Merge tag 'sched-urgent-2020-10-25' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / fs / btrfs / space-info.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12
13 /*
14  * HOW DOES SPACE RESERVATION WORK
15  *
16  * If you want to know about delalloc specifically, there is a separate comment
17  * for that with the delalloc code.  This comment is about how the whole system
18  * works generally.
19  *
20  * BASIC CONCEPTS
21  *
22  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
23  *   There's a description of the bytes_ fields with the struct declaration,
24  *   refer to that for specifics on each field.  Suffice it to say that for
25  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
26  *   determining if there is space to make an allocation.  There is a space_info
27  *   for METADATA, SYSTEM, and DATA areas.
28  *
29  *   2) block_rsv's.  These are basically buckets for every different type of
30  *   metadata reservation we have.  You can see the comment in the block_rsv
31  *   code on the rules for each type, but generally block_rsv->reserved is how
32  *   much space is accounted for in space_info->bytes_may_use.
33  *
34  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
35  *   on the number of items we will want to modify.  We have one for changing
36  *   items, and one for inserting new items.  Generally we use these helpers to
37  *   determine the size of the block reserves, and then use the actual bytes
38  *   values to adjust the space_info counters.
39  *
40  * MAKING RESERVATIONS, THE NORMAL CASE
41  *
42  *   We call into either btrfs_reserve_data_bytes() or
43  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44  *   num_bytes we want to reserve.
45  *
46  *   ->reserve
47  *     space_info->bytes_may_reserve += num_bytes
48  *
49  *   ->extent allocation
50  *     Call btrfs_add_reserved_bytes() which does
51  *     space_info->bytes_may_reserve -= num_bytes
52  *     space_info->bytes_reserved += extent_bytes
53  *
54  *   ->insert reference
55  *     Call btrfs_update_block_group() which does
56  *     space_info->bytes_reserved -= extent_bytes
57  *     space_info->bytes_used += extent_bytes
58  *
59  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
60  *
61  *   Assume we are unable to simply make the reservation because we do not have
62  *   enough space
63  *
64  *   -> __reserve_bytes
65  *     create a reserve_ticket with ->bytes set to our reservation, add it to
66  *     the tail of space_info->tickets, kick async flush thread
67  *
68  *   ->handle_reserve_ticket
69  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70  *     on the ticket.
71  *
72  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73  *     Flushes various things attempting to free up space.
74  *
75  *   -> btrfs_try_granting_tickets()
76  *     This is called by anything that either subtracts space from
77  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78  *     space_info->total_bytes.  This loops through the ->priority_tickets and
79  *     then the ->tickets list checking to see if the reservation can be
80  *     completed.  If it can the space is added to space_info->bytes_may_use and
81  *     the ticket is woken up.
82  *
83  *   -> ticket wakeup
84  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
85  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86  *     were interrupted.)
87  *
88  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
89  *
90  *   Same as the above, except we add ourselves to the
91  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
92  *   call flush_space() ourselves for the states that are safe for us to call
93  *   without deadlocking and hope for the best.
94  *
95  * THE FLUSHING STATES
96  *
97  *   Generally speaking we will have two cases for each state, a "nice" state
98  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
99  *   reduce the locking over head on the various trees, and even to keep from
100  *   doing any work at all in the case of delayed refs.  Each of these delayed
101  *   things however hold reservations, and so letting them run allows us to
102  *   reclaim space so we can make new reservations.
103  *
104  *   FLUSH_DELAYED_ITEMS
105  *     Every inode has a delayed item to update the inode.  Take a simple write
106  *     for example, we would update the inode item at write time to update the
107  *     mtime, and then again at finish_ordered_io() time in order to update the
108  *     isize or bytes.  We keep these delayed items to coalesce these operations
109  *     into a single operation done on demand.  These are an easy way to reclaim
110  *     metadata space.
111  *
112  *   FLUSH_DELALLOC
113  *     Look at the delalloc comment to get an idea of how much space is reserved
114  *     for delayed allocation.  We can reclaim some of this space simply by
115  *     running delalloc, but usually we need to wait for ordered extents to
116  *     reclaim the bulk of this space.
117  *
118  *   FLUSH_DELAYED_REFS
119  *     We have a block reserve for the outstanding delayed refs space, and every
120  *     delayed ref operation holds a reservation.  Running these is a quick way
121  *     to reclaim space, but we want to hold this until the end because COW can
122  *     churn a lot and we can avoid making some extent tree modifications if we
123  *     are able to delay for as long as possible.
124  *
125  *   ALLOC_CHUNK
126  *     We will skip this the first time through space reservation, because of
127  *     overcommit and we don't want to have a lot of useless metadata space when
128  *     our worst case reservations will likely never come true.
129  *
130  *   RUN_DELAYED_IPUTS
131  *     If we're freeing inodes we're likely freeing checksums, file extent
132  *     items, and extent tree items.  Loads of space could be freed up by these
133  *     operations, however they won't be usable until the transaction commits.
134  *
135  *   COMMIT_TRANS
136  *     may_commit_transaction() is the ultimate arbiter on whether we commit the
137  *     transaction or not.  In order to avoid constantly churning we do all the
138  *     above flushing first and then commit the transaction as the last resort.
139  *     However we need to take into account things like pinned space that would
140  *     be freed, plus any delayed work we may not have gotten rid of in the case
141  *     of metadata.
142  *
143  * OVERCOMMIT
144  *
145  *   Because we hold so many reservations for metadata we will allow you to
146  *   reserve more space than is currently free in the currently allocate
147  *   metadata space.  This only happens with metadata, data does not allow
148  *   overcommitting.
149  *
150  *   You can see the current logic for when we allow overcommit in
151  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
152  *   is no unallocated space to be had, all reservations are kept within the
153  *   free space in the allocated metadata chunks.
154  *
155  *   Because of overcommitting, you generally want to use the
156  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
157  *   thing with or without extra unallocated space.
158  */
159
160 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
161                           bool may_use_included)
162 {
163         ASSERT(s_info);
164         return s_info->bytes_used + s_info->bytes_reserved +
165                 s_info->bytes_pinned + s_info->bytes_readonly +
166                 (may_use_included ? s_info->bytes_may_use : 0);
167 }
168
169 /*
170  * after adding space to the filesystem, we need to clear the full flags
171  * on all the space infos.
172  */
173 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
174 {
175         struct list_head *head = &info->space_info;
176         struct btrfs_space_info *found;
177
178         list_for_each_entry(found, head, list)
179                 found->full = 0;
180 }
181
182 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
183 {
184
185         struct btrfs_space_info *space_info;
186         int i;
187         int ret;
188
189         space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
190         if (!space_info)
191                 return -ENOMEM;
192
193         ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
194                                  GFP_KERNEL);
195         if (ret) {
196                 kfree(space_info);
197                 return ret;
198         }
199
200         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
201                 INIT_LIST_HEAD(&space_info->block_groups[i]);
202         init_rwsem(&space_info->groups_sem);
203         spin_lock_init(&space_info->lock);
204         space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
205         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
206         INIT_LIST_HEAD(&space_info->ro_bgs);
207         INIT_LIST_HEAD(&space_info->tickets);
208         INIT_LIST_HEAD(&space_info->priority_tickets);
209
210         ret = btrfs_sysfs_add_space_info_type(info, space_info);
211         if (ret)
212                 return ret;
213
214         list_add(&space_info->list, &info->space_info);
215         if (flags & BTRFS_BLOCK_GROUP_DATA)
216                 info->data_sinfo = space_info;
217
218         return ret;
219 }
220
221 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
222 {
223         struct btrfs_super_block *disk_super;
224         u64 features;
225         u64 flags;
226         int mixed = 0;
227         int ret;
228
229         disk_super = fs_info->super_copy;
230         if (!btrfs_super_root(disk_super))
231                 return -EINVAL;
232
233         features = btrfs_super_incompat_flags(disk_super);
234         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
235                 mixed = 1;
236
237         flags = BTRFS_BLOCK_GROUP_SYSTEM;
238         ret = create_space_info(fs_info, flags);
239         if (ret)
240                 goto out;
241
242         if (mixed) {
243                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
244                 ret = create_space_info(fs_info, flags);
245         } else {
246                 flags = BTRFS_BLOCK_GROUP_METADATA;
247                 ret = create_space_info(fs_info, flags);
248                 if (ret)
249                         goto out;
250
251                 flags = BTRFS_BLOCK_GROUP_DATA;
252                 ret = create_space_info(fs_info, flags);
253         }
254 out:
255         return ret;
256 }
257
258 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
259                              u64 total_bytes, u64 bytes_used,
260                              u64 bytes_readonly,
261                              struct btrfs_space_info **space_info)
262 {
263         struct btrfs_space_info *found;
264         int factor;
265
266         factor = btrfs_bg_type_to_factor(flags);
267
268         found = btrfs_find_space_info(info, flags);
269         ASSERT(found);
270         spin_lock(&found->lock);
271         found->total_bytes += total_bytes;
272         found->disk_total += total_bytes * factor;
273         found->bytes_used += bytes_used;
274         found->disk_used += bytes_used * factor;
275         found->bytes_readonly += bytes_readonly;
276         if (total_bytes > 0)
277                 found->full = 0;
278         btrfs_try_granting_tickets(info, found);
279         spin_unlock(&found->lock);
280         *space_info = found;
281 }
282
283 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
284                                                u64 flags)
285 {
286         struct list_head *head = &info->space_info;
287         struct btrfs_space_info *found;
288
289         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
290
291         list_for_each_entry(found, head, list) {
292                 if (found->flags & flags)
293                         return found;
294         }
295         return NULL;
296 }
297
298 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
299                           struct btrfs_space_info *space_info,
300                           enum btrfs_reserve_flush_enum flush)
301 {
302         u64 profile;
303         u64 avail;
304         int factor;
305
306         if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
307                 profile = btrfs_system_alloc_profile(fs_info);
308         else
309                 profile = btrfs_metadata_alloc_profile(fs_info);
310
311         avail = atomic64_read(&fs_info->free_chunk_space);
312
313         /*
314          * If we have dup, raid1 or raid10 then only half of the free
315          * space is actually usable.  For raid56, the space info used
316          * doesn't include the parity drive, so we don't have to
317          * change the math
318          */
319         factor = btrfs_bg_type_to_factor(profile);
320         avail = div_u64(avail, factor);
321
322         /*
323          * If we aren't flushing all things, let us overcommit up to
324          * 1/2th of the space. If we can flush, don't let us overcommit
325          * too much, let it overcommit up to 1/8 of the space.
326          */
327         if (flush == BTRFS_RESERVE_FLUSH_ALL)
328                 avail >>= 3;
329         else
330                 avail >>= 1;
331         return avail;
332 }
333
334 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
335                          struct btrfs_space_info *space_info, u64 bytes,
336                          enum btrfs_reserve_flush_enum flush)
337 {
338         u64 avail;
339         u64 used;
340
341         /* Don't overcommit when in mixed mode */
342         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
343                 return 0;
344
345         used = btrfs_space_info_used(space_info, true);
346         avail = calc_available_free_space(fs_info, space_info, flush);
347
348         if (used + bytes < space_info->total_bytes + avail)
349                 return 1;
350         return 0;
351 }
352
353 static void remove_ticket(struct btrfs_space_info *space_info,
354                           struct reserve_ticket *ticket)
355 {
356         if (!list_empty(&ticket->list)) {
357                 list_del_init(&ticket->list);
358                 ASSERT(space_info->reclaim_size >= ticket->bytes);
359                 space_info->reclaim_size -= ticket->bytes;
360         }
361 }
362
363 /*
364  * This is for space we already have accounted in space_info->bytes_may_use, so
365  * basically when we're returning space from block_rsv's.
366  */
367 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
368                                 struct btrfs_space_info *space_info)
369 {
370         struct list_head *head;
371         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
372
373         lockdep_assert_held(&space_info->lock);
374
375         head = &space_info->priority_tickets;
376 again:
377         while (!list_empty(head)) {
378                 struct reserve_ticket *ticket;
379                 u64 used = btrfs_space_info_used(space_info, true);
380
381                 ticket = list_first_entry(head, struct reserve_ticket, list);
382
383                 /* Check and see if our ticket can be satisified now. */
384                 if ((used + ticket->bytes <= space_info->total_bytes) ||
385                     btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
386                                          flush)) {
387                         btrfs_space_info_update_bytes_may_use(fs_info,
388                                                               space_info,
389                                                               ticket->bytes);
390                         remove_ticket(space_info, ticket);
391                         ticket->bytes = 0;
392                         space_info->tickets_id++;
393                         wake_up(&ticket->wait);
394                 } else {
395                         break;
396                 }
397         }
398
399         if (head == &space_info->priority_tickets) {
400                 head = &space_info->tickets;
401                 flush = BTRFS_RESERVE_FLUSH_ALL;
402                 goto again;
403         }
404 }
405
406 #define DUMP_BLOCK_RSV(fs_info, rsv_name)                               \
407 do {                                                                    \
408         struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;           \
409         spin_lock(&__rsv->lock);                                        \
410         btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",      \
411                    __rsv->size, __rsv->reserved);                       \
412         spin_unlock(&__rsv->lock);                                      \
413 } while (0)
414
415 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
416                                     struct btrfs_space_info *info)
417 {
418         lockdep_assert_held(&info->lock);
419
420         btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
421                    info->flags,
422                    info->total_bytes - btrfs_space_info_used(info, true),
423                    info->full ? "" : "not ");
424         btrfs_info(fs_info,
425                 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
426                 info->total_bytes, info->bytes_used, info->bytes_pinned,
427                 info->bytes_reserved, info->bytes_may_use,
428                 info->bytes_readonly);
429
430         DUMP_BLOCK_RSV(fs_info, global_block_rsv);
431         DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
432         DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
433         DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
434         DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
435
436 }
437
438 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
439                            struct btrfs_space_info *info, u64 bytes,
440                            int dump_block_groups)
441 {
442         struct btrfs_block_group *cache;
443         int index = 0;
444
445         spin_lock(&info->lock);
446         __btrfs_dump_space_info(fs_info, info);
447         spin_unlock(&info->lock);
448
449         if (!dump_block_groups)
450                 return;
451
452         down_read(&info->groups_sem);
453 again:
454         list_for_each_entry(cache, &info->block_groups[index], list) {
455                 spin_lock(&cache->lock);
456                 btrfs_info(fs_info,
457                         "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
458                         cache->start, cache->length, cache->used, cache->pinned,
459                         cache->reserved, cache->ro ? "[readonly]" : "");
460                 spin_unlock(&cache->lock);
461                 btrfs_dump_free_space(cache, bytes);
462         }
463         if (++index < BTRFS_NR_RAID_TYPES)
464                 goto again;
465         up_read(&info->groups_sem);
466 }
467
468 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
469                                         u64 to_reclaim)
470 {
471         u64 bytes;
472         u64 nr;
473
474         bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
475         nr = div64_u64(to_reclaim, bytes);
476         if (!nr)
477                 nr = 1;
478         return nr;
479 }
480
481 #define EXTENT_SIZE_PER_ITEM    SZ_256K
482
483 /*
484  * shrink metadata reservation for delalloc
485  */
486 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
487                             struct btrfs_space_info *space_info,
488                             u64 to_reclaim, bool wait_ordered)
489 {
490         struct btrfs_trans_handle *trans;
491         u64 delalloc_bytes;
492         u64 dio_bytes;
493         u64 items;
494         long time_left;
495         int loops;
496
497         /* Calc the number of the pages we need flush for space reservation */
498         if (to_reclaim == U64_MAX) {
499                 items = U64_MAX;
500         } else {
501                 /*
502                  * to_reclaim is set to however much metadata we need to
503                  * reclaim, but reclaiming that much data doesn't really track
504                  * exactly, so increase the amount to reclaim by 2x in order to
505                  * make sure we're flushing enough delalloc to hopefully reclaim
506                  * some metadata reservations.
507                  */
508                 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
509                 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
510         }
511
512         trans = (struct btrfs_trans_handle *)current->journal_info;
513
514         delalloc_bytes = percpu_counter_sum_positive(
515                                                 &fs_info->delalloc_bytes);
516         dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
517         if (delalloc_bytes == 0 && dio_bytes == 0) {
518                 if (trans)
519                         return;
520                 if (wait_ordered)
521                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
522                 return;
523         }
524
525         /*
526          * If we are doing more ordered than delalloc we need to just wait on
527          * ordered extents, otherwise we'll waste time trying to flush delalloc
528          * that likely won't give us the space back we need.
529          */
530         if (dio_bytes > delalloc_bytes)
531                 wait_ordered = true;
532
533         loops = 0;
534         while ((delalloc_bytes || dio_bytes) && loops < 3) {
535                 btrfs_start_delalloc_roots(fs_info, items);
536
537                 loops++;
538                 if (wait_ordered && !trans) {
539                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
540                 } else {
541                         time_left = schedule_timeout_killable(1);
542                         if (time_left)
543                                 break;
544                 }
545
546                 spin_lock(&space_info->lock);
547                 if (list_empty(&space_info->tickets) &&
548                     list_empty(&space_info->priority_tickets)) {
549                         spin_unlock(&space_info->lock);
550                         break;
551                 }
552                 spin_unlock(&space_info->lock);
553
554                 delalloc_bytes = percpu_counter_sum_positive(
555                                                 &fs_info->delalloc_bytes);
556                 dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
557         }
558 }
559
560 /**
561  * maybe_commit_transaction - possibly commit the transaction if its ok to
562  * @root - the root we're allocating for
563  * @bytes - the number of bytes we want to reserve
564  * @force - force the commit
565  *
566  * This will check to make sure that committing the transaction will actually
567  * get us somewhere and then commit the transaction if it does.  Otherwise it
568  * will return -ENOSPC.
569  */
570 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
571                                   struct btrfs_space_info *space_info)
572 {
573         struct reserve_ticket *ticket = NULL;
574         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
575         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
576         struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
577         struct btrfs_trans_handle *trans;
578         u64 reclaim_bytes = 0;
579         u64 bytes_needed = 0;
580         u64 cur_free_bytes = 0;
581
582         trans = (struct btrfs_trans_handle *)current->journal_info;
583         if (trans)
584                 return -EAGAIN;
585
586         spin_lock(&space_info->lock);
587         cur_free_bytes = btrfs_space_info_used(space_info, true);
588         if (cur_free_bytes < space_info->total_bytes)
589                 cur_free_bytes = space_info->total_bytes - cur_free_bytes;
590         else
591                 cur_free_bytes = 0;
592
593         if (!list_empty(&space_info->priority_tickets))
594                 ticket = list_first_entry(&space_info->priority_tickets,
595                                           struct reserve_ticket, list);
596         else if (!list_empty(&space_info->tickets))
597                 ticket = list_first_entry(&space_info->tickets,
598                                           struct reserve_ticket, list);
599         if (ticket)
600                 bytes_needed = ticket->bytes;
601
602         if (bytes_needed > cur_free_bytes)
603                 bytes_needed -= cur_free_bytes;
604         else
605                 bytes_needed = 0;
606         spin_unlock(&space_info->lock);
607
608         if (!bytes_needed)
609                 return 0;
610
611         trans = btrfs_join_transaction(fs_info->extent_root);
612         if (IS_ERR(trans))
613                 return PTR_ERR(trans);
614
615         /*
616          * See if there is enough pinned space to make this reservation, or if
617          * we have block groups that are going to be freed, allowing us to
618          * possibly do a chunk allocation the next loop through.
619          */
620         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
621             __percpu_counter_compare(&space_info->total_bytes_pinned,
622                                      bytes_needed,
623                                      BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
624                 goto commit;
625
626         /*
627          * See if there is some space in the delayed insertion reserve for this
628          * reservation.  If the space_info's don't match (like for DATA or
629          * SYSTEM) then just go enospc, reclaiming this space won't recover any
630          * space to satisfy those reservations.
631          */
632         if (space_info != delayed_rsv->space_info)
633                 goto enospc;
634
635         spin_lock(&delayed_rsv->lock);
636         reclaim_bytes += delayed_rsv->reserved;
637         spin_unlock(&delayed_rsv->lock);
638
639         spin_lock(&delayed_refs_rsv->lock);
640         reclaim_bytes += delayed_refs_rsv->reserved;
641         spin_unlock(&delayed_refs_rsv->lock);
642
643         spin_lock(&trans_rsv->lock);
644         reclaim_bytes += trans_rsv->reserved;
645         spin_unlock(&trans_rsv->lock);
646
647         if (reclaim_bytes >= bytes_needed)
648                 goto commit;
649         bytes_needed -= reclaim_bytes;
650
651         if (__percpu_counter_compare(&space_info->total_bytes_pinned,
652                                    bytes_needed,
653                                    BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
654                 goto enospc;
655
656 commit:
657         return btrfs_commit_transaction(trans);
658 enospc:
659         btrfs_end_transaction(trans);
660         return -ENOSPC;
661 }
662
663 /*
664  * Try to flush some data based on policy set by @state. This is only advisory
665  * and may fail for various reasons. The caller is supposed to examine the
666  * state of @space_info to detect the outcome.
667  */
668 static void flush_space(struct btrfs_fs_info *fs_info,
669                        struct btrfs_space_info *space_info, u64 num_bytes,
670                        int state)
671 {
672         struct btrfs_root *root = fs_info->extent_root;
673         struct btrfs_trans_handle *trans;
674         int nr;
675         int ret = 0;
676
677         switch (state) {
678         case FLUSH_DELAYED_ITEMS_NR:
679         case FLUSH_DELAYED_ITEMS:
680                 if (state == FLUSH_DELAYED_ITEMS_NR)
681                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
682                 else
683                         nr = -1;
684
685                 trans = btrfs_join_transaction(root);
686                 if (IS_ERR(trans)) {
687                         ret = PTR_ERR(trans);
688                         break;
689                 }
690                 ret = btrfs_run_delayed_items_nr(trans, nr);
691                 btrfs_end_transaction(trans);
692                 break;
693         case FLUSH_DELALLOC:
694         case FLUSH_DELALLOC_WAIT:
695                 shrink_delalloc(fs_info, space_info, num_bytes,
696                                 state == FLUSH_DELALLOC_WAIT);
697                 break;
698         case FLUSH_DELAYED_REFS_NR:
699         case FLUSH_DELAYED_REFS:
700                 trans = btrfs_join_transaction(root);
701                 if (IS_ERR(trans)) {
702                         ret = PTR_ERR(trans);
703                         break;
704                 }
705                 if (state == FLUSH_DELAYED_REFS_NR)
706                         nr = calc_reclaim_items_nr(fs_info, num_bytes);
707                 else
708                         nr = 0;
709                 btrfs_run_delayed_refs(trans, nr);
710                 btrfs_end_transaction(trans);
711                 break;
712         case ALLOC_CHUNK:
713         case ALLOC_CHUNK_FORCE:
714                 trans = btrfs_join_transaction(root);
715                 if (IS_ERR(trans)) {
716                         ret = PTR_ERR(trans);
717                         break;
718                 }
719                 ret = btrfs_chunk_alloc(trans,
720                                 btrfs_get_alloc_profile(fs_info, space_info->flags),
721                                 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
722                                         CHUNK_ALLOC_FORCE);
723                 btrfs_end_transaction(trans);
724                 if (ret > 0 || ret == -ENOSPC)
725                         ret = 0;
726                 break;
727         case RUN_DELAYED_IPUTS:
728                 /*
729                  * If we have pending delayed iputs then we could free up a
730                  * bunch of pinned space, so make sure we run the iputs before
731                  * we do our pinned bytes check below.
732                  */
733                 btrfs_run_delayed_iputs(fs_info);
734                 btrfs_wait_on_delayed_iputs(fs_info);
735                 break;
736         case COMMIT_TRANS:
737                 ret = may_commit_transaction(fs_info, space_info);
738                 break;
739         default:
740                 ret = -ENOSPC;
741                 break;
742         }
743
744         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
745                                 ret);
746         return;
747 }
748
749 static inline u64
750 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
751                                  struct btrfs_space_info *space_info)
752 {
753         u64 used;
754         u64 avail;
755         u64 expected;
756         u64 to_reclaim = space_info->reclaim_size;
757
758         lockdep_assert_held(&space_info->lock);
759
760         avail = calc_available_free_space(fs_info, space_info,
761                                           BTRFS_RESERVE_FLUSH_ALL);
762         used = btrfs_space_info_used(space_info, true);
763
764         /*
765          * We may be flushing because suddenly we have less space than we had
766          * before, and now we're well over-committed based on our current free
767          * space.  If that's the case add in our overage so we make sure to put
768          * appropriate pressure on the flushing state machine.
769          */
770         if (space_info->total_bytes + avail < used)
771                 to_reclaim += used - (space_info->total_bytes + avail);
772
773         if (to_reclaim)
774                 return to_reclaim;
775
776         to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
777         if (btrfs_can_overcommit(fs_info, space_info, to_reclaim,
778                                  BTRFS_RESERVE_FLUSH_ALL))
779                 return 0;
780
781         used = btrfs_space_info_used(space_info, true);
782
783         if (btrfs_can_overcommit(fs_info, space_info, SZ_1M,
784                                  BTRFS_RESERVE_FLUSH_ALL))
785                 expected = div_factor_fine(space_info->total_bytes, 95);
786         else
787                 expected = div_factor_fine(space_info->total_bytes, 90);
788
789         if (used > expected)
790                 to_reclaim = used - expected;
791         else
792                 to_reclaim = 0;
793         to_reclaim = min(to_reclaim, space_info->bytes_may_use +
794                                      space_info->bytes_reserved);
795         return to_reclaim;
796 }
797
798 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
799                                         struct btrfs_space_info *space_info,
800                                         u64 used)
801 {
802         u64 thresh = div_factor_fine(space_info->total_bytes, 98);
803
804         /* If we're just plain full then async reclaim just slows us down. */
805         if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
806                 return 0;
807
808         if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info))
809                 return 0;
810
811         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
812                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
813 }
814
815 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
816                                   struct btrfs_space_info *space_info,
817                                   struct reserve_ticket *ticket)
818 {
819         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
820         u64 min_bytes;
821
822         if (global_rsv->space_info != space_info)
823                 return false;
824
825         spin_lock(&global_rsv->lock);
826         min_bytes = div_factor(global_rsv->size, 1);
827         if (global_rsv->reserved < min_bytes + ticket->bytes) {
828                 spin_unlock(&global_rsv->lock);
829                 return false;
830         }
831         global_rsv->reserved -= ticket->bytes;
832         remove_ticket(space_info, ticket);
833         ticket->bytes = 0;
834         wake_up(&ticket->wait);
835         space_info->tickets_id++;
836         if (global_rsv->reserved < global_rsv->size)
837                 global_rsv->full = 0;
838         spin_unlock(&global_rsv->lock);
839
840         return true;
841 }
842
843 /*
844  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
845  * @fs_info - fs_info for this fs
846  * @space_info - the space info we were flushing
847  *
848  * We call this when we've exhausted our flushing ability and haven't made
849  * progress in satisfying tickets.  The reservation code handles tickets in
850  * order, so if there is a large ticket first and then smaller ones we could
851  * very well satisfy the smaller tickets.  This will attempt to wake up any
852  * tickets in the list to catch this case.
853  *
854  * This function returns true if it was able to make progress by clearing out
855  * other tickets, or if it stumbles across a ticket that was smaller than the
856  * first ticket.
857  */
858 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
859                                    struct btrfs_space_info *space_info)
860 {
861         struct reserve_ticket *ticket;
862         u64 tickets_id = space_info->tickets_id;
863         u64 first_ticket_bytes = 0;
864
865         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
866                 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
867                 __btrfs_dump_space_info(fs_info, space_info);
868         }
869
870         while (!list_empty(&space_info->tickets) &&
871                tickets_id == space_info->tickets_id) {
872                 ticket = list_first_entry(&space_info->tickets,
873                                           struct reserve_ticket, list);
874
875                 if (ticket->steal &&
876                     steal_from_global_rsv(fs_info, space_info, ticket))
877                         return true;
878
879                 /*
880                  * may_commit_transaction will avoid committing the transaction
881                  * if it doesn't feel like the space reclaimed by the commit
882                  * would result in the ticket succeeding.  However if we have a
883                  * smaller ticket in the queue it may be small enough to be
884                  * satisified by committing the transaction, so if any
885                  * subsequent ticket is smaller than the first ticket go ahead
886                  * and send us back for another loop through the enospc flushing
887                  * code.
888                  */
889                 if (first_ticket_bytes == 0)
890                         first_ticket_bytes = ticket->bytes;
891                 else if (first_ticket_bytes > ticket->bytes)
892                         return true;
893
894                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
895                         btrfs_info(fs_info, "failing ticket with %llu bytes",
896                                    ticket->bytes);
897
898                 remove_ticket(space_info, ticket);
899                 ticket->error = -ENOSPC;
900                 wake_up(&ticket->wait);
901
902                 /*
903                  * We're just throwing tickets away, so more flushing may not
904                  * trip over btrfs_try_granting_tickets, so we need to call it
905                  * here to see if we can make progress with the next ticket in
906                  * the list.
907                  */
908                 btrfs_try_granting_tickets(fs_info, space_info);
909         }
910         return (tickets_id != space_info->tickets_id);
911 }
912
913 /*
914  * This is for normal flushers, we can wait all goddamned day if we want to.  We
915  * will loop and continuously try to flush as long as we are making progress.
916  * We count progress as clearing off tickets each time we have to loop.
917  */
918 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
919 {
920         struct btrfs_fs_info *fs_info;
921         struct btrfs_space_info *space_info;
922         u64 to_reclaim;
923         int flush_state;
924         int commit_cycles = 0;
925         u64 last_tickets_id;
926
927         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
928         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
929
930         spin_lock(&space_info->lock);
931         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
932         if (!to_reclaim) {
933                 space_info->flush = 0;
934                 spin_unlock(&space_info->lock);
935                 return;
936         }
937         last_tickets_id = space_info->tickets_id;
938         spin_unlock(&space_info->lock);
939
940         flush_state = FLUSH_DELAYED_ITEMS_NR;
941         do {
942                 flush_space(fs_info, space_info, to_reclaim, flush_state);
943                 spin_lock(&space_info->lock);
944                 if (list_empty(&space_info->tickets)) {
945                         space_info->flush = 0;
946                         spin_unlock(&space_info->lock);
947                         return;
948                 }
949                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
950                                                               space_info);
951                 if (last_tickets_id == space_info->tickets_id) {
952                         flush_state++;
953                 } else {
954                         last_tickets_id = space_info->tickets_id;
955                         flush_state = FLUSH_DELAYED_ITEMS_NR;
956                         if (commit_cycles)
957                                 commit_cycles--;
958                 }
959
960                 /*
961                  * We don't want to force a chunk allocation until we've tried
962                  * pretty hard to reclaim space.  Think of the case where we
963                  * freed up a bunch of space and so have a lot of pinned space
964                  * to reclaim.  We would rather use that than possibly create a
965                  * underutilized metadata chunk.  So if this is our first run
966                  * through the flushing state machine skip ALLOC_CHUNK_FORCE and
967                  * commit the transaction.  If nothing has changed the next go
968                  * around then we can force a chunk allocation.
969                  */
970                 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
971                         flush_state++;
972
973                 if (flush_state > COMMIT_TRANS) {
974                         commit_cycles++;
975                         if (commit_cycles > 2) {
976                                 if (maybe_fail_all_tickets(fs_info, space_info)) {
977                                         flush_state = FLUSH_DELAYED_ITEMS_NR;
978                                         commit_cycles--;
979                                 } else {
980                                         space_info->flush = 0;
981                                 }
982                         } else {
983                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
984                         }
985                 }
986                 spin_unlock(&space_info->lock);
987         } while (flush_state <= COMMIT_TRANS);
988 }
989
990 /*
991  * FLUSH_DELALLOC_WAIT:
992  *   Space is freed from flushing delalloc in one of two ways.
993  *
994  *   1) compression is on and we allocate less space than we reserved
995  *   2) we are overwriting existing space
996  *
997  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
998  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
999  *   length to ->bytes_reserved, and subtracts the reserved space from
1000  *   ->bytes_may_use.
1001  *
1002  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1003  *   extent in the range we are overwriting, which creates a delayed ref for
1004  *   that freed extent.  This however is not reclaimed until the transaction
1005  *   commits, thus the next stages.
1006  *
1007  * RUN_DELAYED_IPUTS
1008  *   If we are freeing inodes, we want to make sure all delayed iputs have
1009  *   completed, because they could have been on an inode with i_nlink == 0, and
1010  *   thus have been truncated and freed up space.  But again this space is not
1011  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1012  *   run and then the transaction must be committed.
1013  *
1014  * FLUSH_DELAYED_REFS
1015  *   The above two cases generate delayed refs that will affect
1016  *   ->total_bytes_pinned.  However this counter can be inconsistent with
1017  *   reality if there are outstanding delayed refs.  This is because we adjust
1018  *   the counter based solely on the current set of delayed refs and disregard
1019  *   any on-disk state which might include more refs.  So for example, if we
1020  *   have an extent with 2 references, but we only drop 1, we'll see that there
1021  *   is a negative delayed ref count for the extent and assume that the space
1022  *   will be freed, and thus increase ->total_bytes_pinned.
1023  *
1024  *   Running the delayed refs gives us the actual real view of what will be
1025  *   freed at the transaction commit time.  This stage will not actually free
1026  *   space for us, it just makes sure that may_commit_transaction() has all of
1027  *   the information it needs to make the right decision.
1028  *
1029  * COMMIT_TRANS
1030  *   This is where we reclaim all of the pinned space generated by the previous
1031  *   two stages.  We will not commit the transaction if we don't think we're
1032  *   likely to satisfy our request, which means if our current free space +
1033  *   total_bytes_pinned < reservation we will not commit.  This is why the
1034  *   previous states are actually important, to make sure we know for sure
1035  *   whether committing the transaction will allow us to make progress.
1036  *
1037  * ALLOC_CHUNK_FORCE
1038  *   For data we start with alloc chunk force, however we could have been full
1039  *   before, and then the transaction commit could have freed new block groups,
1040  *   so if we now have space to allocate do the force chunk allocation.
1041  */
1042 static const enum btrfs_flush_state data_flush_states[] = {
1043         FLUSH_DELALLOC_WAIT,
1044         RUN_DELAYED_IPUTS,
1045         FLUSH_DELAYED_REFS,
1046         COMMIT_TRANS,
1047         ALLOC_CHUNK_FORCE,
1048 };
1049
1050 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1051 {
1052         struct btrfs_fs_info *fs_info;
1053         struct btrfs_space_info *space_info;
1054         u64 last_tickets_id;
1055         int flush_state = 0;
1056
1057         fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1058         space_info = fs_info->data_sinfo;
1059
1060         spin_lock(&space_info->lock);
1061         if (list_empty(&space_info->tickets)) {
1062                 space_info->flush = 0;
1063                 spin_unlock(&space_info->lock);
1064                 return;
1065         }
1066         last_tickets_id = space_info->tickets_id;
1067         spin_unlock(&space_info->lock);
1068
1069         while (!space_info->full) {
1070                 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE);
1071                 spin_lock(&space_info->lock);
1072                 if (list_empty(&space_info->tickets)) {
1073                         space_info->flush = 0;
1074                         spin_unlock(&space_info->lock);
1075                         return;
1076                 }
1077                 last_tickets_id = space_info->tickets_id;
1078                 spin_unlock(&space_info->lock);
1079         }
1080
1081         while (flush_state < ARRAY_SIZE(data_flush_states)) {
1082                 flush_space(fs_info, space_info, U64_MAX,
1083                             data_flush_states[flush_state]);
1084                 spin_lock(&space_info->lock);
1085                 if (list_empty(&space_info->tickets)) {
1086                         space_info->flush = 0;
1087                         spin_unlock(&space_info->lock);
1088                         return;
1089                 }
1090
1091                 if (last_tickets_id == space_info->tickets_id) {
1092                         flush_state++;
1093                 } else {
1094                         last_tickets_id = space_info->tickets_id;
1095                         flush_state = 0;
1096                 }
1097
1098                 if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1099                         if (space_info->full) {
1100                                 if (maybe_fail_all_tickets(fs_info, space_info))
1101                                         flush_state = 0;
1102                                 else
1103                                         space_info->flush = 0;
1104                         } else {
1105                                 flush_state = 0;
1106                         }
1107                 }
1108                 spin_unlock(&space_info->lock);
1109         }
1110 }
1111
1112 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1113 {
1114         INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1115         INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1116 }
1117
1118 static const enum btrfs_flush_state priority_flush_states[] = {
1119         FLUSH_DELAYED_ITEMS_NR,
1120         FLUSH_DELAYED_ITEMS,
1121         ALLOC_CHUNK,
1122 };
1123
1124 static const enum btrfs_flush_state evict_flush_states[] = {
1125         FLUSH_DELAYED_ITEMS_NR,
1126         FLUSH_DELAYED_ITEMS,
1127         FLUSH_DELAYED_REFS_NR,
1128         FLUSH_DELAYED_REFS,
1129         FLUSH_DELALLOC,
1130         FLUSH_DELALLOC_WAIT,
1131         ALLOC_CHUNK,
1132         COMMIT_TRANS,
1133 };
1134
1135 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1136                                 struct btrfs_space_info *space_info,
1137                                 struct reserve_ticket *ticket,
1138                                 const enum btrfs_flush_state *states,
1139                                 int states_nr)
1140 {
1141         u64 to_reclaim;
1142         int flush_state;
1143
1144         spin_lock(&space_info->lock);
1145         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1146         if (!to_reclaim) {
1147                 spin_unlock(&space_info->lock);
1148                 return;
1149         }
1150         spin_unlock(&space_info->lock);
1151
1152         flush_state = 0;
1153         do {
1154                 flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
1155                 flush_state++;
1156                 spin_lock(&space_info->lock);
1157                 if (ticket->bytes == 0) {
1158                         spin_unlock(&space_info->lock);
1159                         return;
1160                 }
1161                 spin_unlock(&space_info->lock);
1162         } while (flush_state < states_nr);
1163 }
1164
1165 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1166                                         struct btrfs_space_info *space_info,
1167                                         struct reserve_ticket *ticket)
1168 {
1169         while (!space_info->full) {
1170                 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE);
1171                 spin_lock(&space_info->lock);
1172                 if (ticket->bytes == 0) {
1173                         spin_unlock(&space_info->lock);
1174                         return;
1175                 }
1176                 spin_unlock(&space_info->lock);
1177         }
1178 }
1179
1180 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1181                                 struct btrfs_space_info *space_info,
1182                                 struct reserve_ticket *ticket)
1183
1184 {
1185         DEFINE_WAIT(wait);
1186         int ret = 0;
1187
1188         spin_lock(&space_info->lock);
1189         while (ticket->bytes > 0 && ticket->error == 0) {
1190                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1191                 if (ret) {
1192                         /*
1193                          * Delete us from the list. After we unlock the space
1194                          * info, we don't want the async reclaim job to reserve
1195                          * space for this ticket. If that would happen, then the
1196                          * ticket's task would not known that space was reserved
1197                          * despite getting an error, resulting in a space leak
1198                          * (bytes_may_use counter of our space_info).
1199                          */
1200                         remove_ticket(space_info, ticket);
1201                         ticket->error = -EINTR;
1202                         break;
1203                 }
1204                 spin_unlock(&space_info->lock);
1205
1206                 schedule();
1207
1208                 finish_wait(&ticket->wait, &wait);
1209                 spin_lock(&space_info->lock);
1210         }
1211         spin_unlock(&space_info->lock);
1212 }
1213
1214 /**
1215  * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket
1216  * @fs_info - the fs
1217  * @space_info - the space_info for the reservation
1218  * @ticket - the ticket for the reservation
1219  * @flush - how much we can flush
1220  *
1221  * This does the work of figuring out how to flush for the ticket, waiting for
1222  * the reservation, and returning the appropriate error if there is one.
1223  */
1224 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1225                                  struct btrfs_space_info *space_info,
1226                                  struct reserve_ticket *ticket,
1227                                  enum btrfs_reserve_flush_enum flush)
1228 {
1229         int ret;
1230
1231         switch (flush) {
1232         case BTRFS_RESERVE_FLUSH_DATA:
1233         case BTRFS_RESERVE_FLUSH_ALL:
1234         case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1235                 wait_reserve_ticket(fs_info, space_info, ticket);
1236                 break;
1237         case BTRFS_RESERVE_FLUSH_LIMIT:
1238                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1239                                                 priority_flush_states,
1240                                                 ARRAY_SIZE(priority_flush_states));
1241                 break;
1242         case BTRFS_RESERVE_FLUSH_EVICT:
1243                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1244                                                 evict_flush_states,
1245                                                 ARRAY_SIZE(evict_flush_states));
1246                 break;
1247         case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1248                 priority_reclaim_data_space(fs_info, space_info, ticket);
1249                 break;
1250         default:
1251                 ASSERT(0);
1252                 break;
1253         }
1254
1255         spin_lock(&space_info->lock);
1256         ret = ticket->error;
1257         if (ticket->bytes || ticket->error) {
1258                 /*
1259                  * We were a priority ticket, so we need to delete ourselves
1260                  * from the list.  Because we could have other priority tickets
1261                  * behind us that require less space, run
1262                  * btrfs_try_granting_tickets() to see if their reservations can
1263                  * now be made.
1264                  */
1265                 if (!list_empty(&ticket->list)) {
1266                         remove_ticket(space_info, ticket);
1267                         btrfs_try_granting_tickets(fs_info, space_info);
1268                 }
1269
1270                 if (!ret)
1271                         ret = -ENOSPC;
1272         }
1273         spin_unlock(&space_info->lock);
1274         ASSERT(list_empty(&ticket->list));
1275         /*
1276          * Check that we can't have an error set if the reservation succeeded,
1277          * as that would confuse tasks and lead them to error out without
1278          * releasing reserved space (if an error happens the expectation is that
1279          * space wasn't reserved at all).
1280          */
1281         ASSERT(!(ticket->bytes == 0 && ticket->error));
1282         return ret;
1283 }
1284
1285 /*
1286  * This returns true if this flush state will go through the ordinary flushing
1287  * code.
1288  */
1289 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1290 {
1291         return  (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1292                 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1293 }
1294
1295 /**
1296  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1297  * @root - the root we're allocating for
1298  * @space_info - the space info we want to allocate from
1299  * @orig_bytes - the number of bytes we want
1300  * @flush - whether or not we can flush to make our reservation
1301  *
1302  * This will reserve orig_bytes number of bytes from the space info associated
1303  * with the block_rsv.  If there is not enough space it will make an attempt to
1304  * flush out space to make room.  It will do this by flushing delalloc if
1305  * possible or committing the transaction.  If flush is 0 then no attempts to
1306  * regain reservations will be made and this will fail if there is not enough
1307  * space already.
1308  */
1309 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1310                            struct btrfs_space_info *space_info, u64 orig_bytes,
1311                            enum btrfs_reserve_flush_enum flush)
1312 {
1313         struct work_struct *async_work;
1314         struct reserve_ticket ticket;
1315         u64 used;
1316         int ret = 0;
1317         bool pending_tickets;
1318
1319         ASSERT(orig_bytes);
1320         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1321
1322         if (flush == BTRFS_RESERVE_FLUSH_DATA)
1323                 async_work = &fs_info->async_data_reclaim_work;
1324         else
1325                 async_work = &fs_info->async_reclaim_work;
1326
1327         spin_lock(&space_info->lock);
1328         ret = -ENOSPC;
1329         used = btrfs_space_info_used(space_info, true);
1330
1331         /*
1332          * We don't want NO_FLUSH allocations to jump everybody, they can
1333          * generally handle ENOSPC in a different way, so treat them the same as
1334          * normal flushers when it comes to skipping pending tickets.
1335          */
1336         if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1337                 pending_tickets = !list_empty(&space_info->tickets) ||
1338                         !list_empty(&space_info->priority_tickets);
1339         else
1340                 pending_tickets = !list_empty(&space_info->priority_tickets);
1341
1342         /*
1343          * Carry on if we have enough space (short-circuit) OR call
1344          * can_overcommit() to ensure we can overcommit to continue.
1345          */
1346         if (!pending_tickets &&
1347             ((used + orig_bytes <= space_info->total_bytes) ||
1348              btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1349                 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1350                                                       orig_bytes);
1351                 ret = 0;
1352         }
1353
1354         /*
1355          * If we couldn't make a reservation then setup our reservation ticket
1356          * and kick the async worker if it's not already running.
1357          *
1358          * If we are a priority flusher then we just need to add our ticket to
1359          * the list and we will do our own flushing further down.
1360          */
1361         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1362                 ticket.bytes = orig_bytes;
1363                 ticket.error = 0;
1364                 space_info->reclaim_size += ticket.bytes;
1365                 init_waitqueue_head(&ticket.wait);
1366                 ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1367                 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1368                     flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1369                     flush == BTRFS_RESERVE_FLUSH_DATA) {
1370                         list_add_tail(&ticket.list, &space_info->tickets);
1371                         if (!space_info->flush) {
1372                                 space_info->flush = 1;
1373                                 trace_btrfs_trigger_flush(fs_info,
1374                                                           space_info->flags,
1375                                                           orig_bytes, flush,
1376                                                           "enospc");
1377                                 queue_work(system_unbound_wq, async_work);
1378                         }
1379                 } else {
1380                         list_add_tail(&ticket.list,
1381                                       &space_info->priority_tickets);
1382                 }
1383         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1384                 used += orig_bytes;
1385                 /*
1386                  * We will do the space reservation dance during log replay,
1387                  * which means we won't have fs_info->fs_root set, so don't do
1388                  * the async reclaim as we will panic.
1389                  */
1390                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1391                     need_do_async_reclaim(fs_info, space_info, used) &&
1392                     !work_busy(&fs_info->async_reclaim_work)) {
1393                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
1394                                                   orig_bytes, flush, "preempt");
1395                         queue_work(system_unbound_wq,
1396                                    &fs_info->async_reclaim_work);
1397                 }
1398         }
1399         spin_unlock(&space_info->lock);
1400         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1401                 return ret;
1402
1403         return handle_reserve_ticket(fs_info, space_info, &ticket, flush);
1404 }
1405
1406 /**
1407  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1408  * @root - the root we're allocating for
1409  * @block_rsv - the block_rsv we're allocating for
1410  * @orig_bytes - the number of bytes we want
1411  * @flush - whether or not we can flush to make our reservation
1412  *
1413  * This will reserve orig_bytes number of bytes from the space info associated
1414  * with the block_rsv.  If there is not enough space it will make an attempt to
1415  * flush out space to make room.  It will do this by flushing delalloc if
1416  * possible or committing the transaction.  If flush is 0 then no attempts to
1417  * regain reservations will be made and this will fail if there is not enough
1418  * space already.
1419  */
1420 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1421                                  struct btrfs_block_rsv *block_rsv,
1422                                  u64 orig_bytes,
1423                                  enum btrfs_reserve_flush_enum flush)
1424 {
1425         struct btrfs_fs_info *fs_info = root->fs_info;
1426         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1427         int ret;
1428
1429         ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1430         if (ret == -ENOSPC &&
1431             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1432                 if (block_rsv != global_rsv &&
1433                     !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1434                         ret = 0;
1435         }
1436         if (ret == -ENOSPC) {
1437                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1438                                               block_rsv->space_info->flags,
1439                                               orig_bytes, 1);
1440
1441                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1442                         btrfs_dump_space_info(fs_info, block_rsv->space_info,
1443                                               orig_bytes, 0);
1444         }
1445         return ret;
1446 }
1447
1448 /**
1449  * btrfs_reserve_data_bytes - try to reserve data bytes for an allocation
1450  * @fs_info - the filesystem
1451  * @bytes - the number of bytes we need
1452  * @flush - how we are allowed to flush
1453  *
1454  * This will reserve bytes from the data space info.  If there is not enough
1455  * space then we will attempt to flush space as specified by flush.
1456  */
1457 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1458                              enum btrfs_reserve_flush_enum flush)
1459 {
1460         struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1461         int ret;
1462
1463         ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1464                flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE);
1465         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1466
1467         ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1468         if (ret == -ENOSPC) {
1469                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1470                                               data_sinfo->flags, bytes, 1);
1471                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1472                         btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1473         }
1474         return ret;
1475 }