896acfda17895150ff501960dd72f084c542301e
[linux-2.6-microblaze.git] / fs / btrfs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/crc32c.h>
28 #include <linux/btrfs.h>
29 #include <linux/security.h>
30 #include <linux/fs_parser.h>
31 #include "messages.h"
32 #include "delayed-inode.h"
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "print-tree.h"
38 #include "props.h"
39 #include "xattr.h"
40 #include "bio.h"
41 #include "export.h"
42 #include "compression.h"
43 #include "rcu-string.h"
44 #include "dev-replace.h"
45 #include "free-space-cache.h"
46 #include "backref.h"
47 #include "space-info.h"
48 #include "sysfs.h"
49 #include "zoned.h"
50 #include "tests/btrfs-tests.h"
51 #include "block-group.h"
52 #include "discard.h"
53 #include "qgroup.h"
54 #include "raid56.h"
55 #include "fs.h"
56 #include "accessors.h"
57 #include "defrag.h"
58 #include "dir-item.h"
59 #include "ioctl.h"
60 #include "scrub.h"
61 #include "verity.h"
62 #include "super.h"
63 #include "extent-tree.h"
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/btrfs.h>
66
67 static const struct super_operations btrfs_super_ops;
68 static struct file_system_type btrfs_fs_type;
69
70 static void btrfs_put_super(struct super_block *sb)
71 {
72         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
73
74         btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid);
75         close_ctree(fs_info);
76 }
77
78 /* Store the mount options related information. */
79 struct btrfs_fs_context {
80         char *subvol_name;
81         u64 subvol_objectid;
82         u64 max_inline;
83         u32 commit_interval;
84         u32 metadata_ratio;
85         u32 thread_pool_size;
86         unsigned long mount_opt;
87         unsigned long compress_type:4;
88         unsigned int compress_level;
89         refcount_t refs;
90 };
91
92 enum {
93         Opt_acl,
94         Opt_clear_cache,
95         Opt_commit_interval,
96         Opt_compress,
97         Opt_compress_force,
98         Opt_compress_force_type,
99         Opt_compress_type,
100         Opt_degraded,
101         Opt_device,
102         Opt_fatal_errors,
103         Opt_flushoncommit,
104         Opt_max_inline,
105         Opt_barrier,
106         Opt_datacow,
107         Opt_datasum,
108         Opt_defrag,
109         Opt_discard,
110         Opt_discard_mode,
111         Opt_ratio,
112         Opt_rescan_uuid_tree,
113         Opt_skip_balance,
114         Opt_space_cache,
115         Opt_space_cache_version,
116         Opt_ssd,
117         Opt_ssd_spread,
118         Opt_subvol,
119         Opt_subvol_empty,
120         Opt_subvolid,
121         Opt_thread_pool,
122         Opt_treelog,
123         Opt_user_subvol_rm_allowed,
124
125         /* Rescue options */
126         Opt_rescue,
127         Opt_usebackuproot,
128         Opt_nologreplay,
129         Opt_ignorebadroots,
130         Opt_ignoredatacsums,
131         Opt_rescue_all,
132
133         /* Debugging options */
134         Opt_enospc_debug,
135 #ifdef CONFIG_BTRFS_DEBUG
136         Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
137 #endif
138 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
139         Opt_ref_verify,
140 #endif
141         Opt_err,
142 };
143
144 enum {
145         Opt_fatal_errors_panic,
146         Opt_fatal_errors_bug,
147 };
148
149 static const struct constant_table btrfs_parameter_fatal_errors[] = {
150         { "panic", Opt_fatal_errors_panic },
151         { "bug", Opt_fatal_errors_bug },
152         {}
153 };
154
155 enum {
156         Opt_discard_sync,
157         Opt_discard_async,
158 };
159
160 static const struct constant_table btrfs_parameter_discard[] = {
161         { "sync", Opt_discard_sync },
162         { "async", Opt_discard_async },
163         {}
164 };
165
166 enum {
167         Opt_space_cache_v1,
168         Opt_space_cache_v2,
169 };
170
171 static const struct constant_table btrfs_parameter_space_cache[] = {
172         { "v1", Opt_space_cache_v1 },
173         { "v2", Opt_space_cache_v2 },
174         {}
175 };
176
177 enum {
178         Opt_rescue_usebackuproot,
179         Opt_rescue_nologreplay,
180         Opt_rescue_ignorebadroots,
181         Opt_rescue_ignoredatacsums,
182         Opt_rescue_parameter_all,
183 };
184
185 static const struct constant_table btrfs_parameter_rescue[] = {
186         { "usebackuproot", Opt_rescue_usebackuproot },
187         { "nologreplay", Opt_rescue_nologreplay },
188         { "ignorebadroots", Opt_rescue_ignorebadroots },
189         { "ibadroots", Opt_rescue_ignorebadroots },
190         { "ignoredatacsums", Opt_rescue_ignoredatacsums },
191         { "idatacsums", Opt_rescue_ignoredatacsums },
192         { "all", Opt_rescue_parameter_all },
193         {}
194 };
195
196 #ifdef CONFIG_BTRFS_DEBUG
197 enum {
198         Opt_fragment_parameter_data,
199         Opt_fragment_parameter_metadata,
200         Opt_fragment_parameter_all,
201 };
202
203 static const struct constant_table btrfs_parameter_fragment[] = {
204         { "data", Opt_fragment_parameter_data },
205         { "metadata", Opt_fragment_parameter_metadata },
206         { "all", Opt_fragment_parameter_all },
207         {}
208 };
209 #endif
210
211 static const struct fs_parameter_spec btrfs_fs_parameters[] = {
212         fsparam_flag_no("acl", Opt_acl),
213         fsparam_flag_no("autodefrag", Opt_defrag),
214         fsparam_flag_no("barrier", Opt_barrier),
215         fsparam_flag("clear_cache", Opt_clear_cache),
216         fsparam_u32("commit", Opt_commit_interval),
217         fsparam_flag("compress", Opt_compress),
218         fsparam_string("compress", Opt_compress_type),
219         fsparam_flag("compress-force", Opt_compress_force),
220         fsparam_string("compress-force", Opt_compress_force_type),
221         fsparam_flag_no("datacow", Opt_datacow),
222         fsparam_flag_no("datasum", Opt_datasum),
223         fsparam_flag("degraded", Opt_degraded),
224         fsparam_string("device", Opt_device),
225         fsparam_flag_no("discard", Opt_discard),
226         fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard),
227         fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors),
228         fsparam_flag_no("flushoncommit", Opt_flushoncommit),
229         fsparam_string("max_inline", Opt_max_inline),
230         fsparam_u32("metadata_ratio", Opt_ratio),
231         fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree),
232         fsparam_flag("skip_balance", Opt_skip_balance),
233         fsparam_flag_no("space_cache", Opt_space_cache),
234         fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache),
235         fsparam_flag_no("ssd", Opt_ssd),
236         fsparam_flag_no("ssd_spread", Opt_ssd_spread),
237         fsparam_string("subvol", Opt_subvol),
238         fsparam_flag("subvol=", Opt_subvol_empty),
239         fsparam_u64("subvolid", Opt_subvolid),
240         fsparam_u32("thread_pool", Opt_thread_pool),
241         fsparam_flag_no("treelog", Opt_treelog),
242         fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed),
243
244         /* Rescue options. */
245         fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue),
246         /* Deprecated, with alias rescue=nologreplay */
247         __fsparam(NULL, "nologreplay", Opt_nologreplay, fs_param_deprecated, NULL),
248         /* Deprecated, with alias rescue=usebackuproot */
249         __fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL),
250
251         /* Debugging options. */
252         fsparam_flag_no("enospc_debug", Opt_enospc_debug),
253 #ifdef CONFIG_BTRFS_DEBUG
254         fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment),
255 #endif
256 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
257         fsparam_flag("ref_verify", Opt_ref_verify),
258 #endif
259         {}
260 };
261
262 /* No support for restricting writes to btrfs devices yet... */
263 static inline blk_mode_t btrfs_open_mode(struct fs_context *fc)
264 {
265         return sb_open_mode(fc->sb_flags) & ~BLK_OPEN_RESTRICT_WRITES;
266 }
267
268 static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
269 {
270         struct btrfs_fs_context *ctx = fc->fs_private;
271         struct fs_parse_result result;
272         int opt;
273
274         opt = fs_parse(fc, btrfs_fs_parameters, param, &result);
275         if (opt < 0)
276                 return opt;
277
278         switch (opt) {
279         case Opt_degraded:
280                 btrfs_set_opt(ctx->mount_opt, DEGRADED);
281                 break;
282         case Opt_subvol_empty:
283                 /*
284                  * This exists because we used to allow it on accident, so we're
285                  * keeping it to maintain ABI.  See 37becec95ac3 ("Btrfs: allow
286                  * empty subvol= again").
287                  */
288                 break;
289         case Opt_subvol:
290                 kfree(ctx->subvol_name);
291                 ctx->subvol_name = kstrdup(param->string, GFP_KERNEL);
292                 if (!ctx->subvol_name)
293                         return -ENOMEM;
294                 break;
295         case Opt_subvolid:
296                 ctx->subvol_objectid = result.uint_64;
297
298                 /* subvolid=0 means give me the original fs_tree. */
299                 if (!ctx->subvol_objectid)
300                         ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID;
301                 break;
302         case Opt_device: {
303                 struct btrfs_device *device;
304                 blk_mode_t mode = btrfs_open_mode(fc);
305
306                 mutex_lock(&uuid_mutex);
307                 device = btrfs_scan_one_device(param->string, mode, false);
308                 mutex_unlock(&uuid_mutex);
309                 if (IS_ERR(device))
310                         return PTR_ERR(device);
311                 break;
312         }
313         case Opt_datasum:
314                 if (result.negated) {
315                         btrfs_set_opt(ctx->mount_opt, NODATASUM);
316                 } else {
317                         btrfs_clear_opt(ctx->mount_opt, NODATACOW);
318                         btrfs_clear_opt(ctx->mount_opt, NODATASUM);
319                 }
320                 break;
321         case Opt_datacow:
322                 if (result.negated) {
323                         btrfs_clear_opt(ctx->mount_opt, COMPRESS);
324                         btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
325                         btrfs_set_opt(ctx->mount_opt, NODATACOW);
326                         btrfs_set_opt(ctx->mount_opt, NODATASUM);
327                 } else {
328                         btrfs_clear_opt(ctx->mount_opt, NODATACOW);
329                 }
330                 break;
331         case Opt_compress_force:
332         case Opt_compress_force_type:
333                 btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS);
334                 fallthrough;
335         case Opt_compress:
336         case Opt_compress_type:
337                 if (opt == Opt_compress || opt == Opt_compress_force) {
338                         ctx->compress_type = BTRFS_COMPRESS_ZLIB;
339                         ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
340                         btrfs_set_opt(ctx->mount_opt, COMPRESS);
341                         btrfs_clear_opt(ctx->mount_opt, NODATACOW);
342                         btrfs_clear_opt(ctx->mount_opt, NODATASUM);
343                 } else if (strncmp(param->string, "zlib", 4) == 0) {
344                         ctx->compress_type = BTRFS_COMPRESS_ZLIB;
345                         ctx->compress_level =
346                                 btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB,
347                                                          param->string + 4);
348                         btrfs_set_opt(ctx->mount_opt, COMPRESS);
349                         btrfs_clear_opt(ctx->mount_opt, NODATACOW);
350                         btrfs_clear_opt(ctx->mount_opt, NODATASUM);
351                 } else if (strncmp(param->string, "lzo", 3) == 0) {
352                         ctx->compress_type = BTRFS_COMPRESS_LZO;
353                         ctx->compress_level = 0;
354                         btrfs_set_opt(ctx->mount_opt, COMPRESS);
355                         btrfs_clear_opt(ctx->mount_opt, NODATACOW);
356                         btrfs_clear_opt(ctx->mount_opt, NODATASUM);
357                 } else if (strncmp(param->string, "zstd", 4) == 0) {
358                         ctx->compress_type = BTRFS_COMPRESS_ZSTD;
359                         ctx->compress_level =
360                                 btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD,
361                                                          param->string + 4);
362                         btrfs_set_opt(ctx->mount_opt, COMPRESS);
363                         btrfs_clear_opt(ctx->mount_opt, NODATACOW);
364                         btrfs_clear_opt(ctx->mount_opt, NODATASUM);
365                 } else if (strncmp(param->string, "no", 2) == 0) {
366                         ctx->compress_level = 0;
367                         ctx->compress_type = 0;
368                         btrfs_clear_opt(ctx->mount_opt, COMPRESS);
369                         btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
370                 } else {
371                         btrfs_err(NULL, "unrecognized compression value %s",
372                                   param->string);
373                         return -EINVAL;
374                 }
375                 break;
376         case Opt_ssd:
377                 if (result.negated) {
378                         btrfs_set_opt(ctx->mount_opt, NOSSD);
379                         btrfs_clear_opt(ctx->mount_opt, SSD);
380                         btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
381                 } else {
382                         btrfs_set_opt(ctx->mount_opt, SSD);
383                         btrfs_clear_opt(ctx->mount_opt, NOSSD);
384                 }
385                 break;
386         case Opt_ssd_spread:
387                 if (result.negated) {
388                         btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
389                 } else {
390                         btrfs_set_opt(ctx->mount_opt, SSD);
391                         btrfs_set_opt(ctx->mount_opt, SSD_SPREAD);
392                         btrfs_clear_opt(ctx->mount_opt, NOSSD);
393                 }
394                 break;
395         case Opt_barrier:
396                 if (result.negated)
397                         btrfs_set_opt(ctx->mount_opt, NOBARRIER);
398                 else
399                         btrfs_clear_opt(ctx->mount_opt, NOBARRIER);
400                 break;
401         case Opt_thread_pool:
402                 if (result.uint_32 == 0) {
403                         btrfs_err(NULL, "invalid value 0 for thread_pool");
404                         return -EINVAL;
405                 }
406                 ctx->thread_pool_size = result.uint_32;
407                 break;
408         case Opt_max_inline:
409                 ctx->max_inline = memparse(param->string, NULL);
410                 break;
411         case Opt_acl:
412                 if (result.negated) {
413                         fc->sb_flags &= ~SB_POSIXACL;
414                 } else {
415 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
416                         fc->sb_flags |= SB_POSIXACL;
417 #else
418                         btrfs_err(NULL, "support for ACL not compiled in");
419                         return -EINVAL;
420 #endif
421                 }
422                 /*
423                  * VFS limits the ability to toggle ACL on and off via remount,
424                  * despite every file system allowing this.  This seems to be
425                  * an oversight since we all do, but it'll fail if we're
426                  * remounting.  So don't set the mask here, we'll check it in
427                  * btrfs_reconfigure and do the toggling ourselves.
428                  */
429                 if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE)
430                         fc->sb_flags_mask |= SB_POSIXACL;
431                 break;
432         case Opt_treelog:
433                 if (result.negated)
434                         btrfs_set_opt(ctx->mount_opt, NOTREELOG);
435                 else
436                         btrfs_clear_opt(ctx->mount_opt, NOTREELOG);
437                 break;
438         case Opt_nologreplay:
439                 btrfs_warn(NULL,
440                 "'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
441                 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
442                 break;
443         case Opt_flushoncommit:
444                 if (result.negated)
445                         btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT);
446                 else
447                         btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT);
448                 break;
449         case Opt_ratio:
450                 ctx->metadata_ratio = result.uint_32;
451                 break;
452         case Opt_discard:
453                 if (result.negated) {
454                         btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
455                         btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
456                         btrfs_set_opt(ctx->mount_opt, NODISCARD);
457                 } else {
458                         btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
459                         btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
460                 }
461                 break;
462         case Opt_discard_mode:
463                 switch (result.uint_32) {
464                 case Opt_discard_sync:
465                         btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
466                         btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
467                         break;
468                 case Opt_discard_async:
469                         btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
470                         btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC);
471                         break;
472                 default:
473                         btrfs_err(NULL, "unrecognized discard mode value %s",
474                                   param->key);
475                         return -EINVAL;
476                 }
477                 btrfs_clear_opt(ctx->mount_opt, NODISCARD);
478                 break;
479         case Opt_space_cache:
480                 if (result.negated) {
481                         btrfs_set_opt(ctx->mount_opt, NOSPACECACHE);
482                         btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
483                         btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
484                 } else {
485                         btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
486                         btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
487                 }
488                 break;
489         case Opt_space_cache_version:
490                 switch (result.uint_32) {
491                 case Opt_space_cache_v1:
492                         btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
493                         btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
494                         break;
495                 case Opt_space_cache_v2:
496                         btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
497                         btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE);
498                         break;
499                 default:
500                         btrfs_err(NULL, "unrecognized space_cache value %s",
501                                   param->key);
502                         return -EINVAL;
503                 }
504                 break;
505         case Opt_rescan_uuid_tree:
506                 btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE);
507                 break;
508         case Opt_clear_cache:
509                 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
510                 break;
511         case Opt_user_subvol_rm_allowed:
512                 btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED);
513                 break;
514         case Opt_enospc_debug:
515                 if (result.negated)
516                         btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG);
517                 else
518                         btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG);
519                 break;
520         case Opt_defrag:
521                 if (result.negated)
522                         btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG);
523                 else
524                         btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG);
525                 break;
526         case Opt_usebackuproot:
527                 btrfs_warn(NULL,
528                            "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead");
529                 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
530
531                 /* If we're loading the backup roots we can't trust the space cache. */
532                 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
533                 break;
534         case Opt_skip_balance:
535                 btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE);
536                 break;
537         case Opt_fatal_errors:
538                 switch (result.uint_32) {
539                 case Opt_fatal_errors_panic:
540                         btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
541                         break;
542                 case Opt_fatal_errors_bug:
543                         btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
544                         break;
545                 default:
546                         btrfs_err(NULL, "unrecognized fatal_errors value %s",
547                                   param->key);
548                         return -EINVAL;
549                 }
550                 break;
551         case Opt_commit_interval:
552                 ctx->commit_interval = result.uint_32;
553                 if (ctx->commit_interval == 0)
554                         ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
555                 break;
556         case Opt_rescue:
557                 switch (result.uint_32) {
558                 case Opt_rescue_usebackuproot:
559                         btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
560                         break;
561                 case Opt_rescue_nologreplay:
562                         btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
563                         break;
564                 case Opt_rescue_ignorebadroots:
565                         btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
566                         break;
567                 case Opt_rescue_ignoredatacsums:
568                         btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
569                         break;
570                 case Opt_rescue_parameter_all:
571                         btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
572                         btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
573                         btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
574                         break;
575                 default:
576                         btrfs_info(NULL, "unrecognized rescue option '%s'",
577                                    param->key);
578                         return -EINVAL;
579                 }
580                 break;
581 #ifdef CONFIG_BTRFS_DEBUG
582         case Opt_fragment:
583                 switch (result.uint_32) {
584                 case Opt_fragment_parameter_all:
585                         btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
586                         btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
587                         break;
588                 case Opt_fragment_parameter_metadata:
589                         btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
590                         break;
591                 case Opt_fragment_parameter_data:
592                         btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
593                         break;
594                 default:
595                         btrfs_info(NULL, "unrecognized fragment option '%s'",
596                                    param->key);
597                         return -EINVAL;
598                 }
599                 break;
600 #endif
601 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
602         case Opt_ref_verify:
603                 btrfs_set_opt(ctx->mount_opt, REF_VERIFY);
604                 break;
605 #endif
606         default:
607                 btrfs_err(NULL, "unrecognized mount option '%s'", param->key);
608                 return -EINVAL;
609         }
610
611         return 0;
612 }
613
614 /*
615  * Some options only have meaning at mount time and shouldn't persist across
616  * remounts, or be displayed. Clear these at the end of mount and remount code
617  * paths.
618  */
619 static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
620 {
621         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
622         btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
623         btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE);
624 }
625
626 static bool check_ro_option(struct btrfs_fs_info *fs_info,
627                             unsigned long mount_opt, unsigned long opt,
628                             const char *opt_name)
629 {
630         if (mount_opt & opt) {
631                 btrfs_err(fs_info, "%s must be used with ro mount option",
632                           opt_name);
633                 return true;
634         }
635         return false;
636 }
637
638 bool btrfs_check_options(struct btrfs_fs_info *info, unsigned long *mount_opt,
639                          unsigned long flags)
640 {
641         bool ret = true;
642
643         if (!(flags & SB_RDONLY) &&
644             (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
645              check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
646              check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums")))
647                 ret = false;
648
649         if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
650             !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) &&
651             !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) {
652                 btrfs_err(info, "cannot disable free-space-tree");
653                 ret = false;
654         }
655         if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) &&
656              !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) {
657                 btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature");
658                 ret = false;
659         }
660
661         if (btrfs_check_mountopts_zoned(info, mount_opt))
662                 ret = false;
663
664         if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) {
665                 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE))
666                         btrfs_info(info, "disk space caching is enabled");
667                 if (btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE))
668                         btrfs_info(info, "using free-space-tree");
669         }
670
671         return ret;
672 }
673
674 /*
675  * This is subtle, we only call this during open_ctree().  We need to pre-load
676  * the mount options with the on-disk settings.  Before the new mount API took
677  * effect we would do this on mount and remount.  With the new mount API we'll
678  * only do this on the initial mount.
679  *
680  * This isn't a change in behavior, because we're using the current state of the
681  * file system to set the current mount options.  If you mounted with special
682  * options to disable these features and then remounted we wouldn't revert the
683  * settings, because mounting without these features cleared the on-disk
684  * settings, so this being called on re-mount is not needed.
685  */
686 void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info)
687 {
688         if (fs_info->sectorsize < PAGE_SIZE) {
689                 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
690                 if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
691                         btrfs_info(fs_info,
692                                    "forcing free space tree for sector size %u with page size %lu",
693                                    fs_info->sectorsize, PAGE_SIZE);
694                         btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
695                 }
696         }
697
698         /*
699          * At this point our mount options are populated, so we only mess with
700          * these settings if we don't have any settings already.
701          */
702         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
703                 return;
704
705         if (btrfs_is_zoned(fs_info) &&
706             btrfs_free_space_cache_v1_active(fs_info)) {
707                 btrfs_info(fs_info, "zoned: clearing existing space cache");
708                 btrfs_set_super_cache_generation(fs_info->super_copy, 0);
709                 return;
710         }
711
712         if (btrfs_test_opt(fs_info, SPACE_CACHE))
713                 return;
714
715         if (btrfs_test_opt(fs_info, NOSPACECACHE))
716                 return;
717
718         /*
719          * At this point we don't have explicit options set by the user, set
720          * them ourselves based on the state of the file system.
721          */
722         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
723                 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
724         else if (btrfs_free_space_cache_v1_active(fs_info))
725                 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
726 }
727
728 static void set_device_specific_options(struct btrfs_fs_info *fs_info)
729 {
730         if (!btrfs_test_opt(fs_info, NOSSD) &&
731             !fs_info->fs_devices->rotating)
732                 btrfs_set_opt(fs_info->mount_opt, SSD);
733
734         /*
735          * For devices supporting discard turn on discard=async automatically,
736          * unless it's already set or disabled. This could be turned off by
737          * nodiscard for the same mount.
738          *
739          * The zoned mode piggy backs on the discard functionality for
740          * resetting a zone. There is no reason to delay the zone reset as it is
741          * fast enough. So, do not enable async discard for zoned mode.
742          */
743         if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
744               btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
745               btrfs_test_opt(fs_info, NODISCARD)) &&
746             fs_info->fs_devices->discardable &&
747             !btrfs_is_zoned(fs_info))
748                 btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC);
749 }
750
751 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
752                                           u64 subvol_objectid)
753 {
754         struct btrfs_root *root = fs_info->tree_root;
755         struct btrfs_root *fs_root = NULL;
756         struct btrfs_root_ref *root_ref;
757         struct btrfs_inode_ref *inode_ref;
758         struct btrfs_key key;
759         struct btrfs_path *path = NULL;
760         char *name = NULL, *ptr;
761         u64 dirid;
762         int len;
763         int ret;
764
765         path = btrfs_alloc_path();
766         if (!path) {
767                 ret = -ENOMEM;
768                 goto err;
769         }
770
771         name = kmalloc(PATH_MAX, GFP_KERNEL);
772         if (!name) {
773                 ret = -ENOMEM;
774                 goto err;
775         }
776         ptr = name + PATH_MAX - 1;
777         ptr[0] = '\0';
778
779         /*
780          * Walk up the subvolume trees in the tree of tree roots by root
781          * backrefs until we hit the top-level subvolume.
782          */
783         while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
784                 key.objectid = subvol_objectid;
785                 key.type = BTRFS_ROOT_BACKREF_KEY;
786                 key.offset = (u64)-1;
787
788                 ret = btrfs_search_backwards(root, &key, path);
789                 if (ret < 0) {
790                         goto err;
791                 } else if (ret > 0) {
792                         ret = -ENOENT;
793                         goto err;
794                 }
795
796                 subvol_objectid = key.offset;
797
798                 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
799                                           struct btrfs_root_ref);
800                 len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
801                 ptr -= len + 1;
802                 if (ptr < name) {
803                         ret = -ENAMETOOLONG;
804                         goto err;
805                 }
806                 read_extent_buffer(path->nodes[0], ptr + 1,
807                                    (unsigned long)(root_ref + 1), len);
808                 ptr[0] = '/';
809                 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
810                 btrfs_release_path(path);
811
812                 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
813                 if (IS_ERR(fs_root)) {
814                         ret = PTR_ERR(fs_root);
815                         fs_root = NULL;
816                         goto err;
817                 }
818
819                 /*
820                  * Walk up the filesystem tree by inode refs until we hit the
821                  * root directory.
822                  */
823                 while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
824                         key.objectid = dirid;
825                         key.type = BTRFS_INODE_REF_KEY;
826                         key.offset = (u64)-1;
827
828                         ret = btrfs_search_backwards(fs_root, &key, path);
829                         if (ret < 0) {
830                                 goto err;
831                         } else if (ret > 0) {
832                                 ret = -ENOENT;
833                                 goto err;
834                         }
835
836                         dirid = key.offset;
837
838                         inode_ref = btrfs_item_ptr(path->nodes[0],
839                                                    path->slots[0],
840                                                    struct btrfs_inode_ref);
841                         len = btrfs_inode_ref_name_len(path->nodes[0],
842                                                        inode_ref);
843                         ptr -= len + 1;
844                         if (ptr < name) {
845                                 ret = -ENAMETOOLONG;
846                                 goto err;
847                         }
848                         read_extent_buffer(path->nodes[0], ptr + 1,
849                                            (unsigned long)(inode_ref + 1), len);
850                         ptr[0] = '/';
851                         btrfs_release_path(path);
852                 }
853                 btrfs_put_root(fs_root);
854                 fs_root = NULL;
855         }
856
857         btrfs_free_path(path);
858         if (ptr == name + PATH_MAX - 1) {
859                 name[0] = '/';
860                 name[1] = '\0';
861         } else {
862                 memmove(name, ptr, name + PATH_MAX - ptr);
863         }
864         return name;
865
866 err:
867         btrfs_put_root(fs_root);
868         btrfs_free_path(path);
869         kfree(name);
870         return ERR_PTR(ret);
871 }
872
873 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
874 {
875         struct btrfs_root *root = fs_info->tree_root;
876         struct btrfs_dir_item *di;
877         struct btrfs_path *path;
878         struct btrfs_key location;
879         struct fscrypt_str name = FSTR_INIT("default", 7);
880         u64 dir_id;
881
882         path = btrfs_alloc_path();
883         if (!path)
884                 return -ENOMEM;
885
886         /*
887          * Find the "default" dir item which points to the root item that we
888          * will mount by default if we haven't been given a specific subvolume
889          * to mount.
890          */
891         dir_id = btrfs_super_root_dir(fs_info->super_copy);
892         di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
893         if (IS_ERR(di)) {
894                 btrfs_free_path(path);
895                 return PTR_ERR(di);
896         }
897         if (!di) {
898                 /*
899                  * Ok the default dir item isn't there.  This is weird since
900                  * it's always been there, but don't freak out, just try and
901                  * mount the top-level subvolume.
902                  */
903                 btrfs_free_path(path);
904                 *objectid = BTRFS_FS_TREE_OBJECTID;
905                 return 0;
906         }
907
908         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
909         btrfs_free_path(path);
910         *objectid = location.objectid;
911         return 0;
912 }
913
914 static int btrfs_fill_super(struct super_block *sb,
915                             struct btrfs_fs_devices *fs_devices,
916                             void *data)
917 {
918         struct inode *inode;
919         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
920         int err;
921
922         sb->s_maxbytes = MAX_LFS_FILESIZE;
923         sb->s_magic = BTRFS_SUPER_MAGIC;
924         sb->s_op = &btrfs_super_ops;
925         sb->s_d_op = &btrfs_dentry_operations;
926         sb->s_export_op = &btrfs_export_ops;
927 #ifdef CONFIG_FS_VERITY
928         sb->s_vop = &btrfs_verityops;
929 #endif
930         sb->s_xattr = btrfs_xattr_handlers;
931         sb->s_time_gran = 1;
932         sb->s_iflags |= SB_I_CGROUPWB;
933
934         err = super_setup_bdi(sb);
935         if (err) {
936                 btrfs_err(fs_info, "super_setup_bdi failed");
937                 return err;
938         }
939
940         err = open_ctree(sb, fs_devices, (char *)data);
941         if (err) {
942                 btrfs_err(fs_info, "open_ctree failed");
943                 return err;
944         }
945
946         inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
947         if (IS_ERR(inode)) {
948                 err = PTR_ERR(inode);
949                 btrfs_handle_fs_error(fs_info, err, NULL);
950                 goto fail_close;
951         }
952
953         sb->s_root = d_make_root(inode);
954         if (!sb->s_root) {
955                 err = -ENOMEM;
956                 goto fail_close;
957         }
958
959         sb->s_flags |= SB_ACTIVE;
960         return 0;
961
962 fail_close:
963         close_ctree(fs_info);
964         return err;
965 }
966
967 int btrfs_sync_fs(struct super_block *sb, int wait)
968 {
969         struct btrfs_trans_handle *trans;
970         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
971         struct btrfs_root *root = fs_info->tree_root;
972
973         trace_btrfs_sync_fs(fs_info, wait);
974
975         if (!wait) {
976                 filemap_flush(fs_info->btree_inode->i_mapping);
977                 return 0;
978         }
979
980         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
981
982         trans = btrfs_attach_transaction_barrier(root);
983         if (IS_ERR(trans)) {
984                 /* no transaction, don't bother */
985                 if (PTR_ERR(trans) == -ENOENT) {
986                         /*
987                          * Exit unless we have some pending changes
988                          * that need to go through commit
989                          */
990                         if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
991                                       &fs_info->flags))
992                                 return 0;
993                         /*
994                          * A non-blocking test if the fs is frozen. We must not
995                          * start a new transaction here otherwise a deadlock
996                          * happens. The pending operations are delayed to the
997                          * next commit after thawing.
998                          */
999                         if (sb_start_write_trylock(sb))
1000                                 sb_end_write(sb);
1001                         else
1002                                 return 0;
1003                         trans = btrfs_start_transaction(root, 0);
1004                 }
1005                 if (IS_ERR(trans))
1006                         return PTR_ERR(trans);
1007         }
1008         return btrfs_commit_transaction(trans);
1009 }
1010
1011 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1012 {
1013         seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1014         *printed = true;
1015 }
1016
1017 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1018 {
1019         struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1020         const char *compress_type;
1021         const char *subvol_name;
1022         bool printed = false;
1023
1024         if (btrfs_test_opt(info, DEGRADED))
1025                 seq_puts(seq, ",degraded");
1026         if (btrfs_test_opt(info, NODATASUM))
1027                 seq_puts(seq, ",nodatasum");
1028         if (btrfs_test_opt(info, NODATACOW))
1029                 seq_puts(seq, ",nodatacow");
1030         if (btrfs_test_opt(info, NOBARRIER))
1031                 seq_puts(seq, ",nobarrier");
1032         if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1033                 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1034         if (info->thread_pool_size !=  min_t(unsigned long,
1035                                              num_online_cpus() + 2, 8))
1036                 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1037         if (btrfs_test_opt(info, COMPRESS)) {
1038                 compress_type = btrfs_compress_type2str(info->compress_type);
1039                 if (btrfs_test_opt(info, FORCE_COMPRESS))
1040                         seq_printf(seq, ",compress-force=%s", compress_type);
1041                 else
1042                         seq_printf(seq, ",compress=%s", compress_type);
1043                 if (info->compress_level)
1044                         seq_printf(seq, ":%d", info->compress_level);
1045         }
1046         if (btrfs_test_opt(info, NOSSD))
1047                 seq_puts(seq, ",nossd");
1048         if (btrfs_test_opt(info, SSD_SPREAD))
1049                 seq_puts(seq, ",ssd_spread");
1050         else if (btrfs_test_opt(info, SSD))
1051                 seq_puts(seq, ",ssd");
1052         if (btrfs_test_opt(info, NOTREELOG))
1053                 seq_puts(seq, ",notreelog");
1054         if (btrfs_test_opt(info, NOLOGREPLAY))
1055                 print_rescue_option(seq, "nologreplay", &printed);
1056         if (btrfs_test_opt(info, USEBACKUPROOT))
1057                 print_rescue_option(seq, "usebackuproot", &printed);
1058         if (btrfs_test_opt(info, IGNOREBADROOTS))
1059                 print_rescue_option(seq, "ignorebadroots", &printed);
1060         if (btrfs_test_opt(info, IGNOREDATACSUMS))
1061                 print_rescue_option(seq, "ignoredatacsums", &printed);
1062         if (btrfs_test_opt(info, FLUSHONCOMMIT))
1063                 seq_puts(seq, ",flushoncommit");
1064         if (btrfs_test_opt(info, DISCARD_SYNC))
1065                 seq_puts(seq, ",discard");
1066         if (btrfs_test_opt(info, DISCARD_ASYNC))
1067                 seq_puts(seq, ",discard=async");
1068         if (!(info->sb->s_flags & SB_POSIXACL))
1069                 seq_puts(seq, ",noacl");
1070         if (btrfs_free_space_cache_v1_active(info))
1071                 seq_puts(seq, ",space_cache");
1072         else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1073                 seq_puts(seq, ",space_cache=v2");
1074         else
1075                 seq_puts(seq, ",nospace_cache");
1076         if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1077                 seq_puts(seq, ",rescan_uuid_tree");
1078         if (btrfs_test_opt(info, CLEAR_CACHE))
1079                 seq_puts(seq, ",clear_cache");
1080         if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1081                 seq_puts(seq, ",user_subvol_rm_allowed");
1082         if (btrfs_test_opt(info, ENOSPC_DEBUG))
1083                 seq_puts(seq, ",enospc_debug");
1084         if (btrfs_test_opt(info, AUTO_DEFRAG))
1085                 seq_puts(seq, ",autodefrag");
1086         if (btrfs_test_opt(info, SKIP_BALANCE))
1087                 seq_puts(seq, ",skip_balance");
1088         if (info->metadata_ratio)
1089                 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1090         if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1091                 seq_puts(seq, ",fatal_errors=panic");
1092         if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1093                 seq_printf(seq, ",commit=%u", info->commit_interval);
1094 #ifdef CONFIG_BTRFS_DEBUG
1095         if (btrfs_test_opt(info, FRAGMENT_DATA))
1096                 seq_puts(seq, ",fragment=data");
1097         if (btrfs_test_opt(info, FRAGMENT_METADATA))
1098                 seq_puts(seq, ",fragment=metadata");
1099 #endif
1100         if (btrfs_test_opt(info, REF_VERIFY))
1101                 seq_puts(seq, ",ref_verify");
1102         seq_printf(seq, ",subvolid=%llu",
1103                   BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1104         subvol_name = btrfs_get_subvol_name_from_objectid(info,
1105                         BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1106         if (!IS_ERR(subvol_name)) {
1107                 seq_puts(seq, ",subvol=");
1108                 seq_escape(seq, subvol_name, " \t\n\\");
1109                 kfree(subvol_name);
1110         }
1111         return 0;
1112 }
1113
1114 /*
1115  * subvolumes are identified by ino 256
1116  */
1117 static inline int is_subvolume_inode(struct inode *inode)
1118 {
1119         if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1120                 return 1;
1121         return 0;
1122 }
1123
1124 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1125                                    struct vfsmount *mnt)
1126 {
1127         struct dentry *root;
1128         int ret;
1129
1130         if (!subvol_name) {
1131                 if (!subvol_objectid) {
1132                         ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1133                                                           &subvol_objectid);
1134                         if (ret) {
1135                                 root = ERR_PTR(ret);
1136                                 goto out;
1137                         }
1138                 }
1139                 subvol_name = btrfs_get_subvol_name_from_objectid(
1140                                         btrfs_sb(mnt->mnt_sb), subvol_objectid);
1141                 if (IS_ERR(subvol_name)) {
1142                         root = ERR_CAST(subvol_name);
1143                         subvol_name = NULL;
1144                         goto out;
1145                 }
1146
1147         }
1148
1149         root = mount_subtree(mnt, subvol_name);
1150         /* mount_subtree() drops our reference on the vfsmount. */
1151         mnt = NULL;
1152
1153         if (!IS_ERR(root)) {
1154                 struct super_block *s = root->d_sb;
1155                 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1156                 struct inode *root_inode = d_inode(root);
1157                 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1158
1159                 ret = 0;
1160                 if (!is_subvolume_inode(root_inode)) {
1161                         btrfs_err(fs_info, "'%s' is not a valid subvolume",
1162                                subvol_name);
1163                         ret = -EINVAL;
1164                 }
1165                 if (subvol_objectid && root_objectid != subvol_objectid) {
1166                         /*
1167                          * This will also catch a race condition where a
1168                          * subvolume which was passed by ID is renamed and
1169                          * another subvolume is renamed over the old location.
1170                          */
1171                         btrfs_err(fs_info,
1172                                   "subvol '%s' does not match subvolid %llu",
1173                                   subvol_name, subvol_objectid);
1174                         ret = -EINVAL;
1175                 }
1176                 if (ret) {
1177                         dput(root);
1178                         root = ERR_PTR(ret);
1179                         deactivate_locked_super(s);
1180                 }
1181         }
1182
1183 out:
1184         mntput(mnt);
1185         kfree(subvol_name);
1186         return root;
1187 }
1188
1189 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1190                                      u32 new_pool_size, u32 old_pool_size)
1191 {
1192         if (new_pool_size == old_pool_size)
1193                 return;
1194
1195         fs_info->thread_pool_size = new_pool_size;
1196
1197         btrfs_info(fs_info, "resize thread pool %d -> %d",
1198                old_pool_size, new_pool_size);
1199
1200         btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1201         btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1202         btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1203         workqueue_set_max_active(fs_info->endio_workers, new_pool_size);
1204         workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size);
1205         btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1206         btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1207         btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1208 }
1209
1210 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1211                                        unsigned long old_opts, int flags)
1212 {
1213         if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1214             (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1215              (flags & SB_RDONLY))) {
1216                 /* wait for any defraggers to finish */
1217                 wait_event(fs_info->transaction_wait,
1218                            (atomic_read(&fs_info->defrag_running) == 0));
1219                 if (flags & SB_RDONLY)
1220                         sync_filesystem(fs_info->sb);
1221         }
1222 }
1223
1224 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1225                                          unsigned long old_opts)
1226 {
1227         const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1228
1229         /*
1230          * We need to cleanup all defragable inodes if the autodefragment is
1231          * close or the filesystem is read only.
1232          */
1233         if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1234             (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1235                 btrfs_cleanup_defrag_inodes(fs_info);
1236         }
1237
1238         /* If we toggled discard async */
1239         if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1240             btrfs_test_opt(fs_info, DISCARD_ASYNC))
1241                 btrfs_discard_resume(fs_info);
1242         else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1243                  !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1244                 btrfs_discard_cleanup(fs_info);
1245
1246         /* If we toggled space cache */
1247         if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1248                 btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1249 }
1250
1251 static int btrfs_remount_rw(struct btrfs_fs_info *fs_info)
1252 {
1253         int ret;
1254
1255         if (BTRFS_FS_ERROR(fs_info)) {
1256                 btrfs_err(fs_info,
1257                           "remounting read-write after error is not allowed");
1258                 return -EINVAL;
1259         }
1260
1261         if (fs_info->fs_devices->rw_devices == 0)
1262                 return -EACCES;
1263
1264         if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1265                 btrfs_warn(fs_info,
1266                            "too many missing devices, writable remount is not allowed");
1267                 return -EACCES;
1268         }
1269
1270         if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1271                 btrfs_warn(fs_info,
1272                            "mount required to replay tree-log, cannot remount read-write");
1273                 return -EINVAL;
1274         }
1275
1276         /*
1277          * NOTE: when remounting with a change that does writes, don't put it
1278          * anywhere above this point, as we are not sure to be safe to write
1279          * until we pass the above checks.
1280          */
1281         ret = btrfs_start_pre_rw_mount(fs_info);
1282         if (ret)
1283                 return ret;
1284
1285         btrfs_clear_sb_rdonly(fs_info->sb);
1286
1287         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1288
1289         /*
1290          * If we've gone from readonly -> read-write, we need to get our
1291          * sync/async discard lists in the right state.
1292          */
1293         btrfs_discard_resume(fs_info);
1294
1295         return 0;
1296 }
1297
1298 static int btrfs_remount_ro(struct btrfs_fs_info *fs_info)
1299 {
1300         /*
1301          * This also happens on 'umount -rf' or on shutdown, when the
1302          * filesystem is busy.
1303          */
1304         cancel_work_sync(&fs_info->async_reclaim_work);
1305         cancel_work_sync(&fs_info->async_data_reclaim_work);
1306
1307         btrfs_discard_cleanup(fs_info);
1308
1309         /* Wait for the uuid_scan task to finish */
1310         down(&fs_info->uuid_tree_rescan_sem);
1311         /* Avoid complains from lockdep et al. */
1312         up(&fs_info->uuid_tree_rescan_sem);
1313
1314         btrfs_set_sb_rdonly(fs_info->sb);
1315
1316         /*
1317          * Setting SB_RDONLY will put the cleaner thread to sleep at the next
1318          * loop if it's already active.  If it's already asleep, we'll leave
1319          * unused block groups on disk until we're mounted read-write again
1320          * unless we clean them up here.
1321          */
1322         btrfs_delete_unused_bgs(fs_info);
1323
1324         /*
1325          * The cleaner task could be already running before we set the flag
1326          * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).  We must make
1327          * sure that after we finish the remount, i.e. after we call
1328          * btrfs_commit_super(), the cleaner can no longer start a transaction
1329          * - either because it was dropping a dead root, running delayed iputs
1330          *   or deleting an unused block group (the cleaner picked a block
1331          *   group from the list of unused block groups before we were able to
1332          *   in the previous call to btrfs_delete_unused_bgs()).
1333          */
1334         wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE);
1335
1336         /*
1337          * We've set the superblock to RO mode, so we might have made the
1338          * cleaner task sleep without running all pending delayed iputs. Go
1339          * through all the delayed iputs here, so that if an unmount happens
1340          * without remounting RW we don't end up at finishing close_ctree()
1341          * with a non-empty list of delayed iputs.
1342          */
1343         btrfs_run_delayed_iputs(fs_info);
1344
1345         btrfs_dev_replace_suspend_for_unmount(fs_info);
1346         btrfs_scrub_cancel(fs_info);
1347         btrfs_pause_balance(fs_info);
1348
1349         /*
1350          * Pause the qgroup rescan worker if it is running. We don't want it to
1351          * be still running after we are in RO mode, as after that, by the time
1352          * we unmount, it might have left a transaction open, so we would leak
1353          * the transaction and/or crash.
1354          */
1355         btrfs_qgroup_wait_for_completion(fs_info, false);
1356
1357         return btrfs_commit_super(fs_info);
1358 }
1359
1360 static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1361 {
1362         fs_info->max_inline = ctx->max_inline;
1363         fs_info->commit_interval = ctx->commit_interval;
1364         fs_info->metadata_ratio = ctx->metadata_ratio;
1365         fs_info->thread_pool_size = ctx->thread_pool_size;
1366         fs_info->mount_opt = ctx->mount_opt;
1367         fs_info->compress_type = ctx->compress_type;
1368         fs_info->compress_level = ctx->compress_level;
1369 }
1370
1371 static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1372 {
1373         ctx->max_inline = fs_info->max_inline;
1374         ctx->commit_interval = fs_info->commit_interval;
1375         ctx->metadata_ratio = fs_info->metadata_ratio;
1376         ctx->thread_pool_size = fs_info->thread_pool_size;
1377         ctx->mount_opt = fs_info->mount_opt;
1378         ctx->compress_type = fs_info->compress_type;
1379         ctx->compress_level = fs_info->compress_level;
1380 }
1381
1382 #define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...)                  \
1383 do {                                                                            \
1384         if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&       \
1385             btrfs_raw_test_opt(fs_info->mount_opt, opt))                        \
1386                 btrfs_info(fs_info, fmt, ##args);                               \
1387 } while (0)
1388
1389 #define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...)        \
1390 do {                                                                    \
1391         if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \
1392             !btrfs_raw_test_opt(fs_info->mount_opt, opt))               \
1393                 btrfs_info(fs_info, fmt, ##args);                       \
1394 } while (0)
1395
1396 static void btrfs_emit_options(struct btrfs_fs_info *info,
1397                                struct btrfs_fs_context *old)
1398 {
1399         btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1400         btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts");
1401         btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1402         btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations");
1403         btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme");
1404         btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers");
1405         btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log");
1406         btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time");
1407         btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit");
1408         btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard");
1409         btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard");
1410         btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree");
1411         btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching");
1412         btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache");
1413         btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag");
1414         btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data");
1415         btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata");
1416         btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification");
1417         btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time");
1418         btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots");
1419         btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums");
1420
1421         btrfs_info_if_unset(info, old, NODATACOW, "setting datacow");
1422         btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations");
1423         btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme");
1424         btrfs_info_if_unset(info, old, NOBARRIER, "turning off barriers");
1425         btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log");
1426         btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching");
1427         btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree");
1428         btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag");
1429         btrfs_info_if_unset(info, old, COMPRESS, "use no compression");
1430
1431         /* Did the compression settings change? */
1432         if (btrfs_test_opt(info, COMPRESS) &&
1433             (!old ||
1434              old->compress_type != info->compress_type ||
1435              old->compress_level != info->compress_level ||
1436              (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) &&
1437               btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) {
1438                 const char *compress_type = btrfs_compress_type2str(info->compress_type);
1439
1440                 btrfs_info(info, "%s %s compression, level %d",
1441                            btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use",
1442                            compress_type, info->compress_level);
1443         }
1444
1445         if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1446                 btrfs_info(info, "max_inline set to %llu", info->max_inline);
1447 }
1448
1449 static int btrfs_reconfigure(struct fs_context *fc)
1450 {
1451         struct super_block *sb = fc->root->d_sb;
1452         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1453         struct btrfs_fs_context *ctx = fc->fs_private;
1454         struct btrfs_fs_context old_ctx;
1455         int ret = 0;
1456         bool mount_reconfigure = (fc->s_fs_info != NULL);
1457
1458         btrfs_info_to_ctx(fs_info, &old_ctx);
1459
1460         sync_filesystem(sb);
1461         set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1462
1463         if (!mount_reconfigure &&
1464             !btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags))
1465                 return -EINVAL;
1466
1467         ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY));
1468         if (ret < 0)
1469                 return ret;
1470
1471         btrfs_ctx_to_info(fs_info, ctx);
1472         btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags);
1473         btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size,
1474                                  old_ctx.thread_pool_size);
1475
1476         if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1477             (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1478             (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) {
1479                 btrfs_warn(fs_info,
1480                 "remount supports changing free space tree only from RO to RW");
1481                 /* Make sure free space cache options match the state on disk. */
1482                 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1483                         btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1484                         btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1485                 }
1486                 if (btrfs_free_space_cache_v1_active(fs_info)) {
1487                         btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1488                         btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1489                 }
1490         }
1491
1492         ret = 0;
1493         if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY))
1494                 ret = btrfs_remount_ro(fs_info);
1495         else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY))
1496                 ret = btrfs_remount_rw(fs_info);
1497         if (ret)
1498                 goto restore;
1499
1500         /*
1501          * If we set the mask during the parameter parsing VFS would reject the
1502          * remount.  Here we can set the mask and the value will be updated
1503          * appropriately.
1504          */
1505         if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL))
1506                 fc->sb_flags_mask |= SB_POSIXACL;
1507
1508         btrfs_emit_options(fs_info, &old_ctx);
1509         wake_up_process(fs_info->transaction_kthread);
1510         btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1511         btrfs_clear_oneshot_options(fs_info);
1512         clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1513
1514         return 0;
1515 restore:
1516         btrfs_ctx_to_info(fs_info, &old_ctx);
1517         btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1518         clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1519         return ret;
1520 }
1521
1522 /* Used to sort the devices by max_avail(descending sort) */
1523 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
1524 {
1525         const struct btrfs_device_info *dev_info1 = a;
1526         const struct btrfs_device_info *dev_info2 = b;
1527
1528         if (dev_info1->max_avail > dev_info2->max_avail)
1529                 return -1;
1530         else if (dev_info1->max_avail < dev_info2->max_avail)
1531                 return 1;
1532         return 0;
1533 }
1534
1535 /*
1536  * sort the devices by max_avail, in which max free extent size of each device
1537  * is stored.(Descending Sort)
1538  */
1539 static inline void btrfs_descending_sort_devices(
1540                                         struct btrfs_device_info *devices,
1541                                         size_t nr_devices)
1542 {
1543         sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1544              btrfs_cmp_device_free_bytes, NULL);
1545 }
1546
1547 /*
1548  * The helper to calc the free space on the devices that can be used to store
1549  * file data.
1550  */
1551 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1552                                               u64 *free_bytes)
1553 {
1554         struct btrfs_device_info *devices_info;
1555         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1556         struct btrfs_device *device;
1557         u64 type;
1558         u64 avail_space;
1559         u64 min_stripe_size;
1560         int num_stripes = 1;
1561         int i = 0, nr_devices;
1562         const struct btrfs_raid_attr *rattr;
1563
1564         /*
1565          * We aren't under the device list lock, so this is racy-ish, but good
1566          * enough for our purposes.
1567          */
1568         nr_devices = fs_info->fs_devices->open_devices;
1569         if (!nr_devices) {
1570                 smp_mb();
1571                 nr_devices = fs_info->fs_devices->open_devices;
1572                 ASSERT(nr_devices);
1573                 if (!nr_devices) {
1574                         *free_bytes = 0;
1575                         return 0;
1576                 }
1577         }
1578
1579         devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1580                                GFP_KERNEL);
1581         if (!devices_info)
1582                 return -ENOMEM;
1583
1584         /* calc min stripe number for data space allocation */
1585         type = btrfs_data_alloc_profile(fs_info);
1586         rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1587
1588         if (type & BTRFS_BLOCK_GROUP_RAID0)
1589                 num_stripes = nr_devices;
1590         else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1591                 num_stripes = rattr->ncopies;
1592         else if (type & BTRFS_BLOCK_GROUP_RAID10)
1593                 num_stripes = 4;
1594
1595         /* Adjust for more than 1 stripe per device */
1596         min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1597
1598         rcu_read_lock();
1599         list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1600                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1601                                                 &device->dev_state) ||
1602                     !device->bdev ||
1603                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1604                         continue;
1605
1606                 if (i >= nr_devices)
1607                         break;
1608
1609                 avail_space = device->total_bytes - device->bytes_used;
1610
1611                 /* align with stripe_len */
1612                 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1613
1614                 /*
1615                  * Ensure we have at least min_stripe_size on top of the
1616                  * reserved space on the device.
1617                  */
1618                 if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1619                         continue;
1620
1621                 avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1622
1623                 devices_info[i].dev = device;
1624                 devices_info[i].max_avail = avail_space;
1625
1626                 i++;
1627         }
1628         rcu_read_unlock();
1629
1630         nr_devices = i;
1631
1632         btrfs_descending_sort_devices(devices_info, nr_devices);
1633
1634         i = nr_devices - 1;
1635         avail_space = 0;
1636         while (nr_devices >= rattr->devs_min) {
1637                 num_stripes = min(num_stripes, nr_devices);
1638
1639                 if (devices_info[i].max_avail >= min_stripe_size) {
1640                         int j;
1641                         u64 alloc_size;
1642
1643                         avail_space += devices_info[i].max_avail * num_stripes;
1644                         alloc_size = devices_info[i].max_avail;
1645                         for (j = i + 1 - num_stripes; j <= i; j++)
1646                                 devices_info[j].max_avail -= alloc_size;
1647                 }
1648                 i--;
1649                 nr_devices--;
1650         }
1651
1652         kfree(devices_info);
1653         *free_bytes = avail_space;
1654         return 0;
1655 }
1656
1657 /*
1658  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1659  *
1660  * If there's a redundant raid level at DATA block groups, use the respective
1661  * multiplier to scale the sizes.
1662  *
1663  * Unused device space usage is based on simulating the chunk allocator
1664  * algorithm that respects the device sizes and order of allocations.  This is
1665  * a close approximation of the actual use but there are other factors that may
1666  * change the result (like a new metadata chunk).
1667  *
1668  * If metadata is exhausted, f_bavail will be 0.
1669  */
1670 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1671 {
1672         struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1673         struct btrfs_super_block *disk_super = fs_info->super_copy;
1674         struct btrfs_space_info *found;
1675         u64 total_used = 0;
1676         u64 total_free_data = 0;
1677         u64 total_free_meta = 0;
1678         u32 bits = fs_info->sectorsize_bits;
1679         __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
1680         unsigned factor = 1;
1681         struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1682         int ret;
1683         u64 thresh = 0;
1684         int mixed = 0;
1685
1686         list_for_each_entry(found, &fs_info->space_info, list) {
1687                 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1688                         int i;
1689
1690                         total_free_data += found->disk_total - found->disk_used;
1691                         total_free_data -=
1692                                 btrfs_account_ro_block_groups_free_space(found);
1693
1694                         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1695                                 if (!list_empty(&found->block_groups[i]))
1696                                         factor = btrfs_bg_type_to_factor(
1697                                                 btrfs_raid_array[i].bg_flag);
1698                         }
1699                 }
1700
1701                 /*
1702                  * Metadata in mixed block group profiles are accounted in data
1703                  */
1704                 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
1705                         if (found->flags & BTRFS_BLOCK_GROUP_DATA)
1706                                 mixed = 1;
1707                         else
1708                                 total_free_meta += found->disk_total -
1709                                         found->disk_used;
1710                 }
1711
1712                 total_used += found->disk_used;
1713         }
1714
1715         buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1716         buf->f_blocks >>= bits;
1717         buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1718
1719         /* Account global block reserve as used, it's in logical size already */
1720         spin_lock(&block_rsv->lock);
1721         /* Mixed block groups accounting is not byte-accurate, avoid overflow */
1722         if (buf->f_bfree >= block_rsv->size >> bits)
1723                 buf->f_bfree -= block_rsv->size >> bits;
1724         else
1725                 buf->f_bfree = 0;
1726         spin_unlock(&block_rsv->lock);
1727
1728         buf->f_bavail = div_u64(total_free_data, factor);
1729         ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
1730         if (ret)
1731                 return ret;
1732         buf->f_bavail += div_u64(total_free_data, factor);
1733         buf->f_bavail = buf->f_bavail >> bits;
1734
1735         /*
1736          * We calculate the remaining metadata space minus global reserve. If
1737          * this is (supposedly) smaller than zero, there's no space. But this
1738          * does not hold in practice, the exhausted state happens where's still
1739          * some positive delta. So we apply some guesswork and compare the
1740          * delta to a 4M threshold.  (Practically observed delta was ~2M.)
1741          *
1742          * We probably cannot calculate the exact threshold value because this
1743          * depends on the internal reservations requested by various
1744          * operations, so some operations that consume a few metadata will
1745          * succeed even if the Avail is zero. But this is better than the other
1746          * way around.
1747          */
1748         thresh = SZ_4M;
1749
1750         /*
1751          * We only want to claim there's no available space if we can no longer
1752          * allocate chunks for our metadata profile and our global reserve will
1753          * not fit in the free metadata space.  If we aren't ->full then we
1754          * still can allocate chunks and thus are fine using the currently
1755          * calculated f_bavail.
1756          */
1757         if (!mixed && block_rsv->space_info->full &&
1758             (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
1759                 buf->f_bavail = 0;
1760
1761         buf->f_type = BTRFS_SUPER_MAGIC;
1762         buf->f_bsize = dentry->d_sb->s_blocksize;
1763         buf->f_namelen = BTRFS_NAME_LEN;
1764
1765         /* We treat it as constant endianness (it doesn't matter _which_)
1766            because we want the fsid to come out the same whether mounted
1767            on a big-endian or little-endian host */
1768         buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1769         buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1770         /* Mask in the root object ID too, to disambiguate subvols */
1771         buf->f_fsid.val[0] ^=
1772                 BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
1773         buf->f_fsid.val[1] ^=
1774                 BTRFS_I(d_inode(dentry))->root->root_key.objectid;
1775
1776         return 0;
1777 }
1778
1779 static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc)
1780 {
1781         struct btrfs_fs_info *p = fc->s_fs_info;
1782         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1783
1784         return fs_info->fs_devices == p->fs_devices;
1785 }
1786
1787 static int btrfs_get_tree_super(struct fs_context *fc)
1788 {
1789         struct btrfs_fs_info *fs_info = fc->s_fs_info;
1790         struct btrfs_fs_context *ctx = fc->fs_private;
1791         struct btrfs_fs_devices *fs_devices = NULL;
1792         struct block_device *bdev;
1793         struct btrfs_device *device;
1794         struct super_block *sb;
1795         blk_mode_t mode = btrfs_open_mode(fc);
1796         int ret;
1797
1798         btrfs_ctx_to_info(fs_info, ctx);
1799         mutex_lock(&uuid_mutex);
1800
1801         /*
1802          * With 'true' passed to btrfs_scan_one_device() (mount time) we expect
1803          * either a valid device or an error.
1804          */
1805         device = btrfs_scan_one_device(fc->source, mode, true);
1806         ASSERT(device != NULL);
1807         if (IS_ERR(device)) {
1808                 mutex_unlock(&uuid_mutex);
1809                 return PTR_ERR(device);
1810         }
1811
1812         fs_devices = device->fs_devices;
1813         fs_info->fs_devices = fs_devices;
1814
1815         ret = btrfs_open_devices(fs_devices, mode, &btrfs_fs_type);
1816         mutex_unlock(&uuid_mutex);
1817         if (ret)
1818                 return ret;
1819
1820         if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1821                 ret = -EACCES;
1822                 goto error;
1823         }
1824
1825         bdev = fs_devices->latest_dev->bdev;
1826
1827         /*
1828          * From now on the error handling is not straightforward.
1829          *
1830          * If successful, this will transfer the fs_info into the super block,
1831          * and fc->s_fs_info will be NULL.  However if there's an existing
1832          * super, we'll still have fc->s_fs_info populated.  If we error
1833          * completely out it'll be cleaned up when we drop the fs_context,
1834          * otherwise it's tied to the lifetime of the super_block.
1835          */
1836         sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc);
1837         if (IS_ERR(sb)) {
1838                 ret = PTR_ERR(sb);
1839                 goto error;
1840         }
1841
1842         set_device_specific_options(fs_info);
1843
1844         if (sb->s_root) {
1845                 btrfs_close_devices(fs_devices);
1846                 if ((fc->sb_flags ^ sb->s_flags) & SB_RDONLY)
1847                         ret = -EBUSY;
1848         } else {
1849                 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1850                 shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id);
1851                 btrfs_sb(sb)->bdev_holder = &btrfs_fs_type;
1852                 ret = btrfs_fill_super(sb, fs_devices, NULL);
1853         }
1854
1855         if (ret) {
1856                 deactivate_locked_super(sb);
1857                 return ret;
1858         }
1859
1860         btrfs_clear_oneshot_options(fs_info);
1861
1862         fc->root = dget(sb->s_root);
1863         return 0;
1864
1865 error:
1866         btrfs_close_devices(fs_devices);
1867         return ret;
1868 }
1869
1870 /*
1871  * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes
1872  * with different ro/rw options") the following works:
1873  *
1874  *        (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo
1875  *       (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar
1876  *
1877  * which looks nice and innocent but is actually pretty intricate and deserves
1878  * a long comment.
1879  *
1880  * On another filesystem a subvolume mount is close to something like:
1881  *
1882  *      (iii) # create rw superblock + initial mount
1883  *            mount -t xfs /dev/sdb /opt/
1884  *
1885  *            # create ro bind mount
1886  *            mount --bind -o ro /opt/foo /mnt/foo
1887  *
1888  *            # unmount initial mount
1889  *            umount /opt
1890  *
1891  * Of course, there's some special subvolume sauce and there's the fact that the
1892  * sb->s_root dentry is really swapped after mount_subtree(). But conceptually
1893  * it's very close and will help us understand the issue.
1894  *
1895  * The old mount API didn't cleanly distinguish between a mount being made ro
1896  * and a superblock being made ro.  The only way to change the ro state of
1897  * either object was by passing ms_rdonly. If a new mount was created via
1898  * mount(2) such as:
1899  *
1900  *      mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null);
1901  *
1902  * the MS_RDONLY flag being specified had two effects:
1903  *
1904  * (1) MNT_READONLY was raised -> the resulting mount got
1905  *     @mnt->mnt_flags |= MNT_READONLY raised.
1906  *
1907  * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems
1908  *     made the superblock ro. Note, how SB_RDONLY has the same value as
1909  *     ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2).
1910  *
1911  * Creating a subtree mount via (iii) ends up leaving a rw superblock with a
1912  * subtree mounted ro.
1913  *
1914  * But consider the effect on the old mount API on btrfs subvolume mounting
1915  * which combines the distinct step in (iii) into a single step.
1916  *
1917  * By issuing (i) both the mount and the superblock are turned ro. Now when (ii)
1918  * is issued the superblock is ro and thus even if the mount created for (ii) is
1919  * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro
1920  * to rw for (ii) which it did using an internal remount call.
1921  *
1922  * IOW, subvolume mounting was inherently complicated due to the ambiguity of
1923  * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate
1924  * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when
1925  * passed by mount(8) to mount(2).
1926  *
1927  * Enter the new mount API. The new mount API disambiguates making a mount ro
1928  * and making a superblock ro.
1929  *
1930  * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either
1931  *     fsmount() or mount_setattr() this is a pure VFS level change for a
1932  *     specific mount or mount tree that is never seen by the filesystem itself.
1933  *
1934  * (4) To turn a superblock ro the "ro" flag must be used with
1935  *     fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem
1936  *     in fc->sb_flags.
1937  *
1938  * This disambiguation has rather positive consequences.  Mounting a subvolume
1939  * ro will not also turn the superblock ro. Only the mount for the subvolume
1940  * will become ro.
1941  *
1942  * So, if the superblock creation request comes from the new mount API the
1943  * caller must have explicitly done:
1944  *
1945  *      fsconfig(FSCONFIG_SET_FLAG, "ro")
1946  *      fsmount/mount_setattr(MOUNT_ATTR_RDONLY)
1947  *
1948  * IOW, at some point the caller must have explicitly turned the whole
1949  * superblock ro and we shouldn't just undo it like we did for the old mount
1950  * API. In any case, it lets us avoid the hack in the new mount API.
1951  *
1952  * Consequently, the remounting hack must only be used for requests originating
1953  * from the old mount API and should be marked for full deprecation so it can be
1954  * turned off in a couple of years.
1955  *
1956  * The new mount API has no reason to support this hack.
1957  */
1958 static struct vfsmount *btrfs_reconfigure_for_mount(struct fs_context *fc)
1959 {
1960         struct vfsmount *mnt;
1961         int ret;
1962         const bool ro2rw = !(fc->sb_flags & SB_RDONLY);
1963
1964         /*
1965          * We got an EBUSY because our SB_RDONLY flag didn't match the existing
1966          * super block, so invert our setting here and retry the mount so we
1967          * can get our vfsmount.
1968          */
1969         if (ro2rw)
1970                 fc->sb_flags |= SB_RDONLY;
1971         else
1972                 fc->sb_flags &= ~SB_RDONLY;
1973
1974         mnt = fc_mount(fc);
1975         if (IS_ERR(mnt))
1976                 return mnt;
1977
1978         if (!fc->oldapi || !ro2rw)
1979                 return mnt;
1980
1981         /* We need to convert to rw, call reconfigure. */
1982         fc->sb_flags &= ~SB_RDONLY;
1983         down_write(&mnt->mnt_sb->s_umount);
1984         ret = btrfs_reconfigure(fc);
1985         up_write(&mnt->mnt_sb->s_umount);
1986         if (ret) {
1987                 mntput(mnt);
1988                 return ERR_PTR(ret);
1989         }
1990         return mnt;
1991 }
1992
1993 static int btrfs_get_tree_subvol(struct fs_context *fc)
1994 {
1995         struct btrfs_fs_info *fs_info = NULL;
1996         struct btrfs_fs_context *ctx = fc->fs_private;
1997         struct fs_context *dup_fc;
1998         struct dentry *dentry;
1999         struct vfsmount *mnt;
2000
2001         /*
2002          * Setup a dummy root and fs_info for test/set super.  This is because
2003          * we don't actually fill this stuff out until open_ctree, but we need
2004          * then open_ctree will properly initialize the file system specific
2005          * settings later.  btrfs_init_fs_info initializes the static elements
2006          * of the fs_info (locks and such) to make cleanup easier if we find a
2007          * superblock with our given fs_devices later on at sget() time.
2008          */
2009         fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
2010         if (!fs_info)
2011                 return -ENOMEM;
2012
2013         fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2014         fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2015         if (!fs_info->super_copy || !fs_info->super_for_commit) {
2016                 btrfs_free_fs_info(fs_info);
2017                 return -ENOMEM;
2018         }
2019         btrfs_init_fs_info(fs_info);
2020
2021         dup_fc = vfs_dup_fs_context(fc);
2022         if (IS_ERR(dup_fc)) {
2023                 btrfs_free_fs_info(fs_info);
2024                 return PTR_ERR(dup_fc);
2025         }
2026
2027         /*
2028          * When we do the sget_fc this gets transferred to the sb, so we only
2029          * need to set it on the dup_fc as this is what creates the super block.
2030          */
2031         dup_fc->s_fs_info = fs_info;
2032
2033         /*
2034          * We'll do the security settings in our btrfs_get_tree_super() mount
2035          * loop, they were duplicated into dup_fc, we can drop the originals
2036          * here.
2037          */
2038         security_free_mnt_opts(&fc->security);
2039         fc->security = NULL;
2040
2041         mnt = fc_mount(dup_fc);
2042         if (PTR_ERR_OR_ZERO(mnt) == -EBUSY)
2043                 mnt = btrfs_reconfigure_for_mount(dup_fc);
2044         put_fs_context(dup_fc);
2045         if (IS_ERR(mnt))
2046                 return PTR_ERR(mnt);
2047
2048         /*
2049          * This free's ->subvol_name, because if it isn't set we have to
2050          * allocate a buffer to hold the subvol_name, so we just drop our
2051          * reference to it here.
2052          */
2053         dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt);
2054         ctx->subvol_name = NULL;
2055         if (IS_ERR(dentry))
2056                 return PTR_ERR(dentry);
2057
2058         fc->root = dentry;
2059         return 0;
2060 }
2061
2062 static int btrfs_get_tree(struct fs_context *fc)
2063 {
2064         /*
2065          * Since we use mount_subtree to mount the default/specified subvol, we
2066          * have to do mounts in two steps.
2067          *
2068          * First pass through we call btrfs_get_tree_subvol(), this is just a
2069          * wrapper around fc_mount() to call back into here again, and this time
2070          * we'll call btrfs_get_tree_super().  This will do the open_ctree() and
2071          * everything to open the devices and file system.  Then we return back
2072          * with a fully constructed vfsmount in btrfs_get_tree_subvol(), and
2073          * from there we can do our mount_subvol() call, which will lookup
2074          * whichever subvol we're mounting and setup this fc with the
2075          * appropriate dentry for the subvol.
2076          */
2077         if (fc->s_fs_info)
2078                 return btrfs_get_tree_super(fc);
2079         return btrfs_get_tree_subvol(fc);
2080 }
2081
2082 static void btrfs_kill_super(struct super_block *sb)
2083 {
2084         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2085         kill_anon_super(sb);
2086         btrfs_free_fs_info(fs_info);
2087 }
2088
2089 static void btrfs_free_fs_context(struct fs_context *fc)
2090 {
2091         struct btrfs_fs_context *ctx = fc->fs_private;
2092         struct btrfs_fs_info *fs_info = fc->s_fs_info;
2093
2094         if (fs_info)
2095                 btrfs_free_fs_info(fs_info);
2096
2097         if (ctx && refcount_dec_and_test(&ctx->refs)) {
2098                 kfree(ctx->subvol_name);
2099                 kfree(ctx);
2100         }
2101 }
2102
2103 static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc)
2104 {
2105         struct btrfs_fs_context *ctx = src_fc->fs_private;
2106
2107         /*
2108          * Give a ref to our ctx to this dup, as we want to keep it around for
2109          * our original fc so we can have the subvolume name or objectid.
2110          *
2111          * We unset ->source in the original fc because the dup needs it for
2112          * mounting, and then once we free the dup it'll free ->source, so we
2113          * need to make sure we're only pointing to it in one fc.
2114          */
2115         refcount_inc(&ctx->refs);
2116         fc->fs_private = ctx;
2117         fc->source = src_fc->source;
2118         src_fc->source = NULL;
2119         return 0;
2120 }
2121
2122 static const struct fs_context_operations btrfs_fs_context_ops = {
2123         .parse_param    = btrfs_parse_param,
2124         .reconfigure    = btrfs_reconfigure,
2125         .get_tree       = btrfs_get_tree,
2126         .dup            = btrfs_dup_fs_context,
2127         .free           = btrfs_free_fs_context,
2128 };
2129
2130 static int btrfs_init_fs_context(struct fs_context *fc)
2131 {
2132         struct btrfs_fs_context *ctx;
2133
2134         ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL);
2135         if (!ctx)
2136                 return -ENOMEM;
2137
2138         refcount_set(&ctx->refs, 1);
2139         fc->fs_private = ctx;
2140         fc->ops = &btrfs_fs_context_ops;
2141
2142         if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2143                 btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx);
2144         } else {
2145                 ctx->thread_pool_size =
2146                         min_t(unsigned long, num_online_cpus() + 2, 8);
2147                 ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2148                 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2149         }
2150
2151 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
2152         fc->sb_flags |= SB_POSIXACL;
2153 #endif
2154         fc->sb_flags |= SB_I_VERSION;
2155
2156         return 0;
2157 }
2158
2159 static struct file_system_type btrfs_fs_type = {
2160         .owner                  = THIS_MODULE,
2161         .name                   = "btrfs",
2162         .init_fs_context        = btrfs_init_fs_context,
2163         .parameters             = btrfs_fs_parameters,
2164         .kill_sb                = btrfs_kill_super,
2165         .fs_flags               = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2166  };
2167
2168 MODULE_ALIAS_FS("btrfs");
2169
2170 static int btrfs_control_open(struct inode *inode, struct file *file)
2171 {
2172         /*
2173          * The control file's private_data is used to hold the
2174          * transaction when it is started and is used to keep
2175          * track of whether a transaction is already in progress.
2176          */
2177         file->private_data = NULL;
2178         return 0;
2179 }
2180
2181 /*
2182  * Used by /dev/btrfs-control for devices ioctls.
2183  */
2184 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2185                                 unsigned long arg)
2186 {
2187         struct btrfs_ioctl_vol_args *vol;
2188         struct btrfs_device *device = NULL;
2189         dev_t devt = 0;
2190         int ret = -ENOTTY;
2191
2192         if (!capable(CAP_SYS_ADMIN))
2193                 return -EPERM;
2194
2195         vol = memdup_user((void __user *)arg, sizeof(*vol));
2196         if (IS_ERR(vol))
2197                 return PTR_ERR(vol);
2198         vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2199
2200         switch (cmd) {
2201         case BTRFS_IOC_SCAN_DEV:
2202                 mutex_lock(&uuid_mutex);
2203                 /*
2204                  * Scanning outside of mount can return NULL which would turn
2205                  * into 0 error code.
2206                  */
2207                 device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2208                 ret = PTR_ERR_OR_ZERO(device);
2209                 mutex_unlock(&uuid_mutex);
2210                 break;
2211         case BTRFS_IOC_FORGET_DEV:
2212                 if (vol->name[0] != 0) {
2213                         ret = lookup_bdev(vol->name, &devt);
2214                         if (ret)
2215                                 break;
2216                 }
2217                 ret = btrfs_forget_devices(devt);
2218                 break;
2219         case BTRFS_IOC_DEVICES_READY:
2220                 mutex_lock(&uuid_mutex);
2221                 /*
2222                  * Scanning outside of mount can return NULL which would turn
2223                  * into 0 error code.
2224                  */
2225                 device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2226                 if (IS_ERR_OR_NULL(device)) {
2227                         mutex_unlock(&uuid_mutex);
2228                         ret = PTR_ERR(device);
2229                         break;
2230                 }
2231                 ret = !(device->fs_devices->num_devices ==
2232                         device->fs_devices->total_devices);
2233                 mutex_unlock(&uuid_mutex);
2234                 break;
2235         case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2236                 ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2237                 break;
2238         }
2239
2240         kfree(vol);
2241         return ret;
2242 }
2243
2244 static int btrfs_freeze(struct super_block *sb)
2245 {
2246         struct btrfs_trans_handle *trans;
2247         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2248         struct btrfs_root *root = fs_info->tree_root;
2249
2250         set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2251         /*
2252          * We don't need a barrier here, we'll wait for any transaction that
2253          * could be in progress on other threads (and do delayed iputs that
2254          * we want to avoid on a frozen filesystem), or do the commit
2255          * ourselves.
2256          */
2257         trans = btrfs_attach_transaction_barrier(root);
2258         if (IS_ERR(trans)) {
2259                 /* no transaction, don't bother */
2260                 if (PTR_ERR(trans) == -ENOENT)
2261                         return 0;
2262                 return PTR_ERR(trans);
2263         }
2264         return btrfs_commit_transaction(trans);
2265 }
2266
2267 static int check_dev_super(struct btrfs_device *dev)
2268 {
2269         struct btrfs_fs_info *fs_info = dev->fs_info;
2270         struct btrfs_super_block *sb;
2271         u64 last_trans;
2272         u16 csum_type;
2273         int ret = 0;
2274
2275         /* This should be called with fs still frozen. */
2276         ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2277
2278         /* Missing dev, no need to check. */
2279         if (!dev->bdev)
2280                 return 0;
2281
2282         /* Only need to check the primary super block. */
2283         sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2284         if (IS_ERR(sb))
2285                 return PTR_ERR(sb);
2286
2287         /* Verify the checksum. */
2288         csum_type = btrfs_super_csum_type(sb);
2289         if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2290                 btrfs_err(fs_info, "csum type changed, has %u expect %u",
2291                           csum_type, btrfs_super_csum_type(fs_info->super_copy));
2292                 ret = -EUCLEAN;
2293                 goto out;
2294         }
2295
2296         if (btrfs_check_super_csum(fs_info, sb)) {
2297                 btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2298                 ret = -EUCLEAN;
2299                 goto out;
2300         }
2301
2302         /* Btrfs_validate_super() includes fsid check against super->fsid. */
2303         ret = btrfs_validate_super(fs_info, sb, 0);
2304         if (ret < 0)
2305                 goto out;
2306
2307         last_trans = btrfs_get_last_trans_committed(fs_info);
2308         if (btrfs_super_generation(sb) != last_trans) {
2309                 btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2310                           btrfs_super_generation(sb), last_trans);
2311                 ret = -EUCLEAN;
2312                 goto out;
2313         }
2314 out:
2315         btrfs_release_disk_super(sb);
2316         return ret;
2317 }
2318
2319 static int btrfs_unfreeze(struct super_block *sb)
2320 {
2321         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2322         struct btrfs_device *device;
2323         int ret = 0;
2324
2325         /*
2326          * Make sure the fs is not changed by accident (like hibernation then
2327          * modified by other OS).
2328          * If we found anything wrong, we mark the fs error immediately.
2329          *
2330          * And since the fs is frozen, no one can modify the fs yet, thus
2331          * we don't need to hold device_list_mutex.
2332          */
2333         list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2334                 ret = check_dev_super(device);
2335                 if (ret < 0) {
2336                         btrfs_handle_fs_error(fs_info, ret,
2337                                 "super block on devid %llu got modified unexpectedly",
2338                                 device->devid);
2339                         break;
2340                 }
2341         }
2342         clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2343
2344         /*
2345          * We still return 0, to allow VFS layer to unfreeze the fs even the
2346          * above checks failed. Since the fs is either fine or read-only, we're
2347          * safe to continue, without causing further damage.
2348          */
2349         return 0;
2350 }
2351
2352 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2353 {
2354         struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2355
2356         /*
2357          * There should be always a valid pointer in latest_dev, it may be stale
2358          * for a short moment in case it's being deleted but still valid until
2359          * the end of RCU grace period.
2360          */
2361         rcu_read_lock();
2362         seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2363         rcu_read_unlock();
2364
2365         return 0;
2366 }
2367
2368 static const struct super_operations btrfs_super_ops = {
2369         .drop_inode     = btrfs_drop_inode,
2370         .evict_inode    = btrfs_evict_inode,
2371         .put_super      = btrfs_put_super,
2372         .sync_fs        = btrfs_sync_fs,
2373         .show_options   = btrfs_show_options,
2374         .show_devname   = btrfs_show_devname,
2375         .alloc_inode    = btrfs_alloc_inode,
2376         .destroy_inode  = btrfs_destroy_inode,
2377         .free_inode     = btrfs_free_inode,
2378         .statfs         = btrfs_statfs,
2379         .freeze_fs      = btrfs_freeze,
2380         .unfreeze_fs    = btrfs_unfreeze,
2381 };
2382
2383 static const struct file_operations btrfs_ctl_fops = {
2384         .open = btrfs_control_open,
2385         .unlocked_ioctl  = btrfs_control_ioctl,
2386         .compat_ioctl = compat_ptr_ioctl,
2387         .owner   = THIS_MODULE,
2388         .llseek = noop_llseek,
2389 };
2390
2391 static struct miscdevice btrfs_misc = {
2392         .minor          = BTRFS_MINOR,
2393         .name           = "btrfs-control",
2394         .fops           = &btrfs_ctl_fops
2395 };
2396
2397 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2398 MODULE_ALIAS("devname:btrfs-control");
2399
2400 static int __init btrfs_interface_init(void)
2401 {
2402         return misc_register(&btrfs_misc);
2403 }
2404
2405 static __cold void btrfs_interface_exit(void)
2406 {
2407         misc_deregister(&btrfs_misc);
2408 }
2409
2410 static int __init btrfs_print_mod_info(void)
2411 {
2412         static const char options[] = ""
2413 #ifdef CONFIG_BTRFS_DEBUG
2414                         ", debug=on"
2415 #endif
2416 #ifdef CONFIG_BTRFS_ASSERT
2417                         ", assert=on"
2418 #endif
2419 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2420                         ", ref-verify=on"
2421 #endif
2422 #ifdef CONFIG_BLK_DEV_ZONED
2423                         ", zoned=yes"
2424 #else
2425                         ", zoned=no"
2426 #endif
2427 #ifdef CONFIG_FS_VERITY
2428                         ", fsverity=yes"
2429 #else
2430                         ", fsverity=no"
2431 #endif
2432                         ;
2433         pr_info("Btrfs loaded%s\n", options);
2434         return 0;
2435 }
2436
2437 static int register_btrfs(void)
2438 {
2439         return register_filesystem(&btrfs_fs_type);
2440 }
2441
2442 static void unregister_btrfs(void)
2443 {
2444         unregister_filesystem(&btrfs_fs_type);
2445 }
2446
2447 /* Helper structure for long init/exit functions. */
2448 struct init_sequence {
2449         int (*init_func)(void);
2450         /* Can be NULL if the init_func doesn't need cleanup. */
2451         void (*exit_func)(void);
2452 };
2453
2454 static const struct init_sequence mod_init_seq[] = {
2455         {
2456                 .init_func = btrfs_props_init,
2457                 .exit_func = NULL,
2458         }, {
2459                 .init_func = btrfs_init_sysfs,
2460                 .exit_func = btrfs_exit_sysfs,
2461         }, {
2462                 .init_func = btrfs_init_compress,
2463                 .exit_func = btrfs_exit_compress,
2464         }, {
2465                 .init_func = btrfs_init_cachep,
2466                 .exit_func = btrfs_destroy_cachep,
2467         }, {
2468                 .init_func = btrfs_transaction_init,
2469                 .exit_func = btrfs_transaction_exit,
2470         }, {
2471                 .init_func = btrfs_ctree_init,
2472                 .exit_func = btrfs_ctree_exit,
2473         }, {
2474                 .init_func = btrfs_free_space_init,
2475                 .exit_func = btrfs_free_space_exit,
2476         }, {
2477                 .init_func = extent_state_init_cachep,
2478                 .exit_func = extent_state_free_cachep,
2479         }, {
2480                 .init_func = extent_buffer_init_cachep,
2481                 .exit_func = extent_buffer_free_cachep,
2482         }, {
2483                 .init_func = btrfs_bioset_init,
2484                 .exit_func = btrfs_bioset_exit,
2485         }, {
2486                 .init_func = extent_map_init,
2487                 .exit_func = extent_map_exit,
2488         }, {
2489                 .init_func = ordered_data_init,
2490                 .exit_func = ordered_data_exit,
2491         }, {
2492                 .init_func = btrfs_delayed_inode_init,
2493                 .exit_func = btrfs_delayed_inode_exit,
2494         }, {
2495                 .init_func = btrfs_auto_defrag_init,
2496                 .exit_func = btrfs_auto_defrag_exit,
2497         }, {
2498                 .init_func = btrfs_delayed_ref_init,
2499                 .exit_func = btrfs_delayed_ref_exit,
2500         }, {
2501                 .init_func = btrfs_prelim_ref_init,
2502                 .exit_func = btrfs_prelim_ref_exit,
2503         }, {
2504                 .init_func = btrfs_interface_init,
2505                 .exit_func = btrfs_interface_exit,
2506         }, {
2507                 .init_func = btrfs_print_mod_info,
2508                 .exit_func = NULL,
2509         }, {
2510                 .init_func = btrfs_run_sanity_tests,
2511                 .exit_func = NULL,
2512         }, {
2513                 .init_func = register_btrfs,
2514                 .exit_func = unregister_btrfs,
2515         }
2516 };
2517
2518 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2519
2520 static __always_inline void btrfs_exit_btrfs_fs(void)
2521 {
2522         int i;
2523
2524         for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2525                 if (!mod_init_result[i])
2526                         continue;
2527                 if (mod_init_seq[i].exit_func)
2528                         mod_init_seq[i].exit_func();
2529                 mod_init_result[i] = false;
2530         }
2531 }
2532
2533 static void __exit exit_btrfs_fs(void)
2534 {
2535         btrfs_exit_btrfs_fs();
2536         btrfs_cleanup_fs_uuids();
2537 }
2538
2539 static int __init init_btrfs_fs(void)
2540 {
2541         int ret;
2542         int i;
2543
2544         for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2545                 ASSERT(!mod_init_result[i]);
2546                 ret = mod_init_seq[i].init_func();
2547                 if (ret < 0) {
2548                         btrfs_exit_btrfs_fs();
2549                         return ret;
2550                 }
2551                 mod_init_result[i] = true;
2552         }
2553         return 0;
2554 }
2555
2556 late_initcall(init_btrfs_fs);
2557 module_exit(exit_btrfs_fs)
2558
2559 MODULE_LICENSE("GPL");
2560 MODULE_SOFTDEP("pre: crc32c");
2561 MODULE_SOFTDEP("pre: xxhash64");
2562 MODULE_SOFTDEP("pre: sha256");
2563 MODULE_SOFTDEP("pre: blake2b-256");