qed: suppress "don't support RoCE & iWARP" flooding on HW init
[linux-2.6-microblaze.git] / fs / btrfs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/cleancache.h>
27 #include <linux/ratelimit.h>
28 #include <linux/crc32c.h>
29 #include <linux/btrfs.h>
30 #include "delayed-inode.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "props.h"
37 #include "xattr.h"
38 #include "volumes.h"
39 #include "export.h"
40 #include "compression.h"
41 #include "rcu-string.h"
42 #include "dev-replace.h"
43 #include "free-space-cache.h"
44 #include "backref.h"
45 #include "space-info.h"
46 #include "sysfs.h"
47 #include "tests/btrfs-tests.h"
48 #include "block-group.h"
49 #include "discard.h"
50
51 #include "qgroup.h"
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/btrfs.h>
54
55 static const struct super_operations btrfs_super_ops;
56
57 /*
58  * Types for mounting the default subvolume and a subvolume explicitly
59  * requested by subvol=/path. That way the callchain is straightforward and we
60  * don't have to play tricks with the mount options and recursive calls to
61  * btrfs_mount.
62  *
63  * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
64  */
65 static struct file_system_type btrfs_fs_type;
66 static struct file_system_type btrfs_root_fs_type;
67
68 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
69
70 const char * __attribute_const__ btrfs_decode_error(int errno)
71 {
72         char *errstr = "unknown";
73
74         switch (errno) {
75         case -ENOENT:           /* -2 */
76                 errstr = "No such entry";
77                 break;
78         case -EIO:              /* -5 */
79                 errstr = "IO failure";
80                 break;
81         case -ENOMEM:           /* -12*/
82                 errstr = "Out of memory";
83                 break;
84         case -EEXIST:           /* -17 */
85                 errstr = "Object already exists";
86                 break;
87         case -ENOSPC:           /* -28 */
88                 errstr = "No space left";
89                 break;
90         case -EROFS:            /* -30 */
91                 errstr = "Readonly filesystem";
92                 break;
93         case -EOPNOTSUPP:       /* -95 */
94                 errstr = "Operation not supported";
95                 break;
96         case -EUCLEAN:          /* -117 */
97                 errstr = "Filesystem corrupted";
98                 break;
99         case -EDQUOT:           /* -122 */
100                 errstr = "Quota exceeded";
101                 break;
102         }
103
104         return errstr;
105 }
106
107 /*
108  * __btrfs_handle_fs_error decodes expected errors from the caller and
109  * invokes the appropriate error response.
110  */
111 __cold
112 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
113                        unsigned int line, int errno, const char *fmt, ...)
114 {
115         struct super_block *sb = fs_info->sb;
116 #ifdef CONFIG_PRINTK
117         const char *errstr;
118 #endif
119
120         /*
121          * Special case: if the error is EROFS, and we're already
122          * under SB_RDONLY, then it is safe here.
123          */
124         if (errno == -EROFS && sb_rdonly(sb))
125                 return;
126
127 #ifdef CONFIG_PRINTK
128         errstr = btrfs_decode_error(errno);
129         if (fmt) {
130                 struct va_format vaf;
131                 va_list args;
132
133                 va_start(args, fmt);
134                 vaf.fmt = fmt;
135                 vaf.va = &args;
136
137                 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
138                         sb->s_id, function, line, errno, errstr, &vaf);
139                 va_end(args);
140         } else {
141                 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
142                         sb->s_id, function, line, errno, errstr);
143         }
144 #endif
145
146         /*
147          * Today we only save the error info to memory.  Long term we'll
148          * also send it down to the disk
149          */
150         set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
151
152         /* Don't go through full error handling during mount */
153         if (!(sb->s_flags & SB_BORN))
154                 return;
155
156         if (sb_rdonly(sb))
157                 return;
158
159         btrfs_discard_stop(fs_info);
160
161         /* btrfs handle error by forcing the filesystem readonly */
162         sb->s_flags |= SB_RDONLY;
163         btrfs_info(fs_info, "forced readonly");
164         /*
165          * Note that a running device replace operation is not canceled here
166          * although there is no way to update the progress. It would add the
167          * risk of a deadlock, therefore the canceling is omitted. The only
168          * penalty is that some I/O remains active until the procedure
169          * completes. The next time when the filesystem is mounted writable
170          * again, the device replace operation continues.
171          */
172 }
173
174 #ifdef CONFIG_PRINTK
175 static const char * const logtypes[] = {
176         "emergency",
177         "alert",
178         "critical",
179         "error",
180         "warning",
181         "notice",
182         "info",
183         "debug",
184 };
185
186
187 /*
188  * Use one ratelimit state per log level so that a flood of less important
189  * messages doesn't cause more important ones to be dropped.
190  */
191 static struct ratelimit_state printk_limits[] = {
192         RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
193         RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
194         RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
195         RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
196         RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
197         RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
198         RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
199         RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
200 };
201
202 void __cold btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
203 {
204         char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
205         struct va_format vaf;
206         va_list args;
207         int kern_level;
208         const char *type = logtypes[4];
209         struct ratelimit_state *ratelimit = &printk_limits[4];
210
211         va_start(args, fmt);
212
213         while ((kern_level = printk_get_level(fmt)) != 0) {
214                 size_t size = printk_skip_level(fmt) - fmt;
215
216                 if (kern_level >= '0' && kern_level <= '7') {
217                         memcpy(lvl, fmt,  size);
218                         lvl[size] = '\0';
219                         type = logtypes[kern_level - '0'];
220                         ratelimit = &printk_limits[kern_level - '0'];
221                 }
222                 fmt += size;
223         }
224
225         vaf.fmt = fmt;
226         vaf.va = &args;
227
228         if (__ratelimit(ratelimit))
229                 printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
230                         fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
231
232         va_end(args);
233 }
234 #endif
235
236 /*
237  * We only mark the transaction aborted and then set the file system read-only.
238  * This will prevent new transactions from starting or trying to join this
239  * one.
240  *
241  * This means that error recovery at the call site is limited to freeing
242  * any local memory allocations and passing the error code up without
243  * further cleanup. The transaction should complete as it normally would
244  * in the call path but will return -EIO.
245  *
246  * We'll complete the cleanup in btrfs_end_transaction and
247  * btrfs_commit_transaction.
248  */
249 __cold
250 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
251                                const char *function,
252                                unsigned int line, int errno)
253 {
254         struct btrfs_fs_info *fs_info = trans->fs_info;
255
256         WRITE_ONCE(trans->aborted, errno);
257         /* Nothing used. The other threads that have joined this
258          * transaction may be able to continue. */
259         if (!trans->dirty && list_empty(&trans->new_bgs)) {
260                 const char *errstr;
261
262                 errstr = btrfs_decode_error(errno);
263                 btrfs_warn(fs_info,
264                            "%s:%d: Aborting unused transaction(%s).",
265                            function, line, errstr);
266                 return;
267         }
268         WRITE_ONCE(trans->transaction->aborted, errno);
269         /* Wake up anybody who may be waiting on this transaction */
270         wake_up(&fs_info->transaction_wait);
271         wake_up(&fs_info->transaction_blocked_wait);
272         __btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
273 }
274 /*
275  * __btrfs_panic decodes unexpected, fatal errors from the caller,
276  * issues an alert, and either panics or BUGs, depending on mount options.
277  */
278 __cold
279 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
280                    unsigned int line, int errno, const char *fmt, ...)
281 {
282         char *s_id = "<unknown>";
283         const char *errstr;
284         struct va_format vaf = { .fmt = fmt };
285         va_list args;
286
287         if (fs_info)
288                 s_id = fs_info->sb->s_id;
289
290         va_start(args, fmt);
291         vaf.va = &args;
292
293         errstr = btrfs_decode_error(errno);
294         if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
295                 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
296                         s_id, function, line, &vaf, errno, errstr);
297
298         btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
299                    function, line, &vaf, errno, errstr);
300         va_end(args);
301         /* Caller calls BUG() */
302 }
303
304 static void btrfs_put_super(struct super_block *sb)
305 {
306         close_ctree(btrfs_sb(sb));
307 }
308
309 enum {
310         Opt_acl, Opt_noacl,
311         Opt_clear_cache,
312         Opt_commit_interval,
313         Opt_compress,
314         Opt_compress_force,
315         Opt_compress_force_type,
316         Opt_compress_type,
317         Opt_degraded,
318         Opt_device,
319         Opt_fatal_errors,
320         Opt_flushoncommit, Opt_noflushoncommit,
321         Opt_inode_cache, Opt_noinode_cache,
322         Opt_max_inline,
323         Opt_barrier, Opt_nobarrier,
324         Opt_datacow, Opt_nodatacow,
325         Opt_datasum, Opt_nodatasum,
326         Opt_defrag, Opt_nodefrag,
327         Opt_discard, Opt_nodiscard,
328         Opt_discard_mode,
329         Opt_nologreplay,
330         Opt_norecovery,
331         Opt_ratio,
332         Opt_rescan_uuid_tree,
333         Opt_skip_balance,
334         Opt_space_cache, Opt_no_space_cache,
335         Opt_space_cache_version,
336         Opt_ssd, Opt_nossd,
337         Opt_ssd_spread, Opt_nossd_spread,
338         Opt_subvol,
339         Opt_subvol_empty,
340         Opt_subvolid,
341         Opt_thread_pool,
342         Opt_treelog, Opt_notreelog,
343         Opt_usebackuproot,
344         Opt_user_subvol_rm_allowed,
345
346         /* Deprecated options */
347         Opt_alloc_start,
348         Opt_recovery,
349         Opt_subvolrootid,
350
351         /* Debugging options */
352         Opt_check_integrity,
353         Opt_check_integrity_including_extent_data,
354         Opt_check_integrity_print_mask,
355         Opt_enospc_debug, Opt_noenospc_debug,
356 #ifdef CONFIG_BTRFS_DEBUG
357         Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
358 #endif
359 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
360         Opt_ref_verify,
361 #endif
362         Opt_err,
363 };
364
365 static const match_table_t tokens = {
366         {Opt_acl, "acl"},
367         {Opt_noacl, "noacl"},
368         {Opt_clear_cache, "clear_cache"},
369         {Opt_commit_interval, "commit=%u"},
370         {Opt_compress, "compress"},
371         {Opt_compress_type, "compress=%s"},
372         {Opt_compress_force, "compress-force"},
373         {Opt_compress_force_type, "compress-force=%s"},
374         {Opt_degraded, "degraded"},
375         {Opt_device, "device=%s"},
376         {Opt_fatal_errors, "fatal_errors=%s"},
377         {Opt_flushoncommit, "flushoncommit"},
378         {Opt_noflushoncommit, "noflushoncommit"},
379         {Opt_inode_cache, "inode_cache"},
380         {Opt_noinode_cache, "noinode_cache"},
381         {Opt_max_inline, "max_inline=%s"},
382         {Opt_barrier, "barrier"},
383         {Opt_nobarrier, "nobarrier"},
384         {Opt_datacow, "datacow"},
385         {Opt_nodatacow, "nodatacow"},
386         {Opt_datasum, "datasum"},
387         {Opt_nodatasum, "nodatasum"},
388         {Opt_defrag, "autodefrag"},
389         {Opt_nodefrag, "noautodefrag"},
390         {Opt_discard, "discard"},
391         {Opt_discard_mode, "discard=%s"},
392         {Opt_nodiscard, "nodiscard"},
393         {Opt_nologreplay, "nologreplay"},
394         {Opt_norecovery, "norecovery"},
395         {Opt_ratio, "metadata_ratio=%u"},
396         {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
397         {Opt_skip_balance, "skip_balance"},
398         {Opt_space_cache, "space_cache"},
399         {Opt_no_space_cache, "nospace_cache"},
400         {Opt_space_cache_version, "space_cache=%s"},
401         {Opt_ssd, "ssd"},
402         {Opt_nossd, "nossd"},
403         {Opt_ssd_spread, "ssd_spread"},
404         {Opt_nossd_spread, "nossd_spread"},
405         {Opt_subvol, "subvol=%s"},
406         {Opt_subvol_empty, "subvol="},
407         {Opt_subvolid, "subvolid=%s"},
408         {Opt_thread_pool, "thread_pool=%u"},
409         {Opt_treelog, "treelog"},
410         {Opt_notreelog, "notreelog"},
411         {Opt_usebackuproot, "usebackuproot"},
412         {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
413
414         /* Deprecated options */
415         {Opt_alloc_start, "alloc_start=%s"},
416         {Opt_recovery, "recovery"},
417         {Opt_subvolrootid, "subvolrootid=%d"},
418
419         /* Debugging options */
420         {Opt_check_integrity, "check_int"},
421         {Opt_check_integrity_including_extent_data, "check_int_data"},
422         {Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
423         {Opt_enospc_debug, "enospc_debug"},
424         {Opt_noenospc_debug, "noenospc_debug"},
425 #ifdef CONFIG_BTRFS_DEBUG
426         {Opt_fragment_data, "fragment=data"},
427         {Opt_fragment_metadata, "fragment=metadata"},
428         {Opt_fragment_all, "fragment=all"},
429 #endif
430 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
431         {Opt_ref_verify, "ref_verify"},
432 #endif
433         {Opt_err, NULL},
434 };
435
436 /*
437  * Regular mount options parser.  Everything that is needed only when
438  * reading in a new superblock is parsed here.
439  * XXX JDM: This needs to be cleaned up for remount.
440  */
441 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
442                         unsigned long new_flags)
443 {
444         substring_t args[MAX_OPT_ARGS];
445         char *p, *num;
446         u64 cache_gen;
447         int intarg;
448         int ret = 0;
449         char *compress_type;
450         bool compress_force = false;
451         enum btrfs_compression_type saved_compress_type;
452         bool saved_compress_force;
453         int no_compress = 0;
454
455         cache_gen = btrfs_super_cache_generation(info->super_copy);
456         if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
457                 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
458         else if (cache_gen)
459                 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
460
461         /*
462          * Even the options are empty, we still need to do extra check
463          * against new flags
464          */
465         if (!options)
466                 goto check;
467
468         while ((p = strsep(&options, ",")) != NULL) {
469                 int token;
470                 if (!*p)
471                         continue;
472
473                 token = match_token(p, tokens, args);
474                 switch (token) {
475                 case Opt_degraded:
476                         btrfs_info(info, "allowing degraded mounts");
477                         btrfs_set_opt(info->mount_opt, DEGRADED);
478                         break;
479                 case Opt_subvol:
480                 case Opt_subvol_empty:
481                 case Opt_subvolid:
482                 case Opt_subvolrootid:
483                 case Opt_device:
484                         /*
485                          * These are parsed by btrfs_parse_subvol_options or
486                          * btrfs_parse_device_options and can be ignored here.
487                          */
488                         break;
489                 case Opt_nodatasum:
490                         btrfs_set_and_info(info, NODATASUM,
491                                            "setting nodatasum");
492                         break;
493                 case Opt_datasum:
494                         if (btrfs_test_opt(info, NODATASUM)) {
495                                 if (btrfs_test_opt(info, NODATACOW))
496                                         btrfs_info(info,
497                                                    "setting datasum, datacow enabled");
498                                 else
499                                         btrfs_info(info, "setting datasum");
500                         }
501                         btrfs_clear_opt(info->mount_opt, NODATACOW);
502                         btrfs_clear_opt(info->mount_opt, NODATASUM);
503                         break;
504                 case Opt_nodatacow:
505                         if (!btrfs_test_opt(info, NODATACOW)) {
506                                 if (!btrfs_test_opt(info, COMPRESS) ||
507                                     !btrfs_test_opt(info, FORCE_COMPRESS)) {
508                                         btrfs_info(info,
509                                                    "setting nodatacow, compression disabled");
510                                 } else {
511                                         btrfs_info(info, "setting nodatacow");
512                                 }
513                         }
514                         btrfs_clear_opt(info->mount_opt, COMPRESS);
515                         btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
516                         btrfs_set_opt(info->mount_opt, NODATACOW);
517                         btrfs_set_opt(info->mount_opt, NODATASUM);
518                         break;
519                 case Opt_datacow:
520                         btrfs_clear_and_info(info, NODATACOW,
521                                              "setting datacow");
522                         break;
523                 case Opt_compress_force:
524                 case Opt_compress_force_type:
525                         compress_force = true;
526                         fallthrough;
527                 case Opt_compress:
528                 case Opt_compress_type:
529                         saved_compress_type = btrfs_test_opt(info,
530                                                              COMPRESS) ?
531                                 info->compress_type : BTRFS_COMPRESS_NONE;
532                         saved_compress_force =
533                                 btrfs_test_opt(info, FORCE_COMPRESS);
534                         if (token == Opt_compress ||
535                             token == Opt_compress_force ||
536                             strncmp(args[0].from, "zlib", 4) == 0) {
537                                 compress_type = "zlib";
538
539                                 info->compress_type = BTRFS_COMPRESS_ZLIB;
540                                 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
541                                 /*
542                                  * args[0] contains uninitialized data since
543                                  * for these tokens we don't expect any
544                                  * parameter.
545                                  */
546                                 if (token != Opt_compress &&
547                                     token != Opt_compress_force)
548                                         info->compress_level =
549                                           btrfs_compress_str2level(
550                                                         BTRFS_COMPRESS_ZLIB,
551                                                         args[0].from + 4);
552                                 btrfs_set_opt(info->mount_opt, COMPRESS);
553                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
554                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
555                                 no_compress = 0;
556                         } else if (strncmp(args[0].from, "lzo", 3) == 0) {
557                                 compress_type = "lzo";
558                                 info->compress_type = BTRFS_COMPRESS_LZO;
559                                 btrfs_set_opt(info->mount_opt, COMPRESS);
560                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
561                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
562                                 btrfs_set_fs_incompat(info, COMPRESS_LZO);
563                                 no_compress = 0;
564                         } else if (strncmp(args[0].from, "zstd", 4) == 0) {
565                                 compress_type = "zstd";
566                                 info->compress_type = BTRFS_COMPRESS_ZSTD;
567                                 info->compress_level =
568                                         btrfs_compress_str2level(
569                                                          BTRFS_COMPRESS_ZSTD,
570                                                          args[0].from + 4);
571                                 btrfs_set_opt(info->mount_opt, COMPRESS);
572                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
573                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
574                                 btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
575                                 no_compress = 0;
576                         } else if (strncmp(args[0].from, "no", 2) == 0) {
577                                 compress_type = "no";
578                                 btrfs_clear_opt(info->mount_opt, COMPRESS);
579                                 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
580                                 compress_force = false;
581                                 no_compress++;
582                         } else {
583                                 ret = -EINVAL;
584                                 goto out;
585                         }
586
587                         if (compress_force) {
588                                 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
589                         } else {
590                                 /*
591                                  * If we remount from compress-force=xxx to
592                                  * compress=xxx, we need clear FORCE_COMPRESS
593                                  * flag, otherwise, there is no way for users
594                                  * to disable forcible compression separately.
595                                  */
596                                 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
597                         }
598                         if ((btrfs_test_opt(info, COMPRESS) &&
599                              (info->compress_type != saved_compress_type ||
600                               compress_force != saved_compress_force)) ||
601                             (!btrfs_test_opt(info, COMPRESS) &&
602                              no_compress == 1)) {
603                                 btrfs_info(info, "%s %s compression, level %d",
604                                            (compress_force) ? "force" : "use",
605                                            compress_type, info->compress_level);
606                         }
607                         compress_force = false;
608                         break;
609                 case Opt_ssd:
610                         btrfs_set_and_info(info, SSD,
611                                            "enabling ssd optimizations");
612                         btrfs_clear_opt(info->mount_opt, NOSSD);
613                         break;
614                 case Opt_ssd_spread:
615                         btrfs_set_and_info(info, SSD,
616                                            "enabling ssd optimizations");
617                         btrfs_set_and_info(info, SSD_SPREAD,
618                                            "using spread ssd allocation scheme");
619                         btrfs_clear_opt(info->mount_opt, NOSSD);
620                         break;
621                 case Opt_nossd:
622                         btrfs_set_opt(info->mount_opt, NOSSD);
623                         btrfs_clear_and_info(info, SSD,
624                                              "not using ssd optimizations");
625                         fallthrough;
626                 case Opt_nossd_spread:
627                         btrfs_clear_and_info(info, SSD_SPREAD,
628                                              "not using spread ssd allocation scheme");
629                         break;
630                 case Opt_barrier:
631                         btrfs_clear_and_info(info, NOBARRIER,
632                                              "turning on barriers");
633                         break;
634                 case Opt_nobarrier:
635                         btrfs_set_and_info(info, NOBARRIER,
636                                            "turning off barriers");
637                         break;
638                 case Opt_thread_pool:
639                         ret = match_int(&args[0], &intarg);
640                         if (ret) {
641                                 goto out;
642                         } else if (intarg == 0) {
643                                 ret = -EINVAL;
644                                 goto out;
645                         }
646                         info->thread_pool_size = intarg;
647                         break;
648                 case Opt_max_inline:
649                         num = match_strdup(&args[0]);
650                         if (num) {
651                                 info->max_inline = memparse(num, NULL);
652                                 kfree(num);
653
654                                 if (info->max_inline) {
655                                         info->max_inline = min_t(u64,
656                                                 info->max_inline,
657                                                 info->sectorsize);
658                                 }
659                                 btrfs_info(info, "max_inline at %llu",
660                                            info->max_inline);
661                         } else {
662                                 ret = -ENOMEM;
663                                 goto out;
664                         }
665                         break;
666                 case Opt_alloc_start:
667                         btrfs_info(info,
668                                 "option alloc_start is obsolete, ignored");
669                         break;
670                 case Opt_acl:
671 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
672                         info->sb->s_flags |= SB_POSIXACL;
673                         break;
674 #else
675                         btrfs_err(info, "support for ACL not compiled in!");
676                         ret = -EINVAL;
677                         goto out;
678 #endif
679                 case Opt_noacl:
680                         info->sb->s_flags &= ~SB_POSIXACL;
681                         break;
682                 case Opt_notreelog:
683                         btrfs_set_and_info(info, NOTREELOG,
684                                            "disabling tree log");
685                         break;
686                 case Opt_treelog:
687                         btrfs_clear_and_info(info, NOTREELOG,
688                                              "enabling tree log");
689                         break;
690                 case Opt_norecovery:
691                 case Opt_nologreplay:
692                         btrfs_set_and_info(info, NOLOGREPLAY,
693                                            "disabling log replay at mount time");
694                         break;
695                 case Opt_flushoncommit:
696                         btrfs_set_and_info(info, FLUSHONCOMMIT,
697                                            "turning on flush-on-commit");
698                         break;
699                 case Opt_noflushoncommit:
700                         btrfs_clear_and_info(info, FLUSHONCOMMIT,
701                                              "turning off flush-on-commit");
702                         break;
703                 case Opt_ratio:
704                         ret = match_int(&args[0], &intarg);
705                         if (ret)
706                                 goto out;
707                         info->metadata_ratio = intarg;
708                         btrfs_info(info, "metadata ratio %u",
709                                    info->metadata_ratio);
710                         break;
711                 case Opt_discard:
712                 case Opt_discard_mode:
713                         if (token == Opt_discard ||
714                             strcmp(args[0].from, "sync") == 0) {
715                                 btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC);
716                                 btrfs_set_and_info(info, DISCARD_SYNC,
717                                                    "turning on sync discard");
718                         } else if (strcmp(args[0].from, "async") == 0) {
719                                 btrfs_clear_opt(info->mount_opt, DISCARD_SYNC);
720                                 btrfs_set_and_info(info, DISCARD_ASYNC,
721                                                    "turning on async discard");
722                         } else {
723                                 ret = -EINVAL;
724                                 goto out;
725                         }
726                         break;
727                 case Opt_nodiscard:
728                         btrfs_clear_and_info(info, DISCARD_SYNC,
729                                              "turning off discard");
730                         btrfs_clear_and_info(info, DISCARD_ASYNC,
731                                              "turning off async discard");
732                         break;
733                 case Opt_space_cache:
734                 case Opt_space_cache_version:
735                         if (token == Opt_space_cache ||
736                             strcmp(args[0].from, "v1") == 0) {
737                                 btrfs_clear_opt(info->mount_opt,
738                                                 FREE_SPACE_TREE);
739                                 btrfs_set_and_info(info, SPACE_CACHE,
740                                            "enabling disk space caching");
741                         } else if (strcmp(args[0].from, "v2") == 0) {
742                                 btrfs_clear_opt(info->mount_opt,
743                                                 SPACE_CACHE);
744                                 btrfs_set_and_info(info, FREE_SPACE_TREE,
745                                                    "enabling free space tree");
746                         } else {
747                                 ret = -EINVAL;
748                                 goto out;
749                         }
750                         break;
751                 case Opt_rescan_uuid_tree:
752                         btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
753                         break;
754                 case Opt_no_space_cache:
755                         if (btrfs_test_opt(info, SPACE_CACHE)) {
756                                 btrfs_clear_and_info(info, SPACE_CACHE,
757                                              "disabling disk space caching");
758                         }
759                         if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
760                                 btrfs_clear_and_info(info, FREE_SPACE_TREE,
761                                              "disabling free space tree");
762                         }
763                         break;
764                 case Opt_inode_cache:
765                         btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
766                                            "enabling inode map caching");
767                         break;
768                 case Opt_noinode_cache:
769                         btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
770                                              "disabling inode map caching");
771                         break;
772                 case Opt_clear_cache:
773                         btrfs_set_and_info(info, CLEAR_CACHE,
774                                            "force clearing of disk cache");
775                         break;
776                 case Opt_user_subvol_rm_allowed:
777                         btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
778                         break;
779                 case Opt_enospc_debug:
780                         btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
781                         break;
782                 case Opt_noenospc_debug:
783                         btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
784                         break;
785                 case Opt_defrag:
786                         btrfs_set_and_info(info, AUTO_DEFRAG,
787                                            "enabling auto defrag");
788                         break;
789                 case Opt_nodefrag:
790                         btrfs_clear_and_info(info, AUTO_DEFRAG,
791                                              "disabling auto defrag");
792                         break;
793                 case Opt_recovery:
794                         btrfs_warn(info,
795                                    "'recovery' is deprecated, use 'usebackuproot' instead");
796                         fallthrough;
797                 case Opt_usebackuproot:
798                         btrfs_info(info,
799                                    "trying to use backup root at mount time");
800                         btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
801                         break;
802                 case Opt_skip_balance:
803                         btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
804                         break;
805 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
806                 case Opt_check_integrity_including_extent_data:
807                         btrfs_info(info,
808                                    "enabling check integrity including extent data");
809                         btrfs_set_opt(info->mount_opt,
810                                       CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
811                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
812                         break;
813                 case Opt_check_integrity:
814                         btrfs_info(info, "enabling check integrity");
815                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
816                         break;
817                 case Opt_check_integrity_print_mask:
818                         ret = match_int(&args[0], &intarg);
819                         if (ret)
820                                 goto out;
821                         info->check_integrity_print_mask = intarg;
822                         btrfs_info(info, "check_integrity_print_mask 0x%x",
823                                    info->check_integrity_print_mask);
824                         break;
825 #else
826                 case Opt_check_integrity_including_extent_data:
827                 case Opt_check_integrity:
828                 case Opt_check_integrity_print_mask:
829                         btrfs_err(info,
830                                   "support for check_integrity* not compiled in!");
831                         ret = -EINVAL;
832                         goto out;
833 #endif
834                 case Opt_fatal_errors:
835                         if (strcmp(args[0].from, "panic") == 0)
836                                 btrfs_set_opt(info->mount_opt,
837                                               PANIC_ON_FATAL_ERROR);
838                         else if (strcmp(args[0].from, "bug") == 0)
839                                 btrfs_clear_opt(info->mount_opt,
840                                               PANIC_ON_FATAL_ERROR);
841                         else {
842                                 ret = -EINVAL;
843                                 goto out;
844                         }
845                         break;
846                 case Opt_commit_interval:
847                         intarg = 0;
848                         ret = match_int(&args[0], &intarg);
849                         if (ret)
850                                 goto out;
851                         if (intarg == 0) {
852                                 btrfs_info(info,
853                                            "using default commit interval %us",
854                                            BTRFS_DEFAULT_COMMIT_INTERVAL);
855                                 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
856                         } else if (intarg > 300) {
857                                 btrfs_warn(info, "excessive commit interval %d",
858                                            intarg);
859                         }
860                         info->commit_interval = intarg;
861                         break;
862 #ifdef CONFIG_BTRFS_DEBUG
863                 case Opt_fragment_all:
864                         btrfs_info(info, "fragmenting all space");
865                         btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
866                         btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
867                         break;
868                 case Opt_fragment_metadata:
869                         btrfs_info(info, "fragmenting metadata");
870                         btrfs_set_opt(info->mount_opt,
871                                       FRAGMENT_METADATA);
872                         break;
873                 case Opt_fragment_data:
874                         btrfs_info(info, "fragmenting data");
875                         btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
876                         break;
877 #endif
878 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
879                 case Opt_ref_verify:
880                         btrfs_info(info, "doing ref verification");
881                         btrfs_set_opt(info->mount_opt, REF_VERIFY);
882                         break;
883 #endif
884                 case Opt_err:
885                         btrfs_err(info, "unrecognized mount option '%s'", p);
886                         ret = -EINVAL;
887                         goto out;
888                 default:
889                         break;
890                 }
891         }
892 check:
893         /*
894          * Extra check for current option against current flag
895          */
896         if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) {
897                 btrfs_err(info,
898                           "nologreplay must be used with ro mount option");
899                 ret = -EINVAL;
900         }
901 out:
902         if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
903             !btrfs_test_opt(info, FREE_SPACE_TREE) &&
904             !btrfs_test_opt(info, CLEAR_CACHE)) {
905                 btrfs_err(info, "cannot disable free space tree");
906                 ret = -EINVAL;
907
908         }
909         if (!ret && btrfs_test_opt(info, SPACE_CACHE))
910                 btrfs_info(info, "disk space caching is enabled");
911         if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
912                 btrfs_info(info, "using free space tree");
913         return ret;
914 }
915
916 /*
917  * Parse mount options that are required early in the mount process.
918  *
919  * All other options will be parsed on much later in the mount process and
920  * only when we need to allocate a new super block.
921  */
922 static int btrfs_parse_device_options(const char *options, fmode_t flags,
923                                       void *holder)
924 {
925         substring_t args[MAX_OPT_ARGS];
926         char *device_name, *opts, *orig, *p;
927         struct btrfs_device *device = NULL;
928         int error = 0;
929
930         lockdep_assert_held(&uuid_mutex);
931
932         if (!options)
933                 return 0;
934
935         /*
936          * strsep changes the string, duplicate it because btrfs_parse_options
937          * gets called later
938          */
939         opts = kstrdup(options, GFP_KERNEL);
940         if (!opts)
941                 return -ENOMEM;
942         orig = opts;
943
944         while ((p = strsep(&opts, ",")) != NULL) {
945                 int token;
946
947                 if (!*p)
948                         continue;
949
950                 token = match_token(p, tokens, args);
951                 if (token == Opt_device) {
952                         device_name = match_strdup(&args[0]);
953                         if (!device_name) {
954                                 error = -ENOMEM;
955                                 goto out;
956                         }
957                         device = btrfs_scan_one_device(device_name, flags,
958                                         holder);
959                         kfree(device_name);
960                         if (IS_ERR(device)) {
961                                 error = PTR_ERR(device);
962                                 goto out;
963                         }
964                 }
965         }
966
967 out:
968         kfree(orig);
969         return error;
970 }
971
972 /*
973  * Parse mount options that are related to subvolume id
974  *
975  * The value is later passed to mount_subvol()
976  */
977 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
978                 u64 *subvol_objectid)
979 {
980         substring_t args[MAX_OPT_ARGS];
981         char *opts, *orig, *p;
982         int error = 0;
983         u64 subvolid;
984
985         if (!options)
986                 return 0;
987
988         /*
989          * strsep changes the string, duplicate it because
990          * btrfs_parse_device_options gets called later
991          */
992         opts = kstrdup(options, GFP_KERNEL);
993         if (!opts)
994                 return -ENOMEM;
995         orig = opts;
996
997         while ((p = strsep(&opts, ",")) != NULL) {
998                 int token;
999                 if (!*p)
1000                         continue;
1001
1002                 token = match_token(p, tokens, args);
1003                 switch (token) {
1004                 case Opt_subvol:
1005                         kfree(*subvol_name);
1006                         *subvol_name = match_strdup(&args[0]);
1007                         if (!*subvol_name) {
1008                                 error = -ENOMEM;
1009                                 goto out;
1010                         }
1011                         break;
1012                 case Opt_subvolid:
1013                         error = match_u64(&args[0], &subvolid);
1014                         if (error)
1015                                 goto out;
1016
1017                         /* we want the original fs_tree */
1018                         if (subvolid == 0)
1019                                 subvolid = BTRFS_FS_TREE_OBJECTID;
1020
1021                         *subvol_objectid = subvolid;
1022                         break;
1023                 case Opt_subvolrootid:
1024                         pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
1025                         break;
1026                 default:
1027                         break;
1028                 }
1029         }
1030
1031 out:
1032         kfree(orig);
1033         return error;
1034 }
1035
1036 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1037                                           u64 subvol_objectid)
1038 {
1039         struct btrfs_root *root = fs_info->tree_root;
1040         struct btrfs_root *fs_root = NULL;
1041         struct btrfs_root_ref *root_ref;
1042         struct btrfs_inode_ref *inode_ref;
1043         struct btrfs_key key;
1044         struct btrfs_path *path = NULL;
1045         char *name = NULL, *ptr;
1046         u64 dirid;
1047         int len;
1048         int ret;
1049
1050         path = btrfs_alloc_path();
1051         if (!path) {
1052                 ret = -ENOMEM;
1053                 goto err;
1054         }
1055         path->leave_spinning = 1;
1056
1057         name = kmalloc(PATH_MAX, GFP_KERNEL);
1058         if (!name) {
1059                 ret = -ENOMEM;
1060                 goto err;
1061         }
1062         ptr = name + PATH_MAX - 1;
1063         ptr[0] = '\0';
1064
1065         /*
1066          * Walk up the subvolume trees in the tree of tree roots by root
1067          * backrefs until we hit the top-level subvolume.
1068          */
1069         while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1070                 key.objectid = subvol_objectid;
1071                 key.type = BTRFS_ROOT_BACKREF_KEY;
1072                 key.offset = (u64)-1;
1073
1074                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1075                 if (ret < 0) {
1076                         goto err;
1077                 } else if (ret > 0) {
1078                         ret = btrfs_previous_item(root, path, subvol_objectid,
1079                                                   BTRFS_ROOT_BACKREF_KEY);
1080                         if (ret < 0) {
1081                                 goto err;
1082                         } else if (ret > 0) {
1083                                 ret = -ENOENT;
1084                                 goto err;
1085                         }
1086                 }
1087
1088                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1089                 subvol_objectid = key.offset;
1090
1091                 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1092                                           struct btrfs_root_ref);
1093                 len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1094                 ptr -= len + 1;
1095                 if (ptr < name) {
1096                         ret = -ENAMETOOLONG;
1097                         goto err;
1098                 }
1099                 read_extent_buffer(path->nodes[0], ptr + 1,
1100                                    (unsigned long)(root_ref + 1), len);
1101                 ptr[0] = '/';
1102                 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1103                 btrfs_release_path(path);
1104
1105                 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
1106                 if (IS_ERR(fs_root)) {
1107                         ret = PTR_ERR(fs_root);
1108                         fs_root = NULL;
1109                         goto err;
1110                 }
1111
1112                 /*
1113                  * Walk up the filesystem tree by inode refs until we hit the
1114                  * root directory.
1115                  */
1116                 while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1117                         key.objectid = dirid;
1118                         key.type = BTRFS_INODE_REF_KEY;
1119                         key.offset = (u64)-1;
1120
1121                         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1122                         if (ret < 0) {
1123                                 goto err;
1124                         } else if (ret > 0) {
1125                                 ret = btrfs_previous_item(fs_root, path, dirid,
1126                                                           BTRFS_INODE_REF_KEY);
1127                                 if (ret < 0) {
1128                                         goto err;
1129                                 } else if (ret > 0) {
1130                                         ret = -ENOENT;
1131                                         goto err;
1132                                 }
1133                         }
1134
1135                         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1136                         dirid = key.offset;
1137
1138                         inode_ref = btrfs_item_ptr(path->nodes[0],
1139                                                    path->slots[0],
1140                                                    struct btrfs_inode_ref);
1141                         len = btrfs_inode_ref_name_len(path->nodes[0],
1142                                                        inode_ref);
1143                         ptr -= len + 1;
1144                         if (ptr < name) {
1145                                 ret = -ENAMETOOLONG;
1146                                 goto err;
1147                         }
1148                         read_extent_buffer(path->nodes[0], ptr + 1,
1149                                            (unsigned long)(inode_ref + 1), len);
1150                         ptr[0] = '/';
1151                         btrfs_release_path(path);
1152                 }
1153                 btrfs_put_root(fs_root);
1154                 fs_root = NULL;
1155         }
1156
1157         btrfs_free_path(path);
1158         if (ptr == name + PATH_MAX - 1) {
1159                 name[0] = '/';
1160                 name[1] = '\0';
1161         } else {
1162                 memmove(name, ptr, name + PATH_MAX - ptr);
1163         }
1164         return name;
1165
1166 err:
1167         btrfs_put_root(fs_root);
1168         btrfs_free_path(path);
1169         kfree(name);
1170         return ERR_PTR(ret);
1171 }
1172
1173 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1174 {
1175         struct btrfs_root *root = fs_info->tree_root;
1176         struct btrfs_dir_item *di;
1177         struct btrfs_path *path;
1178         struct btrfs_key location;
1179         u64 dir_id;
1180
1181         path = btrfs_alloc_path();
1182         if (!path)
1183                 return -ENOMEM;
1184         path->leave_spinning = 1;
1185
1186         /*
1187          * Find the "default" dir item which points to the root item that we
1188          * will mount by default if we haven't been given a specific subvolume
1189          * to mount.
1190          */
1191         dir_id = btrfs_super_root_dir(fs_info->super_copy);
1192         di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1193         if (IS_ERR(di)) {
1194                 btrfs_free_path(path);
1195                 return PTR_ERR(di);
1196         }
1197         if (!di) {
1198                 /*
1199                  * Ok the default dir item isn't there.  This is weird since
1200                  * it's always been there, but don't freak out, just try and
1201                  * mount the top-level subvolume.
1202                  */
1203                 btrfs_free_path(path);
1204                 *objectid = BTRFS_FS_TREE_OBJECTID;
1205                 return 0;
1206         }
1207
1208         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1209         btrfs_free_path(path);
1210         *objectid = location.objectid;
1211         return 0;
1212 }
1213
1214 static int btrfs_fill_super(struct super_block *sb,
1215                             struct btrfs_fs_devices *fs_devices,
1216                             void *data)
1217 {
1218         struct inode *inode;
1219         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1220         int err;
1221
1222         sb->s_maxbytes = MAX_LFS_FILESIZE;
1223         sb->s_magic = BTRFS_SUPER_MAGIC;
1224         sb->s_op = &btrfs_super_ops;
1225         sb->s_d_op = &btrfs_dentry_operations;
1226         sb->s_export_op = &btrfs_export_ops;
1227         sb->s_xattr = btrfs_xattr_handlers;
1228         sb->s_time_gran = 1;
1229 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1230         sb->s_flags |= SB_POSIXACL;
1231 #endif
1232         sb->s_flags |= SB_I_VERSION;
1233         sb->s_iflags |= SB_I_CGROUPWB;
1234
1235         err = super_setup_bdi(sb);
1236         if (err) {
1237                 btrfs_err(fs_info, "super_setup_bdi failed");
1238                 return err;
1239         }
1240
1241         err = open_ctree(sb, fs_devices, (char *)data);
1242         if (err) {
1243                 btrfs_err(fs_info, "open_ctree failed");
1244                 return err;
1245         }
1246
1247         inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
1248         if (IS_ERR(inode)) {
1249                 err = PTR_ERR(inode);
1250                 goto fail_close;
1251         }
1252
1253         sb->s_root = d_make_root(inode);
1254         if (!sb->s_root) {
1255                 err = -ENOMEM;
1256                 goto fail_close;
1257         }
1258
1259         cleancache_init_fs(sb);
1260         sb->s_flags |= SB_ACTIVE;
1261         return 0;
1262
1263 fail_close:
1264         close_ctree(fs_info);
1265         return err;
1266 }
1267
1268 int btrfs_sync_fs(struct super_block *sb, int wait)
1269 {
1270         struct btrfs_trans_handle *trans;
1271         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1272         struct btrfs_root *root = fs_info->tree_root;
1273
1274         trace_btrfs_sync_fs(fs_info, wait);
1275
1276         if (!wait) {
1277                 filemap_flush(fs_info->btree_inode->i_mapping);
1278                 return 0;
1279         }
1280
1281         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1282
1283         trans = btrfs_attach_transaction_barrier(root);
1284         if (IS_ERR(trans)) {
1285                 /* no transaction, don't bother */
1286                 if (PTR_ERR(trans) == -ENOENT) {
1287                         /*
1288                          * Exit unless we have some pending changes
1289                          * that need to go through commit
1290                          */
1291                         if (fs_info->pending_changes == 0)
1292                                 return 0;
1293                         /*
1294                          * A non-blocking test if the fs is frozen. We must not
1295                          * start a new transaction here otherwise a deadlock
1296                          * happens. The pending operations are delayed to the
1297                          * next commit after thawing.
1298                          */
1299                         if (sb_start_write_trylock(sb))
1300                                 sb_end_write(sb);
1301                         else
1302                                 return 0;
1303                         trans = btrfs_start_transaction(root, 0);
1304                 }
1305                 if (IS_ERR(trans))
1306                         return PTR_ERR(trans);
1307         }
1308         return btrfs_commit_transaction(trans);
1309 }
1310
1311 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1312 {
1313         struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1314         const char *compress_type;
1315
1316         if (btrfs_test_opt(info, DEGRADED))
1317                 seq_puts(seq, ",degraded");
1318         if (btrfs_test_opt(info, NODATASUM))
1319                 seq_puts(seq, ",nodatasum");
1320         if (btrfs_test_opt(info, NODATACOW))
1321                 seq_puts(seq, ",nodatacow");
1322         if (btrfs_test_opt(info, NOBARRIER))
1323                 seq_puts(seq, ",nobarrier");
1324         if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1325                 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1326         if (info->thread_pool_size !=  min_t(unsigned long,
1327                                              num_online_cpus() + 2, 8))
1328                 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1329         if (btrfs_test_opt(info, COMPRESS)) {
1330                 compress_type = btrfs_compress_type2str(info->compress_type);
1331                 if (btrfs_test_opt(info, FORCE_COMPRESS))
1332                         seq_printf(seq, ",compress-force=%s", compress_type);
1333                 else
1334                         seq_printf(seq, ",compress=%s", compress_type);
1335                 if (info->compress_level)
1336                         seq_printf(seq, ":%d", info->compress_level);
1337         }
1338         if (btrfs_test_opt(info, NOSSD))
1339                 seq_puts(seq, ",nossd");
1340         if (btrfs_test_opt(info, SSD_SPREAD))
1341                 seq_puts(seq, ",ssd_spread");
1342         else if (btrfs_test_opt(info, SSD))
1343                 seq_puts(seq, ",ssd");
1344         if (btrfs_test_opt(info, NOTREELOG))
1345                 seq_puts(seq, ",notreelog");
1346         if (btrfs_test_opt(info, NOLOGREPLAY))
1347                 seq_puts(seq, ",nologreplay");
1348         if (btrfs_test_opt(info, FLUSHONCOMMIT))
1349                 seq_puts(seq, ",flushoncommit");
1350         if (btrfs_test_opt(info, DISCARD_SYNC))
1351                 seq_puts(seq, ",discard");
1352         if (btrfs_test_opt(info, DISCARD_ASYNC))
1353                 seq_puts(seq, ",discard=async");
1354         if (!(info->sb->s_flags & SB_POSIXACL))
1355                 seq_puts(seq, ",noacl");
1356         if (btrfs_test_opt(info, SPACE_CACHE))
1357                 seq_puts(seq, ",space_cache");
1358         else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1359                 seq_puts(seq, ",space_cache=v2");
1360         else
1361                 seq_puts(seq, ",nospace_cache");
1362         if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1363                 seq_puts(seq, ",rescan_uuid_tree");
1364         if (btrfs_test_opt(info, CLEAR_CACHE))
1365                 seq_puts(seq, ",clear_cache");
1366         if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1367                 seq_puts(seq, ",user_subvol_rm_allowed");
1368         if (btrfs_test_opt(info, ENOSPC_DEBUG))
1369                 seq_puts(seq, ",enospc_debug");
1370         if (btrfs_test_opt(info, AUTO_DEFRAG))
1371                 seq_puts(seq, ",autodefrag");
1372         if (btrfs_test_opt(info, INODE_MAP_CACHE))
1373                 seq_puts(seq, ",inode_cache");
1374         if (btrfs_test_opt(info, SKIP_BALANCE))
1375                 seq_puts(seq, ",skip_balance");
1376 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1377         if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1378                 seq_puts(seq, ",check_int_data");
1379         else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1380                 seq_puts(seq, ",check_int");
1381         if (info->check_integrity_print_mask)
1382                 seq_printf(seq, ",check_int_print_mask=%d",
1383                                 info->check_integrity_print_mask);
1384 #endif
1385         if (info->metadata_ratio)
1386                 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1387         if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1388                 seq_puts(seq, ",fatal_errors=panic");
1389         if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1390                 seq_printf(seq, ",commit=%u", info->commit_interval);
1391 #ifdef CONFIG_BTRFS_DEBUG
1392         if (btrfs_test_opt(info, FRAGMENT_DATA))
1393                 seq_puts(seq, ",fragment=data");
1394         if (btrfs_test_opt(info, FRAGMENT_METADATA))
1395                 seq_puts(seq, ",fragment=metadata");
1396 #endif
1397         if (btrfs_test_opt(info, REF_VERIFY))
1398                 seq_puts(seq, ",ref_verify");
1399         seq_printf(seq, ",subvolid=%llu",
1400                   BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1401         seq_puts(seq, ",subvol=");
1402         seq_dentry(seq, dentry, " \t\n\\");
1403         return 0;
1404 }
1405
1406 static int btrfs_test_super(struct super_block *s, void *data)
1407 {
1408         struct btrfs_fs_info *p = data;
1409         struct btrfs_fs_info *fs_info = btrfs_sb(s);
1410
1411         return fs_info->fs_devices == p->fs_devices;
1412 }
1413
1414 static int btrfs_set_super(struct super_block *s, void *data)
1415 {
1416         int err = set_anon_super(s, data);
1417         if (!err)
1418                 s->s_fs_info = data;
1419         return err;
1420 }
1421
1422 /*
1423  * subvolumes are identified by ino 256
1424  */
1425 static inline int is_subvolume_inode(struct inode *inode)
1426 {
1427         if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1428                 return 1;
1429         return 0;
1430 }
1431
1432 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1433                                    struct vfsmount *mnt)
1434 {
1435         struct dentry *root;
1436         int ret;
1437
1438         if (!subvol_name) {
1439                 if (!subvol_objectid) {
1440                         ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1441                                                           &subvol_objectid);
1442                         if (ret) {
1443                                 root = ERR_PTR(ret);
1444                                 goto out;
1445                         }
1446                 }
1447                 subvol_name = btrfs_get_subvol_name_from_objectid(
1448                                         btrfs_sb(mnt->mnt_sb), subvol_objectid);
1449                 if (IS_ERR(subvol_name)) {
1450                         root = ERR_CAST(subvol_name);
1451                         subvol_name = NULL;
1452                         goto out;
1453                 }
1454
1455         }
1456
1457         root = mount_subtree(mnt, subvol_name);
1458         /* mount_subtree() drops our reference on the vfsmount. */
1459         mnt = NULL;
1460
1461         if (!IS_ERR(root)) {
1462                 struct super_block *s = root->d_sb;
1463                 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1464                 struct inode *root_inode = d_inode(root);
1465                 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1466
1467                 ret = 0;
1468                 if (!is_subvolume_inode(root_inode)) {
1469                         btrfs_err(fs_info, "'%s' is not a valid subvolume",
1470                                subvol_name);
1471                         ret = -EINVAL;
1472                 }
1473                 if (subvol_objectid && root_objectid != subvol_objectid) {
1474                         /*
1475                          * This will also catch a race condition where a
1476                          * subvolume which was passed by ID is renamed and
1477                          * another subvolume is renamed over the old location.
1478                          */
1479                         btrfs_err(fs_info,
1480                                   "subvol '%s' does not match subvolid %llu",
1481                                   subvol_name, subvol_objectid);
1482                         ret = -EINVAL;
1483                 }
1484                 if (ret) {
1485                         dput(root);
1486                         root = ERR_PTR(ret);
1487                         deactivate_locked_super(s);
1488                 }
1489         }
1490
1491 out:
1492         mntput(mnt);
1493         kfree(subvol_name);
1494         return root;
1495 }
1496
1497 /*
1498  * Find a superblock for the given device / mount point.
1499  *
1500  * Note: This is based on mount_bdev from fs/super.c with a few additions
1501  *       for multiple device setup.  Make sure to keep it in sync.
1502  */
1503 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1504                 int flags, const char *device_name, void *data)
1505 {
1506         struct block_device *bdev = NULL;
1507         struct super_block *s;
1508         struct btrfs_device *device = NULL;
1509         struct btrfs_fs_devices *fs_devices = NULL;
1510         struct btrfs_fs_info *fs_info = NULL;
1511         void *new_sec_opts = NULL;
1512         fmode_t mode = FMODE_READ;
1513         int error = 0;
1514
1515         if (!(flags & SB_RDONLY))
1516                 mode |= FMODE_WRITE;
1517
1518         if (data) {
1519                 error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1520                 if (error)
1521                         return ERR_PTR(error);
1522         }
1523
1524         /*
1525          * Setup a dummy root and fs_info for test/set super.  This is because
1526          * we don't actually fill this stuff out until open_ctree, but we need
1527          * then open_ctree will properly initialize the file system specific
1528          * settings later.  btrfs_init_fs_info initializes the static elements
1529          * of the fs_info (locks and such) to make cleanup easier if we find a
1530          * superblock with our given fs_devices later on at sget() time.
1531          */
1532         fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1533         if (!fs_info) {
1534                 error = -ENOMEM;
1535                 goto error_sec_opts;
1536         }
1537         btrfs_init_fs_info(fs_info);
1538
1539         fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1540         fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1541         if (!fs_info->super_copy || !fs_info->super_for_commit) {
1542                 error = -ENOMEM;
1543                 goto error_fs_info;
1544         }
1545
1546         mutex_lock(&uuid_mutex);
1547         error = btrfs_parse_device_options(data, mode, fs_type);
1548         if (error) {
1549                 mutex_unlock(&uuid_mutex);
1550                 goto error_fs_info;
1551         }
1552
1553         device = btrfs_scan_one_device(device_name, mode, fs_type);
1554         if (IS_ERR(device)) {
1555                 mutex_unlock(&uuid_mutex);
1556                 error = PTR_ERR(device);
1557                 goto error_fs_info;
1558         }
1559
1560         fs_devices = device->fs_devices;
1561         fs_info->fs_devices = fs_devices;
1562
1563         error = btrfs_open_devices(fs_devices, mode, fs_type);
1564         mutex_unlock(&uuid_mutex);
1565         if (error)
1566                 goto error_fs_info;
1567
1568         if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1569                 error = -EACCES;
1570                 goto error_close_devices;
1571         }
1572
1573         bdev = fs_devices->latest_bdev;
1574         s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1575                  fs_info);
1576         if (IS_ERR(s)) {
1577                 error = PTR_ERR(s);
1578                 goto error_close_devices;
1579         }
1580
1581         if (s->s_root) {
1582                 btrfs_close_devices(fs_devices);
1583                 btrfs_free_fs_info(fs_info);
1584                 if ((flags ^ s->s_flags) & SB_RDONLY)
1585                         error = -EBUSY;
1586         } else {
1587                 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1588                 btrfs_sb(s)->bdev_holder = fs_type;
1589                 if (!strstr(crc32c_impl(), "generic"))
1590                         set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
1591                 error = btrfs_fill_super(s, fs_devices, data);
1592         }
1593         if (!error)
1594                 error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1595         security_free_mnt_opts(&new_sec_opts);
1596         if (error) {
1597                 deactivate_locked_super(s);
1598                 return ERR_PTR(error);
1599         }
1600
1601         return dget(s->s_root);
1602
1603 error_close_devices:
1604         btrfs_close_devices(fs_devices);
1605 error_fs_info:
1606         btrfs_free_fs_info(fs_info);
1607 error_sec_opts:
1608         security_free_mnt_opts(&new_sec_opts);
1609         return ERR_PTR(error);
1610 }
1611
1612 /*
1613  * Mount function which is called by VFS layer.
1614  *
1615  * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1616  * which needs vfsmount* of device's root (/).  This means device's root has to
1617  * be mounted internally in any case.
1618  *
1619  * Operation flow:
1620  *   1. Parse subvol id related options for later use in mount_subvol().
1621  *
1622  *   2. Mount device's root (/) by calling vfs_kern_mount().
1623  *
1624  *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1625  *      first place. In order to avoid calling btrfs_mount() again, we use
1626  *      different file_system_type which is not registered to VFS by
1627  *      register_filesystem() (btrfs_root_fs_type). As a result,
1628  *      btrfs_mount_root() is called. The return value will be used by
1629  *      mount_subtree() in mount_subvol().
1630  *
1631  *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1632  *      "btrfs subvolume set-default", mount_subvol() is called always.
1633  */
1634 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1635                 const char *device_name, void *data)
1636 {
1637         struct vfsmount *mnt_root;
1638         struct dentry *root;
1639         char *subvol_name = NULL;
1640         u64 subvol_objectid = 0;
1641         int error = 0;
1642
1643         error = btrfs_parse_subvol_options(data, &subvol_name,
1644                                         &subvol_objectid);
1645         if (error) {
1646                 kfree(subvol_name);
1647                 return ERR_PTR(error);
1648         }
1649
1650         /* mount device's root (/) */
1651         mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1652         if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1653                 if (flags & SB_RDONLY) {
1654                         mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1655                                 flags & ~SB_RDONLY, device_name, data);
1656                 } else {
1657                         mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1658                                 flags | SB_RDONLY, device_name, data);
1659                         if (IS_ERR(mnt_root)) {
1660                                 root = ERR_CAST(mnt_root);
1661                                 kfree(subvol_name);
1662                                 goto out;
1663                         }
1664
1665                         down_write(&mnt_root->mnt_sb->s_umount);
1666                         error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1667                         up_write(&mnt_root->mnt_sb->s_umount);
1668                         if (error < 0) {
1669                                 root = ERR_PTR(error);
1670                                 mntput(mnt_root);
1671                                 kfree(subvol_name);
1672                                 goto out;
1673                         }
1674                 }
1675         }
1676         if (IS_ERR(mnt_root)) {
1677                 root = ERR_CAST(mnt_root);
1678                 kfree(subvol_name);
1679                 goto out;
1680         }
1681
1682         /* mount_subvol() will free subvol_name and mnt_root */
1683         root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1684
1685 out:
1686         return root;
1687 }
1688
1689 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1690                                      u32 new_pool_size, u32 old_pool_size)
1691 {
1692         if (new_pool_size == old_pool_size)
1693                 return;
1694
1695         fs_info->thread_pool_size = new_pool_size;
1696
1697         btrfs_info(fs_info, "resize thread pool %d -> %d",
1698                old_pool_size, new_pool_size);
1699
1700         btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1701         btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1702         btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1703         btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1704         btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1705         btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1706                                 new_pool_size);
1707         btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1708         btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1709         btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1710         btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1711         btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1712                                 new_pool_size);
1713 }
1714
1715 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1716 {
1717         set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1718 }
1719
1720 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1721                                        unsigned long old_opts, int flags)
1722 {
1723         if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1724             (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1725              (flags & SB_RDONLY))) {
1726                 /* wait for any defraggers to finish */
1727                 wait_event(fs_info->transaction_wait,
1728                            (atomic_read(&fs_info->defrag_running) == 0));
1729                 if (flags & SB_RDONLY)
1730                         sync_filesystem(fs_info->sb);
1731         }
1732 }
1733
1734 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1735                                          unsigned long old_opts)
1736 {
1737         /*
1738          * We need to cleanup all defragable inodes if the autodefragment is
1739          * close or the filesystem is read only.
1740          */
1741         if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1742             (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1743                 btrfs_cleanup_defrag_inodes(fs_info);
1744         }
1745
1746         /* If we toggled discard async */
1747         if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1748             btrfs_test_opt(fs_info, DISCARD_ASYNC))
1749                 btrfs_discard_resume(fs_info);
1750         else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1751                  !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1752                 btrfs_discard_cleanup(fs_info);
1753
1754         clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1755 }
1756
1757 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1758 {
1759         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1760         struct btrfs_root *root = fs_info->tree_root;
1761         unsigned old_flags = sb->s_flags;
1762         unsigned long old_opts = fs_info->mount_opt;
1763         unsigned long old_compress_type = fs_info->compress_type;
1764         u64 old_max_inline = fs_info->max_inline;
1765         u32 old_thread_pool_size = fs_info->thread_pool_size;
1766         u32 old_metadata_ratio = fs_info->metadata_ratio;
1767         int ret;
1768
1769         sync_filesystem(sb);
1770         btrfs_remount_prepare(fs_info);
1771
1772         if (data) {
1773                 void *new_sec_opts = NULL;
1774
1775                 ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1776                 if (!ret)
1777                         ret = security_sb_remount(sb, new_sec_opts);
1778                 security_free_mnt_opts(&new_sec_opts);
1779                 if (ret)
1780                         goto restore;
1781         }
1782
1783         ret = btrfs_parse_options(fs_info, data, *flags);
1784         if (ret)
1785                 goto restore;
1786
1787         btrfs_remount_begin(fs_info, old_opts, *flags);
1788         btrfs_resize_thread_pool(fs_info,
1789                 fs_info->thread_pool_size, old_thread_pool_size);
1790
1791         if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1792                 goto out;
1793
1794         if (*flags & SB_RDONLY) {
1795                 /*
1796                  * this also happens on 'umount -rf' or on shutdown, when
1797                  * the filesystem is busy.
1798                  */
1799                 cancel_work_sync(&fs_info->async_reclaim_work);
1800
1801                 btrfs_discard_cleanup(fs_info);
1802
1803                 /* wait for the uuid_scan task to finish */
1804                 down(&fs_info->uuid_tree_rescan_sem);
1805                 /* avoid complains from lockdep et al. */
1806                 up(&fs_info->uuid_tree_rescan_sem);
1807
1808                 sb->s_flags |= SB_RDONLY;
1809
1810                 /*
1811                  * Setting SB_RDONLY will put the cleaner thread to
1812                  * sleep at the next loop if it's already active.
1813                  * If it's already asleep, we'll leave unused block
1814                  * groups on disk until we're mounted read-write again
1815                  * unless we clean them up here.
1816                  */
1817                 btrfs_delete_unused_bgs(fs_info);
1818
1819                 btrfs_dev_replace_suspend_for_unmount(fs_info);
1820                 btrfs_scrub_cancel(fs_info);
1821                 btrfs_pause_balance(fs_info);
1822
1823                 ret = btrfs_commit_super(fs_info);
1824                 if (ret)
1825                         goto restore;
1826         } else {
1827                 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1828                         btrfs_err(fs_info,
1829                                 "Remounting read-write after error is not allowed");
1830                         ret = -EINVAL;
1831                         goto restore;
1832                 }
1833                 if (fs_info->fs_devices->rw_devices == 0) {
1834                         ret = -EACCES;
1835                         goto restore;
1836                 }
1837
1838                 if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1839                         btrfs_warn(fs_info,
1840                 "too many missing devices, writable remount is not allowed");
1841                         ret = -EACCES;
1842                         goto restore;
1843                 }
1844
1845                 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1846                         btrfs_warn(fs_info,
1847                 "mount required to replay tree-log, cannot remount read-write");
1848                         ret = -EINVAL;
1849                         goto restore;
1850                 }
1851
1852                 ret = btrfs_cleanup_fs_roots(fs_info);
1853                 if (ret)
1854                         goto restore;
1855
1856                 /* recover relocation */
1857                 mutex_lock(&fs_info->cleaner_mutex);
1858                 ret = btrfs_recover_relocation(root);
1859                 mutex_unlock(&fs_info->cleaner_mutex);
1860                 if (ret)
1861                         goto restore;
1862
1863                 ret = btrfs_resume_balance_async(fs_info);
1864                 if (ret)
1865                         goto restore;
1866
1867                 ret = btrfs_resume_dev_replace_async(fs_info);
1868                 if (ret) {
1869                         btrfs_warn(fs_info, "failed to resume dev_replace");
1870                         goto restore;
1871                 }
1872
1873                 btrfs_qgroup_rescan_resume(fs_info);
1874
1875                 if (!fs_info->uuid_root) {
1876                         btrfs_info(fs_info, "creating UUID tree");
1877                         ret = btrfs_create_uuid_tree(fs_info);
1878                         if (ret) {
1879                                 btrfs_warn(fs_info,
1880                                            "failed to create the UUID tree %d",
1881                                            ret);
1882                                 goto restore;
1883                         }
1884                 }
1885                 sb->s_flags &= ~SB_RDONLY;
1886
1887                 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1888         }
1889 out:
1890         wake_up_process(fs_info->transaction_kthread);
1891         btrfs_remount_cleanup(fs_info, old_opts);
1892         return 0;
1893
1894 restore:
1895         /* We've hit an error - don't reset SB_RDONLY */
1896         if (sb_rdonly(sb))
1897                 old_flags |= SB_RDONLY;
1898         sb->s_flags = old_flags;
1899         fs_info->mount_opt = old_opts;
1900         fs_info->compress_type = old_compress_type;
1901         fs_info->max_inline = old_max_inline;
1902         btrfs_resize_thread_pool(fs_info,
1903                 old_thread_pool_size, fs_info->thread_pool_size);
1904         fs_info->metadata_ratio = old_metadata_ratio;
1905         btrfs_remount_cleanup(fs_info, old_opts);
1906         return ret;
1907 }
1908
1909 /* Used to sort the devices by max_avail(descending sort) */
1910 static inline int btrfs_cmp_device_free_bytes(const void *dev_info1,
1911                                        const void *dev_info2)
1912 {
1913         if (((struct btrfs_device_info *)dev_info1)->max_avail >
1914             ((struct btrfs_device_info *)dev_info2)->max_avail)
1915                 return -1;
1916         else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1917                  ((struct btrfs_device_info *)dev_info2)->max_avail)
1918                 return 1;
1919         else
1920         return 0;
1921 }
1922
1923 /*
1924  * sort the devices by max_avail, in which max free extent size of each device
1925  * is stored.(Descending Sort)
1926  */
1927 static inline void btrfs_descending_sort_devices(
1928                                         struct btrfs_device_info *devices,
1929                                         size_t nr_devices)
1930 {
1931         sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1932              btrfs_cmp_device_free_bytes, NULL);
1933 }
1934
1935 /*
1936  * The helper to calc the free space on the devices that can be used to store
1937  * file data.
1938  */
1939 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1940                                               u64 *free_bytes)
1941 {
1942         struct btrfs_device_info *devices_info;
1943         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1944         struct btrfs_device *device;
1945         u64 type;
1946         u64 avail_space;
1947         u64 min_stripe_size;
1948         int num_stripes = 1;
1949         int i = 0, nr_devices;
1950         const struct btrfs_raid_attr *rattr;
1951
1952         /*
1953          * We aren't under the device list lock, so this is racy-ish, but good
1954          * enough for our purposes.
1955          */
1956         nr_devices = fs_info->fs_devices->open_devices;
1957         if (!nr_devices) {
1958                 smp_mb();
1959                 nr_devices = fs_info->fs_devices->open_devices;
1960                 ASSERT(nr_devices);
1961                 if (!nr_devices) {
1962                         *free_bytes = 0;
1963                         return 0;
1964                 }
1965         }
1966
1967         devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1968                                GFP_KERNEL);
1969         if (!devices_info)
1970                 return -ENOMEM;
1971
1972         /* calc min stripe number for data space allocation */
1973         type = btrfs_data_alloc_profile(fs_info);
1974         rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1975
1976         if (type & BTRFS_BLOCK_GROUP_RAID0)
1977                 num_stripes = nr_devices;
1978         else if (type & BTRFS_BLOCK_GROUP_RAID1)
1979                 num_stripes = 2;
1980         else if (type & BTRFS_BLOCK_GROUP_RAID1C3)
1981                 num_stripes = 3;
1982         else if (type & BTRFS_BLOCK_GROUP_RAID1C4)
1983                 num_stripes = 4;
1984         else if (type & BTRFS_BLOCK_GROUP_RAID10)
1985                 num_stripes = 4;
1986
1987         /* Adjust for more than 1 stripe per device */
1988         min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1989
1990         rcu_read_lock();
1991         list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1992                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1993                                                 &device->dev_state) ||
1994                     !device->bdev ||
1995                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1996                         continue;
1997
1998                 if (i >= nr_devices)
1999                         break;
2000
2001                 avail_space = device->total_bytes - device->bytes_used;
2002
2003                 /* align with stripe_len */
2004                 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
2005
2006                 /*
2007                  * In order to avoid overwriting the superblock on the drive,
2008                  * btrfs starts at an offset of at least 1MB when doing chunk
2009                  * allocation.
2010                  *
2011                  * This ensures we have at least min_stripe_size free space
2012                  * after excluding 1MB.
2013                  */
2014                 if (avail_space <= SZ_1M + min_stripe_size)
2015                         continue;
2016
2017                 avail_space -= SZ_1M;
2018
2019                 devices_info[i].dev = device;
2020                 devices_info[i].max_avail = avail_space;
2021
2022                 i++;
2023         }
2024         rcu_read_unlock();
2025
2026         nr_devices = i;
2027
2028         btrfs_descending_sort_devices(devices_info, nr_devices);
2029
2030         i = nr_devices - 1;
2031         avail_space = 0;
2032         while (nr_devices >= rattr->devs_min) {
2033                 num_stripes = min(num_stripes, nr_devices);
2034
2035                 if (devices_info[i].max_avail >= min_stripe_size) {
2036                         int j;
2037                         u64 alloc_size;
2038
2039                         avail_space += devices_info[i].max_avail * num_stripes;
2040                         alloc_size = devices_info[i].max_avail;
2041                         for (j = i + 1 - num_stripes; j <= i; j++)
2042                                 devices_info[j].max_avail -= alloc_size;
2043                 }
2044                 i--;
2045                 nr_devices--;
2046         }
2047
2048         kfree(devices_info);
2049         *free_bytes = avail_space;
2050         return 0;
2051 }
2052
2053 /*
2054  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2055  *
2056  * If there's a redundant raid level at DATA block groups, use the respective
2057  * multiplier to scale the sizes.
2058  *
2059  * Unused device space usage is based on simulating the chunk allocator
2060  * algorithm that respects the device sizes and order of allocations.  This is
2061  * a close approximation of the actual use but there are other factors that may
2062  * change the result (like a new metadata chunk).
2063  *
2064  * If metadata is exhausted, f_bavail will be 0.
2065  */
2066 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2067 {
2068         struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2069         struct btrfs_super_block *disk_super = fs_info->super_copy;
2070         struct btrfs_space_info *found;
2071         u64 total_used = 0;
2072         u64 total_free_data = 0;
2073         u64 total_free_meta = 0;
2074         int bits = dentry->d_sb->s_blocksize_bits;
2075         __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2076         unsigned factor = 1;
2077         struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2078         int ret;
2079         u64 thresh = 0;
2080         int mixed = 0;
2081
2082         rcu_read_lock();
2083         list_for_each_entry_rcu(found, &fs_info->space_info, list) {
2084                 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2085                         int i;
2086
2087                         total_free_data += found->disk_total - found->disk_used;
2088                         total_free_data -=
2089                                 btrfs_account_ro_block_groups_free_space(found);
2090
2091                         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2092                                 if (!list_empty(&found->block_groups[i]))
2093                                         factor = btrfs_bg_type_to_factor(
2094                                                 btrfs_raid_array[i].bg_flag);
2095                         }
2096                 }
2097
2098                 /*
2099                  * Metadata in mixed block goup profiles are accounted in data
2100                  */
2101                 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2102                         if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2103                                 mixed = 1;
2104                         else
2105                                 total_free_meta += found->disk_total -
2106                                         found->disk_used;
2107                 }
2108
2109                 total_used += found->disk_used;
2110         }
2111
2112         rcu_read_unlock();
2113
2114         buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2115         buf->f_blocks >>= bits;
2116         buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2117
2118         /* Account global block reserve as used, it's in logical size already */
2119         spin_lock(&block_rsv->lock);
2120         /* Mixed block groups accounting is not byte-accurate, avoid overflow */
2121         if (buf->f_bfree >= block_rsv->size >> bits)
2122                 buf->f_bfree -= block_rsv->size >> bits;
2123         else
2124                 buf->f_bfree = 0;
2125         spin_unlock(&block_rsv->lock);
2126
2127         buf->f_bavail = div_u64(total_free_data, factor);
2128         ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2129         if (ret)
2130                 return ret;
2131         buf->f_bavail += div_u64(total_free_data, factor);
2132         buf->f_bavail = buf->f_bavail >> bits;
2133
2134         /*
2135          * We calculate the remaining metadata space minus global reserve. If
2136          * this is (supposedly) smaller than zero, there's no space. But this
2137          * does not hold in practice, the exhausted state happens where's still
2138          * some positive delta. So we apply some guesswork and compare the
2139          * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2140          *
2141          * We probably cannot calculate the exact threshold value because this
2142          * depends on the internal reservations requested by various
2143          * operations, so some operations that consume a few metadata will
2144          * succeed even if the Avail is zero. But this is better than the other
2145          * way around.
2146          */
2147         thresh = SZ_4M;
2148
2149         /*
2150          * We only want to claim there's no available space if we can no longer
2151          * allocate chunks for our metadata profile and our global reserve will
2152          * not fit in the free metadata space.  If we aren't ->full then we
2153          * still can allocate chunks and thus are fine using the currently
2154          * calculated f_bavail.
2155          */
2156         if (!mixed && block_rsv->space_info->full &&
2157             total_free_meta - thresh < block_rsv->size)
2158                 buf->f_bavail = 0;
2159
2160         buf->f_type = BTRFS_SUPER_MAGIC;
2161         buf->f_bsize = dentry->d_sb->s_blocksize;
2162         buf->f_namelen = BTRFS_NAME_LEN;
2163
2164         /* We treat it as constant endianness (it doesn't matter _which_)
2165            because we want the fsid to come out the same whether mounted
2166            on a big-endian or little-endian host */
2167         buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2168         buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2169         /* Mask in the root object ID too, to disambiguate subvols */
2170         buf->f_fsid.val[0] ^=
2171                 BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2172         buf->f_fsid.val[1] ^=
2173                 BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2174
2175         return 0;
2176 }
2177
2178 static void btrfs_kill_super(struct super_block *sb)
2179 {
2180         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2181         kill_anon_super(sb);
2182         btrfs_free_fs_info(fs_info);
2183 }
2184
2185 static struct file_system_type btrfs_fs_type = {
2186         .owner          = THIS_MODULE,
2187         .name           = "btrfs",
2188         .mount          = btrfs_mount,
2189         .kill_sb        = btrfs_kill_super,
2190         .fs_flags       = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2191 };
2192
2193 static struct file_system_type btrfs_root_fs_type = {
2194         .owner          = THIS_MODULE,
2195         .name           = "btrfs",
2196         .mount          = btrfs_mount_root,
2197         .kill_sb        = btrfs_kill_super,
2198         .fs_flags       = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2199 };
2200
2201 MODULE_ALIAS_FS("btrfs");
2202
2203 static int btrfs_control_open(struct inode *inode, struct file *file)
2204 {
2205         /*
2206          * The control file's private_data is used to hold the
2207          * transaction when it is started and is used to keep
2208          * track of whether a transaction is already in progress.
2209          */
2210         file->private_data = NULL;
2211         return 0;
2212 }
2213
2214 /*
2215  * Used by /dev/btrfs-control for devices ioctls.
2216  */
2217 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2218                                 unsigned long arg)
2219 {
2220         struct btrfs_ioctl_vol_args *vol;
2221         struct btrfs_device *device = NULL;
2222         int ret = -ENOTTY;
2223
2224         if (!capable(CAP_SYS_ADMIN))
2225                 return -EPERM;
2226
2227         vol = memdup_user((void __user *)arg, sizeof(*vol));
2228         if (IS_ERR(vol))
2229                 return PTR_ERR(vol);
2230         vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2231
2232         switch (cmd) {
2233         case BTRFS_IOC_SCAN_DEV:
2234                 mutex_lock(&uuid_mutex);
2235                 device = btrfs_scan_one_device(vol->name, FMODE_READ,
2236                                                &btrfs_root_fs_type);
2237                 ret = PTR_ERR_OR_ZERO(device);
2238                 mutex_unlock(&uuid_mutex);
2239                 break;
2240         case BTRFS_IOC_FORGET_DEV:
2241                 ret = btrfs_forget_devices(vol->name);
2242                 break;
2243         case BTRFS_IOC_DEVICES_READY:
2244                 mutex_lock(&uuid_mutex);
2245                 device = btrfs_scan_one_device(vol->name, FMODE_READ,
2246                                                &btrfs_root_fs_type);
2247                 if (IS_ERR(device)) {
2248                         mutex_unlock(&uuid_mutex);
2249                         ret = PTR_ERR(device);
2250                         break;
2251                 }
2252                 ret = !(device->fs_devices->num_devices ==
2253                         device->fs_devices->total_devices);
2254                 mutex_unlock(&uuid_mutex);
2255                 break;
2256         case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2257                 ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2258                 break;
2259         }
2260
2261         kfree(vol);
2262         return ret;
2263 }
2264
2265 static int btrfs_freeze(struct super_block *sb)
2266 {
2267         struct btrfs_trans_handle *trans;
2268         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2269         struct btrfs_root *root = fs_info->tree_root;
2270
2271         set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2272         /*
2273          * We don't need a barrier here, we'll wait for any transaction that
2274          * could be in progress on other threads (and do delayed iputs that
2275          * we want to avoid on a frozen filesystem), or do the commit
2276          * ourselves.
2277          */
2278         trans = btrfs_attach_transaction_barrier(root);
2279         if (IS_ERR(trans)) {
2280                 /* no transaction, don't bother */
2281                 if (PTR_ERR(trans) == -ENOENT)
2282                         return 0;
2283                 return PTR_ERR(trans);
2284         }
2285         return btrfs_commit_transaction(trans);
2286 }
2287
2288 static int btrfs_unfreeze(struct super_block *sb)
2289 {
2290         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2291
2292         clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2293         return 0;
2294 }
2295
2296 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2297 {
2298         struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2299         struct btrfs_fs_devices *cur_devices;
2300         struct btrfs_device *dev, *first_dev = NULL;
2301         struct list_head *head;
2302
2303         /*
2304          * Lightweight locking of the devices. We should not need
2305          * device_list_mutex here as we only read the device data and the list
2306          * is protected by RCU.  Even if a device is deleted during the list
2307          * traversals, we'll get valid data, the freeing callback will wait at
2308          * least until the rcu_read_unlock.
2309          */
2310         rcu_read_lock();
2311         cur_devices = fs_info->fs_devices;
2312         while (cur_devices) {
2313                 head = &cur_devices->devices;
2314                 list_for_each_entry_rcu(dev, head, dev_list) {
2315                         if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2316                                 continue;
2317                         if (!dev->name)
2318                                 continue;
2319                         if (!first_dev || dev->devid < first_dev->devid)
2320                                 first_dev = dev;
2321                 }
2322                 cur_devices = cur_devices->seed;
2323         }
2324
2325         if (first_dev)
2326                 seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\");
2327         else
2328                 WARN_ON(1);
2329         rcu_read_unlock();
2330         return 0;
2331 }
2332
2333 static const struct super_operations btrfs_super_ops = {
2334         .drop_inode     = btrfs_drop_inode,
2335         .evict_inode    = btrfs_evict_inode,
2336         .put_super      = btrfs_put_super,
2337         .sync_fs        = btrfs_sync_fs,
2338         .show_options   = btrfs_show_options,
2339         .show_devname   = btrfs_show_devname,
2340         .alloc_inode    = btrfs_alloc_inode,
2341         .destroy_inode  = btrfs_destroy_inode,
2342         .free_inode     = btrfs_free_inode,
2343         .statfs         = btrfs_statfs,
2344         .remount_fs     = btrfs_remount,
2345         .freeze_fs      = btrfs_freeze,
2346         .unfreeze_fs    = btrfs_unfreeze,
2347 };
2348
2349 static const struct file_operations btrfs_ctl_fops = {
2350         .open = btrfs_control_open,
2351         .unlocked_ioctl  = btrfs_control_ioctl,
2352         .compat_ioctl = compat_ptr_ioctl,
2353         .owner   = THIS_MODULE,
2354         .llseek = noop_llseek,
2355 };
2356
2357 static struct miscdevice btrfs_misc = {
2358         .minor          = BTRFS_MINOR,
2359         .name           = "btrfs-control",
2360         .fops           = &btrfs_ctl_fops
2361 };
2362
2363 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2364 MODULE_ALIAS("devname:btrfs-control");
2365
2366 static int __init btrfs_interface_init(void)
2367 {
2368         return misc_register(&btrfs_misc);
2369 }
2370
2371 static __cold void btrfs_interface_exit(void)
2372 {
2373         misc_deregister(&btrfs_misc);
2374 }
2375
2376 static void __init btrfs_print_mod_info(void)
2377 {
2378         static const char options[] = ""
2379 #ifdef CONFIG_BTRFS_DEBUG
2380                         ", debug=on"
2381 #endif
2382 #ifdef CONFIG_BTRFS_ASSERT
2383                         ", assert=on"
2384 #endif
2385 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2386                         ", integrity-checker=on"
2387 #endif
2388 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2389                         ", ref-verify=on"
2390 #endif
2391                         ;
2392         pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2393 }
2394
2395 static int __init init_btrfs_fs(void)
2396 {
2397         int err;
2398
2399         btrfs_props_init();
2400
2401         err = btrfs_init_sysfs();
2402         if (err)
2403                 return err;
2404
2405         btrfs_init_compress();
2406
2407         err = btrfs_init_cachep();
2408         if (err)
2409                 goto free_compress;
2410
2411         err = extent_io_init();
2412         if (err)
2413                 goto free_cachep;
2414
2415         err = extent_state_cache_init();
2416         if (err)
2417                 goto free_extent_io;
2418
2419         err = extent_map_init();
2420         if (err)
2421                 goto free_extent_state_cache;
2422
2423         err = ordered_data_init();
2424         if (err)
2425                 goto free_extent_map;
2426
2427         err = btrfs_delayed_inode_init();
2428         if (err)
2429                 goto free_ordered_data;
2430
2431         err = btrfs_auto_defrag_init();
2432         if (err)
2433                 goto free_delayed_inode;
2434
2435         err = btrfs_delayed_ref_init();
2436         if (err)
2437                 goto free_auto_defrag;
2438
2439         err = btrfs_prelim_ref_init();
2440         if (err)
2441                 goto free_delayed_ref;
2442
2443         err = btrfs_end_io_wq_init();
2444         if (err)
2445                 goto free_prelim_ref;
2446
2447         err = btrfs_interface_init();
2448         if (err)
2449                 goto free_end_io_wq;
2450
2451         btrfs_init_lockdep();
2452
2453         btrfs_print_mod_info();
2454
2455         err = btrfs_run_sanity_tests();
2456         if (err)
2457                 goto unregister_ioctl;
2458
2459         err = register_filesystem(&btrfs_fs_type);
2460         if (err)
2461                 goto unregister_ioctl;
2462
2463         return 0;
2464
2465 unregister_ioctl:
2466         btrfs_interface_exit();
2467 free_end_io_wq:
2468         btrfs_end_io_wq_exit();
2469 free_prelim_ref:
2470         btrfs_prelim_ref_exit();
2471 free_delayed_ref:
2472         btrfs_delayed_ref_exit();
2473 free_auto_defrag:
2474         btrfs_auto_defrag_exit();
2475 free_delayed_inode:
2476         btrfs_delayed_inode_exit();
2477 free_ordered_data:
2478         ordered_data_exit();
2479 free_extent_map:
2480         extent_map_exit();
2481 free_extent_state_cache:
2482         extent_state_cache_exit();
2483 free_extent_io:
2484         extent_io_exit();
2485 free_cachep:
2486         btrfs_destroy_cachep();
2487 free_compress:
2488         btrfs_exit_compress();
2489         btrfs_exit_sysfs();
2490
2491         return err;
2492 }
2493
2494 static void __exit exit_btrfs_fs(void)
2495 {
2496         btrfs_destroy_cachep();
2497         btrfs_delayed_ref_exit();
2498         btrfs_auto_defrag_exit();
2499         btrfs_delayed_inode_exit();
2500         btrfs_prelim_ref_exit();
2501         ordered_data_exit();
2502         extent_map_exit();
2503         extent_state_cache_exit();
2504         extent_io_exit();
2505         btrfs_interface_exit();
2506         btrfs_end_io_wq_exit();
2507         unregister_filesystem(&btrfs_fs_type);
2508         btrfs_exit_sysfs();
2509         btrfs_cleanup_fs_uuids();
2510         btrfs_exit_compress();
2511 }
2512
2513 late_initcall(init_btrfs_fs);
2514 module_exit(exit_btrfs_fs)
2515
2516 MODULE_LICENSE("GPL");
2517 MODULE_SOFTDEP("pre: crc32c");
2518 MODULE_SOFTDEP("pre: xxhash64");
2519 MODULE_SOFTDEP("pre: sha256");
2520 MODULE_SOFTDEP("pre: blake2b-256");