kernel/fork: always deny write access to current MM exe_file
[linux-2.6-microblaze.git] / fs / btrfs / space-info.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12
13 /*
14  * HOW DOES SPACE RESERVATION WORK
15  *
16  * If you want to know about delalloc specifically, there is a separate comment
17  * for that with the delalloc code.  This comment is about how the whole system
18  * works generally.
19  *
20  * BASIC CONCEPTS
21  *
22  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
23  *   There's a description of the bytes_ fields with the struct declaration,
24  *   refer to that for specifics on each field.  Suffice it to say that for
25  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
26  *   determining if there is space to make an allocation.  There is a space_info
27  *   for METADATA, SYSTEM, and DATA areas.
28  *
29  *   2) block_rsv's.  These are basically buckets for every different type of
30  *   metadata reservation we have.  You can see the comment in the block_rsv
31  *   code on the rules for each type, but generally block_rsv->reserved is how
32  *   much space is accounted for in space_info->bytes_may_use.
33  *
34  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
35  *   on the number of items we will want to modify.  We have one for changing
36  *   items, and one for inserting new items.  Generally we use these helpers to
37  *   determine the size of the block reserves, and then use the actual bytes
38  *   values to adjust the space_info counters.
39  *
40  * MAKING RESERVATIONS, THE NORMAL CASE
41  *
42  *   We call into either btrfs_reserve_data_bytes() or
43  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44  *   num_bytes we want to reserve.
45  *
46  *   ->reserve
47  *     space_info->bytes_may_reserve += num_bytes
48  *
49  *   ->extent allocation
50  *     Call btrfs_add_reserved_bytes() which does
51  *     space_info->bytes_may_reserve -= num_bytes
52  *     space_info->bytes_reserved += extent_bytes
53  *
54  *   ->insert reference
55  *     Call btrfs_update_block_group() which does
56  *     space_info->bytes_reserved -= extent_bytes
57  *     space_info->bytes_used += extent_bytes
58  *
59  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
60  *
61  *   Assume we are unable to simply make the reservation because we do not have
62  *   enough space
63  *
64  *   -> __reserve_bytes
65  *     create a reserve_ticket with ->bytes set to our reservation, add it to
66  *     the tail of space_info->tickets, kick async flush thread
67  *
68  *   ->handle_reserve_ticket
69  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70  *     on the ticket.
71  *
72  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73  *     Flushes various things attempting to free up space.
74  *
75  *   -> btrfs_try_granting_tickets()
76  *     This is called by anything that either subtracts space from
77  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78  *     space_info->total_bytes.  This loops through the ->priority_tickets and
79  *     then the ->tickets list checking to see if the reservation can be
80  *     completed.  If it can the space is added to space_info->bytes_may_use and
81  *     the ticket is woken up.
82  *
83  *   -> ticket wakeup
84  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
85  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86  *     were interrupted.)
87  *
88  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
89  *
90  *   Same as the above, except we add ourselves to the
91  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
92  *   call flush_space() ourselves for the states that are safe for us to call
93  *   without deadlocking and hope for the best.
94  *
95  * THE FLUSHING STATES
96  *
97  *   Generally speaking we will have two cases for each state, a "nice" state
98  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
99  *   reduce the locking over head on the various trees, and even to keep from
100  *   doing any work at all in the case of delayed refs.  Each of these delayed
101  *   things however hold reservations, and so letting them run allows us to
102  *   reclaim space so we can make new reservations.
103  *
104  *   FLUSH_DELAYED_ITEMS
105  *     Every inode has a delayed item to update the inode.  Take a simple write
106  *     for example, we would update the inode item at write time to update the
107  *     mtime, and then again at finish_ordered_io() time in order to update the
108  *     isize or bytes.  We keep these delayed items to coalesce these operations
109  *     into a single operation done on demand.  These are an easy way to reclaim
110  *     metadata space.
111  *
112  *   FLUSH_DELALLOC
113  *     Look at the delalloc comment to get an idea of how much space is reserved
114  *     for delayed allocation.  We can reclaim some of this space simply by
115  *     running delalloc, but usually we need to wait for ordered extents to
116  *     reclaim the bulk of this space.
117  *
118  *   FLUSH_DELAYED_REFS
119  *     We have a block reserve for the outstanding delayed refs space, and every
120  *     delayed ref operation holds a reservation.  Running these is a quick way
121  *     to reclaim space, but we want to hold this until the end because COW can
122  *     churn a lot and we can avoid making some extent tree modifications if we
123  *     are able to delay for as long as possible.
124  *
125  *   ALLOC_CHUNK
126  *     We will skip this the first time through space reservation, because of
127  *     overcommit and we don't want to have a lot of useless metadata space when
128  *     our worst case reservations will likely never come true.
129  *
130  *   RUN_DELAYED_IPUTS
131  *     If we're freeing inodes we're likely freeing checksums, file extent
132  *     items, and extent tree items.  Loads of space could be freed up by these
133  *     operations, however they won't be usable until the transaction commits.
134  *
135  *   COMMIT_TRANS
136  *     This will commit the transaction.  Historically we had a lot of logic
137  *     surrounding whether or not we'd commit the transaction, but this waits born
138  *     out of a pre-tickets era where we could end up committing the transaction
139  *     thousands of times in a row without making progress.  Now thanks to our
140  *     ticketing system we know if we're not making progress and can error
141  *     everybody out after a few commits rather than burning the disk hoping for
142  *     a different answer.
143  *
144  * OVERCOMMIT
145  *
146  *   Because we hold so many reservations for metadata we will allow you to
147  *   reserve more space than is currently free in the currently allocate
148  *   metadata space.  This only happens with metadata, data does not allow
149  *   overcommitting.
150  *
151  *   You can see the current logic for when we allow overcommit in
152  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
153  *   is no unallocated space to be had, all reservations are kept within the
154  *   free space in the allocated metadata chunks.
155  *
156  *   Because of overcommitting, you generally want to use the
157  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
158  *   thing with or without extra unallocated space.
159  */
160
161 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
162                           bool may_use_included)
163 {
164         ASSERT(s_info);
165         return s_info->bytes_used + s_info->bytes_reserved +
166                 s_info->bytes_pinned + s_info->bytes_readonly +
167                 s_info->bytes_zone_unusable +
168                 (may_use_included ? s_info->bytes_may_use : 0);
169 }
170
171 /*
172  * after adding space to the filesystem, we need to clear the full flags
173  * on all the space infos.
174  */
175 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
176 {
177         struct list_head *head = &info->space_info;
178         struct btrfs_space_info *found;
179
180         list_for_each_entry(found, head, list)
181                 found->full = 0;
182 }
183
184 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
185 {
186
187         struct btrfs_space_info *space_info;
188         int i;
189         int ret;
190
191         space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
192         if (!space_info)
193                 return -ENOMEM;
194
195         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
196                 INIT_LIST_HEAD(&space_info->block_groups[i]);
197         init_rwsem(&space_info->groups_sem);
198         spin_lock_init(&space_info->lock);
199         space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
200         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
201         INIT_LIST_HEAD(&space_info->ro_bgs);
202         INIT_LIST_HEAD(&space_info->tickets);
203         INIT_LIST_HEAD(&space_info->priority_tickets);
204         space_info->clamp = 1;
205
206         ret = btrfs_sysfs_add_space_info_type(info, space_info);
207         if (ret)
208                 return ret;
209
210         list_add(&space_info->list, &info->space_info);
211         if (flags & BTRFS_BLOCK_GROUP_DATA)
212                 info->data_sinfo = space_info;
213
214         return ret;
215 }
216
217 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
218 {
219         struct btrfs_super_block *disk_super;
220         u64 features;
221         u64 flags;
222         int mixed = 0;
223         int ret;
224
225         disk_super = fs_info->super_copy;
226         if (!btrfs_super_root(disk_super))
227                 return -EINVAL;
228
229         features = btrfs_super_incompat_flags(disk_super);
230         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
231                 mixed = 1;
232
233         flags = BTRFS_BLOCK_GROUP_SYSTEM;
234         ret = create_space_info(fs_info, flags);
235         if (ret)
236                 goto out;
237
238         if (mixed) {
239                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
240                 ret = create_space_info(fs_info, flags);
241         } else {
242                 flags = BTRFS_BLOCK_GROUP_METADATA;
243                 ret = create_space_info(fs_info, flags);
244                 if (ret)
245                         goto out;
246
247                 flags = BTRFS_BLOCK_GROUP_DATA;
248                 ret = create_space_info(fs_info, flags);
249         }
250 out:
251         return ret;
252 }
253
254 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
255                              u64 total_bytes, u64 bytes_used,
256                              u64 bytes_readonly, u64 bytes_zone_unusable,
257                              struct btrfs_space_info **space_info)
258 {
259         struct btrfs_space_info *found;
260         int factor;
261
262         factor = btrfs_bg_type_to_factor(flags);
263
264         found = btrfs_find_space_info(info, flags);
265         ASSERT(found);
266         spin_lock(&found->lock);
267         found->total_bytes += total_bytes;
268         found->disk_total += total_bytes * factor;
269         found->bytes_used += bytes_used;
270         found->disk_used += bytes_used * factor;
271         found->bytes_readonly += bytes_readonly;
272         found->bytes_zone_unusable += bytes_zone_unusable;
273         if (total_bytes > 0)
274                 found->full = 0;
275         btrfs_try_granting_tickets(info, found);
276         spin_unlock(&found->lock);
277         *space_info = found;
278 }
279
280 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
281                                                u64 flags)
282 {
283         struct list_head *head = &info->space_info;
284         struct btrfs_space_info *found;
285
286         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
287
288         list_for_each_entry(found, head, list) {
289                 if (found->flags & flags)
290                         return found;
291         }
292         return NULL;
293 }
294
295 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
296                           struct btrfs_space_info *space_info,
297                           enum btrfs_reserve_flush_enum flush)
298 {
299         u64 profile;
300         u64 avail;
301         int factor;
302
303         if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
304                 profile = btrfs_system_alloc_profile(fs_info);
305         else
306                 profile = btrfs_metadata_alloc_profile(fs_info);
307
308         avail = atomic64_read(&fs_info->free_chunk_space);
309
310         /*
311          * If we have dup, raid1 or raid10 then only half of the free
312          * space is actually usable.  For raid56, the space info used
313          * doesn't include the parity drive, so we don't have to
314          * change the math
315          */
316         factor = btrfs_bg_type_to_factor(profile);
317         avail = div_u64(avail, factor);
318
319         /*
320          * If we aren't flushing all things, let us overcommit up to
321          * 1/2th of the space. If we can flush, don't let us overcommit
322          * too much, let it overcommit up to 1/8 of the space.
323          */
324         if (flush == BTRFS_RESERVE_FLUSH_ALL)
325                 avail >>= 3;
326         else
327                 avail >>= 1;
328         return avail;
329 }
330
331 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
332                          struct btrfs_space_info *space_info, u64 bytes,
333                          enum btrfs_reserve_flush_enum flush)
334 {
335         u64 avail;
336         u64 used;
337
338         /* Don't overcommit when in mixed mode */
339         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
340                 return 0;
341
342         used = btrfs_space_info_used(space_info, true);
343         avail = calc_available_free_space(fs_info, space_info, flush);
344
345         if (used + bytes < space_info->total_bytes + avail)
346                 return 1;
347         return 0;
348 }
349
350 static void remove_ticket(struct btrfs_space_info *space_info,
351                           struct reserve_ticket *ticket)
352 {
353         if (!list_empty(&ticket->list)) {
354                 list_del_init(&ticket->list);
355                 ASSERT(space_info->reclaim_size >= ticket->bytes);
356                 space_info->reclaim_size -= ticket->bytes;
357         }
358 }
359
360 /*
361  * This is for space we already have accounted in space_info->bytes_may_use, so
362  * basically when we're returning space from block_rsv's.
363  */
364 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
365                                 struct btrfs_space_info *space_info)
366 {
367         struct list_head *head;
368         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
369
370         lockdep_assert_held(&space_info->lock);
371
372         head = &space_info->priority_tickets;
373 again:
374         while (!list_empty(head)) {
375                 struct reserve_ticket *ticket;
376                 u64 used = btrfs_space_info_used(space_info, true);
377
378                 ticket = list_first_entry(head, struct reserve_ticket, list);
379
380                 /* Check and see if our ticket can be satisfied now. */
381                 if ((used + ticket->bytes <= space_info->total_bytes) ||
382                     btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
383                                          flush)) {
384                         btrfs_space_info_update_bytes_may_use(fs_info,
385                                                               space_info,
386                                                               ticket->bytes);
387                         remove_ticket(space_info, ticket);
388                         ticket->bytes = 0;
389                         space_info->tickets_id++;
390                         wake_up(&ticket->wait);
391                 } else {
392                         break;
393                 }
394         }
395
396         if (head == &space_info->priority_tickets) {
397                 head = &space_info->tickets;
398                 flush = BTRFS_RESERVE_FLUSH_ALL;
399                 goto again;
400         }
401 }
402
403 #define DUMP_BLOCK_RSV(fs_info, rsv_name)                               \
404 do {                                                                    \
405         struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;           \
406         spin_lock(&__rsv->lock);                                        \
407         btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",      \
408                    __rsv->size, __rsv->reserved);                       \
409         spin_unlock(&__rsv->lock);                                      \
410 } while (0)
411
412 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
413                                     struct btrfs_space_info *info)
414 {
415         lockdep_assert_held(&info->lock);
416
417         btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
418                    info->flags,
419                    info->total_bytes - btrfs_space_info_used(info, true),
420                    info->full ? "" : "not ");
421         btrfs_info(fs_info,
422                 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
423                 info->total_bytes, info->bytes_used, info->bytes_pinned,
424                 info->bytes_reserved, info->bytes_may_use,
425                 info->bytes_readonly, info->bytes_zone_unusable);
426
427         DUMP_BLOCK_RSV(fs_info, global_block_rsv);
428         DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
429         DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
430         DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
431         DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
432
433 }
434
435 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
436                            struct btrfs_space_info *info, u64 bytes,
437                            int dump_block_groups)
438 {
439         struct btrfs_block_group *cache;
440         int index = 0;
441
442         spin_lock(&info->lock);
443         __btrfs_dump_space_info(fs_info, info);
444         spin_unlock(&info->lock);
445
446         if (!dump_block_groups)
447                 return;
448
449         down_read(&info->groups_sem);
450 again:
451         list_for_each_entry(cache, &info->block_groups[index], list) {
452                 spin_lock(&cache->lock);
453                 btrfs_info(fs_info,
454                         "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s",
455                         cache->start, cache->length, cache->used, cache->pinned,
456                         cache->reserved, cache->zone_unusable,
457                         cache->ro ? "[readonly]" : "");
458                 spin_unlock(&cache->lock);
459                 btrfs_dump_free_space(cache, bytes);
460         }
461         if (++index < BTRFS_NR_RAID_TYPES)
462                 goto again;
463         up_read(&info->groups_sem);
464 }
465
466 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
467                                         u64 to_reclaim)
468 {
469         u64 bytes;
470         u64 nr;
471
472         bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
473         nr = div64_u64(to_reclaim, bytes);
474         if (!nr)
475                 nr = 1;
476         return nr;
477 }
478
479 #define EXTENT_SIZE_PER_ITEM    SZ_256K
480
481 /*
482  * shrink metadata reservation for delalloc
483  */
484 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
485                             struct btrfs_space_info *space_info,
486                             u64 to_reclaim, bool wait_ordered,
487                             bool for_preempt)
488 {
489         struct btrfs_trans_handle *trans;
490         u64 delalloc_bytes;
491         u64 ordered_bytes;
492         u64 items;
493         long time_left;
494         int loops;
495
496         /* Calc the number of the pages we need flush for space reservation */
497         if (to_reclaim == U64_MAX) {
498                 items = U64_MAX;
499         } else {
500                 /*
501                  * to_reclaim is set to however much metadata we need to
502                  * reclaim, but reclaiming that much data doesn't really track
503                  * exactly, so increase the amount to reclaim by 2x in order to
504                  * make sure we're flushing enough delalloc to hopefully reclaim
505                  * some metadata reservations.
506                  */
507                 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
508                 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
509         }
510
511         trans = (struct btrfs_trans_handle *)current->journal_info;
512
513         delalloc_bytes = percpu_counter_sum_positive(
514                                                 &fs_info->delalloc_bytes);
515         ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
516         if (delalloc_bytes == 0 && ordered_bytes == 0)
517                 return;
518
519         /*
520          * If we are doing more ordered than delalloc we need to just wait on
521          * ordered extents, otherwise we'll waste time trying to flush delalloc
522          * that likely won't give us the space back we need.
523          */
524         if (ordered_bytes > delalloc_bytes && !for_preempt)
525                 wait_ordered = true;
526
527         loops = 0;
528         while ((delalloc_bytes || ordered_bytes) && loops < 3) {
529                 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
530                 long nr_pages = min_t(u64, temp, LONG_MAX);
531
532                 btrfs_start_delalloc_roots(fs_info, nr_pages, true);
533
534                 loops++;
535                 if (wait_ordered && !trans) {
536                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
537                 } else {
538                         time_left = schedule_timeout_killable(1);
539                         if (time_left)
540                                 break;
541                 }
542
543                 /*
544                  * If we are for preemption we just want a one-shot of delalloc
545                  * flushing so we can stop flushing if we decide we don't need
546                  * to anymore.
547                  */
548                 if (for_preempt)
549                         break;
550
551                 spin_lock(&space_info->lock);
552                 if (list_empty(&space_info->tickets) &&
553                     list_empty(&space_info->priority_tickets)) {
554                         spin_unlock(&space_info->lock);
555                         break;
556                 }
557                 spin_unlock(&space_info->lock);
558
559                 delalloc_bytes = percpu_counter_sum_positive(
560                                                 &fs_info->delalloc_bytes);
561                 ordered_bytes = percpu_counter_sum_positive(
562                                                 &fs_info->ordered_bytes);
563         }
564 }
565
566 /*
567  * Try to flush some data based on policy set by @state. This is only advisory
568  * and may fail for various reasons. The caller is supposed to examine the
569  * state of @space_info to detect the outcome.
570  */
571 static void flush_space(struct btrfs_fs_info *fs_info,
572                        struct btrfs_space_info *space_info, u64 num_bytes,
573                        enum btrfs_flush_state state, bool for_preempt)
574 {
575         struct btrfs_root *root = fs_info->extent_root;
576         struct btrfs_trans_handle *trans;
577         int nr;
578         int ret = 0;
579
580         switch (state) {
581         case FLUSH_DELAYED_ITEMS_NR:
582         case FLUSH_DELAYED_ITEMS:
583                 if (state == FLUSH_DELAYED_ITEMS_NR)
584                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
585                 else
586                         nr = -1;
587
588                 trans = btrfs_join_transaction(root);
589                 if (IS_ERR(trans)) {
590                         ret = PTR_ERR(trans);
591                         break;
592                 }
593                 ret = btrfs_run_delayed_items_nr(trans, nr);
594                 btrfs_end_transaction(trans);
595                 break;
596         case FLUSH_DELALLOC:
597         case FLUSH_DELALLOC_WAIT:
598                 shrink_delalloc(fs_info, space_info, num_bytes,
599                                 state == FLUSH_DELALLOC_WAIT, for_preempt);
600                 break;
601         case FLUSH_DELAYED_REFS_NR:
602         case FLUSH_DELAYED_REFS:
603                 trans = btrfs_join_transaction(root);
604                 if (IS_ERR(trans)) {
605                         ret = PTR_ERR(trans);
606                         break;
607                 }
608                 if (state == FLUSH_DELAYED_REFS_NR)
609                         nr = calc_reclaim_items_nr(fs_info, num_bytes);
610                 else
611                         nr = 0;
612                 btrfs_run_delayed_refs(trans, nr);
613                 btrfs_end_transaction(trans);
614                 break;
615         case ALLOC_CHUNK:
616         case ALLOC_CHUNK_FORCE:
617                 trans = btrfs_join_transaction(root);
618                 if (IS_ERR(trans)) {
619                         ret = PTR_ERR(trans);
620                         break;
621                 }
622                 ret = btrfs_chunk_alloc(trans,
623                                 btrfs_get_alloc_profile(fs_info, space_info->flags),
624                                 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
625                                         CHUNK_ALLOC_FORCE);
626                 btrfs_end_transaction(trans);
627                 if (ret > 0 || ret == -ENOSPC)
628                         ret = 0;
629                 break;
630         case RUN_DELAYED_IPUTS:
631                 /*
632                  * If we have pending delayed iputs then we could free up a
633                  * bunch of pinned space, so make sure we run the iputs before
634                  * we do our pinned bytes check below.
635                  */
636                 btrfs_run_delayed_iputs(fs_info);
637                 btrfs_wait_on_delayed_iputs(fs_info);
638                 break;
639         case COMMIT_TRANS:
640                 ASSERT(current->journal_info == NULL);
641                 trans = btrfs_join_transaction(root);
642                 if (IS_ERR(trans)) {
643                         ret = PTR_ERR(trans);
644                         break;
645                 }
646                 ret = btrfs_commit_transaction(trans);
647                 break;
648         default:
649                 ret = -ENOSPC;
650                 break;
651         }
652
653         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
654                                 ret, for_preempt);
655         return;
656 }
657
658 static inline u64
659 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
660                                  struct btrfs_space_info *space_info)
661 {
662         u64 used;
663         u64 avail;
664         u64 to_reclaim = space_info->reclaim_size;
665
666         lockdep_assert_held(&space_info->lock);
667
668         avail = calc_available_free_space(fs_info, space_info,
669                                           BTRFS_RESERVE_FLUSH_ALL);
670         used = btrfs_space_info_used(space_info, true);
671
672         /*
673          * We may be flushing because suddenly we have less space than we had
674          * before, and now we're well over-committed based on our current free
675          * space.  If that's the case add in our overage so we make sure to put
676          * appropriate pressure on the flushing state machine.
677          */
678         if (space_info->total_bytes + avail < used)
679                 to_reclaim += used - (space_info->total_bytes + avail);
680
681         return to_reclaim;
682 }
683
684 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
685                                     struct btrfs_space_info *space_info)
686 {
687         u64 global_rsv_size = fs_info->global_block_rsv.reserved;
688         u64 ordered, delalloc;
689         u64 thresh = div_factor_fine(space_info->total_bytes, 98);
690         u64 used;
691
692         /* If we're just plain full then async reclaim just slows us down. */
693         if ((space_info->bytes_used + space_info->bytes_reserved +
694              global_rsv_size) >= thresh)
695                 return false;
696
697         /*
698          * We have tickets queued, bail so we don't compete with the async
699          * flushers.
700          */
701         if (space_info->reclaim_size)
702                 return false;
703
704         /*
705          * If we have over half of the free space occupied by reservations or
706          * pinned then we want to start flushing.
707          *
708          * We do not do the traditional thing here, which is to say
709          *
710          *   if (used >= ((total_bytes + avail) / 2))
711          *     return 1;
712          *
713          * because this doesn't quite work how we want.  If we had more than 50%
714          * of the space_info used by bytes_used and we had 0 available we'd just
715          * constantly run the background flusher.  Instead we want it to kick in
716          * if our reclaimable space exceeds our clamped free space.
717          *
718          * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
719          * the following:
720          *
721          * Amount of RAM        Minimum threshold       Maximum threshold
722          *
723          *        256GiB                     1GiB                  128GiB
724          *        128GiB                   512MiB                   64GiB
725          *         64GiB                   256MiB                   32GiB
726          *         32GiB                   128MiB                   16GiB
727          *         16GiB                    64MiB                    8GiB
728          *
729          * These are the range our thresholds will fall in, corresponding to how
730          * much delalloc we need for the background flusher to kick in.
731          */
732
733         thresh = calc_available_free_space(fs_info, space_info,
734                                            BTRFS_RESERVE_FLUSH_ALL);
735         used = space_info->bytes_used + space_info->bytes_reserved +
736                space_info->bytes_readonly + global_rsv_size;
737         if (used < space_info->total_bytes)
738                 thresh += space_info->total_bytes - used;
739         thresh >>= space_info->clamp;
740
741         used = space_info->bytes_pinned;
742
743         /*
744          * If we have more ordered bytes than delalloc bytes then we're either
745          * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
746          * around.  Preemptive flushing is only useful in that it can free up
747          * space before tickets need to wait for things to finish.  In the case
748          * of ordered extents, preemptively waiting on ordered extents gets us
749          * nothing, if our reservations are tied up in ordered extents we'll
750          * simply have to slow down writers by forcing them to wait on ordered
751          * extents.
752          *
753          * In the case that ordered is larger than delalloc, only include the
754          * block reserves that we would actually be able to directly reclaim
755          * from.  In this case if we're heavy on metadata operations this will
756          * clearly be heavy enough to warrant preemptive flushing.  In the case
757          * of heavy DIO or ordered reservations, preemptive flushing will just
758          * waste time and cause us to slow down.
759          *
760          * We want to make sure we truly are maxed out on ordered however, so
761          * cut ordered in half, and if it's still higher than delalloc then we
762          * can keep flushing.  This is to avoid the case where we start
763          * flushing, and now delalloc == ordered and we stop preemptively
764          * flushing when we could still have several gigs of delalloc to flush.
765          */
766         ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
767         delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
768         if (ordered >= delalloc)
769                 used += fs_info->delayed_refs_rsv.reserved +
770                         fs_info->delayed_block_rsv.reserved;
771         else
772                 used += space_info->bytes_may_use - global_rsv_size;
773
774         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
775                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
776 }
777
778 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
779                                   struct btrfs_space_info *space_info,
780                                   struct reserve_ticket *ticket)
781 {
782         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
783         u64 min_bytes;
784
785         if (global_rsv->space_info != space_info)
786                 return false;
787
788         spin_lock(&global_rsv->lock);
789         min_bytes = div_factor(global_rsv->size, 1);
790         if (global_rsv->reserved < min_bytes + ticket->bytes) {
791                 spin_unlock(&global_rsv->lock);
792                 return false;
793         }
794         global_rsv->reserved -= ticket->bytes;
795         remove_ticket(space_info, ticket);
796         ticket->bytes = 0;
797         wake_up(&ticket->wait);
798         space_info->tickets_id++;
799         if (global_rsv->reserved < global_rsv->size)
800                 global_rsv->full = 0;
801         spin_unlock(&global_rsv->lock);
802
803         return true;
804 }
805
806 /*
807  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
808  * @fs_info - fs_info for this fs
809  * @space_info - the space info we were flushing
810  *
811  * We call this when we've exhausted our flushing ability and haven't made
812  * progress in satisfying tickets.  The reservation code handles tickets in
813  * order, so if there is a large ticket first and then smaller ones we could
814  * very well satisfy the smaller tickets.  This will attempt to wake up any
815  * tickets in the list to catch this case.
816  *
817  * This function returns true if it was able to make progress by clearing out
818  * other tickets, or if it stumbles across a ticket that was smaller than the
819  * first ticket.
820  */
821 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
822                                    struct btrfs_space_info *space_info)
823 {
824         struct reserve_ticket *ticket;
825         u64 tickets_id = space_info->tickets_id;
826
827         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
828                 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
829                 __btrfs_dump_space_info(fs_info, space_info);
830         }
831
832         while (!list_empty(&space_info->tickets) &&
833                tickets_id == space_info->tickets_id) {
834                 ticket = list_first_entry(&space_info->tickets,
835                                           struct reserve_ticket, list);
836
837                 if (ticket->steal &&
838                     steal_from_global_rsv(fs_info, space_info, ticket))
839                         return true;
840
841                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
842                         btrfs_info(fs_info, "failing ticket with %llu bytes",
843                                    ticket->bytes);
844
845                 remove_ticket(space_info, ticket);
846                 ticket->error = -ENOSPC;
847                 wake_up(&ticket->wait);
848
849                 /*
850                  * We're just throwing tickets away, so more flushing may not
851                  * trip over btrfs_try_granting_tickets, so we need to call it
852                  * here to see if we can make progress with the next ticket in
853                  * the list.
854                  */
855                 btrfs_try_granting_tickets(fs_info, space_info);
856         }
857         return (tickets_id != space_info->tickets_id);
858 }
859
860 /*
861  * This is for normal flushers, we can wait all goddamned day if we want to.  We
862  * will loop and continuously try to flush as long as we are making progress.
863  * We count progress as clearing off tickets each time we have to loop.
864  */
865 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
866 {
867         struct btrfs_fs_info *fs_info;
868         struct btrfs_space_info *space_info;
869         u64 to_reclaim;
870         enum btrfs_flush_state flush_state;
871         int commit_cycles = 0;
872         u64 last_tickets_id;
873
874         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
875         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
876
877         spin_lock(&space_info->lock);
878         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
879         if (!to_reclaim) {
880                 space_info->flush = 0;
881                 spin_unlock(&space_info->lock);
882                 return;
883         }
884         last_tickets_id = space_info->tickets_id;
885         spin_unlock(&space_info->lock);
886
887         flush_state = FLUSH_DELAYED_ITEMS_NR;
888         do {
889                 flush_space(fs_info, space_info, to_reclaim, flush_state, false);
890                 spin_lock(&space_info->lock);
891                 if (list_empty(&space_info->tickets)) {
892                         space_info->flush = 0;
893                         spin_unlock(&space_info->lock);
894                         return;
895                 }
896                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
897                                                               space_info);
898                 if (last_tickets_id == space_info->tickets_id) {
899                         flush_state++;
900                 } else {
901                         last_tickets_id = space_info->tickets_id;
902                         flush_state = FLUSH_DELAYED_ITEMS_NR;
903                         if (commit_cycles)
904                                 commit_cycles--;
905                 }
906
907                 /*
908                  * We don't want to force a chunk allocation until we've tried
909                  * pretty hard to reclaim space.  Think of the case where we
910                  * freed up a bunch of space and so have a lot of pinned space
911                  * to reclaim.  We would rather use that than possibly create a
912                  * underutilized metadata chunk.  So if this is our first run
913                  * through the flushing state machine skip ALLOC_CHUNK_FORCE and
914                  * commit the transaction.  If nothing has changed the next go
915                  * around then we can force a chunk allocation.
916                  */
917                 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
918                         flush_state++;
919
920                 if (flush_state > COMMIT_TRANS) {
921                         commit_cycles++;
922                         if (commit_cycles > 2) {
923                                 if (maybe_fail_all_tickets(fs_info, space_info)) {
924                                         flush_state = FLUSH_DELAYED_ITEMS_NR;
925                                         commit_cycles--;
926                                 } else {
927                                         space_info->flush = 0;
928                                 }
929                         } else {
930                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
931                         }
932                 }
933                 spin_unlock(&space_info->lock);
934         } while (flush_state <= COMMIT_TRANS);
935 }
936
937 /*
938  * This handles pre-flushing of metadata space before we get to the point that
939  * we need to start blocking threads on tickets.  The logic here is different
940  * from the other flush paths because it doesn't rely on tickets to tell us how
941  * much we need to flush, instead it attempts to keep us below the 80% full
942  * watermark of space by flushing whichever reservation pool is currently the
943  * largest.
944  */
945 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
946 {
947         struct btrfs_fs_info *fs_info;
948         struct btrfs_space_info *space_info;
949         struct btrfs_block_rsv *delayed_block_rsv;
950         struct btrfs_block_rsv *delayed_refs_rsv;
951         struct btrfs_block_rsv *global_rsv;
952         struct btrfs_block_rsv *trans_rsv;
953         int loops = 0;
954
955         fs_info = container_of(work, struct btrfs_fs_info,
956                                preempt_reclaim_work);
957         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
958         delayed_block_rsv = &fs_info->delayed_block_rsv;
959         delayed_refs_rsv = &fs_info->delayed_refs_rsv;
960         global_rsv = &fs_info->global_block_rsv;
961         trans_rsv = &fs_info->trans_block_rsv;
962
963         spin_lock(&space_info->lock);
964         while (need_preemptive_reclaim(fs_info, space_info)) {
965                 enum btrfs_flush_state flush;
966                 u64 delalloc_size = 0;
967                 u64 to_reclaim, block_rsv_size;
968                 u64 global_rsv_size = global_rsv->reserved;
969
970                 loops++;
971
972                 /*
973                  * We don't have a precise counter for the metadata being
974                  * reserved for delalloc, so we'll approximate it by subtracting
975                  * out the block rsv's space from the bytes_may_use.  If that
976                  * amount is higher than the individual reserves, then we can
977                  * assume it's tied up in delalloc reservations.
978                  */
979                 block_rsv_size = global_rsv_size +
980                         delayed_block_rsv->reserved +
981                         delayed_refs_rsv->reserved +
982                         trans_rsv->reserved;
983                 if (block_rsv_size < space_info->bytes_may_use)
984                         delalloc_size = space_info->bytes_may_use - block_rsv_size;
985                 spin_unlock(&space_info->lock);
986
987                 /*
988                  * We don't want to include the global_rsv in our calculation,
989                  * because that's space we can't touch.  Subtract it from the
990                  * block_rsv_size for the next checks.
991                  */
992                 block_rsv_size -= global_rsv_size;
993
994                 /*
995                  * We really want to avoid flushing delalloc too much, as it
996                  * could result in poor allocation patterns, so only flush it if
997                  * it's larger than the rest of the pools combined.
998                  */
999                 if (delalloc_size > block_rsv_size) {
1000                         to_reclaim = delalloc_size;
1001                         flush = FLUSH_DELALLOC;
1002                 } else if (space_info->bytes_pinned >
1003                            (delayed_block_rsv->reserved +
1004                             delayed_refs_rsv->reserved)) {
1005                         to_reclaim = space_info->bytes_pinned;
1006                         flush = COMMIT_TRANS;
1007                 } else if (delayed_block_rsv->reserved >
1008                            delayed_refs_rsv->reserved) {
1009                         to_reclaim = delayed_block_rsv->reserved;
1010                         flush = FLUSH_DELAYED_ITEMS_NR;
1011                 } else {
1012                         to_reclaim = delayed_refs_rsv->reserved;
1013                         flush = FLUSH_DELAYED_REFS_NR;
1014                 }
1015
1016                 /*
1017                  * We don't want to reclaim everything, just a portion, so scale
1018                  * down the to_reclaim by 1/4.  If it takes us down to 0,
1019                  * reclaim 1 items worth.
1020                  */
1021                 to_reclaim >>= 2;
1022                 if (!to_reclaim)
1023                         to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1024                 flush_space(fs_info, space_info, to_reclaim, flush, true);
1025                 cond_resched();
1026                 spin_lock(&space_info->lock);
1027         }
1028
1029         /* We only went through once, back off our clamping. */
1030         if (loops == 1 && !space_info->reclaim_size)
1031                 space_info->clamp = max(1, space_info->clamp - 1);
1032         trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1033         spin_unlock(&space_info->lock);
1034 }
1035
1036 /*
1037  * FLUSH_DELALLOC_WAIT:
1038  *   Space is freed from flushing delalloc in one of two ways.
1039  *
1040  *   1) compression is on and we allocate less space than we reserved
1041  *   2) we are overwriting existing space
1042  *
1043  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1044  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1045  *   length to ->bytes_reserved, and subtracts the reserved space from
1046  *   ->bytes_may_use.
1047  *
1048  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1049  *   extent in the range we are overwriting, which creates a delayed ref for
1050  *   that freed extent.  This however is not reclaimed until the transaction
1051  *   commits, thus the next stages.
1052  *
1053  * RUN_DELAYED_IPUTS
1054  *   If we are freeing inodes, we want to make sure all delayed iputs have
1055  *   completed, because they could have been on an inode with i_nlink == 0, and
1056  *   thus have been truncated and freed up space.  But again this space is not
1057  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1058  *   run and then the transaction must be committed.
1059  *
1060  * COMMIT_TRANS
1061  *   This is where we reclaim all of the pinned space generated by running the
1062  *   iputs
1063  *
1064  * ALLOC_CHUNK_FORCE
1065  *   For data we start with alloc chunk force, however we could have been full
1066  *   before, and then the transaction commit could have freed new block groups,
1067  *   so if we now have space to allocate do the force chunk allocation.
1068  */
1069 static const enum btrfs_flush_state data_flush_states[] = {
1070         FLUSH_DELALLOC_WAIT,
1071         RUN_DELAYED_IPUTS,
1072         COMMIT_TRANS,
1073         ALLOC_CHUNK_FORCE,
1074 };
1075
1076 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1077 {
1078         struct btrfs_fs_info *fs_info;
1079         struct btrfs_space_info *space_info;
1080         u64 last_tickets_id;
1081         enum btrfs_flush_state flush_state = 0;
1082
1083         fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1084         space_info = fs_info->data_sinfo;
1085
1086         spin_lock(&space_info->lock);
1087         if (list_empty(&space_info->tickets)) {
1088                 space_info->flush = 0;
1089                 spin_unlock(&space_info->lock);
1090                 return;
1091         }
1092         last_tickets_id = space_info->tickets_id;
1093         spin_unlock(&space_info->lock);
1094
1095         while (!space_info->full) {
1096                 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1097                 spin_lock(&space_info->lock);
1098                 if (list_empty(&space_info->tickets)) {
1099                         space_info->flush = 0;
1100                         spin_unlock(&space_info->lock);
1101                         return;
1102                 }
1103                 last_tickets_id = space_info->tickets_id;
1104                 spin_unlock(&space_info->lock);
1105         }
1106
1107         while (flush_state < ARRAY_SIZE(data_flush_states)) {
1108                 flush_space(fs_info, space_info, U64_MAX,
1109                             data_flush_states[flush_state], false);
1110                 spin_lock(&space_info->lock);
1111                 if (list_empty(&space_info->tickets)) {
1112                         space_info->flush = 0;
1113                         spin_unlock(&space_info->lock);
1114                         return;
1115                 }
1116
1117                 if (last_tickets_id == space_info->tickets_id) {
1118                         flush_state++;
1119                 } else {
1120                         last_tickets_id = space_info->tickets_id;
1121                         flush_state = 0;
1122                 }
1123
1124                 if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1125                         if (space_info->full) {
1126                                 if (maybe_fail_all_tickets(fs_info, space_info))
1127                                         flush_state = 0;
1128                                 else
1129                                         space_info->flush = 0;
1130                         } else {
1131                                 flush_state = 0;
1132                         }
1133                 }
1134                 spin_unlock(&space_info->lock);
1135         }
1136 }
1137
1138 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1139 {
1140         INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1141         INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1142         INIT_WORK(&fs_info->preempt_reclaim_work,
1143                   btrfs_preempt_reclaim_metadata_space);
1144 }
1145
1146 static const enum btrfs_flush_state priority_flush_states[] = {
1147         FLUSH_DELAYED_ITEMS_NR,
1148         FLUSH_DELAYED_ITEMS,
1149         ALLOC_CHUNK,
1150 };
1151
1152 static const enum btrfs_flush_state evict_flush_states[] = {
1153         FLUSH_DELAYED_ITEMS_NR,
1154         FLUSH_DELAYED_ITEMS,
1155         FLUSH_DELAYED_REFS_NR,
1156         FLUSH_DELAYED_REFS,
1157         FLUSH_DELALLOC,
1158         FLUSH_DELALLOC_WAIT,
1159         ALLOC_CHUNK,
1160         COMMIT_TRANS,
1161 };
1162
1163 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1164                                 struct btrfs_space_info *space_info,
1165                                 struct reserve_ticket *ticket,
1166                                 const enum btrfs_flush_state *states,
1167                                 int states_nr)
1168 {
1169         u64 to_reclaim;
1170         int flush_state;
1171
1172         spin_lock(&space_info->lock);
1173         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1174         if (!to_reclaim) {
1175                 spin_unlock(&space_info->lock);
1176                 return;
1177         }
1178         spin_unlock(&space_info->lock);
1179
1180         flush_state = 0;
1181         do {
1182                 flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1183                             false);
1184                 flush_state++;
1185                 spin_lock(&space_info->lock);
1186                 if (ticket->bytes == 0) {
1187                         spin_unlock(&space_info->lock);
1188                         return;
1189                 }
1190                 spin_unlock(&space_info->lock);
1191         } while (flush_state < states_nr);
1192 }
1193
1194 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1195                                         struct btrfs_space_info *space_info,
1196                                         struct reserve_ticket *ticket)
1197 {
1198         while (!space_info->full) {
1199                 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1200                 spin_lock(&space_info->lock);
1201                 if (ticket->bytes == 0) {
1202                         spin_unlock(&space_info->lock);
1203                         return;
1204                 }
1205                 spin_unlock(&space_info->lock);
1206         }
1207 }
1208
1209 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1210                                 struct btrfs_space_info *space_info,
1211                                 struct reserve_ticket *ticket)
1212
1213 {
1214         DEFINE_WAIT(wait);
1215         int ret = 0;
1216
1217         spin_lock(&space_info->lock);
1218         while (ticket->bytes > 0 && ticket->error == 0) {
1219                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1220                 if (ret) {
1221                         /*
1222                          * Delete us from the list. After we unlock the space
1223                          * info, we don't want the async reclaim job to reserve
1224                          * space for this ticket. If that would happen, then the
1225                          * ticket's task would not known that space was reserved
1226                          * despite getting an error, resulting in a space leak
1227                          * (bytes_may_use counter of our space_info).
1228                          */
1229                         remove_ticket(space_info, ticket);
1230                         ticket->error = -EINTR;
1231                         break;
1232                 }
1233                 spin_unlock(&space_info->lock);
1234
1235                 schedule();
1236
1237                 finish_wait(&ticket->wait, &wait);
1238                 spin_lock(&space_info->lock);
1239         }
1240         spin_unlock(&space_info->lock);
1241 }
1242
1243 /**
1244  * Do the appropriate flushing and waiting for a ticket
1245  *
1246  * @fs_info:    the filesystem
1247  * @space_info: space info for the reservation
1248  * @ticket:     ticket for the reservation
1249  * @start_ns:   timestamp when the reservation started
1250  * @orig_bytes: amount of bytes originally reserved
1251  * @flush:      how much we can flush
1252  *
1253  * This does the work of figuring out how to flush for the ticket, waiting for
1254  * the reservation, and returning the appropriate error if there is one.
1255  */
1256 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1257                                  struct btrfs_space_info *space_info,
1258                                  struct reserve_ticket *ticket,
1259                                  u64 start_ns, u64 orig_bytes,
1260                                  enum btrfs_reserve_flush_enum flush)
1261 {
1262         int ret;
1263
1264         switch (flush) {
1265         case BTRFS_RESERVE_FLUSH_DATA:
1266         case BTRFS_RESERVE_FLUSH_ALL:
1267         case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1268                 wait_reserve_ticket(fs_info, space_info, ticket);
1269                 break;
1270         case BTRFS_RESERVE_FLUSH_LIMIT:
1271                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1272                                                 priority_flush_states,
1273                                                 ARRAY_SIZE(priority_flush_states));
1274                 break;
1275         case BTRFS_RESERVE_FLUSH_EVICT:
1276                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1277                                                 evict_flush_states,
1278                                                 ARRAY_SIZE(evict_flush_states));
1279                 break;
1280         case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1281                 priority_reclaim_data_space(fs_info, space_info, ticket);
1282                 break;
1283         default:
1284                 ASSERT(0);
1285                 break;
1286         }
1287
1288         spin_lock(&space_info->lock);
1289         ret = ticket->error;
1290         if (ticket->bytes || ticket->error) {
1291                 /*
1292                  * We were a priority ticket, so we need to delete ourselves
1293                  * from the list.  Because we could have other priority tickets
1294                  * behind us that require less space, run
1295                  * btrfs_try_granting_tickets() to see if their reservations can
1296                  * now be made.
1297                  */
1298                 if (!list_empty(&ticket->list)) {
1299                         remove_ticket(space_info, ticket);
1300                         btrfs_try_granting_tickets(fs_info, space_info);
1301                 }
1302
1303                 if (!ret)
1304                         ret = -ENOSPC;
1305         }
1306         spin_unlock(&space_info->lock);
1307         ASSERT(list_empty(&ticket->list));
1308         /*
1309          * Check that we can't have an error set if the reservation succeeded,
1310          * as that would confuse tasks and lead them to error out without
1311          * releasing reserved space (if an error happens the expectation is that
1312          * space wasn't reserved at all).
1313          */
1314         ASSERT(!(ticket->bytes == 0 && ticket->error));
1315         trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1316                                    start_ns, flush, ticket->error);
1317         return ret;
1318 }
1319
1320 /*
1321  * This returns true if this flush state will go through the ordinary flushing
1322  * code.
1323  */
1324 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1325 {
1326         return  (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1327                 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1328 }
1329
1330 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1331                                        struct btrfs_space_info *space_info)
1332 {
1333         u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1334         u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1335
1336         /*
1337          * If we're heavy on ordered operations then clamping won't help us.  We
1338          * need to clamp specifically to keep up with dirty'ing buffered
1339          * writers, because there's not a 1:1 correlation of writing delalloc
1340          * and freeing space, like there is with flushing delayed refs or
1341          * delayed nodes.  If we're already more ordered than delalloc then
1342          * we're keeping up, otherwise we aren't and should probably clamp.
1343          */
1344         if (ordered < delalloc)
1345                 space_info->clamp = min(space_info->clamp + 1, 8);
1346 }
1347
1348 /**
1349  * Try to reserve bytes from the block_rsv's space
1350  *
1351  * @fs_info:    the filesystem
1352  * @space_info: space info we want to allocate from
1353  * @orig_bytes: number of bytes we want
1354  * @flush:      whether or not we can flush to make our reservation
1355  *
1356  * This will reserve orig_bytes number of bytes from the space info associated
1357  * with the block_rsv.  If there is not enough space it will make an attempt to
1358  * flush out space to make room.  It will do this by flushing delalloc if
1359  * possible or committing the transaction.  If flush is 0 then no attempts to
1360  * regain reservations will be made and this will fail if there is not enough
1361  * space already.
1362  */
1363 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1364                            struct btrfs_space_info *space_info, u64 orig_bytes,
1365                            enum btrfs_reserve_flush_enum flush)
1366 {
1367         struct work_struct *async_work;
1368         struct reserve_ticket ticket;
1369         u64 start_ns = 0;
1370         u64 used;
1371         int ret = 0;
1372         bool pending_tickets;
1373
1374         ASSERT(orig_bytes);
1375         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1376
1377         if (flush == BTRFS_RESERVE_FLUSH_DATA)
1378                 async_work = &fs_info->async_data_reclaim_work;
1379         else
1380                 async_work = &fs_info->async_reclaim_work;
1381
1382         spin_lock(&space_info->lock);
1383         ret = -ENOSPC;
1384         used = btrfs_space_info_used(space_info, true);
1385
1386         /*
1387          * We don't want NO_FLUSH allocations to jump everybody, they can
1388          * generally handle ENOSPC in a different way, so treat them the same as
1389          * normal flushers when it comes to skipping pending tickets.
1390          */
1391         if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1392                 pending_tickets = !list_empty(&space_info->tickets) ||
1393                         !list_empty(&space_info->priority_tickets);
1394         else
1395                 pending_tickets = !list_empty(&space_info->priority_tickets);
1396
1397         /*
1398          * Carry on if we have enough space (short-circuit) OR call
1399          * can_overcommit() to ensure we can overcommit to continue.
1400          */
1401         if (!pending_tickets &&
1402             ((used + orig_bytes <= space_info->total_bytes) ||
1403              btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1404                 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1405                                                       orig_bytes);
1406                 ret = 0;
1407         }
1408
1409         /*
1410          * If we couldn't make a reservation then setup our reservation ticket
1411          * and kick the async worker if it's not already running.
1412          *
1413          * If we are a priority flusher then we just need to add our ticket to
1414          * the list and we will do our own flushing further down.
1415          */
1416         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1417                 ticket.bytes = orig_bytes;
1418                 ticket.error = 0;
1419                 space_info->reclaim_size += ticket.bytes;
1420                 init_waitqueue_head(&ticket.wait);
1421                 ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1422                 if (trace_btrfs_reserve_ticket_enabled())
1423                         start_ns = ktime_get_ns();
1424
1425                 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1426                     flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1427                     flush == BTRFS_RESERVE_FLUSH_DATA) {
1428                         list_add_tail(&ticket.list, &space_info->tickets);
1429                         if (!space_info->flush) {
1430                                 /*
1431                                  * We were forced to add a reserve ticket, so
1432                                  * our preemptive flushing is unable to keep
1433                                  * up.  Clamp down on the threshold for the
1434                                  * preemptive flushing in order to keep up with
1435                                  * the workload.
1436                                  */
1437                                 maybe_clamp_preempt(fs_info, space_info);
1438
1439                                 space_info->flush = 1;
1440                                 trace_btrfs_trigger_flush(fs_info,
1441                                                           space_info->flags,
1442                                                           orig_bytes, flush,
1443                                                           "enospc");
1444                                 queue_work(system_unbound_wq, async_work);
1445                         }
1446                 } else {
1447                         list_add_tail(&ticket.list,
1448                                       &space_info->priority_tickets);
1449                 }
1450         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1451                 used += orig_bytes;
1452                 /*
1453                  * We will do the space reservation dance during log replay,
1454                  * which means we won't have fs_info->fs_root set, so don't do
1455                  * the async reclaim as we will panic.
1456                  */
1457                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1458                     !work_busy(&fs_info->preempt_reclaim_work) &&
1459                     need_preemptive_reclaim(fs_info, space_info)) {
1460                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
1461                                                   orig_bytes, flush, "preempt");
1462                         queue_work(system_unbound_wq,
1463                                    &fs_info->preempt_reclaim_work);
1464                 }
1465         }
1466         spin_unlock(&space_info->lock);
1467         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1468                 return ret;
1469
1470         return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1471                                      orig_bytes, flush);
1472 }
1473
1474 /**
1475  * Trye to reserve metadata bytes from the block_rsv's space
1476  *
1477  * @root:       the root we're allocating for
1478  * @block_rsv:  block_rsv we're allocating for
1479  * @orig_bytes: number of bytes we want
1480  * @flush:      whether or not we can flush to make our reservation
1481  *
1482  * This will reserve orig_bytes number of bytes from the space info associated
1483  * with the block_rsv.  If there is not enough space it will make an attempt to
1484  * flush out space to make room.  It will do this by flushing delalloc if
1485  * possible or committing the transaction.  If flush is 0 then no attempts to
1486  * regain reservations will be made and this will fail if there is not enough
1487  * space already.
1488  */
1489 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1490                                  struct btrfs_block_rsv *block_rsv,
1491                                  u64 orig_bytes,
1492                                  enum btrfs_reserve_flush_enum flush)
1493 {
1494         struct btrfs_fs_info *fs_info = root->fs_info;
1495         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1496         int ret;
1497
1498         ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1499         if (ret == -ENOSPC &&
1500             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1501                 if (block_rsv != global_rsv &&
1502                     !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1503                         ret = 0;
1504         }
1505         if (ret == -ENOSPC) {
1506                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1507                                               block_rsv->space_info->flags,
1508                                               orig_bytes, 1);
1509
1510                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1511                         btrfs_dump_space_info(fs_info, block_rsv->space_info,
1512                                               orig_bytes, 0);
1513         }
1514         return ret;
1515 }
1516
1517 /**
1518  * Try to reserve data bytes for an allocation
1519  *
1520  * @fs_info: the filesystem
1521  * @bytes:   number of bytes we need
1522  * @flush:   how we are allowed to flush
1523  *
1524  * This will reserve bytes from the data space info.  If there is not enough
1525  * space then we will attempt to flush space as specified by flush.
1526  */
1527 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1528                              enum btrfs_reserve_flush_enum flush)
1529 {
1530         struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1531         int ret;
1532
1533         ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1534                flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE);
1535         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1536
1537         ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1538         if (ret == -ENOSPC) {
1539                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1540                                               data_sinfo->flags, bytes, 1);
1541                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1542                         btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1543         }
1544         return ret;
1545 }