smb311: Add support for lookup with posix extensions query info
[linux-2.6-microblaze.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/ratelimit.h>
11 #include <linux/kthread.h>
12 #include <linux/raid/pq.h>
13 #include <linux/semaphore.h>
14 #include <linux/uuid.h>
15 #include <linux/list_sort.h>
16 #include "misc.h"
17 #include "ctree.h"
18 #include "extent_map.h"
19 #include "disk-io.h"
20 #include "transaction.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "async-thread.h"
25 #include "check-integrity.h"
26 #include "rcu-string.h"
27 #include "dev-replace.h"
28 #include "sysfs.h"
29 #include "tree-checker.h"
30 #include "space-info.h"
31 #include "block-group.h"
32 #include "discard.h"
33
34 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
35         [BTRFS_RAID_RAID10] = {
36                 .sub_stripes    = 2,
37                 .dev_stripes    = 1,
38                 .devs_max       = 0,    /* 0 == as many as possible */
39                 .devs_min       = 4,
40                 .tolerated_failures = 1,
41                 .devs_increment = 2,
42                 .ncopies        = 2,
43                 .nparity        = 0,
44                 .raid_name      = "raid10",
45                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID10,
46                 .mindev_error   = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
47         },
48         [BTRFS_RAID_RAID1] = {
49                 .sub_stripes    = 1,
50                 .dev_stripes    = 1,
51                 .devs_max       = 2,
52                 .devs_min       = 2,
53                 .tolerated_failures = 1,
54                 .devs_increment = 2,
55                 .ncopies        = 2,
56                 .nparity        = 0,
57                 .raid_name      = "raid1",
58                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1,
59                 .mindev_error   = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
60         },
61         [BTRFS_RAID_RAID1C3] = {
62                 .sub_stripes    = 1,
63                 .dev_stripes    = 1,
64                 .devs_max       = 3,
65                 .devs_min       = 3,
66                 .tolerated_failures = 2,
67                 .devs_increment = 3,
68                 .ncopies        = 3,
69                 .nparity        = 0,
70                 .raid_name      = "raid1c3",
71                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C3,
72                 .mindev_error   = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
73         },
74         [BTRFS_RAID_RAID1C4] = {
75                 .sub_stripes    = 1,
76                 .dev_stripes    = 1,
77                 .devs_max       = 4,
78                 .devs_min       = 4,
79                 .tolerated_failures = 3,
80                 .devs_increment = 4,
81                 .ncopies        = 4,
82                 .nparity        = 0,
83                 .raid_name      = "raid1c4",
84                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C4,
85                 .mindev_error   = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
86         },
87         [BTRFS_RAID_DUP] = {
88                 .sub_stripes    = 1,
89                 .dev_stripes    = 2,
90                 .devs_max       = 1,
91                 .devs_min       = 1,
92                 .tolerated_failures = 0,
93                 .devs_increment = 1,
94                 .ncopies        = 2,
95                 .nparity        = 0,
96                 .raid_name      = "dup",
97                 .bg_flag        = BTRFS_BLOCK_GROUP_DUP,
98                 .mindev_error   = 0,
99         },
100         [BTRFS_RAID_RAID0] = {
101                 .sub_stripes    = 1,
102                 .dev_stripes    = 1,
103                 .devs_max       = 0,
104                 .devs_min       = 2,
105                 .tolerated_failures = 0,
106                 .devs_increment = 1,
107                 .ncopies        = 1,
108                 .nparity        = 0,
109                 .raid_name      = "raid0",
110                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID0,
111                 .mindev_error   = 0,
112         },
113         [BTRFS_RAID_SINGLE] = {
114                 .sub_stripes    = 1,
115                 .dev_stripes    = 1,
116                 .devs_max       = 1,
117                 .devs_min       = 1,
118                 .tolerated_failures = 0,
119                 .devs_increment = 1,
120                 .ncopies        = 1,
121                 .nparity        = 0,
122                 .raid_name      = "single",
123                 .bg_flag        = 0,
124                 .mindev_error   = 0,
125         },
126         [BTRFS_RAID_RAID5] = {
127                 .sub_stripes    = 1,
128                 .dev_stripes    = 1,
129                 .devs_max       = 0,
130                 .devs_min       = 2,
131                 .tolerated_failures = 1,
132                 .devs_increment = 1,
133                 .ncopies        = 1,
134                 .nparity        = 1,
135                 .raid_name      = "raid5",
136                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID5,
137                 .mindev_error   = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
138         },
139         [BTRFS_RAID_RAID6] = {
140                 .sub_stripes    = 1,
141                 .dev_stripes    = 1,
142                 .devs_max       = 0,
143                 .devs_min       = 3,
144                 .tolerated_failures = 2,
145                 .devs_increment = 1,
146                 .ncopies        = 1,
147                 .nparity        = 2,
148                 .raid_name      = "raid6",
149                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID6,
150                 .mindev_error   = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
151         },
152 };
153
154 const char *btrfs_bg_type_to_raid_name(u64 flags)
155 {
156         const int index = btrfs_bg_flags_to_raid_index(flags);
157
158         if (index >= BTRFS_NR_RAID_TYPES)
159                 return NULL;
160
161         return btrfs_raid_array[index].raid_name;
162 }
163
164 /*
165  * Fill @buf with textual description of @bg_flags, no more than @size_buf
166  * bytes including terminating null byte.
167  */
168 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
169 {
170         int i;
171         int ret;
172         char *bp = buf;
173         u64 flags = bg_flags;
174         u32 size_bp = size_buf;
175
176         if (!flags) {
177                 strcpy(bp, "NONE");
178                 return;
179         }
180
181 #define DESCRIBE_FLAG(flag, desc)                                               \
182         do {                                                            \
183                 if (flags & (flag)) {                                   \
184                         ret = snprintf(bp, size_bp, "%s|", (desc));     \
185                         if (ret < 0 || ret >= size_bp)                  \
186                                 goto out_overflow;                      \
187                         size_bp -= ret;                                 \
188                         bp += ret;                                      \
189                         flags &= ~(flag);                               \
190                 }                                                       \
191         } while (0)
192
193         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
194         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
195         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
196
197         DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
198         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
199                 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
200                               btrfs_raid_array[i].raid_name);
201 #undef DESCRIBE_FLAG
202
203         if (flags) {
204                 ret = snprintf(bp, size_bp, "0x%llx|", flags);
205                 size_bp -= ret;
206         }
207
208         if (size_bp < size_buf)
209                 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
210
211         /*
212          * The text is trimmed, it's up to the caller to provide sufficiently
213          * large buffer
214          */
215 out_overflow:;
216 }
217
218 static int init_first_rw_device(struct btrfs_trans_handle *trans);
219 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
220 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
221 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
222 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
223                              enum btrfs_map_op op,
224                              u64 logical, u64 *length,
225                              struct btrfs_bio **bbio_ret,
226                              int mirror_num, int need_raid_map);
227
228 /*
229  * Device locking
230  * ==============
231  *
232  * There are several mutexes that protect manipulation of devices and low-level
233  * structures like chunks but not block groups, extents or files
234  *
235  * uuid_mutex (global lock)
236  * ------------------------
237  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
238  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
239  * device) or requested by the device= mount option
240  *
241  * the mutex can be very coarse and can cover long-running operations
242  *
243  * protects: updates to fs_devices counters like missing devices, rw devices,
244  * seeding, structure cloning, opening/closing devices at mount/umount time
245  *
246  * global::fs_devs - add, remove, updates to the global list
247  *
248  * does not protect: manipulation of the fs_devices::devices list!
249  *
250  * btrfs_device::name - renames (write side), read is RCU
251  *
252  * fs_devices::device_list_mutex (per-fs, with RCU)
253  * ------------------------------------------------
254  * protects updates to fs_devices::devices, ie. adding and deleting
255  *
256  * simple list traversal with read-only actions can be done with RCU protection
257  *
258  * may be used to exclude some operations from running concurrently without any
259  * modifications to the list (see write_all_supers)
260  *
261  * balance_mutex
262  * -------------
263  * protects balance structures (status, state) and context accessed from
264  * several places (internally, ioctl)
265  *
266  * chunk_mutex
267  * -----------
268  * protects chunks, adding or removing during allocation, trim or when a new
269  * device is added/removed. Additionally it also protects post_commit_list of
270  * individual devices, since they can be added to the transaction's
271  * post_commit_list only with chunk_mutex held.
272  *
273  * cleaner_mutex
274  * -------------
275  * a big lock that is held by the cleaner thread and prevents running subvolume
276  * cleaning together with relocation or delayed iputs
277  *
278  *
279  * Lock nesting
280  * ============
281  *
282  * uuid_mutex
283  *   device_list_mutex
284  *     chunk_mutex
285  *   balance_mutex
286  *
287  *
288  * Exclusive operations, BTRFS_FS_EXCL_OP
289  * ======================================
290  *
291  * Maintains the exclusivity of the following operations that apply to the
292  * whole filesystem and cannot run in parallel.
293  *
294  * - Balance (*)
295  * - Device add
296  * - Device remove
297  * - Device replace (*)
298  * - Resize
299  *
300  * The device operations (as above) can be in one of the following states:
301  *
302  * - Running state
303  * - Paused state
304  * - Completed state
305  *
306  * Only device operations marked with (*) can go into the Paused state for the
307  * following reasons:
308  *
309  * - ioctl (only Balance can be Paused through ioctl)
310  * - filesystem remounted as read-only
311  * - filesystem unmounted and mounted as read-only
312  * - system power-cycle and filesystem mounted as read-only
313  * - filesystem or device errors leading to forced read-only
314  *
315  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
316  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
317  * A device operation in Paused or Running state can be canceled or resumed
318  * either by ioctl (Balance only) or when remounted as read-write.
319  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
320  * completed.
321  */
322
323 DEFINE_MUTEX(uuid_mutex);
324 static LIST_HEAD(fs_uuids);
325 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
326 {
327         return &fs_uuids;
328 }
329
330 /*
331  * alloc_fs_devices - allocate struct btrfs_fs_devices
332  * @fsid:               if not NULL, copy the UUID to fs_devices::fsid
333  * @metadata_fsid:      if not NULL, copy the UUID to fs_devices::metadata_fsid
334  *
335  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
336  * The returned struct is not linked onto any lists and can be destroyed with
337  * kfree() right away.
338  */
339 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
340                                                  const u8 *metadata_fsid)
341 {
342         struct btrfs_fs_devices *fs_devs;
343
344         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
345         if (!fs_devs)
346                 return ERR_PTR(-ENOMEM);
347
348         mutex_init(&fs_devs->device_list_mutex);
349
350         INIT_LIST_HEAD(&fs_devs->devices);
351         INIT_LIST_HEAD(&fs_devs->alloc_list);
352         INIT_LIST_HEAD(&fs_devs->fs_list);
353         if (fsid)
354                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
355
356         if (metadata_fsid)
357                 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
358         else if (fsid)
359                 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
360
361         return fs_devs;
362 }
363
364 void btrfs_free_device(struct btrfs_device *device)
365 {
366         WARN_ON(!list_empty(&device->post_commit_list));
367         rcu_string_free(device->name);
368         extent_io_tree_release(&device->alloc_state);
369         bio_put(device->flush_bio);
370         kfree(device);
371 }
372
373 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
374 {
375         struct btrfs_device *device;
376         WARN_ON(fs_devices->opened);
377         while (!list_empty(&fs_devices->devices)) {
378                 device = list_entry(fs_devices->devices.next,
379                                     struct btrfs_device, dev_list);
380                 list_del(&device->dev_list);
381                 btrfs_free_device(device);
382         }
383         kfree(fs_devices);
384 }
385
386 void __exit btrfs_cleanup_fs_uuids(void)
387 {
388         struct btrfs_fs_devices *fs_devices;
389
390         while (!list_empty(&fs_uuids)) {
391                 fs_devices = list_entry(fs_uuids.next,
392                                         struct btrfs_fs_devices, fs_list);
393                 list_del(&fs_devices->fs_list);
394                 free_fs_devices(fs_devices);
395         }
396 }
397
398 /*
399  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
400  * Returned struct is not linked onto any lists and must be destroyed using
401  * btrfs_free_device.
402  */
403 static struct btrfs_device *__alloc_device(void)
404 {
405         struct btrfs_device *dev;
406
407         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
408         if (!dev)
409                 return ERR_PTR(-ENOMEM);
410
411         /*
412          * Preallocate a bio that's always going to be used for flushing device
413          * barriers and matches the device lifespan
414          */
415         dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
416         if (!dev->flush_bio) {
417                 kfree(dev);
418                 return ERR_PTR(-ENOMEM);
419         }
420
421         INIT_LIST_HEAD(&dev->dev_list);
422         INIT_LIST_HEAD(&dev->dev_alloc_list);
423         INIT_LIST_HEAD(&dev->post_commit_list);
424
425         atomic_set(&dev->reada_in_flight, 0);
426         atomic_set(&dev->dev_stats_ccnt, 0);
427         btrfs_device_data_ordered_init(dev);
428         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
429         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
430         extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
431
432         return dev;
433 }
434
435 static noinline struct btrfs_fs_devices *find_fsid(
436                 const u8 *fsid, const u8 *metadata_fsid)
437 {
438         struct btrfs_fs_devices *fs_devices;
439
440         ASSERT(fsid);
441
442         /* Handle non-split brain cases */
443         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
444                 if (metadata_fsid) {
445                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
446                             && memcmp(metadata_fsid, fs_devices->metadata_uuid,
447                                       BTRFS_FSID_SIZE) == 0)
448                                 return fs_devices;
449                 } else {
450                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
451                                 return fs_devices;
452                 }
453         }
454         return NULL;
455 }
456
457 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
458                                 struct btrfs_super_block *disk_super)
459 {
460
461         struct btrfs_fs_devices *fs_devices;
462
463         /*
464          * Handle scanned device having completed its fsid change but
465          * belonging to a fs_devices that was created by first scanning
466          * a device which didn't have its fsid/metadata_uuid changed
467          * at all and the CHANGING_FSID_V2 flag set.
468          */
469         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
470                 if (fs_devices->fsid_change &&
471                     memcmp(disk_super->metadata_uuid, fs_devices->fsid,
472                            BTRFS_FSID_SIZE) == 0 &&
473                     memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
474                            BTRFS_FSID_SIZE) == 0) {
475                         return fs_devices;
476                 }
477         }
478         /*
479          * Handle scanned device having completed its fsid change but
480          * belonging to a fs_devices that was created by a device that
481          * has an outdated pair of fsid/metadata_uuid and
482          * CHANGING_FSID_V2 flag set.
483          */
484         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
485                 if (fs_devices->fsid_change &&
486                     memcmp(fs_devices->metadata_uuid,
487                            fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
488                     memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
489                            BTRFS_FSID_SIZE) == 0) {
490                         return fs_devices;
491                 }
492         }
493
494         return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
495 }
496
497
498 static int
499 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
500                       int flush, struct block_device **bdev,
501                       struct btrfs_super_block **disk_super)
502 {
503         int ret;
504
505         *bdev = blkdev_get_by_path(device_path, flags, holder);
506
507         if (IS_ERR(*bdev)) {
508                 ret = PTR_ERR(*bdev);
509                 goto error;
510         }
511
512         if (flush)
513                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
514         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
515         if (ret) {
516                 blkdev_put(*bdev, flags);
517                 goto error;
518         }
519         invalidate_bdev(*bdev);
520         *disk_super = btrfs_read_dev_super(*bdev);
521         if (IS_ERR(*disk_super)) {
522                 ret = PTR_ERR(*disk_super);
523                 blkdev_put(*bdev, flags);
524                 goto error;
525         }
526
527         return 0;
528
529 error:
530         *bdev = NULL;
531         return ret;
532 }
533
534 static bool device_path_matched(const char *path, struct btrfs_device *device)
535 {
536         int found;
537
538         rcu_read_lock();
539         found = strcmp(rcu_str_deref(device->name), path);
540         rcu_read_unlock();
541
542         return found == 0;
543 }
544
545 /*
546  *  Search and remove all stale (devices which are not mounted) devices.
547  *  When both inputs are NULL, it will search and release all stale devices.
548  *  path:       Optional. When provided will it release all unmounted devices
549  *              matching this path only.
550  *  skip_dev:   Optional. Will skip this device when searching for the stale
551  *              devices.
552  *  Return:     0 for success or if @path is NULL.
553  *              -EBUSY if @path is a mounted device.
554  *              -ENOENT if @path does not match any device in the list.
555  */
556 static int btrfs_free_stale_devices(const char *path,
557                                      struct btrfs_device *skip_device)
558 {
559         struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
560         struct btrfs_device *device, *tmp_device;
561         int ret = 0;
562
563         if (path)
564                 ret = -ENOENT;
565
566         list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
567
568                 mutex_lock(&fs_devices->device_list_mutex);
569                 list_for_each_entry_safe(device, tmp_device,
570                                          &fs_devices->devices, dev_list) {
571                         if (skip_device && skip_device == device)
572                                 continue;
573                         if (path && !device->name)
574                                 continue;
575                         if (path && !device_path_matched(path, device))
576                                 continue;
577                         if (fs_devices->opened) {
578                                 /* for an already deleted device return 0 */
579                                 if (path && ret != 0)
580                                         ret = -EBUSY;
581                                 break;
582                         }
583
584                         /* delete the stale device */
585                         fs_devices->num_devices--;
586                         list_del(&device->dev_list);
587                         btrfs_free_device(device);
588
589                         ret = 0;
590                         if (fs_devices->num_devices == 0)
591                                 break;
592                 }
593                 mutex_unlock(&fs_devices->device_list_mutex);
594
595                 if (fs_devices->num_devices == 0) {
596                         btrfs_sysfs_remove_fsid(fs_devices);
597                         list_del(&fs_devices->fs_list);
598                         free_fs_devices(fs_devices);
599                 }
600         }
601
602         return ret;
603 }
604
605 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
606                         struct btrfs_device *device, fmode_t flags,
607                         void *holder)
608 {
609         struct request_queue *q;
610         struct block_device *bdev;
611         struct btrfs_super_block *disk_super;
612         u64 devid;
613         int ret;
614
615         if (device->bdev)
616                 return -EINVAL;
617         if (!device->name)
618                 return -EINVAL;
619
620         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
621                                     &bdev, &disk_super);
622         if (ret)
623                 return ret;
624
625         devid = btrfs_stack_device_id(&disk_super->dev_item);
626         if (devid != device->devid)
627                 goto error_free_page;
628
629         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
630                 goto error_free_page;
631
632         device->generation = btrfs_super_generation(disk_super);
633
634         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
635                 if (btrfs_super_incompat_flags(disk_super) &
636                     BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
637                         pr_err(
638                 "BTRFS: Invalid seeding and uuid-changed device detected\n");
639                         goto error_free_page;
640                 }
641
642                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
643                 fs_devices->seeding = true;
644         } else {
645                 if (bdev_read_only(bdev))
646                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
647                 else
648                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
649         }
650
651         q = bdev_get_queue(bdev);
652         if (!blk_queue_nonrot(q))
653                 fs_devices->rotating = true;
654
655         device->bdev = bdev;
656         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
657         device->mode = flags;
658
659         fs_devices->open_devices++;
660         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
661             device->devid != BTRFS_DEV_REPLACE_DEVID) {
662                 fs_devices->rw_devices++;
663                 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
664         }
665         btrfs_release_disk_super(disk_super);
666
667         return 0;
668
669 error_free_page:
670         btrfs_release_disk_super(disk_super);
671         blkdev_put(bdev, flags);
672
673         return -EINVAL;
674 }
675
676 /*
677  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
678  * being created with a disk that has already completed its fsid change. Such
679  * disk can belong to an fs which has its FSID changed or to one which doesn't.
680  * Handle both cases here.
681  */
682 static struct btrfs_fs_devices *find_fsid_inprogress(
683                                         struct btrfs_super_block *disk_super)
684 {
685         struct btrfs_fs_devices *fs_devices;
686
687         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
688                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
689                            BTRFS_FSID_SIZE) != 0 &&
690                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
691                            BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
692                         return fs_devices;
693                 }
694         }
695
696         return find_fsid(disk_super->fsid, NULL);
697 }
698
699
700 static struct btrfs_fs_devices *find_fsid_changed(
701                                         struct btrfs_super_block *disk_super)
702 {
703         struct btrfs_fs_devices *fs_devices;
704
705         /*
706          * Handles the case where scanned device is part of an fs that had
707          * multiple successful changes of FSID but curently device didn't
708          * observe it. Meaning our fsid will be different than theirs. We need
709          * to handle two subcases :
710          *  1 - The fs still continues to have different METADATA/FSID uuids.
711          *  2 - The fs is switched back to its original FSID (METADATA/FSID
712          *  are equal).
713          */
714         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
715                 /* Changed UUIDs */
716                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
717                            BTRFS_FSID_SIZE) != 0 &&
718                     memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
719                            BTRFS_FSID_SIZE) == 0 &&
720                     memcmp(fs_devices->fsid, disk_super->fsid,
721                            BTRFS_FSID_SIZE) != 0)
722                         return fs_devices;
723
724                 /* Unchanged UUIDs */
725                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
726                            BTRFS_FSID_SIZE) == 0 &&
727                     memcmp(fs_devices->fsid, disk_super->metadata_uuid,
728                            BTRFS_FSID_SIZE) == 0)
729                         return fs_devices;
730         }
731
732         return NULL;
733 }
734
735 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
736                                 struct btrfs_super_block *disk_super)
737 {
738         struct btrfs_fs_devices *fs_devices;
739
740         /*
741          * Handle the case where the scanned device is part of an fs whose last
742          * metadata UUID change reverted it to the original FSID. At the same
743          * time * fs_devices was first created by another constitutent device
744          * which didn't fully observe the operation. This results in an
745          * btrfs_fs_devices created with metadata/fsid different AND
746          * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
747          * fs_devices equal to the FSID of the disk.
748          */
749         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
750                 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
751                            BTRFS_FSID_SIZE) != 0 &&
752                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
753                            BTRFS_FSID_SIZE) == 0 &&
754                     fs_devices->fsid_change)
755                         return fs_devices;
756         }
757
758         return NULL;
759 }
760 /*
761  * Add new device to list of registered devices
762  *
763  * Returns:
764  * device pointer which was just added or updated when successful
765  * error pointer when failed
766  */
767 static noinline struct btrfs_device *device_list_add(const char *path,
768                            struct btrfs_super_block *disk_super,
769                            bool *new_device_added)
770 {
771         struct btrfs_device *device;
772         struct btrfs_fs_devices *fs_devices = NULL;
773         struct rcu_string *name;
774         u64 found_transid = btrfs_super_generation(disk_super);
775         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
776         bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
777                 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
778         bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
779                                         BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
780
781         if (fsid_change_in_progress) {
782                 if (!has_metadata_uuid)
783                         fs_devices = find_fsid_inprogress(disk_super);
784                 else
785                         fs_devices = find_fsid_changed(disk_super);
786         } else if (has_metadata_uuid) {
787                 fs_devices = find_fsid_with_metadata_uuid(disk_super);
788         } else {
789                 fs_devices = find_fsid_reverted_metadata(disk_super);
790                 if (!fs_devices)
791                         fs_devices = find_fsid(disk_super->fsid, NULL);
792         }
793
794
795         if (!fs_devices) {
796                 if (has_metadata_uuid)
797                         fs_devices = alloc_fs_devices(disk_super->fsid,
798                                                       disk_super->metadata_uuid);
799                 else
800                         fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
801
802                 if (IS_ERR(fs_devices))
803                         return ERR_CAST(fs_devices);
804
805                 fs_devices->fsid_change = fsid_change_in_progress;
806
807                 mutex_lock(&fs_devices->device_list_mutex);
808                 list_add(&fs_devices->fs_list, &fs_uuids);
809
810                 device = NULL;
811         } else {
812                 mutex_lock(&fs_devices->device_list_mutex);
813                 device = btrfs_find_device(fs_devices, devid,
814                                 disk_super->dev_item.uuid, NULL, false);
815
816                 /*
817                  * If this disk has been pulled into an fs devices created by
818                  * a device which had the CHANGING_FSID_V2 flag then replace the
819                  * metadata_uuid/fsid values of the fs_devices.
820                  */
821                 if (fs_devices->fsid_change &&
822                     found_transid > fs_devices->latest_generation) {
823                         memcpy(fs_devices->fsid, disk_super->fsid,
824                                         BTRFS_FSID_SIZE);
825
826                         if (has_metadata_uuid)
827                                 memcpy(fs_devices->metadata_uuid,
828                                        disk_super->metadata_uuid,
829                                        BTRFS_FSID_SIZE);
830                         else
831                                 memcpy(fs_devices->metadata_uuid,
832                                        disk_super->fsid, BTRFS_FSID_SIZE);
833
834                         fs_devices->fsid_change = false;
835                 }
836         }
837
838         if (!device) {
839                 if (fs_devices->opened) {
840                         mutex_unlock(&fs_devices->device_list_mutex);
841                         return ERR_PTR(-EBUSY);
842                 }
843
844                 device = btrfs_alloc_device(NULL, &devid,
845                                             disk_super->dev_item.uuid);
846                 if (IS_ERR(device)) {
847                         mutex_unlock(&fs_devices->device_list_mutex);
848                         /* we can safely leave the fs_devices entry around */
849                         return device;
850                 }
851
852                 name = rcu_string_strdup(path, GFP_NOFS);
853                 if (!name) {
854                         btrfs_free_device(device);
855                         mutex_unlock(&fs_devices->device_list_mutex);
856                         return ERR_PTR(-ENOMEM);
857                 }
858                 rcu_assign_pointer(device->name, name);
859
860                 list_add_rcu(&device->dev_list, &fs_devices->devices);
861                 fs_devices->num_devices++;
862
863                 device->fs_devices = fs_devices;
864                 *new_device_added = true;
865
866                 if (disk_super->label[0])
867                         pr_info(
868         "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
869                                 disk_super->label, devid, found_transid, path,
870                                 current->comm, task_pid_nr(current));
871                 else
872                         pr_info(
873         "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
874                                 disk_super->fsid, devid, found_transid, path,
875                                 current->comm, task_pid_nr(current));
876
877         } else if (!device->name || strcmp(device->name->str, path)) {
878                 /*
879                  * When FS is already mounted.
880                  * 1. If you are here and if the device->name is NULL that
881                  *    means this device was missing at time of FS mount.
882                  * 2. If you are here and if the device->name is different
883                  *    from 'path' that means either
884                  *      a. The same device disappeared and reappeared with
885                  *         different name. or
886                  *      b. The missing-disk-which-was-replaced, has
887                  *         reappeared now.
888                  *
889                  * We must allow 1 and 2a above. But 2b would be a spurious
890                  * and unintentional.
891                  *
892                  * Further in case of 1 and 2a above, the disk at 'path'
893                  * would have missed some transaction when it was away and
894                  * in case of 2a the stale bdev has to be updated as well.
895                  * 2b must not be allowed at all time.
896                  */
897
898                 /*
899                  * For now, we do allow update to btrfs_fs_device through the
900                  * btrfs dev scan cli after FS has been mounted.  We're still
901                  * tracking a problem where systems fail mount by subvolume id
902                  * when we reject replacement on a mounted FS.
903                  */
904                 if (!fs_devices->opened && found_transid < device->generation) {
905                         /*
906                          * That is if the FS is _not_ mounted and if you
907                          * are here, that means there is more than one
908                          * disk with same uuid and devid.We keep the one
909                          * with larger generation number or the last-in if
910                          * generation are equal.
911                          */
912                         mutex_unlock(&fs_devices->device_list_mutex);
913                         return ERR_PTR(-EEXIST);
914                 }
915
916                 /*
917                  * We are going to replace the device path for a given devid,
918                  * make sure it's the same device if the device is mounted
919                  */
920                 if (device->bdev) {
921                         struct block_device *path_bdev;
922
923                         path_bdev = lookup_bdev(path);
924                         if (IS_ERR(path_bdev)) {
925                                 mutex_unlock(&fs_devices->device_list_mutex);
926                                 return ERR_CAST(path_bdev);
927                         }
928
929                         if (device->bdev != path_bdev) {
930                                 bdput(path_bdev);
931                                 mutex_unlock(&fs_devices->device_list_mutex);
932                                 btrfs_warn_in_rcu(device->fs_info,
933                         "duplicate device fsid:devid for %pU:%llu old:%s new:%s",
934                                         disk_super->fsid, devid,
935                                         rcu_str_deref(device->name), path);
936                                 return ERR_PTR(-EEXIST);
937                         }
938                         bdput(path_bdev);
939                         btrfs_info_in_rcu(device->fs_info,
940                                 "device fsid %pU devid %llu moved old:%s new:%s",
941                                 disk_super->fsid, devid,
942                                 rcu_str_deref(device->name), path);
943                 }
944
945                 name = rcu_string_strdup(path, GFP_NOFS);
946                 if (!name) {
947                         mutex_unlock(&fs_devices->device_list_mutex);
948                         return ERR_PTR(-ENOMEM);
949                 }
950                 rcu_string_free(device->name);
951                 rcu_assign_pointer(device->name, name);
952                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
953                         fs_devices->missing_devices--;
954                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
955                 }
956         }
957
958         /*
959          * Unmount does not free the btrfs_device struct but would zero
960          * generation along with most of the other members. So just update
961          * it back. We need it to pick the disk with largest generation
962          * (as above).
963          */
964         if (!fs_devices->opened) {
965                 device->generation = found_transid;
966                 fs_devices->latest_generation = max_t(u64, found_transid,
967                                                 fs_devices->latest_generation);
968         }
969
970         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
971
972         mutex_unlock(&fs_devices->device_list_mutex);
973         return device;
974 }
975
976 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
977 {
978         struct btrfs_fs_devices *fs_devices;
979         struct btrfs_device *device;
980         struct btrfs_device *orig_dev;
981         int ret = 0;
982
983         fs_devices = alloc_fs_devices(orig->fsid, NULL);
984         if (IS_ERR(fs_devices))
985                 return fs_devices;
986
987         mutex_lock(&orig->device_list_mutex);
988         fs_devices->total_devices = orig->total_devices;
989
990         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
991                 struct rcu_string *name;
992
993                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
994                                             orig_dev->uuid);
995                 if (IS_ERR(device)) {
996                         ret = PTR_ERR(device);
997                         goto error;
998                 }
999
1000                 /*
1001                  * This is ok to do without rcu read locked because we hold the
1002                  * uuid mutex so nothing we touch in here is going to disappear.
1003                  */
1004                 if (orig_dev->name) {
1005                         name = rcu_string_strdup(orig_dev->name->str,
1006                                         GFP_KERNEL);
1007                         if (!name) {
1008                                 btrfs_free_device(device);
1009                                 ret = -ENOMEM;
1010                                 goto error;
1011                         }
1012                         rcu_assign_pointer(device->name, name);
1013                 }
1014
1015                 list_add(&device->dev_list, &fs_devices->devices);
1016                 device->fs_devices = fs_devices;
1017                 fs_devices->num_devices++;
1018         }
1019         mutex_unlock(&orig->device_list_mutex);
1020         return fs_devices;
1021 error:
1022         mutex_unlock(&orig->device_list_mutex);
1023         free_fs_devices(fs_devices);
1024         return ERR_PTR(ret);
1025 }
1026
1027 /*
1028  * After we have read the system tree and know devids belonging to
1029  * this filesystem, remove the device which does not belong there.
1030  */
1031 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1032 {
1033         struct btrfs_device *device, *next;
1034         struct btrfs_device *latest_dev = NULL;
1035
1036         mutex_lock(&uuid_mutex);
1037 again:
1038         /* This is the initialized path, it is safe to release the devices. */
1039         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1040                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1041                                                         &device->dev_state)) {
1042                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1043                              &device->dev_state) &&
1044                             !test_bit(BTRFS_DEV_STATE_MISSING,
1045                                       &device->dev_state) &&
1046                              (!latest_dev ||
1047                               device->generation > latest_dev->generation)) {
1048                                 latest_dev = device;
1049                         }
1050                         continue;
1051                 }
1052
1053                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1054                         /*
1055                          * In the first step, keep the device which has
1056                          * the correct fsid and the devid that is used
1057                          * for the dev_replace procedure.
1058                          * In the second step, the dev_replace state is
1059                          * read from the device tree and it is known
1060                          * whether the procedure is really active or
1061                          * not, which means whether this device is
1062                          * used or whether it should be removed.
1063                          */
1064                         if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1065                                                   &device->dev_state)) {
1066                                 continue;
1067                         }
1068                 }
1069                 if (device->bdev) {
1070                         blkdev_put(device->bdev, device->mode);
1071                         device->bdev = NULL;
1072                         fs_devices->open_devices--;
1073                 }
1074                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1075                         list_del_init(&device->dev_alloc_list);
1076                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1077                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1078                                       &device->dev_state))
1079                                 fs_devices->rw_devices--;
1080                 }
1081                 list_del_init(&device->dev_list);
1082                 fs_devices->num_devices--;
1083                 btrfs_free_device(device);
1084         }
1085
1086         if (fs_devices->seed) {
1087                 fs_devices = fs_devices->seed;
1088                 goto again;
1089         }
1090
1091         fs_devices->latest_bdev = latest_dev->bdev;
1092
1093         mutex_unlock(&uuid_mutex);
1094 }
1095
1096 static void btrfs_close_bdev(struct btrfs_device *device)
1097 {
1098         if (!device->bdev)
1099                 return;
1100
1101         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1102                 sync_blockdev(device->bdev);
1103                 invalidate_bdev(device->bdev);
1104         }
1105
1106         blkdev_put(device->bdev, device->mode);
1107 }
1108
1109 static void btrfs_close_one_device(struct btrfs_device *device)
1110 {
1111         struct btrfs_fs_devices *fs_devices = device->fs_devices;
1112
1113         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1114             device->devid != BTRFS_DEV_REPLACE_DEVID) {
1115                 list_del_init(&device->dev_alloc_list);
1116                 fs_devices->rw_devices--;
1117         }
1118
1119         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1120                 fs_devices->missing_devices--;
1121
1122         btrfs_close_bdev(device);
1123         if (device->bdev) {
1124                 fs_devices->open_devices--;
1125                 device->bdev = NULL;
1126         }
1127         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1128
1129         device->fs_info = NULL;
1130         atomic_set(&device->dev_stats_ccnt, 0);
1131         extent_io_tree_release(&device->alloc_state);
1132
1133         /* Verify the device is back in a pristine state  */
1134         ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1135         ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1136         ASSERT(list_empty(&device->dev_alloc_list));
1137         ASSERT(list_empty(&device->post_commit_list));
1138         ASSERT(atomic_read(&device->reada_in_flight) == 0);
1139 }
1140
1141 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1142 {
1143         struct btrfs_device *device, *tmp;
1144
1145         if (--fs_devices->opened > 0)
1146                 return 0;
1147
1148         mutex_lock(&fs_devices->device_list_mutex);
1149         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1150                 btrfs_close_one_device(device);
1151         }
1152         mutex_unlock(&fs_devices->device_list_mutex);
1153
1154         WARN_ON(fs_devices->open_devices);
1155         WARN_ON(fs_devices->rw_devices);
1156         fs_devices->opened = 0;
1157         fs_devices->seeding = false;
1158
1159         return 0;
1160 }
1161
1162 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1163 {
1164         struct btrfs_fs_devices *seed_devices = NULL;
1165         int ret;
1166
1167         mutex_lock(&uuid_mutex);
1168         ret = close_fs_devices(fs_devices);
1169         if (!fs_devices->opened) {
1170                 seed_devices = fs_devices->seed;
1171                 fs_devices->seed = NULL;
1172         }
1173         mutex_unlock(&uuid_mutex);
1174
1175         while (seed_devices) {
1176                 fs_devices = seed_devices;
1177                 seed_devices = fs_devices->seed;
1178                 close_fs_devices(fs_devices);
1179                 free_fs_devices(fs_devices);
1180         }
1181         return ret;
1182 }
1183
1184 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1185                                 fmode_t flags, void *holder)
1186 {
1187         struct btrfs_device *device;
1188         struct btrfs_device *latest_dev = NULL;
1189
1190         flags |= FMODE_EXCL;
1191
1192         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1193                 /* Just open everything we can; ignore failures here */
1194                 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1195                         continue;
1196
1197                 if (!latest_dev ||
1198                     device->generation > latest_dev->generation)
1199                         latest_dev = device;
1200         }
1201         if (fs_devices->open_devices == 0)
1202                 return -EINVAL;
1203
1204         fs_devices->opened = 1;
1205         fs_devices->latest_bdev = latest_dev->bdev;
1206         fs_devices->total_rw_bytes = 0;
1207         fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1208
1209         return 0;
1210 }
1211
1212 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1213 {
1214         struct btrfs_device *dev1, *dev2;
1215
1216         dev1 = list_entry(a, struct btrfs_device, dev_list);
1217         dev2 = list_entry(b, struct btrfs_device, dev_list);
1218
1219         if (dev1->devid < dev2->devid)
1220                 return -1;
1221         else if (dev1->devid > dev2->devid)
1222                 return 1;
1223         return 0;
1224 }
1225
1226 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1227                        fmode_t flags, void *holder)
1228 {
1229         int ret;
1230
1231         lockdep_assert_held(&uuid_mutex);
1232
1233         mutex_lock(&fs_devices->device_list_mutex);
1234         if (fs_devices->opened) {
1235                 fs_devices->opened++;
1236                 ret = 0;
1237         } else {
1238                 list_sort(NULL, &fs_devices->devices, devid_cmp);
1239                 ret = open_fs_devices(fs_devices, flags, holder);
1240         }
1241         mutex_unlock(&fs_devices->device_list_mutex);
1242
1243         return ret;
1244 }
1245
1246 void btrfs_release_disk_super(struct btrfs_super_block *super)
1247 {
1248         struct page *page = virt_to_page(super);
1249
1250         put_page(page);
1251 }
1252
1253 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1254                                                        u64 bytenr)
1255 {
1256         struct btrfs_super_block *disk_super;
1257         struct page *page;
1258         void *p;
1259         pgoff_t index;
1260
1261         /* make sure our super fits in the device */
1262         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1263                 return ERR_PTR(-EINVAL);
1264
1265         /* make sure our super fits in the page */
1266         if (sizeof(*disk_super) > PAGE_SIZE)
1267                 return ERR_PTR(-EINVAL);
1268
1269         /* make sure our super doesn't straddle pages on disk */
1270         index = bytenr >> PAGE_SHIFT;
1271         if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1272                 return ERR_PTR(-EINVAL);
1273
1274         /* pull in the page with our super */
1275         page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1276
1277         if (IS_ERR(page))
1278                 return ERR_CAST(page);
1279
1280         p = page_address(page);
1281
1282         /* align our pointer to the offset of the super block */
1283         disk_super = p + offset_in_page(bytenr);
1284
1285         if (btrfs_super_bytenr(disk_super) != bytenr ||
1286             btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1287                 btrfs_release_disk_super(p);
1288                 return ERR_PTR(-EINVAL);
1289         }
1290
1291         if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1292                 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1293
1294         return disk_super;
1295 }
1296
1297 int btrfs_forget_devices(const char *path)
1298 {
1299         int ret;
1300
1301         mutex_lock(&uuid_mutex);
1302         ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1303         mutex_unlock(&uuid_mutex);
1304
1305         return ret;
1306 }
1307
1308 /*
1309  * Look for a btrfs signature on a device. This may be called out of the mount path
1310  * and we are not allowed to call set_blocksize during the scan. The superblock
1311  * is read via pagecache
1312  */
1313 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1314                                            void *holder)
1315 {
1316         struct btrfs_super_block *disk_super;
1317         bool new_device_added = false;
1318         struct btrfs_device *device = NULL;
1319         struct block_device *bdev;
1320         u64 bytenr;
1321
1322         lockdep_assert_held(&uuid_mutex);
1323
1324         /*
1325          * we would like to check all the supers, but that would make
1326          * a btrfs mount succeed after a mkfs from a different FS.
1327          * So, we need to add a special mount option to scan for
1328          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1329          */
1330         bytenr = btrfs_sb_offset(0);
1331         flags |= FMODE_EXCL;
1332
1333         bdev = blkdev_get_by_path(path, flags, holder);
1334         if (IS_ERR(bdev))
1335                 return ERR_CAST(bdev);
1336
1337         disk_super = btrfs_read_disk_super(bdev, bytenr);
1338         if (IS_ERR(disk_super)) {
1339                 device = ERR_CAST(disk_super);
1340                 goto error_bdev_put;
1341         }
1342
1343         device = device_list_add(path, disk_super, &new_device_added);
1344         if (!IS_ERR(device)) {
1345                 if (new_device_added)
1346                         btrfs_free_stale_devices(path, device);
1347         }
1348
1349         btrfs_release_disk_super(disk_super);
1350
1351 error_bdev_put:
1352         blkdev_put(bdev, flags);
1353
1354         return device;
1355 }
1356
1357 /*
1358  * Try to find a chunk that intersects [start, start + len] range and when one
1359  * such is found, record the end of it in *start
1360  */
1361 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1362                                     u64 len)
1363 {
1364         u64 physical_start, physical_end;
1365
1366         lockdep_assert_held(&device->fs_info->chunk_mutex);
1367
1368         if (!find_first_extent_bit(&device->alloc_state, *start,
1369                                    &physical_start, &physical_end,
1370                                    CHUNK_ALLOCATED, NULL)) {
1371
1372                 if (in_range(physical_start, *start, len) ||
1373                     in_range(*start, physical_start,
1374                              physical_end - physical_start)) {
1375                         *start = physical_end + 1;
1376                         return true;
1377                 }
1378         }
1379         return false;
1380 }
1381
1382 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1383 {
1384         switch (device->fs_devices->chunk_alloc_policy) {
1385         case BTRFS_CHUNK_ALLOC_REGULAR:
1386                 /*
1387                  * We don't want to overwrite the superblock on the drive nor
1388                  * any area used by the boot loader (grub for example), so we
1389                  * make sure to start at an offset of at least 1MB.
1390                  */
1391                 return max_t(u64, start, SZ_1M);
1392         default:
1393                 BUG();
1394         }
1395 }
1396
1397 /**
1398  * dev_extent_hole_check - check if specified hole is suitable for allocation
1399  * @device:     the device which we have the hole
1400  * @hole_start: starting position of the hole
1401  * @hole_size:  the size of the hole
1402  * @num_bytes:  the size of the free space that we need
1403  *
1404  * This function may modify @hole_start and @hole_end to reflect the suitable
1405  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1406  */
1407 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1408                                   u64 *hole_size, u64 num_bytes)
1409 {
1410         bool changed = false;
1411         u64 hole_end = *hole_start + *hole_size;
1412
1413         /*
1414          * Check before we set max_hole_start, otherwise we could end up
1415          * sending back this offset anyway.
1416          */
1417         if (contains_pending_extent(device, hole_start, *hole_size)) {
1418                 if (hole_end >= *hole_start)
1419                         *hole_size = hole_end - *hole_start;
1420                 else
1421                         *hole_size = 0;
1422                 changed = true;
1423         }
1424
1425         switch (device->fs_devices->chunk_alloc_policy) {
1426         case BTRFS_CHUNK_ALLOC_REGULAR:
1427                 /* No extra check */
1428                 break;
1429         default:
1430                 BUG();
1431         }
1432
1433         return changed;
1434 }
1435
1436 /*
1437  * find_free_dev_extent_start - find free space in the specified device
1438  * @device:       the device which we search the free space in
1439  * @num_bytes:    the size of the free space that we need
1440  * @search_start: the position from which to begin the search
1441  * @start:        store the start of the free space.
1442  * @len:          the size of the free space. that we find, or the size
1443  *                of the max free space if we don't find suitable free space
1444  *
1445  * this uses a pretty simple search, the expectation is that it is
1446  * called very infrequently and that a given device has a small number
1447  * of extents
1448  *
1449  * @start is used to store the start of the free space if we find. But if we
1450  * don't find suitable free space, it will be used to store the start position
1451  * of the max free space.
1452  *
1453  * @len is used to store the size of the free space that we find.
1454  * But if we don't find suitable free space, it is used to store the size of
1455  * the max free space.
1456  *
1457  * NOTE: This function will search *commit* root of device tree, and does extra
1458  * check to ensure dev extents are not double allocated.
1459  * This makes the function safe to allocate dev extents but may not report
1460  * correct usable device space, as device extent freed in current transaction
1461  * is not reported as avaiable.
1462  */
1463 static int find_free_dev_extent_start(struct btrfs_device *device,
1464                                 u64 num_bytes, u64 search_start, u64 *start,
1465                                 u64 *len)
1466 {
1467         struct btrfs_fs_info *fs_info = device->fs_info;
1468         struct btrfs_root *root = fs_info->dev_root;
1469         struct btrfs_key key;
1470         struct btrfs_dev_extent *dev_extent;
1471         struct btrfs_path *path;
1472         u64 hole_size;
1473         u64 max_hole_start;
1474         u64 max_hole_size;
1475         u64 extent_end;
1476         u64 search_end = device->total_bytes;
1477         int ret;
1478         int slot;
1479         struct extent_buffer *l;
1480
1481         search_start = dev_extent_search_start(device, search_start);
1482
1483         path = btrfs_alloc_path();
1484         if (!path)
1485                 return -ENOMEM;
1486
1487         max_hole_start = search_start;
1488         max_hole_size = 0;
1489
1490 again:
1491         if (search_start >= search_end ||
1492                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1493                 ret = -ENOSPC;
1494                 goto out;
1495         }
1496
1497         path->reada = READA_FORWARD;
1498         path->search_commit_root = 1;
1499         path->skip_locking = 1;
1500
1501         key.objectid = device->devid;
1502         key.offset = search_start;
1503         key.type = BTRFS_DEV_EXTENT_KEY;
1504
1505         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1506         if (ret < 0)
1507                 goto out;
1508         if (ret > 0) {
1509                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1510                 if (ret < 0)
1511                         goto out;
1512         }
1513
1514         while (1) {
1515                 l = path->nodes[0];
1516                 slot = path->slots[0];
1517                 if (slot >= btrfs_header_nritems(l)) {
1518                         ret = btrfs_next_leaf(root, path);
1519                         if (ret == 0)
1520                                 continue;
1521                         if (ret < 0)
1522                                 goto out;
1523
1524                         break;
1525                 }
1526                 btrfs_item_key_to_cpu(l, &key, slot);
1527
1528                 if (key.objectid < device->devid)
1529                         goto next;
1530
1531                 if (key.objectid > device->devid)
1532                         break;
1533
1534                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1535                         goto next;
1536
1537                 if (key.offset > search_start) {
1538                         hole_size = key.offset - search_start;
1539                         dev_extent_hole_check(device, &search_start, &hole_size,
1540                                               num_bytes);
1541
1542                         if (hole_size > max_hole_size) {
1543                                 max_hole_start = search_start;
1544                                 max_hole_size = hole_size;
1545                         }
1546
1547                         /*
1548                          * If this free space is greater than which we need,
1549                          * it must be the max free space that we have found
1550                          * until now, so max_hole_start must point to the start
1551                          * of this free space and the length of this free space
1552                          * is stored in max_hole_size. Thus, we return
1553                          * max_hole_start and max_hole_size and go back to the
1554                          * caller.
1555                          */
1556                         if (hole_size >= num_bytes) {
1557                                 ret = 0;
1558                                 goto out;
1559                         }
1560                 }
1561
1562                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1563                 extent_end = key.offset + btrfs_dev_extent_length(l,
1564                                                                   dev_extent);
1565                 if (extent_end > search_start)
1566                         search_start = extent_end;
1567 next:
1568                 path->slots[0]++;
1569                 cond_resched();
1570         }
1571
1572         /*
1573          * At this point, search_start should be the end of
1574          * allocated dev extents, and when shrinking the device,
1575          * search_end may be smaller than search_start.
1576          */
1577         if (search_end > search_start) {
1578                 hole_size = search_end - search_start;
1579                 if (dev_extent_hole_check(device, &search_start, &hole_size,
1580                                           num_bytes)) {
1581                         btrfs_release_path(path);
1582                         goto again;
1583                 }
1584
1585                 if (hole_size > max_hole_size) {
1586                         max_hole_start = search_start;
1587                         max_hole_size = hole_size;
1588                 }
1589         }
1590
1591         /* See above. */
1592         if (max_hole_size < num_bytes)
1593                 ret = -ENOSPC;
1594         else
1595                 ret = 0;
1596
1597 out:
1598         btrfs_free_path(path);
1599         *start = max_hole_start;
1600         if (len)
1601                 *len = max_hole_size;
1602         return ret;
1603 }
1604
1605 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1606                          u64 *start, u64 *len)
1607 {
1608         /* FIXME use last free of some kind */
1609         return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1610 }
1611
1612 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1613                           struct btrfs_device *device,
1614                           u64 start, u64 *dev_extent_len)
1615 {
1616         struct btrfs_fs_info *fs_info = device->fs_info;
1617         struct btrfs_root *root = fs_info->dev_root;
1618         int ret;
1619         struct btrfs_path *path;
1620         struct btrfs_key key;
1621         struct btrfs_key found_key;
1622         struct extent_buffer *leaf = NULL;
1623         struct btrfs_dev_extent *extent = NULL;
1624
1625         path = btrfs_alloc_path();
1626         if (!path)
1627                 return -ENOMEM;
1628
1629         key.objectid = device->devid;
1630         key.offset = start;
1631         key.type = BTRFS_DEV_EXTENT_KEY;
1632 again:
1633         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1634         if (ret > 0) {
1635                 ret = btrfs_previous_item(root, path, key.objectid,
1636                                           BTRFS_DEV_EXTENT_KEY);
1637                 if (ret)
1638                         goto out;
1639                 leaf = path->nodes[0];
1640                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1641                 extent = btrfs_item_ptr(leaf, path->slots[0],
1642                                         struct btrfs_dev_extent);
1643                 BUG_ON(found_key.offset > start || found_key.offset +
1644                        btrfs_dev_extent_length(leaf, extent) < start);
1645                 key = found_key;
1646                 btrfs_release_path(path);
1647                 goto again;
1648         } else if (ret == 0) {
1649                 leaf = path->nodes[0];
1650                 extent = btrfs_item_ptr(leaf, path->slots[0],
1651                                         struct btrfs_dev_extent);
1652         } else {
1653                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1654                 goto out;
1655         }
1656
1657         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1658
1659         ret = btrfs_del_item(trans, root, path);
1660         if (ret) {
1661                 btrfs_handle_fs_error(fs_info, ret,
1662                                       "Failed to remove dev extent item");
1663         } else {
1664                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1665         }
1666 out:
1667         btrfs_free_path(path);
1668         return ret;
1669 }
1670
1671 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1672                                   struct btrfs_device *device,
1673                                   u64 chunk_offset, u64 start, u64 num_bytes)
1674 {
1675         int ret;
1676         struct btrfs_path *path;
1677         struct btrfs_fs_info *fs_info = device->fs_info;
1678         struct btrfs_root *root = fs_info->dev_root;
1679         struct btrfs_dev_extent *extent;
1680         struct extent_buffer *leaf;
1681         struct btrfs_key key;
1682
1683         WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1684         WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1685         path = btrfs_alloc_path();
1686         if (!path)
1687                 return -ENOMEM;
1688
1689         key.objectid = device->devid;
1690         key.offset = start;
1691         key.type = BTRFS_DEV_EXTENT_KEY;
1692         ret = btrfs_insert_empty_item(trans, root, path, &key,
1693                                       sizeof(*extent));
1694         if (ret)
1695                 goto out;
1696
1697         leaf = path->nodes[0];
1698         extent = btrfs_item_ptr(leaf, path->slots[0],
1699                                 struct btrfs_dev_extent);
1700         btrfs_set_dev_extent_chunk_tree(leaf, extent,
1701                                         BTRFS_CHUNK_TREE_OBJECTID);
1702         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1703                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1704         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1705
1706         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1707         btrfs_mark_buffer_dirty(leaf);
1708 out:
1709         btrfs_free_path(path);
1710         return ret;
1711 }
1712
1713 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1714 {
1715         struct extent_map_tree *em_tree;
1716         struct extent_map *em;
1717         struct rb_node *n;
1718         u64 ret = 0;
1719
1720         em_tree = &fs_info->mapping_tree;
1721         read_lock(&em_tree->lock);
1722         n = rb_last(&em_tree->map.rb_root);
1723         if (n) {
1724                 em = rb_entry(n, struct extent_map, rb_node);
1725                 ret = em->start + em->len;
1726         }
1727         read_unlock(&em_tree->lock);
1728
1729         return ret;
1730 }
1731
1732 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1733                                     u64 *devid_ret)
1734 {
1735         int ret;
1736         struct btrfs_key key;
1737         struct btrfs_key found_key;
1738         struct btrfs_path *path;
1739
1740         path = btrfs_alloc_path();
1741         if (!path)
1742                 return -ENOMEM;
1743
1744         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1745         key.type = BTRFS_DEV_ITEM_KEY;
1746         key.offset = (u64)-1;
1747
1748         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1749         if (ret < 0)
1750                 goto error;
1751
1752         if (ret == 0) {
1753                 /* Corruption */
1754                 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1755                 ret = -EUCLEAN;
1756                 goto error;
1757         }
1758
1759         ret = btrfs_previous_item(fs_info->chunk_root, path,
1760                                   BTRFS_DEV_ITEMS_OBJECTID,
1761                                   BTRFS_DEV_ITEM_KEY);
1762         if (ret) {
1763                 *devid_ret = 1;
1764         } else {
1765                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1766                                       path->slots[0]);
1767                 *devid_ret = found_key.offset + 1;
1768         }
1769         ret = 0;
1770 error:
1771         btrfs_free_path(path);
1772         return ret;
1773 }
1774
1775 /*
1776  * the device information is stored in the chunk root
1777  * the btrfs_device struct should be fully filled in
1778  */
1779 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1780                             struct btrfs_device *device)
1781 {
1782         int ret;
1783         struct btrfs_path *path;
1784         struct btrfs_dev_item *dev_item;
1785         struct extent_buffer *leaf;
1786         struct btrfs_key key;
1787         unsigned long ptr;
1788
1789         path = btrfs_alloc_path();
1790         if (!path)
1791                 return -ENOMEM;
1792
1793         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1794         key.type = BTRFS_DEV_ITEM_KEY;
1795         key.offset = device->devid;
1796
1797         ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1798                                       &key, sizeof(*dev_item));
1799         if (ret)
1800                 goto out;
1801
1802         leaf = path->nodes[0];
1803         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1804
1805         btrfs_set_device_id(leaf, dev_item, device->devid);
1806         btrfs_set_device_generation(leaf, dev_item, 0);
1807         btrfs_set_device_type(leaf, dev_item, device->type);
1808         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1809         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1810         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1811         btrfs_set_device_total_bytes(leaf, dev_item,
1812                                      btrfs_device_get_disk_total_bytes(device));
1813         btrfs_set_device_bytes_used(leaf, dev_item,
1814                                     btrfs_device_get_bytes_used(device));
1815         btrfs_set_device_group(leaf, dev_item, 0);
1816         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1817         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1818         btrfs_set_device_start_offset(leaf, dev_item, 0);
1819
1820         ptr = btrfs_device_uuid(dev_item);
1821         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1822         ptr = btrfs_device_fsid(dev_item);
1823         write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1824                             ptr, BTRFS_FSID_SIZE);
1825         btrfs_mark_buffer_dirty(leaf);
1826
1827         ret = 0;
1828 out:
1829         btrfs_free_path(path);
1830         return ret;
1831 }
1832
1833 /*
1834  * Function to update ctime/mtime for a given device path.
1835  * Mainly used for ctime/mtime based probe like libblkid.
1836  */
1837 static void update_dev_time(const char *path_name)
1838 {
1839         struct file *filp;
1840
1841         filp = filp_open(path_name, O_RDWR, 0);
1842         if (IS_ERR(filp))
1843                 return;
1844         file_update_time(filp);
1845         filp_close(filp, NULL);
1846 }
1847
1848 static int btrfs_rm_dev_item(struct btrfs_device *device)
1849 {
1850         struct btrfs_root *root = device->fs_info->chunk_root;
1851         int ret;
1852         struct btrfs_path *path;
1853         struct btrfs_key key;
1854         struct btrfs_trans_handle *trans;
1855
1856         path = btrfs_alloc_path();
1857         if (!path)
1858                 return -ENOMEM;
1859
1860         trans = btrfs_start_transaction(root, 0);
1861         if (IS_ERR(trans)) {
1862                 btrfs_free_path(path);
1863                 return PTR_ERR(trans);
1864         }
1865         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1866         key.type = BTRFS_DEV_ITEM_KEY;
1867         key.offset = device->devid;
1868
1869         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1870         if (ret) {
1871                 if (ret > 0)
1872                         ret = -ENOENT;
1873                 btrfs_abort_transaction(trans, ret);
1874                 btrfs_end_transaction(trans);
1875                 goto out;
1876         }
1877
1878         ret = btrfs_del_item(trans, root, path);
1879         if (ret) {
1880                 btrfs_abort_transaction(trans, ret);
1881                 btrfs_end_transaction(trans);
1882         }
1883
1884 out:
1885         btrfs_free_path(path);
1886         if (!ret)
1887                 ret = btrfs_commit_transaction(trans);
1888         return ret;
1889 }
1890
1891 /*
1892  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1893  * filesystem. It's up to the caller to adjust that number regarding eg. device
1894  * replace.
1895  */
1896 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1897                 u64 num_devices)
1898 {
1899         u64 all_avail;
1900         unsigned seq;
1901         int i;
1902
1903         do {
1904                 seq = read_seqbegin(&fs_info->profiles_lock);
1905
1906                 all_avail = fs_info->avail_data_alloc_bits |
1907                             fs_info->avail_system_alloc_bits |
1908                             fs_info->avail_metadata_alloc_bits;
1909         } while (read_seqretry(&fs_info->profiles_lock, seq));
1910
1911         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1912                 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1913                         continue;
1914
1915                 if (num_devices < btrfs_raid_array[i].devs_min) {
1916                         int ret = btrfs_raid_array[i].mindev_error;
1917
1918                         if (ret)
1919                                 return ret;
1920                 }
1921         }
1922
1923         return 0;
1924 }
1925
1926 static struct btrfs_device * btrfs_find_next_active_device(
1927                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1928 {
1929         struct btrfs_device *next_device;
1930
1931         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1932                 if (next_device != device &&
1933                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1934                     && next_device->bdev)
1935                         return next_device;
1936         }
1937
1938         return NULL;
1939 }
1940
1941 /*
1942  * Helper function to check if the given device is part of s_bdev / latest_bdev
1943  * and replace it with the provided or the next active device, in the context
1944  * where this function called, there should be always be another device (or
1945  * this_dev) which is active.
1946  */
1947 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1948                                      struct btrfs_device *this_dev)
1949 {
1950         struct btrfs_fs_info *fs_info = device->fs_info;
1951         struct btrfs_device *next_device;
1952
1953         if (this_dev)
1954                 next_device = this_dev;
1955         else
1956                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1957                                                                 device);
1958         ASSERT(next_device);
1959
1960         if (fs_info->sb->s_bdev &&
1961                         (fs_info->sb->s_bdev == device->bdev))
1962                 fs_info->sb->s_bdev = next_device->bdev;
1963
1964         if (fs_info->fs_devices->latest_bdev == device->bdev)
1965                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1966 }
1967
1968 /*
1969  * Return btrfs_fs_devices::num_devices excluding the device that's being
1970  * currently replaced.
1971  */
1972 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1973 {
1974         u64 num_devices = fs_info->fs_devices->num_devices;
1975
1976         down_read(&fs_info->dev_replace.rwsem);
1977         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1978                 ASSERT(num_devices > 1);
1979                 num_devices--;
1980         }
1981         up_read(&fs_info->dev_replace.rwsem);
1982
1983         return num_devices;
1984 }
1985
1986 static void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
1987                                       struct block_device *bdev,
1988                                       const char *device_path)
1989 {
1990         struct btrfs_super_block *disk_super;
1991         int copy_num;
1992
1993         if (!bdev)
1994                 return;
1995
1996         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
1997                 struct page *page;
1998                 int ret;
1999
2000                 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2001                 if (IS_ERR(disk_super))
2002                         continue;
2003
2004                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2005
2006                 page = virt_to_page(disk_super);
2007                 set_page_dirty(page);
2008                 lock_page(page);
2009                 /* write_on_page() unlocks the page */
2010                 ret = write_one_page(page);
2011                 if (ret)
2012                         btrfs_warn(fs_info,
2013                                 "error clearing superblock number %d (%d)",
2014                                 copy_num, ret);
2015                 btrfs_release_disk_super(disk_super);
2016
2017         }
2018
2019         /* Notify udev that device has changed */
2020         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2021
2022         /* Update ctime/mtime for device path for libblkid */
2023         update_dev_time(device_path);
2024 }
2025
2026 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2027                 u64 devid)
2028 {
2029         struct btrfs_device *device;
2030         struct btrfs_fs_devices *cur_devices;
2031         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2032         u64 num_devices;
2033         int ret = 0;
2034
2035         mutex_lock(&uuid_mutex);
2036
2037         num_devices = btrfs_num_devices(fs_info);
2038
2039         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2040         if (ret)
2041                 goto out;
2042
2043         device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2044
2045         if (IS_ERR(device)) {
2046                 if (PTR_ERR(device) == -ENOENT &&
2047                     strcmp(device_path, "missing") == 0)
2048                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2049                 else
2050                         ret = PTR_ERR(device);
2051                 goto out;
2052         }
2053
2054         if (btrfs_pinned_by_swapfile(fs_info, device)) {
2055                 btrfs_warn_in_rcu(fs_info,
2056                   "cannot remove device %s (devid %llu) due to active swapfile",
2057                                   rcu_str_deref(device->name), device->devid);
2058                 ret = -ETXTBSY;
2059                 goto out;
2060         }
2061
2062         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2063                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2064                 goto out;
2065         }
2066
2067         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2068             fs_info->fs_devices->rw_devices == 1) {
2069                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2070                 goto out;
2071         }
2072
2073         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2074                 mutex_lock(&fs_info->chunk_mutex);
2075                 list_del_init(&device->dev_alloc_list);
2076                 device->fs_devices->rw_devices--;
2077                 mutex_unlock(&fs_info->chunk_mutex);
2078         }
2079
2080         mutex_unlock(&uuid_mutex);
2081         ret = btrfs_shrink_device(device, 0);
2082         mutex_lock(&uuid_mutex);
2083         if (ret)
2084                 goto error_undo;
2085
2086         /*
2087          * TODO: the superblock still includes this device in its num_devices
2088          * counter although write_all_supers() is not locked out. This
2089          * could give a filesystem state which requires a degraded mount.
2090          */
2091         ret = btrfs_rm_dev_item(device);
2092         if (ret)
2093                 goto error_undo;
2094
2095         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2096         btrfs_scrub_cancel_dev(device);
2097
2098         /*
2099          * the device list mutex makes sure that we don't change
2100          * the device list while someone else is writing out all
2101          * the device supers. Whoever is writing all supers, should
2102          * lock the device list mutex before getting the number of
2103          * devices in the super block (super_copy). Conversely,
2104          * whoever updates the number of devices in the super block
2105          * (super_copy) should hold the device list mutex.
2106          */
2107
2108         /*
2109          * In normal cases the cur_devices == fs_devices. But in case
2110          * of deleting a seed device, the cur_devices should point to
2111          * its own fs_devices listed under the fs_devices->seed.
2112          */
2113         cur_devices = device->fs_devices;
2114         mutex_lock(&fs_devices->device_list_mutex);
2115         list_del_rcu(&device->dev_list);
2116
2117         cur_devices->num_devices--;
2118         cur_devices->total_devices--;
2119         /* Update total_devices of the parent fs_devices if it's seed */
2120         if (cur_devices != fs_devices)
2121                 fs_devices->total_devices--;
2122
2123         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2124                 cur_devices->missing_devices--;
2125
2126         btrfs_assign_next_active_device(device, NULL);
2127
2128         if (device->bdev) {
2129                 cur_devices->open_devices--;
2130                 /* remove sysfs entry */
2131                 btrfs_sysfs_remove_devices_dir(fs_devices, device);
2132         }
2133
2134         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2135         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2136         mutex_unlock(&fs_devices->device_list_mutex);
2137
2138         /*
2139          * at this point, the device is zero sized and detached from
2140          * the devices list.  All that's left is to zero out the old
2141          * supers and free the device.
2142          */
2143         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2144                 btrfs_scratch_superblocks(fs_info, device->bdev,
2145                                           device->name->str);
2146
2147         btrfs_close_bdev(device);
2148         synchronize_rcu();
2149         btrfs_free_device(device);
2150
2151         if (cur_devices->open_devices == 0) {
2152                 while (fs_devices) {
2153                         if (fs_devices->seed == cur_devices) {
2154                                 fs_devices->seed = cur_devices->seed;
2155                                 break;
2156                         }
2157                         fs_devices = fs_devices->seed;
2158                 }
2159                 cur_devices->seed = NULL;
2160                 close_fs_devices(cur_devices);
2161                 free_fs_devices(cur_devices);
2162         }
2163
2164 out:
2165         mutex_unlock(&uuid_mutex);
2166         return ret;
2167
2168 error_undo:
2169         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2170                 mutex_lock(&fs_info->chunk_mutex);
2171                 list_add(&device->dev_alloc_list,
2172                          &fs_devices->alloc_list);
2173                 device->fs_devices->rw_devices++;
2174                 mutex_unlock(&fs_info->chunk_mutex);
2175         }
2176         goto out;
2177 }
2178
2179 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2180 {
2181         struct btrfs_fs_devices *fs_devices;
2182
2183         lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2184
2185         /*
2186          * in case of fs with no seed, srcdev->fs_devices will point
2187          * to fs_devices of fs_info. However when the dev being replaced is
2188          * a seed dev it will point to the seed's local fs_devices. In short
2189          * srcdev will have its correct fs_devices in both the cases.
2190          */
2191         fs_devices = srcdev->fs_devices;
2192
2193         list_del_rcu(&srcdev->dev_list);
2194         list_del(&srcdev->dev_alloc_list);
2195         fs_devices->num_devices--;
2196         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2197                 fs_devices->missing_devices--;
2198
2199         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2200                 fs_devices->rw_devices--;
2201
2202         if (srcdev->bdev)
2203                 fs_devices->open_devices--;
2204 }
2205
2206 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2207 {
2208         struct btrfs_fs_info *fs_info = srcdev->fs_info;
2209         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2210
2211         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2212                 /* zero out the old super if it is writable */
2213                 btrfs_scratch_superblocks(fs_info, srcdev->bdev,
2214                                           srcdev->name->str);
2215         }
2216
2217         btrfs_close_bdev(srcdev);
2218         synchronize_rcu();
2219         btrfs_free_device(srcdev);
2220
2221         /* if this is no devs we rather delete the fs_devices */
2222         if (!fs_devices->num_devices) {
2223                 struct btrfs_fs_devices *tmp_fs_devices;
2224
2225                 /*
2226                  * On a mounted FS, num_devices can't be zero unless it's a
2227                  * seed. In case of a seed device being replaced, the replace
2228                  * target added to the sprout FS, so there will be no more
2229                  * device left under the seed FS.
2230                  */
2231                 ASSERT(fs_devices->seeding);
2232
2233                 tmp_fs_devices = fs_info->fs_devices;
2234                 while (tmp_fs_devices) {
2235                         if (tmp_fs_devices->seed == fs_devices) {
2236                                 tmp_fs_devices->seed = fs_devices->seed;
2237                                 break;
2238                         }
2239                         tmp_fs_devices = tmp_fs_devices->seed;
2240                 }
2241                 fs_devices->seed = NULL;
2242                 close_fs_devices(fs_devices);
2243                 free_fs_devices(fs_devices);
2244         }
2245 }
2246
2247 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2248 {
2249         struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2250
2251         mutex_lock(&fs_devices->device_list_mutex);
2252
2253         btrfs_sysfs_remove_devices_dir(fs_devices, tgtdev);
2254
2255         if (tgtdev->bdev)
2256                 fs_devices->open_devices--;
2257
2258         fs_devices->num_devices--;
2259
2260         btrfs_assign_next_active_device(tgtdev, NULL);
2261
2262         list_del_rcu(&tgtdev->dev_list);
2263
2264         mutex_unlock(&fs_devices->device_list_mutex);
2265
2266         /*
2267          * The update_dev_time() with in btrfs_scratch_superblocks()
2268          * may lead to a call to btrfs_show_devname() which will try
2269          * to hold device_list_mutex. And here this device
2270          * is already out of device list, so we don't have to hold
2271          * the device_list_mutex lock.
2272          */
2273         btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2274                                   tgtdev->name->str);
2275
2276         btrfs_close_bdev(tgtdev);
2277         synchronize_rcu();
2278         btrfs_free_device(tgtdev);
2279 }
2280
2281 static struct btrfs_device *btrfs_find_device_by_path(
2282                 struct btrfs_fs_info *fs_info, const char *device_path)
2283 {
2284         int ret = 0;
2285         struct btrfs_super_block *disk_super;
2286         u64 devid;
2287         u8 *dev_uuid;
2288         struct block_device *bdev;
2289         struct btrfs_device *device;
2290
2291         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2292                                     fs_info->bdev_holder, 0, &bdev, &disk_super);
2293         if (ret)
2294                 return ERR_PTR(ret);
2295
2296         devid = btrfs_stack_device_id(&disk_super->dev_item);
2297         dev_uuid = disk_super->dev_item.uuid;
2298         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2299                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2300                                            disk_super->metadata_uuid, true);
2301         else
2302                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2303                                            disk_super->fsid, true);
2304
2305         btrfs_release_disk_super(disk_super);
2306         if (!device)
2307                 device = ERR_PTR(-ENOENT);
2308         blkdev_put(bdev, FMODE_READ);
2309         return device;
2310 }
2311
2312 /*
2313  * Lookup a device given by device id, or the path if the id is 0.
2314  */
2315 struct btrfs_device *btrfs_find_device_by_devspec(
2316                 struct btrfs_fs_info *fs_info, u64 devid,
2317                 const char *device_path)
2318 {
2319         struct btrfs_device *device;
2320
2321         if (devid) {
2322                 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2323                                            NULL, true);
2324                 if (!device)
2325                         return ERR_PTR(-ENOENT);
2326                 return device;
2327         }
2328
2329         if (!device_path || !device_path[0])
2330                 return ERR_PTR(-EINVAL);
2331
2332         if (strcmp(device_path, "missing") == 0) {
2333                 /* Find first missing device */
2334                 list_for_each_entry(device, &fs_info->fs_devices->devices,
2335                                     dev_list) {
2336                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2337                                      &device->dev_state) && !device->bdev)
2338                                 return device;
2339                 }
2340                 return ERR_PTR(-ENOENT);
2341         }
2342
2343         return btrfs_find_device_by_path(fs_info, device_path);
2344 }
2345
2346 /*
2347  * does all the dirty work required for changing file system's UUID.
2348  */
2349 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2350 {
2351         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2352         struct btrfs_fs_devices *old_devices;
2353         struct btrfs_fs_devices *seed_devices;
2354         struct btrfs_super_block *disk_super = fs_info->super_copy;
2355         struct btrfs_device *device;
2356         u64 super_flags;
2357
2358         lockdep_assert_held(&uuid_mutex);
2359         if (!fs_devices->seeding)
2360                 return -EINVAL;
2361
2362         seed_devices = alloc_fs_devices(NULL, NULL);
2363         if (IS_ERR(seed_devices))
2364                 return PTR_ERR(seed_devices);
2365
2366         old_devices = clone_fs_devices(fs_devices);
2367         if (IS_ERR(old_devices)) {
2368                 kfree(seed_devices);
2369                 return PTR_ERR(old_devices);
2370         }
2371
2372         list_add(&old_devices->fs_list, &fs_uuids);
2373
2374         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2375         seed_devices->opened = 1;
2376         INIT_LIST_HEAD(&seed_devices->devices);
2377         INIT_LIST_HEAD(&seed_devices->alloc_list);
2378         mutex_init(&seed_devices->device_list_mutex);
2379
2380         mutex_lock(&fs_devices->device_list_mutex);
2381         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2382                               synchronize_rcu);
2383         list_for_each_entry(device, &seed_devices->devices, dev_list)
2384                 device->fs_devices = seed_devices;
2385
2386         mutex_lock(&fs_info->chunk_mutex);
2387         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2388         mutex_unlock(&fs_info->chunk_mutex);
2389
2390         fs_devices->seeding = false;
2391         fs_devices->num_devices = 0;
2392         fs_devices->open_devices = 0;
2393         fs_devices->missing_devices = 0;
2394         fs_devices->rotating = false;
2395         fs_devices->seed = seed_devices;
2396
2397         generate_random_uuid(fs_devices->fsid);
2398         memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2399         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2400         mutex_unlock(&fs_devices->device_list_mutex);
2401
2402         super_flags = btrfs_super_flags(disk_super) &
2403                       ~BTRFS_SUPER_FLAG_SEEDING;
2404         btrfs_set_super_flags(disk_super, super_flags);
2405
2406         return 0;
2407 }
2408
2409 /*
2410  * Store the expected generation for seed devices in device items.
2411  */
2412 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2413 {
2414         struct btrfs_fs_info *fs_info = trans->fs_info;
2415         struct btrfs_root *root = fs_info->chunk_root;
2416         struct btrfs_path *path;
2417         struct extent_buffer *leaf;
2418         struct btrfs_dev_item *dev_item;
2419         struct btrfs_device *device;
2420         struct btrfs_key key;
2421         u8 fs_uuid[BTRFS_FSID_SIZE];
2422         u8 dev_uuid[BTRFS_UUID_SIZE];
2423         u64 devid;
2424         int ret;
2425
2426         path = btrfs_alloc_path();
2427         if (!path)
2428                 return -ENOMEM;
2429
2430         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2431         key.offset = 0;
2432         key.type = BTRFS_DEV_ITEM_KEY;
2433
2434         while (1) {
2435                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2436                 if (ret < 0)
2437                         goto error;
2438
2439                 leaf = path->nodes[0];
2440 next_slot:
2441                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2442                         ret = btrfs_next_leaf(root, path);
2443                         if (ret > 0)
2444                                 break;
2445                         if (ret < 0)
2446                                 goto error;
2447                         leaf = path->nodes[0];
2448                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2449                         btrfs_release_path(path);
2450                         continue;
2451                 }
2452
2453                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2454                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2455                     key.type != BTRFS_DEV_ITEM_KEY)
2456                         break;
2457
2458                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2459                                           struct btrfs_dev_item);
2460                 devid = btrfs_device_id(leaf, dev_item);
2461                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2462                                    BTRFS_UUID_SIZE);
2463                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2464                                    BTRFS_FSID_SIZE);
2465                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2466                                            fs_uuid, true);
2467                 BUG_ON(!device); /* Logic error */
2468
2469                 if (device->fs_devices->seeding) {
2470                         btrfs_set_device_generation(leaf, dev_item,
2471                                                     device->generation);
2472                         btrfs_mark_buffer_dirty(leaf);
2473                 }
2474
2475                 path->slots[0]++;
2476                 goto next_slot;
2477         }
2478         ret = 0;
2479 error:
2480         btrfs_free_path(path);
2481         return ret;
2482 }
2483
2484 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2485 {
2486         struct btrfs_root *root = fs_info->dev_root;
2487         struct request_queue *q;
2488         struct btrfs_trans_handle *trans;
2489         struct btrfs_device *device;
2490         struct block_device *bdev;
2491         struct super_block *sb = fs_info->sb;
2492         struct rcu_string *name;
2493         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2494         u64 orig_super_total_bytes;
2495         u64 orig_super_num_devices;
2496         int seeding_dev = 0;
2497         int ret = 0;
2498         bool unlocked = false;
2499
2500         if (sb_rdonly(sb) && !fs_devices->seeding)
2501                 return -EROFS;
2502
2503         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2504                                   fs_info->bdev_holder);
2505         if (IS_ERR(bdev))
2506                 return PTR_ERR(bdev);
2507
2508         if (fs_devices->seeding) {
2509                 seeding_dev = 1;
2510                 down_write(&sb->s_umount);
2511                 mutex_lock(&uuid_mutex);
2512         }
2513
2514         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2515
2516         mutex_lock(&fs_devices->device_list_mutex);
2517         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2518                 if (device->bdev == bdev) {
2519                         ret = -EEXIST;
2520                         mutex_unlock(
2521                                 &fs_devices->device_list_mutex);
2522                         goto error;
2523                 }
2524         }
2525         mutex_unlock(&fs_devices->device_list_mutex);
2526
2527         device = btrfs_alloc_device(fs_info, NULL, NULL);
2528         if (IS_ERR(device)) {
2529                 /* we can safely leave the fs_devices entry around */
2530                 ret = PTR_ERR(device);
2531                 goto error;
2532         }
2533
2534         name = rcu_string_strdup(device_path, GFP_KERNEL);
2535         if (!name) {
2536                 ret = -ENOMEM;
2537                 goto error_free_device;
2538         }
2539         rcu_assign_pointer(device->name, name);
2540
2541         trans = btrfs_start_transaction(root, 0);
2542         if (IS_ERR(trans)) {
2543                 ret = PTR_ERR(trans);
2544                 goto error_free_device;
2545         }
2546
2547         q = bdev_get_queue(bdev);
2548         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2549         device->generation = trans->transid;
2550         device->io_width = fs_info->sectorsize;
2551         device->io_align = fs_info->sectorsize;
2552         device->sector_size = fs_info->sectorsize;
2553         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2554                                          fs_info->sectorsize);
2555         device->disk_total_bytes = device->total_bytes;
2556         device->commit_total_bytes = device->total_bytes;
2557         device->fs_info = fs_info;
2558         device->bdev = bdev;
2559         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2560         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2561         device->mode = FMODE_EXCL;
2562         device->dev_stats_valid = 1;
2563         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2564
2565         if (seeding_dev) {
2566                 sb->s_flags &= ~SB_RDONLY;
2567                 ret = btrfs_prepare_sprout(fs_info);
2568                 if (ret) {
2569                         btrfs_abort_transaction(trans, ret);
2570                         goto error_trans;
2571                 }
2572         }
2573
2574         device->fs_devices = fs_devices;
2575
2576         mutex_lock(&fs_devices->device_list_mutex);
2577         mutex_lock(&fs_info->chunk_mutex);
2578         list_add_rcu(&device->dev_list, &fs_devices->devices);
2579         list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2580         fs_devices->num_devices++;
2581         fs_devices->open_devices++;
2582         fs_devices->rw_devices++;
2583         fs_devices->total_devices++;
2584         fs_devices->total_rw_bytes += device->total_bytes;
2585
2586         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2587
2588         if (!blk_queue_nonrot(q))
2589                 fs_devices->rotating = true;
2590
2591         orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2592         btrfs_set_super_total_bytes(fs_info->super_copy,
2593                 round_down(orig_super_total_bytes + device->total_bytes,
2594                            fs_info->sectorsize));
2595
2596         orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2597         btrfs_set_super_num_devices(fs_info->super_copy,
2598                                     orig_super_num_devices + 1);
2599
2600         /* add sysfs device entry */
2601         btrfs_sysfs_add_devices_dir(fs_devices, device);
2602
2603         /*
2604          * we've got more storage, clear any full flags on the space
2605          * infos
2606          */
2607         btrfs_clear_space_info_full(fs_info);
2608
2609         mutex_unlock(&fs_info->chunk_mutex);
2610         mutex_unlock(&fs_devices->device_list_mutex);
2611
2612         if (seeding_dev) {
2613                 mutex_lock(&fs_info->chunk_mutex);
2614                 ret = init_first_rw_device(trans);
2615                 mutex_unlock(&fs_info->chunk_mutex);
2616                 if (ret) {
2617                         btrfs_abort_transaction(trans, ret);
2618                         goto error_sysfs;
2619                 }
2620         }
2621
2622         ret = btrfs_add_dev_item(trans, device);
2623         if (ret) {
2624                 btrfs_abort_transaction(trans, ret);
2625                 goto error_sysfs;
2626         }
2627
2628         if (seeding_dev) {
2629                 ret = btrfs_finish_sprout(trans);
2630                 if (ret) {
2631                         btrfs_abort_transaction(trans, ret);
2632                         goto error_sysfs;
2633                 }
2634
2635                 btrfs_sysfs_update_sprout_fsid(fs_devices,
2636                                 fs_info->fs_devices->fsid);
2637         }
2638
2639         ret = btrfs_commit_transaction(trans);
2640
2641         if (seeding_dev) {
2642                 mutex_unlock(&uuid_mutex);
2643                 up_write(&sb->s_umount);
2644                 unlocked = true;
2645
2646                 if (ret) /* transaction commit */
2647                         return ret;
2648
2649                 ret = btrfs_relocate_sys_chunks(fs_info);
2650                 if (ret < 0)
2651                         btrfs_handle_fs_error(fs_info, ret,
2652                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2653                 trans = btrfs_attach_transaction(root);
2654                 if (IS_ERR(trans)) {
2655                         if (PTR_ERR(trans) == -ENOENT)
2656                                 return 0;
2657                         ret = PTR_ERR(trans);
2658                         trans = NULL;
2659                         goto error_sysfs;
2660                 }
2661                 ret = btrfs_commit_transaction(trans);
2662         }
2663
2664         /*
2665          * Now that we have written a new super block to this device, check all
2666          * other fs_devices list if device_path alienates any other scanned
2667          * device.
2668          * We can ignore the return value as it typically returns -EINVAL and
2669          * only succeeds if the device was an alien.
2670          */
2671         btrfs_forget_devices(device_path);
2672
2673         /* Update ctime/mtime for blkid or udev */
2674         update_dev_time(device_path);
2675
2676         return ret;
2677
2678 error_sysfs:
2679         btrfs_sysfs_remove_devices_dir(fs_devices, device);
2680         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2681         mutex_lock(&fs_info->chunk_mutex);
2682         list_del_rcu(&device->dev_list);
2683         list_del(&device->dev_alloc_list);
2684         fs_info->fs_devices->num_devices--;
2685         fs_info->fs_devices->open_devices--;
2686         fs_info->fs_devices->rw_devices--;
2687         fs_info->fs_devices->total_devices--;
2688         fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2689         atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2690         btrfs_set_super_total_bytes(fs_info->super_copy,
2691                                     orig_super_total_bytes);
2692         btrfs_set_super_num_devices(fs_info->super_copy,
2693                                     orig_super_num_devices);
2694         mutex_unlock(&fs_info->chunk_mutex);
2695         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2696 error_trans:
2697         if (seeding_dev)
2698                 sb->s_flags |= SB_RDONLY;
2699         if (trans)
2700                 btrfs_end_transaction(trans);
2701 error_free_device:
2702         btrfs_free_device(device);
2703 error:
2704         blkdev_put(bdev, FMODE_EXCL);
2705         if (seeding_dev && !unlocked) {
2706                 mutex_unlock(&uuid_mutex);
2707                 up_write(&sb->s_umount);
2708         }
2709         return ret;
2710 }
2711
2712 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2713                                         struct btrfs_device *device)
2714 {
2715         int ret;
2716         struct btrfs_path *path;
2717         struct btrfs_root *root = device->fs_info->chunk_root;
2718         struct btrfs_dev_item *dev_item;
2719         struct extent_buffer *leaf;
2720         struct btrfs_key key;
2721
2722         path = btrfs_alloc_path();
2723         if (!path)
2724                 return -ENOMEM;
2725
2726         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2727         key.type = BTRFS_DEV_ITEM_KEY;
2728         key.offset = device->devid;
2729
2730         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2731         if (ret < 0)
2732                 goto out;
2733
2734         if (ret > 0) {
2735                 ret = -ENOENT;
2736                 goto out;
2737         }
2738
2739         leaf = path->nodes[0];
2740         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2741
2742         btrfs_set_device_id(leaf, dev_item, device->devid);
2743         btrfs_set_device_type(leaf, dev_item, device->type);
2744         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2745         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2746         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2747         btrfs_set_device_total_bytes(leaf, dev_item,
2748                                      btrfs_device_get_disk_total_bytes(device));
2749         btrfs_set_device_bytes_used(leaf, dev_item,
2750                                     btrfs_device_get_bytes_used(device));
2751         btrfs_mark_buffer_dirty(leaf);
2752
2753 out:
2754         btrfs_free_path(path);
2755         return ret;
2756 }
2757
2758 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2759                       struct btrfs_device *device, u64 new_size)
2760 {
2761         struct btrfs_fs_info *fs_info = device->fs_info;
2762         struct btrfs_super_block *super_copy = fs_info->super_copy;
2763         u64 old_total;
2764         u64 diff;
2765
2766         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2767                 return -EACCES;
2768
2769         new_size = round_down(new_size, fs_info->sectorsize);
2770
2771         mutex_lock(&fs_info->chunk_mutex);
2772         old_total = btrfs_super_total_bytes(super_copy);
2773         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2774
2775         if (new_size <= device->total_bytes ||
2776             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2777                 mutex_unlock(&fs_info->chunk_mutex);
2778                 return -EINVAL;
2779         }
2780
2781         btrfs_set_super_total_bytes(super_copy,
2782                         round_down(old_total + diff, fs_info->sectorsize));
2783         device->fs_devices->total_rw_bytes += diff;
2784
2785         btrfs_device_set_total_bytes(device, new_size);
2786         btrfs_device_set_disk_total_bytes(device, new_size);
2787         btrfs_clear_space_info_full(device->fs_info);
2788         if (list_empty(&device->post_commit_list))
2789                 list_add_tail(&device->post_commit_list,
2790                               &trans->transaction->dev_update_list);
2791         mutex_unlock(&fs_info->chunk_mutex);
2792
2793         return btrfs_update_device(trans, device);
2794 }
2795
2796 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2797 {
2798         struct btrfs_fs_info *fs_info = trans->fs_info;
2799         struct btrfs_root *root = fs_info->chunk_root;
2800         int ret;
2801         struct btrfs_path *path;
2802         struct btrfs_key key;
2803
2804         path = btrfs_alloc_path();
2805         if (!path)
2806                 return -ENOMEM;
2807
2808         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2809         key.offset = chunk_offset;
2810         key.type = BTRFS_CHUNK_ITEM_KEY;
2811
2812         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2813         if (ret < 0)
2814                 goto out;
2815         else if (ret > 0) { /* Logic error or corruption */
2816                 btrfs_handle_fs_error(fs_info, -ENOENT,
2817                                       "Failed lookup while freeing chunk.");
2818                 ret = -ENOENT;
2819                 goto out;
2820         }
2821
2822         ret = btrfs_del_item(trans, root, path);
2823         if (ret < 0)
2824                 btrfs_handle_fs_error(fs_info, ret,
2825                                       "Failed to delete chunk item.");
2826 out:
2827         btrfs_free_path(path);
2828         return ret;
2829 }
2830
2831 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2832 {
2833         struct btrfs_super_block *super_copy = fs_info->super_copy;
2834         struct btrfs_disk_key *disk_key;
2835         struct btrfs_chunk *chunk;
2836         u8 *ptr;
2837         int ret = 0;
2838         u32 num_stripes;
2839         u32 array_size;
2840         u32 len = 0;
2841         u32 cur;
2842         struct btrfs_key key;
2843
2844         mutex_lock(&fs_info->chunk_mutex);
2845         array_size = btrfs_super_sys_array_size(super_copy);
2846
2847         ptr = super_copy->sys_chunk_array;
2848         cur = 0;
2849
2850         while (cur < array_size) {
2851                 disk_key = (struct btrfs_disk_key *)ptr;
2852                 btrfs_disk_key_to_cpu(&key, disk_key);
2853
2854                 len = sizeof(*disk_key);
2855
2856                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2857                         chunk = (struct btrfs_chunk *)(ptr + len);
2858                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2859                         len += btrfs_chunk_item_size(num_stripes);
2860                 } else {
2861                         ret = -EIO;
2862                         break;
2863                 }
2864                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2865                     key.offset == chunk_offset) {
2866                         memmove(ptr, ptr + len, array_size - (cur + len));
2867                         array_size -= len;
2868                         btrfs_set_super_sys_array_size(super_copy, array_size);
2869                 } else {
2870                         ptr += len;
2871                         cur += len;
2872                 }
2873         }
2874         mutex_unlock(&fs_info->chunk_mutex);
2875         return ret;
2876 }
2877
2878 /*
2879  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2880  * @logical: Logical block offset in bytes.
2881  * @length: Length of extent in bytes.
2882  *
2883  * Return: Chunk mapping or ERR_PTR.
2884  */
2885 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2886                                        u64 logical, u64 length)
2887 {
2888         struct extent_map_tree *em_tree;
2889         struct extent_map *em;
2890
2891         em_tree = &fs_info->mapping_tree;
2892         read_lock(&em_tree->lock);
2893         em = lookup_extent_mapping(em_tree, logical, length);
2894         read_unlock(&em_tree->lock);
2895
2896         if (!em) {
2897                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2898                            logical, length);
2899                 return ERR_PTR(-EINVAL);
2900         }
2901
2902         if (em->start > logical || em->start + em->len < logical) {
2903                 btrfs_crit(fs_info,
2904                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2905                            logical, length, em->start, em->start + em->len);
2906                 free_extent_map(em);
2907                 return ERR_PTR(-EINVAL);
2908         }
2909
2910         /* callers are responsible for dropping em's ref. */
2911         return em;
2912 }
2913
2914 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2915 {
2916         struct btrfs_fs_info *fs_info = trans->fs_info;
2917         struct extent_map *em;
2918         struct map_lookup *map;
2919         u64 dev_extent_len = 0;
2920         int i, ret = 0;
2921         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2922
2923         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2924         if (IS_ERR(em)) {
2925                 /*
2926                  * This is a logic error, but we don't want to just rely on the
2927                  * user having built with ASSERT enabled, so if ASSERT doesn't
2928                  * do anything we still error out.
2929                  */
2930                 ASSERT(0);
2931                 return PTR_ERR(em);
2932         }
2933         map = em->map_lookup;
2934         mutex_lock(&fs_info->chunk_mutex);
2935         check_system_chunk(trans, map->type);
2936         mutex_unlock(&fs_info->chunk_mutex);
2937
2938         /*
2939          * Take the device list mutex to prevent races with the final phase of
2940          * a device replace operation that replaces the device object associated
2941          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2942          */
2943         mutex_lock(&fs_devices->device_list_mutex);
2944         for (i = 0; i < map->num_stripes; i++) {
2945                 struct btrfs_device *device = map->stripes[i].dev;
2946                 ret = btrfs_free_dev_extent(trans, device,
2947                                             map->stripes[i].physical,
2948                                             &dev_extent_len);
2949                 if (ret) {
2950                         mutex_unlock(&fs_devices->device_list_mutex);
2951                         btrfs_abort_transaction(trans, ret);
2952                         goto out;
2953                 }
2954
2955                 if (device->bytes_used > 0) {
2956                         mutex_lock(&fs_info->chunk_mutex);
2957                         btrfs_device_set_bytes_used(device,
2958                                         device->bytes_used - dev_extent_len);
2959                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2960                         btrfs_clear_space_info_full(fs_info);
2961                         mutex_unlock(&fs_info->chunk_mutex);
2962                 }
2963
2964                 ret = btrfs_update_device(trans, device);
2965                 if (ret) {
2966                         mutex_unlock(&fs_devices->device_list_mutex);
2967                         btrfs_abort_transaction(trans, ret);
2968                         goto out;
2969                 }
2970         }
2971         mutex_unlock(&fs_devices->device_list_mutex);
2972
2973         ret = btrfs_free_chunk(trans, chunk_offset);
2974         if (ret) {
2975                 btrfs_abort_transaction(trans, ret);
2976                 goto out;
2977         }
2978
2979         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2980
2981         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2982                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2983                 if (ret) {
2984                         btrfs_abort_transaction(trans, ret);
2985                         goto out;
2986                 }
2987         }
2988
2989         ret = btrfs_remove_block_group(trans, chunk_offset, em);
2990         if (ret) {
2991                 btrfs_abort_transaction(trans, ret);
2992                 goto out;
2993         }
2994
2995 out:
2996         /* once for us */
2997         free_extent_map(em);
2998         return ret;
2999 }
3000
3001 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3002 {
3003         struct btrfs_root *root = fs_info->chunk_root;
3004         struct btrfs_trans_handle *trans;
3005         struct btrfs_block_group *block_group;
3006         int ret;
3007
3008         /*
3009          * Prevent races with automatic removal of unused block groups.
3010          * After we relocate and before we remove the chunk with offset
3011          * chunk_offset, automatic removal of the block group can kick in,
3012          * resulting in a failure when calling btrfs_remove_chunk() below.
3013          *
3014          * Make sure to acquire this mutex before doing a tree search (dev
3015          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3016          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3017          * we release the path used to search the chunk/dev tree and before
3018          * the current task acquires this mutex and calls us.
3019          */
3020         lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3021
3022         /* step one, relocate all the extents inside this chunk */
3023         btrfs_scrub_pause(fs_info);
3024         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3025         btrfs_scrub_continue(fs_info);
3026         if (ret)
3027                 return ret;
3028
3029         block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3030         if (!block_group)
3031                 return -ENOENT;
3032         btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3033         btrfs_put_block_group(block_group);
3034
3035         trans = btrfs_start_trans_remove_block_group(root->fs_info,
3036                                                      chunk_offset);
3037         if (IS_ERR(trans)) {
3038                 ret = PTR_ERR(trans);
3039                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3040                 return ret;
3041         }
3042
3043         /*
3044          * step two, delete the device extents and the
3045          * chunk tree entries
3046          */
3047         ret = btrfs_remove_chunk(trans, chunk_offset);
3048         btrfs_end_transaction(trans);
3049         return ret;
3050 }
3051
3052 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3053 {
3054         struct btrfs_root *chunk_root = fs_info->chunk_root;
3055         struct btrfs_path *path;
3056         struct extent_buffer *leaf;
3057         struct btrfs_chunk *chunk;
3058         struct btrfs_key key;
3059         struct btrfs_key found_key;
3060         u64 chunk_type;
3061         bool retried = false;
3062         int failed = 0;
3063         int ret;
3064
3065         path = btrfs_alloc_path();
3066         if (!path)
3067                 return -ENOMEM;
3068
3069 again:
3070         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3071         key.offset = (u64)-1;
3072         key.type = BTRFS_CHUNK_ITEM_KEY;
3073
3074         while (1) {
3075                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3076                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3077                 if (ret < 0) {
3078                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3079                         goto error;
3080                 }
3081                 BUG_ON(ret == 0); /* Corruption */
3082
3083                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3084                                           key.type);
3085                 if (ret)
3086                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3087                 if (ret < 0)
3088                         goto error;
3089                 if (ret > 0)
3090                         break;
3091
3092                 leaf = path->nodes[0];
3093                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3094
3095                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3096                                        struct btrfs_chunk);
3097                 chunk_type = btrfs_chunk_type(leaf, chunk);
3098                 btrfs_release_path(path);
3099
3100                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3101                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3102                         if (ret == -ENOSPC)
3103                                 failed++;
3104                         else
3105                                 BUG_ON(ret);
3106                 }
3107                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3108
3109                 if (found_key.offset == 0)
3110                         break;
3111                 key.offset = found_key.offset - 1;
3112         }
3113         ret = 0;
3114         if (failed && !retried) {
3115                 failed = 0;
3116                 retried = true;
3117                 goto again;
3118         } else if (WARN_ON(failed && retried)) {
3119                 ret = -ENOSPC;
3120         }
3121 error:
3122         btrfs_free_path(path);
3123         return ret;
3124 }
3125
3126 /*
3127  * return 1 : allocate a data chunk successfully,
3128  * return <0: errors during allocating a data chunk,
3129  * return 0 : no need to allocate a data chunk.
3130  */
3131 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3132                                       u64 chunk_offset)
3133 {
3134         struct btrfs_block_group *cache;
3135         u64 bytes_used;
3136         u64 chunk_type;
3137
3138         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3139         ASSERT(cache);
3140         chunk_type = cache->flags;
3141         btrfs_put_block_group(cache);
3142
3143         if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3144                 return 0;
3145
3146         spin_lock(&fs_info->data_sinfo->lock);
3147         bytes_used = fs_info->data_sinfo->bytes_used;
3148         spin_unlock(&fs_info->data_sinfo->lock);
3149
3150         if (!bytes_used) {
3151                 struct btrfs_trans_handle *trans;
3152                 int ret;
3153
3154                 trans = btrfs_join_transaction(fs_info->tree_root);
3155                 if (IS_ERR(trans))
3156                         return PTR_ERR(trans);
3157
3158                 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3159                 btrfs_end_transaction(trans);
3160                 if (ret < 0)
3161                         return ret;
3162                 return 1;
3163         }
3164
3165         return 0;
3166 }
3167
3168 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3169                                struct btrfs_balance_control *bctl)
3170 {
3171         struct btrfs_root *root = fs_info->tree_root;
3172         struct btrfs_trans_handle *trans;
3173         struct btrfs_balance_item *item;
3174         struct btrfs_disk_balance_args disk_bargs;
3175         struct btrfs_path *path;
3176         struct extent_buffer *leaf;
3177         struct btrfs_key key;
3178         int ret, err;
3179
3180         path = btrfs_alloc_path();
3181         if (!path)
3182                 return -ENOMEM;
3183
3184         trans = btrfs_start_transaction(root, 0);
3185         if (IS_ERR(trans)) {
3186                 btrfs_free_path(path);
3187                 return PTR_ERR(trans);
3188         }
3189
3190         key.objectid = BTRFS_BALANCE_OBJECTID;
3191         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3192         key.offset = 0;
3193
3194         ret = btrfs_insert_empty_item(trans, root, path, &key,
3195                                       sizeof(*item));
3196         if (ret)
3197                 goto out;
3198
3199         leaf = path->nodes[0];
3200         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3201
3202         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3203
3204         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3205         btrfs_set_balance_data(leaf, item, &disk_bargs);
3206         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3207         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3208         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3209         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3210
3211         btrfs_set_balance_flags(leaf, item, bctl->flags);
3212
3213         btrfs_mark_buffer_dirty(leaf);
3214 out:
3215         btrfs_free_path(path);
3216         err = btrfs_commit_transaction(trans);
3217         if (err && !ret)
3218                 ret = err;
3219         return ret;
3220 }
3221
3222 static int del_balance_item(struct btrfs_fs_info *fs_info)
3223 {
3224         struct btrfs_root *root = fs_info->tree_root;
3225         struct btrfs_trans_handle *trans;
3226         struct btrfs_path *path;
3227         struct btrfs_key key;
3228         int ret, err;
3229
3230         path = btrfs_alloc_path();
3231         if (!path)
3232                 return -ENOMEM;
3233
3234         trans = btrfs_start_transaction(root, 0);
3235         if (IS_ERR(trans)) {
3236                 btrfs_free_path(path);
3237                 return PTR_ERR(trans);
3238         }
3239
3240         key.objectid = BTRFS_BALANCE_OBJECTID;
3241         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3242         key.offset = 0;
3243
3244         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3245         if (ret < 0)
3246                 goto out;
3247         if (ret > 0) {
3248                 ret = -ENOENT;
3249                 goto out;
3250         }
3251
3252         ret = btrfs_del_item(trans, root, path);
3253 out:
3254         btrfs_free_path(path);
3255         err = btrfs_commit_transaction(trans);
3256         if (err && !ret)
3257                 ret = err;
3258         return ret;
3259 }
3260
3261 /*
3262  * This is a heuristic used to reduce the number of chunks balanced on
3263  * resume after balance was interrupted.
3264  */
3265 static void update_balance_args(struct btrfs_balance_control *bctl)
3266 {
3267         /*
3268          * Turn on soft mode for chunk types that were being converted.
3269          */
3270         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3271                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3272         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3273                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3274         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3275                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3276
3277         /*
3278          * Turn on usage filter if is not already used.  The idea is
3279          * that chunks that we have already balanced should be
3280          * reasonably full.  Don't do it for chunks that are being
3281          * converted - that will keep us from relocating unconverted
3282          * (albeit full) chunks.
3283          */
3284         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3285             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3286             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3287                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3288                 bctl->data.usage = 90;
3289         }
3290         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3291             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3292             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3293                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3294                 bctl->sys.usage = 90;
3295         }
3296         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3297             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3298             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3299                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3300                 bctl->meta.usage = 90;
3301         }
3302 }
3303
3304 /*
3305  * Clear the balance status in fs_info and delete the balance item from disk.
3306  */
3307 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3308 {
3309         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3310         int ret;
3311
3312         BUG_ON(!fs_info->balance_ctl);
3313
3314         spin_lock(&fs_info->balance_lock);
3315         fs_info->balance_ctl = NULL;
3316         spin_unlock(&fs_info->balance_lock);
3317
3318         kfree(bctl);
3319         ret = del_balance_item(fs_info);
3320         if (ret)
3321                 btrfs_handle_fs_error(fs_info, ret, NULL);
3322 }
3323
3324 /*
3325  * Balance filters.  Return 1 if chunk should be filtered out
3326  * (should not be balanced).
3327  */
3328 static int chunk_profiles_filter(u64 chunk_type,
3329                                  struct btrfs_balance_args *bargs)
3330 {
3331         chunk_type = chunk_to_extended(chunk_type) &
3332                                 BTRFS_EXTENDED_PROFILE_MASK;
3333
3334         if (bargs->profiles & chunk_type)
3335                 return 0;
3336
3337         return 1;
3338 }
3339
3340 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3341                               struct btrfs_balance_args *bargs)
3342 {
3343         struct btrfs_block_group *cache;
3344         u64 chunk_used;
3345         u64 user_thresh_min;
3346         u64 user_thresh_max;
3347         int ret = 1;
3348
3349         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3350         chunk_used = cache->used;
3351
3352         if (bargs->usage_min == 0)
3353                 user_thresh_min = 0;
3354         else
3355                 user_thresh_min = div_factor_fine(cache->length,
3356                                                   bargs->usage_min);
3357
3358         if (bargs->usage_max == 0)
3359                 user_thresh_max = 1;
3360         else if (bargs->usage_max > 100)
3361                 user_thresh_max = cache->length;
3362         else
3363                 user_thresh_max = div_factor_fine(cache->length,
3364                                                   bargs->usage_max);
3365
3366         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3367                 ret = 0;
3368
3369         btrfs_put_block_group(cache);
3370         return ret;
3371 }
3372
3373 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3374                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3375 {
3376         struct btrfs_block_group *cache;
3377         u64 chunk_used, user_thresh;
3378         int ret = 1;
3379
3380         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3381         chunk_used = cache->used;
3382
3383         if (bargs->usage_min == 0)
3384                 user_thresh = 1;
3385         else if (bargs->usage > 100)
3386                 user_thresh = cache->length;
3387         else
3388                 user_thresh = div_factor_fine(cache->length, bargs->usage);
3389
3390         if (chunk_used < user_thresh)
3391                 ret = 0;
3392
3393         btrfs_put_block_group(cache);
3394         return ret;
3395 }
3396
3397 static int chunk_devid_filter(struct extent_buffer *leaf,
3398                               struct btrfs_chunk *chunk,
3399                               struct btrfs_balance_args *bargs)
3400 {
3401         struct btrfs_stripe *stripe;
3402         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3403         int i;
3404
3405         for (i = 0; i < num_stripes; i++) {
3406                 stripe = btrfs_stripe_nr(chunk, i);
3407                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3408                         return 0;
3409         }
3410
3411         return 1;
3412 }
3413
3414 static u64 calc_data_stripes(u64 type, int num_stripes)
3415 {
3416         const int index = btrfs_bg_flags_to_raid_index(type);
3417         const int ncopies = btrfs_raid_array[index].ncopies;
3418         const int nparity = btrfs_raid_array[index].nparity;
3419
3420         if (nparity)
3421                 return num_stripes - nparity;
3422         else
3423                 return num_stripes / ncopies;
3424 }
3425
3426 /* [pstart, pend) */
3427 static int chunk_drange_filter(struct extent_buffer *leaf,
3428                                struct btrfs_chunk *chunk,
3429                                struct btrfs_balance_args *bargs)
3430 {
3431         struct btrfs_stripe *stripe;
3432         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3433         u64 stripe_offset;
3434         u64 stripe_length;
3435         u64 type;
3436         int factor;
3437         int i;
3438
3439         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3440                 return 0;
3441
3442         type = btrfs_chunk_type(leaf, chunk);
3443         factor = calc_data_stripes(type, num_stripes);
3444
3445         for (i = 0; i < num_stripes; i++) {
3446                 stripe = btrfs_stripe_nr(chunk, i);
3447                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3448                         continue;
3449
3450                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3451                 stripe_length = btrfs_chunk_length(leaf, chunk);
3452                 stripe_length = div_u64(stripe_length, factor);
3453
3454                 if (stripe_offset < bargs->pend &&
3455                     stripe_offset + stripe_length > bargs->pstart)
3456                         return 0;
3457         }
3458
3459         return 1;
3460 }
3461
3462 /* [vstart, vend) */
3463 static int chunk_vrange_filter(struct extent_buffer *leaf,
3464                                struct btrfs_chunk *chunk,
3465                                u64 chunk_offset,
3466                                struct btrfs_balance_args *bargs)
3467 {
3468         if (chunk_offset < bargs->vend &&
3469             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3470                 /* at least part of the chunk is inside this vrange */
3471                 return 0;
3472
3473         return 1;
3474 }
3475
3476 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3477                                struct btrfs_chunk *chunk,
3478                                struct btrfs_balance_args *bargs)
3479 {
3480         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3481
3482         if (bargs->stripes_min <= num_stripes
3483                         && num_stripes <= bargs->stripes_max)
3484                 return 0;
3485
3486         return 1;
3487 }
3488
3489 static int chunk_soft_convert_filter(u64 chunk_type,
3490                                      struct btrfs_balance_args *bargs)
3491 {
3492         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3493                 return 0;
3494
3495         chunk_type = chunk_to_extended(chunk_type) &
3496                                 BTRFS_EXTENDED_PROFILE_MASK;
3497
3498         if (bargs->target == chunk_type)
3499                 return 1;
3500
3501         return 0;
3502 }
3503
3504 static int should_balance_chunk(struct extent_buffer *leaf,
3505                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3506 {
3507         struct btrfs_fs_info *fs_info = leaf->fs_info;
3508         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3509         struct btrfs_balance_args *bargs = NULL;
3510         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3511
3512         /* type filter */
3513         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3514               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3515                 return 0;
3516         }
3517
3518         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3519                 bargs = &bctl->data;
3520         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3521                 bargs = &bctl->sys;
3522         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3523                 bargs = &bctl->meta;
3524
3525         /* profiles filter */
3526         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3527             chunk_profiles_filter(chunk_type, bargs)) {
3528                 return 0;
3529         }
3530
3531         /* usage filter */
3532         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3533             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3534                 return 0;
3535         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3536             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3537                 return 0;
3538         }
3539
3540         /* devid filter */
3541         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3542             chunk_devid_filter(leaf, chunk, bargs)) {
3543                 return 0;
3544         }
3545
3546         /* drange filter, makes sense only with devid filter */
3547         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3548             chunk_drange_filter(leaf, chunk, bargs)) {
3549                 return 0;
3550         }
3551
3552         /* vrange filter */
3553         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3554             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3555                 return 0;
3556         }
3557
3558         /* stripes filter */
3559         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3560             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3561                 return 0;
3562         }
3563
3564         /* soft profile changing mode */
3565         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3566             chunk_soft_convert_filter(chunk_type, bargs)) {
3567                 return 0;
3568         }
3569
3570         /*
3571          * limited by count, must be the last filter
3572          */
3573         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3574                 if (bargs->limit == 0)
3575                         return 0;
3576                 else
3577                         bargs->limit--;
3578         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3579                 /*
3580                  * Same logic as the 'limit' filter; the minimum cannot be
3581                  * determined here because we do not have the global information
3582                  * about the count of all chunks that satisfy the filters.
3583                  */
3584                 if (bargs->limit_max == 0)
3585                         return 0;
3586                 else
3587                         bargs->limit_max--;
3588         }
3589
3590         return 1;
3591 }
3592
3593 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3594 {
3595         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3596         struct btrfs_root *chunk_root = fs_info->chunk_root;
3597         u64 chunk_type;
3598         struct btrfs_chunk *chunk;
3599         struct btrfs_path *path = NULL;
3600         struct btrfs_key key;
3601         struct btrfs_key found_key;
3602         struct extent_buffer *leaf;
3603         int slot;
3604         int ret;
3605         int enospc_errors = 0;
3606         bool counting = true;
3607         /* The single value limit and min/max limits use the same bytes in the */
3608         u64 limit_data = bctl->data.limit;
3609         u64 limit_meta = bctl->meta.limit;
3610         u64 limit_sys = bctl->sys.limit;
3611         u32 count_data = 0;
3612         u32 count_meta = 0;
3613         u32 count_sys = 0;
3614         int chunk_reserved = 0;
3615
3616         path = btrfs_alloc_path();
3617         if (!path) {
3618                 ret = -ENOMEM;
3619                 goto error;
3620         }
3621
3622         /* zero out stat counters */
3623         spin_lock(&fs_info->balance_lock);
3624         memset(&bctl->stat, 0, sizeof(bctl->stat));
3625         spin_unlock(&fs_info->balance_lock);
3626 again:
3627         if (!counting) {
3628                 /*
3629                  * The single value limit and min/max limits use the same bytes
3630                  * in the
3631                  */
3632                 bctl->data.limit = limit_data;
3633                 bctl->meta.limit = limit_meta;
3634                 bctl->sys.limit = limit_sys;
3635         }
3636         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3637         key.offset = (u64)-1;
3638         key.type = BTRFS_CHUNK_ITEM_KEY;
3639
3640         while (1) {
3641                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3642                     atomic_read(&fs_info->balance_cancel_req)) {
3643                         ret = -ECANCELED;
3644                         goto error;
3645                 }
3646
3647                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3648                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3649                 if (ret < 0) {
3650                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3651                         goto error;
3652                 }
3653
3654                 /*
3655                  * this shouldn't happen, it means the last relocate
3656                  * failed
3657                  */
3658                 if (ret == 0)
3659                         BUG(); /* FIXME break ? */
3660
3661                 ret = btrfs_previous_item(chunk_root, path, 0,
3662                                           BTRFS_CHUNK_ITEM_KEY);
3663                 if (ret) {
3664                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3665                         ret = 0;
3666                         break;
3667                 }
3668
3669                 leaf = path->nodes[0];
3670                 slot = path->slots[0];
3671                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3672
3673                 if (found_key.objectid != key.objectid) {
3674                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3675                         break;
3676                 }
3677
3678                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3679                 chunk_type = btrfs_chunk_type(leaf, chunk);
3680
3681                 if (!counting) {
3682                         spin_lock(&fs_info->balance_lock);
3683                         bctl->stat.considered++;
3684                         spin_unlock(&fs_info->balance_lock);
3685                 }
3686
3687                 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3688
3689                 btrfs_release_path(path);
3690                 if (!ret) {
3691                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3692                         goto loop;
3693                 }
3694
3695                 if (counting) {
3696                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3697                         spin_lock(&fs_info->balance_lock);
3698                         bctl->stat.expected++;
3699                         spin_unlock(&fs_info->balance_lock);
3700
3701                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3702                                 count_data++;
3703                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3704                                 count_sys++;
3705                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3706                                 count_meta++;
3707
3708                         goto loop;
3709                 }
3710
3711                 /*
3712                  * Apply limit_min filter, no need to check if the LIMITS
3713                  * filter is used, limit_min is 0 by default
3714                  */
3715                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3716                                         count_data < bctl->data.limit_min)
3717                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3718                                         count_meta < bctl->meta.limit_min)
3719                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3720                                         count_sys < bctl->sys.limit_min)) {
3721                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3722                         goto loop;
3723                 }
3724
3725                 if (!chunk_reserved) {
3726                         /*
3727                          * We may be relocating the only data chunk we have,
3728                          * which could potentially end up with losing data's
3729                          * raid profile, so lets allocate an empty one in
3730                          * advance.
3731                          */
3732                         ret = btrfs_may_alloc_data_chunk(fs_info,
3733                                                          found_key.offset);
3734                         if (ret < 0) {
3735                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3736                                 goto error;
3737                         } else if (ret == 1) {
3738                                 chunk_reserved = 1;
3739                         }
3740                 }
3741
3742                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3743                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3744                 if (ret == -ENOSPC) {
3745                         enospc_errors++;
3746                 } else if (ret == -ETXTBSY) {
3747                         btrfs_info(fs_info,
3748            "skipping relocation of block group %llu due to active swapfile",
3749                                    found_key.offset);
3750                         ret = 0;
3751                 } else if (ret) {
3752                         goto error;
3753                 } else {
3754                         spin_lock(&fs_info->balance_lock);
3755                         bctl->stat.completed++;
3756                         spin_unlock(&fs_info->balance_lock);
3757                 }
3758 loop:
3759                 if (found_key.offset == 0)
3760                         break;
3761                 key.offset = found_key.offset - 1;
3762         }
3763
3764         if (counting) {
3765                 btrfs_release_path(path);
3766                 counting = false;
3767                 goto again;
3768         }
3769 error:
3770         btrfs_free_path(path);
3771         if (enospc_errors) {
3772                 btrfs_info(fs_info, "%d enospc errors during balance",
3773                            enospc_errors);
3774                 if (!ret)
3775                         ret = -ENOSPC;
3776         }
3777
3778         return ret;
3779 }
3780
3781 /**
3782  * alloc_profile_is_valid - see if a given profile is valid and reduced
3783  * @flags: profile to validate
3784  * @extended: if true @flags is treated as an extended profile
3785  */
3786 static int alloc_profile_is_valid(u64 flags, int extended)
3787 {
3788         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3789                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3790
3791         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3792
3793         /* 1) check that all other bits are zeroed */
3794         if (flags & ~mask)
3795                 return 0;
3796
3797         /* 2) see if profile is reduced */
3798         if (flags == 0)
3799                 return !extended; /* "0" is valid for usual profiles */
3800
3801         return has_single_bit_set(flags);
3802 }
3803
3804 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3805 {
3806         /* cancel requested || normal exit path */
3807         return atomic_read(&fs_info->balance_cancel_req) ||
3808                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3809                  atomic_read(&fs_info->balance_cancel_req) == 0);
3810 }
3811
3812 /*
3813  * Validate target profile against allowed profiles and return true if it's OK.
3814  * Otherwise print the error message and return false.
3815  */
3816 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3817                 const struct btrfs_balance_args *bargs,
3818                 u64 allowed, const char *type)
3819 {
3820         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3821                 return true;
3822
3823         /* Profile is valid and does not have bits outside of the allowed set */
3824         if (alloc_profile_is_valid(bargs->target, 1) &&
3825             (bargs->target & ~allowed) == 0)
3826                 return true;
3827
3828         btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3829                         type, btrfs_bg_type_to_raid_name(bargs->target));
3830         return false;
3831 }
3832
3833 /*
3834  * Fill @buf with textual description of balance filter flags @bargs, up to
3835  * @size_buf including the terminating null. The output may be trimmed if it
3836  * does not fit into the provided buffer.
3837  */
3838 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3839                                  u32 size_buf)
3840 {
3841         int ret;
3842         u32 size_bp = size_buf;
3843         char *bp = buf;
3844         u64 flags = bargs->flags;
3845         char tmp_buf[128] = {'\0'};
3846
3847         if (!flags)
3848                 return;
3849
3850 #define CHECK_APPEND_NOARG(a)                                           \
3851         do {                                                            \
3852                 ret = snprintf(bp, size_bp, (a));                       \
3853                 if (ret < 0 || ret >= size_bp)                          \
3854                         goto out_overflow;                              \
3855                 size_bp -= ret;                                         \
3856                 bp += ret;                                              \
3857         } while (0)
3858
3859 #define CHECK_APPEND_1ARG(a, v1)                                        \
3860         do {                                                            \
3861                 ret = snprintf(bp, size_bp, (a), (v1));                 \
3862                 if (ret < 0 || ret >= size_bp)                          \
3863                         goto out_overflow;                              \
3864                 size_bp -= ret;                                         \
3865                 bp += ret;                                              \
3866         } while (0)
3867
3868 #define CHECK_APPEND_2ARG(a, v1, v2)                                    \
3869         do {                                                            \
3870                 ret = snprintf(bp, size_bp, (a), (v1), (v2));           \
3871                 if (ret < 0 || ret >= size_bp)                          \
3872                         goto out_overflow;                              \
3873                 size_bp -= ret;                                         \
3874                 bp += ret;                                              \
3875         } while (0)
3876
3877         if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3878                 CHECK_APPEND_1ARG("convert=%s,",
3879                                   btrfs_bg_type_to_raid_name(bargs->target));
3880
3881         if (flags & BTRFS_BALANCE_ARGS_SOFT)
3882                 CHECK_APPEND_NOARG("soft,");
3883
3884         if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3885                 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3886                                             sizeof(tmp_buf));
3887                 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3888         }
3889
3890         if (flags & BTRFS_BALANCE_ARGS_USAGE)
3891                 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3892
3893         if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3894                 CHECK_APPEND_2ARG("usage=%u..%u,",
3895                                   bargs->usage_min, bargs->usage_max);
3896
3897         if (flags & BTRFS_BALANCE_ARGS_DEVID)
3898                 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3899
3900         if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3901                 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3902                                   bargs->pstart, bargs->pend);
3903
3904         if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3905                 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3906                                   bargs->vstart, bargs->vend);
3907
3908         if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3909                 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3910
3911         if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3912                 CHECK_APPEND_2ARG("limit=%u..%u,",
3913                                 bargs->limit_min, bargs->limit_max);
3914
3915         if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3916                 CHECK_APPEND_2ARG("stripes=%u..%u,",
3917                                   bargs->stripes_min, bargs->stripes_max);
3918
3919 #undef CHECK_APPEND_2ARG
3920 #undef CHECK_APPEND_1ARG
3921 #undef CHECK_APPEND_NOARG
3922
3923 out_overflow:
3924
3925         if (size_bp < size_buf)
3926                 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3927         else
3928                 buf[0] = '\0';
3929 }
3930
3931 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3932 {
3933         u32 size_buf = 1024;
3934         char tmp_buf[192] = {'\0'};
3935         char *buf;
3936         char *bp;
3937         u32 size_bp = size_buf;
3938         int ret;
3939         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3940
3941         buf = kzalloc(size_buf, GFP_KERNEL);
3942         if (!buf)
3943                 return;
3944
3945         bp = buf;
3946
3947 #define CHECK_APPEND_1ARG(a, v1)                                        \
3948         do {                                                            \
3949                 ret = snprintf(bp, size_bp, (a), (v1));                 \
3950                 if (ret < 0 || ret >= size_bp)                          \
3951                         goto out_overflow;                              \
3952                 size_bp -= ret;                                         \
3953                 bp += ret;                                              \
3954         } while (0)
3955
3956         if (bctl->flags & BTRFS_BALANCE_FORCE)
3957                 CHECK_APPEND_1ARG("%s", "-f ");
3958
3959         if (bctl->flags & BTRFS_BALANCE_DATA) {
3960                 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
3961                 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
3962         }
3963
3964         if (bctl->flags & BTRFS_BALANCE_METADATA) {
3965                 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
3966                 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
3967         }
3968
3969         if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
3970                 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
3971                 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
3972         }
3973
3974 #undef CHECK_APPEND_1ARG
3975
3976 out_overflow:
3977
3978         if (size_bp < size_buf)
3979                 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
3980         btrfs_info(fs_info, "balance: %s %s",
3981                    (bctl->flags & BTRFS_BALANCE_RESUME) ?
3982                    "resume" : "start", buf);
3983
3984         kfree(buf);
3985 }
3986
3987 /*
3988  * Should be called with balance mutexe held
3989  */
3990 int btrfs_balance(struct btrfs_fs_info *fs_info,
3991                   struct btrfs_balance_control *bctl,
3992                   struct btrfs_ioctl_balance_args *bargs)
3993 {
3994         u64 meta_target, data_target;
3995         u64 allowed;
3996         int mixed = 0;
3997         int ret;
3998         u64 num_devices;
3999         unsigned seq;
4000         bool reducing_redundancy;
4001         int i;
4002
4003         if (btrfs_fs_closing(fs_info) ||
4004             atomic_read(&fs_info->balance_pause_req) ||
4005             btrfs_should_cancel_balance(fs_info)) {
4006                 ret = -EINVAL;
4007                 goto out;
4008         }
4009
4010         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4011         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4012                 mixed = 1;
4013
4014         /*
4015          * In case of mixed groups both data and meta should be picked,
4016          * and identical options should be given for both of them.
4017          */
4018         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4019         if (mixed && (bctl->flags & allowed)) {
4020                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4021                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4022                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4023                         btrfs_err(fs_info,
4024           "balance: mixed groups data and metadata options must be the same");
4025                         ret = -EINVAL;
4026                         goto out;
4027                 }
4028         }
4029
4030         /*
4031          * rw_devices will not change at the moment, device add/delete/replace
4032          * are excluded by EXCL_OP
4033          */
4034         num_devices = fs_info->fs_devices->rw_devices;
4035
4036         /*
4037          * SINGLE profile on-disk has no profile bit, but in-memory we have a
4038          * special bit for it, to make it easier to distinguish.  Thus we need
4039          * to set it manually, or balance would refuse the profile.
4040          */
4041         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4042         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4043                 if (num_devices >= btrfs_raid_array[i].devs_min)
4044                         allowed |= btrfs_raid_array[i].bg_flag;
4045
4046         if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4047             !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4048             !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4049                 ret = -EINVAL;
4050                 goto out;
4051         }
4052
4053         /*
4054          * Allow to reduce metadata or system integrity only if force set for
4055          * profiles with redundancy (copies, parity)
4056          */
4057         allowed = 0;
4058         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4059                 if (btrfs_raid_array[i].ncopies >= 2 ||
4060                     btrfs_raid_array[i].tolerated_failures >= 1)
4061                         allowed |= btrfs_raid_array[i].bg_flag;
4062         }
4063         do {
4064                 seq = read_seqbegin(&fs_info->profiles_lock);
4065
4066                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4067                      (fs_info->avail_system_alloc_bits & allowed) &&
4068                      !(bctl->sys.target & allowed)) ||
4069                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4070                      (fs_info->avail_metadata_alloc_bits & allowed) &&
4071                      !(bctl->meta.target & allowed)))
4072                         reducing_redundancy = true;
4073                 else
4074                         reducing_redundancy = false;
4075
4076                 /* if we're not converting, the target field is uninitialized */
4077                 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4078                         bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4079                 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4080                         bctl->data.target : fs_info->avail_data_alloc_bits;
4081         } while (read_seqretry(&fs_info->profiles_lock, seq));
4082
4083         if (reducing_redundancy) {
4084                 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4085                         btrfs_info(fs_info,
4086                            "balance: force reducing metadata redundancy");
4087                 } else {
4088                         btrfs_err(fs_info,
4089         "balance: reduces metadata redundancy, use --force if you want this");
4090                         ret = -EINVAL;
4091                         goto out;
4092                 }
4093         }
4094
4095         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4096                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4097                 btrfs_warn(fs_info,
4098         "balance: metadata profile %s has lower redundancy than data profile %s",
4099                                 btrfs_bg_type_to_raid_name(meta_target),
4100                                 btrfs_bg_type_to_raid_name(data_target));
4101         }
4102
4103         if (fs_info->send_in_progress) {
4104                 btrfs_warn_rl(fs_info,
4105 "cannot run balance while send operations are in progress (%d in progress)",
4106                               fs_info->send_in_progress);
4107                 ret = -EAGAIN;
4108                 goto out;
4109         }
4110
4111         ret = insert_balance_item(fs_info, bctl);
4112         if (ret && ret != -EEXIST)
4113                 goto out;
4114
4115         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4116                 BUG_ON(ret == -EEXIST);
4117                 BUG_ON(fs_info->balance_ctl);
4118                 spin_lock(&fs_info->balance_lock);
4119                 fs_info->balance_ctl = bctl;
4120                 spin_unlock(&fs_info->balance_lock);
4121         } else {
4122                 BUG_ON(ret != -EEXIST);
4123                 spin_lock(&fs_info->balance_lock);
4124                 update_balance_args(bctl);
4125                 spin_unlock(&fs_info->balance_lock);
4126         }
4127
4128         ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4129         set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4130         describe_balance_start_or_resume(fs_info);
4131         mutex_unlock(&fs_info->balance_mutex);
4132
4133         ret = __btrfs_balance(fs_info);
4134
4135         mutex_lock(&fs_info->balance_mutex);
4136         if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4137                 btrfs_info(fs_info, "balance: paused");
4138         else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req))
4139                 btrfs_info(fs_info, "balance: canceled");
4140         else
4141                 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4142
4143         clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4144
4145         if (bargs) {
4146                 memset(bargs, 0, sizeof(*bargs));
4147                 btrfs_update_ioctl_balance_args(fs_info, bargs);
4148         }
4149
4150         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4151             balance_need_close(fs_info)) {
4152                 reset_balance_state(fs_info);
4153                 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4154         }
4155
4156         wake_up(&fs_info->balance_wait_q);
4157
4158         return ret;
4159 out:
4160         if (bctl->flags & BTRFS_BALANCE_RESUME)
4161                 reset_balance_state(fs_info);
4162         else
4163                 kfree(bctl);
4164         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4165
4166         return ret;
4167 }
4168
4169 static int balance_kthread(void *data)
4170 {
4171         struct btrfs_fs_info *fs_info = data;
4172         int ret = 0;
4173
4174         mutex_lock(&fs_info->balance_mutex);
4175         if (fs_info->balance_ctl)
4176                 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4177         mutex_unlock(&fs_info->balance_mutex);
4178
4179         return ret;
4180 }
4181
4182 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4183 {
4184         struct task_struct *tsk;
4185
4186         mutex_lock(&fs_info->balance_mutex);
4187         if (!fs_info->balance_ctl) {
4188                 mutex_unlock(&fs_info->balance_mutex);
4189                 return 0;
4190         }
4191         mutex_unlock(&fs_info->balance_mutex);
4192
4193         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4194                 btrfs_info(fs_info, "balance: resume skipped");
4195                 return 0;
4196         }
4197
4198         /*
4199          * A ro->rw remount sequence should continue with the paused balance
4200          * regardless of who pauses it, system or the user as of now, so set
4201          * the resume flag.
4202          */
4203         spin_lock(&fs_info->balance_lock);
4204         fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4205         spin_unlock(&fs_info->balance_lock);
4206
4207         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4208         return PTR_ERR_OR_ZERO(tsk);
4209 }
4210
4211 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4212 {
4213         struct btrfs_balance_control *bctl;
4214         struct btrfs_balance_item *item;
4215         struct btrfs_disk_balance_args disk_bargs;
4216         struct btrfs_path *path;
4217         struct extent_buffer *leaf;
4218         struct btrfs_key key;
4219         int ret;
4220
4221         path = btrfs_alloc_path();
4222         if (!path)
4223                 return -ENOMEM;
4224
4225         key.objectid = BTRFS_BALANCE_OBJECTID;
4226         key.type = BTRFS_TEMPORARY_ITEM_KEY;
4227         key.offset = 0;
4228
4229         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4230         if (ret < 0)
4231                 goto out;
4232         if (ret > 0) { /* ret = -ENOENT; */
4233                 ret = 0;
4234                 goto out;
4235         }
4236
4237         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4238         if (!bctl) {
4239                 ret = -ENOMEM;
4240                 goto out;
4241         }
4242
4243         leaf = path->nodes[0];
4244         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4245
4246         bctl->flags = btrfs_balance_flags(leaf, item);
4247         bctl->flags |= BTRFS_BALANCE_RESUME;
4248
4249         btrfs_balance_data(leaf, item, &disk_bargs);
4250         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4251         btrfs_balance_meta(leaf, item, &disk_bargs);
4252         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4253         btrfs_balance_sys(leaf, item, &disk_bargs);
4254         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4255
4256         /*
4257          * This should never happen, as the paused balance state is recovered
4258          * during mount without any chance of other exclusive ops to collide.
4259          *
4260          * This gives the exclusive op status to balance and keeps in paused
4261          * state until user intervention (cancel or umount). If the ownership
4262          * cannot be assigned, show a message but do not fail. The balance
4263          * is in a paused state and must have fs_info::balance_ctl properly
4264          * set up.
4265          */
4266         if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4267                 btrfs_warn(fs_info,
4268         "balance: cannot set exclusive op status, resume manually");
4269
4270         mutex_lock(&fs_info->balance_mutex);
4271         BUG_ON(fs_info->balance_ctl);
4272         spin_lock(&fs_info->balance_lock);
4273         fs_info->balance_ctl = bctl;
4274         spin_unlock(&fs_info->balance_lock);
4275         mutex_unlock(&fs_info->balance_mutex);
4276 out:
4277         btrfs_free_path(path);
4278         return ret;
4279 }
4280
4281 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4282 {
4283         int ret = 0;
4284
4285         mutex_lock(&fs_info->balance_mutex);
4286         if (!fs_info->balance_ctl) {
4287                 mutex_unlock(&fs_info->balance_mutex);
4288                 return -ENOTCONN;
4289         }
4290
4291         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4292                 atomic_inc(&fs_info->balance_pause_req);
4293                 mutex_unlock(&fs_info->balance_mutex);
4294
4295                 wait_event(fs_info->balance_wait_q,
4296                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4297
4298                 mutex_lock(&fs_info->balance_mutex);
4299                 /* we are good with balance_ctl ripped off from under us */
4300                 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4301                 atomic_dec(&fs_info->balance_pause_req);
4302         } else {
4303                 ret = -ENOTCONN;
4304         }
4305
4306         mutex_unlock(&fs_info->balance_mutex);
4307         return ret;
4308 }
4309
4310 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4311 {
4312         mutex_lock(&fs_info->balance_mutex);
4313         if (!fs_info->balance_ctl) {
4314                 mutex_unlock(&fs_info->balance_mutex);
4315                 return -ENOTCONN;
4316         }
4317
4318         /*
4319          * A paused balance with the item stored on disk can be resumed at
4320          * mount time if the mount is read-write. Otherwise it's still paused
4321          * and we must not allow cancelling as it deletes the item.
4322          */
4323         if (sb_rdonly(fs_info->sb)) {
4324                 mutex_unlock(&fs_info->balance_mutex);
4325                 return -EROFS;
4326         }
4327
4328         atomic_inc(&fs_info->balance_cancel_req);
4329         /*
4330          * if we are running just wait and return, balance item is
4331          * deleted in btrfs_balance in this case
4332          */
4333         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4334                 mutex_unlock(&fs_info->balance_mutex);
4335                 wait_event(fs_info->balance_wait_q,
4336                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4337                 mutex_lock(&fs_info->balance_mutex);
4338         } else {
4339                 mutex_unlock(&fs_info->balance_mutex);
4340                 /*
4341                  * Lock released to allow other waiters to continue, we'll
4342                  * reexamine the status again.
4343                  */
4344                 mutex_lock(&fs_info->balance_mutex);
4345
4346                 if (fs_info->balance_ctl) {
4347                         reset_balance_state(fs_info);
4348                         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4349                         btrfs_info(fs_info, "balance: canceled");
4350                 }
4351         }
4352
4353         BUG_ON(fs_info->balance_ctl ||
4354                 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4355         atomic_dec(&fs_info->balance_cancel_req);
4356         mutex_unlock(&fs_info->balance_mutex);
4357         return 0;
4358 }
4359
4360 int btrfs_uuid_scan_kthread(void *data)
4361 {
4362         struct btrfs_fs_info *fs_info = data;
4363         struct btrfs_root *root = fs_info->tree_root;
4364         struct btrfs_key key;
4365         struct btrfs_path *path = NULL;
4366         int ret = 0;
4367         struct extent_buffer *eb;
4368         int slot;
4369         struct btrfs_root_item root_item;
4370         u32 item_size;
4371         struct btrfs_trans_handle *trans = NULL;
4372         bool closing = false;
4373
4374         path = btrfs_alloc_path();
4375         if (!path) {
4376                 ret = -ENOMEM;
4377                 goto out;
4378         }
4379
4380         key.objectid = 0;
4381         key.type = BTRFS_ROOT_ITEM_KEY;
4382         key.offset = 0;
4383
4384         while (1) {
4385                 if (btrfs_fs_closing(fs_info)) {
4386                         closing = true;
4387                         break;
4388                 }
4389                 ret = btrfs_search_forward(root, &key, path,
4390                                 BTRFS_OLDEST_GENERATION);
4391                 if (ret) {
4392                         if (ret > 0)
4393                                 ret = 0;
4394                         break;
4395                 }
4396
4397                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4398                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4399                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4400                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4401                         goto skip;
4402
4403                 eb = path->nodes[0];
4404                 slot = path->slots[0];
4405                 item_size = btrfs_item_size_nr(eb, slot);
4406                 if (item_size < sizeof(root_item))
4407                         goto skip;
4408
4409                 read_extent_buffer(eb, &root_item,
4410                                    btrfs_item_ptr_offset(eb, slot),
4411                                    (int)sizeof(root_item));
4412                 if (btrfs_root_refs(&root_item) == 0)
4413                         goto skip;
4414
4415                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4416                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4417                         if (trans)
4418                                 goto update_tree;
4419
4420                         btrfs_release_path(path);
4421                         /*
4422                          * 1 - subvol uuid item
4423                          * 1 - received_subvol uuid item
4424                          */
4425                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4426                         if (IS_ERR(trans)) {
4427                                 ret = PTR_ERR(trans);
4428                                 break;
4429                         }
4430                         continue;
4431                 } else {
4432                         goto skip;
4433                 }
4434 update_tree:
4435                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4436                         ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4437                                                   BTRFS_UUID_KEY_SUBVOL,
4438                                                   key.objectid);
4439                         if (ret < 0) {
4440                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4441                                         ret);
4442                                 break;
4443                         }
4444                 }
4445
4446                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4447                         ret = btrfs_uuid_tree_add(trans,
4448                                                   root_item.received_uuid,
4449                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4450                                                   key.objectid);
4451                         if (ret < 0) {
4452                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4453                                         ret);
4454                                 break;
4455                         }
4456                 }
4457
4458 skip:
4459                 if (trans) {
4460                         ret = btrfs_end_transaction(trans);
4461                         trans = NULL;
4462                         if (ret)
4463                                 break;
4464                 }
4465
4466                 btrfs_release_path(path);
4467                 if (key.offset < (u64)-1) {
4468                         key.offset++;
4469                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4470                         key.offset = 0;
4471                         key.type = BTRFS_ROOT_ITEM_KEY;
4472                 } else if (key.objectid < (u64)-1) {
4473                         key.offset = 0;
4474                         key.type = BTRFS_ROOT_ITEM_KEY;
4475                         key.objectid++;
4476                 } else {
4477                         break;
4478                 }
4479                 cond_resched();
4480         }
4481
4482 out:
4483         btrfs_free_path(path);
4484         if (trans && !IS_ERR(trans))
4485                 btrfs_end_transaction(trans);
4486         if (ret)
4487                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4488         else if (!closing)
4489                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4490         up(&fs_info->uuid_tree_rescan_sem);
4491         return 0;
4492 }
4493
4494 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4495 {
4496         struct btrfs_trans_handle *trans;
4497         struct btrfs_root *tree_root = fs_info->tree_root;
4498         struct btrfs_root *uuid_root;
4499         struct task_struct *task;
4500         int ret;
4501
4502         /*
4503          * 1 - root node
4504          * 1 - root item
4505          */
4506         trans = btrfs_start_transaction(tree_root, 2);
4507         if (IS_ERR(trans))
4508                 return PTR_ERR(trans);
4509
4510         uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4511         if (IS_ERR(uuid_root)) {
4512                 ret = PTR_ERR(uuid_root);
4513                 btrfs_abort_transaction(trans, ret);
4514                 btrfs_end_transaction(trans);
4515                 return ret;
4516         }
4517
4518         fs_info->uuid_root = uuid_root;
4519
4520         ret = btrfs_commit_transaction(trans);
4521         if (ret)
4522                 return ret;
4523
4524         down(&fs_info->uuid_tree_rescan_sem);
4525         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4526         if (IS_ERR(task)) {
4527                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4528                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4529                 up(&fs_info->uuid_tree_rescan_sem);
4530                 return PTR_ERR(task);
4531         }
4532
4533         return 0;
4534 }
4535
4536 /*
4537  * shrinking a device means finding all of the device extents past
4538  * the new size, and then following the back refs to the chunks.
4539  * The chunk relocation code actually frees the device extent
4540  */
4541 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4542 {
4543         struct btrfs_fs_info *fs_info = device->fs_info;
4544         struct btrfs_root *root = fs_info->dev_root;
4545         struct btrfs_trans_handle *trans;
4546         struct btrfs_dev_extent *dev_extent = NULL;
4547         struct btrfs_path *path;
4548         u64 length;
4549         u64 chunk_offset;
4550         int ret;
4551         int slot;
4552         int failed = 0;
4553         bool retried = false;
4554         struct extent_buffer *l;
4555         struct btrfs_key key;
4556         struct btrfs_super_block *super_copy = fs_info->super_copy;
4557         u64 old_total = btrfs_super_total_bytes(super_copy);
4558         u64 old_size = btrfs_device_get_total_bytes(device);
4559         u64 diff;
4560         u64 start;
4561
4562         new_size = round_down(new_size, fs_info->sectorsize);
4563         start = new_size;
4564         diff = round_down(old_size - new_size, fs_info->sectorsize);
4565
4566         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4567                 return -EINVAL;
4568
4569         path = btrfs_alloc_path();
4570         if (!path)
4571                 return -ENOMEM;
4572
4573         path->reada = READA_BACK;
4574
4575         trans = btrfs_start_transaction(root, 0);
4576         if (IS_ERR(trans)) {
4577                 btrfs_free_path(path);
4578                 return PTR_ERR(trans);
4579         }
4580
4581         mutex_lock(&fs_info->chunk_mutex);
4582
4583         btrfs_device_set_total_bytes(device, new_size);
4584         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4585                 device->fs_devices->total_rw_bytes -= diff;
4586                 atomic64_sub(diff, &fs_info->free_chunk_space);
4587         }
4588
4589         /*
4590          * Once the device's size has been set to the new size, ensure all
4591          * in-memory chunks are synced to disk so that the loop below sees them
4592          * and relocates them accordingly.
4593          */
4594         if (contains_pending_extent(device, &start, diff)) {
4595                 mutex_unlock(&fs_info->chunk_mutex);
4596                 ret = btrfs_commit_transaction(trans);
4597                 if (ret)
4598                         goto done;
4599         } else {
4600                 mutex_unlock(&fs_info->chunk_mutex);
4601                 btrfs_end_transaction(trans);
4602         }
4603
4604 again:
4605         key.objectid = device->devid;
4606         key.offset = (u64)-1;
4607         key.type = BTRFS_DEV_EXTENT_KEY;
4608
4609         do {
4610                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4611                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4612                 if (ret < 0) {
4613                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4614                         goto done;
4615                 }
4616
4617                 ret = btrfs_previous_item(root, path, 0, key.type);
4618                 if (ret)
4619                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4620                 if (ret < 0)
4621                         goto done;
4622                 if (ret) {
4623                         ret = 0;
4624                         btrfs_release_path(path);
4625                         break;
4626                 }
4627
4628                 l = path->nodes[0];
4629                 slot = path->slots[0];
4630                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4631
4632                 if (key.objectid != device->devid) {
4633                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4634                         btrfs_release_path(path);
4635                         break;
4636                 }
4637
4638                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4639                 length = btrfs_dev_extent_length(l, dev_extent);
4640
4641                 if (key.offset + length <= new_size) {
4642                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4643                         btrfs_release_path(path);
4644                         break;
4645                 }
4646
4647                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4648                 btrfs_release_path(path);
4649
4650                 /*
4651                  * We may be relocating the only data chunk we have,
4652                  * which could potentially end up with losing data's
4653                  * raid profile, so lets allocate an empty one in
4654                  * advance.
4655                  */
4656                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4657                 if (ret < 0) {
4658                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4659                         goto done;
4660                 }
4661
4662                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4663                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4664                 if (ret == -ENOSPC) {
4665                         failed++;
4666                 } else if (ret) {
4667                         if (ret == -ETXTBSY) {
4668                                 btrfs_warn(fs_info,
4669                    "could not shrink block group %llu due to active swapfile",
4670                                            chunk_offset);
4671                         }
4672                         goto done;
4673                 }
4674         } while (key.offset-- > 0);
4675
4676         if (failed && !retried) {
4677                 failed = 0;
4678                 retried = true;
4679                 goto again;
4680         } else if (failed && retried) {
4681                 ret = -ENOSPC;
4682                 goto done;
4683         }
4684
4685         /* Shrinking succeeded, else we would be at "done". */
4686         trans = btrfs_start_transaction(root, 0);
4687         if (IS_ERR(trans)) {
4688                 ret = PTR_ERR(trans);
4689                 goto done;
4690         }
4691
4692         mutex_lock(&fs_info->chunk_mutex);
4693         btrfs_device_set_disk_total_bytes(device, new_size);
4694         if (list_empty(&device->post_commit_list))
4695                 list_add_tail(&device->post_commit_list,
4696                               &trans->transaction->dev_update_list);
4697
4698         WARN_ON(diff > old_total);
4699         btrfs_set_super_total_bytes(super_copy,
4700                         round_down(old_total - diff, fs_info->sectorsize));
4701         mutex_unlock(&fs_info->chunk_mutex);
4702
4703         /* Now btrfs_update_device() will change the on-disk size. */
4704         ret = btrfs_update_device(trans, device);
4705         if (ret < 0) {
4706                 btrfs_abort_transaction(trans, ret);
4707                 btrfs_end_transaction(trans);
4708         } else {
4709                 ret = btrfs_commit_transaction(trans);
4710         }
4711 done:
4712         btrfs_free_path(path);
4713         if (ret) {
4714                 mutex_lock(&fs_info->chunk_mutex);
4715                 btrfs_device_set_total_bytes(device, old_size);
4716                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4717                         device->fs_devices->total_rw_bytes += diff;
4718                 atomic64_add(diff, &fs_info->free_chunk_space);
4719                 mutex_unlock(&fs_info->chunk_mutex);
4720         }
4721         return ret;
4722 }
4723
4724 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4725                            struct btrfs_key *key,
4726                            struct btrfs_chunk *chunk, int item_size)
4727 {
4728         struct btrfs_super_block *super_copy = fs_info->super_copy;
4729         struct btrfs_disk_key disk_key;
4730         u32 array_size;
4731         u8 *ptr;
4732
4733         mutex_lock(&fs_info->chunk_mutex);
4734         array_size = btrfs_super_sys_array_size(super_copy);
4735         if (array_size + item_size + sizeof(disk_key)
4736                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4737                 mutex_unlock(&fs_info->chunk_mutex);
4738                 return -EFBIG;
4739         }
4740
4741         ptr = super_copy->sys_chunk_array + array_size;
4742         btrfs_cpu_key_to_disk(&disk_key, key);
4743         memcpy(ptr, &disk_key, sizeof(disk_key));
4744         ptr += sizeof(disk_key);
4745         memcpy(ptr, chunk, item_size);
4746         item_size += sizeof(disk_key);
4747         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4748         mutex_unlock(&fs_info->chunk_mutex);
4749
4750         return 0;
4751 }
4752
4753 /*
4754  * sort the devices in descending order by max_avail, total_avail
4755  */
4756 static int btrfs_cmp_device_info(const void *a, const void *b)
4757 {
4758         const struct btrfs_device_info *di_a = a;
4759         const struct btrfs_device_info *di_b = b;
4760
4761         if (di_a->max_avail > di_b->max_avail)
4762                 return -1;
4763         if (di_a->max_avail < di_b->max_avail)
4764                 return 1;
4765         if (di_a->total_avail > di_b->total_avail)
4766                 return -1;
4767         if (di_a->total_avail < di_b->total_avail)
4768                 return 1;
4769         return 0;
4770 }
4771
4772 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4773 {
4774         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4775                 return;
4776
4777         btrfs_set_fs_incompat(info, RAID56);
4778 }
4779
4780 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4781 {
4782         if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4783                 return;
4784
4785         btrfs_set_fs_incompat(info, RAID1C34);
4786 }
4787
4788 /*
4789  * Structure used internally for __btrfs_alloc_chunk() function.
4790  * Wraps needed parameters.
4791  */
4792 struct alloc_chunk_ctl {
4793         u64 start;
4794         u64 type;
4795         /* Total number of stripes to allocate */
4796         int num_stripes;
4797         /* sub_stripes info for map */
4798         int sub_stripes;
4799         /* Stripes per device */
4800         int dev_stripes;
4801         /* Maximum number of devices to use */
4802         int devs_max;
4803         /* Minimum number of devices to use */
4804         int devs_min;
4805         /* ndevs has to be a multiple of this */
4806         int devs_increment;
4807         /* Number of copies */
4808         int ncopies;
4809         /* Number of stripes worth of bytes to store parity information */
4810         int nparity;
4811         u64 max_stripe_size;
4812         u64 max_chunk_size;
4813         u64 dev_extent_min;
4814         u64 stripe_size;
4815         u64 chunk_size;
4816         int ndevs;
4817 };
4818
4819 static void init_alloc_chunk_ctl_policy_regular(
4820                                 struct btrfs_fs_devices *fs_devices,
4821                                 struct alloc_chunk_ctl *ctl)
4822 {
4823         u64 type = ctl->type;
4824
4825         if (type & BTRFS_BLOCK_GROUP_DATA) {
4826                 ctl->max_stripe_size = SZ_1G;
4827                 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4828         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4829                 /* For larger filesystems, use larger metadata chunks */
4830                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4831                         ctl->max_stripe_size = SZ_1G;
4832                 else
4833                         ctl->max_stripe_size = SZ_256M;
4834                 ctl->max_chunk_size = ctl->max_stripe_size;
4835         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4836                 ctl->max_stripe_size = SZ_32M;
4837                 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4838                 ctl->devs_max = min_t(int, ctl->devs_max,
4839                                       BTRFS_MAX_DEVS_SYS_CHUNK);
4840         } else {
4841                 BUG();
4842         }
4843
4844         /* We don't want a chunk larger than 10% of writable space */
4845         ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4846                                   ctl->max_chunk_size);
4847         ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
4848 }
4849
4850 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
4851                                  struct alloc_chunk_ctl *ctl)
4852 {
4853         int index = btrfs_bg_flags_to_raid_index(ctl->type);
4854
4855         ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
4856         ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
4857         ctl->devs_max = btrfs_raid_array[index].devs_max;
4858         if (!ctl->devs_max)
4859                 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
4860         ctl->devs_min = btrfs_raid_array[index].devs_min;
4861         ctl->devs_increment = btrfs_raid_array[index].devs_increment;
4862         ctl->ncopies = btrfs_raid_array[index].ncopies;
4863         ctl->nparity = btrfs_raid_array[index].nparity;
4864         ctl->ndevs = 0;
4865
4866         switch (fs_devices->chunk_alloc_policy) {
4867         case BTRFS_CHUNK_ALLOC_REGULAR:
4868                 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
4869                 break;
4870         default:
4871                 BUG();
4872         }
4873 }
4874
4875 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
4876                               struct alloc_chunk_ctl *ctl,
4877                               struct btrfs_device_info *devices_info)
4878 {
4879         struct btrfs_fs_info *info = fs_devices->fs_info;
4880         struct btrfs_device *device;
4881         u64 total_avail;
4882         u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
4883         int ret;
4884         int ndevs = 0;
4885         u64 max_avail;
4886         u64 dev_offset;
4887
4888         /*
4889          * in the first pass through the devices list, we gather information
4890          * about the available holes on each device.
4891          */
4892         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4893                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4894                         WARN(1, KERN_ERR
4895                                "BTRFS: read-only device in alloc_list\n");
4896                         continue;
4897                 }
4898
4899                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4900                                         &device->dev_state) ||
4901                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4902                         continue;
4903
4904                 if (device->total_bytes > device->bytes_used)
4905                         total_avail = device->total_bytes - device->bytes_used;
4906                 else
4907                         total_avail = 0;
4908
4909                 /* If there is no space on this device, skip it. */
4910                 if (total_avail < ctl->dev_extent_min)
4911                         continue;
4912
4913                 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
4914                                            &max_avail);
4915                 if (ret && ret != -ENOSPC)
4916                         return ret;
4917
4918                 if (ret == 0)
4919                         max_avail = dev_extent_want;
4920
4921                 if (max_avail < ctl->dev_extent_min) {
4922                         if (btrfs_test_opt(info, ENOSPC_DEBUG))
4923                                 btrfs_debug(info,
4924                         "%s: devid %llu has no free space, have=%llu want=%llu",
4925                                             __func__, device->devid, max_avail,
4926                                             ctl->dev_extent_min);
4927                         continue;
4928                 }
4929
4930                 if (ndevs == fs_devices->rw_devices) {
4931                         WARN(1, "%s: found more than %llu devices\n",
4932                              __func__, fs_devices->rw_devices);
4933                         break;
4934                 }
4935                 devices_info[ndevs].dev_offset = dev_offset;
4936                 devices_info[ndevs].max_avail = max_avail;
4937                 devices_info[ndevs].total_avail = total_avail;
4938                 devices_info[ndevs].dev = device;
4939                 ++ndevs;
4940         }
4941         ctl->ndevs = ndevs;
4942
4943         /*
4944          * now sort the devices by hole size / available space
4945          */
4946         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4947              btrfs_cmp_device_info, NULL);
4948
4949         return 0;
4950 }
4951
4952 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
4953                                       struct btrfs_device_info *devices_info)
4954 {
4955         /* Number of stripes that count for block group size */
4956         int data_stripes;
4957
4958         /*
4959          * The primary goal is to maximize the number of stripes, so use as
4960          * many devices as possible, even if the stripes are not maximum sized.
4961          *
4962          * The DUP profile stores more than one stripe per device, the
4963          * max_avail is the total size so we have to adjust.
4964          */
4965         ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
4966                                    ctl->dev_stripes);
4967         ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
4968
4969         /* This will have to be fixed for RAID1 and RAID10 over more drives */
4970         data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
4971
4972         /*
4973          * Use the number of data stripes to figure out how big this chunk is
4974          * really going to be in terms of logical address space, and compare
4975          * that answer with the max chunk size. If it's higher, we try to
4976          * reduce stripe_size.
4977          */
4978         if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
4979                 /*
4980                  * Reduce stripe_size, round it up to a 16MB boundary again and
4981                  * then use it, unless it ends up being even bigger than the
4982                  * previous value we had already.
4983                  */
4984                 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
4985                                                         data_stripes), SZ_16M),
4986                                        ctl->stripe_size);
4987         }
4988
4989         /* Align to BTRFS_STRIPE_LEN */
4990         ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
4991         ctl->chunk_size = ctl->stripe_size * data_stripes;
4992
4993         return 0;
4994 }
4995
4996 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
4997                               struct alloc_chunk_ctl *ctl,
4998                               struct btrfs_device_info *devices_info)
4999 {
5000         struct btrfs_fs_info *info = fs_devices->fs_info;
5001
5002         /*
5003          * Round down to number of usable stripes, devs_increment can be any
5004          * number so we can't use round_down() that requires power of 2, while
5005          * rounddown is safe.
5006          */
5007         ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5008
5009         if (ctl->ndevs < ctl->devs_min) {
5010                 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5011                         btrfs_debug(info,
5012         "%s: not enough devices with free space: have=%d minimum required=%d",
5013                                     __func__, ctl->ndevs, ctl->devs_min);
5014                 }
5015                 return -ENOSPC;
5016         }
5017
5018         ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5019
5020         switch (fs_devices->chunk_alloc_policy) {
5021         case BTRFS_CHUNK_ALLOC_REGULAR:
5022                 return decide_stripe_size_regular(ctl, devices_info);
5023         default:
5024                 BUG();
5025         }
5026 }
5027
5028 static int create_chunk(struct btrfs_trans_handle *trans,
5029                         struct alloc_chunk_ctl *ctl,
5030                         struct btrfs_device_info *devices_info)
5031 {
5032         struct btrfs_fs_info *info = trans->fs_info;
5033         struct map_lookup *map = NULL;
5034         struct extent_map_tree *em_tree;
5035         struct extent_map *em;
5036         u64 start = ctl->start;
5037         u64 type = ctl->type;
5038         int ret;
5039         int i;
5040         int j;
5041
5042         map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5043         if (!map)
5044                 return -ENOMEM;
5045         map->num_stripes = ctl->num_stripes;
5046
5047         for (i = 0; i < ctl->ndevs; ++i) {
5048                 for (j = 0; j < ctl->dev_stripes; ++j) {
5049                         int s = i * ctl->dev_stripes + j;
5050                         map->stripes[s].dev = devices_info[i].dev;
5051                         map->stripes[s].physical = devices_info[i].dev_offset +
5052                                                    j * ctl->stripe_size;
5053                 }
5054         }
5055         map->stripe_len = BTRFS_STRIPE_LEN;
5056         map->io_align = BTRFS_STRIPE_LEN;
5057         map->io_width = BTRFS_STRIPE_LEN;
5058         map->type = type;
5059         map->sub_stripes = ctl->sub_stripes;
5060
5061         trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5062
5063         em = alloc_extent_map();
5064         if (!em) {
5065                 kfree(map);
5066                 return -ENOMEM;
5067         }
5068         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5069         em->map_lookup = map;
5070         em->start = start;
5071         em->len = ctl->chunk_size;
5072         em->block_start = 0;
5073         em->block_len = em->len;
5074         em->orig_block_len = ctl->stripe_size;
5075
5076         em_tree = &info->mapping_tree;
5077         write_lock(&em_tree->lock);
5078         ret = add_extent_mapping(em_tree, em, 0);
5079         if (ret) {
5080                 write_unlock(&em_tree->lock);
5081                 free_extent_map(em);
5082                 return ret;
5083         }
5084         write_unlock(&em_tree->lock);
5085
5086         ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5087         if (ret)
5088                 goto error_del_extent;
5089
5090         for (i = 0; i < map->num_stripes; i++) {
5091                 struct btrfs_device *dev = map->stripes[i].dev;
5092
5093                 btrfs_device_set_bytes_used(dev,
5094                                             dev->bytes_used + ctl->stripe_size);
5095                 if (list_empty(&dev->post_commit_list))
5096                         list_add_tail(&dev->post_commit_list,
5097                                       &trans->transaction->dev_update_list);
5098         }
5099
5100         atomic64_sub(ctl->stripe_size * map->num_stripes,
5101                      &info->free_chunk_space);
5102
5103         free_extent_map(em);
5104         check_raid56_incompat_flag(info, type);
5105         check_raid1c34_incompat_flag(info, type);
5106
5107         return 0;
5108
5109 error_del_extent:
5110         write_lock(&em_tree->lock);
5111         remove_extent_mapping(em_tree, em);
5112         write_unlock(&em_tree->lock);
5113
5114         /* One for our allocation */
5115         free_extent_map(em);
5116         /* One for the tree reference */
5117         free_extent_map(em);
5118
5119         return ret;
5120 }
5121
5122 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5123 {
5124         struct btrfs_fs_info *info = trans->fs_info;
5125         struct btrfs_fs_devices *fs_devices = info->fs_devices;
5126         struct btrfs_device_info *devices_info = NULL;
5127         struct alloc_chunk_ctl ctl;
5128         int ret;
5129
5130         lockdep_assert_held(&info->chunk_mutex);
5131
5132         if (!alloc_profile_is_valid(type, 0)) {
5133                 ASSERT(0);
5134                 return -EINVAL;
5135         }
5136
5137         if (list_empty(&fs_devices->alloc_list)) {
5138                 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5139                         btrfs_debug(info, "%s: no writable device", __func__);
5140                 return -ENOSPC;
5141         }
5142
5143         if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5144                 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5145                 ASSERT(0);
5146                 return -EINVAL;
5147         }
5148
5149         ctl.start = find_next_chunk(info);
5150         ctl.type = type;
5151         init_alloc_chunk_ctl(fs_devices, &ctl);
5152
5153         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5154                                GFP_NOFS);
5155         if (!devices_info)
5156                 return -ENOMEM;
5157
5158         ret = gather_device_info(fs_devices, &ctl, devices_info);
5159         if (ret < 0)
5160                 goto out;
5161
5162         ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5163         if (ret < 0)
5164                 goto out;
5165
5166         ret = create_chunk(trans, &ctl, devices_info);
5167
5168 out:
5169         kfree(devices_info);
5170         return ret;
5171 }
5172
5173 /*
5174  * Chunk allocation falls into two parts. The first part does work
5175  * that makes the new allocated chunk usable, but does not do any operation
5176  * that modifies the chunk tree. The second part does the work that
5177  * requires modifying the chunk tree. This division is important for the
5178  * bootstrap process of adding storage to a seed btrfs.
5179  */
5180 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5181                              u64 chunk_offset, u64 chunk_size)
5182 {
5183         struct btrfs_fs_info *fs_info = trans->fs_info;
5184         struct btrfs_root *extent_root = fs_info->extent_root;
5185         struct btrfs_root *chunk_root = fs_info->chunk_root;
5186         struct btrfs_key key;
5187         struct btrfs_device *device;
5188         struct btrfs_chunk *chunk;
5189         struct btrfs_stripe *stripe;
5190         struct extent_map *em;
5191         struct map_lookup *map;
5192         size_t item_size;
5193         u64 dev_offset;
5194         u64 stripe_size;
5195         int i = 0;
5196         int ret = 0;
5197
5198         em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5199         if (IS_ERR(em))
5200                 return PTR_ERR(em);
5201
5202         map = em->map_lookup;
5203         item_size = btrfs_chunk_item_size(map->num_stripes);
5204         stripe_size = em->orig_block_len;
5205
5206         chunk = kzalloc(item_size, GFP_NOFS);
5207         if (!chunk) {
5208                 ret = -ENOMEM;
5209                 goto out;
5210         }
5211
5212         /*
5213          * Take the device list mutex to prevent races with the final phase of
5214          * a device replace operation that replaces the device object associated
5215          * with the map's stripes, because the device object's id can change
5216          * at any time during that final phase of the device replace operation
5217          * (dev-replace.c:btrfs_dev_replace_finishing()).
5218          */
5219         mutex_lock(&fs_info->fs_devices->device_list_mutex);
5220         for (i = 0; i < map->num_stripes; i++) {
5221                 device = map->stripes[i].dev;
5222                 dev_offset = map->stripes[i].physical;
5223
5224                 ret = btrfs_update_device(trans, device);
5225                 if (ret)
5226                         break;
5227                 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5228                                              dev_offset, stripe_size);
5229                 if (ret)
5230                         break;
5231         }
5232         if (ret) {
5233                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5234                 goto out;
5235         }
5236
5237         stripe = &chunk->stripe;
5238         for (i = 0; i < map->num_stripes; i++) {
5239                 device = map->stripes[i].dev;
5240                 dev_offset = map->stripes[i].physical;
5241
5242                 btrfs_set_stack_stripe_devid(stripe, device->devid);
5243                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5244                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5245                 stripe++;
5246         }
5247         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5248
5249         btrfs_set_stack_chunk_length(chunk, chunk_size);
5250         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5251         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5252         btrfs_set_stack_chunk_type(chunk, map->type);
5253         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5254         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5255         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5256         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5257         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5258
5259         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5260         key.type = BTRFS_CHUNK_ITEM_KEY;
5261         key.offset = chunk_offset;
5262
5263         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5264         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5265                 /*
5266                  * TODO: Cleanup of inserted chunk root in case of
5267                  * failure.
5268                  */
5269                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5270         }
5271
5272 out:
5273         kfree(chunk);
5274         free_extent_map(em);
5275         return ret;
5276 }
5277
5278 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5279 {
5280         struct btrfs_fs_info *fs_info = trans->fs_info;
5281         u64 alloc_profile;
5282         int ret;
5283
5284         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5285         ret = btrfs_alloc_chunk(trans, alloc_profile);
5286         if (ret)
5287                 return ret;
5288
5289         alloc_profile = btrfs_system_alloc_profile(fs_info);
5290         ret = btrfs_alloc_chunk(trans, alloc_profile);
5291         return ret;
5292 }
5293
5294 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5295 {
5296         const int index = btrfs_bg_flags_to_raid_index(map->type);
5297
5298         return btrfs_raid_array[index].tolerated_failures;
5299 }
5300
5301 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5302 {
5303         struct extent_map *em;
5304         struct map_lookup *map;
5305         int readonly = 0;
5306         int miss_ndevs = 0;
5307         int i;
5308
5309         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5310         if (IS_ERR(em))
5311                 return 1;
5312
5313         map = em->map_lookup;
5314         for (i = 0; i < map->num_stripes; i++) {
5315                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5316                                         &map->stripes[i].dev->dev_state)) {
5317                         miss_ndevs++;
5318                         continue;
5319                 }
5320                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5321                                         &map->stripes[i].dev->dev_state)) {
5322                         readonly = 1;
5323                         goto end;
5324                 }
5325         }
5326
5327         /*
5328          * If the number of missing devices is larger than max errors,
5329          * we can not write the data into that chunk successfully, so
5330          * set it readonly.
5331          */
5332         if (miss_ndevs > btrfs_chunk_max_errors(map))
5333                 readonly = 1;
5334 end:
5335         free_extent_map(em);
5336         return readonly;
5337 }
5338
5339 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5340 {
5341         struct extent_map *em;
5342
5343         while (1) {
5344                 write_lock(&tree->lock);
5345                 em = lookup_extent_mapping(tree, 0, (u64)-1);
5346                 if (em)
5347                         remove_extent_mapping(tree, em);
5348                 write_unlock(&tree->lock);
5349                 if (!em)
5350                         break;
5351                 /* once for us */
5352                 free_extent_map(em);
5353                 /* once for the tree */
5354                 free_extent_map(em);
5355         }
5356 }
5357
5358 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5359 {
5360         struct extent_map *em;
5361         struct map_lookup *map;
5362         int ret;
5363
5364         em = btrfs_get_chunk_map(fs_info, logical, len);
5365         if (IS_ERR(em))
5366                 /*
5367                  * We could return errors for these cases, but that could get
5368                  * ugly and we'd probably do the same thing which is just not do
5369                  * anything else and exit, so return 1 so the callers don't try
5370                  * to use other copies.
5371                  */
5372                 return 1;
5373
5374         map = em->map_lookup;
5375         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5376                 ret = map->num_stripes;
5377         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5378                 ret = map->sub_stripes;
5379         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5380                 ret = 2;
5381         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5382                 /*
5383                  * There could be two corrupted data stripes, we need
5384                  * to loop retry in order to rebuild the correct data.
5385                  *
5386                  * Fail a stripe at a time on every retry except the
5387                  * stripe under reconstruction.
5388                  */
5389                 ret = map->num_stripes;
5390         else
5391                 ret = 1;
5392         free_extent_map(em);
5393
5394         down_read(&fs_info->dev_replace.rwsem);
5395         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5396             fs_info->dev_replace.tgtdev)
5397                 ret++;
5398         up_read(&fs_info->dev_replace.rwsem);
5399
5400         return ret;
5401 }
5402
5403 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5404                                     u64 logical)
5405 {
5406         struct extent_map *em;
5407         struct map_lookup *map;
5408         unsigned long len = fs_info->sectorsize;
5409
5410         em = btrfs_get_chunk_map(fs_info, logical, len);
5411
5412         if (!WARN_ON(IS_ERR(em))) {
5413                 map = em->map_lookup;
5414                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5415                         len = map->stripe_len * nr_data_stripes(map);
5416                 free_extent_map(em);
5417         }
5418         return len;
5419 }
5420
5421 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5422 {
5423         struct extent_map *em;
5424         struct map_lookup *map;
5425         int ret = 0;
5426
5427         em = btrfs_get_chunk_map(fs_info, logical, len);
5428
5429         if(!WARN_ON(IS_ERR(em))) {
5430                 map = em->map_lookup;
5431                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5432                         ret = 1;
5433                 free_extent_map(em);
5434         }
5435         return ret;
5436 }
5437
5438 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5439                             struct map_lookup *map, int first,
5440                             int dev_replace_is_ongoing)
5441 {
5442         int i;
5443         int num_stripes;
5444         int preferred_mirror;
5445         int tolerance;
5446         struct btrfs_device *srcdev;
5447
5448         ASSERT((map->type &
5449                  (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5450
5451         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5452                 num_stripes = map->sub_stripes;
5453         else
5454                 num_stripes = map->num_stripes;
5455
5456         preferred_mirror = first + current->pid % num_stripes;
5457
5458         if (dev_replace_is_ongoing &&
5459             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5460              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5461                 srcdev = fs_info->dev_replace.srcdev;
5462         else
5463                 srcdev = NULL;
5464
5465         /*
5466          * try to avoid the drive that is the source drive for a
5467          * dev-replace procedure, only choose it if no other non-missing
5468          * mirror is available
5469          */
5470         for (tolerance = 0; tolerance < 2; tolerance++) {
5471                 if (map->stripes[preferred_mirror].dev->bdev &&
5472                     (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5473                         return preferred_mirror;
5474                 for (i = first; i < first + num_stripes; i++) {
5475                         if (map->stripes[i].dev->bdev &&
5476                             (tolerance || map->stripes[i].dev != srcdev))
5477                                 return i;
5478                 }
5479         }
5480
5481         /* we couldn't find one that doesn't fail.  Just return something
5482          * and the io error handling code will clean up eventually
5483          */
5484         return preferred_mirror;
5485 }
5486
5487 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5488 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5489 {
5490         int i;
5491         int again = 1;
5492
5493         while (again) {
5494                 again = 0;
5495                 for (i = 0; i < num_stripes - 1; i++) {
5496                         /* Swap if parity is on a smaller index */
5497                         if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5498                                 swap(bbio->stripes[i], bbio->stripes[i + 1]);
5499                                 swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5500                                 again = 1;
5501                         }
5502                 }
5503         }
5504 }
5505
5506 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5507 {
5508         struct btrfs_bio *bbio = kzalloc(
5509                  /* the size of the btrfs_bio */
5510                 sizeof(struct btrfs_bio) +
5511                 /* plus the variable array for the stripes */
5512                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5513                 /* plus the variable array for the tgt dev */
5514                 sizeof(int) * (real_stripes) +
5515                 /*
5516                  * plus the raid_map, which includes both the tgt dev
5517                  * and the stripes
5518                  */
5519                 sizeof(u64) * (total_stripes),
5520                 GFP_NOFS|__GFP_NOFAIL);
5521
5522         atomic_set(&bbio->error, 0);
5523         refcount_set(&bbio->refs, 1);
5524
5525         return bbio;
5526 }
5527
5528 void btrfs_get_bbio(struct btrfs_bio *bbio)
5529 {
5530         WARN_ON(!refcount_read(&bbio->refs));
5531         refcount_inc(&bbio->refs);
5532 }
5533
5534 void btrfs_put_bbio(struct btrfs_bio *bbio)
5535 {
5536         if (!bbio)
5537                 return;
5538         if (refcount_dec_and_test(&bbio->refs))
5539                 kfree(bbio);
5540 }
5541
5542 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5543 /*
5544  * Please note that, discard won't be sent to target device of device
5545  * replace.
5546  */
5547 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5548                                          u64 logical, u64 *length_ret,
5549                                          struct btrfs_bio **bbio_ret)
5550 {
5551         struct extent_map *em;
5552         struct map_lookup *map;
5553         struct btrfs_bio *bbio;
5554         u64 length = *length_ret;
5555         u64 offset;
5556         u64 stripe_nr;
5557         u64 stripe_nr_end;
5558         u64 stripe_end_offset;
5559         u64 stripe_cnt;
5560         u64 stripe_len;
5561         u64 stripe_offset;
5562         u64 num_stripes;
5563         u32 stripe_index;
5564         u32 factor = 0;
5565         u32 sub_stripes = 0;
5566         u64 stripes_per_dev = 0;
5567         u32 remaining_stripes = 0;
5568         u32 last_stripe = 0;
5569         int ret = 0;
5570         int i;
5571
5572         /* discard always return a bbio */
5573         ASSERT(bbio_ret);
5574
5575         em = btrfs_get_chunk_map(fs_info, logical, length);
5576         if (IS_ERR(em))
5577                 return PTR_ERR(em);
5578
5579         map = em->map_lookup;
5580         /* we don't discard raid56 yet */
5581         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5582                 ret = -EOPNOTSUPP;
5583                 goto out;
5584         }
5585
5586         offset = logical - em->start;
5587         length = min_t(u64, em->start + em->len - logical, length);
5588         *length_ret = length;
5589
5590         stripe_len = map->stripe_len;
5591         /*
5592          * stripe_nr counts the total number of stripes we have to stride
5593          * to get to this block
5594          */
5595         stripe_nr = div64_u64(offset, stripe_len);
5596
5597         /* stripe_offset is the offset of this block in its stripe */
5598         stripe_offset = offset - stripe_nr * stripe_len;
5599
5600         stripe_nr_end = round_up(offset + length, map->stripe_len);
5601         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5602         stripe_cnt = stripe_nr_end - stripe_nr;
5603         stripe_end_offset = stripe_nr_end * map->stripe_len -
5604                             (offset + length);
5605         /*
5606          * after this, stripe_nr is the number of stripes on this
5607          * device we have to walk to find the data, and stripe_index is
5608          * the number of our device in the stripe array
5609          */
5610         num_stripes = 1;
5611         stripe_index = 0;
5612         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5613                          BTRFS_BLOCK_GROUP_RAID10)) {
5614                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5615                         sub_stripes = 1;
5616                 else
5617                         sub_stripes = map->sub_stripes;
5618
5619                 factor = map->num_stripes / sub_stripes;
5620                 num_stripes = min_t(u64, map->num_stripes,
5621                                     sub_stripes * stripe_cnt);
5622                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5623                 stripe_index *= sub_stripes;
5624                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5625                                               &remaining_stripes);
5626                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5627                 last_stripe *= sub_stripes;
5628         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5629                                 BTRFS_BLOCK_GROUP_DUP)) {
5630                 num_stripes = map->num_stripes;
5631         } else {
5632                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5633                                         &stripe_index);
5634         }
5635
5636         bbio = alloc_btrfs_bio(num_stripes, 0);
5637         if (!bbio) {
5638                 ret = -ENOMEM;
5639                 goto out;
5640         }
5641
5642         for (i = 0; i < num_stripes; i++) {
5643                 bbio->stripes[i].physical =
5644                         map->stripes[stripe_index].physical +
5645                         stripe_offset + stripe_nr * map->stripe_len;
5646                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5647
5648                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5649                                  BTRFS_BLOCK_GROUP_RAID10)) {
5650                         bbio->stripes[i].length = stripes_per_dev *
5651                                 map->stripe_len;
5652
5653                         if (i / sub_stripes < remaining_stripes)
5654                                 bbio->stripes[i].length +=
5655                                         map->stripe_len;
5656
5657                         /*
5658                          * Special for the first stripe and
5659                          * the last stripe:
5660                          *
5661                          * |-------|...|-------|
5662                          *     |----------|
5663                          *    off     end_off
5664                          */
5665                         if (i < sub_stripes)
5666                                 bbio->stripes[i].length -=
5667                                         stripe_offset;
5668
5669                         if (stripe_index >= last_stripe &&
5670                             stripe_index <= (last_stripe +
5671                                              sub_stripes - 1))
5672                                 bbio->stripes[i].length -=
5673                                         stripe_end_offset;
5674
5675                         if (i == sub_stripes - 1)
5676                                 stripe_offset = 0;
5677                 } else {
5678                         bbio->stripes[i].length = length;
5679                 }
5680
5681                 stripe_index++;
5682                 if (stripe_index == map->num_stripes) {
5683                         stripe_index = 0;
5684                         stripe_nr++;
5685                 }
5686         }
5687
5688         *bbio_ret = bbio;
5689         bbio->map_type = map->type;
5690         bbio->num_stripes = num_stripes;
5691 out:
5692         free_extent_map(em);
5693         return ret;
5694 }
5695
5696 /*
5697  * In dev-replace case, for repair case (that's the only case where the mirror
5698  * is selected explicitly when calling btrfs_map_block), blocks left of the
5699  * left cursor can also be read from the target drive.
5700  *
5701  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5702  * array of stripes.
5703  * For READ, it also needs to be supported using the same mirror number.
5704  *
5705  * If the requested block is not left of the left cursor, EIO is returned. This
5706  * can happen because btrfs_num_copies() returns one more in the dev-replace
5707  * case.
5708  */
5709 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5710                                          u64 logical, u64 length,
5711                                          u64 srcdev_devid, int *mirror_num,
5712                                          u64 *physical)
5713 {
5714         struct btrfs_bio *bbio = NULL;
5715         int num_stripes;
5716         int index_srcdev = 0;
5717         int found = 0;
5718         u64 physical_of_found = 0;
5719         int i;
5720         int ret = 0;
5721
5722         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5723                                 logical, &length, &bbio, 0, 0);
5724         if (ret) {
5725                 ASSERT(bbio == NULL);
5726                 return ret;
5727         }
5728
5729         num_stripes = bbio->num_stripes;
5730         if (*mirror_num > num_stripes) {
5731                 /*
5732                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5733                  * that means that the requested area is not left of the left
5734                  * cursor
5735                  */
5736                 btrfs_put_bbio(bbio);
5737                 return -EIO;
5738         }
5739
5740         /*
5741          * process the rest of the function using the mirror_num of the source
5742          * drive. Therefore look it up first.  At the end, patch the device
5743          * pointer to the one of the target drive.
5744          */
5745         for (i = 0; i < num_stripes; i++) {
5746                 if (bbio->stripes[i].dev->devid != srcdev_devid)
5747                         continue;
5748
5749                 /*
5750                  * In case of DUP, in order to keep it simple, only add the
5751                  * mirror with the lowest physical address
5752                  */
5753                 if (found &&
5754                     physical_of_found <= bbio->stripes[i].physical)
5755                         continue;
5756
5757                 index_srcdev = i;
5758                 found = 1;
5759                 physical_of_found = bbio->stripes[i].physical;
5760         }
5761
5762         btrfs_put_bbio(bbio);
5763
5764         ASSERT(found);
5765         if (!found)
5766                 return -EIO;
5767
5768         *mirror_num = index_srcdev + 1;
5769         *physical = physical_of_found;
5770         return ret;
5771 }
5772
5773 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5774                                       struct btrfs_bio **bbio_ret,
5775                                       struct btrfs_dev_replace *dev_replace,
5776                                       int *num_stripes_ret, int *max_errors_ret)
5777 {
5778         struct btrfs_bio *bbio = *bbio_ret;
5779         u64 srcdev_devid = dev_replace->srcdev->devid;
5780         int tgtdev_indexes = 0;
5781         int num_stripes = *num_stripes_ret;
5782         int max_errors = *max_errors_ret;
5783         int i;
5784
5785         if (op == BTRFS_MAP_WRITE) {
5786                 int index_where_to_add;
5787
5788                 /*
5789                  * duplicate the write operations while the dev replace
5790                  * procedure is running. Since the copying of the old disk to
5791                  * the new disk takes place at run time while the filesystem is
5792                  * mounted writable, the regular write operations to the old
5793                  * disk have to be duplicated to go to the new disk as well.
5794                  *
5795                  * Note that device->missing is handled by the caller, and that
5796                  * the write to the old disk is already set up in the stripes
5797                  * array.
5798                  */
5799                 index_where_to_add = num_stripes;
5800                 for (i = 0; i < num_stripes; i++) {
5801                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5802                                 /* write to new disk, too */
5803                                 struct btrfs_bio_stripe *new =
5804                                         bbio->stripes + index_where_to_add;
5805                                 struct btrfs_bio_stripe *old =
5806                                         bbio->stripes + i;
5807
5808                                 new->physical = old->physical;
5809                                 new->length = old->length;
5810                                 new->dev = dev_replace->tgtdev;
5811                                 bbio->tgtdev_map[i] = index_where_to_add;
5812                                 index_where_to_add++;
5813                                 max_errors++;
5814                                 tgtdev_indexes++;
5815                         }
5816                 }
5817                 num_stripes = index_where_to_add;
5818         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5819                 int index_srcdev = 0;
5820                 int found = 0;
5821                 u64 physical_of_found = 0;
5822
5823                 /*
5824                  * During the dev-replace procedure, the target drive can also
5825                  * be used to read data in case it is needed to repair a corrupt
5826                  * block elsewhere. This is possible if the requested area is
5827                  * left of the left cursor. In this area, the target drive is a
5828                  * full copy of the source drive.
5829                  */
5830                 for (i = 0; i < num_stripes; i++) {
5831                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5832                                 /*
5833                                  * In case of DUP, in order to keep it simple,
5834                                  * only add the mirror with the lowest physical
5835                                  * address
5836                                  */
5837                                 if (found &&
5838                                     physical_of_found <=
5839                                      bbio->stripes[i].physical)
5840                                         continue;
5841                                 index_srcdev = i;
5842                                 found = 1;
5843                                 physical_of_found = bbio->stripes[i].physical;
5844                         }
5845                 }
5846                 if (found) {
5847                         struct btrfs_bio_stripe *tgtdev_stripe =
5848                                 bbio->stripes + num_stripes;
5849
5850                         tgtdev_stripe->physical = physical_of_found;
5851                         tgtdev_stripe->length =
5852                                 bbio->stripes[index_srcdev].length;
5853                         tgtdev_stripe->dev = dev_replace->tgtdev;
5854                         bbio->tgtdev_map[index_srcdev] = num_stripes;
5855
5856                         tgtdev_indexes++;
5857                         num_stripes++;
5858                 }
5859         }
5860
5861         *num_stripes_ret = num_stripes;
5862         *max_errors_ret = max_errors;
5863         bbio->num_tgtdevs = tgtdev_indexes;
5864         *bbio_ret = bbio;
5865 }
5866
5867 static bool need_full_stripe(enum btrfs_map_op op)
5868 {
5869         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5870 }
5871
5872 /*
5873  * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5874  *                     tuple. This information is used to calculate how big a
5875  *                     particular bio can get before it straddles a stripe.
5876  *
5877  * @fs_info - the filesystem
5878  * @logical - address that we want to figure out the geometry of
5879  * @len     - the length of IO we are going to perform, starting at @logical
5880  * @op      - type of operation - write or read
5881  * @io_geom - pointer used to return values
5882  *
5883  * Returns < 0 in case a chunk for the given logical address cannot be found,
5884  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5885  */
5886 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5887                         u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5888 {
5889         struct extent_map *em;
5890         struct map_lookup *map;
5891         u64 offset;
5892         u64 stripe_offset;
5893         u64 stripe_nr;
5894         u64 stripe_len;
5895         u64 raid56_full_stripe_start = (u64)-1;
5896         int data_stripes;
5897         int ret = 0;
5898
5899         ASSERT(op != BTRFS_MAP_DISCARD);
5900
5901         em = btrfs_get_chunk_map(fs_info, logical, len);
5902         if (IS_ERR(em))
5903                 return PTR_ERR(em);
5904
5905         map = em->map_lookup;
5906         /* Offset of this logical address in the chunk */
5907         offset = logical - em->start;
5908         /* Len of a stripe in a chunk */
5909         stripe_len = map->stripe_len;
5910         /* Stripe wher this block falls in */
5911         stripe_nr = div64_u64(offset, stripe_len);
5912         /* Offset of stripe in the chunk */
5913         stripe_offset = stripe_nr * stripe_len;
5914         if (offset < stripe_offset) {
5915                 btrfs_crit(fs_info,
5916 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5917                         stripe_offset, offset, em->start, logical, stripe_len);
5918                 ret = -EINVAL;
5919                 goto out;
5920         }
5921
5922         /* stripe_offset is the offset of this block in its stripe */
5923         stripe_offset = offset - stripe_offset;
5924         data_stripes = nr_data_stripes(map);
5925
5926         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5927                 u64 max_len = stripe_len - stripe_offset;
5928
5929                 /*
5930                  * In case of raid56, we need to know the stripe aligned start
5931                  */
5932                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5933                         unsigned long full_stripe_len = stripe_len * data_stripes;
5934                         raid56_full_stripe_start = offset;
5935
5936                         /*
5937                          * Allow a write of a full stripe, but make sure we
5938                          * don't allow straddling of stripes
5939                          */
5940                         raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5941                                         full_stripe_len);
5942                         raid56_full_stripe_start *= full_stripe_len;
5943
5944                         /*
5945                          * For writes to RAID[56], allow a full stripeset across
5946                          * all disks. For other RAID types and for RAID[56]
5947                          * reads, just allow a single stripe (on a single disk).
5948                          */
5949                         if (op == BTRFS_MAP_WRITE) {
5950                                 max_len = stripe_len * data_stripes -
5951                                           (offset - raid56_full_stripe_start);
5952                         }
5953                 }
5954                 len = min_t(u64, em->len - offset, max_len);
5955         } else {
5956                 len = em->len - offset;
5957         }
5958
5959         io_geom->len = len;
5960         io_geom->offset = offset;
5961         io_geom->stripe_len = stripe_len;
5962         io_geom->stripe_nr = stripe_nr;
5963         io_geom->stripe_offset = stripe_offset;
5964         io_geom->raid56_stripe_offset = raid56_full_stripe_start;
5965
5966 out:
5967         /* once for us */
5968         free_extent_map(em);
5969         return ret;
5970 }
5971
5972 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5973                              enum btrfs_map_op op,
5974                              u64 logical, u64 *length,
5975                              struct btrfs_bio **bbio_ret,
5976                              int mirror_num, int need_raid_map)
5977 {
5978         struct extent_map *em;
5979         struct map_lookup *map;
5980         u64 stripe_offset;
5981         u64 stripe_nr;
5982         u64 stripe_len;
5983         u32 stripe_index;
5984         int data_stripes;
5985         int i;
5986         int ret = 0;
5987         int num_stripes;
5988         int max_errors = 0;
5989         int tgtdev_indexes = 0;
5990         struct btrfs_bio *bbio = NULL;
5991         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5992         int dev_replace_is_ongoing = 0;
5993         int num_alloc_stripes;
5994         int patch_the_first_stripe_for_dev_replace = 0;
5995         u64 physical_to_patch_in_first_stripe = 0;
5996         u64 raid56_full_stripe_start = (u64)-1;
5997         struct btrfs_io_geometry geom;
5998
5999         ASSERT(bbio_ret);
6000         ASSERT(op != BTRFS_MAP_DISCARD);
6001
6002         ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
6003         if (ret < 0)
6004                 return ret;
6005
6006         em = btrfs_get_chunk_map(fs_info, logical, *length);
6007         ASSERT(!IS_ERR(em));
6008         map = em->map_lookup;
6009
6010         *length = geom.len;
6011         stripe_len = geom.stripe_len;
6012         stripe_nr = geom.stripe_nr;
6013         stripe_offset = geom.stripe_offset;
6014         raid56_full_stripe_start = geom.raid56_stripe_offset;
6015         data_stripes = nr_data_stripes(map);
6016
6017         down_read(&dev_replace->rwsem);
6018         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6019         /*
6020          * Hold the semaphore for read during the whole operation, write is
6021          * requested at commit time but must wait.
6022          */
6023         if (!dev_replace_is_ongoing)
6024                 up_read(&dev_replace->rwsem);
6025
6026         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6027             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6028                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6029                                                     dev_replace->srcdev->devid,
6030                                                     &mirror_num,
6031                                             &physical_to_patch_in_first_stripe);
6032                 if (ret)
6033                         goto out;
6034                 else
6035                         patch_the_first_stripe_for_dev_replace = 1;
6036         } else if (mirror_num > map->num_stripes) {
6037                 mirror_num = 0;
6038         }
6039
6040         num_stripes = 1;
6041         stripe_index = 0;
6042         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6043                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6044                                 &stripe_index);
6045                 if (!need_full_stripe(op))
6046                         mirror_num = 1;
6047         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6048                 if (need_full_stripe(op))
6049                         num_stripes = map->num_stripes;
6050                 else if (mirror_num)
6051                         stripe_index = mirror_num - 1;
6052                 else {
6053                         stripe_index = find_live_mirror(fs_info, map, 0,
6054                                             dev_replace_is_ongoing);
6055                         mirror_num = stripe_index + 1;
6056                 }
6057
6058         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6059                 if (need_full_stripe(op)) {
6060                         num_stripes = map->num_stripes;
6061                 } else if (mirror_num) {
6062                         stripe_index = mirror_num - 1;
6063                 } else {
6064                         mirror_num = 1;
6065                 }
6066
6067         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6068                 u32 factor = map->num_stripes / map->sub_stripes;
6069
6070                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6071                 stripe_index *= map->sub_stripes;
6072
6073                 if (need_full_stripe(op))
6074                         num_stripes = map->sub_stripes;
6075                 else if (mirror_num)
6076                         stripe_index += mirror_num - 1;
6077                 else {
6078                         int old_stripe_index = stripe_index;
6079                         stripe_index = find_live_mirror(fs_info, map,
6080                                               stripe_index,
6081                                               dev_replace_is_ongoing);
6082                         mirror_num = stripe_index - old_stripe_index + 1;
6083                 }
6084
6085         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6086                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6087                         /* push stripe_nr back to the start of the full stripe */
6088                         stripe_nr = div64_u64(raid56_full_stripe_start,
6089                                         stripe_len * data_stripes);
6090
6091                         /* RAID[56] write or recovery. Return all stripes */
6092                         num_stripes = map->num_stripes;
6093                         max_errors = nr_parity_stripes(map);
6094
6095                         *length = map->stripe_len;
6096                         stripe_index = 0;
6097                         stripe_offset = 0;
6098                 } else {
6099                         /*
6100                          * Mirror #0 or #1 means the original data block.
6101                          * Mirror #2 is RAID5 parity block.
6102                          * Mirror #3 is RAID6 Q block.
6103                          */
6104                         stripe_nr = div_u64_rem(stripe_nr,
6105                                         data_stripes, &stripe_index);
6106                         if (mirror_num > 1)
6107                                 stripe_index = data_stripes + mirror_num - 2;
6108
6109                         /* We distribute the parity blocks across stripes */
6110                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6111                                         &stripe_index);
6112                         if (!need_full_stripe(op) && mirror_num <= 1)
6113                                 mirror_num = 1;
6114                 }
6115         } else {
6116                 /*
6117                  * after this, stripe_nr is the number of stripes on this
6118                  * device we have to walk to find the data, and stripe_index is
6119                  * the number of our device in the stripe array
6120                  */
6121                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6122                                 &stripe_index);
6123                 mirror_num = stripe_index + 1;
6124         }
6125         if (stripe_index >= map->num_stripes) {
6126                 btrfs_crit(fs_info,
6127                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6128                            stripe_index, map->num_stripes);
6129                 ret = -EINVAL;
6130                 goto out;
6131         }
6132
6133         num_alloc_stripes = num_stripes;
6134         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6135                 if (op == BTRFS_MAP_WRITE)
6136                         num_alloc_stripes <<= 1;
6137                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6138                         num_alloc_stripes++;
6139                 tgtdev_indexes = num_stripes;
6140         }
6141
6142         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6143         if (!bbio) {
6144                 ret = -ENOMEM;
6145                 goto out;
6146         }
6147         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
6148                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
6149
6150         /* build raid_map */
6151         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6152             (need_full_stripe(op) || mirror_num > 1)) {
6153                 u64 tmp;
6154                 unsigned rot;
6155
6156                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
6157                                  sizeof(struct btrfs_bio_stripe) *
6158                                  num_alloc_stripes +
6159                                  sizeof(int) * tgtdev_indexes);
6160
6161                 /* Work out the disk rotation on this stripe-set */
6162                 div_u64_rem(stripe_nr, num_stripes, &rot);
6163
6164                 /* Fill in the logical address of each stripe */
6165                 tmp = stripe_nr * data_stripes;
6166                 for (i = 0; i < data_stripes; i++)
6167                         bbio->raid_map[(i+rot) % num_stripes] =
6168                                 em->start + (tmp + i) * map->stripe_len;
6169
6170                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6171                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6172                         bbio->raid_map[(i+rot+1) % num_stripes] =
6173                                 RAID6_Q_STRIPE;
6174         }
6175
6176
6177         for (i = 0; i < num_stripes; i++) {
6178                 bbio->stripes[i].physical =
6179                         map->stripes[stripe_index].physical +
6180                         stripe_offset +
6181                         stripe_nr * map->stripe_len;
6182                 bbio->stripes[i].dev =
6183                         map->stripes[stripe_index].dev;
6184                 stripe_index++;
6185         }
6186
6187         if (need_full_stripe(op))
6188                 max_errors = btrfs_chunk_max_errors(map);
6189
6190         if (bbio->raid_map)
6191                 sort_parity_stripes(bbio, num_stripes);
6192
6193         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6194             need_full_stripe(op)) {
6195                 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6196                                           &max_errors);
6197         }
6198
6199         *bbio_ret = bbio;
6200         bbio->map_type = map->type;
6201         bbio->num_stripes = num_stripes;
6202         bbio->max_errors = max_errors;
6203         bbio->mirror_num = mirror_num;
6204
6205         /*
6206          * this is the case that REQ_READ && dev_replace_is_ongoing &&
6207          * mirror_num == num_stripes + 1 && dev_replace target drive is
6208          * available as a mirror
6209          */
6210         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6211                 WARN_ON(num_stripes > 1);
6212                 bbio->stripes[0].dev = dev_replace->tgtdev;
6213                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6214                 bbio->mirror_num = map->num_stripes + 1;
6215         }
6216 out:
6217         if (dev_replace_is_ongoing) {
6218                 lockdep_assert_held(&dev_replace->rwsem);
6219                 /* Unlock and let waiting writers proceed */
6220                 up_read(&dev_replace->rwsem);
6221         }
6222         free_extent_map(em);
6223         return ret;
6224 }
6225
6226 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6227                       u64 logical, u64 *length,
6228                       struct btrfs_bio **bbio_ret, int mirror_num)
6229 {
6230         if (op == BTRFS_MAP_DISCARD)
6231                 return __btrfs_map_block_for_discard(fs_info, logical,
6232                                                      length, bbio_ret);
6233
6234         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6235                                  mirror_num, 0);
6236 }
6237
6238 /* For Scrub/replace */
6239 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6240                      u64 logical, u64 *length,
6241                      struct btrfs_bio **bbio_ret)
6242 {
6243         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6244 }
6245
6246 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6247 {
6248         bio->bi_private = bbio->private;
6249         bio->bi_end_io = bbio->end_io;
6250         bio_endio(bio);
6251
6252         btrfs_put_bbio(bbio);
6253 }
6254
6255 static void btrfs_end_bio(struct bio *bio)
6256 {
6257         struct btrfs_bio *bbio = bio->bi_private;
6258         int is_orig_bio = 0;
6259
6260         if (bio->bi_status) {
6261                 atomic_inc(&bbio->error);
6262                 if (bio->bi_status == BLK_STS_IOERR ||
6263                     bio->bi_status == BLK_STS_TARGET) {
6264                         unsigned int stripe_index =
6265                                 btrfs_io_bio(bio)->stripe_index;
6266                         struct btrfs_device *dev;
6267
6268                         BUG_ON(stripe_index >= bbio->num_stripes);
6269                         dev = bbio->stripes[stripe_index].dev;
6270                         if (dev->bdev) {
6271                                 if (bio_op(bio) == REQ_OP_WRITE)
6272                                         btrfs_dev_stat_inc_and_print(dev,
6273                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6274                                 else if (!(bio->bi_opf & REQ_RAHEAD))
6275                                         btrfs_dev_stat_inc_and_print(dev,
6276                                                 BTRFS_DEV_STAT_READ_ERRS);
6277                                 if (bio->bi_opf & REQ_PREFLUSH)
6278                                         btrfs_dev_stat_inc_and_print(dev,
6279                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6280                         }
6281                 }
6282         }
6283
6284         if (bio == bbio->orig_bio)
6285                 is_orig_bio = 1;
6286
6287         btrfs_bio_counter_dec(bbio->fs_info);
6288
6289         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6290                 if (!is_orig_bio) {
6291                         bio_put(bio);
6292                         bio = bbio->orig_bio;
6293                 }
6294
6295                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6296                 /* only send an error to the higher layers if it is
6297                  * beyond the tolerance of the btrfs bio
6298                  */
6299                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6300                         bio->bi_status = BLK_STS_IOERR;
6301                 } else {
6302                         /*
6303                          * this bio is actually up to date, we didn't
6304                          * go over the max number of errors
6305                          */
6306                         bio->bi_status = BLK_STS_OK;
6307                 }
6308
6309                 btrfs_end_bbio(bbio, bio);
6310         } else if (!is_orig_bio) {
6311                 bio_put(bio);
6312         }
6313 }
6314
6315 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6316                               u64 physical, int dev_nr)
6317 {
6318         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6319         struct btrfs_fs_info *fs_info = bbio->fs_info;
6320
6321         bio->bi_private = bbio;
6322         btrfs_io_bio(bio)->stripe_index = dev_nr;
6323         bio->bi_end_io = btrfs_end_bio;
6324         bio->bi_iter.bi_sector = physical >> 9;
6325         btrfs_debug_in_rcu(fs_info,
6326         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6327                 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6328                 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6329                 dev->devid, bio->bi_iter.bi_size);
6330         bio_set_dev(bio, dev->bdev);
6331
6332         btrfs_bio_counter_inc_noblocked(fs_info);
6333
6334         btrfsic_submit_bio(bio);
6335 }
6336
6337 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6338 {
6339         atomic_inc(&bbio->error);
6340         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6341                 /* Should be the original bio. */
6342                 WARN_ON(bio != bbio->orig_bio);
6343
6344                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6345                 bio->bi_iter.bi_sector = logical >> 9;
6346                 if (atomic_read(&bbio->error) > bbio->max_errors)
6347                         bio->bi_status = BLK_STS_IOERR;
6348                 else
6349                         bio->bi_status = BLK_STS_OK;
6350                 btrfs_end_bbio(bbio, bio);
6351         }
6352 }
6353
6354 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6355                            int mirror_num)
6356 {
6357         struct btrfs_device *dev;
6358         struct bio *first_bio = bio;
6359         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6360         u64 length = 0;
6361         u64 map_length;
6362         int ret;
6363         int dev_nr;
6364         int total_devs;
6365         struct btrfs_bio *bbio = NULL;
6366
6367         length = bio->bi_iter.bi_size;
6368         map_length = length;
6369
6370         btrfs_bio_counter_inc_blocked(fs_info);
6371         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6372                                 &map_length, &bbio, mirror_num, 1);
6373         if (ret) {
6374                 btrfs_bio_counter_dec(fs_info);
6375                 return errno_to_blk_status(ret);
6376         }
6377
6378         total_devs = bbio->num_stripes;
6379         bbio->orig_bio = first_bio;
6380         bbio->private = first_bio->bi_private;
6381         bbio->end_io = first_bio->bi_end_io;
6382         bbio->fs_info = fs_info;
6383         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6384
6385         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6386             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6387                 /* In this case, map_length has been set to the length of
6388                    a single stripe; not the whole write */
6389                 if (bio_op(bio) == REQ_OP_WRITE) {
6390                         ret = raid56_parity_write(fs_info, bio, bbio,
6391                                                   map_length);
6392                 } else {
6393                         ret = raid56_parity_recover(fs_info, bio, bbio,
6394                                                     map_length, mirror_num, 1);
6395                 }
6396
6397                 btrfs_bio_counter_dec(fs_info);
6398                 return errno_to_blk_status(ret);
6399         }
6400
6401         if (map_length < length) {
6402                 btrfs_crit(fs_info,
6403                            "mapping failed logical %llu bio len %llu len %llu",
6404                            logical, length, map_length);
6405                 BUG();
6406         }
6407
6408         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6409                 dev = bbio->stripes[dev_nr].dev;
6410                 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6411                                                    &dev->dev_state) ||
6412                     (bio_op(first_bio) == REQ_OP_WRITE &&
6413                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6414                         bbio_error(bbio, first_bio, logical);
6415                         continue;
6416                 }
6417
6418                 if (dev_nr < total_devs - 1)
6419                         bio = btrfs_bio_clone(first_bio);
6420                 else
6421                         bio = first_bio;
6422
6423                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6424                                   dev_nr);
6425         }
6426         btrfs_bio_counter_dec(fs_info);
6427         return BLK_STS_OK;
6428 }
6429
6430 /*
6431  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6432  * return NULL.
6433  *
6434  * If devid and uuid are both specified, the match must be exact, otherwise
6435  * only devid is used.
6436  *
6437  * If @seed is true, traverse through the seed devices.
6438  */
6439 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6440                                        u64 devid, u8 *uuid, u8 *fsid,
6441                                        bool seed)
6442 {
6443         struct btrfs_device *device;
6444
6445         while (fs_devices) {
6446                 if (!fsid ||
6447                     !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6448                         list_for_each_entry(device, &fs_devices->devices,
6449                                             dev_list) {
6450                                 if (device->devid == devid &&
6451                                     (!uuid || memcmp(device->uuid, uuid,
6452                                                      BTRFS_UUID_SIZE) == 0))
6453                                         return device;
6454                         }
6455                 }
6456                 if (seed)
6457                         fs_devices = fs_devices->seed;
6458                 else
6459                         return NULL;
6460         }
6461         return NULL;
6462 }
6463
6464 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6465                                             u64 devid, u8 *dev_uuid)
6466 {
6467         struct btrfs_device *device;
6468
6469         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6470         if (IS_ERR(device))
6471                 return device;
6472
6473         list_add(&device->dev_list, &fs_devices->devices);
6474         device->fs_devices = fs_devices;
6475         fs_devices->num_devices++;
6476
6477         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6478         fs_devices->missing_devices++;
6479
6480         return device;
6481 }
6482
6483 /**
6484  * btrfs_alloc_device - allocate struct btrfs_device
6485  * @fs_info:    used only for generating a new devid, can be NULL if
6486  *              devid is provided (i.e. @devid != NULL).
6487  * @devid:      a pointer to devid for this device.  If NULL a new devid
6488  *              is generated.
6489  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6490  *              is generated.
6491  *
6492  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6493  * on error.  Returned struct is not linked onto any lists and must be
6494  * destroyed with btrfs_free_device.
6495  */
6496 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6497                                         const u64 *devid,
6498                                         const u8 *uuid)
6499 {
6500         struct btrfs_device *dev;
6501         u64 tmp;
6502
6503         if (WARN_ON(!devid && !fs_info))
6504                 return ERR_PTR(-EINVAL);
6505
6506         dev = __alloc_device();
6507         if (IS_ERR(dev))
6508                 return dev;
6509
6510         if (devid)
6511                 tmp = *devid;
6512         else {
6513                 int ret;
6514
6515                 ret = find_next_devid(fs_info, &tmp);
6516                 if (ret) {
6517                         btrfs_free_device(dev);
6518                         return ERR_PTR(ret);
6519                 }
6520         }
6521         dev->devid = tmp;
6522
6523         if (uuid)
6524                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6525         else
6526                 generate_random_uuid(dev->uuid);
6527
6528         return dev;
6529 }
6530
6531 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6532                                         u64 devid, u8 *uuid, bool error)
6533 {
6534         if (error)
6535                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6536                               devid, uuid);
6537         else
6538                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6539                               devid, uuid);
6540 }
6541
6542 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6543 {
6544         int index = btrfs_bg_flags_to_raid_index(type);
6545         int ncopies = btrfs_raid_array[index].ncopies;
6546         const int nparity = btrfs_raid_array[index].nparity;
6547         int data_stripes;
6548
6549         if (nparity)
6550                 data_stripes = num_stripes - nparity;
6551         else
6552                 data_stripes = num_stripes / ncopies;
6553
6554         return div_u64(chunk_len, data_stripes);
6555 }
6556
6557 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6558                           struct btrfs_chunk *chunk)
6559 {
6560         struct btrfs_fs_info *fs_info = leaf->fs_info;
6561         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6562         struct map_lookup *map;
6563         struct extent_map *em;
6564         u64 logical;
6565         u64 length;
6566         u64 devid;
6567         u8 uuid[BTRFS_UUID_SIZE];
6568         int num_stripes;
6569         int ret;
6570         int i;
6571
6572         logical = key->offset;
6573         length = btrfs_chunk_length(leaf, chunk);
6574         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6575
6576         /*
6577          * Only need to verify chunk item if we're reading from sys chunk array,
6578          * as chunk item in tree block is already verified by tree-checker.
6579          */
6580         if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6581                 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6582                 if (ret)
6583                         return ret;
6584         }
6585
6586         read_lock(&map_tree->lock);
6587         em = lookup_extent_mapping(map_tree, logical, 1);
6588         read_unlock(&map_tree->lock);
6589
6590         /* already mapped? */
6591         if (em && em->start <= logical && em->start + em->len > logical) {
6592                 free_extent_map(em);
6593                 return 0;
6594         } else if (em) {
6595                 free_extent_map(em);
6596         }
6597
6598         em = alloc_extent_map();
6599         if (!em)
6600                 return -ENOMEM;
6601         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6602         if (!map) {
6603                 free_extent_map(em);
6604                 return -ENOMEM;
6605         }
6606
6607         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6608         em->map_lookup = map;
6609         em->start = logical;
6610         em->len = length;
6611         em->orig_start = 0;
6612         em->block_start = 0;
6613         em->block_len = em->len;
6614
6615         map->num_stripes = num_stripes;
6616         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6617         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6618         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6619         map->type = btrfs_chunk_type(leaf, chunk);
6620         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6621         map->verified_stripes = 0;
6622         em->orig_block_len = calc_stripe_length(map->type, em->len,
6623                                                 map->num_stripes);
6624         for (i = 0; i < num_stripes; i++) {
6625                 map->stripes[i].physical =
6626                         btrfs_stripe_offset_nr(leaf, chunk, i);
6627                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6628                 read_extent_buffer(leaf, uuid, (unsigned long)
6629                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6630                                    BTRFS_UUID_SIZE);
6631                 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6632                                                         devid, uuid, NULL, true);
6633                 if (!map->stripes[i].dev &&
6634                     !btrfs_test_opt(fs_info, DEGRADED)) {
6635                         free_extent_map(em);
6636                         btrfs_report_missing_device(fs_info, devid, uuid, true);
6637                         return -ENOENT;
6638                 }
6639                 if (!map->stripes[i].dev) {
6640                         map->stripes[i].dev =
6641                                 add_missing_dev(fs_info->fs_devices, devid,
6642                                                 uuid);
6643                         if (IS_ERR(map->stripes[i].dev)) {
6644                                 free_extent_map(em);
6645                                 btrfs_err(fs_info,
6646                                         "failed to init missing dev %llu: %ld",
6647                                         devid, PTR_ERR(map->stripes[i].dev));
6648                                 return PTR_ERR(map->stripes[i].dev);
6649                         }
6650                         btrfs_report_missing_device(fs_info, devid, uuid, false);
6651                 }
6652                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6653                                 &(map->stripes[i].dev->dev_state));
6654
6655         }
6656
6657         write_lock(&map_tree->lock);
6658         ret = add_extent_mapping(map_tree, em, 0);
6659         write_unlock(&map_tree->lock);
6660         if (ret < 0) {
6661                 btrfs_err(fs_info,
6662                           "failed to add chunk map, start=%llu len=%llu: %d",
6663                           em->start, em->len, ret);
6664         }
6665         free_extent_map(em);
6666
6667         return ret;
6668 }
6669
6670 static void fill_device_from_item(struct extent_buffer *leaf,
6671                                  struct btrfs_dev_item *dev_item,
6672                                  struct btrfs_device *device)
6673 {
6674         unsigned long ptr;
6675
6676         device->devid = btrfs_device_id(leaf, dev_item);
6677         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6678         device->total_bytes = device->disk_total_bytes;
6679         device->commit_total_bytes = device->disk_total_bytes;
6680         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6681         device->commit_bytes_used = device->bytes_used;
6682         device->type = btrfs_device_type(leaf, dev_item);
6683         device->io_align = btrfs_device_io_align(leaf, dev_item);
6684         device->io_width = btrfs_device_io_width(leaf, dev_item);
6685         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6686         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6687         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6688
6689         ptr = btrfs_device_uuid(dev_item);
6690         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6691 }
6692
6693 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6694                                                   u8 *fsid)
6695 {
6696         struct btrfs_fs_devices *fs_devices;
6697         int ret;
6698
6699         lockdep_assert_held(&uuid_mutex);
6700         ASSERT(fsid);
6701
6702         fs_devices = fs_info->fs_devices->seed;
6703         while (fs_devices) {
6704                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6705                         return fs_devices;
6706
6707                 fs_devices = fs_devices->seed;
6708         }
6709
6710         fs_devices = find_fsid(fsid, NULL);
6711         if (!fs_devices) {
6712                 if (!btrfs_test_opt(fs_info, DEGRADED))
6713                         return ERR_PTR(-ENOENT);
6714
6715                 fs_devices = alloc_fs_devices(fsid, NULL);
6716                 if (IS_ERR(fs_devices))
6717                         return fs_devices;
6718
6719                 fs_devices->seeding = true;
6720                 fs_devices->opened = 1;
6721                 return fs_devices;
6722         }
6723
6724         fs_devices = clone_fs_devices(fs_devices);
6725         if (IS_ERR(fs_devices))
6726                 return fs_devices;
6727
6728         ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6729         if (ret) {
6730                 free_fs_devices(fs_devices);
6731                 fs_devices = ERR_PTR(ret);
6732                 goto out;
6733         }
6734
6735         if (!fs_devices->seeding) {
6736                 close_fs_devices(fs_devices);
6737                 free_fs_devices(fs_devices);
6738                 fs_devices = ERR_PTR(-EINVAL);
6739                 goto out;
6740         }
6741
6742         fs_devices->seed = fs_info->fs_devices->seed;
6743         fs_info->fs_devices->seed = fs_devices;
6744 out:
6745         return fs_devices;
6746 }
6747
6748 static int read_one_dev(struct extent_buffer *leaf,
6749                         struct btrfs_dev_item *dev_item)
6750 {
6751         struct btrfs_fs_info *fs_info = leaf->fs_info;
6752         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6753         struct btrfs_device *device;
6754         u64 devid;
6755         int ret;
6756         u8 fs_uuid[BTRFS_FSID_SIZE];
6757         u8 dev_uuid[BTRFS_UUID_SIZE];
6758
6759         devid = btrfs_device_id(leaf, dev_item);
6760         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6761                            BTRFS_UUID_SIZE);
6762         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6763                            BTRFS_FSID_SIZE);
6764
6765         if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6766                 fs_devices = open_seed_devices(fs_info, fs_uuid);
6767                 if (IS_ERR(fs_devices))
6768                         return PTR_ERR(fs_devices);
6769         }
6770
6771         device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6772                                    fs_uuid, true);
6773         if (!device) {
6774                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6775                         btrfs_report_missing_device(fs_info, devid,
6776                                                         dev_uuid, true);
6777                         return -ENOENT;
6778                 }
6779
6780                 device = add_missing_dev(fs_devices, devid, dev_uuid);
6781                 if (IS_ERR(device)) {
6782                         btrfs_err(fs_info,
6783                                 "failed to add missing dev %llu: %ld",
6784                                 devid, PTR_ERR(device));
6785                         return PTR_ERR(device);
6786                 }
6787                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6788         } else {
6789                 if (!device->bdev) {
6790                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
6791                                 btrfs_report_missing_device(fs_info,
6792                                                 devid, dev_uuid, true);
6793                                 return -ENOENT;
6794                         }
6795                         btrfs_report_missing_device(fs_info, devid,
6796                                                         dev_uuid, false);
6797                 }
6798
6799                 if (!device->bdev &&
6800                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6801                         /*
6802                          * this happens when a device that was properly setup
6803                          * in the device info lists suddenly goes bad.
6804                          * device->bdev is NULL, and so we have to set
6805                          * device->missing to one here
6806                          */
6807                         device->fs_devices->missing_devices++;
6808                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6809                 }
6810
6811                 /* Move the device to its own fs_devices */
6812                 if (device->fs_devices != fs_devices) {
6813                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6814                                                         &device->dev_state));
6815
6816                         list_move(&device->dev_list, &fs_devices->devices);
6817                         device->fs_devices->num_devices--;
6818                         fs_devices->num_devices++;
6819
6820                         device->fs_devices->missing_devices--;
6821                         fs_devices->missing_devices++;
6822
6823                         device->fs_devices = fs_devices;
6824                 }
6825         }
6826
6827         if (device->fs_devices != fs_info->fs_devices) {
6828                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6829                 if (device->generation !=
6830                     btrfs_device_generation(leaf, dev_item))
6831                         return -EINVAL;
6832         }
6833
6834         fill_device_from_item(leaf, dev_item, device);
6835         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6836         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6837            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6838                 device->fs_devices->total_rw_bytes += device->total_bytes;
6839                 atomic64_add(device->total_bytes - device->bytes_used,
6840                                 &fs_info->free_chunk_space);
6841         }
6842         ret = 0;
6843         return ret;
6844 }
6845
6846 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6847 {
6848         struct btrfs_root *root = fs_info->tree_root;
6849         struct btrfs_super_block *super_copy = fs_info->super_copy;
6850         struct extent_buffer *sb;
6851         struct btrfs_disk_key *disk_key;
6852         struct btrfs_chunk *chunk;
6853         u8 *array_ptr;
6854         unsigned long sb_array_offset;
6855         int ret = 0;
6856         u32 num_stripes;
6857         u32 array_size;
6858         u32 len = 0;
6859         u32 cur_offset;
6860         u64 type;
6861         struct btrfs_key key;
6862
6863         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6864         /*
6865          * This will create extent buffer of nodesize, superblock size is
6866          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6867          * overallocate but we can keep it as-is, only the first page is used.
6868          */
6869         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6870         if (IS_ERR(sb))
6871                 return PTR_ERR(sb);
6872         set_extent_buffer_uptodate(sb);
6873         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6874         /*
6875          * The sb extent buffer is artificial and just used to read the system array.
6876          * set_extent_buffer_uptodate() call does not properly mark all it's
6877          * pages up-to-date when the page is larger: extent does not cover the
6878          * whole page and consequently check_page_uptodate does not find all
6879          * the page's extents up-to-date (the hole beyond sb),
6880          * write_extent_buffer then triggers a WARN_ON.
6881          *
6882          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6883          * but sb spans only this function. Add an explicit SetPageUptodate call
6884          * to silence the warning eg. on PowerPC 64.
6885          */
6886         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6887                 SetPageUptodate(sb->pages[0]);
6888
6889         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6890         array_size = btrfs_super_sys_array_size(super_copy);
6891
6892         array_ptr = super_copy->sys_chunk_array;
6893         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6894         cur_offset = 0;
6895
6896         while (cur_offset < array_size) {
6897                 disk_key = (struct btrfs_disk_key *)array_ptr;
6898                 len = sizeof(*disk_key);
6899                 if (cur_offset + len > array_size)
6900                         goto out_short_read;
6901
6902                 btrfs_disk_key_to_cpu(&key, disk_key);
6903
6904                 array_ptr += len;
6905                 sb_array_offset += len;
6906                 cur_offset += len;
6907
6908                 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
6909                         btrfs_err(fs_info,
6910                             "unexpected item type %u in sys_array at offset %u",
6911                                   (u32)key.type, cur_offset);
6912                         ret = -EIO;
6913                         break;
6914                 }
6915
6916                 chunk = (struct btrfs_chunk *)sb_array_offset;
6917                 /*
6918                  * At least one btrfs_chunk with one stripe must be present,
6919                  * exact stripe count check comes afterwards
6920                  */
6921                 len = btrfs_chunk_item_size(1);
6922                 if (cur_offset + len > array_size)
6923                         goto out_short_read;
6924
6925                 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6926                 if (!num_stripes) {
6927                         btrfs_err(fs_info,
6928                         "invalid number of stripes %u in sys_array at offset %u",
6929                                   num_stripes, cur_offset);
6930                         ret = -EIO;
6931                         break;
6932                 }
6933
6934                 type = btrfs_chunk_type(sb, chunk);
6935                 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6936                         btrfs_err(fs_info,
6937                         "invalid chunk type %llu in sys_array at offset %u",
6938                                   type, cur_offset);
6939                         ret = -EIO;
6940                         break;
6941                 }
6942
6943                 len = btrfs_chunk_item_size(num_stripes);
6944                 if (cur_offset + len > array_size)
6945                         goto out_short_read;
6946
6947                 ret = read_one_chunk(&key, sb, chunk);
6948                 if (ret)
6949                         break;
6950
6951                 array_ptr += len;
6952                 sb_array_offset += len;
6953                 cur_offset += len;
6954         }
6955         clear_extent_buffer_uptodate(sb);
6956         free_extent_buffer_stale(sb);
6957         return ret;
6958
6959 out_short_read:
6960         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6961                         len, cur_offset);
6962         clear_extent_buffer_uptodate(sb);
6963         free_extent_buffer_stale(sb);
6964         return -EIO;
6965 }
6966
6967 /*
6968  * Check if all chunks in the fs are OK for read-write degraded mount
6969  *
6970  * If the @failing_dev is specified, it's accounted as missing.
6971  *
6972  * Return true if all chunks meet the minimal RW mount requirements.
6973  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6974  */
6975 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6976                                         struct btrfs_device *failing_dev)
6977 {
6978         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6979         struct extent_map *em;
6980         u64 next_start = 0;
6981         bool ret = true;
6982
6983         read_lock(&map_tree->lock);
6984         em = lookup_extent_mapping(map_tree, 0, (u64)-1);
6985         read_unlock(&map_tree->lock);
6986         /* No chunk at all? Return false anyway */
6987         if (!em) {
6988                 ret = false;
6989                 goto out;
6990         }
6991         while (em) {
6992                 struct map_lookup *map;
6993                 int missing = 0;
6994                 int max_tolerated;
6995                 int i;
6996
6997                 map = em->map_lookup;
6998                 max_tolerated =
6999                         btrfs_get_num_tolerated_disk_barrier_failures(
7000                                         map->type);
7001                 for (i = 0; i < map->num_stripes; i++) {
7002                         struct btrfs_device *dev = map->stripes[i].dev;
7003
7004                         if (!dev || !dev->bdev ||
7005                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7006                             dev->last_flush_error)
7007                                 missing++;
7008                         else if (failing_dev && failing_dev == dev)
7009                                 missing++;
7010                 }
7011                 if (missing > max_tolerated) {
7012                         if (!failing_dev)
7013                                 btrfs_warn(fs_info,
7014         "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7015                                    em->start, missing, max_tolerated);
7016                         free_extent_map(em);
7017                         ret = false;
7018                         goto out;
7019                 }
7020                 next_start = extent_map_end(em);
7021                 free_extent_map(em);
7022
7023                 read_lock(&map_tree->lock);
7024                 em = lookup_extent_mapping(map_tree, next_start,
7025                                            (u64)(-1) - next_start);
7026                 read_unlock(&map_tree->lock);
7027         }
7028 out:
7029         return ret;
7030 }
7031
7032 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7033 {
7034         struct btrfs_root *root = fs_info->chunk_root;
7035         struct btrfs_path *path;
7036         struct extent_buffer *leaf;
7037         struct btrfs_key key;
7038         struct btrfs_key found_key;
7039         int ret;
7040         int slot;
7041         u64 total_dev = 0;
7042
7043         path = btrfs_alloc_path();
7044         if (!path)
7045                 return -ENOMEM;
7046
7047         /*
7048          * uuid_mutex is needed only if we are mounting a sprout FS
7049          * otherwise we don't need it.
7050          */
7051         mutex_lock(&uuid_mutex);
7052         mutex_lock(&fs_info->chunk_mutex);
7053
7054         /*
7055          * Read all device items, and then all the chunk items. All
7056          * device items are found before any chunk item (their object id
7057          * is smaller than the lowest possible object id for a chunk
7058          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7059          */
7060         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7061         key.offset = 0;
7062         key.type = 0;
7063         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7064         if (ret < 0)
7065                 goto error;
7066         while (1) {
7067                 leaf = path->nodes[0];
7068                 slot = path->slots[0];
7069                 if (slot >= btrfs_header_nritems(leaf)) {
7070                         ret = btrfs_next_leaf(root, path);
7071                         if (ret == 0)
7072                                 continue;
7073                         if (ret < 0)
7074                                 goto error;
7075                         break;
7076                 }
7077                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7078                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7079                         struct btrfs_dev_item *dev_item;
7080                         dev_item = btrfs_item_ptr(leaf, slot,
7081                                                   struct btrfs_dev_item);
7082                         ret = read_one_dev(leaf, dev_item);
7083                         if (ret)
7084                                 goto error;
7085                         total_dev++;
7086                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7087                         struct btrfs_chunk *chunk;
7088                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7089                         ret = read_one_chunk(&found_key, leaf, chunk);
7090                         if (ret)
7091                                 goto error;
7092                 }
7093                 path->slots[0]++;
7094         }
7095
7096         /*
7097          * After loading chunk tree, we've got all device information,
7098          * do another round of validation checks.
7099          */
7100         if (total_dev != fs_info->fs_devices->total_devices) {
7101                 btrfs_err(fs_info,
7102            "super_num_devices %llu mismatch with num_devices %llu found here",
7103                           btrfs_super_num_devices(fs_info->super_copy),
7104                           total_dev);
7105                 ret = -EINVAL;
7106                 goto error;
7107         }
7108         if (btrfs_super_total_bytes(fs_info->super_copy) <
7109             fs_info->fs_devices->total_rw_bytes) {
7110                 btrfs_err(fs_info,
7111         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7112                           btrfs_super_total_bytes(fs_info->super_copy),
7113                           fs_info->fs_devices->total_rw_bytes);
7114                 ret = -EINVAL;
7115                 goto error;
7116         }
7117         ret = 0;
7118 error:
7119         mutex_unlock(&fs_info->chunk_mutex);
7120         mutex_unlock(&uuid_mutex);
7121
7122         btrfs_free_path(path);
7123         return ret;
7124 }
7125
7126 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7127 {
7128         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7129         struct btrfs_device *device;
7130
7131         while (fs_devices) {
7132                 mutex_lock(&fs_devices->device_list_mutex);
7133                 list_for_each_entry(device, &fs_devices->devices, dev_list)
7134                         device->fs_info = fs_info;
7135                 mutex_unlock(&fs_devices->device_list_mutex);
7136
7137                 fs_devices = fs_devices->seed;
7138         }
7139 }
7140
7141 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7142                                  const struct btrfs_dev_stats_item *ptr,
7143                                  int index)
7144 {
7145         u64 val;
7146
7147         read_extent_buffer(eb, &val,
7148                            offsetof(struct btrfs_dev_stats_item, values) +
7149                             ((unsigned long)ptr) + (index * sizeof(u64)),
7150                            sizeof(val));
7151         return val;
7152 }
7153
7154 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7155                                       struct btrfs_dev_stats_item *ptr,
7156                                       int index, u64 val)
7157 {
7158         write_extent_buffer(eb, &val,
7159                             offsetof(struct btrfs_dev_stats_item, values) +
7160                              ((unsigned long)ptr) + (index * sizeof(u64)),
7161                             sizeof(val));
7162 }
7163
7164 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7165 {
7166         struct btrfs_key key;
7167         struct btrfs_root *dev_root = fs_info->dev_root;
7168         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7169         struct extent_buffer *eb;
7170         int slot;
7171         int ret = 0;
7172         struct btrfs_device *device;
7173         struct btrfs_path *path = NULL;
7174         int i;
7175
7176         path = btrfs_alloc_path();
7177         if (!path)
7178                 return -ENOMEM;
7179
7180         mutex_lock(&fs_devices->device_list_mutex);
7181         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7182                 int item_size;
7183                 struct btrfs_dev_stats_item *ptr;
7184
7185                 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7186                 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7187                 key.offset = device->devid;
7188                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7189                 if (ret) {
7190                         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7191                                 btrfs_dev_stat_set(device, i, 0);
7192                         device->dev_stats_valid = 1;
7193                         btrfs_release_path(path);
7194                         continue;
7195                 }
7196                 slot = path->slots[0];
7197                 eb = path->nodes[0];
7198                 item_size = btrfs_item_size_nr(eb, slot);
7199
7200                 ptr = btrfs_item_ptr(eb, slot,
7201                                      struct btrfs_dev_stats_item);
7202
7203                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7204                         if (item_size >= (1 + i) * sizeof(__le64))
7205                                 btrfs_dev_stat_set(device, i,
7206                                         btrfs_dev_stats_value(eb, ptr, i));
7207                         else
7208                                 btrfs_dev_stat_set(device, i, 0);
7209                 }
7210
7211                 device->dev_stats_valid = 1;
7212                 btrfs_dev_stat_print_on_load(device);
7213                 btrfs_release_path(path);
7214         }
7215         mutex_unlock(&fs_devices->device_list_mutex);
7216
7217         btrfs_free_path(path);
7218         return ret < 0 ? ret : 0;
7219 }
7220
7221 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7222                                 struct btrfs_device *device)
7223 {
7224         struct btrfs_fs_info *fs_info = trans->fs_info;
7225         struct btrfs_root *dev_root = fs_info->dev_root;
7226         struct btrfs_path *path;
7227         struct btrfs_key key;
7228         struct extent_buffer *eb;
7229         struct btrfs_dev_stats_item *ptr;
7230         int ret;
7231         int i;
7232
7233         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7234         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7235         key.offset = device->devid;
7236
7237         path = btrfs_alloc_path();
7238         if (!path)
7239                 return -ENOMEM;
7240         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7241         if (ret < 0) {
7242                 btrfs_warn_in_rcu(fs_info,
7243                         "error %d while searching for dev_stats item for device %s",
7244                               ret, rcu_str_deref(device->name));
7245                 goto out;
7246         }
7247
7248         if (ret == 0 &&
7249             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7250                 /* need to delete old one and insert a new one */
7251                 ret = btrfs_del_item(trans, dev_root, path);
7252                 if (ret != 0) {
7253                         btrfs_warn_in_rcu(fs_info,
7254                                 "delete too small dev_stats item for device %s failed %d",
7255                                       rcu_str_deref(device->name), ret);
7256                         goto out;
7257                 }
7258                 ret = 1;
7259         }
7260
7261         if (ret == 1) {
7262                 /* need to insert a new item */
7263                 btrfs_release_path(path);
7264                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7265                                               &key, sizeof(*ptr));
7266                 if (ret < 0) {
7267                         btrfs_warn_in_rcu(fs_info,
7268                                 "insert dev_stats item for device %s failed %d",
7269                                 rcu_str_deref(device->name), ret);
7270                         goto out;
7271                 }
7272         }
7273
7274         eb = path->nodes[0];
7275         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7276         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7277                 btrfs_set_dev_stats_value(eb, ptr, i,
7278                                           btrfs_dev_stat_read(device, i));
7279         btrfs_mark_buffer_dirty(eb);
7280
7281 out:
7282         btrfs_free_path(path);
7283         return ret;
7284 }
7285
7286 /*
7287  * called from commit_transaction. Writes all changed device stats to disk.
7288  */
7289 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7290 {
7291         struct btrfs_fs_info *fs_info = trans->fs_info;
7292         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7293         struct btrfs_device *device;
7294         int stats_cnt;
7295         int ret = 0;
7296
7297         mutex_lock(&fs_devices->device_list_mutex);
7298         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7299                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7300                 if (!device->dev_stats_valid || stats_cnt == 0)
7301                         continue;
7302
7303
7304                 /*
7305                  * There is a LOAD-LOAD control dependency between the value of
7306                  * dev_stats_ccnt and updating the on-disk values which requires
7307                  * reading the in-memory counters. Such control dependencies
7308                  * require explicit read memory barriers.
7309                  *
7310                  * This memory barriers pairs with smp_mb__before_atomic in
7311                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7312                  * barrier implied by atomic_xchg in
7313                  * btrfs_dev_stats_read_and_reset
7314                  */
7315                 smp_rmb();
7316
7317                 ret = update_dev_stat_item(trans, device);
7318                 if (!ret)
7319                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7320         }
7321         mutex_unlock(&fs_devices->device_list_mutex);
7322
7323         return ret;
7324 }
7325
7326 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7327 {
7328         btrfs_dev_stat_inc(dev, index);
7329         btrfs_dev_stat_print_on_error(dev);
7330 }
7331
7332 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7333 {
7334         if (!dev->dev_stats_valid)
7335                 return;
7336         btrfs_err_rl_in_rcu(dev->fs_info,
7337                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7338                            rcu_str_deref(dev->name),
7339                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7340                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7341                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7342                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7343                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7344 }
7345
7346 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7347 {
7348         int i;
7349
7350         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7351                 if (btrfs_dev_stat_read(dev, i) != 0)
7352                         break;
7353         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7354                 return; /* all values == 0, suppress message */
7355
7356         btrfs_info_in_rcu(dev->fs_info,
7357                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7358                rcu_str_deref(dev->name),
7359                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7360                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7361                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7362                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7363                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7364 }
7365
7366 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7367                         struct btrfs_ioctl_get_dev_stats *stats)
7368 {
7369         struct btrfs_device *dev;
7370         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7371         int i;
7372
7373         mutex_lock(&fs_devices->device_list_mutex);
7374         dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7375                                 true);
7376         mutex_unlock(&fs_devices->device_list_mutex);
7377
7378         if (!dev) {
7379                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7380                 return -ENODEV;
7381         } else if (!dev->dev_stats_valid) {
7382                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7383                 return -ENODEV;
7384         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7385                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7386                         if (stats->nr_items > i)
7387                                 stats->values[i] =
7388                                         btrfs_dev_stat_read_and_reset(dev, i);
7389                         else
7390                                 btrfs_dev_stat_set(dev, i, 0);
7391                 }
7392                 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7393                            current->comm, task_pid_nr(current));
7394         } else {
7395                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7396                         if (stats->nr_items > i)
7397                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7398         }
7399         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7400                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7401         return 0;
7402 }
7403
7404 /*
7405  * Update the size and bytes used for each device where it changed.  This is
7406  * delayed since we would otherwise get errors while writing out the
7407  * superblocks.
7408  *
7409  * Must be invoked during transaction commit.
7410  */
7411 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7412 {
7413         struct btrfs_device *curr, *next;
7414
7415         ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7416
7417         if (list_empty(&trans->dev_update_list))
7418                 return;
7419
7420         /*
7421          * We don't need the device_list_mutex here.  This list is owned by the
7422          * transaction and the transaction must complete before the device is
7423          * released.
7424          */
7425         mutex_lock(&trans->fs_info->chunk_mutex);
7426         list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7427                                  post_commit_list) {
7428                 list_del_init(&curr->post_commit_list);
7429                 curr->commit_total_bytes = curr->disk_total_bytes;
7430                 curr->commit_bytes_used = curr->bytes_used;
7431         }
7432         mutex_unlock(&trans->fs_info->chunk_mutex);
7433 }
7434
7435 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7436 {
7437         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7438         while (fs_devices) {
7439                 fs_devices->fs_info = fs_info;
7440                 fs_devices = fs_devices->seed;
7441         }
7442 }
7443
7444 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7445 {
7446         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7447         while (fs_devices) {
7448                 fs_devices->fs_info = NULL;
7449                 fs_devices = fs_devices->seed;
7450         }
7451 }
7452
7453 /*
7454  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7455  */
7456 int btrfs_bg_type_to_factor(u64 flags)
7457 {
7458         const int index = btrfs_bg_flags_to_raid_index(flags);
7459
7460         return btrfs_raid_array[index].ncopies;
7461 }
7462
7463
7464
7465 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7466                                  u64 chunk_offset, u64 devid,
7467                                  u64 physical_offset, u64 physical_len)
7468 {
7469         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7470         struct extent_map *em;
7471         struct map_lookup *map;
7472         struct btrfs_device *dev;
7473         u64 stripe_len;
7474         bool found = false;
7475         int ret = 0;
7476         int i;
7477
7478         read_lock(&em_tree->lock);
7479         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7480         read_unlock(&em_tree->lock);
7481
7482         if (!em) {
7483                 btrfs_err(fs_info,
7484 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7485                           physical_offset, devid);
7486                 ret = -EUCLEAN;
7487                 goto out;
7488         }
7489
7490         map = em->map_lookup;
7491         stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7492         if (physical_len != stripe_len) {
7493                 btrfs_err(fs_info,
7494 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7495                           physical_offset, devid, em->start, physical_len,
7496                           stripe_len);
7497                 ret = -EUCLEAN;
7498                 goto out;
7499         }
7500
7501         for (i = 0; i < map->num_stripes; i++) {
7502                 if (map->stripes[i].dev->devid == devid &&
7503                     map->stripes[i].physical == physical_offset) {
7504                         found = true;
7505                         if (map->verified_stripes >= map->num_stripes) {
7506                                 btrfs_err(fs_info,
7507                                 "too many dev extents for chunk %llu found",
7508                                           em->start);
7509                                 ret = -EUCLEAN;
7510                                 goto out;
7511                         }
7512                         map->verified_stripes++;
7513                         break;
7514                 }
7515         }
7516         if (!found) {
7517                 btrfs_err(fs_info,
7518         "dev extent physical offset %llu devid %llu has no corresponding chunk",
7519                         physical_offset, devid);
7520                 ret = -EUCLEAN;
7521         }
7522
7523         /* Make sure no dev extent is beyond device bondary */
7524         dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7525         if (!dev) {
7526                 btrfs_err(fs_info, "failed to find devid %llu", devid);
7527                 ret = -EUCLEAN;
7528                 goto out;
7529         }
7530
7531         /* It's possible this device is a dummy for seed device */
7532         if (dev->disk_total_bytes == 0) {
7533                 dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
7534                                         NULL, false);
7535                 if (!dev) {
7536                         btrfs_err(fs_info, "failed to find seed devid %llu",
7537                                   devid);
7538                         ret = -EUCLEAN;
7539                         goto out;
7540                 }
7541         }
7542
7543         if (physical_offset + physical_len > dev->disk_total_bytes) {
7544                 btrfs_err(fs_info,
7545 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7546                           devid, physical_offset, physical_len,
7547                           dev->disk_total_bytes);
7548                 ret = -EUCLEAN;
7549                 goto out;
7550         }
7551 out:
7552         free_extent_map(em);
7553         return ret;
7554 }
7555
7556 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7557 {
7558         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7559         struct extent_map *em;
7560         struct rb_node *node;
7561         int ret = 0;
7562
7563         read_lock(&em_tree->lock);
7564         for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7565                 em = rb_entry(node, struct extent_map, rb_node);
7566                 if (em->map_lookup->num_stripes !=
7567                     em->map_lookup->verified_stripes) {
7568                         btrfs_err(fs_info,
7569                         "chunk %llu has missing dev extent, have %d expect %d",
7570                                   em->start, em->map_lookup->verified_stripes,
7571                                   em->map_lookup->num_stripes);
7572                         ret = -EUCLEAN;
7573                         goto out;
7574                 }
7575         }
7576 out:
7577         read_unlock(&em_tree->lock);
7578         return ret;
7579 }
7580
7581 /*
7582  * Ensure that all dev extents are mapped to correct chunk, otherwise
7583  * later chunk allocation/free would cause unexpected behavior.
7584  *
7585  * NOTE: This will iterate through the whole device tree, which should be of
7586  * the same size level as the chunk tree.  This slightly increases mount time.
7587  */
7588 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7589 {
7590         struct btrfs_path *path;
7591         struct btrfs_root *root = fs_info->dev_root;
7592         struct btrfs_key key;
7593         u64 prev_devid = 0;
7594         u64 prev_dev_ext_end = 0;
7595         int ret = 0;
7596
7597         key.objectid = 1;
7598         key.type = BTRFS_DEV_EXTENT_KEY;
7599         key.offset = 0;
7600
7601         path = btrfs_alloc_path();
7602         if (!path)
7603                 return -ENOMEM;
7604
7605         path->reada = READA_FORWARD;
7606         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7607         if (ret < 0)
7608                 goto out;
7609
7610         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7611                 ret = btrfs_next_item(root, path);
7612                 if (ret < 0)
7613                         goto out;
7614                 /* No dev extents at all? Not good */
7615                 if (ret > 0) {
7616                         ret = -EUCLEAN;
7617                         goto out;
7618                 }
7619         }
7620         while (1) {
7621                 struct extent_buffer *leaf = path->nodes[0];
7622                 struct btrfs_dev_extent *dext;
7623                 int slot = path->slots[0];
7624                 u64 chunk_offset;
7625                 u64 physical_offset;
7626                 u64 physical_len;
7627                 u64 devid;
7628
7629                 btrfs_item_key_to_cpu(leaf, &key, slot);
7630                 if (key.type != BTRFS_DEV_EXTENT_KEY)
7631                         break;
7632                 devid = key.objectid;
7633                 physical_offset = key.offset;
7634
7635                 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7636                 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7637                 physical_len = btrfs_dev_extent_length(leaf, dext);
7638
7639                 /* Check if this dev extent overlaps with the previous one */
7640                 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7641                         btrfs_err(fs_info,
7642 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7643                                   devid, physical_offset, prev_dev_ext_end);
7644                         ret = -EUCLEAN;
7645                         goto out;
7646                 }
7647
7648                 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7649                                             physical_offset, physical_len);
7650                 if (ret < 0)
7651                         goto out;
7652                 prev_devid = devid;
7653                 prev_dev_ext_end = physical_offset + physical_len;
7654
7655                 ret = btrfs_next_item(root, path);
7656                 if (ret < 0)
7657                         goto out;
7658                 if (ret > 0) {
7659                         ret = 0;
7660                         break;
7661                 }
7662         }
7663
7664         /* Ensure all chunks have corresponding dev extents */
7665         ret = verify_chunk_dev_extent_mapping(fs_info);
7666 out:
7667         btrfs_free_path(path);
7668         return ret;
7669 }
7670
7671 /*
7672  * Check whether the given block group or device is pinned by any inode being
7673  * used as a swapfile.
7674  */
7675 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7676 {
7677         struct btrfs_swapfile_pin *sp;
7678         struct rb_node *node;
7679
7680         spin_lock(&fs_info->swapfile_pins_lock);
7681         node = fs_info->swapfile_pins.rb_node;
7682         while (node) {
7683                 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7684                 if (ptr < sp->ptr)
7685                         node = node->rb_left;
7686                 else if (ptr > sp->ptr)
7687                         node = node->rb_right;
7688                 else
7689                         break;
7690         }
7691         spin_unlock(&fs_info->swapfile_pins_lock);
7692         return node != NULL;
7693 }