Merge tag 'mmc-v5.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[linux-2.6-microblaze.git] / fs / btrfs / transaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "volumes.h"
20 #include "dev-replace.h"
21 #include "qgroup.h"
22 #include "block-group.h"
23 #include "space-info.h"
24 #include "zoned.h"
25
26 #define BTRFS_ROOT_TRANS_TAG 0
27
28 /*
29  * Transaction states and transitions
30  *
31  * No running transaction (fs tree blocks are not modified)
32  * |
33  * | To next stage:
34  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35  * V
36  * Transaction N [[TRANS_STATE_RUNNING]]
37  * |
38  * | New trans handles can be attached to transaction N by calling all
39  * | start_transaction() variants.
40  * |
41  * | To next stage:
42  * |  Call btrfs_commit_transaction() on any trans handle attached to
43  * |  transaction N
44  * V
45  * Transaction N [[TRANS_STATE_COMMIT_START]]
46  * |
47  * | Will wait for previous running transaction to completely finish if there
48  * | is one
49  * |
50  * | Then one of the following happes:
51  * | - Wait for all other trans handle holders to release.
52  * |   The btrfs_commit_transaction() caller will do the commit work.
53  * | - Wait for current transaction to be committed by others.
54  * |   Other btrfs_commit_transaction() caller will do the commit work.
55  * |
56  * | At this stage, only btrfs_join_transaction*() variants can attach
57  * | to this running transaction.
58  * | All other variants will wait for current one to finish and attach to
59  * | transaction N+1.
60  * |
61  * | To next stage:
62  * |  Caller is chosen to commit transaction N, and all other trans handle
63  * |  haven been released.
64  * V
65  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66  * |
67  * | The heavy lifting transaction work is started.
68  * | From running delayed refs (modifying extent tree) to creating pending
69  * | snapshots, running qgroups.
70  * | In short, modify supporting trees to reflect modifications of subvolume
71  * | trees.
72  * |
73  * | At this stage, all start_transaction() calls will wait for this
74  * | transaction to finish and attach to transaction N+1.
75  * |
76  * | To next stage:
77  * |  Until all supporting trees are updated.
78  * V
79  * Transaction N [[TRANS_STATE_UNBLOCKED]]
80  * |                                                Transaction N+1
81  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
82  * | need to write them back to disk and update     |
83  * | super blocks.                                  |
84  * |                                                |
85  * | At this stage, new transaction is allowed to   |
86  * | start.                                         |
87  * | All new start_transaction() calls will be      |
88  * | attached to transid N+1.                       |
89  * |                                                |
90  * | To next stage:                                 |
91  * |  Until all tree blocks are super blocks are    |
92  * |  written to block devices                      |
93  * V                                                |
94  * Transaction N [[TRANS_STATE_COMPLETED]]          V
95  *   All tree blocks and super blocks are written.  Transaction N+1
96  *   This transaction is finished and all its       [[TRANS_STATE_COMMIT_START]]
97  *   data structures will be cleaned up.            | Life goes on
98  */
99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
100         [TRANS_STATE_RUNNING]           = 0U,
101         [TRANS_STATE_COMMIT_START]      = (__TRANS_START | __TRANS_ATTACH),
102         [TRANS_STATE_COMMIT_DOING]      = (__TRANS_START |
103                                            __TRANS_ATTACH |
104                                            __TRANS_JOIN |
105                                            __TRANS_JOIN_NOSTART),
106         [TRANS_STATE_UNBLOCKED]         = (__TRANS_START |
107                                            __TRANS_ATTACH |
108                                            __TRANS_JOIN |
109                                            __TRANS_JOIN_NOLOCK |
110                                            __TRANS_JOIN_NOSTART),
111         [TRANS_STATE_SUPER_COMMITTED]   = (__TRANS_START |
112                                            __TRANS_ATTACH |
113                                            __TRANS_JOIN |
114                                            __TRANS_JOIN_NOLOCK |
115                                            __TRANS_JOIN_NOSTART),
116         [TRANS_STATE_COMPLETED]         = (__TRANS_START |
117                                            __TRANS_ATTACH |
118                                            __TRANS_JOIN |
119                                            __TRANS_JOIN_NOLOCK |
120                                            __TRANS_JOIN_NOSTART),
121 };
122
123 void btrfs_put_transaction(struct btrfs_transaction *transaction)
124 {
125         WARN_ON(refcount_read(&transaction->use_count) == 0);
126         if (refcount_dec_and_test(&transaction->use_count)) {
127                 BUG_ON(!list_empty(&transaction->list));
128                 WARN_ON(!RB_EMPTY_ROOT(
129                                 &transaction->delayed_refs.href_root.rb_root));
130                 WARN_ON(!RB_EMPTY_ROOT(
131                                 &transaction->delayed_refs.dirty_extent_root));
132                 if (transaction->delayed_refs.pending_csums)
133                         btrfs_err(transaction->fs_info,
134                                   "pending csums is %llu",
135                                   transaction->delayed_refs.pending_csums);
136                 /*
137                  * If any block groups are found in ->deleted_bgs then it's
138                  * because the transaction was aborted and a commit did not
139                  * happen (things failed before writing the new superblock
140                  * and calling btrfs_finish_extent_commit()), so we can not
141                  * discard the physical locations of the block groups.
142                  */
143                 while (!list_empty(&transaction->deleted_bgs)) {
144                         struct btrfs_block_group *cache;
145
146                         cache = list_first_entry(&transaction->deleted_bgs,
147                                                  struct btrfs_block_group,
148                                                  bg_list);
149                         list_del_init(&cache->bg_list);
150                         btrfs_unfreeze_block_group(cache);
151                         btrfs_put_block_group(cache);
152                 }
153                 WARN_ON(!list_empty(&transaction->dev_update_list));
154                 kfree(transaction);
155         }
156 }
157
158 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
159 {
160         struct btrfs_transaction *cur_trans = trans->transaction;
161         struct btrfs_fs_info *fs_info = trans->fs_info;
162         struct btrfs_root *root, *tmp;
163         struct btrfs_caching_control *caching_ctl, *next;
164
165         down_write(&fs_info->commit_root_sem);
166         list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
167                                  dirty_list) {
168                 list_del_init(&root->dirty_list);
169                 free_extent_buffer(root->commit_root);
170                 root->commit_root = btrfs_root_node(root);
171                 extent_io_tree_release(&root->dirty_log_pages);
172                 btrfs_qgroup_clean_swapped_blocks(root);
173         }
174
175         /* We can free old roots now. */
176         spin_lock(&cur_trans->dropped_roots_lock);
177         while (!list_empty(&cur_trans->dropped_roots)) {
178                 root = list_first_entry(&cur_trans->dropped_roots,
179                                         struct btrfs_root, root_list);
180                 list_del_init(&root->root_list);
181                 spin_unlock(&cur_trans->dropped_roots_lock);
182                 btrfs_free_log(trans, root);
183                 btrfs_drop_and_free_fs_root(fs_info, root);
184                 spin_lock(&cur_trans->dropped_roots_lock);
185         }
186         spin_unlock(&cur_trans->dropped_roots_lock);
187
188         /*
189          * We have to update the last_byte_to_unpin under the commit_root_sem,
190          * at the same time we swap out the commit roots.
191          *
192          * This is because we must have a real view of the last spot the caching
193          * kthreads were while caching.  Consider the following views of the
194          * extent tree for a block group
195          *
196          * commit root
197          * +----+----+----+----+----+----+----+
198          * |\\\\|    |\\\\|\\\\|    |\\\\|\\\\|
199          * +----+----+----+----+----+----+----+
200          * 0    1    2    3    4    5    6    7
201          *
202          * new commit root
203          * +----+----+----+----+----+----+----+
204          * |    |    |    |\\\\|    |    |\\\\|
205          * +----+----+----+----+----+----+----+
206          * 0    1    2    3    4    5    6    7
207          *
208          * If the cache_ctl->progress was at 3, then we are only allowed to
209          * unpin [0,1) and [2,3], because the caching thread has already
210          * processed those extents.  We are not allowed to unpin [5,6), because
211          * the caching thread will re-start it's search from 3, and thus find
212          * the hole from [4,6) to add to the free space cache.
213          */
214         spin_lock(&fs_info->block_group_cache_lock);
215         list_for_each_entry_safe(caching_ctl, next,
216                                  &fs_info->caching_block_groups, list) {
217                 struct btrfs_block_group *cache = caching_ctl->block_group;
218
219                 if (btrfs_block_group_done(cache)) {
220                         cache->last_byte_to_unpin = (u64)-1;
221                         list_del_init(&caching_ctl->list);
222                         btrfs_put_caching_control(caching_ctl);
223                 } else {
224                         cache->last_byte_to_unpin = caching_ctl->progress;
225                 }
226         }
227         spin_unlock(&fs_info->block_group_cache_lock);
228         up_write(&fs_info->commit_root_sem);
229 }
230
231 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
232                                          unsigned int type)
233 {
234         if (type & TRANS_EXTWRITERS)
235                 atomic_inc(&trans->num_extwriters);
236 }
237
238 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
239                                          unsigned int type)
240 {
241         if (type & TRANS_EXTWRITERS)
242                 atomic_dec(&trans->num_extwriters);
243 }
244
245 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
246                                           unsigned int type)
247 {
248         atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
249 }
250
251 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
252 {
253         return atomic_read(&trans->num_extwriters);
254 }
255
256 /*
257  * To be called after doing the chunk btree updates right after allocating a new
258  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
259  * chunk after all chunk btree updates and after finishing the second phase of
260  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
261  * group had its chunk item insertion delayed to the second phase.
262  */
263 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
264 {
265         struct btrfs_fs_info *fs_info = trans->fs_info;
266
267         if (!trans->chunk_bytes_reserved)
268                 return;
269
270         btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
271                                 trans->chunk_bytes_reserved, NULL);
272         trans->chunk_bytes_reserved = 0;
273 }
274
275 /*
276  * either allocate a new transaction or hop into the existing one
277  */
278 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
279                                      unsigned int type)
280 {
281         struct btrfs_transaction *cur_trans;
282
283         spin_lock(&fs_info->trans_lock);
284 loop:
285         /* The file system has been taken offline. No new transactions. */
286         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
287                 spin_unlock(&fs_info->trans_lock);
288                 return -EROFS;
289         }
290
291         cur_trans = fs_info->running_transaction;
292         if (cur_trans) {
293                 if (TRANS_ABORTED(cur_trans)) {
294                         spin_unlock(&fs_info->trans_lock);
295                         return cur_trans->aborted;
296                 }
297                 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
298                         spin_unlock(&fs_info->trans_lock);
299                         return -EBUSY;
300                 }
301                 refcount_inc(&cur_trans->use_count);
302                 atomic_inc(&cur_trans->num_writers);
303                 extwriter_counter_inc(cur_trans, type);
304                 spin_unlock(&fs_info->trans_lock);
305                 return 0;
306         }
307         spin_unlock(&fs_info->trans_lock);
308
309         /*
310          * If we are ATTACH, we just want to catch the current transaction,
311          * and commit it. If there is no transaction, just return ENOENT.
312          */
313         if (type == TRANS_ATTACH)
314                 return -ENOENT;
315
316         /*
317          * JOIN_NOLOCK only happens during the transaction commit, so
318          * it is impossible that ->running_transaction is NULL
319          */
320         BUG_ON(type == TRANS_JOIN_NOLOCK);
321
322         cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
323         if (!cur_trans)
324                 return -ENOMEM;
325
326         spin_lock(&fs_info->trans_lock);
327         if (fs_info->running_transaction) {
328                 /*
329                  * someone started a transaction after we unlocked.  Make sure
330                  * to redo the checks above
331                  */
332                 kfree(cur_trans);
333                 goto loop;
334         } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
335                 spin_unlock(&fs_info->trans_lock);
336                 kfree(cur_trans);
337                 return -EROFS;
338         }
339
340         cur_trans->fs_info = fs_info;
341         atomic_set(&cur_trans->pending_ordered, 0);
342         init_waitqueue_head(&cur_trans->pending_wait);
343         atomic_set(&cur_trans->num_writers, 1);
344         extwriter_counter_init(cur_trans, type);
345         init_waitqueue_head(&cur_trans->writer_wait);
346         init_waitqueue_head(&cur_trans->commit_wait);
347         cur_trans->state = TRANS_STATE_RUNNING;
348         /*
349          * One for this trans handle, one so it will live on until we
350          * commit the transaction.
351          */
352         refcount_set(&cur_trans->use_count, 2);
353         cur_trans->flags = 0;
354         cur_trans->start_time = ktime_get_seconds();
355
356         memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
357
358         cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
359         cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
360         atomic_set(&cur_trans->delayed_refs.num_entries, 0);
361
362         /*
363          * although the tree mod log is per file system and not per transaction,
364          * the log must never go across transaction boundaries.
365          */
366         smp_mb();
367         if (!list_empty(&fs_info->tree_mod_seq_list))
368                 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
369         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
370                 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
371         atomic64_set(&fs_info->tree_mod_seq, 0);
372
373         spin_lock_init(&cur_trans->delayed_refs.lock);
374
375         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
376         INIT_LIST_HEAD(&cur_trans->dev_update_list);
377         INIT_LIST_HEAD(&cur_trans->switch_commits);
378         INIT_LIST_HEAD(&cur_trans->dirty_bgs);
379         INIT_LIST_HEAD(&cur_trans->io_bgs);
380         INIT_LIST_HEAD(&cur_trans->dropped_roots);
381         mutex_init(&cur_trans->cache_write_mutex);
382         spin_lock_init(&cur_trans->dirty_bgs_lock);
383         INIT_LIST_HEAD(&cur_trans->deleted_bgs);
384         spin_lock_init(&cur_trans->dropped_roots_lock);
385         INIT_LIST_HEAD(&cur_trans->releasing_ebs);
386         spin_lock_init(&cur_trans->releasing_ebs_lock);
387         list_add_tail(&cur_trans->list, &fs_info->trans_list);
388         extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
389                         IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
390         extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
391                         IO_TREE_FS_PINNED_EXTENTS, NULL);
392         fs_info->generation++;
393         cur_trans->transid = fs_info->generation;
394         fs_info->running_transaction = cur_trans;
395         cur_trans->aborted = 0;
396         spin_unlock(&fs_info->trans_lock);
397
398         return 0;
399 }
400
401 /*
402  * This does all the record keeping required to make sure that a shareable root
403  * is properly recorded in a given transaction.  This is required to make sure
404  * the old root from before we joined the transaction is deleted when the
405  * transaction commits.
406  */
407 static int record_root_in_trans(struct btrfs_trans_handle *trans,
408                                struct btrfs_root *root,
409                                int force)
410 {
411         struct btrfs_fs_info *fs_info = root->fs_info;
412         int ret = 0;
413
414         if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
415             root->last_trans < trans->transid) || force) {
416                 WARN_ON(root == fs_info->extent_root);
417                 WARN_ON(!force && root->commit_root != root->node);
418
419                 /*
420                  * see below for IN_TRANS_SETUP usage rules
421                  * we have the reloc mutex held now, so there
422                  * is only one writer in this function
423                  */
424                 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
425
426                 /* make sure readers find IN_TRANS_SETUP before
427                  * they find our root->last_trans update
428                  */
429                 smp_wmb();
430
431                 spin_lock(&fs_info->fs_roots_radix_lock);
432                 if (root->last_trans == trans->transid && !force) {
433                         spin_unlock(&fs_info->fs_roots_radix_lock);
434                         return 0;
435                 }
436                 radix_tree_tag_set(&fs_info->fs_roots_radix,
437                                    (unsigned long)root->root_key.objectid,
438                                    BTRFS_ROOT_TRANS_TAG);
439                 spin_unlock(&fs_info->fs_roots_radix_lock);
440                 root->last_trans = trans->transid;
441
442                 /* this is pretty tricky.  We don't want to
443                  * take the relocation lock in btrfs_record_root_in_trans
444                  * unless we're really doing the first setup for this root in
445                  * this transaction.
446                  *
447                  * Normally we'd use root->last_trans as a flag to decide
448                  * if we want to take the expensive mutex.
449                  *
450                  * But, we have to set root->last_trans before we
451                  * init the relocation root, otherwise, we trip over warnings
452                  * in ctree.c.  The solution used here is to flag ourselves
453                  * with root IN_TRANS_SETUP.  When this is 1, we're still
454                  * fixing up the reloc trees and everyone must wait.
455                  *
456                  * When this is zero, they can trust root->last_trans and fly
457                  * through btrfs_record_root_in_trans without having to take the
458                  * lock.  smp_wmb() makes sure that all the writes above are
459                  * done before we pop in the zero below
460                  */
461                 ret = btrfs_init_reloc_root(trans, root);
462                 smp_mb__before_atomic();
463                 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
464         }
465         return ret;
466 }
467
468
469 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
470                             struct btrfs_root *root)
471 {
472         struct btrfs_fs_info *fs_info = root->fs_info;
473         struct btrfs_transaction *cur_trans = trans->transaction;
474
475         /* Add ourselves to the transaction dropped list */
476         spin_lock(&cur_trans->dropped_roots_lock);
477         list_add_tail(&root->root_list, &cur_trans->dropped_roots);
478         spin_unlock(&cur_trans->dropped_roots_lock);
479
480         /* Make sure we don't try to update the root at commit time */
481         spin_lock(&fs_info->fs_roots_radix_lock);
482         radix_tree_tag_clear(&fs_info->fs_roots_radix,
483                              (unsigned long)root->root_key.objectid,
484                              BTRFS_ROOT_TRANS_TAG);
485         spin_unlock(&fs_info->fs_roots_radix_lock);
486 }
487
488 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
489                                struct btrfs_root *root)
490 {
491         struct btrfs_fs_info *fs_info = root->fs_info;
492         int ret;
493
494         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
495                 return 0;
496
497         /*
498          * see record_root_in_trans for comments about IN_TRANS_SETUP usage
499          * and barriers
500          */
501         smp_rmb();
502         if (root->last_trans == trans->transid &&
503             !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
504                 return 0;
505
506         mutex_lock(&fs_info->reloc_mutex);
507         ret = record_root_in_trans(trans, root, 0);
508         mutex_unlock(&fs_info->reloc_mutex);
509
510         return ret;
511 }
512
513 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
514 {
515         return (trans->state >= TRANS_STATE_COMMIT_START &&
516                 trans->state < TRANS_STATE_UNBLOCKED &&
517                 !TRANS_ABORTED(trans));
518 }
519
520 /* wait for commit against the current transaction to become unblocked
521  * when this is done, it is safe to start a new transaction, but the current
522  * transaction might not be fully on disk.
523  */
524 static void wait_current_trans(struct btrfs_fs_info *fs_info)
525 {
526         struct btrfs_transaction *cur_trans;
527
528         spin_lock(&fs_info->trans_lock);
529         cur_trans = fs_info->running_transaction;
530         if (cur_trans && is_transaction_blocked(cur_trans)) {
531                 refcount_inc(&cur_trans->use_count);
532                 spin_unlock(&fs_info->trans_lock);
533
534                 wait_event(fs_info->transaction_wait,
535                            cur_trans->state >= TRANS_STATE_UNBLOCKED ||
536                            TRANS_ABORTED(cur_trans));
537                 btrfs_put_transaction(cur_trans);
538         } else {
539                 spin_unlock(&fs_info->trans_lock);
540         }
541 }
542
543 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
544 {
545         if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
546                 return 0;
547
548         if (type == TRANS_START)
549                 return 1;
550
551         return 0;
552 }
553
554 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
555 {
556         struct btrfs_fs_info *fs_info = root->fs_info;
557
558         if (!fs_info->reloc_ctl ||
559             !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
560             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
561             root->reloc_root)
562                 return false;
563
564         return true;
565 }
566
567 static struct btrfs_trans_handle *
568 start_transaction(struct btrfs_root *root, unsigned int num_items,
569                   unsigned int type, enum btrfs_reserve_flush_enum flush,
570                   bool enforce_qgroups)
571 {
572         struct btrfs_fs_info *fs_info = root->fs_info;
573         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
574         struct btrfs_trans_handle *h;
575         struct btrfs_transaction *cur_trans;
576         u64 num_bytes = 0;
577         u64 qgroup_reserved = 0;
578         bool reloc_reserved = false;
579         bool do_chunk_alloc = false;
580         int ret;
581
582         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
583                 return ERR_PTR(-EROFS);
584
585         if (current->journal_info) {
586                 WARN_ON(type & TRANS_EXTWRITERS);
587                 h = current->journal_info;
588                 refcount_inc(&h->use_count);
589                 WARN_ON(refcount_read(&h->use_count) > 2);
590                 h->orig_rsv = h->block_rsv;
591                 h->block_rsv = NULL;
592                 goto got_it;
593         }
594
595         /*
596          * Do the reservation before we join the transaction so we can do all
597          * the appropriate flushing if need be.
598          */
599         if (num_items && root != fs_info->chunk_root) {
600                 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
601                 u64 delayed_refs_bytes = 0;
602
603                 qgroup_reserved = num_items * fs_info->nodesize;
604                 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
605                                 enforce_qgroups);
606                 if (ret)
607                         return ERR_PTR(ret);
608
609                 /*
610                  * We want to reserve all the bytes we may need all at once, so
611                  * we only do 1 enospc flushing cycle per transaction start.  We
612                  * accomplish this by simply assuming we'll do 2 x num_items
613                  * worth of delayed refs updates in this trans handle, and
614                  * refill that amount for whatever is missing in the reserve.
615                  */
616                 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
617                 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
618                     delayed_refs_rsv->full == 0) {
619                         delayed_refs_bytes = num_bytes;
620                         num_bytes <<= 1;
621                 }
622
623                 /*
624                  * Do the reservation for the relocation root creation
625                  */
626                 if (need_reserve_reloc_root(root)) {
627                         num_bytes += fs_info->nodesize;
628                         reloc_reserved = true;
629                 }
630
631                 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
632                 if (ret)
633                         goto reserve_fail;
634                 if (delayed_refs_bytes) {
635                         btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
636                                                           delayed_refs_bytes);
637                         num_bytes -= delayed_refs_bytes;
638                 }
639
640                 if (rsv->space_info->force_alloc)
641                         do_chunk_alloc = true;
642         } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
643                    !delayed_refs_rsv->full) {
644                 /*
645                  * Some people call with btrfs_start_transaction(root, 0)
646                  * because they can be throttled, but have some other mechanism
647                  * for reserving space.  We still want these guys to refill the
648                  * delayed block_rsv so just add 1 items worth of reservation
649                  * here.
650                  */
651                 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
652                 if (ret)
653                         goto reserve_fail;
654         }
655 again:
656         h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
657         if (!h) {
658                 ret = -ENOMEM;
659                 goto alloc_fail;
660         }
661
662         /*
663          * If we are JOIN_NOLOCK we're already committing a transaction and
664          * waiting on this guy, so we don't need to do the sb_start_intwrite
665          * because we're already holding a ref.  We need this because we could
666          * have raced in and did an fsync() on a file which can kick a commit
667          * and then we deadlock with somebody doing a freeze.
668          *
669          * If we are ATTACH, it means we just want to catch the current
670          * transaction and commit it, so we needn't do sb_start_intwrite(). 
671          */
672         if (type & __TRANS_FREEZABLE)
673                 sb_start_intwrite(fs_info->sb);
674
675         if (may_wait_transaction(fs_info, type))
676                 wait_current_trans(fs_info);
677
678         do {
679                 ret = join_transaction(fs_info, type);
680                 if (ret == -EBUSY) {
681                         wait_current_trans(fs_info);
682                         if (unlikely(type == TRANS_ATTACH ||
683                                      type == TRANS_JOIN_NOSTART))
684                                 ret = -ENOENT;
685                 }
686         } while (ret == -EBUSY);
687
688         if (ret < 0)
689                 goto join_fail;
690
691         cur_trans = fs_info->running_transaction;
692
693         h->transid = cur_trans->transid;
694         h->transaction = cur_trans;
695         h->root = root;
696         refcount_set(&h->use_count, 1);
697         h->fs_info = root->fs_info;
698
699         h->type = type;
700         INIT_LIST_HEAD(&h->new_bgs);
701
702         smp_mb();
703         if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
704             may_wait_transaction(fs_info, type)) {
705                 current->journal_info = h;
706                 btrfs_commit_transaction(h);
707                 goto again;
708         }
709
710         if (num_bytes) {
711                 trace_btrfs_space_reservation(fs_info, "transaction",
712                                               h->transid, num_bytes, 1);
713                 h->block_rsv = &fs_info->trans_block_rsv;
714                 h->bytes_reserved = num_bytes;
715                 h->reloc_reserved = reloc_reserved;
716         }
717
718 got_it:
719         if (!current->journal_info)
720                 current->journal_info = h;
721
722         /*
723          * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
724          * ALLOC_FORCE the first run through, and then we won't allocate for
725          * anybody else who races in later.  We don't care about the return
726          * value here.
727          */
728         if (do_chunk_alloc && num_bytes) {
729                 u64 flags = h->block_rsv->space_info->flags;
730
731                 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
732                                   CHUNK_ALLOC_NO_FORCE);
733         }
734
735         /*
736          * btrfs_record_root_in_trans() needs to alloc new extents, and may
737          * call btrfs_join_transaction() while we're also starting a
738          * transaction.
739          *
740          * Thus it need to be called after current->journal_info initialized,
741          * or we can deadlock.
742          */
743         ret = btrfs_record_root_in_trans(h, root);
744         if (ret) {
745                 /*
746                  * The transaction handle is fully initialized and linked with
747                  * other structures so it needs to be ended in case of errors,
748                  * not just freed.
749                  */
750                 btrfs_end_transaction(h);
751                 return ERR_PTR(ret);
752         }
753
754         return h;
755
756 join_fail:
757         if (type & __TRANS_FREEZABLE)
758                 sb_end_intwrite(fs_info->sb);
759         kmem_cache_free(btrfs_trans_handle_cachep, h);
760 alloc_fail:
761         if (num_bytes)
762                 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
763                                         num_bytes, NULL);
764 reserve_fail:
765         btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
766         return ERR_PTR(ret);
767 }
768
769 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
770                                                    unsigned int num_items)
771 {
772         return start_transaction(root, num_items, TRANS_START,
773                                  BTRFS_RESERVE_FLUSH_ALL, true);
774 }
775
776 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
777                                         struct btrfs_root *root,
778                                         unsigned int num_items)
779 {
780         return start_transaction(root, num_items, TRANS_START,
781                                  BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
782 }
783
784 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
785 {
786         return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
787                                  true);
788 }
789
790 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
791 {
792         return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
793                                  BTRFS_RESERVE_NO_FLUSH, true);
794 }
795
796 /*
797  * Similar to regular join but it never starts a transaction when none is
798  * running or after waiting for the current one to finish.
799  */
800 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
801 {
802         return start_transaction(root, 0, TRANS_JOIN_NOSTART,
803                                  BTRFS_RESERVE_NO_FLUSH, true);
804 }
805
806 /*
807  * btrfs_attach_transaction() - catch the running transaction
808  *
809  * It is used when we want to commit the current the transaction, but
810  * don't want to start a new one.
811  *
812  * Note: If this function return -ENOENT, it just means there is no
813  * running transaction. But it is possible that the inactive transaction
814  * is still in the memory, not fully on disk. If you hope there is no
815  * inactive transaction in the fs when -ENOENT is returned, you should
816  * invoke
817  *     btrfs_attach_transaction_barrier()
818  */
819 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
820 {
821         return start_transaction(root, 0, TRANS_ATTACH,
822                                  BTRFS_RESERVE_NO_FLUSH, true);
823 }
824
825 /*
826  * btrfs_attach_transaction_barrier() - catch the running transaction
827  *
828  * It is similar to the above function, the difference is this one
829  * will wait for all the inactive transactions until they fully
830  * complete.
831  */
832 struct btrfs_trans_handle *
833 btrfs_attach_transaction_barrier(struct btrfs_root *root)
834 {
835         struct btrfs_trans_handle *trans;
836
837         trans = start_transaction(root, 0, TRANS_ATTACH,
838                                   BTRFS_RESERVE_NO_FLUSH, true);
839         if (trans == ERR_PTR(-ENOENT))
840                 btrfs_wait_for_commit(root->fs_info, 0);
841
842         return trans;
843 }
844
845 /* Wait for a transaction commit to reach at least the given state. */
846 static noinline void wait_for_commit(struct btrfs_transaction *commit,
847                                      const enum btrfs_trans_state min_state)
848 {
849         wait_event(commit->commit_wait, commit->state >= min_state);
850 }
851
852 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
853 {
854         struct btrfs_transaction *cur_trans = NULL, *t;
855         int ret = 0;
856
857         if (transid) {
858                 if (transid <= fs_info->last_trans_committed)
859                         goto out;
860
861                 /* find specified transaction */
862                 spin_lock(&fs_info->trans_lock);
863                 list_for_each_entry(t, &fs_info->trans_list, list) {
864                         if (t->transid == transid) {
865                                 cur_trans = t;
866                                 refcount_inc(&cur_trans->use_count);
867                                 ret = 0;
868                                 break;
869                         }
870                         if (t->transid > transid) {
871                                 ret = 0;
872                                 break;
873                         }
874                 }
875                 spin_unlock(&fs_info->trans_lock);
876
877                 /*
878                  * The specified transaction doesn't exist, or we
879                  * raced with btrfs_commit_transaction
880                  */
881                 if (!cur_trans) {
882                         if (transid > fs_info->last_trans_committed)
883                                 ret = -EINVAL;
884                         goto out;
885                 }
886         } else {
887                 /* find newest transaction that is committing | committed */
888                 spin_lock(&fs_info->trans_lock);
889                 list_for_each_entry_reverse(t, &fs_info->trans_list,
890                                             list) {
891                         if (t->state >= TRANS_STATE_COMMIT_START) {
892                                 if (t->state == TRANS_STATE_COMPLETED)
893                                         break;
894                                 cur_trans = t;
895                                 refcount_inc(&cur_trans->use_count);
896                                 break;
897                         }
898                 }
899                 spin_unlock(&fs_info->trans_lock);
900                 if (!cur_trans)
901                         goto out;  /* nothing committing|committed */
902         }
903
904         wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
905         btrfs_put_transaction(cur_trans);
906 out:
907         return ret;
908 }
909
910 void btrfs_throttle(struct btrfs_fs_info *fs_info)
911 {
912         wait_current_trans(fs_info);
913 }
914
915 static bool should_end_transaction(struct btrfs_trans_handle *trans)
916 {
917         struct btrfs_fs_info *fs_info = trans->fs_info;
918
919         if (btrfs_check_space_for_delayed_refs(fs_info))
920                 return true;
921
922         return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
923 }
924
925 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
926 {
927         struct btrfs_transaction *cur_trans = trans->transaction;
928
929         if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
930             test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
931                 return true;
932
933         return should_end_transaction(trans);
934 }
935
936 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
937
938 {
939         struct btrfs_fs_info *fs_info = trans->fs_info;
940
941         if (!trans->block_rsv) {
942                 ASSERT(!trans->bytes_reserved);
943                 return;
944         }
945
946         if (!trans->bytes_reserved)
947                 return;
948
949         ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
950         trace_btrfs_space_reservation(fs_info, "transaction",
951                                       trans->transid, trans->bytes_reserved, 0);
952         btrfs_block_rsv_release(fs_info, trans->block_rsv,
953                                 trans->bytes_reserved, NULL);
954         trans->bytes_reserved = 0;
955 }
956
957 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
958                                    int throttle)
959 {
960         struct btrfs_fs_info *info = trans->fs_info;
961         struct btrfs_transaction *cur_trans = trans->transaction;
962         int err = 0;
963
964         if (refcount_read(&trans->use_count) > 1) {
965                 refcount_dec(&trans->use_count);
966                 trans->block_rsv = trans->orig_rsv;
967                 return 0;
968         }
969
970         btrfs_trans_release_metadata(trans);
971         trans->block_rsv = NULL;
972
973         btrfs_create_pending_block_groups(trans);
974
975         btrfs_trans_release_chunk_metadata(trans);
976
977         if (trans->type & __TRANS_FREEZABLE)
978                 sb_end_intwrite(info->sb);
979
980         WARN_ON(cur_trans != info->running_transaction);
981         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
982         atomic_dec(&cur_trans->num_writers);
983         extwriter_counter_dec(cur_trans, trans->type);
984
985         cond_wake_up(&cur_trans->writer_wait);
986         btrfs_put_transaction(cur_trans);
987
988         if (current->journal_info == trans)
989                 current->journal_info = NULL;
990
991         if (throttle)
992                 btrfs_run_delayed_iputs(info);
993
994         if (TRANS_ABORTED(trans) ||
995             test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
996                 wake_up_process(info->transaction_kthread);
997                 if (TRANS_ABORTED(trans))
998                         err = trans->aborted;
999                 else
1000                         err = -EROFS;
1001         }
1002
1003         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1004         return err;
1005 }
1006
1007 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1008 {
1009         return __btrfs_end_transaction(trans, 0);
1010 }
1011
1012 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1013 {
1014         return __btrfs_end_transaction(trans, 1);
1015 }
1016
1017 /*
1018  * when btree blocks are allocated, they have some corresponding bits set for
1019  * them in one of two extent_io trees.  This is used to make sure all of
1020  * those extents are sent to disk but does not wait on them
1021  */
1022 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1023                                struct extent_io_tree *dirty_pages, int mark)
1024 {
1025         int err = 0;
1026         int werr = 0;
1027         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1028         struct extent_state *cached_state = NULL;
1029         u64 start = 0;
1030         u64 end;
1031
1032         atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1033         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1034                                       mark, &cached_state)) {
1035                 bool wait_writeback = false;
1036
1037                 err = convert_extent_bit(dirty_pages, start, end,
1038                                          EXTENT_NEED_WAIT,
1039                                          mark, &cached_state);
1040                 /*
1041                  * convert_extent_bit can return -ENOMEM, which is most of the
1042                  * time a temporary error. So when it happens, ignore the error
1043                  * and wait for writeback of this range to finish - because we
1044                  * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1045                  * to __btrfs_wait_marked_extents() would not know that
1046                  * writeback for this range started and therefore wouldn't
1047                  * wait for it to finish - we don't want to commit a
1048                  * superblock that points to btree nodes/leafs for which
1049                  * writeback hasn't finished yet (and without errors).
1050                  * We cleanup any entries left in the io tree when committing
1051                  * the transaction (through extent_io_tree_release()).
1052                  */
1053                 if (err == -ENOMEM) {
1054                         err = 0;
1055                         wait_writeback = true;
1056                 }
1057                 if (!err)
1058                         err = filemap_fdatawrite_range(mapping, start, end);
1059                 if (err)
1060                         werr = err;
1061                 else if (wait_writeback)
1062                         werr = filemap_fdatawait_range(mapping, start, end);
1063                 free_extent_state(cached_state);
1064                 cached_state = NULL;
1065                 cond_resched();
1066                 start = end + 1;
1067         }
1068         atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1069         return werr;
1070 }
1071
1072 /*
1073  * when btree blocks are allocated, they have some corresponding bits set for
1074  * them in one of two extent_io trees.  This is used to make sure all of
1075  * those extents are on disk for transaction or log commit.  We wait
1076  * on all the pages and clear them from the dirty pages state tree
1077  */
1078 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1079                                        struct extent_io_tree *dirty_pages)
1080 {
1081         int err = 0;
1082         int werr = 0;
1083         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1084         struct extent_state *cached_state = NULL;
1085         u64 start = 0;
1086         u64 end;
1087
1088         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1089                                       EXTENT_NEED_WAIT, &cached_state)) {
1090                 /*
1091                  * Ignore -ENOMEM errors returned by clear_extent_bit().
1092                  * When committing the transaction, we'll remove any entries
1093                  * left in the io tree. For a log commit, we don't remove them
1094                  * after committing the log because the tree can be accessed
1095                  * concurrently - we do it only at transaction commit time when
1096                  * it's safe to do it (through extent_io_tree_release()).
1097                  */
1098                 err = clear_extent_bit(dirty_pages, start, end,
1099                                        EXTENT_NEED_WAIT, 0, 0, &cached_state);
1100                 if (err == -ENOMEM)
1101                         err = 0;
1102                 if (!err)
1103                         err = filemap_fdatawait_range(mapping, start, end);
1104                 if (err)
1105                         werr = err;
1106                 free_extent_state(cached_state);
1107                 cached_state = NULL;
1108                 cond_resched();
1109                 start = end + 1;
1110         }
1111         if (err)
1112                 werr = err;
1113         return werr;
1114 }
1115
1116 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1117                        struct extent_io_tree *dirty_pages)
1118 {
1119         bool errors = false;
1120         int err;
1121
1122         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1123         if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1124                 errors = true;
1125
1126         if (errors && !err)
1127                 err = -EIO;
1128         return err;
1129 }
1130
1131 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1132 {
1133         struct btrfs_fs_info *fs_info = log_root->fs_info;
1134         struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1135         bool errors = false;
1136         int err;
1137
1138         ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1139
1140         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1141         if ((mark & EXTENT_DIRTY) &&
1142             test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1143                 errors = true;
1144
1145         if ((mark & EXTENT_NEW) &&
1146             test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1147                 errors = true;
1148
1149         if (errors && !err)
1150                 err = -EIO;
1151         return err;
1152 }
1153
1154 /*
1155  * When btree blocks are allocated the corresponding extents are marked dirty.
1156  * This function ensures such extents are persisted on disk for transaction or
1157  * log commit.
1158  *
1159  * @trans: transaction whose dirty pages we'd like to write
1160  */
1161 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1162 {
1163         int ret;
1164         int ret2;
1165         struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1166         struct btrfs_fs_info *fs_info = trans->fs_info;
1167         struct blk_plug plug;
1168
1169         blk_start_plug(&plug);
1170         ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1171         blk_finish_plug(&plug);
1172         ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1173
1174         extent_io_tree_release(&trans->transaction->dirty_pages);
1175
1176         if (ret)
1177                 return ret;
1178         else if (ret2)
1179                 return ret2;
1180         else
1181                 return 0;
1182 }
1183
1184 /*
1185  * this is used to update the root pointer in the tree of tree roots.
1186  *
1187  * But, in the case of the extent allocation tree, updating the root
1188  * pointer may allocate blocks which may change the root of the extent
1189  * allocation tree.
1190  *
1191  * So, this loops and repeats and makes sure the cowonly root didn't
1192  * change while the root pointer was being updated in the metadata.
1193  */
1194 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1195                                struct btrfs_root *root)
1196 {
1197         int ret;
1198         u64 old_root_bytenr;
1199         u64 old_root_used;
1200         struct btrfs_fs_info *fs_info = root->fs_info;
1201         struct btrfs_root *tree_root = fs_info->tree_root;
1202
1203         old_root_used = btrfs_root_used(&root->root_item);
1204
1205         while (1) {
1206                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1207                 if (old_root_bytenr == root->node->start &&
1208                     old_root_used == btrfs_root_used(&root->root_item))
1209                         break;
1210
1211                 btrfs_set_root_node(&root->root_item, root->node);
1212                 ret = btrfs_update_root(trans, tree_root,
1213                                         &root->root_key,
1214                                         &root->root_item);
1215                 if (ret)
1216                         return ret;
1217
1218                 old_root_used = btrfs_root_used(&root->root_item);
1219         }
1220
1221         return 0;
1222 }
1223
1224 /*
1225  * update all the cowonly tree roots on disk
1226  *
1227  * The error handling in this function may not be obvious. Any of the
1228  * failures will cause the file system to go offline. We still need
1229  * to clean up the delayed refs.
1230  */
1231 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1232 {
1233         struct btrfs_fs_info *fs_info = trans->fs_info;
1234         struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1235         struct list_head *io_bgs = &trans->transaction->io_bgs;
1236         struct list_head *next;
1237         struct extent_buffer *eb;
1238         int ret;
1239
1240         eb = btrfs_lock_root_node(fs_info->tree_root);
1241         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1242                               0, &eb, BTRFS_NESTING_COW);
1243         btrfs_tree_unlock(eb);
1244         free_extent_buffer(eb);
1245
1246         if (ret)
1247                 return ret;
1248
1249         ret = btrfs_run_dev_stats(trans);
1250         if (ret)
1251                 return ret;
1252         ret = btrfs_run_dev_replace(trans);
1253         if (ret)
1254                 return ret;
1255         ret = btrfs_run_qgroups(trans);
1256         if (ret)
1257                 return ret;
1258
1259         ret = btrfs_setup_space_cache(trans);
1260         if (ret)
1261                 return ret;
1262
1263 again:
1264         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1265                 struct btrfs_root *root;
1266                 next = fs_info->dirty_cowonly_roots.next;
1267                 list_del_init(next);
1268                 root = list_entry(next, struct btrfs_root, dirty_list);
1269                 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1270
1271                 if (root != fs_info->extent_root)
1272                         list_add_tail(&root->dirty_list,
1273                                       &trans->transaction->switch_commits);
1274                 ret = update_cowonly_root(trans, root);
1275                 if (ret)
1276                         return ret;
1277         }
1278
1279         /* Now flush any delayed refs generated by updating all of the roots */
1280         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1281         if (ret)
1282                 return ret;
1283
1284         while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1285                 ret = btrfs_write_dirty_block_groups(trans);
1286                 if (ret)
1287                         return ret;
1288
1289                 /*
1290                  * We're writing the dirty block groups, which could generate
1291                  * delayed refs, which could generate more dirty block groups,
1292                  * so we want to keep this flushing in this loop to make sure
1293                  * everything gets run.
1294                  */
1295                 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1296                 if (ret)
1297                         return ret;
1298         }
1299
1300         if (!list_empty(&fs_info->dirty_cowonly_roots))
1301                 goto again;
1302
1303         list_add_tail(&fs_info->extent_root->dirty_list,
1304                       &trans->transaction->switch_commits);
1305
1306         /* Update dev-replace pointer once everything is committed */
1307         fs_info->dev_replace.committed_cursor_left =
1308                 fs_info->dev_replace.cursor_left_last_write_of_item;
1309
1310         return 0;
1311 }
1312
1313 /*
1314  * dead roots are old snapshots that need to be deleted.  This allocates
1315  * a dirty root struct and adds it into the list of dead roots that need to
1316  * be deleted
1317  */
1318 void btrfs_add_dead_root(struct btrfs_root *root)
1319 {
1320         struct btrfs_fs_info *fs_info = root->fs_info;
1321
1322         spin_lock(&fs_info->trans_lock);
1323         if (list_empty(&root->root_list)) {
1324                 btrfs_grab_root(root);
1325                 list_add_tail(&root->root_list, &fs_info->dead_roots);
1326         }
1327         spin_unlock(&fs_info->trans_lock);
1328 }
1329
1330 /*
1331  * update all the cowonly tree roots on disk
1332  */
1333 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1334 {
1335         struct btrfs_fs_info *fs_info = trans->fs_info;
1336         struct btrfs_root *gang[8];
1337         int i;
1338         int ret;
1339
1340         spin_lock(&fs_info->fs_roots_radix_lock);
1341         while (1) {
1342                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1343                                                  (void **)gang, 0,
1344                                                  ARRAY_SIZE(gang),
1345                                                  BTRFS_ROOT_TRANS_TAG);
1346                 if (ret == 0)
1347                         break;
1348                 for (i = 0; i < ret; i++) {
1349                         struct btrfs_root *root = gang[i];
1350                         int ret2;
1351
1352                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
1353                                         (unsigned long)root->root_key.objectid,
1354                                         BTRFS_ROOT_TRANS_TAG);
1355                         spin_unlock(&fs_info->fs_roots_radix_lock);
1356
1357                         btrfs_free_log(trans, root);
1358                         ret2 = btrfs_update_reloc_root(trans, root);
1359                         if (ret2)
1360                                 return ret2;
1361
1362                         /* see comments in should_cow_block() */
1363                         clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1364                         smp_mb__after_atomic();
1365
1366                         if (root->commit_root != root->node) {
1367                                 list_add_tail(&root->dirty_list,
1368                                         &trans->transaction->switch_commits);
1369                                 btrfs_set_root_node(&root->root_item,
1370                                                     root->node);
1371                         }
1372
1373                         ret2 = btrfs_update_root(trans, fs_info->tree_root,
1374                                                 &root->root_key,
1375                                                 &root->root_item);
1376                         if (ret2)
1377                                 return ret2;
1378                         spin_lock(&fs_info->fs_roots_radix_lock);
1379                         btrfs_qgroup_free_meta_all_pertrans(root);
1380                 }
1381         }
1382         spin_unlock(&fs_info->fs_roots_radix_lock);
1383         return 0;
1384 }
1385
1386 /*
1387  * defrag a given btree.
1388  * Every leaf in the btree is read and defragged.
1389  */
1390 int btrfs_defrag_root(struct btrfs_root *root)
1391 {
1392         struct btrfs_fs_info *info = root->fs_info;
1393         struct btrfs_trans_handle *trans;
1394         int ret;
1395
1396         if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1397                 return 0;
1398
1399         while (1) {
1400                 trans = btrfs_start_transaction(root, 0);
1401                 if (IS_ERR(trans)) {
1402                         ret = PTR_ERR(trans);
1403                         break;
1404                 }
1405
1406                 ret = btrfs_defrag_leaves(trans, root);
1407
1408                 btrfs_end_transaction(trans);
1409                 btrfs_btree_balance_dirty(info);
1410                 cond_resched();
1411
1412                 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1413                         break;
1414
1415                 if (btrfs_defrag_cancelled(info)) {
1416                         btrfs_debug(info, "defrag_root cancelled");
1417                         ret = -EAGAIN;
1418                         break;
1419                 }
1420         }
1421         clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1422         return ret;
1423 }
1424
1425 /*
1426  * Do all special snapshot related qgroup dirty hack.
1427  *
1428  * Will do all needed qgroup inherit and dirty hack like switch commit
1429  * roots inside one transaction and write all btree into disk, to make
1430  * qgroup works.
1431  */
1432 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1433                                    struct btrfs_root *src,
1434                                    struct btrfs_root *parent,
1435                                    struct btrfs_qgroup_inherit *inherit,
1436                                    u64 dst_objectid)
1437 {
1438         struct btrfs_fs_info *fs_info = src->fs_info;
1439         int ret;
1440
1441         /*
1442          * Save some performance in the case that qgroups are not
1443          * enabled. If this check races with the ioctl, rescan will
1444          * kick in anyway.
1445          */
1446         if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1447                 return 0;
1448
1449         /*
1450          * Ensure dirty @src will be committed.  Or, after coming
1451          * commit_fs_roots() and switch_commit_roots(), any dirty but not
1452          * recorded root will never be updated again, causing an outdated root
1453          * item.
1454          */
1455         ret = record_root_in_trans(trans, src, 1);
1456         if (ret)
1457                 return ret;
1458
1459         /*
1460          * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1461          * src root, so we must run the delayed refs here.
1462          *
1463          * However this isn't particularly fool proof, because there's no
1464          * synchronization keeping us from changing the tree after this point
1465          * before we do the qgroup_inherit, or even from making changes while
1466          * we're doing the qgroup_inherit.  But that's a problem for the future,
1467          * for now flush the delayed refs to narrow the race window where the
1468          * qgroup counters could end up wrong.
1469          */
1470         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1471         if (ret) {
1472                 btrfs_abort_transaction(trans, ret);
1473                 return ret;
1474         }
1475
1476         /*
1477          * We are going to commit transaction, see btrfs_commit_transaction()
1478          * comment for reason locking tree_log_mutex
1479          */
1480         mutex_lock(&fs_info->tree_log_mutex);
1481
1482         ret = commit_fs_roots(trans);
1483         if (ret)
1484                 goto out;
1485         ret = btrfs_qgroup_account_extents(trans);
1486         if (ret < 0)
1487                 goto out;
1488
1489         /* Now qgroup are all updated, we can inherit it to new qgroups */
1490         ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1491                                    inherit);
1492         if (ret < 0)
1493                 goto out;
1494
1495         /*
1496          * Now we do a simplified commit transaction, which will:
1497          * 1) commit all subvolume and extent tree
1498          *    To ensure all subvolume and extent tree have a valid
1499          *    commit_root to accounting later insert_dir_item()
1500          * 2) write all btree blocks onto disk
1501          *    This is to make sure later btree modification will be cowed
1502          *    Or commit_root can be populated and cause wrong qgroup numbers
1503          * In this simplified commit, we don't really care about other trees
1504          * like chunk and root tree, as they won't affect qgroup.
1505          * And we don't write super to avoid half committed status.
1506          */
1507         ret = commit_cowonly_roots(trans);
1508         if (ret)
1509                 goto out;
1510         switch_commit_roots(trans);
1511         ret = btrfs_write_and_wait_transaction(trans);
1512         if (ret)
1513                 btrfs_handle_fs_error(fs_info, ret,
1514                         "Error while writing out transaction for qgroup");
1515
1516 out:
1517         mutex_unlock(&fs_info->tree_log_mutex);
1518
1519         /*
1520          * Force parent root to be updated, as we recorded it before so its
1521          * last_trans == cur_transid.
1522          * Or it won't be committed again onto disk after later
1523          * insert_dir_item()
1524          */
1525         if (!ret)
1526                 ret = record_root_in_trans(trans, parent, 1);
1527         return ret;
1528 }
1529
1530 /*
1531  * new snapshots need to be created at a very specific time in the
1532  * transaction commit.  This does the actual creation.
1533  *
1534  * Note:
1535  * If the error which may affect the commitment of the current transaction
1536  * happens, we should return the error number. If the error which just affect
1537  * the creation of the pending snapshots, just return 0.
1538  */
1539 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1540                                    struct btrfs_pending_snapshot *pending)
1541 {
1542
1543         struct btrfs_fs_info *fs_info = trans->fs_info;
1544         struct btrfs_key key;
1545         struct btrfs_root_item *new_root_item;
1546         struct btrfs_root *tree_root = fs_info->tree_root;
1547         struct btrfs_root *root = pending->root;
1548         struct btrfs_root *parent_root;
1549         struct btrfs_block_rsv *rsv;
1550         struct inode *parent_inode;
1551         struct btrfs_path *path;
1552         struct btrfs_dir_item *dir_item;
1553         struct dentry *dentry;
1554         struct extent_buffer *tmp;
1555         struct extent_buffer *old;
1556         struct timespec64 cur_time;
1557         int ret = 0;
1558         u64 to_reserve = 0;
1559         u64 index = 0;
1560         u64 objectid;
1561         u64 root_flags;
1562
1563         ASSERT(pending->path);
1564         path = pending->path;
1565
1566         ASSERT(pending->root_item);
1567         new_root_item = pending->root_item;
1568
1569         pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1570         if (pending->error)
1571                 goto no_free_objectid;
1572
1573         /*
1574          * Make qgroup to skip current new snapshot's qgroupid, as it is
1575          * accounted by later btrfs_qgroup_inherit().
1576          */
1577         btrfs_set_skip_qgroup(trans, objectid);
1578
1579         btrfs_reloc_pre_snapshot(pending, &to_reserve);
1580
1581         if (to_reserve > 0) {
1582                 pending->error = btrfs_block_rsv_add(root,
1583                                                      &pending->block_rsv,
1584                                                      to_reserve,
1585                                                      BTRFS_RESERVE_NO_FLUSH);
1586                 if (pending->error)
1587                         goto clear_skip_qgroup;
1588         }
1589
1590         key.objectid = objectid;
1591         key.offset = (u64)-1;
1592         key.type = BTRFS_ROOT_ITEM_KEY;
1593
1594         rsv = trans->block_rsv;
1595         trans->block_rsv = &pending->block_rsv;
1596         trans->bytes_reserved = trans->block_rsv->reserved;
1597         trace_btrfs_space_reservation(fs_info, "transaction",
1598                                       trans->transid,
1599                                       trans->bytes_reserved, 1);
1600         dentry = pending->dentry;
1601         parent_inode = pending->dir;
1602         parent_root = BTRFS_I(parent_inode)->root;
1603         ret = record_root_in_trans(trans, parent_root, 0);
1604         if (ret)
1605                 goto fail;
1606         cur_time = current_time(parent_inode);
1607
1608         /*
1609          * insert the directory item
1610          */
1611         ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1612         BUG_ON(ret); /* -ENOMEM */
1613
1614         /* check if there is a file/dir which has the same name. */
1615         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1616                                          btrfs_ino(BTRFS_I(parent_inode)),
1617                                          dentry->d_name.name,
1618                                          dentry->d_name.len, 0);
1619         if (dir_item != NULL && !IS_ERR(dir_item)) {
1620                 pending->error = -EEXIST;
1621                 goto dir_item_existed;
1622         } else if (IS_ERR(dir_item)) {
1623                 ret = PTR_ERR(dir_item);
1624                 btrfs_abort_transaction(trans, ret);
1625                 goto fail;
1626         }
1627         btrfs_release_path(path);
1628
1629         /*
1630          * pull in the delayed directory update
1631          * and the delayed inode item
1632          * otherwise we corrupt the FS during
1633          * snapshot
1634          */
1635         ret = btrfs_run_delayed_items(trans);
1636         if (ret) {      /* Transaction aborted */
1637                 btrfs_abort_transaction(trans, ret);
1638                 goto fail;
1639         }
1640
1641         ret = record_root_in_trans(trans, root, 0);
1642         if (ret) {
1643                 btrfs_abort_transaction(trans, ret);
1644                 goto fail;
1645         }
1646         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1647         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1648         btrfs_check_and_init_root_item(new_root_item);
1649
1650         root_flags = btrfs_root_flags(new_root_item);
1651         if (pending->readonly)
1652                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1653         else
1654                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1655         btrfs_set_root_flags(new_root_item, root_flags);
1656
1657         btrfs_set_root_generation_v2(new_root_item,
1658                         trans->transid);
1659         generate_random_guid(new_root_item->uuid);
1660         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1661                         BTRFS_UUID_SIZE);
1662         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1663                 memset(new_root_item->received_uuid, 0,
1664                        sizeof(new_root_item->received_uuid));
1665                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1666                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1667                 btrfs_set_root_stransid(new_root_item, 0);
1668                 btrfs_set_root_rtransid(new_root_item, 0);
1669         }
1670         btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1671         btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1672         btrfs_set_root_otransid(new_root_item, trans->transid);
1673
1674         old = btrfs_lock_root_node(root);
1675         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1676                               BTRFS_NESTING_COW);
1677         if (ret) {
1678                 btrfs_tree_unlock(old);
1679                 free_extent_buffer(old);
1680                 btrfs_abort_transaction(trans, ret);
1681                 goto fail;
1682         }
1683
1684         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1685         /* clean up in any case */
1686         btrfs_tree_unlock(old);
1687         free_extent_buffer(old);
1688         if (ret) {
1689                 btrfs_abort_transaction(trans, ret);
1690                 goto fail;
1691         }
1692         /* see comments in should_cow_block() */
1693         set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1694         smp_wmb();
1695
1696         btrfs_set_root_node(new_root_item, tmp);
1697         /* record when the snapshot was created in key.offset */
1698         key.offset = trans->transid;
1699         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1700         btrfs_tree_unlock(tmp);
1701         free_extent_buffer(tmp);
1702         if (ret) {
1703                 btrfs_abort_transaction(trans, ret);
1704                 goto fail;
1705         }
1706
1707         /*
1708          * insert root back/forward references
1709          */
1710         ret = btrfs_add_root_ref(trans, objectid,
1711                                  parent_root->root_key.objectid,
1712                                  btrfs_ino(BTRFS_I(parent_inode)), index,
1713                                  dentry->d_name.name, dentry->d_name.len);
1714         if (ret) {
1715                 btrfs_abort_transaction(trans, ret);
1716                 goto fail;
1717         }
1718
1719         key.offset = (u64)-1;
1720         pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1721         if (IS_ERR(pending->snap)) {
1722                 ret = PTR_ERR(pending->snap);
1723                 pending->snap = NULL;
1724                 btrfs_abort_transaction(trans, ret);
1725                 goto fail;
1726         }
1727
1728         ret = btrfs_reloc_post_snapshot(trans, pending);
1729         if (ret) {
1730                 btrfs_abort_transaction(trans, ret);
1731                 goto fail;
1732         }
1733
1734         /*
1735          * Do special qgroup accounting for snapshot, as we do some qgroup
1736          * snapshot hack to do fast snapshot.
1737          * To co-operate with that hack, we do hack again.
1738          * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1739          */
1740         ret = qgroup_account_snapshot(trans, root, parent_root,
1741                                       pending->inherit, objectid);
1742         if (ret < 0)
1743                 goto fail;
1744
1745         ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1746                                     dentry->d_name.len, BTRFS_I(parent_inode),
1747                                     &key, BTRFS_FT_DIR, index);
1748         /* We have check then name at the beginning, so it is impossible. */
1749         BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1750         if (ret) {
1751                 btrfs_abort_transaction(trans, ret);
1752                 goto fail;
1753         }
1754
1755         btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1756                                          dentry->d_name.len * 2);
1757         parent_inode->i_mtime = parent_inode->i_ctime =
1758                 current_time(parent_inode);
1759         ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1760         if (ret) {
1761                 btrfs_abort_transaction(trans, ret);
1762                 goto fail;
1763         }
1764         ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1765                                   BTRFS_UUID_KEY_SUBVOL,
1766                                   objectid);
1767         if (ret) {
1768                 btrfs_abort_transaction(trans, ret);
1769                 goto fail;
1770         }
1771         if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1772                 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1773                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1774                                           objectid);
1775                 if (ret && ret != -EEXIST) {
1776                         btrfs_abort_transaction(trans, ret);
1777                         goto fail;
1778                 }
1779         }
1780
1781 fail:
1782         pending->error = ret;
1783 dir_item_existed:
1784         trans->block_rsv = rsv;
1785         trans->bytes_reserved = 0;
1786 clear_skip_qgroup:
1787         btrfs_clear_skip_qgroup(trans);
1788 no_free_objectid:
1789         kfree(new_root_item);
1790         pending->root_item = NULL;
1791         btrfs_free_path(path);
1792         pending->path = NULL;
1793
1794         return ret;
1795 }
1796
1797 /*
1798  * create all the snapshots we've scheduled for creation
1799  */
1800 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1801 {
1802         struct btrfs_pending_snapshot *pending, *next;
1803         struct list_head *head = &trans->transaction->pending_snapshots;
1804         int ret = 0;
1805
1806         list_for_each_entry_safe(pending, next, head, list) {
1807                 list_del(&pending->list);
1808                 ret = create_pending_snapshot(trans, pending);
1809                 if (ret)
1810                         break;
1811         }
1812         return ret;
1813 }
1814
1815 static void update_super_roots(struct btrfs_fs_info *fs_info)
1816 {
1817         struct btrfs_root_item *root_item;
1818         struct btrfs_super_block *super;
1819
1820         super = fs_info->super_copy;
1821
1822         root_item = &fs_info->chunk_root->root_item;
1823         super->chunk_root = root_item->bytenr;
1824         super->chunk_root_generation = root_item->generation;
1825         super->chunk_root_level = root_item->level;
1826
1827         root_item = &fs_info->tree_root->root_item;
1828         super->root = root_item->bytenr;
1829         super->generation = root_item->generation;
1830         super->root_level = root_item->level;
1831         if (btrfs_test_opt(fs_info, SPACE_CACHE))
1832                 super->cache_generation = root_item->generation;
1833         else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1834                 super->cache_generation = 0;
1835         if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1836                 super->uuid_tree_generation = root_item->generation;
1837 }
1838
1839 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1840 {
1841         struct btrfs_transaction *trans;
1842         int ret = 0;
1843
1844         spin_lock(&info->trans_lock);
1845         trans = info->running_transaction;
1846         if (trans)
1847                 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1848         spin_unlock(&info->trans_lock);
1849         return ret;
1850 }
1851
1852 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1853 {
1854         struct btrfs_transaction *trans;
1855         int ret = 0;
1856
1857         spin_lock(&info->trans_lock);
1858         trans = info->running_transaction;
1859         if (trans)
1860                 ret = is_transaction_blocked(trans);
1861         spin_unlock(&info->trans_lock);
1862         return ret;
1863 }
1864
1865 /*
1866  * commit transactions asynchronously. once btrfs_commit_transaction_async
1867  * returns, any subsequent transaction will not be allowed to join.
1868  */
1869 struct btrfs_async_commit {
1870         struct btrfs_trans_handle *newtrans;
1871         struct work_struct work;
1872 };
1873
1874 static void do_async_commit(struct work_struct *work)
1875 {
1876         struct btrfs_async_commit *ac =
1877                 container_of(work, struct btrfs_async_commit, work);
1878
1879         /*
1880          * We've got freeze protection passed with the transaction.
1881          * Tell lockdep about it.
1882          */
1883         if (ac->newtrans->type & __TRANS_FREEZABLE)
1884                 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1885
1886         current->journal_info = ac->newtrans;
1887
1888         btrfs_commit_transaction(ac->newtrans);
1889         kfree(ac);
1890 }
1891
1892 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1893 {
1894         struct btrfs_fs_info *fs_info = trans->fs_info;
1895         struct btrfs_async_commit *ac;
1896         struct btrfs_transaction *cur_trans;
1897
1898         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1899         if (!ac)
1900                 return -ENOMEM;
1901
1902         INIT_WORK(&ac->work, do_async_commit);
1903         ac->newtrans = btrfs_join_transaction(trans->root);
1904         if (IS_ERR(ac->newtrans)) {
1905                 int err = PTR_ERR(ac->newtrans);
1906                 kfree(ac);
1907                 return err;
1908         }
1909
1910         /* take transaction reference */
1911         cur_trans = trans->transaction;
1912         refcount_inc(&cur_trans->use_count);
1913
1914         btrfs_end_transaction(trans);
1915
1916         /*
1917          * Tell lockdep we've released the freeze rwsem, since the
1918          * async commit thread will be the one to unlock it.
1919          */
1920         if (ac->newtrans->type & __TRANS_FREEZABLE)
1921                 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1922
1923         schedule_work(&ac->work);
1924         /*
1925          * Wait for the current transaction commit to start and block
1926          * subsequent transaction joins
1927          */
1928         wait_event(fs_info->transaction_blocked_wait,
1929                    cur_trans->state >= TRANS_STATE_COMMIT_START ||
1930                    TRANS_ABORTED(cur_trans));
1931         if (current->journal_info == trans)
1932                 current->journal_info = NULL;
1933
1934         btrfs_put_transaction(cur_trans);
1935         return 0;
1936 }
1937
1938
1939 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1940 {
1941         struct btrfs_fs_info *fs_info = trans->fs_info;
1942         struct btrfs_transaction *cur_trans = trans->transaction;
1943
1944         WARN_ON(refcount_read(&trans->use_count) > 1);
1945
1946         btrfs_abort_transaction(trans, err);
1947
1948         spin_lock(&fs_info->trans_lock);
1949
1950         /*
1951          * If the transaction is removed from the list, it means this
1952          * transaction has been committed successfully, so it is impossible
1953          * to call the cleanup function.
1954          */
1955         BUG_ON(list_empty(&cur_trans->list));
1956
1957         if (cur_trans == fs_info->running_transaction) {
1958                 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1959                 spin_unlock(&fs_info->trans_lock);
1960                 wait_event(cur_trans->writer_wait,
1961                            atomic_read(&cur_trans->num_writers) == 1);
1962
1963                 spin_lock(&fs_info->trans_lock);
1964         }
1965
1966         /*
1967          * Now that we know no one else is still using the transaction we can
1968          * remove the transaction from the list of transactions. This avoids
1969          * the transaction kthread from cleaning up the transaction while some
1970          * other task is still using it, which could result in a use-after-free
1971          * on things like log trees, as it forces the transaction kthread to
1972          * wait for this transaction to be cleaned up by us.
1973          */
1974         list_del_init(&cur_trans->list);
1975
1976         spin_unlock(&fs_info->trans_lock);
1977
1978         btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1979
1980         spin_lock(&fs_info->trans_lock);
1981         if (cur_trans == fs_info->running_transaction)
1982                 fs_info->running_transaction = NULL;
1983         spin_unlock(&fs_info->trans_lock);
1984
1985         if (trans->type & __TRANS_FREEZABLE)
1986                 sb_end_intwrite(fs_info->sb);
1987         btrfs_put_transaction(cur_trans);
1988         btrfs_put_transaction(cur_trans);
1989
1990         trace_btrfs_transaction_commit(trans->root);
1991
1992         if (current->journal_info == trans)
1993                 current->journal_info = NULL;
1994         btrfs_scrub_cancel(fs_info);
1995
1996         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1997 }
1998
1999 /*
2000  * Release reserved delayed ref space of all pending block groups of the
2001  * transaction and remove them from the list
2002  */
2003 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2004 {
2005        struct btrfs_fs_info *fs_info = trans->fs_info;
2006        struct btrfs_block_group *block_group, *tmp;
2007
2008        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2009                btrfs_delayed_refs_rsv_release(fs_info, 1);
2010                list_del_init(&block_group->bg_list);
2011        }
2012 }
2013
2014 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2015 {
2016         /*
2017          * We use writeback_inodes_sb here because if we used
2018          * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2019          * Currently are holding the fs freeze lock, if we do an async flush
2020          * we'll do btrfs_join_transaction() and deadlock because we need to
2021          * wait for the fs freeze lock.  Using the direct flushing we benefit
2022          * from already being in a transaction and our join_transaction doesn't
2023          * have to re-take the fs freeze lock.
2024          */
2025         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2026                 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2027         return 0;
2028 }
2029
2030 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2031 {
2032         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2033                 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2034 }
2035
2036 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2037 {
2038         struct btrfs_fs_info *fs_info = trans->fs_info;
2039         struct btrfs_transaction *cur_trans = trans->transaction;
2040         struct btrfs_transaction *prev_trans = NULL;
2041         int ret;
2042
2043         ASSERT(refcount_read(&trans->use_count) == 1);
2044
2045         /* Stop the commit early if ->aborted is set */
2046         if (TRANS_ABORTED(cur_trans)) {
2047                 ret = cur_trans->aborted;
2048                 btrfs_end_transaction(trans);
2049                 return ret;
2050         }
2051
2052         btrfs_trans_release_metadata(trans);
2053         trans->block_rsv = NULL;
2054
2055         /*
2056          * We only want one transaction commit doing the flushing so we do not
2057          * waste a bunch of time on lock contention on the extent root node.
2058          */
2059         if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2060                               &cur_trans->delayed_refs.flags)) {
2061                 /*
2062                  * Make a pass through all the delayed refs we have so far.
2063                  * Any running threads may add more while we are here.
2064                  */
2065                 ret = btrfs_run_delayed_refs(trans, 0);
2066                 if (ret) {
2067                         btrfs_end_transaction(trans);
2068                         return ret;
2069                 }
2070         }
2071
2072         btrfs_create_pending_block_groups(trans);
2073
2074         if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2075                 int run_it = 0;
2076
2077                 /* this mutex is also taken before trying to set
2078                  * block groups readonly.  We need to make sure
2079                  * that nobody has set a block group readonly
2080                  * after a extents from that block group have been
2081                  * allocated for cache files.  btrfs_set_block_group_ro
2082                  * will wait for the transaction to commit if it
2083                  * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2084                  *
2085                  * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2086                  * only one process starts all the block group IO.  It wouldn't
2087                  * hurt to have more than one go through, but there's no
2088                  * real advantage to it either.
2089                  */
2090                 mutex_lock(&fs_info->ro_block_group_mutex);
2091                 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2092                                       &cur_trans->flags))
2093                         run_it = 1;
2094                 mutex_unlock(&fs_info->ro_block_group_mutex);
2095
2096                 if (run_it) {
2097                         ret = btrfs_start_dirty_block_groups(trans);
2098                         if (ret) {
2099                                 btrfs_end_transaction(trans);
2100                                 return ret;
2101                         }
2102                 }
2103         }
2104
2105         spin_lock(&fs_info->trans_lock);
2106         if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2107                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2108
2109                 spin_unlock(&fs_info->trans_lock);
2110                 refcount_inc(&cur_trans->use_count);
2111
2112                 if (trans->in_fsync)
2113                         want_state = TRANS_STATE_SUPER_COMMITTED;
2114                 ret = btrfs_end_transaction(trans);
2115                 wait_for_commit(cur_trans, want_state);
2116
2117                 if (TRANS_ABORTED(cur_trans))
2118                         ret = cur_trans->aborted;
2119
2120                 btrfs_put_transaction(cur_trans);
2121
2122                 return ret;
2123         }
2124
2125         cur_trans->state = TRANS_STATE_COMMIT_START;
2126         wake_up(&fs_info->transaction_blocked_wait);
2127
2128         if (cur_trans->list.prev != &fs_info->trans_list) {
2129                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2130
2131                 if (trans->in_fsync)
2132                         want_state = TRANS_STATE_SUPER_COMMITTED;
2133
2134                 prev_trans = list_entry(cur_trans->list.prev,
2135                                         struct btrfs_transaction, list);
2136                 if (prev_trans->state < want_state) {
2137                         refcount_inc(&prev_trans->use_count);
2138                         spin_unlock(&fs_info->trans_lock);
2139
2140                         wait_for_commit(prev_trans, want_state);
2141
2142                         ret = READ_ONCE(prev_trans->aborted);
2143
2144                         btrfs_put_transaction(prev_trans);
2145                         if (ret)
2146                                 goto cleanup_transaction;
2147                 } else {
2148                         spin_unlock(&fs_info->trans_lock);
2149                 }
2150         } else {
2151                 spin_unlock(&fs_info->trans_lock);
2152                 /*
2153                  * The previous transaction was aborted and was already removed
2154                  * from the list of transactions at fs_info->trans_list. So we
2155                  * abort to prevent writing a new superblock that reflects a
2156                  * corrupt state (pointing to trees with unwritten nodes/leafs).
2157                  */
2158                 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2159                         ret = -EROFS;
2160                         goto cleanup_transaction;
2161                 }
2162         }
2163
2164         extwriter_counter_dec(cur_trans, trans->type);
2165
2166         ret = btrfs_start_delalloc_flush(fs_info);
2167         if (ret)
2168                 goto cleanup_transaction;
2169
2170         ret = btrfs_run_delayed_items(trans);
2171         if (ret)
2172                 goto cleanup_transaction;
2173
2174         wait_event(cur_trans->writer_wait,
2175                    extwriter_counter_read(cur_trans) == 0);
2176
2177         /* some pending stuffs might be added after the previous flush. */
2178         ret = btrfs_run_delayed_items(trans);
2179         if (ret)
2180                 goto cleanup_transaction;
2181
2182         btrfs_wait_delalloc_flush(fs_info);
2183
2184         /*
2185          * Wait for all ordered extents started by a fast fsync that joined this
2186          * transaction. Otherwise if this transaction commits before the ordered
2187          * extents complete we lose logged data after a power failure.
2188          */
2189         wait_event(cur_trans->pending_wait,
2190                    atomic_read(&cur_trans->pending_ordered) == 0);
2191
2192         btrfs_scrub_pause(fs_info);
2193         /*
2194          * Ok now we need to make sure to block out any other joins while we
2195          * commit the transaction.  We could have started a join before setting
2196          * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2197          */
2198         spin_lock(&fs_info->trans_lock);
2199         cur_trans->state = TRANS_STATE_COMMIT_DOING;
2200         spin_unlock(&fs_info->trans_lock);
2201         wait_event(cur_trans->writer_wait,
2202                    atomic_read(&cur_trans->num_writers) == 1);
2203
2204         if (TRANS_ABORTED(cur_trans)) {
2205                 ret = cur_trans->aborted;
2206                 goto scrub_continue;
2207         }
2208         /*
2209          * the reloc mutex makes sure that we stop
2210          * the balancing code from coming in and moving
2211          * extents around in the middle of the commit
2212          */
2213         mutex_lock(&fs_info->reloc_mutex);
2214
2215         /*
2216          * We needn't worry about the delayed items because we will
2217          * deal with them in create_pending_snapshot(), which is the
2218          * core function of the snapshot creation.
2219          */
2220         ret = create_pending_snapshots(trans);
2221         if (ret)
2222                 goto unlock_reloc;
2223
2224         /*
2225          * We insert the dir indexes of the snapshots and update the inode
2226          * of the snapshots' parents after the snapshot creation, so there
2227          * are some delayed items which are not dealt with. Now deal with
2228          * them.
2229          *
2230          * We needn't worry that this operation will corrupt the snapshots,
2231          * because all the tree which are snapshoted will be forced to COW
2232          * the nodes and leaves.
2233          */
2234         ret = btrfs_run_delayed_items(trans);
2235         if (ret)
2236                 goto unlock_reloc;
2237
2238         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2239         if (ret)
2240                 goto unlock_reloc;
2241
2242         /*
2243          * make sure none of the code above managed to slip in a
2244          * delayed item
2245          */
2246         btrfs_assert_delayed_root_empty(fs_info);
2247
2248         WARN_ON(cur_trans != trans->transaction);
2249
2250         /* btrfs_commit_tree_roots is responsible for getting the
2251          * various roots consistent with each other.  Every pointer
2252          * in the tree of tree roots has to point to the most up to date
2253          * root for every subvolume and other tree.  So, we have to keep
2254          * the tree logging code from jumping in and changing any
2255          * of the trees.
2256          *
2257          * At this point in the commit, there can't be any tree-log
2258          * writers, but a little lower down we drop the trans mutex
2259          * and let new people in.  By holding the tree_log_mutex
2260          * from now until after the super is written, we avoid races
2261          * with the tree-log code.
2262          */
2263         mutex_lock(&fs_info->tree_log_mutex);
2264
2265         ret = commit_fs_roots(trans);
2266         if (ret)
2267                 goto unlock_tree_log;
2268
2269         /*
2270          * Since the transaction is done, we can apply the pending changes
2271          * before the next transaction.
2272          */
2273         btrfs_apply_pending_changes(fs_info);
2274
2275         /* commit_fs_roots gets rid of all the tree log roots, it is now
2276          * safe to free the root of tree log roots
2277          */
2278         btrfs_free_log_root_tree(trans, fs_info);
2279
2280         /*
2281          * Since fs roots are all committed, we can get a quite accurate
2282          * new_roots. So let's do quota accounting.
2283          */
2284         ret = btrfs_qgroup_account_extents(trans);
2285         if (ret < 0)
2286                 goto unlock_tree_log;
2287
2288         ret = commit_cowonly_roots(trans);
2289         if (ret)
2290                 goto unlock_tree_log;
2291
2292         /*
2293          * The tasks which save the space cache and inode cache may also
2294          * update ->aborted, check it.
2295          */
2296         if (TRANS_ABORTED(cur_trans)) {
2297                 ret = cur_trans->aborted;
2298                 goto unlock_tree_log;
2299         }
2300
2301         cur_trans = fs_info->running_transaction;
2302
2303         btrfs_set_root_node(&fs_info->tree_root->root_item,
2304                             fs_info->tree_root->node);
2305         list_add_tail(&fs_info->tree_root->dirty_list,
2306                       &cur_trans->switch_commits);
2307
2308         btrfs_set_root_node(&fs_info->chunk_root->root_item,
2309                             fs_info->chunk_root->node);
2310         list_add_tail(&fs_info->chunk_root->dirty_list,
2311                       &cur_trans->switch_commits);
2312
2313         switch_commit_roots(trans);
2314
2315         ASSERT(list_empty(&cur_trans->dirty_bgs));
2316         ASSERT(list_empty(&cur_trans->io_bgs));
2317         update_super_roots(fs_info);
2318
2319         btrfs_set_super_log_root(fs_info->super_copy, 0);
2320         btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2321         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2322                sizeof(*fs_info->super_copy));
2323
2324         btrfs_commit_device_sizes(cur_trans);
2325
2326         clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2327         clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2328
2329         btrfs_trans_release_chunk_metadata(trans);
2330
2331         spin_lock(&fs_info->trans_lock);
2332         cur_trans->state = TRANS_STATE_UNBLOCKED;
2333         fs_info->running_transaction = NULL;
2334         spin_unlock(&fs_info->trans_lock);
2335         mutex_unlock(&fs_info->reloc_mutex);
2336
2337         wake_up(&fs_info->transaction_wait);
2338
2339         ret = btrfs_write_and_wait_transaction(trans);
2340         if (ret) {
2341                 btrfs_handle_fs_error(fs_info, ret,
2342                                       "Error while writing out transaction");
2343                 /*
2344                  * reloc_mutex has been unlocked, tree_log_mutex is still held
2345                  * but we can't jump to unlock_tree_log causing double unlock
2346                  */
2347                 mutex_unlock(&fs_info->tree_log_mutex);
2348                 goto scrub_continue;
2349         }
2350
2351         /*
2352          * At this point, we should have written all the tree blocks allocated
2353          * in this transaction. So it's now safe to free the redirtyied extent
2354          * buffers.
2355          */
2356         btrfs_free_redirty_list(cur_trans);
2357
2358         ret = write_all_supers(fs_info, 0);
2359         /*
2360          * the super is written, we can safely allow the tree-loggers
2361          * to go about their business
2362          */
2363         mutex_unlock(&fs_info->tree_log_mutex);
2364         if (ret)
2365                 goto scrub_continue;
2366
2367         /*
2368          * We needn't acquire the lock here because there is no other task
2369          * which can change it.
2370          */
2371         cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2372         wake_up(&cur_trans->commit_wait);
2373
2374         btrfs_finish_extent_commit(trans);
2375
2376         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2377                 btrfs_clear_space_info_full(fs_info);
2378
2379         fs_info->last_trans_committed = cur_trans->transid;
2380         /*
2381          * We needn't acquire the lock here because there is no other task
2382          * which can change it.
2383          */
2384         cur_trans->state = TRANS_STATE_COMPLETED;
2385         wake_up(&cur_trans->commit_wait);
2386
2387         spin_lock(&fs_info->trans_lock);
2388         list_del_init(&cur_trans->list);
2389         spin_unlock(&fs_info->trans_lock);
2390
2391         btrfs_put_transaction(cur_trans);
2392         btrfs_put_transaction(cur_trans);
2393
2394         if (trans->type & __TRANS_FREEZABLE)
2395                 sb_end_intwrite(fs_info->sb);
2396
2397         trace_btrfs_transaction_commit(trans->root);
2398
2399         btrfs_scrub_continue(fs_info);
2400
2401         if (current->journal_info == trans)
2402                 current->journal_info = NULL;
2403
2404         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2405
2406         return ret;
2407
2408 unlock_tree_log:
2409         mutex_unlock(&fs_info->tree_log_mutex);
2410 unlock_reloc:
2411         mutex_unlock(&fs_info->reloc_mutex);
2412 scrub_continue:
2413         btrfs_scrub_continue(fs_info);
2414 cleanup_transaction:
2415         btrfs_trans_release_metadata(trans);
2416         btrfs_cleanup_pending_block_groups(trans);
2417         btrfs_trans_release_chunk_metadata(trans);
2418         trans->block_rsv = NULL;
2419         btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2420         if (current->journal_info == trans)
2421                 current->journal_info = NULL;
2422         cleanup_transaction(trans, ret);
2423
2424         return ret;
2425 }
2426
2427 /*
2428  * return < 0 if error
2429  * 0 if there are no more dead_roots at the time of call
2430  * 1 there are more to be processed, call me again
2431  *
2432  * The return value indicates there are certainly more snapshots to delete, but
2433  * if there comes a new one during processing, it may return 0. We don't mind,
2434  * because btrfs_commit_super will poke cleaner thread and it will process it a
2435  * few seconds later.
2436  */
2437 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2438 {
2439         int ret;
2440         struct btrfs_fs_info *fs_info = root->fs_info;
2441
2442         spin_lock(&fs_info->trans_lock);
2443         if (list_empty(&fs_info->dead_roots)) {
2444                 spin_unlock(&fs_info->trans_lock);
2445                 return 0;
2446         }
2447         root = list_first_entry(&fs_info->dead_roots,
2448                         struct btrfs_root, root_list);
2449         list_del_init(&root->root_list);
2450         spin_unlock(&fs_info->trans_lock);
2451
2452         btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2453
2454         btrfs_kill_all_delayed_nodes(root);
2455
2456         if (btrfs_header_backref_rev(root->node) <
2457                         BTRFS_MIXED_BACKREF_REV)
2458                 ret = btrfs_drop_snapshot(root, 0, 0);
2459         else
2460                 ret = btrfs_drop_snapshot(root, 1, 0);
2461
2462         btrfs_put_root(root);
2463         return (ret < 0) ? 0 : 1;
2464 }
2465
2466 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2467 {
2468         unsigned long prev;
2469         unsigned long bit;
2470
2471         prev = xchg(&fs_info->pending_changes, 0);
2472         if (!prev)
2473                 return;
2474
2475         bit = 1 << BTRFS_PENDING_COMMIT;
2476         if (prev & bit)
2477                 btrfs_debug(fs_info, "pending commit done");
2478         prev &= ~bit;
2479
2480         if (prev)
2481                 btrfs_warn(fs_info,
2482                         "unknown pending changes left 0x%lx, ignoring", prev);
2483 }