usage_min == 0)
3398                 user_thresh_min = 0;
3399         else
3400                 user_thresh_min = div_factor_fine(cache->key.offset,
3401                                         bargs->usage_min);
3402
3403         if (bargs->usage_max == 0)
3404                 user_thresh_max = 1;
3405         else if (bargs->usage_max > 100)
3406                 user_thresh_max = cache->key.offset;
3407         else
3408                 user_thresh_max = div_factor_fine(cache->key.offset,
3409                                         bargs->usage_max);
3410
3411         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3412                 ret = 0;
3413
3414         btrfs_put_block_group(cache);
3415         return ret;
3416 }
3417
3418 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3419                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3420 {
3421         struct btrfs_block_group_cache *cache;
3422         u64 chunk_used, user_thresh;
3423         int ret = 1;
3424
3425         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3426         chunk_used = btrfs_block_group_used(&cache->item);
3427
3428         if (bargs->usage_min == 0)
3429                 user_thresh = 1;
3430         else if (bargs->usage > 100)
3431                 user_thresh = cache->key.offset;
3432         else
3433                 user_thresh = div_factor_fine(cache->key.offset,
3434                                               bargs->usage);
3435
3436         if (chunk_used < user_thresh)
3437                 ret = 0;
3438
3439         btrfs_put_block_group(cache);
3440         return ret;
3441 }
3442
3443 static int chunk_devid_filter(struct extent_buffer *leaf,
3444                               struct btrfs_chunk *chunk,
3445                               struct btrfs_balance_args *bargs)
3446 {
3447         struct btrfs_stripe *stripe;
3448         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3449         int i;
3450
3451         for (i = 0; i < num_stripes; i++) {
3452                 stripe = btrfs_stripe_nr(chunk, i);
3453                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3454                         return 0;
3455         }
3456
3457         return 1;
3458 }
3459
3460 static u64 calc_data_stripes(u64 type, int num_stripes)
3461 {
3462         const int index = btrfs_bg_flags_to_raid_index(type);
3463         const int ncopies = btrfs_raid_array[index].ncopies;
3464         const int nparity = btrfs_raid_array[index].nparity;
3465
3466         if (nparity)
3467                 return num_stripes - nparity;
3468         else
3469                 return num_stripes / ncopies;
3470 }
3471
3472 /* [pstart, pend) */
3473 static int chunk_drange_filter(struct extent_buffer *leaf,
3474                                struct btrfs_chunk *chunk,
3475                                struct btrfs_balance_args *bargs)
3476 {
3477         struct btrfs_stripe *stripe;
3478         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3479         u64 stripe_offset;
3480         u64 stripe_length;
3481         u64 type;
3482         int factor;
3483         int i;
3484
3485         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3486                 return 0;
3487
3488         type = btrfs_chunk_type(leaf, chunk);
3489         factor = calc_data_stripes(type, num_stripes);
3490
3491         for (i = 0; i < num_stripes; i++) {
3492                 stripe = btrfs_stripe_nr(chunk, i);
3493                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3494                         continue;
3495
3496                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3497                 stripe_length = btrfs_chunk_length(leaf, chunk);
3498                 stripe_length = div_u64(stripe_length, factor);
3499
3500                 if (stripe_offset < bargs->pend &&
3501                     stripe_offset + stripe_length > bargs->pstart)
3502                         return 0;
3503         }
3504
3505         return 1;
3506 }
3507
3508 /* [vstart, vend) */
3509 static int chunk_vrange_filter(struct extent_buffer *leaf,
3510                                struct btrfs_chunk *chunk,
3511                                u64 chunk_offset,
3512                                struct btrfs_balance_args *bargs)
3513 {
3514         if (chunk_offset < bargs->vend &&
3515             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3516                 /* at least part of the chunk is inside this vrange */
3517                 return 0;
3518
3519         return 1;
3520 }
3521
3522 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3523                                struct btrfs_chunk *chunk,
3524                                struct btrfs_balance_args *bargs)
3525 {
3526         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3527
3528         if (bargs->stripes_min <= num_stripes
3529                         && num_stripes <= bargs->stripes_max)
3530                 return 0;
3531
3532         return 1;
3533 }
3534
3535 static int chunk_soft_convert_filter(u64 chunk_type,
3536                                      struct btrfs_balance_args *bargs)
3537 {
3538         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3539                 return 0;
3540
3541         chunk_type = chunk_to_extended(chunk_type) &
3542                                 BTRFS_EXTENDED_PROFILE_MASK;
3543
3544         if (bargs->target == chunk_type)
3545                 return 1;
3546
3547         return 0;
3548 }
3549
3550 static int should_balance_chunk(struct extent_buffer *leaf,
3551                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3552 {
3553         struct btrfs_fs_info *fs_info = leaf->fs_info;
3554         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3555         struct btrfs_balance_args *bargs = NULL;
3556         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3557
3558         /* type filter */
3559         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3560               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3561                 return 0;
3562         }
3563
3564         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3565                 bargs = &bctl->data;
3566         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3567                 bargs = &bctl->sys;
3568         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3569                 bargs = &bctl->meta;
3570
3571         /* profiles filter */
3572         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3573             chunk_profiles_filter(chunk_type, bargs)) {
3574                 return 0;
3575         }
3576
3577         /* usage filter */
3578         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3579             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3580                 return 0;
3581         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3582             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3583                 return 0;
3584         }
3585
3586         /* devid filter */
3587         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3588             chunk_devid_filter(leaf, chunk, bargs)) {
3589                 return 0;
3590         }
3591
3592         /* drange filter, makes sense only with devid filter */
3593         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3594             chunk_drange_filter(leaf, chunk, bargs)) {
3595                 return 0;
3596         }
3597
3598         /* vrange filter */
3599         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3600             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3601                 return 0;
3602         }
3603
3604         /* stripes filter */
3605         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3606             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3607                 return 0;
3608         }
3609
3610         /* soft profile changing mode */
3611         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3612             chunk_soft_convert_filter(chunk_type, bargs)) {
3613                 return 0;
3614         }
3615
3616         /*
3617          * limited by count, must be the last filter
3618          */
3619         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3620                 if (bargs->limit == 0)
3621                         return 0;
3622                 else
3623                         bargs->limit--;
3624         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3625                 /*
3626                  * Same logic as the 'limit' filter; the minimum cannot be
3627                  * determined here because we do not have the global information
3628                  * about the count of all chunks that satisfy the filters.
3629                  */
3630                 if (bargs->limit_max == 0)
3631                         return 0;
3632                 else
3633                         bargs->limit_max--;
3634         }
3635
3636         return 1;
3637 }
3638
3639 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3640 {
3641         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3642         struct btrfs_root *chunk_root = fs_info->chunk_root;
3643         u64 chunk_type;
3644         struct btrfs_chunk *chunk;
3645         struct btrfs_path *path = NULL;
3646         struct btrfs_key key;
3647         struct btrfs_key found_key;
3648         struct extent_buffer *leaf;
3649         int slot;
3650         int ret;
3651         int enospc_errors = 0;
3652         bool counting = true;
3653         /* The single value limit and min/max limits use the same bytes in the */
3654         u64 limit_data = bctl->data.limit;
3655         u64 limit_meta = bctl->meta.limit;
3656         u64 limit_sys = bctl->sys.limit;
3657         u32 count_data = 0;
3658         u32 count_meta = 0;
3659         u32 count_sys = 0;
3660         int chunk_reserved = 0;
3661
3662         path = btrfs_alloc_path();
3663         if (!path) {
3664                 ret = -ENOMEM;
3665                 goto error;
3666         }
3667
3668         /* zero out stat counters */
3669         spin_lock(&fs_info->balance_lock);
3670         memset(&bctl->stat, 0, sizeof(bctl->stat));
3671         spin_unlock(&fs_info->balance_lock);
3672 again:
3673         if (!counting) {
3674                 /*
3675                  * The single value limit and min/max limits use the same bytes
3676                  * in the
3677                  */
3678                 bctl->data.limit = limit_data;
3679                 bctl->meta.limit = limit_meta;
3680                 bctl->sys.limit = limit_sys;
3681         }
3682         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3683         key.offset = (u64)-1;
3684         key.type = BTRFS_CHUNK_ITEM_KEY;
3685
3686         while (1) {
3687                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3688                     atomic_read(&fs_info->balance_cancel_req)) {
3689                         ret = -ECANCELED;
3690                         goto error;
3691                 }
3692
3693                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3694                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3695                 if (ret < 0) {
3696                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3697                         goto error;
3698                 }
3699
3700                 /*
3701                  * this shouldn't happen, it means the last relocate
3702                  * failed
3703                  */
3704                 if (ret == 0)
3705                         BUG(); /* FIXME break ? */
3706
3707                 ret = btrfs_previous_item(chunk_root, path, 0,
3708                                           BTRFS_CHUNK_ITEM_KEY);
3709                 if (ret) {
3710                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3711                         ret = 0;
3712                         break;
3713                 }
3714
3715                 leaf = path->nodes[0];
3716                 slot = path->slots[0];
3717                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3718
3719                 if (found_key.objectid != key.objectid) {
3720                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3721                         break;
3722                 }
3723
3724                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3725                 chunk_type = btrfs_chunk_type(leaf, chunk);
3726
3727                 if (!counting) {
3728                         spin_lock(&fs_info->balance_lock);
3729                         bctl->stat.considered++;
3730                         spin_unlock(&fs_info->balance_lock);
3731                 }
3732
3733                 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3734
3735                 btrfs_release_path(path);
3736                 if (!ret) {
3737                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3738                         goto loop;
3739                 }
3740
3741                 if (counting) {
3742                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3743                         spin_lock(&fs_info->balance_lock);
3744                         bctl->stat.expected++;
3745                         spin_unlock(&fs_info->balance_lock);
3746
3747                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3748                                 count_data++;
3749                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3750                                 count_sys++;
3751                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3752                                 count_meta++;
3753
3754                         goto loop;
3755                 }
3756
3757                 /*
3758                  * Apply limit_min filter, no need to check if the LIMITS
3759                  * filter is used, limit_min is 0 by default
3760                  */
3761                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3762                                         count_data < bctl->data.limit_min)
3763                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3764                                         count_meta < bctl->meta.limit_min)
3765                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3766                                         count_sys < bctl->sys.limit_min)) {
3767                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3768                         goto loop;
3769                 }
3770
3771                 if (!chunk_reserved) {
3772                         /*
3773                          * We may be relocating the only data chunk we have,
3774                          * which could potentially end up with losing data's
3775                          * raid profile, so lets allocate an empty one in
3776                          * advance.
3777                          */
3778                         ret = btrfs_may_alloc_data_chunk(fs_info,
3779                                                          found_key.offset);
3780                         if (ret < 0) {
3781                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3782                                 goto error;
3783                         } else if (ret == 1) {
3784                                 chunk_reserved = 1;
3785                         }
3786                 }
3787
3788                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3789                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3790                 if (ret == -ENOSPC) {
3791                         enospc_errors++;
3792                 } else if (ret == -ETXTBSY) {
3793                         btrfs_info(fs_info,
3794            "skipping relocation of block group %llu due to active swapfile",
3795                                    found_key.offset);
3796                         ret = 0;
3797                 } else if (ret) {
3798                         goto error;
3799                 } else {
3800                         spin_lock(&fs_info->balance_lock);
3801                         bctl->stat.completed++;
3802                         spin_unlock(&fs_info->balance_lock);
3803                 }
3804 loop:
3805                 if (found_key.offset == 0)
3806                         break;
3807                 key.offset = found_key.offset - 1;
3808         }
3809
3810         if (counting) {
3811                 btrfs_release_path(path);
3812                 counting = false;
3813                 goto again;
3814         }
3815 error:
3816         btrfs_free_path(path);
3817         if (enospc_errors) {
3818                 btrfs_info(fs_info, "%d enospc errors during balance",
3819                            enospc_errors);
3820                 if (!ret)
3821                         ret = -ENOSPC;
3822         }
3823
3824         return ret;
3825 }
3826
3827 /**
3828  * alloc_profile_is_valid - see if a given profile is valid and reduced
3829  * @flags: profile to validate
3830  * @extended: if true @flags is treated as an extended profile
3831  */
3832 static int alloc_profile_is_valid(u64 flags, int extended)
3833 {
3834         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3835                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3836
3837         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3838
3839         /* 1) check that all other bits are zeroed */
3840         if (flags & ~mask)
3841                 return 0;
3842
3843         /* 2) see if profile is reduced */
3844         if (flags == 0)
3845                 return !extended; /* "0" is valid for usual profiles */
3846
3847         /* true if exactly one bit set */
3848         /*
3849          * Don't use is_power_of_2(unsigned long) because it won't work
3850          * for the single profile (1ULL << 48) on 32-bit CPUs.
3851          */
3852         return flags != 0 && (flags & (flags - 1)) == 0;
3853 }
3854
3855 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3856 {
3857         /* cancel requested || normal exit path */
3858         return atomic_read(&fs_info->balance_cancel_req) ||
3859                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3860                  atomic_read(&fs_info->balance_cancel_req) == 0);
3861 }
3862
3863 /* Non-zero return value signifies invalidity */
3864 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3865                 u64 allowed)
3866 {
3867         return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3868                 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3869                  (bctl_arg->target & ~allowed)));
3870 }
3871
3872 /*
3873  * Fill @buf with textual description of balance filter flags @bargs, up to
3874  * @size_buf including the terminating null. The output may be trimmed if it
3875  * does not fit into the provided buffer.
3876  */
3877 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3878                                  u32 size_buf)
3879 {
3880         int ret;
3881         u32 size_bp = size_buf;
3882         char *bp = buf;
3883         u64 flags = bargs->flags;
3884         char tmp_buf[128] = {'\0'};
3885
3886         if (!flags)
3887                 return;
3888
3889 #define CHECK_APPEND_NOARG(a)                                           \
3890         do {                                                            \
3891                 ret = snprintf(bp, size_bp, (a));                       \
3892                 if (ret < 0 || ret >= size_bp)                          \
3893                         goto out_overflow;                              \
3894                 size_bp -= ret;                                         \
3895                 bp += ret;                                              \
3896         } while (0)
3897
3898 #define CHECK_APPEND_1ARG(a, v1)                                        \
3899         do {                                                            \
3900                 ret = snprintf(bp, size_bp, (a), (v1));                 \
3901                 if (ret < 0 || ret >= size_bp)                          \
3902                         goto out_overflow;                              \
3903                 size_bp -= ret;                                         \
3904                 bp += ret;                                              \
3905         } while (0)
3906
3907 #define CHECK_APPEND_2ARG(a, v1, v2)                                    \
3908         do {                                                            \
3909                 ret = snprintf(bp, size_bp, (a), (v1), (v2));           \
3910                 if (ret < 0 || ret >= size_bp)                          \
3911                         goto out_overflow;                              \
3912                 size_bp -= ret;                                         \
3913                 bp += ret;                                              \
3914         } while (0)
3915
3916         if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3917                 CHECK_APPEND_1ARG("convert=%s,",
3918                                   btrfs_bg_type_to_raid_name(bargs->target));
3919
3920         if (flags & BTRFS_BALANCE_ARGS_SOFT)
3921                 CHECK_APPEND_NOARG("soft,");
3922
3923         if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3924                 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3925                                             sizeof(tmp_buf));
3926                 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3927         }
3928
3929         if (flags & BTRFS_BALANCE_ARGS_USAGE)
3930                 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3931
3932         if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3933                 CHECK_APPEND_2ARG("usage=%u..%u,",
3934                                   bargs->usage_min, bargs->usage_max);
3935
3936         if (flags & BTRFS_BALANCE_ARGS_DEVID)
3937                 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3938
3939         if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3940                 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3941                                   bargs->pstart, bargs->pend);
3942
3943         if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3944                 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3945                                   bargs->vstart, bargs->vend);
3946
3947         if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3948                 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3949
3950         if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3951                 CHECK_APPEND_2ARG("limit=%u..%u,",
3952                                 bargs->limit_min, bargs->limit_max);
3953
3954         if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3955                 CHECK_APPEND_2ARG("stripes=%u..%u,",
3956                                   bargs->stripes_min, bargs->stripes_max);
3957
3958 #undef CHECK_APPEND_2ARG
3959 #undef CHECK_APPEND_1ARG
3960 #undef CHECK_APPEND_NOARG
3961
3962 out_overflow:
3963
3964         if (size_bp < size_buf)
3965                 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3966         else
3967                 buf[0] = '\0';
3968 }
3969
3970 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3971 {
3972         u32 size_buf = 1024;
3973         char tmp_buf[192] = {'\0'};
3974         char *buf;
3975         char *bp;
3976         u32 size_bp = size_buf;
3977         int ret;
3978         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3979
3980         buf = kzalloc(size_buf, GFP_KERNEL);
3981         if (!buf)
3982                 return;
3983
3984         bp = buf;
3985
3986 #define CHECK_APPEND_1ARG(a, v1)                                        \
3987         do {                                                            \
3988                 ret = snprintf(bp, size_bp, (a), (v1));                 \
3989                 if (ret < 0 || ret >= size_bp)                          \
3990                         goto out_overflow;                              \
3991                 size_bp -= ret;                                         \
3992                 bp += ret;                                              \
3993         } while (0)
3994
3995         if (bctl->flags & BTRFS_BALANCE_FORCE)
3996                 CHECK_APPEND_1ARG("%s", "-f ");
3997
3998         if (bctl->flags & BTRFS_BALANCE_DATA) {
3999                 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4000                 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4001         }
4002
4003         if (bctl->flags & BTRFS_BALANCE_METADATA) {
4004                 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4005                 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4006         }
4007
4008         if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4009                 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4010                 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4011         }
4012
4013 #undef CHECK_APPEND_1ARG
4014
4015 out_overflow:
4016
4017         if (size_bp < size_buf)
4018                 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4019         btrfs_info(fs_info, "balance: %s %s",
4020                    (bctl->flags & BTRFS_BALANCE_RESUME) ?
4021                    "resume" : "start", buf);
4022
4023         kfree(buf);
4024 }
4025
4026 /*
4027  * Should be called with balance mutexe held
4028  */
4029 int btrfs_balance(struct btrfs_fs_info *fs_info,
4030                   struct btrfs_balance_control *bctl,
4031                   struct btrfs_ioctl_balance_args *bargs)
4032 {
4033         u64 meta_target, data_target;
4034         u64 allowed;
4035         int mixed = 0;
4036         int ret;
4037         u64 num_devices;
4038         unsigned seq;
4039         bool reducing_integrity;
4040         int i;
4041
4042         if (btrfs_fs_closing(fs_info) ||
4043             atomic_read(&fs_info->balance_pause_req) ||
4044             atomic_read(&fs_info->balance_cancel_req)) {
4045                 ret = -EINVAL;
4046                 goto out;
4047         }
4048
4049         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4050         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4051                 mixed = 1;
4052
4053         /*
4054          * In case of mixed groups both data and meta should be picked,
4055          * and identical options should be given for both of them.
4056          */
4057         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4058         if (mixed && (bctl->flags & allowed)) {
4059                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4060                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4061                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4062                         btrfs_err(fs_info,
4063           "balance: mixed groups data and metadata options must be the same");
4064                         ret = -EINVAL;
4065                         goto out;
4066                 }
4067         }
4068
4069         num_devices = btrfs_num_devices(fs_info);
4070
4071         /*
4072          * SINGLE profile on-disk has no profile bit, but in-memory we have a
4073          * special bit for it, to make it easier to distinguish.  Thus we need
4074          * to set it manually, or balance would refuse the profile.
4075          */
4076         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4077         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4078                 if (num_devices >= btrfs_raid_array[i].devs_min)
4079                         allowed |= btrfs_raid_array[i].bg_flag;
4080
4081         if (validate_convert_profile(&bctl->data, allowed)) {
4082                 btrfs_err(fs_info,
4083                           "balance: invalid convert data profile %s",
4084                           btrfs_bg_type_to_raid_name(bctl->data.target));
4085                 ret = -EINVAL;
4086                 goto out;
4087         }
4088         if (validate_convert_profile(&bctl->meta, allowed)) {
4089                 btrfs_err(fs_info,
4090                           "balance: invalid convert metadata profile %s",
4091                           btrfs_bg_type_to_raid_name(bctl->meta.target));
4092                 ret = -EINVAL;
4093                 goto out;
4094         }
4095         if (validate_convert_profile(&bctl->sys, allowed)) {
4096                 btrfs_err(fs_info,
4097                           "balance: invalid convert system profile %s",
4098                           btrfs_bg_type_to_raid_name(bctl->sys.target));
4099                 ret = -EINVAL;
4100                 goto out;
4101         }
4102
4103         /*
4104          * Allow to reduce metadata or system integrity only if force set for
4105          * profiles with redundancy (copies, parity)
4106          */
4107         allowed = 0;
4108         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4109                 if (btrfs_raid_array[i].ncopies >= 2 ||
4110                     btrfs_raid_array[i].tolerated_failures >= 1)
4111                         allowed |= btrfs_raid_array[i].bg_flag;
4112         }
4113         do {
4114                 seq = read_seqbegin(&fs_info->profiles_lock);
4115
4116                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4117                      (fs_info->avail_system_alloc_bits & allowed) &&
4118                      !(bctl->sys.target & allowed)) ||
4119                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4120                      (fs_info->avail_metadata_alloc_bits & allowed) &&
4121                      !(bctl->meta.target & allowed)))
4122                         reducing_integrity = true;
4123                 else
4124                         reducing_integrity = false;
4125
4126                 /* if we're not converting, the target field is uninitialized */
4127                 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4128                         bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4129                 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4130                         bctl->data.target : fs_info->avail_data_alloc_bits;
4131         } while (read_seqretry(&fs_info->profiles_lock, seq));
4132
4133         if (reducing_integrity) {
4134                 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4135                         btrfs_info(fs_info,
4136                                    "balance: force reducing metadata integrity");
4137                 } else {
4138                         btrfs_err(fs_info,
4139           "balance: reduces metadata integrity, use --force if you want this");
4140                         ret = -EINVAL;
4141                         goto out;
4142                 }
4143         }
4144
4145         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4146                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4147                 btrfs_warn(fs_info,
4148         "balance: metadata profile %s has lower redundancy than data profile %s",
4149                                 btrfs_bg_type_to_raid_name(meta_target),
4150                                 btrfs_bg_type_to_raid_name(data_target));
4151         }
4152
4153         if (fs_info->send_in_progress) {
4154                 btrfs_warn_rl(fs_info,
4155 "cannot run balance while send operations are in progress (%d in progress)",
4156                               fs_info->send_in_progress);
4157                 ret = -EAGAIN;
4158                 goto out;
4159         }
4160
4161         ret = insert_balance_item(fs_info, bctl);
4162         if (ret && ret != -EEXIST)
4163                 goto out;
4164
4165         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4166                 BUG_ON(ret == -EEXIST);
4167                 BUG_ON(fs_info->balance_ctl);
4168                 spin_lock(&fs_info->balance_lock);
4169                 fs_info->balance_ctl = bctl;
4170                 spin_unlock(&fs_info->balance_lock);
4171         } else {
4172                 BUG_ON(ret != -EEXIST);
4173                 spin_lock(&fs_info->balance_lock);
4174                 update_balance_args(bctl);
4175                 spin_unlock(&fs_info->balance_lock);
4176         }
4177
4178         ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4179         set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4180         describe_balance_start_or_resume(fs_info);
4181         mutex_unlock(&fs_info->balance_mutex);
4182
4183         ret = __btrfs_balance(fs_info);
4184
4185         mutex_lock(&fs_info->balance_mutex);
4186         if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4187                 btrfs_info(fs_info, "balance: paused");
4188         else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req))
4189                 btrfs_info(fs_info, "balance: canceled");
4190         else
4191                 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4192
4193         clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4194
4195         if (bargs) {
4196                 memset(bargs, 0, sizeof(*bargs));
4197                 btrfs_update_ioctl_balance_args(fs_info, bargs);
4198         }
4199
4200         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4201             balance_need_close(fs_info)) {
4202                 reset_balance_state(fs_info);
4203                 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4204         }
4205
4206         wake_up(&fs_info->balance_wait_q);
4207
4208         return ret;
4209 out:
4210         if (bctl->flags & BTRFS_BALANCE_RESUME)
4211                 reset_balance_state(fs_info);
4212         else
4213                 kfree(bctl);
4214         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4215
4216         return ret;
4217 }
4218
4219 static int balance_kthread(void *data)
4220 {
4221         struct btrfs_fs_info *fs_info = data;
4222         int ret = 0;
4223
4224         mutex_lock(&fs_info->balance_mutex);
4225         if (fs_info->balance_ctl)
4226                 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4227         mutex_unlock(&fs_info->balance_mutex);
4228
4229         return ret;
4230 }
4231
4232 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4233 {
4234         struct task_struct *tsk;
4235
4236         mutex_lock(&fs_info->balance_mutex);
4237         if (!fs_info->balance_ctl) {
4238                 mutex_unlock(&fs_info->balance_mutex);
4239                 return 0;
4240         }
4241         mutex_unlock(&fs_info->balance_mutex);
4242
4243         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4244                 btrfs_info(fs_info, "balance: resume skipped");
4245                 return 0;
4246         }
4247
4248         /*
4249          * A ro->rw remount sequence should continue with the paused balance
4250          * regardless of who pauses it, system or the user as of now, so set
4251          * the resume flag.
4252          */
4253         spin_lock(&fs_info->balance_lock);
4254         fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4255         spin_unlock(&fs_info->balance_lock);
4256
4257         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4258         return PTR_ERR_OR_ZERO(tsk);
4259 }
4260
4261 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4262 {
4263         struct btrfs_balance_control *bctl;
4264         struct btrfs_balance_item *item;
4265         struct btrfs_disk_balance_args disk_bargs;
4266         struct btrfs_path *path;
4267         struct extent_buffer *leaf;
4268         struct btrfs_key key;
4269         int ret;
4270
4271         path = btrfs_alloc_path();
4272         if (!path)
4273                 return -ENOMEM;
4274
4275         key.objectid = BTRFS_BALANCE_OBJECTID;
4276         key.type = BTRFS_TEMPORARY_ITEM_KEY;
4277         key.offset = 0;
4278
4279         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4280         if (ret < 0)
4281                 goto out;
4282         if (ret > 0) { /* ret = -ENOENT; */
4283                 ret = 0;
4284                 goto out;
4285         }
4286
4287         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4288         if (!bctl) {
4289                 ret = -ENOMEM;
4290                 goto out;
4291         }
4292
4293         leaf = path->nodes[0];
4294         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4295
4296         bctl->flags = btrfs_balance_flags(leaf, item);
4297         bctl->flags |= BTRFS_BALANCE_RESUME;
4298
4299         btrfs_balance_data(leaf, item, &disk_bargs);
4300         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4301         btrfs_balance_meta(leaf, item, &disk_bargs);
4302         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4303         btrfs_balance_sys(leaf, item, &disk_bargs);
4304         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4305
4306         /*
4307          * This should never happen, as the paused balance state is recovered
4308          * during mount without any chance of other exclusive ops to collide.
4309          *
4310          * This gives the exclusive op status to balance and keeps in paused
4311          * state until user intervention (cancel or umount). If the ownership
4312          * cannot be assigned, show a message but do not fail. The balance
4313          * is in a paused state and must have fs_info::balance_ctl properly
4314          * set up.
4315          */
4316         if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4317                 btrfs_warn(fs_info,
4318         "balance: cannot set exclusive op status, resume manually");
4319
4320         mutex_lock(&fs_info->balance_mutex);
4321         BUG_ON(fs_info->balance_ctl);
4322         spin_lock(&fs_info->balance_lock);
4323         fs_info->balance_ctl = bctl;
4324         spin_unlock(&fs_info->balance_lock);
4325         mutex_unlock(&fs_info->balance_mutex);
4326 out:
4327         btrfs_free_path(path);
4328         return ret;
4329 }
4330
4331 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4332 {
4333         int ret = 0;
4334
4335         mutex_lock(&fs_info->balance_mutex);
4336         if (!fs_info->balance_ctl) {
4337                 mutex_unlock(&fs_info->balance_mutex);
4338                 return -ENOTCONN;
4339         }
4340
4341         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4342                 atomic_inc(&fs_info->balance_pause_req);
4343                 mutex_unlock(&fs_info->balance_mutex);
4344
4345                 wait_event(fs_info->balance_wait_q,
4346                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4347
4348                 mutex_lock(&fs_info->balance_mutex);
4349                 /* we are good with balance_ctl ripped off from under us */
4350                 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4351                 atomic_dec(&fs_info->balance_pause_req);
4352         } else {
4353                 ret = -ENOTCONN;
4354         }
4355
4356         mutex_unlock(&fs_info->balance_mutex);
4357         return ret;
4358 }
4359
4360 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4361 {
4362         mutex_lock(&fs_info->balance_mutex);
4363         if (!fs_info->balance_ctl) {
4364                 mutex_unlock(&fs_info->balance_mutex);
4365                 return -ENOTCONN;
4366         }
4367
4368         /*
4369          * A paused balance with the item stored on disk can be resumed at
4370          * mount time if the mount is read-write. Otherwise it's still paused
4371          * and we must not allow cancelling as it deletes the item.
4372          */
4373         if (sb_rdonly(fs_info->sb)) {
4374                 mutex_unlock(&fs_info->balance_mutex);
4375                 return -EROFS;
4376         }
4377
4378         atomic_inc(&fs_info->balance_cancel_req);
4379         /*
4380          * if we are running just wait and return, balance item is
4381          * deleted in btrfs_balance in this case
4382          */
4383         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4384                 mutex_unlock(&fs_info->balance_mutex);
4385                 wait_event(fs_info->balance_wait_q,
4386                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4387                 mutex_lock(&fs_info->balance_mutex);
4388         } else {
4389                 mutex_unlock(&fs_info->balance_mutex);
4390                 /*
4391                  * Lock released to allow other waiters to continue, we'll
4392                  * reexamine the status again.
4393                  */
4394                 mutex_lock(&fs_info->balance_mutex);
4395
4396                 if (fs_info->balance_ctl) {
4397                         reset_balance_state(fs_info);
4398                         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4399                         btrfs_info(fs_info, "balance: canceled");
4400                 }
4401         }
4402
4403         BUG_ON(fs_info->balance_ctl ||
4404                 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4405         atomic_dec(&fs_info->balance_cancel_req);
4406         mutex_unlock(&fs_info->balance_mutex);
4407         return 0;
4408 }
4409
4410 static int btrfs_uuid_scan_kthread(void *data)
4411 {
4412         struct btrfs_fs_info *fs_info = data;
4413         struct btrfs_root *root = fs_info->tree_root;
4414         struct btrfs_key key;
4415         struct btrfs_path *path = NULL;
4416         int ret = 0;
4417         struct extent_buffer *eb;
4418         int slot;
4419         struct btrfs_root_item root_item;
4420         u32 item_size;
4421         struct btrfs_trans_handle *trans = NULL;
4422
4423         path = btrfs_alloc_path();
4424         if (!path) {
4425                 ret = -ENOMEM;
4426                 goto out;
4427         }
4428
4429         key.objectid = 0;
4430         key.type = BTRFS_ROOT_ITEM_KEY;
4431         key.offset = 0;
4432
4433         while (1) {
4434                 ret = btrfs_search_forward(root, &key, path,
4435                                 BTRFS_OLDEST_GENERATION);
4436                 if (ret) {
4437                         if (ret > 0)
4438                                 ret = 0;
4439                         break;
4440                 }
4441
4442                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4443                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4444                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4445                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4446                         goto skip;
4447
4448                 eb = path->nodes[0];
4449                 slot = path->slots[0];
4450                 item_size = btrfs_item_size_nr(eb, slot);
4451                 if (item_size < sizeof(root_item))
4452                         goto skip;
4453
4454                 read_extent_buffer(eb, &root_item,
4455                                    btrfs_item_ptr_offset(eb, slot),
4456                                    (int)sizeof(root_item));
4457                 if (btrfs_root_refs(&root_item) == 0)
4458                         goto skip;
4459
4460                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4461                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4462                         if (trans)
4463                                 goto update_tree;
4464
4465                         btrfs_release_path(path);
4466                         /*
4467                          * 1 - subvol uuid item
4468                          * 1 - received_subvol uuid item
4469                          */
4470                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4471                         if (IS_ERR(trans)) {
4472                                 ret = PTR_ERR(trans);
4473                                 break;
4474                         }
4475                         continue;
4476                 } else {
4477                         goto skip;
4478                 }
4479 update_tree:
4480                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4481                         ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4482                                                   BTRFS_UUID_KEY_SUBVOL,
4483                                                   key.objectid);
4484                         if (ret < 0) {
4485                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4486                                         ret);
4487                                 break;
4488                         }
4489                 }
4490
4491                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4492                         ret = btrfs_uuid_tree_add(trans,
4493                                                   root_item.received_uuid,
4494                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4495                                                   key.objectid);
4496                         if (ret < 0) {
4497                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4498                                         ret);
4499                                 break;
4500                         }
4501                 }
4502
4503 skip:
4504                 if (trans) {
4505                         ret = btrfs_end_transaction(trans);
4506                         trans = NULL;
4507                         if (ret)
4508                                 break;
4509                 }
4510
4511                 btrfs_release_path(path);
4512                 if (key.offset < (u64)-1) {
4513                         key.offset++;
4514                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4515                         key.offset = 0;
4516                         key.type = BTRFS_ROOT_ITEM_KEY;
4517                 } else if (key.objectid < (u64)-1) {
4518                         key.offset = 0;
4519                         key.type = BTRFS_ROOT_ITEM_KEY;
4520                         key.objectid++;
4521                 } else {
4522                         break;
4523                 }
4524                 cond_resched();
4525         }
4526
4527 out:
4528         btrfs_free_path(path);
4529         if (trans && !IS_ERR(trans))
4530                 btrfs_end_transaction(trans);
4531         if (ret)
4532                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4533         else
4534                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4535         up(&fs_info->uuid_tree_rescan_sem);
4536         return 0;
4537 }
4538
4539 /*
4540  * Callback for btrfs_uuid_tree_iterate().
4541  * returns:
4542  * 0    check succeeded, the entry is not outdated.
4543  * < 0  if an error occurred.
4544  * > 0  if the check failed, which means the caller shall remove the entry.
4545  */
4546 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4547                                        u8 *uuid, u8 type, u64 subid)
4548 {
4549         struct btrfs_key key;
4550         int ret = 0;
4551         struct btrfs_root *subvol_root;
4552
4553         if (type != BTRFS_UUID_KEY_SUBVOL &&
4554             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4555                 goto out;
4556
4557         key.objectid = subid;
4558         key.type = BTRFS_ROOT_ITEM_KEY;
4559         key.offset = (u64)-1;
4560         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4561         if (IS_ERR(subvol_root)) {
4562                 ret = PTR_ERR(subvol_root);
4563                 if (ret == -ENOENT)
4564                         ret = 1;
4565                 goto out;
4566         }
4567
4568         switch (type) {
4569         case BTRFS_UUID_KEY_SUBVOL:
4570                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4571                         ret = 1;
4572                 break;
4573         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4574                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4575                            BTRFS_UUID_SIZE))
4576                         ret = 1;
4577                 break;
4578         }
4579
4580 out:
4581         return ret;
4582 }
4583
4584 static int btrfs_uuid_rescan_kthread(void *data)
4585 {
4586         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4587         int ret;
4588
4589         /*
4590          * 1st step is to iterate through the existing UUID tree and
4591          * to delete all entries that contain outdated data.
4592          * 2nd step is to add all missing entries to the UUID tree.
4593          */
4594         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4595         if (ret < 0) {
4596                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4597                 up(&fs_info->uuid_tree_rescan_sem);
4598                 return ret;
4599         }
4600         return btrfs_uuid_scan_kthread(data);
4601 }
4602
4603 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4604 {
4605         struct btrfs_trans_handle *trans;
4606         struct btrfs_root *tree_root = fs_info->tree_root;
4607         struct btrfs_root *uuid_root;
4608         struct task_struct *task;
4609         int ret;
4610
4611         /*
4612          * 1 - root node
4613          * 1 - root item
4614          */
4615         trans = btrfs_start_transaction(tree_root, 2);
4616         if (IS_ERR(trans))
4617                 return PTR_ERR(trans);
4618
4619         uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4620         if (IS_ERR(uuid_root)) {
4621                 ret = PTR_ERR(uuid_root);
4622                 btrfs_abort_transaction(trans, ret);
4623                 btrfs_end_transaction(trans);
4624                 return ret;
4625         }
4626
4627         fs_info->uuid_root = uuid_root;
4628
4629         ret = btrfs_commit_transaction(trans);
4630         if (ret)
4631                 return ret;
4632
4633         down(&fs_info->uuid_tree_rescan_sem);
4634         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4635         if (IS_ERR(task)) {
4636                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4637                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4638                 up(&fs_info->uuid_tree_rescan_sem);
4639                 return PTR_ERR(task);
4640         }
4641
4642         return 0;
4643 }
4644
4645 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4646 {
4647         struct task_struct *task;
4648
4649         down(&fs_info->uuid_tree_rescan_sem);
4650         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4651         if (IS_ERR(task)) {
4652                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4653                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4654                 up(&fs_info->uuid_tree_rescan_sem);
4655                 return PTR_ERR(task);
4656         }
4657
4658         return 0;
4659 }
4660
4661 /*
4662  * shrinking a device means finding all of the device extents past
4663  * the new size, and then following the back refs to the chunks.
4664  * The chunk relocation code actually frees the device extent
4665  */
4666 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4667 {
4668         struct btrfs_fs_info *fs_info = device->fs_info;
4669         struct btrfs_root *root = fs_info->dev_root;
4670         struct btrfs_trans_handle *trans;
4671         struct btrfs_dev_extent *dev_extent = NULL;
4672         struct btrfs_path *path;
4673         u64 length;
4674         u64 chunk_offset;
4675         int ret;
4676         int slot;
4677         int failed = 0;
4678         bool retried = false;
4679         struct extent_buffer *l;
4680         struct btrfs_key key;
4681         struct btrfs_super_block *super_copy = fs_info->super_copy;
4682         u64 old_total = btrfs_super_total_bytes(super_copy);
4683         u64 old_size = btrfs_device_get_total_bytes(device);
4684         u64 diff;
4685         u64 start;
4686
4687         new_size = round_down(new_size, fs_info->sectorsize);
4688         start = new_size;
4689         diff = round_down(old_size - new_size, fs_info->sectorsize);
4690
4691         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4692                 return -EINVAL;
4693
4694         path = btrfs_alloc_path();
4695         if (!path)
4696                 return -ENOMEM;
4697
4698         path->reada = READA_BACK;
4699
4700         trans = btrfs_start_transaction(root, 0);
4701         if (IS_ERR(trans)) {
4702                 btrfs_free_path(path);
4703                 return PTR_ERR(trans);
4704         }
4705
4706         mutex_lock(&fs_info->chunk_mutex);
4707
4708         btrfs_device_set_total_bytes(device, new_size);
4709         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4710                 device->fs_devices->total_rw_bytes -= diff;
4711                 atomic64_sub(diff, &fs_info->free_chunk_space);
4712         }
4713
4714         /*
4715          * Once the device's size has been set to the new size, ensure all
4716          * in-memory chunks are synced to disk so that the loop below sees them
4717          * and relocates them accordingly.
4718          */
4719         if (contains_pending_extent(device, &start, diff)) {
4720                 mutex_unlock(&fs_info->chunk_mutex);
4721                 ret = btrfs_commit_transaction(trans);
4722                 if (ret)
4723                         goto done;
4724         } else {
4725                 mutex_unlock(&fs_info->chunk_mutex);
4726                 btrfs_end_transaction(trans);
4727         }
4728
4729 again:
4730         key.objectid = device->devid;
4731         key.offset = (u64)-1;
4732         key.type = BTRFS_DEV_EXTENT_KEY;
4733
4734         do {
4735                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4736                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4737                 if (ret < 0) {
4738                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4739                         goto done;
4740                 }
4741
4742                 ret = btrfs_previous_item(root, path, 0, key.type);
4743                 if (ret)
4744                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4745                 if (ret < 0)
4746                         goto done;
4747                 if (ret) {
4748                         ret = 0;
4749                         btrfs_release_path(path);
4750                         break;
4751                 }
4752
4753                 l = path->nodes[0];
4754                 slot = path->slots[0];
4755                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4756
4757                 if (key.objectid != device->devid) {
4758                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4759                         btrfs_release_path(path);
4760                         break;
4761                 }
4762
4763                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4764                 length = btrfs_dev_extent_length(l, dev_extent);
4765
4766                 if (key.offset + length <= new_size) {
4767                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4768                         btrfs_release_path(path);
4769                         break;
4770                 }
4771
4772                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4773                 btrfs_release_path(path);
4774
4775                 /*
4776                  * We may be relocating the only data chunk we have,
4777                  * which could potentially end up with losing data's
4778                  * raid profile, so lets allocate an empty one in
4779                  * advance.
4780                  */
4781                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4782                 if (ret < 0) {
4783                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4784                         goto done;
4785                 }
4786
4787                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4788                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4789                 if (ret == -ENOSPC) {
4790                         failed++;
4791                 } else if (ret) {
4792                         if (ret == -ETXTBSY) {
4793                                 btrfs_warn(fs_info,
4794                    "could not shrink block group %llu due to active swapfile",
4795                                            chunk_offset);
4796                         }
4797                         goto done;
4798                 }
4799         } while (key.offset-- > 0);
4800
4801         if (failed && !retried) {
4802                 failed = 0;
4803                 retried = true;
4804                 goto again;
4805         } else if (failed && retried) {
4806                 ret = -ENOSPC;
4807                 goto done;
4808         }
4809
4810         /* Shrinking succeeded, else we would be at "done". */
4811         trans = btrfs_start_transaction(root, 0);
4812         if (IS_ERR(trans)) {
4813                 ret = PTR_ERR(trans);
4814                 goto done;
4815         }
4816
4817         mutex_lock(&fs_info->chunk_mutex);
4818         btrfs_device_set_disk_total_bytes(device, new_size);
4819         if (list_empty(&device->post_commit_list))
4820                 list_add_tail(&device->post_commit_list,
4821                               &trans->transaction->dev_update_list);
4822
4823         WARN_ON(diff > old_total);
4824         btrfs_set_super_total_bytes(super_copy,
4825                         round_down(old_total - diff, fs_info->sectorsize));
4826         mutex_unlock(&fs_info->chunk_mutex);
4827
4828         /* Now btrfs_update_device() will change the on-disk size. */
4829         ret = btrfs_update_device(trans, device);
4830         if (ret < 0) {
4831                 btrfs_abort_transaction(trans, ret);
4832                 btrfs_end_transaction(trans);
4833         } else {
4834                 ret = btrfs_commit_transaction(trans);
4835         }
4836 done:
4837         btrfs_free_path(path);
4838         if (ret) {
4839                 mutex_lock(&fs_info->chunk_mutex);
4840                 btrfs_device_set_total_bytes(device, old_size);
4841                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4842                         device->fs_devices->total_rw_bytes += diff;
4843                 atomic64_add(diff, &fs_info->free_chunk_space);
4844                 mutex_unlock(&fs_info->chunk_mutex);
4845         }
4846         return ret;
4847 }
4848
4849 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4850                            struct btrfs_key *key,
4851                            struct btrfs_chunk *chunk, int item_size)
4852 {
4853         struct btrfs_super_block *super_copy = fs_info->super_copy;
4854         struct btrfs_disk_key disk_key;
4855         u32 array_size;
4856         u8 *ptr;
4857
4858         mutex_lock(&fs_info->chunk_mutex);
4859         array_size = btrfs_super_sys_array_size(super_copy);
4860         if (array_size + item_size + sizeof(disk_key)
4861                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4862                 mutex_unlock(&fs_info->chunk_mutex);
4863                 return -EFBIG;
4864         }
4865
4866         ptr = super_copy->sys_chunk_array + array_size;
4867         btrfs_cpu_key_to_disk(&disk_key, key);
4868         memcpy(ptr, &disk_key, sizeof(disk_key));
4869         ptr += sizeof(disk_key);
4870         memcpy(ptr, chunk, item_size);
4871         item_size += sizeof(disk_key);
4872         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4873         mutex_unlock(&fs_info->chunk_mutex);
4874
4875         return 0;
4876 }
4877
4878 /*
4879  * sort the devices in descending order by max_avail, total_avail
4880  */
4881 static int btrfs_cmp_device_info(const void *a, const void *b)
4882 {
4883         const struct btrfs_device_info *di_a = a;
4884         const struct btrfs_device_info *di_b = b;
4885
4886         if (di_a->max_avail > di_b->max_avail)
4887                 return -1;
4888         if (di_a->max_avail < di_b->max_avail)
4889                 return 1;
4890         if (di_a->total_avail > di_b->total_avail)
4891                 return -1;
4892         if (di_a->total_avail < di_b->total_avail)
4893                 return 1;
4894         return 0;
4895 }
4896
4897 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4898 {
4899         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4900                 return;
4901
4902         btrfs_set_fs_incompat(info, RAID56);
4903 }
4904
4905 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4906                                u64 start, u64 type)
4907 {
4908         struct btrfs_fs_info *info = trans->fs_info;
4909         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4910         struct btrfs_device *device;
4911         struct map_lookup *map = NULL;
4912         struct extent_map_tree *em_tree;
4913         struct extent_map *em;
4914         struct btrfs_device_info *devices_info = NULL;
4915         u64 total_avail;
4916         int num_stripes;        /* total number of stripes to allocate */
4917         int data_stripes;       /* number of stripes that count for
4918                                    block group size */
4919         int sub_stripes;        /* sub_stripes info for map */
4920         int dev_stripes;        /* stripes per dev */
4921         int devs_max;           /* max devs to use */
4922         int devs_min;           /* min devs needed */
4923         int devs_increment;     /* ndevs has to be a multiple of this */
4924         int ncopies;            /* how many copies to data has */
4925         int nparity;            /* number of stripes worth of bytes to
4926                                    store parity information */
4927         int ret;
4928         u64 max_stripe_size;
4929         u64 max_chunk_size;
4930         u64 stripe_size;
4931         u64 chunk_size;
4932         int ndevs;
4933         int i;
4934         int j;
4935         int index;
4936
4937         BUG_ON(!alloc_profile_is_valid(type, 0));
4938
4939         if (list_empty(&fs_devices->alloc_list)) {
4940                 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4941                         btrfs_debug(info, "%s: no writable device", __func__);
4942                 return -ENOSPC;
4943         }
4944
4945         index = btrfs_bg_flags_to_raid_index(type);
4946
4947         sub_stripes = btrfs_raid_array[index].sub_stripes;
4948         dev_stripes = btrfs_raid_array[index].dev_stripes;
4949         devs_max = btrfs_raid_array[index].devs_max;
4950         if (!devs_max)
4951                 devs_max = BTRFS_MAX_DEVS(info);
4952         devs_min = btrfs_raid_array[index].devs_min;
4953         devs_increment = btrfs_raid_array[index].devs_increment;
4954         ncopies = btrfs_raid_array[index].ncopies;
4955         nparity = btrfs_raid_array[index].nparity;
4956
4957         if (type & BTRFS_BLOCK_GROUP_DATA) {
4958                 max_stripe_size = SZ_1G;
4959                 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4960         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4961                 /* for larger filesystems, use larger metadata chunks */
4962                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4963                         max_stripe_size = SZ_1G;
4964                 else
4965                         max_stripe_size = SZ_256M;
4966                 max_chunk_size = max_stripe_size;
4967         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4968                 max_stripe_size = SZ_32M;
4969                 max_chunk_size = 2 * max_stripe_size;
4970         } else {
4971                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4972                        type);
4973                 BUG();
4974         }
4975
4976         /* We don't want a chunk larger than 10% of writable space */
4977         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4978                              max_chunk_size);
4979
4980         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4981                                GFP_NOFS);
4982         if (!devices_info)
4983                 return -ENOMEM;
4984
4985         /*
4986          * in the first pass through the devices list, we gather information
4987          * about the available holes on each device.
4988          */
4989         ndevs = 0;
4990         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4991                 u64 max_avail;
4992                 u64 dev_offset;
4993
4994                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4995                         WARN(1, KERN_ERR
4996                                "BTRFS: read-only device in alloc_list\n");
4997                         continue;
4998                 }
4999
5000                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5001                                         &device->dev_state) ||
5002                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5003                         continue;
5004
5005                 if (device->total_bytes > device->bytes_used)
5006                         total_avail = device->total_bytes - device->bytes_used;
5007                 else
5008                         total_avail = 0;
5009
5010                 /* If there is no space on this device, skip it. */
5011                 if (total_avail == 0)
5012                         continue;
5013
5014                 ret = find_free_dev_extent(device,
5015                                            max_stripe_size * dev_stripes,
5016                                            &dev_offset, &max_avail);
5017                 if (ret && ret != -ENOSPC)
5018                         goto error;
5019
5020                 if (ret == 0)
5021                         max_avail = max_stripe_size * dev_stripes;
5022
5023                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
5024                         if (btrfs_test_opt(info, ENOSPC_DEBUG))
5025                                 btrfs_debug(info,
5026                         "%s: devid %llu has no free space, have=%llu want=%u",
5027                                             __func__, device->devid, max_avail,
5028                                             BTRFS_STRIPE_LEN * dev_stripes);
5029                         continue;
5030                 }
5031
5032                 if (ndevs == fs_devices->rw_devices) {
5033                         WARN(1, "%s: found more than %llu devices\n",
5034                              __func__, fs_devices->rw_devices);
5035                         break;
5036                 }
5037                 devices_info[ndevs].dev_offset = dev_offset;
5038                 devices_info[ndevs].max_avail = max_avail;
5039                 devices_info[ndevs].total_avail = total_avail;
5040                 devices_info[ndevs].dev = device;
5041                 ++ndevs;
5042         }
5043
5044         /*
5045          * now sort the devices by hole size / available space
5046          */
5047         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5048              btrfs_cmp_device_info, NULL);
5049
5050         /* round down to number of usable stripes */
5051         ndevs = round_down(ndevs, devs_increment);
5052
5053         if (ndevs < devs_min) {
5054                 ret = -ENOSPC;
5055                 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5056                         btrfs_debug(info,
5057         "%s: not enough devices with free space: have=%d minimum required=%d",
5058                                     __func__, ndevs, devs_min);
5059                 }
5060                 goto error;
5061         }
5062
5063         ndevs = min(ndevs, devs_max);
5064
5065         /*
5066          * The primary goal is to maximize the number of stripes, so use as
5067          * many devices as possible, even if the stripes are not maximum sized.
5068          *
5069          * The DUP profile stores more than one stripe per device, the
5070          * max_avail is the total size so we have to adjust.
5071          */
5072         stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
5073         num_stripes = ndevs * dev_stripes;
5074
5075         /*
5076          * this will have to be fixed for RAID1 and RAID10 over
5077          * more drives
5078          */
5079         data_stripes = (num_stripes - nparity) / ncopies;
5080
5081         /*
5082          * Use the number of data stripes to figure out how big this chunk
5083          * is really going to be in terms of logical address space,
5084          * and compare that answer with the max chunk size. If it's higher,
5085          * we try to reduce stripe_size.
5086          */
5087         if (stripe_size * data_stripes > max_chunk_size) {
5088                 /*
5089                  * Reduce stripe_size, round it up to a 16MB boundary again and
5090                  * then use it, unless it ends up being even bigger than the
5091                  * previous value we had already.
5092                  */
5093                 stripe_size = min(round_up(div_u64(max_chunk_size,
5094                                                    data_stripes), SZ_16M),
5095                                   stripe_size);
5096         }
5097
5098         /* align to BTRFS_STRIPE_LEN */
5099         stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
5100
5101         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5102         if (!map) {
5103                 ret = -ENOMEM;
5104                 goto error;
5105         }
5106         map->num_stripes = num_stripes;
5107
5108         for (i = 0; i < ndevs; ++i) {
5109                 for (j = 0; j < dev_stripes; ++j) {
5110                         int s = i * dev_stripes + j;
5111                         map->stripes[s].dev = devices_info[i].dev;
5112                         map->stripes[s].physical = devices_info[i].dev_offset +
5113                                                    j * stripe_size;
5114                 }
5115         }
5116         map->stripe_len = BTRFS_STRIPE_LEN;
5117         map->io_align = BTRFS_STRIPE_LEN;
5118         map->io_width = BTRFS_STRIPE_LEN;
5119         map->type = type;
5120         map->sub_stripes = sub_stripes;
5121
5122         chunk_size = stripe_size * data_stripes;
5123
5124         trace_btrfs_chunk_alloc(info, map, start, chunk_size);
5125
5126         em = alloc_extent_map();
5127         if (!em) {
5128                 kfree(map);
5129                 ret = -ENOMEM;
5130                 goto error;
5131         }
5132         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5133         em->map_lookup = map;
5134         em->start = start;
5135         em->len = chunk_size;
5136         em->block_start = 0;
5137         em->block_len = em->len;
5138         em->orig_block_len = stripe_size;
5139
5140         em_tree = &info->mapping_tree;
5141         write_lock(&em_tree->lock);
5142         ret = add_extent_mapping(em_tree, em, 0);
5143         if (ret) {
5144                 write_unlock(&em_tree->lock);
5145                 free_extent_map(em);
5146                 goto error;
5147         }
5148         write_unlock(&em_tree->lock);
5149
5150         ret = btrfs_make_block_group(trans, 0, type, start, chunk_size);
5151         if (ret)
5152                 goto error_del_extent;
5153
5154         for (i = 0; i < map->num_stripes; i++) {
5155                 struct btrfs_device *dev = map->stripes[i].dev;
5156
5157                 btrfs_device_set_bytes_used(dev, dev->bytes_used + stripe_size);
5158                 if (list_empty(&dev->post_commit_list))
5159                         list_add_tail(&dev->post_commit_list,
5160                                       &trans->transaction->dev_update_list);
5161         }
5162
5163         atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
5164
5165         free_extent_map(em);
5166         check_raid56_incompat_flag(info, type);
5167
5168         kfree(devices_info);
5169         return 0;
5170
5171 error_del_extent:
5172         write_lock(&em_tree->lock);
5173         remove_extent_mapping(em_tree, em);
5174         write_unlock(&em_tree->lock);
5175
5176         /* One for our allocation */
5177         free_extent_map(em);
5178         /* One for the tree reference */
5179         free_extent_map(em);
5180 error:
5181         kfree(devices_info);
5182         return ret;
5183 }
5184
5185 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5186                              u64 chunk_offset, u64 chunk_size)
5187 {
5188         struct btrfs_fs_info *fs_info = trans->fs_info;
5189         struct btrfs_root *extent_root = fs_info->extent_root;
5190         struct btrfs_root *chunk_root = fs_info->chunk_root;
5191         struct btrfs_key key;
5192         struct btrfs_device *device;
5193         struct btrfs_chunk *chunk;
5194         struct btrfs_stripe *stripe;
5195         struct extent_map *em;
5196         struct map_lookup *map;
5197         size_t item_size;
5198         u64 dev_offset;
5199         u64 stripe_size;
5200         int i = 0;
5201         int ret = 0;
5202
5203         em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5204         if (IS_ERR(em))
5205                 return PTR_ERR(em);
5206
5207         map = em->map_lookup;
5208         item_size = btrfs_chunk_item_size(map->num_stripes);
5209         stripe_size = em->orig_block_len;
5210
5211         chunk = kzalloc(item_size, GFP_NOFS);
5212         if (!chunk) {
5213                 ret = -ENOMEM;
5214                 goto out;
5215         }
5216
5217         /*
5218          * Take the device list mutex to prevent races with the final phase of
5219          * a device replace operation that replaces the device object associated
5220          * with the map's stripes, because the device object's id can change
5221          * at any time during that final phase of the device replace operation
5222          * (dev-replace.c:btrfs_dev_replace_finishing()).
5223          */
5224         mutex_lock(&fs_info->fs_devices->device_list_mutex);
5225         for (i = 0; i < map->num_stripes; i++) {
5226                 device = map->stripes[i].dev;
5227                 dev_offset = map->stripes[i].physical;
5228
5229                 ret = btrfs_update_device(trans, device);
5230                 if (ret)
5231                         break;
5232                 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5233                                              dev_offset, stripe_size);
5234                 if (ret)
5235                         break;
5236         }
5237         if (ret) {
5238                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5239                 goto out;
5240         }
5241
5242         stripe = &chunk->stripe;
5243         for (i = 0; i < map->num_stripes; i++) {
5244                 device = map->stripes[i].dev;
5245                 dev_offset = map->stripes[i].physical;
5246
5247                 btrfs_set_stack_stripe_devid(stripe, device->devid);
5248                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5249                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5250                 stripe++;
5251         }
5252         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5253
5254         btrfs_set_stack_chunk_length(chunk, chunk_size);
5255         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5256         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5257         btrfs_set_stack_chunk_type(chunk, map->type);
5258         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5259         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5260         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5261         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5262         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5263
5264         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5265         key.type = BTRFS_CHUNK_ITEM_KEY;
5266         key.offset = chunk_offset;
5267
5268         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5269         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5270                 /*
5271                  * TODO: Cleanup of inserted chunk root in case of
5272                  * failure.
5273                  */
5274                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5275         }
5276
5277 out:
5278         kfree(chunk);
5279         free_extent_map(em);
5280         return ret;
5281 }
5282
5283 /*
5284  * Chunk allocation falls into two parts. The first part does work
5285  * that makes the new allocated chunk usable, but does not do any operation
5286  * that modifies the chunk tree. The second part does the work that
5287  * requires modifying the chunk tree. This division is important for the
5288  * bootstrap process of adding storage to a seed btrfs.
5289  */
5290 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5291 {
5292         u64 chunk_offset;
5293
5294         lockdep_assert_held(&trans->fs_info->chunk_mutex);
5295         chunk_offset = find_next_chunk(trans->fs_info);
5296         return __btrfs_alloc_chunk(trans, chunk_offset, type);
5297 }
5298
5299 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5300 {
5301         struct btrfs_fs_info *fs_info = trans->fs_info;
5302         u64 chunk_offset;
5303         u64 sys_chunk_offset;
5304         u64 alloc_profile;
5305         int ret;
5306
5307         chunk_offset = find_next_chunk(fs_info);
5308         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5309         ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5310         if (ret)
5311                 return ret;
5312
5313         sys_chunk_offset = find_next_chunk(fs_info);
5314         alloc_profile = btrfs_system_alloc_profile(fs_info);
5315         ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5316         return ret;
5317 }
5318
5319 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5320 {
5321         const int index = btrfs_bg_flags_to_raid_index(map->type);
5322
5323         return btrfs_raid_array[index].tolerated_failures;
5324 }
5325
5326 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5327 {
5328         struct extent_map *em;
5329         struct map_lookup *map;
5330         int readonly = 0;
5331         int miss_ndevs = 0;
5332         int i;
5333
5334         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5335         if (IS_ERR(em))
5336                 return 1;
5337
5338         map = em->map_lookup;
5339         for (i = 0; i < map->num_stripes; i++) {
5340                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5341                                         &map->stripes[i].dev->dev_state)) {
5342                         miss_ndevs++;
5343                         continue;
5344                 }
5345                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5346                                         &map->stripes[i].dev->dev_state)) {
5347                         readonly = 1;
5348                         goto end;
5349                 }
5350         }
5351
5352         /*
5353          * If the number of missing devices is larger than max errors,
5354          * we can not write the data into that chunk successfully, so
5355          * set it readonly.
5356          */
5357         if (miss_ndevs > btrfs_chunk_max_errors(map))
5358                 readonly = 1;
5359 end:
5360         free_extent_map(em);
5361         return readonly;
5362 }
5363
5364 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5365 {
5366         struct extent_map *em;
5367
5368         while (1) {
5369                 write_lock(&tree->lock);
5370                 em = lookup_extent_mapping(tree, 0, (u64)-1);
5371                 if (em)
5372                         remove_extent_mapping(tree, em);
5373                 write_unlock(&tree->lock);
5374                 if (!em)
5375                         break;
5376                 /* once for us */
5377                 free_extent_map(em);
5378                 /* once for the tree */
5379                 free_extent_map(em);
5380         }
5381 }
5382
5383 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5384 {
5385         struct extent_map *em;
5386         struct map_lookup *map;
5387         int ret;
5388
5389         em = btrfs_get_chunk_map(fs_info, logical, len);
5390         if (IS_ERR(em))
5391                 /*
5392                  * We could return errors for these cases, but that could get
5393                  * ugly and we'd probably do the same thing which is just not do
5394                  * anything else and exit, so return 1 so the callers don't try
5395                  * to use other copies.
5396                  */
5397                 return 1;
5398
5399         map = em->map_lookup;
5400         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5401                 ret = map->num_stripes;
5402         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5403                 ret = map->sub_stripes;
5404         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5405                 ret = 2;
5406         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5407                 /*
5408                  * There could be two corrupted data stripes, we need
5409                  * to loop retry in order to rebuild the correct data.
5410                  *
5411                  * Fail a stripe at a time on every retry except the
5412                  * stripe under reconstruction.
5413                  */
5414                 ret = map->num_stripes;
5415         else
5416                 ret = 1;
5417         free_extent_map(em);
5418
5419         down_read(&fs_info->dev_replace.rwsem);
5420         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5421             fs_info->dev_replace.tgtdev)
5422                 ret++;
5423         up_read(&fs_info->dev_replace.rwsem);
5424
5425         return ret;
5426 }
5427
5428 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5429                                     u64 logical)
5430 {
5431         struct extent_map *em;
5432         struct map_lookup *map;
5433         unsigned long len = fs_info->sectorsize;
5434
5435         em = btrfs_get_chunk_map(fs_info, logical, len);
5436
5437         if (!WARN_ON(IS_ERR(em))) {
5438                 map = em->map_lookup;
5439                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5440                         len = map->stripe_len * nr_data_stripes(map);
5441                 free_extent_map(em);
5442         }
5443         return len;
5444 }
5445
5446 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5447 {
5448         struct extent_map *em;
5449         struct map_lookup *map;
5450         int ret = 0;
5451
5452         em = btrfs_get_chunk_map(fs_info, logical, len);
5453
5454         if(!WARN_ON(IS_ERR(em))) {
5455                 map = em->map_lookup;
5456                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5457                         ret = 1;
5458                 free_extent_map(em);
5459         }
5460         return ret;
5461 }
5462
5463 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5464                             struct map_lookup *map, int first,
5465                             int dev_replace_is_ongoing)
5466 {
5467         int i;
5468         int num_stripes;
5469         int preferred_mirror;
5470         int tolerance;
5471         struct btrfs_device *srcdev;
5472
5473         ASSERT((map->type &
5474                  (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5475
5476         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5477                 num_stripes = map->sub_stripes;
5478         else
5479                 num_stripes = map->num_stripes;
5480
5481         preferred_mirror = first + current->pid % num_stripes;
5482
5483         if (dev_replace_is_ongoing &&
5484             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5485              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5486                 srcdev = fs_info->dev_replace.srcdev;
5487         else
5488                 srcdev = NULL;
5489
5490         /*
5491          * try to avoid the drive that is the source drive for a
5492          * dev-replace procedure, only choose it if no other non-missing
5493          * mirror is available
5494          */
5495         for (tolerance = 0; tolerance < 2; tolerance++) {
5496                 if (map->stripes[preferred_mirror].dev->bdev &&
5497                     (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5498                         return preferred_mirror;
5499                 for (i = first; i < first + num_stripes; i++) {
5500                         if (map->stripes[i].dev->bdev &&
5501                             (tolerance || map->stripes[i].dev != srcdev))
5502                                 return i;
5503                 }
5504         }
5505
5506         /* we couldn't find one that doesn't fail.  Just return something
5507          * and the io error handling code will clean up eventually
5508          */
5509         return preferred_mirror;
5510 }
5511
5512 static inline int parity_smaller(u64 a, u64 b)
5513 {
5514         return a > b;
5515 }
5516
5517 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5518 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5519 {
5520         struct btrfs_bio_stripe s;
5521         int i;
5522         u64 l;
5523         int again = 1;
5524
5525         while (again) {
5526                 again = 0;
5527                 for (i = 0; i < num_stripes - 1; i++) {
5528                         if (parity_smaller(bbio->raid_map[i],
5529                                            bbio->raid_map[i+1])) {
5530                                 s = bbio->stripes[i];
5531                                 l = bbio->raid_map[i];
5532                                 bbio->stripes[i] = bbio->stripes[i+1];
5533                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5534                                 bbio->stripes[i+1] = s;
5535                                 bbio->raid_map[i+1] = l;
5536
5537                                 again = 1;
5538                         }
5539                 }
5540         }
5541 }
5542
5543 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5544 {
5545         struct btrfs_bio *bbio = kzalloc(
5546                  /* the size of the btrfs_bio */
5547                 sizeof(struct btrfs_bio) +
5548                 /* plus the variable array for the stripes */
5549                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5550                 /* plus the variable array for the tgt dev */
5551                 sizeof(int) * (real_stripes) +
5552                 /*
5553                  * plus the raid_map, which includes both the tgt dev
5554                  * and the stripes
5555                  */
5556                 sizeof(u64) * (total_stripes),
5557                 GFP_NOFS|__GFP_NOFAIL);
5558
5559         atomic_set(&bbio->error, 0);
5560         refcount_set(&bbio->refs, 1);
5561
5562         return bbio;
5563 }
5564
5565 void btrfs_get_bbio(struct btrfs_bio *bbio)
5566 {
5567         WARN_ON(!refcount_read(&bbio->refs));
5568         refcount_inc(&bbio->refs);
5569 }
5570
5571 void btrfs_put_bbio(struct btrfs_bio *bbio)
5572 {
5573         if (!bbio)
5574                 return;
5575         if (refcount_dec_and_test(&bbio->refs))
5576                 kfree(bbio);
5577 }
5578
5579 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5580 /*
5581  * Please note that, discard won't be sent to target device of device
5582  * replace.
5583  */
5584 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5585                                          u64 logical, u64 length,
5586                                          struct btrfs_bio **bbio_ret)
5587 {
5588         struct extent_map *em;
5589         struct map_lookup *map;
5590         struct btrfs_bio *bbio;
5591         u64 offset;
5592         u64 stripe_nr;
5593         u64 stripe_nr_end;
5594         u64 stripe_end_offset;
5595         u64 stripe_cnt;
5596         u64 stripe_len;
5597         u64 stripe_offset;
5598         u64 num_stripes;
5599         u32 stripe_index;
5600         u32 factor = 0;
5601         u32 sub_stripes = 0;
5602         u64 stripes_per_dev = 0;
5603         u32 remaining_stripes = 0;
5604         u32 last_stripe = 0;
5605         int ret = 0;
5606         int i;
5607
5608         /* discard always return a bbio */
5609         ASSERT(bbio_ret);
5610
5611         em = btrfs_get_chunk_map(fs_info, logical, length);
5612         if (IS_ERR(em))
5613                 return PTR_ERR(em);
5614
5615         map = em->map_lookup;
5616         /* we don't discard raid56 yet */
5617         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5618                 ret = -EOPNOTSUPP;
5619                 goto out;
5620         }
5621
5622         offset = logical - em->start;
5623         length = min_t(u64, em->len - offset, length);
5624
5625         stripe_len = map->stripe_len;
5626         /*
5627          * stripe_nr counts the total number of stripes we have to stride
5628          * to get to this block
5629          */
5630         stripe_nr = div64_u64(offset, stripe_len);
5631
5632         /* stripe_offset is the offset of this block in its stripe */
5633         stripe_offset = offset - stripe_nr * stripe_len;
5634
5635         stripe_nr_end = round_up(offset + length, map->stripe_len);
5636         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5637         stripe_cnt = stripe_nr_end - stripe_nr;
5638         stripe_end_offset = stripe_nr_end * map->stripe_len -
5639                             (offset + length);
5640         /*
5641          * after this, stripe_nr is the number of stripes on this
5642          * device we have to walk to find the data, and stripe_index is
5643          * the number of our device in the stripe array
5644          */
5645         num_stripes = 1;
5646         stripe_index = 0;
5647         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5648                          BTRFS_BLOCK_GROUP_RAID10)) {
5649                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5650                         sub_stripes = 1;
5651                 else
5652                         sub_stripes = map->sub_stripes;
5653
5654                 factor = map->num_stripes / sub_stripes;
5655                 num_stripes = min_t(u64, map->num_stripes,
5656                                     sub_stripes * stripe_cnt);
5657                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5658                 stripe_index *= sub_stripes;
5659                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5660                                               &remaining_stripes);
5661                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5662                 last_stripe *= sub_stripes;
5663         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5664                                 BTRFS_BLOCK_GROUP_DUP)) {
5665                 num_stripes = map->num_stripes;
5666         } else {
5667                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5668                                         &stripe_index);
5669         }
5670
5671         bbio = alloc_btrfs_bio(num_stripes, 0);
5672         if (!bbio) {
5673                 ret = -ENOMEM;
5674                 goto out;
5675         }
5676
5677         for (i = 0; i < num_stripes; i++) {
5678                 bbio->stripes[i].physical =
5679                         map->stripes[stripe_index].physical +
5680                         stripe_offset + stripe_nr * map->stripe_len;
5681                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5682
5683                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5684                                  BTRFS_BLOCK_GROUP_RAID10)) {
5685                         bbio->stripes[i].length = stripes_per_dev *
5686                                 map->stripe_len;
5687
5688                         if (i / sub_stripes < remaining_stripes)
5689                                 bbio->stripes[i].length +=
5690                                         map->stripe_len;
5691
5692                         /*
5693                          * Special for the first stripe and
5694                          * the last stripe:
5695                          *
5696                          * |-------|...|-------|
5697                          *     |----------|
5698                          *    off     end_off
5699                          */
5700                         if (i < sub_stripes)
5701                                 bbio->stripes[i].length -=
5702                                         stripe_offset;
5703
5704                         if (stripe_index >= last_stripe &&
5705                             stripe_index <= (last_stripe +
5706                                              sub_stripes - 1))
5707                                 bbio->stripes[i].length -=
5708                                         stripe_end_offset;
5709
5710                         if (i == sub_stripes - 1)
5711                                 stripe_offset = 0;
5712                 } else {
5713                         bbio->stripes[i].length = length;
5714                 }
5715
5716                 stripe_index++;
5717                 if (stripe_index == map->num_stripes) {
5718                         stripe_index = 0;
5719                         stripe_nr++;
5720                 }
5721         }
5722
5723         *bbio_ret = bbio;
5724         bbio->map_type = map->type;
5725         bbio->num_stripes = num_stripes;
5726 out:
5727         free_extent_map(em);
5728         return ret;
5729 }
5730
5731 /*
5732  * In dev-replace case, for repair case (that's the only case where the mirror
5733  * is selected explicitly when calling btrfs_map_block), blocks left of the
5734  * left cursor can also be read from the target drive.
5735  *
5736  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5737  * array of stripes.
5738  * For READ, it also needs to be supported using the same mirror number.
5739  *
5740  * If the requested block is not left of the left cursor, EIO is returned. This
5741  * can happen because btrfs_num_copies() returns one more in the dev-replace
5742  * case.
5743  */
5744 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5745                                          u64 logical, u64 length,
5746                                          u64 srcdev_devid, int *mirror_num,
5747                                          u64 *physical)
5748 {
5749         struct btrfs_bio *bbio = NULL;
5750         int num_stripes;
5751         int index_srcdev = 0;
5752         int found = 0;
5753         u64 physical_of_found = 0;
5754         int i;
5755         int ret = 0;
5756
5757         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5758                                 logical, &length, &bbio, 0, 0);
5759         if (ret) {
5760                 ASSERT(bbio == NULL);
5761                 return ret;
5762         }
5763
5764         num_stripes = bbio->num_stripes;
5765         if (*mirror_num > num_stripes) {
5766                 /*
5767                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5768                  * that means that the requested area is not left of the left
5769                  * cursor
5770                  */
5771                 btrfs_put_bbio(bbio);
5772                 return -EIO;
5773         }
5774
5775         /*
5776          * process the rest of the function using the mirror_num of the source
5777          * drive. Therefore look it up first.  At the end, patch the device
5778          * pointer to the one of the target drive.
5779          */
5780         for (i = 0; i < num_stripes; i++) {
5781                 if (bbio->stripes[i].dev->devid != srcdev_devid)
5782                         continue;
5783
5784                 /*
5785                  * In case of DUP, in order to keep it simple, only add the
5786                  * mirror with the lowest physical address
5787                  */
5788                 if (found &&
5789                     physical_of_found <= bbio->stripes[i].physical)
5790                         continue;
5791
5792                 index_srcdev = i;
5793                 found = 1;
5794                 physical_of_found = bbio->stripes[i].physical;
5795         }
5796
5797         btrfs_put_bbio(bbio);
5798
5799         ASSERT(found);
5800         if (!found)
5801                 return -EIO;
5802
5803         *mirror_num = index_srcdev + 1;
5804         *physical = physical_of_found;
5805         return ret;
5806 }
5807
5808 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5809                                       struct btrfs_bio **bbio_ret,
5810                                       struct btrfs_dev_replace *dev_replace,
5811                                       int *num_stripes_ret, int *max_errors_ret)
5812 {
5813         struct btrfs_bio *bbio = *bbio_ret;
5814         u64 srcdev_devid = dev_replace->srcdev->devid;
5815         int tgtdev_indexes = 0;
5816         int num_stripes = *num_stripes_ret;
5817         int max_errors = *max_errors_ret;
5818         int i;
5819
5820         if (op == BTRFS_MAP_WRITE) {
5821                 int index_where_to_add;
5822
5823                 /*
5824                  * duplicate the write operations while the dev replace
5825                  * procedure is running. Since the copying of the old disk to
5826                  * the new disk takes place at run time while the filesystem is
5827                  * mounted writable, the regular write operations to the old
5828                  * disk have to be duplicated to go to the new disk as well.
5829                  *
5830                  * Note that device->missing is handled by the caller, and that
5831                  * the write to the old disk is already set up in the stripes
5832                  * array.
5833                  */
5834                 index_where_to_add = num_stripes;
5835                 for (i = 0; i < num_stripes; i++) {
5836                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5837                                 /* write to new disk, too */
5838                                 struct btrfs_bio_stripe *new =
5839                                         bbio->stripes + index_where_to_add;
5840                                 struct btrfs_bio_stripe *old =
5841                                         bbio->stripes + i;
5842
5843                                 new->physical = old->physical;
5844                                 new->length = old->length;
5845                                 new->dev = dev_replace->tgtdev;
5846                                 bbio->tgtdev_map[i] = index_where_to_add;
5847                                 index_where_to_add++;
5848                                 max_errors++;
5849                                 tgtdev_indexes++;
5850                         }
5851                 }
5852                 num_stripes = index_where_to_add;
5853         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5854                 int index_srcdev = 0;
5855                 int found = 0;
5856                 u64 physical_of_found = 0;
5857
5858                 /*
5859                  * During the dev-replace procedure, the target drive can also
5860                  * be used to read data in case it is needed to repair a corrupt
5861                  * block elsewhere. This is possible if the requested area is
5862                  * left of the left cursor. In this area, the target drive is a
5863                  * full copy of the source drive.
5864                  */
5865                 for (i = 0; i < num_stripes; i++) {
5866                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5867                                 /*
5868                                  * In case of DUP, in order to keep it simple,
5869                                  * only add the mirror with the lowest physical
5870                                  * address
5871                                  */
5872                                 if (found &&
5873                                     physical_of_found <=
5874                                      bbio->stripes[i].physical)
5875                                         continue;
5876                                 index_srcdev = i;
5877                                 found = 1;
5878                                 physical_of_found = bbio->stripes[i].physical;
5879                         }
5880                 }
5881                 if (found) {
5882                         struct btrfs_bio_stripe *tgtdev_stripe =
5883                                 bbio->stripes + num_stripes;
5884
5885                         tgtdev_stripe->physical = physical_of_found;
5886                         tgtdev_stripe->length =
5887                                 bbio->stripes[index_srcdev].length;
5888                         tgtdev_stripe->dev = dev_replace->tgtdev;
5889                         bbio->tgtdev_map[index_srcdev] = num_stripes;
5890
5891                         tgtdev_indexes++;
5892                         num_stripes++;
5893                 }
5894         }
5895
5896         *num_stripes_ret = num_stripes;
5897         *max_errors_ret = max_errors;
5898         bbio->num_tgtdevs = tgtdev_indexes;
5899         *bbio_ret = bbio;
5900 }
5901
5902 static bool need_full_stripe(enum btrfs_map_op op)
5903 {
5904         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5905 }
5906
5907 /*
5908  * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5909  *                     tuple. This information is used to calculate how big a
5910  *                     particular bio can get before it straddles a stripe.
5911  *
5912  * @fs_info - the filesystem
5913  * @logical - address that we want to figure out the geometry of
5914  * @len     - the length of IO we are going to perform, starting at @logical
5915  * @op      - type of operation - write or read
5916  * @io_geom - pointer used to return values
5917  *
5918  * Returns < 0 in case a chunk for the given logical address cannot be found,
5919  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5920  */
5921 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5922                         u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5923 {
5924         struct extent_map *em;
5925         struct map_lookup *map;
5926         u64 offset;
5927         u64 stripe_offset;
5928         u64 stripe_nr;
5929         u64 stripe_len;
5930         u64 raid56_full_stripe_start = (u64)-1;
5931         int data_stripes;
5932         int ret = 0;
5933
5934         ASSERT(op != BTRFS_MAP_DISCARD);
5935
5936         em = btrfs_get_chunk_map(fs_info, logical, len);
5937         if (IS_ERR(em))
5938                 return PTR_ERR(em);
5939
5940         map = em->map_lookup;
5941         /* Offset of this logical address in the chunk */
5942         offset = logical - em->start;
5943         /* Len of a stripe in a chunk */
5944         stripe_len = map->stripe_len;
5945         /* Stripe wher this block falls in */
5946         stripe_nr = div64_u64(offset, stripe_len);
5947         /* Offset of stripe in the chunk */
5948         stripe_offset = stripe_nr * stripe_len;
5949         if (offset < stripe_offset) {
5950                 btrfs_crit(fs_info,
5951 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5952                         stripe_offset, offset, em->start, logical, stripe_len);
5953                 ret = -EINVAL;
5954                 goto out;
5955         }
5956
5957         /* stripe_offset is the offset of this block in its stripe */
5958         stripe_offset = offset - stripe_offset;
5959         data_stripes = nr_data_stripes(map);
5960
5961         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5962                 u64 max_len = stripe_len - stripe_offset;
5963
5964                 /*
5965                  * In case of raid56, we need to know the stripe aligned start
5966                  */
5967                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5968                         unsigned long full_stripe_len = stripe_len * data_stripes;
5969                         raid56_full_stripe_start = offset;
5970
5971                         /*
5972                          * Allow a write of a full stripe, but make sure we
5973                          * don't allow straddling of stripes
5974                          */
5975                         raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5976                                         full_stripe_len);
5977                         raid56_full_stripe_start *= full_stripe_len;
5978
5979                         /*
5980                          * For writes to RAID[56], allow a full stripeset across
5981                          * all disks. For other RAID types and for RAID[56]
5982                          * reads, just allow a single stripe (on a single disk).
5983                          */
5984                         if (op == BTRFS_MAP_WRITE) {
5985                                 max_len = stripe_len * data_stripes -
5986                                           (offset - raid56_full_stripe_start);
5987                         }
5988                 }
5989                 len = min_t(u64, em->len - offset, max_len);
5990         } else {
5991                 len = em->len - offset;
5992         }
5993
5994         io_geom->len = len;
5995         io_geom->offset = offset;
5996         io_geom->stripe_len = stripe_len;
5997         io_geom->stripe_nr = stripe_nr;
5998         io_geom->stripe_offset = stripe_offset;
5999         io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6000
6001 out:
6002         /* once for us */
6003         free_extent_map(em);
6004         return ret;
6005 }
6006
6007 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6008                              enum btrfs_map_op op,
6009                              u64 logical, u64 *length,
6010                              struct btrfs_bio **bbio_ret,
6011                              int mirror_num, int need_raid_map)
6012 {
6013         struct extent_map *em;
6014         struct map_lookup *map;
6015         u64 stripe_offset;
6016         u64 stripe_nr;
6017         u64 stripe_len;
6018         u32 stripe_index;
6019         int data_stripes;
6020         int i;
6021         int ret = 0;
6022         int num_stripes;
6023         int max_errors = 0;
6024         int tgtdev_indexes = 0;
6025         struct btrfs_bio *bbio = NULL;
6026         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6027         int dev_replace_is_ongoing = 0;
6028         int num_alloc_stripes;
6029         int patch_the_first_stripe_for_dev_replace = 0;
6030         u64 physical_to_patch_in_first_stripe = 0;
6031         u64 raid56_full_stripe_start = (u64)-1;
6032         struct btrfs_io_geometry geom;
6033
6034         ASSERT(bbio_ret);
6035
6036         if (op == BTRFS_MAP_DISCARD)
6037                 return __btrfs_map_block_for_discard(fs_info, logical,
6038                                                      *length, bbio_ret);
6039
6040         ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
6041         if (ret < 0)
6042                 return ret;
6043
6044         em = btrfs_get_chunk_map(fs_info, logical, *length);
6045         ASSERT(!IS_ERR(em));
6046         map = em->map_lookup;
6047
6048         *length = geom.len;
6049         stripe_len = geom.stripe_len;
6050         stripe_nr = geom.stripe_nr;
6051         stripe_offset = geom.stripe_offset;
6052         raid56_full_stripe_start = geom.raid56_stripe_offset;
6053         data_stripes = nr_data_stripes(map);
6054
6055         down_read(&dev_replace->rwsem);
6056         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6057         /*
6058          * Hold the semaphore for read during the whole operation, write is
6059          * requested at commit time but must wait.
6060          */
6061         if (!dev_replace_is_ongoing)
6062                 up_read(&dev_replace->rwsem);
6063
6064         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6065             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6066                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6067                                                     dev_replace->srcdev->devid,
6068                                                     &mirror_num,
6069                                             &physical_to_patch_in_first_stripe);
6070                 if (ret)
6071                         goto out;
6072                 else
6073                         patch_the_first_stripe_for_dev_replace = 1;
6074         } else if (mirror_num > map->num_stripes) {
6075                 mirror_num = 0;
6076         }
6077
6078         num_stripes = 1;
6079         stripe_index = 0;
6080         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6081                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6082                                 &stripe_index);
6083                 if (!need_full_stripe(op))
6084                         mirror_num = 1;
6085         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6086                 if (need_full_stripe(op))
6087                         num_stripes = map->num_stripes;
6088                 else if (mirror_num)
6089                         stripe_index = mirror_num - 1;
6090                 else {
6091                         stripe_index = find_live_mirror(fs_info, map, 0,
6092                                             dev_replace_is_ongoing);
6093                         mirror_num = stripe_index + 1;
6094                 }
6095
6096         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6097                 if (need_full_stripe(op)) {
6098                         num_stripes = map->num_stripes;
6099                 } else if (mirror_num) {
6100                         stripe_index = mirror_num - 1;
6101                 } else {
6102                         mirror_num = 1;
6103                 }
6104
6105         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6106                 u32 factor = map->num_stripes / map->sub_stripes;
6107
6108                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6109                 stripe_index *= map->sub_stripes;
6110
6111                 if (need_full_stripe(op))
6112                         num_stripes = map->sub_stripes;
6113                 else if (mirror_num)
6114                         stripe_index += mirror_num - 1;
6115                 else {
6116                         int old_stripe_index = stripe_index;
6117                         stripe_index = find_live_mirror(fs_info, map,
6118                                               stripe_index,
6119                                               dev_replace_is_ongoing);
6120                         mirror_num = stripe_index - old_stripe_index + 1;
6121                 }
6122
6123         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6124                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6125                         /* push stripe_nr back to the start of the full stripe */
6126                         stripe_nr = div64_u64(raid56_full_stripe_start,
6127                                         stripe_len * data_stripes);
6128
6129                         /* RAID[56] write or recovery. Return all stripes */
6130                         num_stripes = map->num_stripes;
6131                         max_errors = nr_parity_stripes(map);
6132
6133                         *length = map->stripe_len;
6134                         stripe_index = 0;
6135                         stripe_offset = 0;
6136                 } else {
6137                         /*
6138                          * Mirror #0 or #1 means the original data block.
6139                          * Mirror #2 is RAID5 parity block.
6140                          * Mirror #3 is RAID6 Q block.
6141                          */
6142                         stripe_nr = div_u64_rem(stripe_nr,
6143                                         data_stripes, &stripe_index);
6144                         if (mirror_num > 1)
6145                                 stripe_index = data_stripes + mirror_num - 2;
6146
6147                         /* We distribute the parity blocks across stripes */
6148                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6149                                         &stripe_index);
6150                         if (!need_full_stripe(op) && mirror_num <= 1)
6151                                 mirror_num = 1;
6152                 }
6153         } else {
6154                 /*
6155                  * after this, stripe_nr is the number of stripes on this
6156                  * device we have to walk to find the data, and stripe_index is
6157                  * the number of our device in the stripe array
6158                  */
6159                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6160                                 &stripe_index);
6161                 mirror_num = stripe_index + 1;
6162         }
6163         if (stripe_index >= map->num_stripes) {
6164                 btrfs_crit(fs_info,
6165                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6166                            stripe_index, map->num_stripes);
6167                 ret = -EINVAL;
6168                 goto out;
6169         }
6170
6171         num_alloc_stripes = num_stripes;
6172         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6173                 if (op == BTRFS_MAP_WRITE)
6174                         num_alloc_stripes <<= 1;
6175                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6176                         num_alloc_stripes++;
6177                 tgtdev_indexes = num_stripes;
6178         }
6179
6180         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6181         if (!bbio) {
6182                 ret = -ENOMEM;
6183                 goto out;
6184         }
6185         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
6186                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
6187
6188         /* build raid_map */
6189         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6190             (need_full_stripe(op) || mirror_num > 1)) {
6191                 u64 tmp;
6192                 unsigned rot;
6193
6194                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
6195                                  sizeof(struct btrfs_bio_stripe) *
6196                                  num_alloc_stripes +
6197                                  sizeof(int) * tgtdev_indexes);
6198
6199                 /* Work out the disk rotation on this stripe-set */
6200                 div_u64_rem(stripe_nr, num_stripes, &rot);
6201
6202                 /* Fill in the logical address of each stripe */
6203                 tmp = stripe_nr * data_stripes;
6204                 for (i = 0; i < data_stripes; i++)
6205                         bbio->raid_map[(i+rot) % num_stripes] =
6206                                 em->start + (tmp + i) * map->stripe_len;
6207
6208                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6209                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6210                         bbio->raid_map[(i+rot+1) % num_stripes] =
6211                                 RAID6_Q_STRIPE;
6212         }
6213
6214
6215         for (i = 0; i < num_stripes; i++) {
6216                 bbio->stripes[i].physical =
6217                         map->stripes[stripe_index].physical +
6218                         stripe_offset +
6219                         stripe_nr * map->stripe_len;
6220                 bbio->stripes[i].dev =
6221                         map->stripes[stripe_index].dev;
6222                 stripe_index++;
6223         }
6224
6225         if (need_full_stripe(op))
6226                 max_errors = btrfs_chunk_max_errors(map);
6227
6228         if (bbio->raid_map)
6229                 sort_parity_stripes(bbio, num_stripes);
6230
6231         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6232             need_full_stripe(op)) {
6233                 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6234                                           &max_errors);
6235         }
6236
6237         *bbio_ret = bbio;
6238         bbio->map_type = map->type;
6239         bbio->num_stripes = num_stripes;
6240         bbio->max_errors = max_errors;
6241         bbio->mirror_num = mirror_num;
6242
6243         /*
6244          * this is the case that REQ_READ && dev_replace_is_ongoing &&
6245          * mirror_num == num_stripes + 1 && dev_replace target drive is
6246          * available as a mirror
6247          */
6248         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6249                 WARN_ON(num_stripes > 1);
6250                 bbio->stripes[0].dev = dev_replace->tgtdev;
6251                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6252                 bbio->mirror_num = map->num_stripes + 1;
6253         }
6254 out:
6255         if (dev_replace_is_ongoing) {
6256                 lockdep_assert_held(&dev_replace->rwsem);
6257                 /* Unlock and let waiting writers proceed */
6258                 up_read(&dev_replace->rwsem);
6259         }
6260         free_extent_map(em);
6261         return ret;
6262 }
6263
6264 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6265                       u64 logical, u64 *length,
6266                       struct btrfs_bio **bbio_ret, int mirror_num)
6267 {
6268         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6269                                  mirror_num, 0);
6270 }
6271
6272 /* For Scrub/replace */
6273 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6274                      u64 logical, u64 *length,
6275                      struct btrfs_bio **bbio_ret)
6276 {
6277         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6278 }
6279
6280 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
6281                      u64 physical, u64 **logical, int *naddrs, int *stripe_len)
6282 {
6283         struct extent_map *em;
6284         struct map_lookup *map;
6285         u64 *buf;
6286         u64 bytenr;
6287         u64 length;
6288         u64 stripe_nr;
6289         u64 rmap_len;
6290         int i, j, nr = 0;
6291
6292         em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
6293         if (IS_ERR(em))
6294                 return -EIO;
6295
6296         map = em->map_lookup;
6297         length = em->len;
6298         rmap_len = map->stripe_len;
6299
6300         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6301                 length = div_u64(length, map->num_stripes / map->sub_stripes);
6302         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6303                 length = div_u64(length, map->num_stripes);
6304         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6305                 length = div_u64(length, nr_data_stripes(map));
6306                 rmap_len = map->stripe_len * nr_data_stripes(map);
6307         }
6308
6309         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6310         BUG_ON(!buf); /* -ENOMEM */
6311
6312         for (i = 0; i < map->num_stripes; i++) {
6313                 if (map->stripes[i].physical > physical ||
6314                     map->stripes[i].physical + length <= physical)
6315                         continue;
6316
6317                 stripe_nr = physical - map->stripes[i].physical;
6318                 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6319
6320                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6321                         stripe_nr = stripe_nr * map->num_stripes + i;
6322                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6323                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6324                         stripe_nr = stripe_nr * map->num_stripes + i;
6325                 } /* else if RAID[56], multiply by nr_data_stripes().
6326                    * Alternatively, just use rmap_len below instead of
6327                    * map->stripe_len */
6328
6329                 bytenr = chunk_start + stripe_nr * rmap_len;
6330                 WARN_ON(nr >= map->num_stripes);
6331                 for (j = 0; j < nr; j++) {
6332                         if (buf[j] == bytenr)
6333                                 break;
6334                 }
6335                 if (j == nr) {
6336                         WARN_ON(nr >= map->num_stripes);
6337                         buf[nr++] = bytenr;
6338                 }
6339         }
6340
6341         *logical = buf;
6342         *naddrs = nr;
6343         *stripe_len = rmap_len;
6344
6345         free_extent_map(em);
6346         return 0;
6347 }
6348
6349 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6350 {
6351         bio->bi_private = bbio->private;
6352         bio->bi_end_io = bbio->end_io;
6353         bio_endio(bio);
6354
6355         btrfs_put_bbio(bbio);
6356 }
6357
6358 static void btrfs_end_bio(struct bio *bio)
6359 {
6360         struct btrfs_bio *bbio = bio->bi_private;
6361         int is_orig_bio = 0;
6362
6363         if (bio->bi_status) {
6364                 atomic_inc(&bbio->error);
6365                 if (bio->bi_status == BLK_STS_IOERR ||
6366                     bio->bi_status == BLK_STS_TARGET) {
6367                         unsigned int stripe_index =
6368                                 btrfs_io_bio(bio)->stripe_index;
6369                         struct btrfs_device *dev;
6370
6371                         BUG_ON(stripe_index >= bbio->num_stripes);
6372                         dev = bbio->stripes[stripe_index].dev;
6373                         if (dev->bdev) {
6374                                 if (bio_op(bio) == REQ_OP_WRITE)
6375                                         btrfs_dev_stat_inc_and_print(dev,
6376                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6377                                 else if (!(bio->bi_opf & REQ_RAHEAD))
6378                                         btrfs_dev_stat_inc_and_print(dev,
6379                                                 BTRFS_DEV_STAT_READ_ERRS);
6380                                 if (bio->bi_opf & REQ_PREFLUSH)
6381                                         btrfs_dev_stat_inc_and_print(dev,
6382                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6383                         }
6384                 }
6385         }
6386
6387         if (bio == bbio->orig_bio)
6388                 is_orig_bio = 1;
6389
6390         btrfs_bio_counter_dec(bbio->fs_info);
6391
6392         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6393                 if (!is_orig_bio) {
6394                         bio_put(bio);
6395                         bio = bbio->orig_bio;
6396                 }
6397
6398                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6399                 /* only send an error to the higher layers if it is
6400                  * beyond the tolerance of the btrfs bio
6401                  */
6402                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6403                         bio->bi_status = BLK_STS_IOERR;
6404                 } else {
6405                         /*
6406                          * this bio is actually up to date, we didn't
6407                          * go over the max number of errors
6408                          */
6409                         bio->bi_status = BLK_STS_OK;
6410                 }
6411
6412                 btrfs_end_bbio(bbio, bio);
6413         } else if (!is_orig_bio) {
6414                 bio_put(bio);
6415         }
6416 }
6417
6418 /*
6419  * see run_scheduled_bios for a description of why bios are collected for
6420  * async submit.
6421  *
6422  * This will add one bio to the pending list for a device and make sure
6423  * the work struct is scheduled.
6424  */
6425 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6426                                         struct bio *bio)
6427 {
6428         struct btrfs_fs_info *fs_info = device->fs_info;
6429         int should_queue = 1;
6430         struct btrfs_pending_bios *pending_bios;
6431
6432         /* don't bother with additional async steps for reads, right now */
6433         if (bio_op(bio) == REQ_OP_READ) {
6434                 btrfsic_submit_bio(bio);
6435                 return;
6436         }
6437
6438         WARN_ON(bio->bi_next);
6439         bio->bi_next = NULL;
6440
6441         spin_lock(&device->io_lock);
6442         if (op_is_sync(bio->bi_opf))
6443                 pending_bios = &device->pending_sync_bios;
6444         else
6445                 pending_bios = &device->pending_bios;
6446
6447         if (pending_bios->tail)
6448                 pending_bios->tail->bi_next = bio;
6449
6450         pending_bios->tail = bio;
6451         if (!pending_bios->head)
6452                 pending_bios->head = bio;
6453         if (device->running_pending)
6454                 should_queue = 0;
6455
6456         spin_unlock(&device->io_lock);
6457
6458         if (should_queue)
6459                 btrfs_queue_work(fs_info->submit_workers, &device->work);
6460 }
6461
6462 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6463                               u64 physical, int dev_nr, int async)
6464 {
6465         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6466         struct btrfs_fs_info *fs_info = bbio->fs_info;
6467
6468         bio->bi_private = bbio;
6469         btrfs_io_bio(bio)->stripe_index = dev_nr;
6470         bio->bi_end_io = btrfs_end_bio;
6471         bio->bi_iter.bi_sector = physical >> 9;
6472         btrfs_debug_in_rcu(fs_info,
6473         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6474                 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6475                 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6476                 bio->bi_iter.bi_size);
6477         bio_set_dev(bio, dev->bdev);
6478
6479         btrfs_bio_counter_inc_noblocked(fs_info);
6480
6481         if (async)
6482                 btrfs_schedule_bio(dev, bio);
6483         else
6484                 btrfsic_submit_bio(bio);
6485 }
6486
6487 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6488 {
6489         atomic_inc(&bbio->error);
6490         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6491                 /* Should be the original bio. */
6492                 WARN_ON(bio != bbio->orig_bio);
6493
6494                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6495                 bio->bi_iter.bi_sector = logical >> 9;
6496                 if (atomic_read(&bbio->error) > bbio->max_errors)
6497                         bio->bi_status = BLK_STS_IOERR;
6498                 else
6499                         bio->bi_status = BLK_STS_OK;
6500                 btrfs_end_bbio(bbio, bio);
6501         }
6502 }
6503
6504 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6505                            int mirror_num, int async_submit)
6506 {
6507         struct btrfs_device *dev;
6508         struct bio *first_bio = bio;
6509         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6510         u64 length = 0;
6511         u64 map_length;
6512         int ret;
6513         int dev_nr;
6514         int total_devs;
6515         struct btrfs_bio *bbio = NULL;
6516
6517         length = bio->bi_iter.bi_size;
6518         map_length = length;
6519
6520         btrfs_bio_counter_inc_blocked(fs_info);
6521         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6522                                 &map_length, &bbio, mirror_num, 1);
6523         if (ret) {
6524                 btrfs_bio_counter_dec(fs_info);
6525                 return errno_to_blk_status(ret);
6526         }
6527
6528         total_devs = bbio->num_stripes;
6529         bbio->orig_bio = first_bio;
6530         bbio->private = first_bio->bi_private;
6531         bbio->end_io = first_bio->bi_end_io;
6532         bbio->fs_info = fs_info;
6533         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6534
6535         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6536             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6537                 /* In this case, map_length has been set to the length of
6538                    a single stripe; not the whole write */
6539                 if (bio_op(bio) == REQ_OP_WRITE) {
6540                         ret = raid56_parity_write(fs_info, bio, bbio,
6541                                                   map_length);
6542                 } else {
6543                         ret = raid56_parity_recover(fs_info, bio, bbio,
6544                                                     map_length, mirror_num, 1);
6545                 }
6546
6547                 btrfs_bio_counter_dec(fs_info);
6548                 return errno_to_blk_status(ret);
6549         }
6550
6551         if (map_length < length) {
6552                 btrfs_crit(fs_info,
6553                            "mapping failed logical %llu bio len %llu len %llu",
6554                            logical, length, map_length);
6555                 BUG();
6556         }
6557
6558         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6559                 dev = bbio->stripes[dev_nr].dev;
6560                 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6561                                                    &dev->dev_state) ||
6562                     (bio_op(first_bio) == REQ_OP_WRITE &&
6563                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6564                         bbio_error(bbio, first_bio, logical);
6565                         continue;
6566                 }
6567
6568                 if (dev_nr < total_devs - 1)
6569                         bio = btrfs_bio_clone(first_bio);
6570                 else
6571                         bio = first_bio;
6572
6573                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6574                                   dev_nr, async_submit);
6575         }
6576         btrfs_bio_counter_dec(fs_info);
6577         return BLK_STS_OK;
6578 }
6579
6580 /*
6581  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6582  * return NULL.
6583  *
6584  * If devid and uuid are both specified, the match must be exact, otherwise
6585  * only devid is used.
6586  *
6587  * If @seed is true, traverse through the seed devices.
6588  */
6589 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6590                                        u64 devid, u8 *uuid, u8 *fsid,
6591                                        bool seed)
6592 {
6593         struct btrfs_device *device;
6594
6595         while (fs_devices) {
6596                 if (!fsid ||
6597                     !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6598                         list_for_each_entry(device, &fs_devices->devices,
6599                                             dev_list) {
6600                                 if (device->devid == devid &&
6601                                     (!uuid || memcmp(device->uuid, uuid,
6602                                                      BTRFS_UUID_SIZE) == 0))
6603                                         return device;
6604                         }
6605                 }
6606                 if (seed)
6607                         fs_devices = fs_devices->seed;
6608                 else
6609                         return NULL;
6610         }
6611         return NULL;
6612 }
6613
6614 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6615                                             u64 devid, u8 *dev_uuid)
6616 {
6617         struct btrfs_device *device;
6618
6619         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6620         if (IS_ERR(device))
6621                 return device;
6622
6623         list_add(&device->dev_list, &fs_devices->devices);
6624         device->fs_devices = fs_devices;
6625         fs_devices->num_devices++;
6626
6627         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6628         fs_devices->missing_devices++;
6629
6630         return device;
6631 }
6632
6633 /**
6634  * btrfs_alloc_device - allocate struct btrfs_device
6635  * @fs_info:    used only for generating a new devid, can be NULL if
6636  *              devid is provided (i.e. @devid != NULL).
6637  * @devid:      a pointer to devid for this device.  If NULL a new devid
6638  *              is generated.
6639  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6640  *              is generated.
6641  *
6642  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6643  * on error.  Returned struct is not linked onto any lists and must be
6644  * destroyed with btrfs_free_device.
6645  */
6646 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6647                                         const u64 *devid,
6648                                         const u8 *uuid)
6649 {
6650         struct btrfs_device *dev;
6651         u64 tmp;
6652
6653         if (WARN_ON(!devid && !fs_info))
6654                 return ERR_PTR(-EINVAL);
6655
6656         dev = __alloc_device();
6657         if (IS_ERR(dev))
6658                 return dev;
6659
6660         if (devid)
6661                 tmp = *devid;
6662         else {
6663                 int ret;
6664
6665                 ret = find_next_devid(fs_info, &tmp);
6666                 if (ret) {
6667                         btrfs_free_device(dev);
6668                         return ERR_PTR(ret);
6669                 }
6670         }
6671         dev->devid = tmp;
6672
6673         if (uuid)
6674                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6675         else
6676                 generate_random_uuid(dev->uuid);
6677
6678         btrfs_init_work(&dev->work, btrfs_submit_helper,
6679                         pending_bios_fn, NULL, NULL);
6680
6681         return dev;
6682 }
6683
6684 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6685                                         u64 devid, u8 *uuid, bool error)
6686 {
6687         if (error)
6688                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6689                               devid, uuid);
6690         else
6691                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6692                               devid, uuid);
6693 }
6694
6695 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6696 {
6697         int index = btrfs_bg_flags_to_raid_index(type);
6698         int ncopies = btrfs_raid_array[index].ncopies;
6699         int data_stripes;
6700
6701         switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6702         case BTRFS_BLOCK_GROUP_RAID5:
6703                 data_stripes = num_stripes - 1;
6704                 break;
6705         case BTRFS_BLOCK_GROUP_RAID6:
6706                 data_stripes = num_stripes - 2;
6707                 break;
6708         default:
6709                 data_stripes = num_stripes / ncopies;
6710                 break;
6711         }
6712         return div_u64(chunk_len, data_stripes);
6713 }
6714
6715 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6716                           struct btrfs_chunk *chunk)
6717 {
6718         struct btrfs_fs_info *fs_info = leaf->fs_info;
6719         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6720         struct map_lookup *map;
6721         struct extent_map *em;
6722         u64 logical;
6723         u64 length;
6724         u64 devid;
6725         u8 uuid[BTRFS_UUID_SIZE];
6726         int num_stripes;
6727         int ret;
6728         int i;
6729
6730         logical = key->offset;
6731         length = btrfs_chunk_length(leaf, chunk);
6732         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6733
6734         /*
6735          * Only need to verify chunk item if we're reading from sys chunk array,
6736          * as chunk item in tree block is already verified by tree-checker.
6737          */
6738         if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6739                 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6740                 if (ret)
6741                         return ret;
6742         }
6743
6744         read_lock(&map_tree->lock);
6745         em = lookup_extent_mapping(map_tree, logical, 1);
6746         read_unlock(&map_tree->lock);
6747
6748         /* already mapped? */
6749         if (em && em->start <= logical && em->start + em->len > logical) {
6750                 free_extent_map(em);
6751                 return 0;
6752         } else if (em) {
6753                 free_extent_map(em);
6754         }
6755
6756         em = alloc_extent_map();
6757         if (!em)
6758                 return -ENOMEM;
6759         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6760         if (!map) {
6761                 free_extent_map(em);
6762                 return -ENOMEM;
6763         }
6764
6765         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6766         em->map_lookup = map;
6767         em->start = logical;
6768         em->len = length;
6769         em->orig_start = 0;
6770         em->block_start = 0;
6771         em->block_len = em->len;
6772
6773         map->num_stripes = num_stripes;
6774         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6775         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6776         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6777         map->type = btrfs_chunk_type(leaf, chunk);
6778         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6779         map->verified_stripes = 0;
6780         em->orig_block_len = calc_stripe_length(map->type, em->len,
6781                                                 map->num_stripes);
6782         for (i = 0; i < num_stripes; i++) {
6783                 map->stripes[i].physical =
6784                         btrfs_stripe_offset_nr(leaf, chunk, i);
6785                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6786                 read_extent_buffer(leaf, uuid, (unsigned long)
6787                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6788                                    BTRFS_UUID_SIZE);
6789                 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6790                                                         devid, uuid, NULL, true);
6791                 if (!map->stripes[i].dev &&
6792                     !btrfs_test_opt(fs_info, DEGRADED)) {
6793                         free_extent_map(em);
6794                         btrfs_report_missing_device(fs_info, devid, uuid, true);
6795                         return -ENOENT;
6796                 }
6797                 if (!map->stripes[i].dev) {
6798                         map->stripes[i].dev =
6799                                 add_missing_dev(fs_info->fs_devices, devid,
6800                                                 uuid);
6801                         if (IS_ERR(map->stripes[i].dev)) {
6802                                 free_extent_map(em);
6803                                 btrfs_err(fs_info,
6804                                         "failed to init missing dev %llu: %ld",
6805                                         devid, PTR_ERR(map->stripes[i].dev));
6806                                 return PTR_ERR(map->stripes[i].dev);
6807                         }
6808                         btrfs_report_missing_device(fs_info, devid, uuid, false);
6809                 }
6810                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6811                                 &(map->stripes[i].dev->dev_state));
6812
6813         }
6814
6815         write_lock(&map_tree->lock);
6816         ret = add_extent_mapping(map_tree, em, 0);
6817         write_unlock(&map_tree->lock);
6818         if (ret < 0) {
6819                 btrfs_err(fs_info,
6820                           "failed to add chunk map, start=%llu len=%llu: %d",
6821                           em->start, em->len, ret);
6822         }
6823         free_extent_map(em);
6824
6825         return ret;
6826 }
6827
6828 static void fill_device_from_item(struct extent_buffer *leaf,
6829                                  struct btrfs_dev_item *dev_item,
6830                                  struct btrfs_device *device)
6831 {
6832         unsigned long ptr;
6833
6834         device->devid = btrfs_device_id(leaf, dev_item);
6835         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6836         device->total_bytes = device->disk_total_bytes;
6837         device->commit_total_bytes = device->disk_total_bytes;
6838         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6839         device->commit_bytes_used = device->bytes_used;
6840         device->type = btrfs_device_type(leaf, dev_item);
6841         device->io_align = btrfs_device_io_align(leaf, dev_item);
6842         device->io_width = btrfs_device_io_width(leaf, dev_item);
6843         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6844         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6845         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6846
6847         ptr = btrfs_device_uuid(dev_item);
6848         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6849 }
6850
6851 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6852                                                   u8 *fsid)
6853 {
6854         struct btrfs_fs_devices *fs_devices;
6855         int ret;
6856
6857         lockdep_assert_held(&uuid_mutex);
6858         ASSERT(fsid);
6859
6860         fs_devices = fs_info->fs_devices->seed;
6861         while (fs_devices) {
6862                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6863                         return fs_devices;
6864
6865                 fs_devices = fs_devices->seed;
6866         }
6867
6868         fs_devices = find_fsid(fsid, NULL);
6869         if (!fs_devices) {
6870                 if (!btrfs_test_opt(fs_info, DEGRADED))
6871                         return ERR_PTR(-ENOENT);
6872
6873                 fs_devices = alloc_fs_devices(fsid, NULL);
6874                 if (IS_ERR(fs_devices))
6875                         return fs_devices;
6876
6877                 fs_devices->seeding = 1;
6878                 fs_devices->opened = 1;
6879                 return fs_devices;
6880         }
6881
6882         fs_devices = clone_fs_devices(fs_devices);
6883         if (IS_ERR(fs_devices))
6884                 return fs_devices;
6885
6886         ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6887         if (ret) {
6888                 free_fs_devices(fs_devices);
6889                 fs_devices = ERR_PTR(ret);
6890                 goto out;
6891         }
6892
6893         if (!fs_devices->seeding) {
6894                 close_fs_devices(fs_devices);
6895                 free_fs_devices(fs_devices);
6896                 fs_devices = ERR_PTR(-EINVAL);
6897                 goto out;
6898         }
6899
6900         fs_devices->seed = fs_info->fs_devices->seed;
6901         fs_info->fs_devices->seed = fs_devices;
6902 out:
6903         return fs_devices;
6904 }
6905
6906 static int read_one_dev(struct extent_buffer *leaf,
6907                         struct btrfs_dev_item *dev_item)
6908 {
6909         struct btrfs_fs_info *fs_info = leaf->fs_info;
6910         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6911         struct btrfs_device *device;
6912         u64 devid;
6913         int ret;
6914         u8 fs_uuid[BTRFS_FSID_SIZE];
6915         u8 dev_uuid[BTRFS_UUID_SIZE];
6916
6917         devid = btrfs_device_id(leaf, dev_item);
6918         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6919                            BTRFS_UUID_SIZE);
6920         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6921                            BTRFS_FSID_SIZE);
6922
6923         if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6924                 fs_devices = open_seed_devices(fs_info, fs_uuid);
6925                 if (IS_ERR(fs_devices))
6926                         return PTR_ERR(fs_devices);
6927         }
6928
6929         device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6930                                    fs_uuid, true);
6931         if (!device) {
6932                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6933                         btrfs_report_missing_device(fs_info, devid,
6934                                                         dev_uuid, true);
6935                         return -ENOENT;
6936                 }
6937
6938                 device = add_missing_dev(fs_devices, devid, dev_uuid);
6939                 if (IS_ERR(device)) {
6940                         btrfs_err(fs_info,
6941                                 "failed to add missing dev %llu: %ld",
6942                                 devid, PTR_ERR(device));
6943                         return PTR_ERR(device);
6944                 }
6945                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6946         } else {
6947                 if (!device->bdev) {
6948                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
6949                                 btrfs_report_missing_device(fs_info,
6950                                                 devid, dev_uuid, true);
6951                                 return -ENOENT;
6952                         }
6953                         btrfs_report_missing_device(fs_info, devid,
6954                                                         dev_uuid, false);
6955                 }
6956
6957                 if (!device->bdev &&
6958                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6959                         /*
6960                          * this happens when a device that was properly setup
6961                          * in the device info lists suddenly goes bad.
6962                          * device->bdev is NULL, and so we have to set
6963                          * device->missing to one here
6964                          */
6965                         device->fs_devices->missing_devices++;
6966                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6967                 }
6968
6969                 /* Move the device to its own fs_devices */
6970                 if (device->fs_devices != fs_devices) {
6971                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6972                                                         &device->dev_state));
6973
6974                         list_move(&device->dev_list, &fs_devices->devices);
6975                         device->fs_devices->num_devices--;
6976                         fs_devices->num_devices++;
6977
6978                         device->fs_devices->missing_devices--;
6979                         fs_devices->missing_devices++;
6980
6981                         device->fs_devices = fs_devices;
6982                 }
6983         }
6984
6985         if (device->fs_devices != fs_info->fs_devices) {
6986                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6987                 if (device->generation !=
6988                     btrfs_device_generation(leaf, dev_item))
6989                         return -EINVAL;
6990         }
6991
6992         fill_device_from_item(leaf, dev_item, device);
6993         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6994         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6995            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6996                 device->fs_devices->total_rw_bytes += device->total_bytes;
6997                 atomic64_add(device->total_bytes - device->bytes_used,
6998                                 &fs_info->free_chunk_space);
6999         }
7000         ret = 0;
7001         return ret;
7002 }
7003
7004 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7005 {
7006         struct btrfs_root *root = fs_info->tree_root;
7007         struct btrfs_super_block *super_copy = fs_info->super_copy;
7008         struct extent_buffer *sb;
7009         struct btrfs_disk_key *disk_key;
7010         struct btrfs_chunk *chunk;
7011         u8 *array_ptr;
7012         unsigned long sb_array_offset;
7013         int ret = 0;
7014         u32 num_stripes;
7015         u32 array_size;
7016         u32 len = 0;
7017         u32 cur_offset;
7018         u64 type;
7019         struct btrfs_key key;
7020
7021         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7022         /*
7023          * This will create extent buffer of nodesize, superblock size is
7024          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7025          * overallocate but we can keep it as-is, only the first page is used.
7026          */
7027         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
7028         if (IS_ERR(sb))
7029                 return PTR_ERR(sb);
7030         set_extent_buffer_uptodate(sb);
7031         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
7032         /*
7033          * The sb extent buffer is artificial and just used to read the system array.
7034          * set_extent_buffer_uptodate() call does not properly mark all it's
7035          * pages up-to-date when the page is larger: extent does not cover the
7036          * whole page and consequently check_page_uptodate does not find all
7037          * the page's extents up-to-date (the hole beyond sb),
7038          * write_extent_buffer then triggers a WARN_ON.
7039          *
7040          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7041          * but sb spans only this function. Add an explicit SetPageUptodate call
7042          * to silence the warning eg. on PowerPC 64.
7043          */
7044         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7045                 SetPageUptodate(sb->pages[0]);
7046
7047         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7048         array_size = btrfs_super_sys_array_size(super_copy);
7049
7050         array_ptr = super_copy->sys_chunk_array;
7051         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7052         cur_offset = 0;
7053
7054         while (cur_offset < array_size) {
7055                 disk_key = (struct btrfs_disk_key *)array_ptr;
7056                 len = sizeof(*disk_key);
7057                 if (cur_offset + len > array_size)
7058                         goto out_short_read;
7059
7060                 btrfs_disk_key_to_cpu(&key, disk_key);
7061
7062                 array_ptr += len;
7063                 sb_array_offset += len;
7064                 cur_offset += len;
7065
7066                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
7067                         chunk = (struct btrfs_chunk *)sb_array_offset;
7068                         /*
7069                          * At least one btrfs_chunk with one stripe must be
7070                          * present, exact stripe count check comes afterwards
7071                          */
7072                         len = btrfs_chunk_item_size(1);
7073                         if (cur_offset + len > array_size)
7074                                 goto out_short_read;
7075
7076                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7077                         if (!num_stripes) {
7078                                 btrfs_err(fs_info,
7079                                         "invalid number of stripes %u in sys_array at offset %u",
7080                                         num_stripes, cur_offset);
7081                                 ret = -EIO;
7082                                 break;
7083                         }
7084
7085                         type = btrfs_chunk_type(sb, chunk);
7086                         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7087                                 btrfs_err(fs_info,
7088                             "invalid chunk type %llu in sys_array at offset %u",
7089                                         type, cur_offset);
7090                                 ret = -EIO;
7091                                 break;
7092                         }
7093
7094                         len = btrfs_chunk_item_size(num_stripes);
7095                         if (cur_offset + len > array_size)
7096                                 goto out_short_read;
7097
7098                         ret = read_one_chunk(&key, sb, chunk);
7099                         if (ret)
7100                                 break;
7101                 } else {
7102                         btrfs_err(fs_info,
7103                             "unexpected item type %u in sys_array at offset %u",
7104                                   (u32)key.type, cur_offset);
7105                         ret = -EIO;
7106                         break;
7107                 }
7108                 array_ptr += len;
7109                 sb_array_offset += len;
7110                 cur_offset += len;
7111         }
7112         clear_extent_buffer_uptodate(sb);
7113         free_extent_buffer_stale(sb);
7114         return ret;
7115
7116 out_short_read:
7117         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7118                         len, cur_offset);
7119         clear_extent_buffer_uptodate(sb);
7120         free_extent_buffer_stale(sb);
7121         return -EIO;
7122 }
7123
7124 /*
7125  * Check if all chunks in the fs are OK for read-write degraded mount
7126  *
7127  * If the @failing_dev is specified, it's accounted as missing.
7128  *
7129  * Return true if all chunks meet the minimal RW mount requirements.
7130  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7131  */
7132 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7133                                         struct btrfs_device *failing_dev)
7134 {
7135         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7136         struct extent_map *em;
7137         u64 next_start = 0;
7138         bool ret = true;
7139
7140         read_lock(&map_tree->lock);
7141         em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7142         read_unlock(&map_tree->lock);
7143         /* No chunk at all? Return false anyway */
7144         if (!em) {
7145                 ret = false;
7146                 goto out;
7147         }
7148         while (em) {
7149                 struct map_lookup *map;
7150                 int missing = 0;
7151                 int max_tolerated;
7152                 int i;
7153
7154                 map = em->map_lookup;
7155                 max_tolerated =
7156                         btrfs_get_num_tolerated_disk_barrier_failures(
7157                                         map->type);
7158                 for (i = 0; i < map->num_stripes; i++) {
7159                         struct btrfs_device *dev = map->stripes[i].dev;
7160
7161                         if (!dev || !dev->bdev ||
7162                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7163                             dev->last_flush_error)
7164                                 missing++;
7165                         else if (failing_dev && failing_dev == dev)
7166                                 missing++;
7167                 }
7168                 if (missing > max_tolerated) {
7169                         if (!failing_dev)
7170                                 btrfs_warn(fs_info,
7171         "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7172                                    em->start, missing, max_tolerated);
7173                         free_extent_map(em);
7174                         ret = false;
7175                         goto out;
7176                 }
7177                 next_start = extent_map_end(em);
7178                 free_extent_map(em);
7179
7180                 read_lock(&map_tree->lock);
7181                 em = lookup_extent_mapping(map_tree, next_start,
7182                                            (u64)(-1) - next_start);
7183                 read_unlock(&map_tree->lock);
7184         }
7185 out:
7186         return ret;
7187 }
7188
7189 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7190 {
7191         struct btrfs_root *root = fs_info->chunk_root;
7192         struct btrfs_path *path;
7193         struct extent_buffer *leaf;
7194         struct btrfs_key key;
7195         struct btrfs_key found_key;
7196         int ret;
7197         int slot;
7198         u64 total_dev = 0;
7199
7200         path = btrfs_alloc_path();
7201         if (!path)
7202                 return -ENOMEM;
7203
7204         /*
7205          * uuid_mutex is needed only if we are mounting a sprout FS
7206          * otherwise we don't need it.
7207          */
7208         mutex_lock(&uuid_mutex);
7209         mutex_lock(&fs_info->chunk_mutex);
7210
7211         /*
7212          * Read all device items, and then all the chunk items. All
7213          * device items are found before any chunk item (their object id
7214          * is smaller than the lowest possible object id for a chunk
7215          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7216          */
7217         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7218         key.offset = 0;
7219         key.type = 0;
7220         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7221         if (ret < 0)
7222                 goto error;
7223         while (1) {
7224                 leaf = path->nodes[0];
7225                 slot = path->slots[0];
7226                 if (slot >= btrfs_header_nritems(leaf)) {
7227                         ret = btrfs_next_leaf(root, path);
7228                         if (ret == 0)
7229                                 continue;
7230                         if (ret < 0)
7231                                 goto error;
7232                         break;
7233                 }
7234                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7235                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7236                         struct btrfs_dev_item *dev_item;
7237                         dev_item = btrfs_item_ptr(leaf, slot,
7238                                                   struct btrfs_dev_item);
7239                         ret = read_one_dev(leaf, dev_item);
7240                         if (ret)
7241                                 goto error;
7242                         total_dev++;
7243                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7244                         struct btrfs_chunk *chunk;
7245                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7246                         ret = read_one_chunk(&found_key, leaf, chunk);
7247                         if (ret)
7248                                 goto error;
7249                 }
7250                 path->slots[0]++;
7251         }
7252
7253         /*
7254          * After loading chunk tree, we've got all device information,
7255          * do another round of validation checks.
7256          */
7257         if (total_dev != fs_info->fs_devices->total_devices) {
7258                 btrfs_err(fs_info,
7259            "super_num_devices %llu mismatch with num_devices %llu found here",
7260                           btrfs_super_num_devices(fs_info->super_copy),
7261                           total_dev);
7262                 ret = -EINVAL;
7263                 goto error;
7264         }
7265         if (btrfs_super_total_bytes(fs_info->super_copy) <
7266             fs_info->fs_devices->total_rw_bytes) {
7267                 btrfs_err(fs_info,
7268         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7269                           btrfs_super_total_bytes(fs_info->super_copy),
7270                           fs_info->fs_devices->total_rw_bytes);
7271                 ret = -EINVAL;
7272                 goto error;
7273         }
7274         ret = 0;
7275 error:
7276         mutex_unlock(&fs_info->chunk_mutex);
7277         mutex_unlock(&uuid_mutex);
7278
7279         btrfs_free_path(path);
7280         return ret;
7281 }
7282
7283 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7284 {
7285         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7286         struct btrfs_device *device;
7287
7288         while (fs_devices) {
7289                 mutex_lock(&fs_devices->device_list_mutex);
7290                 list_for_each_entry(device, &fs_devices->devices, dev_list)
7291                         device->fs_info = fs_info;
7292                 mutex_unlock(&fs_devices->device_list_mutex);
7293
7294                 fs_devices = fs_devices->seed;
7295         }
7296 }
7297
7298 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7299                                  const struct btrfs_dev_stats_item *ptr,
7300                                  int index)
7301 {
7302         u64 val;
7303
7304         read_extent_buffer(eb, &val,
7305                            offsetof(struct btrfs_dev_stats_item, values) +
7306                             ((unsigned long)ptr) + (index * sizeof(u64)),
7307                            sizeof(val));
7308         return val;
7309 }
7310
7311 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7312                                       struct btrfs_dev_stats_item *ptr,
7313                                       int index, u64 val)
7314 {
7315         write_extent_buffer(eb, &val,
7316                             offsetof(struct btrfs_dev_stats_item, values) +
7317                              ((unsigned long)ptr) + (index * sizeof(u64)),
7318                             sizeof(val));
7319 }
7320
7321 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7322 {
7323         struct btrfs_key key;
7324         struct btrfs_root *dev_root = fs_info->dev_root;
7325         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7326         struct extent_buffer *eb;
7327         int slot;
7328         int ret = 0;
7329         struct btrfs_device *device;
7330         struct btrfs_path *path = NULL;
7331         int i;
7332
7333         path = btrfs_alloc_path();
7334         if (!path)
7335                 return -ENOMEM;
7336
7337         mutex_lock(&fs_devices->device_list_mutex);
7338         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7339                 int item_size;
7340                 struct btrfs_dev_stats_item *ptr;
7341
7342                 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7343                 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7344                 key.offset = device->devid;
7345                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7346                 if (ret) {
7347                         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7348                                 btrfs_dev_stat_set(device, i, 0);
7349                         device->dev_stats_valid = 1;
7350                         btrfs_release_path(path);
7351                         continue;
7352                 }
7353                 slot = path->slots[0];
7354                 eb = path->nodes[0];
7355                 item_size = btrfs_item_size_nr(eb, slot);
7356
7357                 ptr = btrfs_item_ptr(eb, slot,
7358                                      struct btrfs_dev_stats_item);
7359
7360                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7361                         if (item_size >= (1 + i) * sizeof(__le64))
7362                                 btrfs_dev_stat_set(device, i,
7363                                         btrfs_dev_stats_value(eb, ptr, i));
7364                         else
7365                                 btrfs_dev_stat_set(device, i, 0);
7366                 }
7367
7368                 device->dev_stats_valid = 1;
7369                 btrfs_dev_stat_print_on_load(device);
7370                 btrfs_release_path(path);
7371         }
7372         mutex_unlock(&fs_devices->device_list_mutex);
7373
7374         btrfs_free_path(path);
7375         return ret < 0 ? ret : 0;
7376 }
7377
7378 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7379                                 struct btrfs_device *device)
7380 {
7381         struct btrfs_fs_info *fs_info = trans->fs_info;
7382         struct btrfs_root *dev_root = fs_info->dev_root;
7383         struct btrfs_path *path;
7384         struct btrfs_key key;
7385         struct extent_buffer *eb;
7386         struct btrfs_dev_stats_item *ptr;
7387         int ret;
7388         int i;
7389
7390         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7391         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7392         key.offset = device->devid;
7393
7394         path = btrfs_alloc_path();
7395         if (!path)
7396                 return -ENOMEM;
7397         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7398         if (ret < 0) {
7399                 btrfs_warn_in_rcu(fs_info,
7400                         "error %d while searching for dev_stats item for device %s",
7401                               ret, rcu_str_deref(device->name));
7402                 goto out;
7403         }
7404
7405         if (ret == 0 &&
7406             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7407                 /* need to delete old one and insert a new one */
7408                 ret = btrfs_del_item(trans, dev_root, path);
7409                 if (ret != 0) {
7410                         btrfs_warn_in_rcu(fs_info,
7411                                 "delete too small dev_stats item for device %s failed %d",
7412                                       rcu_str_deref(device->name), ret);
7413                         goto out;
7414                 }
7415                 ret = 1;
7416         }
7417
7418         if (ret == 1) {
7419                 /* need to insert a new item */
7420                 btrfs_release_path(path);
7421                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7422                                               &key, sizeof(*ptr));
7423                 if (ret < 0) {
7424                         btrfs_warn_in_rcu(fs_info,
7425                                 "insert dev_stats item for device %s failed %d",
7426                                 rcu_str_deref(device->name), ret);
7427                         goto out;
7428                 }
7429         }
7430
7431         eb = path->nodes[0];
7432         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7433         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7434                 btrfs_set_dev_stats_value(eb, ptr, i,
7435                                           btrfs_dev_stat_read(device, i));
7436         btrfs_mark_buffer_dirty(eb);
7437
7438 out:
7439         btrfs_free_path(path);
7440         return ret;
7441 }
7442
7443 /*
7444  * called from commit_transaction. Writes all changed device stats to disk.
7445  */
7446 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7447 {
7448         struct btrfs_fs_info *fs_info = trans->fs_info;
7449         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7450         struct btrfs_device *device;
7451         int stats_cnt;
7452         int ret = 0;
7453
7454         mutex_lock(&fs_devices->device_list_mutex);
7455         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7456                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7457                 if (!device->dev_stats_valid || stats_cnt == 0)
7458                         continue;
7459
7460
7461                 /*
7462                  * There is a LOAD-LOAD control dependency between the value of
7463                  * dev_stats_ccnt and updating the on-disk values which requires
7464                  * reading the in-memory counters. Such control dependencies
7465                  * require explicit read memory barriers.
7466                  *
7467                  * This memory barriers pairs with smp_mb__before_atomic in
7468                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7469                  * barrier implied by atomic_xchg in
7470                  * btrfs_dev_stats_read_and_reset
7471                  */
7472                 smp_rmb();
7473
7474                 ret = update_dev_stat_item(trans, device);
7475                 if (!ret)
7476                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7477         }
7478         mutex_unlock(&fs_devices->device_list_mutex);
7479
7480         return ret;
7481 }
7482
7483 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7484 {
7485         btrfs_dev_stat_inc(dev, index);
7486         btrfs_dev_stat_print_on_error(dev);
7487 }
7488
7489 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7490 {
7491         if (!dev->dev_stats_valid)
7492                 return;
7493         btrfs_err_rl_in_rcu(dev->fs_info,
7494                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7495                            rcu_str_deref(dev->name),
7496                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7497                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7498                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7499                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7500                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7501 }
7502
7503 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7504 {
7505         int i;
7506
7507         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7508                 if (btrfs_dev_stat_read(dev, i) != 0)
7509                         break;
7510         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7511                 return; /* all values == 0, suppress message */
7512
7513         btrfs_info_in_rcu(dev->fs_info,
7514                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7515                rcu_str_deref(dev->name),
7516                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7517                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7518                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7519                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7520                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7521 }
7522
7523 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7524                         struct btrfs_ioctl_get_dev_stats *stats)
7525 {
7526         struct btrfs_device *dev;
7527         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7528         int i;
7529
7530         mutex_lock(&fs_devices->device_list_mutex);
7531         dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7532                                 true);
7533         mutex_unlock(&fs_devices->device_list_mutex);
7534
7535         if (!dev) {
7536                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7537                 return -ENODEV;
7538         } else if (!dev->dev_stats_valid) {
7539                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7540                 return -ENODEV;
7541         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7542                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7543                         if (stats->nr_items > i)
7544                                 stats->values[i] =
7545                                         btrfs_dev_stat_read_and_reset(dev, i);
7546                         else
7547                                 btrfs_dev_stat_set(dev, i, 0);
7548                 }
7549         } else {
7550                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7551                         if (stats->nr_items > i)
7552                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7553         }
7554         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7555                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7556         return 0;
7557 }
7558
7559 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7560 {
7561         struct buffer_head *bh;
7562         struct btrfs_super_block *disk_super;
7563         int copy_num;
7564
7565         if (!bdev)
7566                 return;
7567
7568         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7569                 copy_num++) {
7570
7571                 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7572                         continue;
7573
7574                 disk_super = (struct btrfs_super_block *)bh->b_data;
7575
7576                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7577                 set_buffer_dirty(bh);
7578                 sync_dirty_buffer(bh);
7579                 brelse(bh);
7580         }
7581
7582         /* Notify udev that device has changed */
7583         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7584
7585         /* Update ctime/mtime for device path for libblkid */
7586         update_dev_time(device_path);
7587 }
7588
7589 /*
7590  * Update the size and bytes used for each device where it changed.  This is
7591  * delayed since we would otherwise get errors while writing out the
7592  * superblocks.
7593  *
7594  * Must be invoked during transaction commit.
7595  */
7596 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7597 {
7598         struct btrfs_device *curr, *next;
7599
7600         ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7601
7602         if (list_empty(&trans->dev_update_list))
7603                 return;
7604
7605         /*
7606          * We don't need the device_list_mutex here.  This list is owned by the
7607          * transaction and the transaction must complete before the device is
7608          * released.
7609          */
7610         mutex_lock(&trans->fs_info->chunk_mutex);
7611         list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7612                                  post_commit_list) {
7613                 list_del_init(&curr->post_commit_list);
7614                 curr->commit_total_bytes = curr->disk_total_bytes;
7615                 curr->commit_bytes_used = curr->bytes_used;
7616         }
7617         mutex_unlock(&trans->fs_info->chunk_mutex);
7618 }
7619
7620 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7621 {
7622         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7623         while (fs_devices) {
7624                 fs_devices->fs_info = fs_info;
7625                 fs_devices = fs_devices->seed;
7626         }
7627 }
7628
7629 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7630 {
7631         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7632         while (fs_devices) {
7633                 fs_devices->fs_info = NULL;
7634                 fs_devices = fs_devices->seed;
7635         }
7636 }
7637
7638 /*
7639  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7640  */
7641 int btrfs_bg_type_to_factor(u64 flags)
7642 {
7643         const int index = btrfs_bg_flags_to_raid_index(flags);
7644
7645         return btrfs_raid_array[index].ncopies;
7646 }
7647
7648
7649
7650 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7651                                  u64 chunk_offset, u64 devid,
7652                                  u64 physical_offset, u64 physical_len)
7653 {
7654         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7655         struct extent_map *em;
7656         struct map_lookup *map;
7657         struct btrfs_device *dev;
7658         u64 stripe_len;
7659         bool found = false;
7660         int ret = 0;
7661         int i;
7662
7663         read_lock(&em_tree->lock);
7664         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7665         read_unlock(&em_tree->lock);
7666
7667         if (!em) {
7668                 btrfs_err(fs_info,
7669 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7670                           physical_offset, devid);
7671                 ret = -EUCLEAN;
7672                 goto out;
7673         }
7674
7675         map = em->map_lookup;
7676         stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7677         if (physical_len != stripe_len) {
7678                 btrfs_err(fs_info,
7679 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7680                           physical_offset, devid, em->start, physical_len,
7681                           stripe_len);
7682                 ret = -EUCLEAN;
7683                 goto out;
7684         }
7685
7686         for (i = 0; i < map->num_stripes; i++) {
7687                 if (map->stripes[i].dev->devid == devid &&
7688                     map->stripes[i].physical == physical_offset) {
7689                         found = true;
7690                         if (map->verified_stripes >= map->num_stripes) {
7691                                 btrfs_err(fs_info,
7692                                 "too many dev extents for chunk %llu found",
7693                                           em->start);
7694                                 ret = -EUCLEAN;
7695                                 goto out;
7696                         }
7697                         map->verified_stripes++;
7698                         break;
7699                 }
7700         }
7701         if (!found) {
7702                 btrfs_err(fs_info,
7703         "dev extent physical offset %llu devid %llu has no corresponding chunk",
7704                         physical_offset, devid);
7705                 ret = -EUCLEAN;
7706         }
7707
7708         /* Make sure no dev extent is beyond device bondary */
7709         dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7710         if (!dev) {
7711                 btrfs_err(fs_info, "failed to find devid %llu", devid);
7712                 ret = -EUCLEAN;
7713                 goto out;
7714         }
7715
7716         /* It's possible this device is a dummy for seed device */
7717         if (dev->disk_total_bytes == 0) {
7718                 dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
7719                                         NULL, false);
7720                 if (!dev) {
7721                         btrfs_err(fs_info, "failed to find seed devid %llu",
7722                                   devid);
7723                         ret = -EUCLEAN;
7724                         goto out;
7725                 }
7726         }
7727
7728         if (physical_offset + physical_len > dev->disk_total_bytes) {
7729                 btrfs_err(fs_info,
7730 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7731                           devid, physical_offset, physical_len,
7732                           dev->disk_total_bytes);
7733                 ret = -EUCLEAN;
7734                 goto out;
7735         }
7736 out:
7737         free_extent_map(em);
7738         return ret;
7739 }
7740
7741 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7742 {
7743         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7744         struct extent_map *em;
7745         struct rb_node *node;
7746         int ret = 0;
7747
7748         read_lock(&em_tree->lock);
7749         for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7750                 em = rb_entry(node, struct extent_map, rb_node);
7751                 if (em->map_lookup->num_stripes !=
7752                     em->map_lookup->verified_stripes) {
7753                         btrfs_err(fs_info,
7754                         "chunk %llu has missing dev extent, have %d expect %d",
7755                                   em->start, em->map_lookup->verified_stripes,
7756                                   em->map_lookup->num_stripes);
7757                         ret = -EUCLEAN;
7758                         goto out;
7759                 }
7760         }
7761 out:
7762         read_unlock(&em_tree->lock);
7763         return ret;
7764 }
7765
7766 /*
7767  * Ensure that all dev extents are mapped to correct chunk, otherwise
7768  * later chunk allocation/free would cause unexpected behavior.
7769  *
7770  * NOTE: This will iterate through the whole device tree, which should be of
7771  * the same size level as the chunk tree.  This slightly increases mount time.
7772  */
7773 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7774 {
7775         struct btrfs_path *path;
7776         struct btrfs_root *root = fs_info->dev_root;
7777         struct btrfs_key key;
7778         u64 prev_devid = 0;
7779         u64 prev_dev_ext_end = 0;
7780         int ret = 0;
7781
7782         key.objectid = 1;
7783         key.type = BTRFS_DEV_EXTENT_KEY;
7784         key.offset = 0;
7785
7786         path = btrfs_alloc_path();
7787         if (!path)
7788                 return -ENOMEM;
7789
7790         path->reada = READA_FORWARD;
7791         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7792         if (ret < 0)
7793                 goto out;
7794
7795         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7796                 ret = btrfs_next_item(root, path);
7797                 if (ret < 0)
7798                         goto out;
7799                 /* No dev extents at all? Not good */
7800                 if (ret > 0) {
7801                         ret = -EUCLEAN;
7802                         goto out;
7803                 }
7804         }
7805         while (1) {
7806                 struct extent_buffer *leaf = path->nodes[0];
7807                 struct btrfs_dev_extent *dext;
7808                 int slot = path->slots[0];
7809                 u64 chunk_offset;
7810                 u64 physical_offset;
7811                 u64 physical_len;
7812                 u64 devid;
7813
7814                 btrfs_item_key_to_cpu(leaf, &key, slot);
7815                 if (key.type != BTRFS_DEV_EXTENT_KEY)
7816                         break;
7817                 devid = key.objectid;
7818                 physical_offset = key.offset;
7819
7820                 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7821                 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7822                 physical_len = btrfs_dev_extent_length(leaf, dext);
7823
7824                 /* Check if this dev extent overlaps with the previous one */
7825                 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7826                         btrfs_err(fs_info,
7827 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7828                                   devid, physical_offset, prev_dev_ext_end);
7829                         ret = -EUCLEAN;
7830                         goto out;
7831                 }
7832
7833                 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7834                                             physical_offset, physical_len);
7835                 if (ret < 0)
7836                         goto out;
7837                 prev_devid = devid;
7838                 prev_dev_ext_end = physical_offset + physical_len;
7839
7840                 ret = btrfs_next_item(root, path);
7841                 if (ret < 0)
7842                         goto out;
7843                 if (ret > 0) {
7844                         ret = 0;
7845                         break;
7846                 }
7847         }
7848
7849         /* Ensure all chunks have corresponding dev extents */
7850         ret = verify_chunk_dev_extent_mapping(fs_info);
7851 out:
7852         btrfs_free_path(path);
7853         return ret;
7854 }
7855
7856 /*
7857  * Check whether the given block group or device is pinned by any inode being
7858  * used as a swapfile.
7859  */
7860 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7861 {
7862         struct btrfs_swapfile_pin *sp;
7863         struct rb_node *node;
7864
7865         spin_lock(&fs_info->swapfile_pins_lock);
7866         node = fs_info->swapfile_pins.rb_node;
7867         while (node) {
7868                 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7869                 if (ptr < sp->ptr)
7870                         node = node->rb_left;
7871                 else if (ptr > sp->ptr)
7872                         node = node->rb_right;
7873                 else
7874                         break;
7875         }
7876         spin_unlock(&fs_info->swapfile_pins_lock);
7877         return node != NULL;
7878 }