bdi: initialize ->ra_pages and ->io_pages in bdi_init
[linux-2.6-microblaze.git] / fs / btrfs / transaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "inode-map.h"
20 #include "volumes.h"
21 #include "dev-replace.h"
22 #include "qgroup.h"
23 #include "block-group.h"
24 #include "space-info.h"
25
26 #define BTRFS_ROOT_TRANS_TAG 0
27
28 /*
29  * Transaction states and transitions
30  *
31  * No running transaction (fs tree blocks are not modified)
32  * |
33  * | To next stage:
34  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35  * V
36  * Transaction N [[TRANS_STATE_RUNNING]]
37  * |
38  * | New trans handles can be attached to transaction N by calling all
39  * | start_transaction() variants.
40  * |
41  * | To next stage:
42  * |  Call btrfs_commit_transaction() on any trans handle attached to
43  * |  transaction N
44  * V
45  * Transaction N [[TRANS_STATE_COMMIT_START]]
46  * |
47  * | Will wait for previous running transaction to completely finish if there
48  * | is one
49  * |
50  * | Then one of the following happes:
51  * | - Wait for all other trans handle holders to release.
52  * |   The btrfs_commit_transaction() caller will do the commit work.
53  * | - Wait for current transaction to be committed by others.
54  * |   Other btrfs_commit_transaction() caller will do the commit work.
55  * |
56  * | At this stage, only btrfs_join_transaction*() variants can attach
57  * | to this running transaction.
58  * | All other variants will wait for current one to finish and attach to
59  * | transaction N+1.
60  * |
61  * | To next stage:
62  * |  Caller is chosen to commit transaction N, and all other trans handle
63  * |  haven been released.
64  * V
65  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66  * |
67  * | The heavy lifting transaction work is started.
68  * | From running delayed refs (modifying extent tree) to creating pending
69  * | snapshots, running qgroups.
70  * | In short, modify supporting trees to reflect modifications of subvolume
71  * | trees.
72  * |
73  * | At this stage, all start_transaction() calls will wait for this
74  * | transaction to finish and attach to transaction N+1.
75  * |
76  * | To next stage:
77  * |  Until all supporting trees are updated.
78  * V
79  * Transaction N [[TRANS_STATE_UNBLOCKED]]
80  * |                                                Transaction N+1
81  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
82  * | need to write them back to disk and update     |
83  * | super blocks.                                  |
84  * |                                                |
85  * | At this stage, new transaction is allowed to   |
86  * | start.                                         |
87  * | All new start_transaction() calls will be      |
88  * | attached to transid N+1.                       |
89  * |                                                |
90  * | To next stage:                                 |
91  * |  Until all tree blocks are super blocks are    |
92  * |  written to block devices                      |
93  * V                                                |
94  * Transaction N [[TRANS_STATE_COMPLETED]]          V
95  *   All tree blocks and super blocks are written.  Transaction N+1
96  *   This transaction is finished and all its       [[TRANS_STATE_COMMIT_START]]
97  *   data structures will be cleaned up.            | Life goes on
98  */
99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
100         [TRANS_STATE_RUNNING]           = 0U,
101         [TRANS_STATE_COMMIT_START]      = (__TRANS_START | __TRANS_ATTACH),
102         [TRANS_STATE_COMMIT_DOING]      = (__TRANS_START |
103                                            __TRANS_ATTACH |
104                                            __TRANS_JOIN |
105                                            __TRANS_JOIN_NOSTART),
106         [TRANS_STATE_UNBLOCKED]         = (__TRANS_START |
107                                            __TRANS_ATTACH |
108                                            __TRANS_JOIN |
109                                            __TRANS_JOIN_NOLOCK |
110                                            __TRANS_JOIN_NOSTART),
111         [TRANS_STATE_COMPLETED]         = (__TRANS_START |
112                                            __TRANS_ATTACH |
113                                            __TRANS_JOIN |
114                                            __TRANS_JOIN_NOLOCK |
115                                            __TRANS_JOIN_NOSTART),
116 };
117
118 void btrfs_put_transaction(struct btrfs_transaction *transaction)
119 {
120         WARN_ON(refcount_read(&transaction->use_count) == 0);
121         if (refcount_dec_and_test(&transaction->use_count)) {
122                 BUG_ON(!list_empty(&transaction->list));
123                 WARN_ON(!RB_EMPTY_ROOT(
124                                 &transaction->delayed_refs.href_root.rb_root));
125                 WARN_ON(!RB_EMPTY_ROOT(
126                                 &transaction->delayed_refs.dirty_extent_root));
127                 if (transaction->delayed_refs.pending_csums)
128                         btrfs_err(transaction->fs_info,
129                                   "pending csums is %llu",
130                                   transaction->delayed_refs.pending_csums);
131                 /*
132                  * If any block groups are found in ->deleted_bgs then it's
133                  * because the transaction was aborted and a commit did not
134                  * happen (things failed before writing the new superblock
135                  * and calling btrfs_finish_extent_commit()), so we can not
136                  * discard the physical locations of the block groups.
137                  */
138                 while (!list_empty(&transaction->deleted_bgs)) {
139                         struct btrfs_block_group *cache;
140
141                         cache = list_first_entry(&transaction->deleted_bgs,
142                                                  struct btrfs_block_group,
143                                                  bg_list);
144                         list_del_init(&cache->bg_list);
145                         btrfs_unfreeze_block_group(cache);
146                         btrfs_put_block_group(cache);
147                 }
148                 WARN_ON(!list_empty(&transaction->dev_update_list));
149                 kfree(transaction);
150         }
151 }
152
153 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
154 {
155         struct btrfs_transaction *cur_trans = trans->transaction;
156         struct btrfs_fs_info *fs_info = trans->fs_info;
157         struct btrfs_root *root, *tmp;
158
159         down_write(&fs_info->commit_root_sem);
160         list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
161                                  dirty_list) {
162                 list_del_init(&root->dirty_list);
163                 free_extent_buffer(root->commit_root);
164                 root->commit_root = btrfs_root_node(root);
165                 if (is_fstree(root->root_key.objectid))
166                         btrfs_unpin_free_ino(root);
167                 extent_io_tree_release(&root->dirty_log_pages);
168                 btrfs_qgroup_clean_swapped_blocks(root);
169         }
170
171         /* We can free old roots now. */
172         spin_lock(&cur_trans->dropped_roots_lock);
173         while (!list_empty(&cur_trans->dropped_roots)) {
174                 root = list_first_entry(&cur_trans->dropped_roots,
175                                         struct btrfs_root, root_list);
176                 list_del_init(&root->root_list);
177                 spin_unlock(&cur_trans->dropped_roots_lock);
178                 btrfs_free_log(trans, root);
179                 btrfs_drop_and_free_fs_root(fs_info, root);
180                 spin_lock(&cur_trans->dropped_roots_lock);
181         }
182         spin_unlock(&cur_trans->dropped_roots_lock);
183         up_write(&fs_info->commit_root_sem);
184 }
185
186 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
187                                          unsigned int type)
188 {
189         if (type & TRANS_EXTWRITERS)
190                 atomic_inc(&trans->num_extwriters);
191 }
192
193 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
194                                          unsigned int type)
195 {
196         if (type & TRANS_EXTWRITERS)
197                 atomic_dec(&trans->num_extwriters);
198 }
199
200 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
201                                           unsigned int type)
202 {
203         atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
204 }
205
206 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
207 {
208         return atomic_read(&trans->num_extwriters);
209 }
210
211 /*
212  * To be called after all the new block groups attached to the transaction
213  * handle have been created (btrfs_create_pending_block_groups()).
214  */
215 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
216 {
217         struct btrfs_fs_info *fs_info = trans->fs_info;
218
219         if (!trans->chunk_bytes_reserved)
220                 return;
221
222         WARN_ON_ONCE(!list_empty(&trans->new_bgs));
223
224         btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
225                                 trans->chunk_bytes_reserved, NULL);
226         trans->chunk_bytes_reserved = 0;
227 }
228
229 /*
230  * either allocate a new transaction or hop into the existing one
231  */
232 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
233                                      unsigned int type)
234 {
235         struct btrfs_transaction *cur_trans;
236
237         spin_lock(&fs_info->trans_lock);
238 loop:
239         /* The file system has been taken offline. No new transactions. */
240         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
241                 spin_unlock(&fs_info->trans_lock);
242                 return -EROFS;
243         }
244
245         cur_trans = fs_info->running_transaction;
246         if (cur_trans) {
247                 if (TRANS_ABORTED(cur_trans)) {
248                         spin_unlock(&fs_info->trans_lock);
249                         return cur_trans->aborted;
250                 }
251                 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
252                         spin_unlock(&fs_info->trans_lock);
253                         return -EBUSY;
254                 }
255                 refcount_inc(&cur_trans->use_count);
256                 atomic_inc(&cur_trans->num_writers);
257                 extwriter_counter_inc(cur_trans, type);
258                 spin_unlock(&fs_info->trans_lock);
259                 return 0;
260         }
261         spin_unlock(&fs_info->trans_lock);
262
263         /*
264          * If we are ATTACH, we just want to catch the current transaction,
265          * and commit it. If there is no transaction, just return ENOENT.
266          */
267         if (type == TRANS_ATTACH)
268                 return -ENOENT;
269
270         /*
271          * JOIN_NOLOCK only happens during the transaction commit, so
272          * it is impossible that ->running_transaction is NULL
273          */
274         BUG_ON(type == TRANS_JOIN_NOLOCK);
275
276         cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
277         if (!cur_trans)
278                 return -ENOMEM;
279
280         spin_lock(&fs_info->trans_lock);
281         if (fs_info->running_transaction) {
282                 /*
283                  * someone started a transaction after we unlocked.  Make sure
284                  * to redo the checks above
285                  */
286                 kfree(cur_trans);
287                 goto loop;
288         } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
289                 spin_unlock(&fs_info->trans_lock);
290                 kfree(cur_trans);
291                 return -EROFS;
292         }
293
294         cur_trans->fs_info = fs_info;
295         atomic_set(&cur_trans->num_writers, 1);
296         extwriter_counter_init(cur_trans, type);
297         init_waitqueue_head(&cur_trans->writer_wait);
298         init_waitqueue_head(&cur_trans->commit_wait);
299         cur_trans->state = TRANS_STATE_RUNNING;
300         /*
301          * One for this trans handle, one so it will live on until we
302          * commit the transaction.
303          */
304         refcount_set(&cur_trans->use_count, 2);
305         cur_trans->flags = 0;
306         cur_trans->start_time = ktime_get_seconds();
307
308         memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
309
310         cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
311         cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
312         atomic_set(&cur_trans->delayed_refs.num_entries, 0);
313
314         /*
315          * although the tree mod log is per file system and not per transaction,
316          * the log must never go across transaction boundaries.
317          */
318         smp_mb();
319         if (!list_empty(&fs_info->tree_mod_seq_list))
320                 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
321         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
322                 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
323         atomic64_set(&fs_info->tree_mod_seq, 0);
324
325         spin_lock_init(&cur_trans->delayed_refs.lock);
326
327         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
328         INIT_LIST_HEAD(&cur_trans->dev_update_list);
329         INIT_LIST_HEAD(&cur_trans->switch_commits);
330         INIT_LIST_HEAD(&cur_trans->dirty_bgs);
331         INIT_LIST_HEAD(&cur_trans->io_bgs);
332         INIT_LIST_HEAD(&cur_trans->dropped_roots);
333         mutex_init(&cur_trans->cache_write_mutex);
334         spin_lock_init(&cur_trans->dirty_bgs_lock);
335         INIT_LIST_HEAD(&cur_trans->deleted_bgs);
336         spin_lock_init(&cur_trans->dropped_roots_lock);
337         list_add_tail(&cur_trans->list, &fs_info->trans_list);
338         extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
339                         IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
340         extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
341                         IO_TREE_FS_PINNED_EXTENTS, NULL);
342         fs_info->generation++;
343         cur_trans->transid = fs_info->generation;
344         fs_info->running_transaction = cur_trans;
345         cur_trans->aborted = 0;
346         spin_unlock(&fs_info->trans_lock);
347
348         return 0;
349 }
350
351 /*
352  * This does all the record keeping required to make sure that a shareable root
353  * is properly recorded in a given transaction.  This is required to make sure
354  * the old root from before we joined the transaction is deleted when the
355  * transaction commits.
356  */
357 static int record_root_in_trans(struct btrfs_trans_handle *trans,
358                                struct btrfs_root *root,
359                                int force)
360 {
361         struct btrfs_fs_info *fs_info = root->fs_info;
362
363         if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
364             root->last_trans < trans->transid) || force) {
365                 WARN_ON(root == fs_info->extent_root);
366                 WARN_ON(!force && root->commit_root != root->node);
367
368                 /*
369                  * see below for IN_TRANS_SETUP usage rules
370                  * we have the reloc mutex held now, so there
371                  * is only one writer in this function
372                  */
373                 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
374
375                 /* make sure readers find IN_TRANS_SETUP before
376                  * they find our root->last_trans update
377                  */
378                 smp_wmb();
379
380                 spin_lock(&fs_info->fs_roots_radix_lock);
381                 if (root->last_trans == trans->transid && !force) {
382                         spin_unlock(&fs_info->fs_roots_radix_lock);
383                         return 0;
384                 }
385                 radix_tree_tag_set(&fs_info->fs_roots_radix,
386                                    (unsigned long)root->root_key.objectid,
387                                    BTRFS_ROOT_TRANS_TAG);
388                 spin_unlock(&fs_info->fs_roots_radix_lock);
389                 root->last_trans = trans->transid;
390
391                 /* this is pretty tricky.  We don't want to
392                  * take the relocation lock in btrfs_record_root_in_trans
393                  * unless we're really doing the first setup for this root in
394                  * this transaction.
395                  *
396                  * Normally we'd use root->last_trans as a flag to decide
397                  * if we want to take the expensive mutex.
398                  *
399                  * But, we have to set root->last_trans before we
400                  * init the relocation root, otherwise, we trip over warnings
401                  * in ctree.c.  The solution used here is to flag ourselves
402                  * with root IN_TRANS_SETUP.  When this is 1, we're still
403                  * fixing up the reloc trees and everyone must wait.
404                  *
405                  * When this is zero, they can trust root->last_trans and fly
406                  * through btrfs_record_root_in_trans without having to take the
407                  * lock.  smp_wmb() makes sure that all the writes above are
408                  * done before we pop in the zero below
409                  */
410                 btrfs_init_reloc_root(trans, root);
411                 smp_mb__before_atomic();
412                 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
413         }
414         return 0;
415 }
416
417
418 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
419                             struct btrfs_root *root)
420 {
421         struct btrfs_fs_info *fs_info = root->fs_info;
422         struct btrfs_transaction *cur_trans = trans->transaction;
423
424         /* Add ourselves to the transaction dropped list */
425         spin_lock(&cur_trans->dropped_roots_lock);
426         list_add_tail(&root->root_list, &cur_trans->dropped_roots);
427         spin_unlock(&cur_trans->dropped_roots_lock);
428
429         /* Make sure we don't try to update the root at commit time */
430         spin_lock(&fs_info->fs_roots_radix_lock);
431         radix_tree_tag_clear(&fs_info->fs_roots_radix,
432                              (unsigned long)root->root_key.objectid,
433                              BTRFS_ROOT_TRANS_TAG);
434         spin_unlock(&fs_info->fs_roots_radix_lock);
435 }
436
437 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
438                                struct btrfs_root *root)
439 {
440         struct btrfs_fs_info *fs_info = root->fs_info;
441
442         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
443                 return 0;
444
445         /*
446          * see record_root_in_trans for comments about IN_TRANS_SETUP usage
447          * and barriers
448          */
449         smp_rmb();
450         if (root->last_trans == trans->transid &&
451             !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
452                 return 0;
453
454         mutex_lock(&fs_info->reloc_mutex);
455         record_root_in_trans(trans, root, 0);
456         mutex_unlock(&fs_info->reloc_mutex);
457
458         return 0;
459 }
460
461 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
462 {
463         return (trans->state >= TRANS_STATE_COMMIT_START &&
464                 trans->state < TRANS_STATE_UNBLOCKED &&
465                 !TRANS_ABORTED(trans));
466 }
467
468 /* wait for commit against the current transaction to become unblocked
469  * when this is done, it is safe to start a new transaction, but the current
470  * transaction might not be fully on disk.
471  */
472 static void wait_current_trans(struct btrfs_fs_info *fs_info)
473 {
474         struct btrfs_transaction *cur_trans;
475
476         spin_lock(&fs_info->trans_lock);
477         cur_trans = fs_info->running_transaction;
478         if (cur_trans && is_transaction_blocked(cur_trans)) {
479                 refcount_inc(&cur_trans->use_count);
480                 spin_unlock(&fs_info->trans_lock);
481
482                 wait_event(fs_info->transaction_wait,
483                            cur_trans->state >= TRANS_STATE_UNBLOCKED ||
484                            TRANS_ABORTED(cur_trans));
485                 btrfs_put_transaction(cur_trans);
486         } else {
487                 spin_unlock(&fs_info->trans_lock);
488         }
489 }
490
491 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
492 {
493         if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
494                 return 0;
495
496         if (type == TRANS_START)
497                 return 1;
498
499         return 0;
500 }
501
502 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
503 {
504         struct btrfs_fs_info *fs_info = root->fs_info;
505
506         if (!fs_info->reloc_ctl ||
507             !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
508             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
509             root->reloc_root)
510                 return false;
511
512         return true;
513 }
514
515 static struct btrfs_trans_handle *
516 start_transaction(struct btrfs_root *root, unsigned int num_items,
517                   unsigned int type, enum btrfs_reserve_flush_enum flush,
518                   bool enforce_qgroups)
519 {
520         struct btrfs_fs_info *fs_info = root->fs_info;
521         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
522         struct btrfs_trans_handle *h;
523         struct btrfs_transaction *cur_trans;
524         u64 num_bytes = 0;
525         u64 qgroup_reserved = 0;
526         bool reloc_reserved = false;
527         bool do_chunk_alloc = false;
528         int ret;
529
530         /* Send isn't supposed to start transactions. */
531         ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
532
533         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
534                 return ERR_PTR(-EROFS);
535
536         if (current->journal_info) {
537                 WARN_ON(type & TRANS_EXTWRITERS);
538                 h = current->journal_info;
539                 refcount_inc(&h->use_count);
540                 WARN_ON(refcount_read(&h->use_count) > 2);
541                 h->orig_rsv = h->block_rsv;
542                 h->block_rsv = NULL;
543                 goto got_it;
544         }
545
546         /*
547          * Do the reservation before we join the transaction so we can do all
548          * the appropriate flushing if need be.
549          */
550         if (num_items && root != fs_info->chunk_root) {
551                 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
552                 u64 delayed_refs_bytes = 0;
553
554                 qgroup_reserved = num_items * fs_info->nodesize;
555                 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
556                                 enforce_qgroups);
557                 if (ret)
558                         return ERR_PTR(ret);
559
560                 /*
561                  * We want to reserve all the bytes we may need all at once, so
562                  * we only do 1 enospc flushing cycle per transaction start.  We
563                  * accomplish this by simply assuming we'll do 2 x num_items
564                  * worth of delayed refs updates in this trans handle, and
565                  * refill that amount for whatever is missing in the reserve.
566                  */
567                 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
568                 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
569                     delayed_refs_rsv->full == 0) {
570                         delayed_refs_bytes = num_bytes;
571                         num_bytes <<= 1;
572                 }
573
574                 /*
575                  * Do the reservation for the relocation root creation
576                  */
577                 if (need_reserve_reloc_root(root)) {
578                         num_bytes += fs_info->nodesize;
579                         reloc_reserved = true;
580                 }
581
582                 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
583                 if (ret)
584                         goto reserve_fail;
585                 if (delayed_refs_bytes) {
586                         btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
587                                                           delayed_refs_bytes);
588                         num_bytes -= delayed_refs_bytes;
589                 }
590
591                 if (rsv->space_info->force_alloc)
592                         do_chunk_alloc = true;
593         } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
594                    !delayed_refs_rsv->full) {
595                 /*
596                  * Some people call with btrfs_start_transaction(root, 0)
597                  * because they can be throttled, but have some other mechanism
598                  * for reserving space.  We still want these guys to refill the
599                  * delayed block_rsv so just add 1 items worth of reservation
600                  * here.
601                  */
602                 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
603                 if (ret)
604                         goto reserve_fail;
605         }
606 again:
607         h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
608         if (!h) {
609                 ret = -ENOMEM;
610                 goto alloc_fail;
611         }
612
613         /*
614          * If we are JOIN_NOLOCK we're already committing a transaction and
615          * waiting on this guy, so we don't need to do the sb_start_intwrite
616          * because we're already holding a ref.  We need this because we could
617          * have raced in and did an fsync() on a file which can kick a commit
618          * and then we deadlock with somebody doing a freeze.
619          *
620          * If we are ATTACH, it means we just want to catch the current
621          * transaction and commit it, so we needn't do sb_start_intwrite(). 
622          */
623         if (type & __TRANS_FREEZABLE)
624                 sb_start_intwrite(fs_info->sb);
625
626         if (may_wait_transaction(fs_info, type))
627                 wait_current_trans(fs_info);
628
629         do {
630                 ret = join_transaction(fs_info, type);
631                 if (ret == -EBUSY) {
632                         wait_current_trans(fs_info);
633                         if (unlikely(type == TRANS_ATTACH ||
634                                      type == TRANS_JOIN_NOSTART))
635                                 ret = -ENOENT;
636                 }
637         } while (ret == -EBUSY);
638
639         if (ret < 0)
640                 goto join_fail;
641
642         cur_trans = fs_info->running_transaction;
643
644         h->transid = cur_trans->transid;
645         h->transaction = cur_trans;
646         h->root = root;
647         refcount_set(&h->use_count, 1);
648         h->fs_info = root->fs_info;
649
650         h->type = type;
651         h->can_flush_pending_bgs = true;
652         INIT_LIST_HEAD(&h->new_bgs);
653
654         smp_mb();
655         if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
656             may_wait_transaction(fs_info, type)) {
657                 current->journal_info = h;
658                 btrfs_commit_transaction(h);
659                 goto again;
660         }
661
662         if (num_bytes) {
663                 trace_btrfs_space_reservation(fs_info, "transaction",
664                                               h->transid, num_bytes, 1);
665                 h->block_rsv = &fs_info->trans_block_rsv;
666                 h->bytes_reserved = num_bytes;
667                 h->reloc_reserved = reloc_reserved;
668         }
669
670 got_it:
671         if (!current->journal_info)
672                 current->journal_info = h;
673
674         /*
675          * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
676          * ALLOC_FORCE the first run through, and then we won't allocate for
677          * anybody else who races in later.  We don't care about the return
678          * value here.
679          */
680         if (do_chunk_alloc && num_bytes) {
681                 u64 flags = h->block_rsv->space_info->flags;
682
683                 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
684                                   CHUNK_ALLOC_NO_FORCE);
685         }
686
687         /*
688          * btrfs_record_root_in_trans() needs to alloc new extents, and may
689          * call btrfs_join_transaction() while we're also starting a
690          * transaction.
691          *
692          * Thus it need to be called after current->journal_info initialized,
693          * or we can deadlock.
694          */
695         btrfs_record_root_in_trans(h, root);
696
697         return h;
698
699 join_fail:
700         if (type & __TRANS_FREEZABLE)
701                 sb_end_intwrite(fs_info->sb);
702         kmem_cache_free(btrfs_trans_handle_cachep, h);
703 alloc_fail:
704         if (num_bytes)
705                 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
706                                         num_bytes, NULL);
707 reserve_fail:
708         btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
709         return ERR_PTR(ret);
710 }
711
712 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
713                                                    unsigned int num_items)
714 {
715         return start_transaction(root, num_items, TRANS_START,
716                                  BTRFS_RESERVE_FLUSH_ALL, true);
717 }
718
719 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
720                                         struct btrfs_root *root,
721                                         unsigned int num_items)
722 {
723         return start_transaction(root, num_items, TRANS_START,
724                                  BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
725 }
726
727 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
728 {
729         return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
730                                  true);
731 }
732
733 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
734 {
735         return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
736                                  BTRFS_RESERVE_NO_FLUSH, true);
737 }
738
739 /*
740  * Similar to regular join but it never starts a transaction when none is
741  * running or after waiting for the current one to finish.
742  */
743 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
744 {
745         return start_transaction(root, 0, TRANS_JOIN_NOSTART,
746                                  BTRFS_RESERVE_NO_FLUSH, true);
747 }
748
749 /*
750  * btrfs_attach_transaction() - catch the running transaction
751  *
752  * It is used when we want to commit the current the transaction, but
753  * don't want to start a new one.
754  *
755  * Note: If this function return -ENOENT, it just means there is no
756  * running transaction. But it is possible that the inactive transaction
757  * is still in the memory, not fully on disk. If you hope there is no
758  * inactive transaction in the fs when -ENOENT is returned, you should
759  * invoke
760  *     btrfs_attach_transaction_barrier()
761  */
762 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
763 {
764         return start_transaction(root, 0, TRANS_ATTACH,
765                                  BTRFS_RESERVE_NO_FLUSH, true);
766 }
767
768 /*
769  * btrfs_attach_transaction_barrier() - catch the running transaction
770  *
771  * It is similar to the above function, the difference is this one
772  * will wait for all the inactive transactions until they fully
773  * complete.
774  */
775 struct btrfs_trans_handle *
776 btrfs_attach_transaction_barrier(struct btrfs_root *root)
777 {
778         struct btrfs_trans_handle *trans;
779
780         trans = start_transaction(root, 0, TRANS_ATTACH,
781                                   BTRFS_RESERVE_NO_FLUSH, true);
782         if (trans == ERR_PTR(-ENOENT))
783                 btrfs_wait_for_commit(root->fs_info, 0);
784
785         return trans;
786 }
787
788 /* wait for a transaction commit to be fully complete */
789 static noinline void wait_for_commit(struct btrfs_transaction *commit)
790 {
791         wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
792 }
793
794 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
795 {
796         struct btrfs_transaction *cur_trans = NULL, *t;
797         int ret = 0;
798
799         if (transid) {
800                 if (transid <= fs_info->last_trans_committed)
801                         goto out;
802
803                 /* find specified transaction */
804                 spin_lock(&fs_info->trans_lock);
805                 list_for_each_entry(t, &fs_info->trans_list, list) {
806                         if (t->transid == transid) {
807                                 cur_trans = t;
808                                 refcount_inc(&cur_trans->use_count);
809                                 ret = 0;
810                                 break;
811                         }
812                         if (t->transid > transid) {
813                                 ret = 0;
814                                 break;
815                         }
816                 }
817                 spin_unlock(&fs_info->trans_lock);
818
819                 /*
820                  * The specified transaction doesn't exist, or we
821                  * raced with btrfs_commit_transaction
822                  */
823                 if (!cur_trans) {
824                         if (transid > fs_info->last_trans_committed)
825                                 ret = -EINVAL;
826                         goto out;
827                 }
828         } else {
829                 /* find newest transaction that is committing | committed */
830                 spin_lock(&fs_info->trans_lock);
831                 list_for_each_entry_reverse(t, &fs_info->trans_list,
832                                             list) {
833                         if (t->state >= TRANS_STATE_COMMIT_START) {
834                                 if (t->state == TRANS_STATE_COMPLETED)
835                                         break;
836                                 cur_trans = t;
837                                 refcount_inc(&cur_trans->use_count);
838                                 break;
839                         }
840                 }
841                 spin_unlock(&fs_info->trans_lock);
842                 if (!cur_trans)
843                         goto out;  /* nothing committing|committed */
844         }
845
846         wait_for_commit(cur_trans);
847         btrfs_put_transaction(cur_trans);
848 out:
849         return ret;
850 }
851
852 void btrfs_throttle(struct btrfs_fs_info *fs_info)
853 {
854         wait_current_trans(fs_info);
855 }
856
857 static int should_end_transaction(struct btrfs_trans_handle *trans)
858 {
859         struct btrfs_fs_info *fs_info = trans->fs_info;
860
861         if (btrfs_check_space_for_delayed_refs(fs_info))
862                 return 1;
863
864         return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
865 }
866
867 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
868 {
869         struct btrfs_transaction *cur_trans = trans->transaction;
870
871         smp_mb();
872         if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
873             cur_trans->delayed_refs.flushing)
874                 return 1;
875
876         return should_end_transaction(trans);
877 }
878
879 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
880
881 {
882         struct btrfs_fs_info *fs_info = trans->fs_info;
883
884         if (!trans->block_rsv) {
885                 ASSERT(!trans->bytes_reserved);
886                 return;
887         }
888
889         if (!trans->bytes_reserved)
890                 return;
891
892         ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
893         trace_btrfs_space_reservation(fs_info, "transaction",
894                                       trans->transid, trans->bytes_reserved, 0);
895         btrfs_block_rsv_release(fs_info, trans->block_rsv,
896                                 trans->bytes_reserved, NULL);
897         trans->bytes_reserved = 0;
898 }
899
900 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
901                                    int throttle)
902 {
903         struct btrfs_fs_info *info = trans->fs_info;
904         struct btrfs_transaction *cur_trans = trans->transaction;
905         int err = 0;
906
907         if (refcount_read(&trans->use_count) > 1) {
908                 refcount_dec(&trans->use_count);
909                 trans->block_rsv = trans->orig_rsv;
910                 return 0;
911         }
912
913         btrfs_trans_release_metadata(trans);
914         trans->block_rsv = NULL;
915
916         btrfs_create_pending_block_groups(trans);
917
918         btrfs_trans_release_chunk_metadata(trans);
919
920         if (trans->type & __TRANS_FREEZABLE)
921                 sb_end_intwrite(info->sb);
922
923         WARN_ON(cur_trans != info->running_transaction);
924         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
925         atomic_dec(&cur_trans->num_writers);
926         extwriter_counter_dec(cur_trans, trans->type);
927
928         cond_wake_up(&cur_trans->writer_wait);
929         btrfs_put_transaction(cur_trans);
930
931         if (current->journal_info == trans)
932                 current->journal_info = NULL;
933
934         if (throttle)
935                 btrfs_run_delayed_iputs(info);
936
937         if (TRANS_ABORTED(trans) ||
938             test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
939                 wake_up_process(info->transaction_kthread);
940                 if (TRANS_ABORTED(trans))
941                         err = trans->aborted;
942                 else
943                         err = -EROFS;
944         }
945
946         kmem_cache_free(btrfs_trans_handle_cachep, trans);
947         return err;
948 }
949
950 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
951 {
952         return __btrfs_end_transaction(trans, 0);
953 }
954
955 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
956 {
957         return __btrfs_end_transaction(trans, 1);
958 }
959
960 /*
961  * when btree blocks are allocated, they have some corresponding bits set for
962  * them in one of two extent_io trees.  This is used to make sure all of
963  * those extents are sent to disk but does not wait on them
964  */
965 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
966                                struct extent_io_tree *dirty_pages, int mark)
967 {
968         int err = 0;
969         int werr = 0;
970         struct address_space *mapping = fs_info->btree_inode->i_mapping;
971         struct extent_state *cached_state = NULL;
972         u64 start = 0;
973         u64 end;
974
975         atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
976         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
977                                       mark, &cached_state)) {
978                 bool wait_writeback = false;
979
980                 err = convert_extent_bit(dirty_pages, start, end,
981                                          EXTENT_NEED_WAIT,
982                                          mark, &cached_state);
983                 /*
984                  * convert_extent_bit can return -ENOMEM, which is most of the
985                  * time a temporary error. So when it happens, ignore the error
986                  * and wait for writeback of this range to finish - because we
987                  * failed to set the bit EXTENT_NEED_WAIT for the range, a call
988                  * to __btrfs_wait_marked_extents() would not know that
989                  * writeback for this range started and therefore wouldn't
990                  * wait for it to finish - we don't want to commit a
991                  * superblock that points to btree nodes/leafs for which
992                  * writeback hasn't finished yet (and without errors).
993                  * We cleanup any entries left in the io tree when committing
994                  * the transaction (through extent_io_tree_release()).
995                  */
996                 if (err == -ENOMEM) {
997                         err = 0;
998                         wait_writeback = true;
999                 }
1000                 if (!err)
1001                         err = filemap_fdatawrite_range(mapping, start, end);
1002                 if (err)
1003                         werr = err;
1004                 else if (wait_writeback)
1005                         werr = filemap_fdatawait_range(mapping, start, end);
1006                 free_extent_state(cached_state);
1007                 cached_state = NULL;
1008                 cond_resched();
1009                 start = end + 1;
1010         }
1011         atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1012         return werr;
1013 }
1014
1015 /*
1016  * when btree blocks are allocated, they have some corresponding bits set for
1017  * them in one of two extent_io trees.  This is used to make sure all of
1018  * those extents are on disk for transaction or log commit.  We wait
1019  * on all the pages and clear them from the dirty pages state tree
1020  */
1021 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1022                                        struct extent_io_tree *dirty_pages)
1023 {
1024         int err = 0;
1025         int werr = 0;
1026         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1027         struct extent_state *cached_state = NULL;
1028         u64 start = 0;
1029         u64 end;
1030
1031         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1032                                       EXTENT_NEED_WAIT, &cached_state)) {
1033                 /*
1034                  * Ignore -ENOMEM errors returned by clear_extent_bit().
1035                  * When committing the transaction, we'll remove any entries
1036                  * left in the io tree. For a log commit, we don't remove them
1037                  * after committing the log because the tree can be accessed
1038                  * concurrently - we do it only at transaction commit time when
1039                  * it's safe to do it (through extent_io_tree_release()).
1040                  */
1041                 err = clear_extent_bit(dirty_pages, start, end,
1042                                        EXTENT_NEED_WAIT, 0, 0, &cached_state);
1043                 if (err == -ENOMEM)
1044                         err = 0;
1045                 if (!err)
1046                         err = filemap_fdatawait_range(mapping, start, end);
1047                 if (err)
1048                         werr = err;
1049                 free_extent_state(cached_state);
1050                 cached_state = NULL;
1051                 cond_resched();
1052                 start = end + 1;
1053         }
1054         if (err)
1055                 werr = err;
1056         return werr;
1057 }
1058
1059 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1060                        struct extent_io_tree *dirty_pages)
1061 {
1062         bool errors = false;
1063         int err;
1064
1065         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1066         if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1067                 errors = true;
1068
1069         if (errors && !err)
1070                 err = -EIO;
1071         return err;
1072 }
1073
1074 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1075 {
1076         struct btrfs_fs_info *fs_info = log_root->fs_info;
1077         struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1078         bool errors = false;
1079         int err;
1080
1081         ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1082
1083         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1084         if ((mark & EXTENT_DIRTY) &&
1085             test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1086                 errors = true;
1087
1088         if ((mark & EXTENT_NEW) &&
1089             test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1090                 errors = true;
1091
1092         if (errors && !err)
1093                 err = -EIO;
1094         return err;
1095 }
1096
1097 /*
1098  * When btree blocks are allocated the corresponding extents are marked dirty.
1099  * This function ensures such extents are persisted on disk for transaction or
1100  * log commit.
1101  *
1102  * @trans: transaction whose dirty pages we'd like to write
1103  */
1104 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1105 {
1106         int ret;
1107         int ret2;
1108         struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1109         struct btrfs_fs_info *fs_info = trans->fs_info;
1110         struct blk_plug plug;
1111
1112         blk_start_plug(&plug);
1113         ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1114         blk_finish_plug(&plug);
1115         ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1116
1117         extent_io_tree_release(&trans->transaction->dirty_pages);
1118
1119         if (ret)
1120                 return ret;
1121         else if (ret2)
1122                 return ret2;
1123         else
1124                 return 0;
1125 }
1126
1127 /*
1128  * this is used to update the root pointer in the tree of tree roots.
1129  *
1130  * But, in the case of the extent allocation tree, updating the root
1131  * pointer may allocate blocks which may change the root of the extent
1132  * allocation tree.
1133  *
1134  * So, this loops and repeats and makes sure the cowonly root didn't
1135  * change while the root pointer was being updated in the metadata.
1136  */
1137 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1138                                struct btrfs_root *root)
1139 {
1140         int ret;
1141         u64 old_root_bytenr;
1142         u64 old_root_used;
1143         struct btrfs_fs_info *fs_info = root->fs_info;
1144         struct btrfs_root *tree_root = fs_info->tree_root;
1145
1146         old_root_used = btrfs_root_used(&root->root_item);
1147
1148         while (1) {
1149                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1150                 if (old_root_bytenr == root->node->start &&
1151                     old_root_used == btrfs_root_used(&root->root_item))
1152                         break;
1153
1154                 btrfs_set_root_node(&root->root_item, root->node);
1155                 ret = btrfs_update_root(trans, tree_root,
1156                                         &root->root_key,
1157                                         &root->root_item);
1158                 if (ret)
1159                         return ret;
1160
1161                 old_root_used = btrfs_root_used(&root->root_item);
1162         }
1163
1164         return 0;
1165 }
1166
1167 /*
1168  * update all the cowonly tree roots on disk
1169  *
1170  * The error handling in this function may not be obvious. Any of the
1171  * failures will cause the file system to go offline. We still need
1172  * to clean up the delayed refs.
1173  */
1174 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1175 {
1176         struct btrfs_fs_info *fs_info = trans->fs_info;
1177         struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1178         struct list_head *io_bgs = &trans->transaction->io_bgs;
1179         struct list_head *next;
1180         struct extent_buffer *eb;
1181         int ret;
1182
1183         eb = btrfs_lock_root_node(fs_info->tree_root);
1184         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1185                               0, &eb);
1186         btrfs_tree_unlock(eb);
1187         free_extent_buffer(eb);
1188
1189         if (ret)
1190                 return ret;
1191
1192         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1193         if (ret)
1194                 return ret;
1195
1196         ret = btrfs_run_dev_stats(trans);
1197         if (ret)
1198                 return ret;
1199         ret = btrfs_run_dev_replace(trans);
1200         if (ret)
1201                 return ret;
1202         ret = btrfs_run_qgroups(trans);
1203         if (ret)
1204                 return ret;
1205
1206         ret = btrfs_setup_space_cache(trans);
1207         if (ret)
1208                 return ret;
1209
1210         /* run_qgroups might have added some more refs */
1211         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1212         if (ret)
1213                 return ret;
1214 again:
1215         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1216                 struct btrfs_root *root;
1217                 next = fs_info->dirty_cowonly_roots.next;
1218                 list_del_init(next);
1219                 root = list_entry(next, struct btrfs_root, dirty_list);
1220                 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1221
1222                 if (root != fs_info->extent_root)
1223                         list_add_tail(&root->dirty_list,
1224                                       &trans->transaction->switch_commits);
1225                 ret = update_cowonly_root(trans, root);
1226                 if (ret)
1227                         return ret;
1228                 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1229                 if (ret)
1230                         return ret;
1231         }
1232
1233         while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1234                 ret = btrfs_write_dirty_block_groups(trans);
1235                 if (ret)
1236                         return ret;
1237                 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1238                 if (ret)
1239                         return ret;
1240         }
1241
1242         if (!list_empty(&fs_info->dirty_cowonly_roots))
1243                 goto again;
1244
1245         list_add_tail(&fs_info->extent_root->dirty_list,
1246                       &trans->transaction->switch_commits);
1247
1248         /* Update dev-replace pointer once everything is committed */
1249         fs_info->dev_replace.committed_cursor_left =
1250                 fs_info->dev_replace.cursor_left_last_write_of_item;
1251
1252         return 0;
1253 }
1254
1255 /*
1256  * dead roots are old snapshots that need to be deleted.  This allocates
1257  * a dirty root struct and adds it into the list of dead roots that need to
1258  * be deleted
1259  */
1260 void btrfs_add_dead_root(struct btrfs_root *root)
1261 {
1262         struct btrfs_fs_info *fs_info = root->fs_info;
1263
1264         spin_lock(&fs_info->trans_lock);
1265         if (list_empty(&root->root_list)) {
1266                 btrfs_grab_root(root);
1267                 list_add_tail(&root->root_list, &fs_info->dead_roots);
1268         }
1269         spin_unlock(&fs_info->trans_lock);
1270 }
1271
1272 /*
1273  * update all the cowonly tree roots on disk
1274  */
1275 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1276 {
1277         struct btrfs_fs_info *fs_info = trans->fs_info;
1278         struct btrfs_root *gang[8];
1279         int i;
1280         int ret;
1281         int err = 0;
1282
1283         spin_lock(&fs_info->fs_roots_radix_lock);
1284         while (1) {
1285                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1286                                                  (void **)gang, 0,
1287                                                  ARRAY_SIZE(gang),
1288                                                  BTRFS_ROOT_TRANS_TAG);
1289                 if (ret == 0)
1290                         break;
1291                 for (i = 0; i < ret; i++) {
1292                         struct btrfs_root *root = gang[i];
1293                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
1294                                         (unsigned long)root->root_key.objectid,
1295                                         BTRFS_ROOT_TRANS_TAG);
1296                         spin_unlock(&fs_info->fs_roots_radix_lock);
1297
1298                         btrfs_free_log(trans, root);
1299                         btrfs_update_reloc_root(trans, root);
1300
1301                         btrfs_save_ino_cache(root, trans);
1302
1303                         /* see comments in should_cow_block() */
1304                         clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1305                         smp_mb__after_atomic();
1306
1307                         if (root->commit_root != root->node) {
1308                                 list_add_tail(&root->dirty_list,
1309                                         &trans->transaction->switch_commits);
1310                                 btrfs_set_root_node(&root->root_item,
1311                                                     root->node);
1312                         }
1313
1314                         err = btrfs_update_root(trans, fs_info->tree_root,
1315                                                 &root->root_key,
1316                                                 &root->root_item);
1317                         spin_lock(&fs_info->fs_roots_radix_lock);
1318                         if (err)
1319                                 break;
1320                         btrfs_qgroup_free_meta_all_pertrans(root);
1321                 }
1322         }
1323         spin_unlock(&fs_info->fs_roots_radix_lock);
1324         return err;
1325 }
1326
1327 /*
1328  * defrag a given btree.
1329  * Every leaf in the btree is read and defragged.
1330  */
1331 int btrfs_defrag_root(struct btrfs_root *root)
1332 {
1333         struct btrfs_fs_info *info = root->fs_info;
1334         struct btrfs_trans_handle *trans;
1335         int ret;
1336
1337         if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1338                 return 0;
1339
1340         while (1) {
1341                 trans = btrfs_start_transaction(root, 0);
1342                 if (IS_ERR(trans))
1343                         return PTR_ERR(trans);
1344
1345                 ret = btrfs_defrag_leaves(trans, root);
1346
1347                 btrfs_end_transaction(trans);
1348                 btrfs_btree_balance_dirty(info);
1349                 cond_resched();
1350
1351                 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1352                         break;
1353
1354                 if (btrfs_defrag_cancelled(info)) {
1355                         btrfs_debug(info, "defrag_root cancelled");
1356                         ret = -EAGAIN;
1357                         break;
1358                 }
1359         }
1360         clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1361         return ret;
1362 }
1363
1364 /*
1365  * Do all special snapshot related qgroup dirty hack.
1366  *
1367  * Will do all needed qgroup inherit and dirty hack like switch commit
1368  * roots inside one transaction and write all btree into disk, to make
1369  * qgroup works.
1370  */
1371 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1372                                    struct btrfs_root *src,
1373                                    struct btrfs_root *parent,
1374                                    struct btrfs_qgroup_inherit *inherit,
1375                                    u64 dst_objectid)
1376 {
1377         struct btrfs_fs_info *fs_info = src->fs_info;
1378         int ret;
1379
1380         /*
1381          * Save some performance in the case that qgroups are not
1382          * enabled. If this check races with the ioctl, rescan will
1383          * kick in anyway.
1384          */
1385         if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1386                 return 0;
1387
1388         /*
1389          * Ensure dirty @src will be committed.  Or, after coming
1390          * commit_fs_roots() and switch_commit_roots(), any dirty but not
1391          * recorded root will never be updated again, causing an outdated root
1392          * item.
1393          */
1394         record_root_in_trans(trans, src, 1);
1395
1396         /*
1397          * We are going to commit transaction, see btrfs_commit_transaction()
1398          * comment for reason locking tree_log_mutex
1399          */
1400         mutex_lock(&fs_info->tree_log_mutex);
1401
1402         ret = commit_fs_roots(trans);
1403         if (ret)
1404                 goto out;
1405         ret = btrfs_qgroup_account_extents(trans);
1406         if (ret < 0)
1407                 goto out;
1408
1409         /* Now qgroup are all updated, we can inherit it to new qgroups */
1410         ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1411                                    inherit);
1412         if (ret < 0)
1413                 goto out;
1414
1415         /*
1416          * Now we do a simplified commit transaction, which will:
1417          * 1) commit all subvolume and extent tree
1418          *    To ensure all subvolume and extent tree have a valid
1419          *    commit_root to accounting later insert_dir_item()
1420          * 2) write all btree blocks onto disk
1421          *    This is to make sure later btree modification will be cowed
1422          *    Or commit_root can be populated and cause wrong qgroup numbers
1423          * In this simplified commit, we don't really care about other trees
1424          * like chunk and root tree, as they won't affect qgroup.
1425          * And we don't write super to avoid half committed status.
1426          */
1427         ret = commit_cowonly_roots(trans);
1428         if (ret)
1429                 goto out;
1430         switch_commit_roots(trans);
1431         ret = btrfs_write_and_wait_transaction(trans);
1432         if (ret)
1433                 btrfs_handle_fs_error(fs_info, ret,
1434                         "Error while writing out transaction for qgroup");
1435
1436 out:
1437         mutex_unlock(&fs_info->tree_log_mutex);
1438
1439         /*
1440          * Force parent root to be updated, as we recorded it before so its
1441          * last_trans == cur_transid.
1442          * Or it won't be committed again onto disk after later
1443          * insert_dir_item()
1444          */
1445         if (!ret)
1446                 record_root_in_trans(trans, parent, 1);
1447         return ret;
1448 }
1449
1450 /*
1451  * new snapshots need to be created at a very specific time in the
1452  * transaction commit.  This does the actual creation.
1453  *
1454  * Note:
1455  * If the error which may affect the commitment of the current transaction
1456  * happens, we should return the error number. If the error which just affect
1457  * the creation of the pending snapshots, just return 0.
1458  */
1459 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1460                                    struct btrfs_pending_snapshot *pending)
1461 {
1462
1463         struct btrfs_fs_info *fs_info = trans->fs_info;
1464         struct btrfs_key key;
1465         struct btrfs_root_item *new_root_item;
1466         struct btrfs_root *tree_root = fs_info->tree_root;
1467         struct btrfs_root *root = pending->root;
1468         struct btrfs_root *parent_root;
1469         struct btrfs_block_rsv *rsv;
1470         struct inode *parent_inode;
1471         struct btrfs_path *path;
1472         struct btrfs_dir_item *dir_item;
1473         struct dentry *dentry;
1474         struct extent_buffer *tmp;
1475         struct extent_buffer *old;
1476         struct timespec64 cur_time;
1477         int ret = 0;
1478         u64 to_reserve = 0;
1479         u64 index = 0;
1480         u64 objectid;
1481         u64 root_flags;
1482
1483         ASSERT(pending->path);
1484         path = pending->path;
1485
1486         ASSERT(pending->root_item);
1487         new_root_item = pending->root_item;
1488
1489         pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1490         if (pending->error)
1491                 goto no_free_objectid;
1492
1493         /*
1494          * Make qgroup to skip current new snapshot's qgroupid, as it is
1495          * accounted by later btrfs_qgroup_inherit().
1496          */
1497         btrfs_set_skip_qgroup(trans, objectid);
1498
1499         btrfs_reloc_pre_snapshot(pending, &to_reserve);
1500
1501         if (to_reserve > 0) {
1502                 pending->error = btrfs_block_rsv_add(root,
1503                                                      &pending->block_rsv,
1504                                                      to_reserve,
1505                                                      BTRFS_RESERVE_NO_FLUSH);
1506                 if (pending->error)
1507                         goto clear_skip_qgroup;
1508         }
1509
1510         key.objectid = objectid;
1511         key.offset = (u64)-1;
1512         key.type = BTRFS_ROOT_ITEM_KEY;
1513
1514         rsv = trans->block_rsv;
1515         trans->block_rsv = &pending->block_rsv;
1516         trans->bytes_reserved = trans->block_rsv->reserved;
1517         trace_btrfs_space_reservation(fs_info, "transaction",
1518                                       trans->transid,
1519                                       trans->bytes_reserved, 1);
1520         dentry = pending->dentry;
1521         parent_inode = pending->dir;
1522         parent_root = BTRFS_I(parent_inode)->root;
1523         record_root_in_trans(trans, parent_root, 0);
1524
1525         cur_time = current_time(parent_inode);
1526
1527         /*
1528          * insert the directory item
1529          */
1530         ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1531         BUG_ON(ret); /* -ENOMEM */
1532
1533         /* check if there is a file/dir which has the same name. */
1534         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1535                                          btrfs_ino(BTRFS_I(parent_inode)),
1536                                          dentry->d_name.name,
1537                                          dentry->d_name.len, 0);
1538         if (dir_item != NULL && !IS_ERR(dir_item)) {
1539                 pending->error = -EEXIST;
1540                 goto dir_item_existed;
1541         } else if (IS_ERR(dir_item)) {
1542                 ret = PTR_ERR(dir_item);
1543                 btrfs_abort_transaction(trans, ret);
1544                 goto fail;
1545         }
1546         btrfs_release_path(path);
1547
1548         /*
1549          * pull in the delayed directory update
1550          * and the delayed inode item
1551          * otherwise we corrupt the FS during
1552          * snapshot
1553          */
1554         ret = btrfs_run_delayed_items(trans);
1555         if (ret) {      /* Transaction aborted */
1556                 btrfs_abort_transaction(trans, ret);
1557                 goto fail;
1558         }
1559
1560         record_root_in_trans(trans, root, 0);
1561         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1562         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1563         btrfs_check_and_init_root_item(new_root_item);
1564
1565         root_flags = btrfs_root_flags(new_root_item);
1566         if (pending->readonly)
1567                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1568         else
1569                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1570         btrfs_set_root_flags(new_root_item, root_flags);
1571
1572         btrfs_set_root_generation_v2(new_root_item,
1573                         trans->transid);
1574         generate_random_guid(new_root_item->uuid);
1575         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1576                         BTRFS_UUID_SIZE);
1577         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1578                 memset(new_root_item->received_uuid, 0,
1579                        sizeof(new_root_item->received_uuid));
1580                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1581                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1582                 btrfs_set_root_stransid(new_root_item, 0);
1583                 btrfs_set_root_rtransid(new_root_item, 0);
1584         }
1585         btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1586         btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1587         btrfs_set_root_otransid(new_root_item, trans->transid);
1588
1589         old = btrfs_lock_root_node(root);
1590         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1591         if (ret) {
1592                 btrfs_tree_unlock(old);
1593                 free_extent_buffer(old);
1594                 btrfs_abort_transaction(trans, ret);
1595                 goto fail;
1596         }
1597
1598         btrfs_set_lock_blocking_write(old);
1599
1600         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1601         /* clean up in any case */
1602         btrfs_tree_unlock(old);
1603         free_extent_buffer(old);
1604         if (ret) {
1605                 btrfs_abort_transaction(trans, ret);
1606                 goto fail;
1607         }
1608         /* see comments in should_cow_block() */
1609         set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1610         smp_wmb();
1611
1612         btrfs_set_root_node(new_root_item, tmp);
1613         /* record when the snapshot was created in key.offset */
1614         key.offset = trans->transid;
1615         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1616         btrfs_tree_unlock(tmp);
1617         free_extent_buffer(tmp);
1618         if (ret) {
1619                 btrfs_abort_transaction(trans, ret);
1620                 goto fail;
1621         }
1622
1623         /*
1624          * insert root back/forward references
1625          */
1626         ret = btrfs_add_root_ref(trans, objectid,
1627                                  parent_root->root_key.objectid,
1628                                  btrfs_ino(BTRFS_I(parent_inode)), index,
1629                                  dentry->d_name.name, dentry->d_name.len);
1630         if (ret) {
1631                 btrfs_abort_transaction(trans, ret);
1632                 goto fail;
1633         }
1634
1635         key.offset = (u64)-1;
1636         pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1637         if (IS_ERR(pending->snap)) {
1638                 ret = PTR_ERR(pending->snap);
1639                 btrfs_abort_transaction(trans, ret);
1640                 goto fail;
1641         }
1642
1643         ret = btrfs_reloc_post_snapshot(trans, pending);
1644         if (ret) {
1645                 btrfs_abort_transaction(trans, ret);
1646                 goto fail;
1647         }
1648
1649         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1650         if (ret) {
1651                 btrfs_abort_transaction(trans, ret);
1652                 goto fail;
1653         }
1654
1655         /*
1656          * Do special qgroup accounting for snapshot, as we do some qgroup
1657          * snapshot hack to do fast snapshot.
1658          * To co-operate with that hack, we do hack again.
1659          * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1660          */
1661         ret = qgroup_account_snapshot(trans, root, parent_root,
1662                                       pending->inherit, objectid);
1663         if (ret < 0)
1664                 goto fail;
1665
1666         ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1667                                     dentry->d_name.len, BTRFS_I(parent_inode),
1668                                     &key, BTRFS_FT_DIR, index);
1669         /* We have check then name at the beginning, so it is impossible. */
1670         BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1671         if (ret) {
1672                 btrfs_abort_transaction(trans, ret);
1673                 goto fail;
1674         }
1675
1676         btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1677                                          dentry->d_name.len * 2);
1678         parent_inode->i_mtime = parent_inode->i_ctime =
1679                 current_time(parent_inode);
1680         ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1681         if (ret) {
1682                 btrfs_abort_transaction(trans, ret);
1683                 goto fail;
1684         }
1685         ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1686                                   BTRFS_UUID_KEY_SUBVOL,
1687                                   objectid);
1688         if (ret) {
1689                 btrfs_abort_transaction(trans, ret);
1690                 goto fail;
1691         }
1692         if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1693                 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1694                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1695                                           objectid);
1696                 if (ret && ret != -EEXIST) {
1697                         btrfs_abort_transaction(trans, ret);
1698                         goto fail;
1699                 }
1700         }
1701
1702         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1703         if (ret) {
1704                 btrfs_abort_transaction(trans, ret);
1705                 goto fail;
1706         }
1707
1708 fail:
1709         pending->error = ret;
1710 dir_item_existed:
1711         trans->block_rsv = rsv;
1712         trans->bytes_reserved = 0;
1713 clear_skip_qgroup:
1714         btrfs_clear_skip_qgroup(trans);
1715 no_free_objectid:
1716         kfree(new_root_item);
1717         pending->root_item = NULL;
1718         btrfs_free_path(path);
1719         pending->path = NULL;
1720
1721         return ret;
1722 }
1723
1724 /*
1725  * create all the snapshots we've scheduled for creation
1726  */
1727 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1728 {
1729         struct btrfs_pending_snapshot *pending, *next;
1730         struct list_head *head = &trans->transaction->pending_snapshots;
1731         int ret = 0;
1732
1733         list_for_each_entry_safe(pending, next, head, list) {
1734                 list_del(&pending->list);
1735                 ret = create_pending_snapshot(trans, pending);
1736                 if (ret)
1737                         break;
1738         }
1739         return ret;
1740 }
1741
1742 static void update_super_roots(struct btrfs_fs_info *fs_info)
1743 {
1744         struct btrfs_root_item *root_item;
1745         struct btrfs_super_block *super;
1746
1747         super = fs_info->super_copy;
1748
1749         root_item = &fs_info->chunk_root->root_item;
1750         super->chunk_root = root_item->bytenr;
1751         super->chunk_root_generation = root_item->generation;
1752         super->chunk_root_level = root_item->level;
1753
1754         root_item = &fs_info->tree_root->root_item;
1755         super->root = root_item->bytenr;
1756         super->generation = root_item->generation;
1757         super->root_level = root_item->level;
1758         if (btrfs_test_opt(fs_info, SPACE_CACHE))
1759                 super->cache_generation = root_item->generation;
1760         if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1761                 super->uuid_tree_generation = root_item->generation;
1762 }
1763
1764 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1765 {
1766         struct btrfs_transaction *trans;
1767         int ret = 0;
1768
1769         spin_lock(&info->trans_lock);
1770         trans = info->running_transaction;
1771         if (trans)
1772                 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1773         spin_unlock(&info->trans_lock);
1774         return ret;
1775 }
1776
1777 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1778 {
1779         struct btrfs_transaction *trans;
1780         int ret = 0;
1781
1782         spin_lock(&info->trans_lock);
1783         trans = info->running_transaction;
1784         if (trans)
1785                 ret = is_transaction_blocked(trans);
1786         spin_unlock(&info->trans_lock);
1787         return ret;
1788 }
1789
1790 /*
1791  * wait for the current transaction commit to start and block subsequent
1792  * transaction joins
1793  */
1794 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1795                                             struct btrfs_transaction *trans)
1796 {
1797         wait_event(fs_info->transaction_blocked_wait,
1798                    trans->state >= TRANS_STATE_COMMIT_START ||
1799                    TRANS_ABORTED(trans));
1800 }
1801
1802 /*
1803  * wait for the current transaction to start and then become unblocked.
1804  * caller holds ref.
1805  */
1806 static void wait_current_trans_commit_start_and_unblock(
1807                                         struct btrfs_fs_info *fs_info,
1808                                         struct btrfs_transaction *trans)
1809 {
1810         wait_event(fs_info->transaction_wait,
1811                    trans->state >= TRANS_STATE_UNBLOCKED ||
1812                    TRANS_ABORTED(trans));
1813 }
1814
1815 /*
1816  * commit transactions asynchronously. once btrfs_commit_transaction_async
1817  * returns, any subsequent transaction will not be allowed to join.
1818  */
1819 struct btrfs_async_commit {
1820         struct btrfs_trans_handle *newtrans;
1821         struct work_struct work;
1822 };
1823
1824 static void do_async_commit(struct work_struct *work)
1825 {
1826         struct btrfs_async_commit *ac =
1827                 container_of(work, struct btrfs_async_commit, work);
1828
1829         /*
1830          * We've got freeze protection passed with the transaction.
1831          * Tell lockdep about it.
1832          */
1833         if (ac->newtrans->type & __TRANS_FREEZABLE)
1834                 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1835
1836         current->journal_info = ac->newtrans;
1837
1838         btrfs_commit_transaction(ac->newtrans);
1839         kfree(ac);
1840 }
1841
1842 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1843                                    int wait_for_unblock)
1844 {
1845         struct btrfs_fs_info *fs_info = trans->fs_info;
1846         struct btrfs_async_commit *ac;
1847         struct btrfs_transaction *cur_trans;
1848
1849         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1850         if (!ac)
1851                 return -ENOMEM;
1852
1853         INIT_WORK(&ac->work, do_async_commit);
1854         ac->newtrans = btrfs_join_transaction(trans->root);
1855         if (IS_ERR(ac->newtrans)) {
1856                 int err = PTR_ERR(ac->newtrans);
1857                 kfree(ac);
1858                 return err;
1859         }
1860
1861         /* take transaction reference */
1862         cur_trans = trans->transaction;
1863         refcount_inc(&cur_trans->use_count);
1864
1865         btrfs_end_transaction(trans);
1866
1867         /*
1868          * Tell lockdep we've released the freeze rwsem, since the
1869          * async commit thread will be the one to unlock it.
1870          */
1871         if (ac->newtrans->type & __TRANS_FREEZABLE)
1872                 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1873
1874         schedule_work(&ac->work);
1875
1876         /* wait for transaction to start and unblock */
1877         if (wait_for_unblock)
1878                 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1879         else
1880                 wait_current_trans_commit_start(fs_info, cur_trans);
1881
1882         if (current->journal_info == trans)
1883                 current->journal_info = NULL;
1884
1885         btrfs_put_transaction(cur_trans);
1886         return 0;
1887 }
1888
1889
1890 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1891 {
1892         struct btrfs_fs_info *fs_info = trans->fs_info;
1893         struct btrfs_transaction *cur_trans = trans->transaction;
1894
1895         WARN_ON(refcount_read(&trans->use_count) > 1);
1896
1897         btrfs_abort_transaction(trans, err);
1898
1899         spin_lock(&fs_info->trans_lock);
1900
1901         /*
1902          * If the transaction is removed from the list, it means this
1903          * transaction has been committed successfully, so it is impossible
1904          * to call the cleanup function.
1905          */
1906         BUG_ON(list_empty(&cur_trans->list));
1907
1908         list_del_init(&cur_trans->list);
1909         if (cur_trans == fs_info->running_transaction) {
1910                 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1911                 spin_unlock(&fs_info->trans_lock);
1912                 wait_event(cur_trans->writer_wait,
1913                            atomic_read(&cur_trans->num_writers) == 1);
1914
1915                 spin_lock(&fs_info->trans_lock);
1916         }
1917         spin_unlock(&fs_info->trans_lock);
1918
1919         btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1920
1921         spin_lock(&fs_info->trans_lock);
1922         if (cur_trans == fs_info->running_transaction)
1923                 fs_info->running_transaction = NULL;
1924         spin_unlock(&fs_info->trans_lock);
1925
1926         if (trans->type & __TRANS_FREEZABLE)
1927                 sb_end_intwrite(fs_info->sb);
1928         btrfs_put_transaction(cur_trans);
1929         btrfs_put_transaction(cur_trans);
1930
1931         trace_btrfs_transaction_commit(trans->root);
1932
1933         if (current->journal_info == trans)
1934                 current->journal_info = NULL;
1935         btrfs_scrub_cancel(fs_info);
1936
1937         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1938 }
1939
1940 /*
1941  * Release reserved delayed ref space of all pending block groups of the
1942  * transaction and remove them from the list
1943  */
1944 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1945 {
1946        struct btrfs_fs_info *fs_info = trans->fs_info;
1947        struct btrfs_block_group *block_group, *tmp;
1948
1949        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1950                btrfs_delayed_refs_rsv_release(fs_info, 1);
1951                list_del_init(&block_group->bg_list);
1952        }
1953 }
1954
1955 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
1956 {
1957         struct btrfs_fs_info *fs_info = trans->fs_info;
1958
1959         /*
1960          * We use writeback_inodes_sb here because if we used
1961          * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1962          * Currently are holding the fs freeze lock, if we do an async flush
1963          * we'll do btrfs_join_transaction() and deadlock because we need to
1964          * wait for the fs freeze lock.  Using the direct flushing we benefit
1965          * from already being in a transaction and our join_transaction doesn't
1966          * have to re-take the fs freeze lock.
1967          */
1968         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1969                 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1970         } else {
1971                 struct btrfs_pending_snapshot *pending;
1972                 struct list_head *head = &trans->transaction->pending_snapshots;
1973
1974                 /*
1975                  * Flush dellaloc for any root that is going to be snapshotted.
1976                  * This is done to avoid a corrupted version of files, in the
1977                  * snapshots, that had both buffered and direct IO writes (even
1978                  * if they were done sequentially) due to an unordered update of
1979                  * the inode's size on disk.
1980                  */
1981                 list_for_each_entry(pending, head, list) {
1982                         int ret;
1983
1984                         ret = btrfs_start_delalloc_snapshot(pending->root);
1985                         if (ret)
1986                                 return ret;
1987                 }
1988         }
1989         return 0;
1990 }
1991
1992 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
1993 {
1994         struct btrfs_fs_info *fs_info = trans->fs_info;
1995
1996         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1997                 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1998         } else {
1999                 struct btrfs_pending_snapshot *pending;
2000                 struct list_head *head = &trans->transaction->pending_snapshots;
2001
2002                 /*
2003                  * Wait for any dellaloc that we started previously for the roots
2004                  * that are going to be snapshotted. This is to avoid a corrupted
2005                  * version of files in the snapshots that had both buffered and
2006                  * direct IO writes (even if they were done sequentially).
2007                  */
2008                 list_for_each_entry(pending, head, list)
2009                         btrfs_wait_ordered_extents(pending->root,
2010                                                    U64_MAX, 0, U64_MAX);
2011         }
2012 }
2013
2014 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2015 {
2016         struct btrfs_fs_info *fs_info = trans->fs_info;
2017         struct btrfs_transaction *cur_trans = trans->transaction;
2018         struct btrfs_transaction *prev_trans = NULL;
2019         int ret;
2020
2021         ASSERT(refcount_read(&trans->use_count) == 1);
2022
2023         /*
2024          * Some places just start a transaction to commit it.  We need to make
2025          * sure that if this commit fails that the abort code actually marks the
2026          * transaction as failed, so set trans->dirty to make the abort code do
2027          * the right thing.
2028          */
2029         trans->dirty = true;
2030
2031         /* Stop the commit early if ->aborted is set */
2032         if (TRANS_ABORTED(cur_trans)) {
2033                 ret = cur_trans->aborted;
2034                 btrfs_end_transaction(trans);
2035                 return ret;
2036         }
2037
2038         btrfs_trans_release_metadata(trans);
2039         trans->block_rsv = NULL;
2040
2041         /* make a pass through all the delayed refs we have so far
2042          * any runnings procs may add more while we are here
2043          */
2044         ret = btrfs_run_delayed_refs(trans, 0);
2045         if (ret) {
2046                 btrfs_end_transaction(trans);
2047                 return ret;
2048         }
2049
2050         cur_trans = trans->transaction;
2051
2052         /*
2053          * set the flushing flag so procs in this transaction have to
2054          * start sending their work down.
2055          */
2056         cur_trans->delayed_refs.flushing = 1;
2057         smp_wmb();
2058
2059         btrfs_create_pending_block_groups(trans);
2060
2061         ret = btrfs_run_delayed_refs(trans, 0);
2062         if (ret) {
2063                 btrfs_end_transaction(trans);
2064                 return ret;
2065         }
2066
2067         if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2068                 int run_it = 0;
2069
2070                 /* this mutex is also taken before trying to set
2071                  * block groups readonly.  We need to make sure
2072                  * that nobody has set a block group readonly
2073                  * after a extents from that block group have been
2074                  * allocated for cache files.  btrfs_set_block_group_ro
2075                  * will wait for the transaction to commit if it
2076                  * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2077                  *
2078                  * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2079                  * only one process starts all the block group IO.  It wouldn't
2080                  * hurt to have more than one go through, but there's no
2081                  * real advantage to it either.
2082                  */
2083                 mutex_lock(&fs_info->ro_block_group_mutex);
2084                 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2085                                       &cur_trans->flags))
2086                         run_it = 1;
2087                 mutex_unlock(&fs_info->ro_block_group_mutex);
2088
2089                 if (run_it) {
2090                         ret = btrfs_start_dirty_block_groups(trans);
2091                         if (ret) {
2092                                 btrfs_end_transaction(trans);
2093                                 return ret;
2094                         }
2095                 }
2096         }
2097
2098         spin_lock(&fs_info->trans_lock);
2099         if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2100                 spin_unlock(&fs_info->trans_lock);
2101                 refcount_inc(&cur_trans->use_count);
2102                 ret = btrfs_end_transaction(trans);
2103
2104                 wait_for_commit(cur_trans);
2105
2106                 if (TRANS_ABORTED(cur_trans))
2107                         ret = cur_trans->aborted;
2108
2109                 btrfs_put_transaction(cur_trans);
2110
2111                 return ret;
2112         }
2113
2114         cur_trans->state = TRANS_STATE_COMMIT_START;
2115         wake_up(&fs_info->transaction_blocked_wait);
2116
2117         if (cur_trans->list.prev != &fs_info->trans_list) {
2118                 prev_trans = list_entry(cur_trans->list.prev,
2119                                         struct btrfs_transaction, list);
2120                 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2121                         refcount_inc(&prev_trans->use_count);
2122                         spin_unlock(&fs_info->trans_lock);
2123
2124                         wait_for_commit(prev_trans);
2125                         ret = READ_ONCE(prev_trans->aborted);
2126
2127                         btrfs_put_transaction(prev_trans);
2128                         if (ret)
2129                                 goto cleanup_transaction;
2130                 } else {
2131                         spin_unlock(&fs_info->trans_lock);
2132                 }
2133         } else {
2134                 spin_unlock(&fs_info->trans_lock);
2135                 /*
2136                  * The previous transaction was aborted and was already removed
2137                  * from the list of transactions at fs_info->trans_list. So we
2138                  * abort to prevent writing a new superblock that reflects a
2139                  * corrupt state (pointing to trees with unwritten nodes/leafs).
2140                  */
2141                 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2142                         ret = -EROFS;
2143                         goto cleanup_transaction;
2144                 }
2145         }
2146
2147         extwriter_counter_dec(cur_trans, trans->type);
2148
2149         ret = btrfs_start_delalloc_flush(trans);
2150         if (ret)
2151                 goto cleanup_transaction;
2152
2153         ret = btrfs_run_delayed_items(trans);
2154         if (ret)
2155                 goto cleanup_transaction;
2156
2157         wait_event(cur_trans->writer_wait,
2158                    extwriter_counter_read(cur_trans) == 0);
2159
2160         /* some pending stuffs might be added after the previous flush. */
2161         ret = btrfs_run_delayed_items(trans);
2162         if (ret)
2163                 goto cleanup_transaction;
2164
2165         btrfs_wait_delalloc_flush(trans);
2166
2167         btrfs_scrub_pause(fs_info);
2168         /*
2169          * Ok now we need to make sure to block out any other joins while we
2170          * commit the transaction.  We could have started a join before setting
2171          * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2172          */
2173         spin_lock(&fs_info->trans_lock);
2174         cur_trans->state = TRANS_STATE_COMMIT_DOING;
2175         spin_unlock(&fs_info->trans_lock);
2176         wait_event(cur_trans->writer_wait,
2177                    atomic_read(&cur_trans->num_writers) == 1);
2178
2179         if (TRANS_ABORTED(cur_trans)) {
2180                 ret = cur_trans->aborted;
2181                 goto scrub_continue;
2182         }
2183         /*
2184          * the reloc mutex makes sure that we stop
2185          * the balancing code from coming in and moving
2186          * extents around in the middle of the commit
2187          */
2188         mutex_lock(&fs_info->reloc_mutex);
2189
2190         /*
2191          * We needn't worry about the delayed items because we will
2192          * deal with them in create_pending_snapshot(), which is the
2193          * core function of the snapshot creation.
2194          */
2195         ret = create_pending_snapshots(trans);
2196         if (ret)
2197                 goto unlock_reloc;
2198
2199         /*
2200          * We insert the dir indexes of the snapshots and update the inode
2201          * of the snapshots' parents after the snapshot creation, so there
2202          * are some delayed items which are not dealt with. Now deal with
2203          * them.
2204          *
2205          * We needn't worry that this operation will corrupt the snapshots,
2206          * because all the tree which are snapshoted will be forced to COW
2207          * the nodes and leaves.
2208          */
2209         ret = btrfs_run_delayed_items(trans);
2210         if (ret)
2211                 goto unlock_reloc;
2212
2213         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2214         if (ret)
2215                 goto unlock_reloc;
2216
2217         /*
2218          * make sure none of the code above managed to slip in a
2219          * delayed item
2220          */
2221         btrfs_assert_delayed_root_empty(fs_info);
2222
2223         WARN_ON(cur_trans != trans->transaction);
2224
2225         /* btrfs_commit_tree_roots is responsible for getting the
2226          * various roots consistent with each other.  Every pointer
2227          * in the tree of tree roots has to point to the most up to date
2228          * root for every subvolume and other tree.  So, we have to keep
2229          * the tree logging code from jumping in and changing any
2230          * of the trees.
2231          *
2232          * At this point in the commit, there can't be any tree-log
2233          * writers, but a little lower down we drop the trans mutex
2234          * and let new people in.  By holding the tree_log_mutex
2235          * from now until after the super is written, we avoid races
2236          * with the tree-log code.
2237          */
2238         mutex_lock(&fs_info->tree_log_mutex);
2239
2240         ret = commit_fs_roots(trans);
2241         if (ret)
2242                 goto unlock_tree_log;
2243
2244         /*
2245          * Since the transaction is done, we can apply the pending changes
2246          * before the next transaction.
2247          */
2248         btrfs_apply_pending_changes(fs_info);
2249
2250         /* commit_fs_roots gets rid of all the tree log roots, it is now
2251          * safe to free the root of tree log roots
2252          */
2253         btrfs_free_log_root_tree(trans, fs_info);
2254
2255         /*
2256          * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2257          * new delayed refs. Must handle them or qgroup can be wrong.
2258          */
2259         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2260         if (ret)
2261                 goto unlock_tree_log;
2262
2263         /*
2264          * Since fs roots are all committed, we can get a quite accurate
2265          * new_roots. So let's do quota accounting.
2266          */
2267         ret = btrfs_qgroup_account_extents(trans);
2268         if (ret < 0)
2269                 goto unlock_tree_log;
2270
2271         ret = commit_cowonly_roots(trans);
2272         if (ret)
2273                 goto unlock_tree_log;
2274
2275         /*
2276          * The tasks which save the space cache and inode cache may also
2277          * update ->aborted, check it.
2278          */
2279         if (TRANS_ABORTED(cur_trans)) {
2280                 ret = cur_trans->aborted;
2281                 goto unlock_tree_log;
2282         }
2283
2284         btrfs_prepare_extent_commit(fs_info);
2285
2286         cur_trans = fs_info->running_transaction;
2287
2288         btrfs_set_root_node(&fs_info->tree_root->root_item,
2289                             fs_info->tree_root->node);
2290         list_add_tail(&fs_info->tree_root->dirty_list,
2291                       &cur_trans->switch_commits);
2292
2293         btrfs_set_root_node(&fs_info->chunk_root->root_item,
2294                             fs_info->chunk_root->node);
2295         list_add_tail(&fs_info->chunk_root->dirty_list,
2296                       &cur_trans->switch_commits);
2297
2298         switch_commit_roots(trans);
2299
2300         ASSERT(list_empty(&cur_trans->dirty_bgs));
2301         ASSERT(list_empty(&cur_trans->io_bgs));
2302         update_super_roots(fs_info);
2303
2304         btrfs_set_super_log_root(fs_info->super_copy, 0);
2305         btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2306         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2307                sizeof(*fs_info->super_copy));
2308
2309         btrfs_commit_device_sizes(cur_trans);
2310
2311         clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2312         clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2313
2314         btrfs_trans_release_chunk_metadata(trans);
2315
2316         spin_lock(&fs_info->trans_lock);
2317         cur_trans->state = TRANS_STATE_UNBLOCKED;
2318         fs_info->running_transaction = NULL;
2319         spin_unlock(&fs_info->trans_lock);
2320         mutex_unlock(&fs_info->reloc_mutex);
2321
2322         wake_up(&fs_info->transaction_wait);
2323
2324         ret = btrfs_write_and_wait_transaction(trans);
2325         if (ret) {
2326                 btrfs_handle_fs_error(fs_info, ret,
2327                                       "Error while writing out transaction");
2328                 /*
2329                  * reloc_mutex has been unlocked, tree_log_mutex is still held
2330                  * but we can't jump to unlock_tree_log causing double unlock
2331                  */
2332                 mutex_unlock(&fs_info->tree_log_mutex);
2333                 goto scrub_continue;
2334         }
2335
2336         ret = write_all_supers(fs_info, 0);
2337         /*
2338          * the super is written, we can safely allow the tree-loggers
2339          * to go about their business
2340          */
2341         mutex_unlock(&fs_info->tree_log_mutex);
2342         if (ret)
2343                 goto scrub_continue;
2344
2345         btrfs_finish_extent_commit(trans);
2346
2347         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2348                 btrfs_clear_space_info_full(fs_info);
2349
2350         fs_info->last_trans_committed = cur_trans->transid;
2351         /*
2352          * We needn't acquire the lock here because there is no other task
2353          * which can change it.
2354          */
2355         cur_trans->state = TRANS_STATE_COMPLETED;
2356         wake_up(&cur_trans->commit_wait);
2357
2358         spin_lock(&fs_info->trans_lock);
2359         list_del_init(&cur_trans->list);
2360         spin_unlock(&fs_info->trans_lock);
2361
2362         btrfs_put_transaction(cur_trans);
2363         btrfs_put_transaction(cur_trans);
2364
2365         if (trans->type & __TRANS_FREEZABLE)
2366                 sb_end_intwrite(fs_info->sb);
2367
2368         trace_btrfs_transaction_commit(trans->root);
2369
2370         btrfs_scrub_continue(fs_info);
2371
2372         if (current->journal_info == trans)
2373                 current->journal_info = NULL;
2374
2375         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2376
2377         return ret;
2378
2379 unlock_tree_log:
2380         mutex_unlock(&fs_info->tree_log_mutex);
2381 unlock_reloc:
2382         mutex_unlock(&fs_info->reloc_mutex);
2383 scrub_continue:
2384         btrfs_scrub_continue(fs_info);
2385 cleanup_transaction:
2386         btrfs_trans_release_metadata(trans);
2387         btrfs_cleanup_pending_block_groups(trans);
2388         btrfs_trans_release_chunk_metadata(trans);
2389         trans->block_rsv = NULL;
2390         btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2391         if (current->journal_info == trans)
2392                 current->journal_info = NULL;
2393         cleanup_transaction(trans, ret);
2394
2395         return ret;
2396 }
2397
2398 /*
2399  * return < 0 if error
2400  * 0 if there are no more dead_roots at the time of call
2401  * 1 there are more to be processed, call me again
2402  *
2403  * The return value indicates there are certainly more snapshots to delete, but
2404  * if there comes a new one during processing, it may return 0. We don't mind,
2405  * because btrfs_commit_super will poke cleaner thread and it will process it a
2406  * few seconds later.
2407  */
2408 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2409 {
2410         int ret;
2411         struct btrfs_fs_info *fs_info = root->fs_info;
2412
2413         spin_lock(&fs_info->trans_lock);
2414         if (list_empty(&fs_info->dead_roots)) {
2415                 spin_unlock(&fs_info->trans_lock);
2416                 return 0;
2417         }
2418         root = list_first_entry(&fs_info->dead_roots,
2419                         struct btrfs_root, root_list);
2420         list_del_init(&root->root_list);
2421         spin_unlock(&fs_info->trans_lock);
2422
2423         btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2424
2425         btrfs_kill_all_delayed_nodes(root);
2426         if (root->ino_cache_inode) {
2427                 iput(root->ino_cache_inode);
2428                 root->ino_cache_inode = NULL;
2429         }
2430
2431         if (btrfs_header_backref_rev(root->node) <
2432                         BTRFS_MIXED_BACKREF_REV)
2433                 ret = btrfs_drop_snapshot(root, 0, 0);
2434         else
2435                 ret = btrfs_drop_snapshot(root, 1, 0);
2436
2437         btrfs_put_root(root);
2438         return (ret < 0) ? 0 : 1;
2439 }
2440
2441 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2442 {
2443         unsigned long prev;
2444         unsigned long bit;
2445
2446         prev = xchg(&fs_info->pending_changes, 0);
2447         if (!prev)
2448                 return;
2449
2450         bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2451         if (prev & bit)
2452                 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2453         prev &= ~bit;
2454
2455         bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2456         if (prev & bit)
2457                 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2458         prev &= ~bit;
2459
2460         bit = 1 << BTRFS_PENDING_COMMIT;
2461         if (prev & bit)
2462                 btrfs_debug(fs_info, "pending commit done");
2463         prev &= ~bit;
2464
2465         if (prev)
2466                 btrfs_warn(fs_info,
2467                         "unknown pending changes left 0x%lx, ignoring", prev);
2468 }