Merge tag 'iomap-5.7-merge-3' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[linux-2.6-microblaze.git] / fs / btrfs / space-info.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12
13 /*
14  * HOW DOES SPACE RESERVATION WORK
15  *
16  * If you want to know about delalloc specifically, there is a separate comment
17  * for that with the delalloc code.  This comment is about how the whole system
18  * works generally.
19  *
20  * BASIC CONCEPTS
21  *
22  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
23  *   There's a description of the bytes_ fields with the struct declaration,
24  *   refer to that for specifics on each field.  Suffice it to say that for
25  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
26  *   determining if there is space to make an allocation.  There is a space_info
27  *   for METADATA, SYSTEM, and DATA areas.
28  *
29  *   2) block_rsv's.  These are basically buckets for every different type of
30  *   metadata reservation we have.  You can see the comment in the block_rsv
31  *   code on the rules for each type, but generally block_rsv->reserved is how
32  *   much space is accounted for in space_info->bytes_may_use.
33  *
34  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
35  *   on the number of items we will want to modify.  We have one for changing
36  *   items, and one for inserting new items.  Generally we use these helpers to
37  *   determine the size of the block reserves, and then use the actual bytes
38  *   values to adjust the space_info counters.
39  *
40  * MAKING RESERVATIONS, THE NORMAL CASE
41  *
42  *   We call into either btrfs_reserve_data_bytes() or
43  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44  *   num_bytes we want to reserve.
45  *
46  *   ->reserve
47  *     space_info->bytes_may_reserve += num_bytes
48  *
49  *   ->extent allocation
50  *     Call btrfs_add_reserved_bytes() which does
51  *     space_info->bytes_may_reserve -= num_bytes
52  *     space_info->bytes_reserved += extent_bytes
53  *
54  *   ->insert reference
55  *     Call btrfs_update_block_group() which does
56  *     space_info->bytes_reserved -= extent_bytes
57  *     space_info->bytes_used += extent_bytes
58  *
59  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
60  *
61  *   Assume we are unable to simply make the reservation because we do not have
62  *   enough space
63  *
64  *   -> __reserve_bytes
65  *     create a reserve_ticket with ->bytes set to our reservation, add it to
66  *     the tail of space_info->tickets, kick async flush thread
67  *
68  *   ->handle_reserve_ticket
69  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70  *     on the ticket.
71  *
72  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73  *     Flushes various things attempting to free up space.
74  *
75  *   -> btrfs_try_granting_tickets()
76  *     This is called by anything that either subtracts space from
77  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78  *     space_info->total_bytes.  This loops through the ->priority_tickets and
79  *     then the ->tickets list checking to see if the reservation can be
80  *     completed.  If it can the space is added to space_info->bytes_may_use and
81  *     the ticket is woken up.
82  *
83  *   -> ticket wakeup
84  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
85  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86  *     were interrupted.)
87  *
88  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
89  *
90  *   Same as the above, except we add ourselves to the
91  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
92  *   call flush_space() ourselves for the states that are safe for us to call
93  *   without deadlocking and hope for the best.
94  *
95  * THE FLUSHING STATES
96  *
97  *   Generally speaking we will have two cases for each state, a "nice" state
98  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
99  *   reduce the locking over head on the various trees, and even to keep from
100  *   doing any work at all in the case of delayed refs.  Each of these delayed
101  *   things however hold reservations, and so letting them run allows us to
102  *   reclaim space so we can make new reservations.
103  *
104  *   FLUSH_DELAYED_ITEMS
105  *     Every inode has a delayed item to update the inode.  Take a simple write
106  *     for example, we would update the inode item at write time to update the
107  *     mtime, and then again at finish_ordered_io() time in order to update the
108  *     isize or bytes.  We keep these delayed items to coalesce these operations
109  *     into a single operation done on demand.  These are an easy way to reclaim
110  *     metadata space.
111  *
112  *   FLUSH_DELALLOC
113  *     Look at the delalloc comment to get an idea of how much space is reserved
114  *     for delayed allocation.  We can reclaim some of this space simply by
115  *     running delalloc, but usually we need to wait for ordered extents to
116  *     reclaim the bulk of this space.
117  *
118  *   FLUSH_DELAYED_REFS
119  *     We have a block reserve for the outstanding delayed refs space, and every
120  *     delayed ref operation holds a reservation.  Running these is a quick way
121  *     to reclaim space, but we want to hold this until the end because COW can
122  *     churn a lot and we can avoid making some extent tree modifications if we
123  *     are able to delay for as long as possible.
124  *
125  *   ALLOC_CHUNK
126  *     We will skip this the first time through space reservation, because of
127  *     overcommit and we don't want to have a lot of useless metadata space when
128  *     our worst case reservations will likely never come true.
129  *
130  *   RUN_DELAYED_IPUTS
131  *     If we're freeing inodes we're likely freeing checksums, file extent
132  *     items, and extent tree items.  Loads of space could be freed up by these
133  *     operations, however they won't be usable until the transaction commits.
134  *
135  *   COMMIT_TRANS
136  *     may_commit_transaction() is the ultimate arbiter on whether we commit the
137  *     transaction or not.  In order to avoid constantly churning we do all the
138  *     above flushing first and then commit the transaction as the last resort.
139  *     However we need to take into account things like pinned space that would
140  *     be freed, plus any delayed work we may not have gotten rid of in the case
141  *     of metadata.
142  *
143  * OVERCOMMIT
144  *
145  *   Because we hold so many reservations for metadata we will allow you to
146  *   reserve more space than is currently free in the currently allocate
147  *   metadata space.  This only happens with metadata, data does not allow
148  *   overcommitting.
149  *
150  *   You can see the current logic for when we allow overcommit in
151  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
152  *   is no unallocated space to be had, all reservations are kept within the
153  *   free space in the allocated metadata chunks.
154  *
155  *   Because of overcommitting, you generally want to use the
156  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
157  *   thing with or without extra unallocated space.
158  */
159
160 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
161                           bool may_use_included)
162 {
163         ASSERT(s_info);
164         return s_info->bytes_used + s_info->bytes_reserved +
165                 s_info->bytes_pinned + s_info->bytes_readonly +
166                 (may_use_included ? s_info->bytes_may_use : 0);
167 }
168
169 /*
170  * after adding space to the filesystem, we need to clear the full flags
171  * on all the space infos.
172  */
173 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
174 {
175         struct list_head *head = &info->space_info;
176         struct btrfs_space_info *found;
177
178         rcu_read_lock();
179         list_for_each_entry_rcu(found, head, list)
180                 found->full = 0;
181         rcu_read_unlock();
182 }
183
184 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
185 {
186
187         struct btrfs_space_info *space_info;
188         int i;
189         int ret;
190
191         space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
192         if (!space_info)
193                 return -ENOMEM;
194
195         ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
196                                  GFP_KERNEL);
197         if (ret) {
198                 kfree(space_info);
199                 return ret;
200         }
201
202         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
203                 INIT_LIST_HEAD(&space_info->block_groups[i]);
204         init_rwsem(&space_info->groups_sem);
205         spin_lock_init(&space_info->lock);
206         space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
207         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
208         INIT_LIST_HEAD(&space_info->ro_bgs);
209         INIT_LIST_HEAD(&space_info->tickets);
210         INIT_LIST_HEAD(&space_info->priority_tickets);
211
212         ret = btrfs_sysfs_add_space_info_type(info, space_info);
213         if (ret)
214                 return ret;
215
216         list_add_rcu(&space_info->list, &info->space_info);
217         if (flags & BTRFS_BLOCK_GROUP_DATA)
218                 info->data_sinfo = space_info;
219
220         return ret;
221 }
222
223 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
224 {
225         struct btrfs_super_block *disk_super;
226         u64 features;
227         u64 flags;
228         int mixed = 0;
229         int ret;
230
231         disk_super = fs_info->super_copy;
232         if (!btrfs_super_root(disk_super))
233                 return -EINVAL;
234
235         features = btrfs_super_incompat_flags(disk_super);
236         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
237                 mixed = 1;
238
239         flags = BTRFS_BLOCK_GROUP_SYSTEM;
240         ret = create_space_info(fs_info, flags);
241         if (ret)
242                 goto out;
243
244         if (mixed) {
245                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
246                 ret = create_space_info(fs_info, flags);
247         } else {
248                 flags = BTRFS_BLOCK_GROUP_METADATA;
249                 ret = create_space_info(fs_info, flags);
250                 if (ret)
251                         goto out;
252
253                 flags = BTRFS_BLOCK_GROUP_DATA;
254                 ret = create_space_info(fs_info, flags);
255         }
256 out:
257         return ret;
258 }
259
260 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
261                              u64 total_bytes, u64 bytes_used,
262                              u64 bytes_readonly,
263                              struct btrfs_space_info **space_info)
264 {
265         struct btrfs_space_info *found;
266         int factor;
267
268         factor = btrfs_bg_type_to_factor(flags);
269
270         found = btrfs_find_space_info(info, flags);
271         ASSERT(found);
272         spin_lock(&found->lock);
273         found->total_bytes += total_bytes;
274         found->disk_total += total_bytes * factor;
275         found->bytes_used += bytes_used;
276         found->disk_used += bytes_used * factor;
277         found->bytes_readonly += bytes_readonly;
278         if (total_bytes > 0)
279                 found->full = 0;
280         btrfs_try_granting_tickets(info, found);
281         spin_unlock(&found->lock);
282         *space_info = found;
283 }
284
285 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
286                                                u64 flags)
287 {
288         struct list_head *head = &info->space_info;
289         struct btrfs_space_info *found;
290
291         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
292
293         rcu_read_lock();
294         list_for_each_entry_rcu(found, head, list) {
295                 if (found->flags & flags) {
296                         rcu_read_unlock();
297                         return found;
298                 }
299         }
300         rcu_read_unlock();
301         return NULL;
302 }
303
304 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
305 {
306         return (global->size << 1);
307 }
308
309 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
310                           struct btrfs_space_info *space_info,
311                           enum btrfs_reserve_flush_enum flush)
312 {
313         u64 profile;
314         u64 avail;
315         int factor;
316
317         if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
318                 profile = btrfs_system_alloc_profile(fs_info);
319         else
320                 profile = btrfs_metadata_alloc_profile(fs_info);
321
322         avail = atomic64_read(&fs_info->free_chunk_space);
323
324         /*
325          * If we have dup, raid1 or raid10 then only half of the free
326          * space is actually usable.  For raid56, the space info used
327          * doesn't include the parity drive, so we don't have to
328          * change the math
329          */
330         factor = btrfs_bg_type_to_factor(profile);
331         avail = div_u64(avail, factor);
332
333         /*
334          * If we aren't flushing all things, let us overcommit up to
335          * 1/2th of the space. If we can flush, don't let us overcommit
336          * too much, let it overcommit up to 1/8 of the space.
337          */
338         if (flush == BTRFS_RESERVE_FLUSH_ALL)
339                 avail >>= 3;
340         else
341                 avail >>= 1;
342         return avail;
343 }
344
345 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
346                          struct btrfs_space_info *space_info, u64 bytes,
347                          enum btrfs_reserve_flush_enum flush)
348 {
349         u64 avail;
350         u64 used;
351
352         /* Don't overcommit when in mixed mode */
353         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
354                 return 0;
355
356         used = btrfs_space_info_used(space_info, true);
357         avail = calc_available_free_space(fs_info, space_info, flush);
358
359         if (used + bytes < space_info->total_bytes + avail)
360                 return 1;
361         return 0;
362 }
363
364 /*
365  * This is for space we already have accounted in space_info->bytes_may_use, so
366  * basically when we're returning space from block_rsv's.
367  */
368 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
369                                 struct btrfs_space_info *space_info)
370 {
371         struct list_head *head;
372         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
373
374         lockdep_assert_held(&space_info->lock);
375
376         head = &space_info->priority_tickets;
377 again:
378         while (!list_empty(head)) {
379                 struct reserve_ticket *ticket;
380                 u64 used = btrfs_space_info_used(space_info, true);
381
382                 ticket = list_first_entry(head, struct reserve_ticket, list);
383
384                 /* Check and see if our ticket can be satisified now. */
385                 if ((used + ticket->bytes <= space_info->total_bytes) ||
386                     btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
387                                          flush)) {
388                         btrfs_space_info_update_bytes_may_use(fs_info,
389                                                               space_info,
390                                                               ticket->bytes);
391                         list_del_init(&ticket->list);
392                         ASSERT(space_info->reclaim_size >= ticket->bytes);
393                         space_info->reclaim_size -= ticket->bytes;
394                         ticket->bytes = 0;
395                         space_info->tickets_id++;
396                         wake_up(&ticket->wait);
397                 } else {
398                         break;
399                 }
400         }
401
402         if (head == &space_info->priority_tickets) {
403                 head = &space_info->tickets;
404                 flush = BTRFS_RESERVE_FLUSH_ALL;
405                 goto again;
406         }
407 }
408
409 #define DUMP_BLOCK_RSV(fs_info, rsv_name)                               \
410 do {                                                                    \
411         struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;           \
412         spin_lock(&__rsv->lock);                                        \
413         btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",      \
414                    __rsv->size, __rsv->reserved);                       \
415         spin_unlock(&__rsv->lock);                                      \
416 } while (0)
417
418 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
419                                     struct btrfs_space_info *info)
420 {
421         lockdep_assert_held(&info->lock);
422
423         btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
424                    info->flags,
425                    info->total_bytes - btrfs_space_info_used(info, true),
426                    info->full ? "" : "not ");
427         btrfs_info(fs_info,
428                 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
429                 info->total_bytes, info->bytes_used, info->bytes_pinned,
430                 info->bytes_reserved, info->bytes_may_use,
431                 info->bytes_readonly);
432
433         DUMP_BLOCK_RSV(fs_info, global_block_rsv);
434         DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
435         DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
436         DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
437         DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
438
439 }
440
441 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
442                            struct btrfs_space_info *info, u64 bytes,
443                            int dump_block_groups)
444 {
445         struct btrfs_block_group *cache;
446         int index = 0;
447
448         spin_lock(&info->lock);
449         __btrfs_dump_space_info(fs_info, info);
450         spin_unlock(&info->lock);
451
452         if (!dump_block_groups)
453                 return;
454
455         down_read(&info->groups_sem);
456 again:
457         list_for_each_entry(cache, &info->block_groups[index], list) {
458                 spin_lock(&cache->lock);
459                 btrfs_info(fs_info,
460                         "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
461                         cache->start, cache->length, cache->used, cache->pinned,
462                         cache->reserved, cache->ro ? "[readonly]" : "");
463                 btrfs_dump_free_space(cache, bytes);
464                 spin_unlock(&cache->lock);
465         }
466         if (++index < BTRFS_NR_RAID_TYPES)
467                 goto again;
468         up_read(&info->groups_sem);
469 }
470
471 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
472                                          unsigned long nr_pages, int nr_items)
473 {
474         struct super_block *sb = fs_info->sb;
475
476         if (down_read_trylock(&sb->s_umount)) {
477                 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
478                 up_read(&sb->s_umount);
479         } else {
480                 /*
481                  * We needn't worry the filesystem going from r/w to r/o though
482                  * we don't acquire ->s_umount mutex, because the filesystem
483                  * should guarantee the delalloc inodes list be empty after
484                  * the filesystem is readonly(all dirty pages are written to
485                  * the disk).
486                  */
487                 btrfs_start_delalloc_roots(fs_info, nr_items);
488                 if (!current->journal_info)
489                         btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
490         }
491 }
492
493 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
494                                         u64 to_reclaim)
495 {
496         u64 bytes;
497         u64 nr;
498
499         bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
500         nr = div64_u64(to_reclaim, bytes);
501         if (!nr)
502                 nr = 1;
503         return nr;
504 }
505
506 #define EXTENT_SIZE_PER_ITEM    SZ_256K
507
508 /*
509  * shrink metadata reservation for delalloc
510  */
511 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
512                             u64 orig, bool wait_ordered)
513 {
514         struct btrfs_space_info *space_info;
515         struct btrfs_trans_handle *trans;
516         u64 delalloc_bytes;
517         u64 dio_bytes;
518         u64 async_pages;
519         u64 items;
520         long time_left;
521         unsigned long nr_pages;
522         int loops;
523
524         /* Calc the number of the pages we need flush for space reservation */
525         items = calc_reclaim_items_nr(fs_info, to_reclaim);
526         to_reclaim = items * EXTENT_SIZE_PER_ITEM;
527
528         trans = (struct btrfs_trans_handle *)current->journal_info;
529         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
530
531         delalloc_bytes = percpu_counter_sum_positive(
532                                                 &fs_info->delalloc_bytes);
533         dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
534         if (delalloc_bytes == 0 && dio_bytes == 0) {
535                 if (trans)
536                         return;
537                 if (wait_ordered)
538                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
539                 return;
540         }
541
542         /*
543          * If we are doing more ordered than delalloc we need to just wait on
544          * ordered extents, otherwise we'll waste time trying to flush delalloc
545          * that likely won't give us the space back we need.
546          */
547         if (dio_bytes > delalloc_bytes)
548                 wait_ordered = true;
549
550         loops = 0;
551         while ((delalloc_bytes || dio_bytes) && loops < 3) {
552                 nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
553
554                 /*
555                  * Triggers inode writeback for up to nr_pages. This will invoke
556                  * ->writepages callback and trigger delalloc filling
557                  *  (btrfs_run_delalloc_range()).
558                  */
559                 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
560
561                 /*
562                  * We need to wait for the compressed pages to start before
563                  * we continue.
564                  */
565                 async_pages = atomic_read(&fs_info->async_delalloc_pages);
566                 if (!async_pages)
567                         goto skip_async;
568
569                 /*
570                  * Calculate how many compressed pages we want to be written
571                  * before we continue. I.e if there are more async pages than we
572                  * require wait_event will wait until nr_pages are written.
573                  */
574                 if (async_pages <= nr_pages)
575                         async_pages = 0;
576                 else
577                         async_pages -= nr_pages;
578
579                 wait_event(fs_info->async_submit_wait,
580                            atomic_read(&fs_info->async_delalloc_pages) <=
581                            (int)async_pages);
582 skip_async:
583                 spin_lock(&space_info->lock);
584                 if (list_empty(&space_info->tickets) &&
585                     list_empty(&space_info->priority_tickets)) {
586                         spin_unlock(&space_info->lock);
587                         break;
588                 }
589                 spin_unlock(&space_info->lock);
590
591                 loops++;
592                 if (wait_ordered && !trans) {
593                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
594                 } else {
595                         time_left = schedule_timeout_killable(1);
596                         if (time_left)
597                                 break;
598                 }
599                 delalloc_bytes = percpu_counter_sum_positive(
600                                                 &fs_info->delalloc_bytes);
601                 dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
602         }
603 }
604
605 /**
606  * maybe_commit_transaction - possibly commit the transaction if its ok to
607  * @root - the root we're allocating for
608  * @bytes - the number of bytes we want to reserve
609  * @force - force the commit
610  *
611  * This will check to make sure that committing the transaction will actually
612  * get us somewhere and then commit the transaction if it does.  Otherwise it
613  * will return -ENOSPC.
614  */
615 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
616                                   struct btrfs_space_info *space_info)
617 {
618         struct reserve_ticket *ticket = NULL;
619         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
620         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
621         struct btrfs_trans_handle *trans;
622         u64 bytes_needed;
623         u64 reclaim_bytes = 0;
624         u64 cur_free_bytes = 0;
625
626         trans = (struct btrfs_trans_handle *)current->journal_info;
627         if (trans)
628                 return -EAGAIN;
629
630         spin_lock(&space_info->lock);
631         cur_free_bytes = btrfs_space_info_used(space_info, true);
632         if (cur_free_bytes < space_info->total_bytes)
633                 cur_free_bytes = space_info->total_bytes - cur_free_bytes;
634         else
635                 cur_free_bytes = 0;
636
637         if (!list_empty(&space_info->priority_tickets))
638                 ticket = list_first_entry(&space_info->priority_tickets,
639                                           struct reserve_ticket, list);
640         else if (!list_empty(&space_info->tickets))
641                 ticket = list_first_entry(&space_info->tickets,
642                                           struct reserve_ticket, list);
643         bytes_needed = (ticket) ? ticket->bytes : 0;
644
645         if (bytes_needed > cur_free_bytes)
646                 bytes_needed -= cur_free_bytes;
647         else
648                 bytes_needed = 0;
649         spin_unlock(&space_info->lock);
650
651         if (!bytes_needed)
652                 return 0;
653
654         trans = btrfs_join_transaction(fs_info->extent_root);
655         if (IS_ERR(trans))
656                 return PTR_ERR(trans);
657
658         /*
659          * See if there is enough pinned space to make this reservation, or if
660          * we have block groups that are going to be freed, allowing us to
661          * possibly do a chunk allocation the next loop through.
662          */
663         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
664             __percpu_counter_compare(&space_info->total_bytes_pinned,
665                                      bytes_needed,
666                                      BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
667                 goto commit;
668
669         /*
670          * See if there is some space in the delayed insertion reservation for
671          * this reservation.
672          */
673         if (space_info != delayed_rsv->space_info)
674                 goto enospc;
675
676         spin_lock(&delayed_rsv->lock);
677         reclaim_bytes += delayed_rsv->reserved;
678         spin_unlock(&delayed_rsv->lock);
679
680         spin_lock(&delayed_refs_rsv->lock);
681         reclaim_bytes += delayed_refs_rsv->reserved;
682         spin_unlock(&delayed_refs_rsv->lock);
683         if (reclaim_bytes >= bytes_needed)
684                 goto commit;
685         bytes_needed -= reclaim_bytes;
686
687         if (__percpu_counter_compare(&space_info->total_bytes_pinned,
688                                    bytes_needed,
689                                    BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
690                 goto enospc;
691
692 commit:
693         return btrfs_commit_transaction(trans);
694 enospc:
695         btrfs_end_transaction(trans);
696         return -ENOSPC;
697 }
698
699 /*
700  * Try to flush some data based on policy set by @state. This is only advisory
701  * and may fail for various reasons. The caller is supposed to examine the
702  * state of @space_info to detect the outcome.
703  */
704 static void flush_space(struct btrfs_fs_info *fs_info,
705                        struct btrfs_space_info *space_info, u64 num_bytes,
706                        int state)
707 {
708         struct btrfs_root *root = fs_info->extent_root;
709         struct btrfs_trans_handle *trans;
710         int nr;
711         int ret = 0;
712
713         switch (state) {
714         case FLUSH_DELAYED_ITEMS_NR:
715         case FLUSH_DELAYED_ITEMS:
716                 if (state == FLUSH_DELAYED_ITEMS_NR)
717                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
718                 else
719                         nr = -1;
720
721                 trans = btrfs_join_transaction(root);
722                 if (IS_ERR(trans)) {
723                         ret = PTR_ERR(trans);
724                         break;
725                 }
726                 ret = btrfs_run_delayed_items_nr(trans, nr);
727                 btrfs_end_transaction(trans);
728                 break;
729         case FLUSH_DELALLOC:
730         case FLUSH_DELALLOC_WAIT:
731                 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
732                                 state == FLUSH_DELALLOC_WAIT);
733                 break;
734         case FLUSH_DELAYED_REFS_NR:
735         case FLUSH_DELAYED_REFS:
736                 trans = btrfs_join_transaction(root);
737                 if (IS_ERR(trans)) {
738                         ret = PTR_ERR(trans);
739                         break;
740                 }
741                 if (state == FLUSH_DELAYED_REFS_NR)
742                         nr = calc_reclaim_items_nr(fs_info, num_bytes);
743                 else
744                         nr = 0;
745                 btrfs_run_delayed_refs(trans, nr);
746                 btrfs_end_transaction(trans);
747                 break;
748         case ALLOC_CHUNK:
749         case ALLOC_CHUNK_FORCE:
750                 trans = btrfs_join_transaction(root);
751                 if (IS_ERR(trans)) {
752                         ret = PTR_ERR(trans);
753                         break;
754                 }
755                 ret = btrfs_chunk_alloc(trans,
756                                 btrfs_metadata_alloc_profile(fs_info),
757                                 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
758                                         CHUNK_ALLOC_FORCE);
759                 btrfs_end_transaction(trans);
760                 if (ret > 0 || ret == -ENOSPC)
761                         ret = 0;
762                 break;
763         case RUN_DELAYED_IPUTS:
764                 /*
765                  * If we have pending delayed iputs then we could free up a
766                  * bunch of pinned space, so make sure we run the iputs before
767                  * we do our pinned bytes check below.
768                  */
769                 btrfs_run_delayed_iputs(fs_info);
770                 btrfs_wait_on_delayed_iputs(fs_info);
771                 break;
772         case COMMIT_TRANS:
773                 ret = may_commit_transaction(fs_info, space_info);
774                 break;
775         default:
776                 ret = -ENOSPC;
777                 break;
778         }
779
780         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
781                                 ret);
782         return;
783 }
784
785 static inline u64
786 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
787                                  struct btrfs_space_info *space_info)
788 {
789         u64 used;
790         u64 avail;
791         u64 expected;
792         u64 to_reclaim = space_info->reclaim_size;
793
794         lockdep_assert_held(&space_info->lock);
795
796         avail = calc_available_free_space(fs_info, space_info,
797                                           BTRFS_RESERVE_FLUSH_ALL);
798         used = btrfs_space_info_used(space_info, true);
799
800         /*
801          * We may be flushing because suddenly we have less space than we had
802          * before, and now we're well over-committed based on our current free
803          * space.  If that's the case add in our overage so we make sure to put
804          * appropriate pressure on the flushing state machine.
805          */
806         if (space_info->total_bytes + avail < used)
807                 to_reclaim += used - (space_info->total_bytes + avail);
808
809         if (to_reclaim)
810                 return to_reclaim;
811
812         to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
813         if (btrfs_can_overcommit(fs_info, space_info, to_reclaim,
814                                  BTRFS_RESERVE_FLUSH_ALL))
815                 return 0;
816
817         used = btrfs_space_info_used(space_info, true);
818
819         if (btrfs_can_overcommit(fs_info, space_info, SZ_1M,
820                                  BTRFS_RESERVE_FLUSH_ALL))
821                 expected = div_factor_fine(space_info->total_bytes, 95);
822         else
823                 expected = div_factor_fine(space_info->total_bytes, 90);
824
825         if (used > expected)
826                 to_reclaim = used - expected;
827         else
828                 to_reclaim = 0;
829         to_reclaim = min(to_reclaim, space_info->bytes_may_use +
830                                      space_info->bytes_reserved);
831         return to_reclaim;
832 }
833
834 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
835                                         struct btrfs_space_info *space_info,
836                                         u64 used)
837 {
838         u64 thresh = div_factor_fine(space_info->total_bytes, 98);
839
840         /* If we're just plain full then async reclaim just slows us down. */
841         if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
842                 return 0;
843
844         if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info))
845                 return 0;
846
847         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
848                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
849 }
850
851 /*
852  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
853  * @fs_info - fs_info for this fs
854  * @space_info - the space info we were flushing
855  *
856  * We call this when we've exhausted our flushing ability and haven't made
857  * progress in satisfying tickets.  The reservation code handles tickets in
858  * order, so if there is a large ticket first and then smaller ones we could
859  * very well satisfy the smaller tickets.  This will attempt to wake up any
860  * tickets in the list to catch this case.
861  *
862  * This function returns true if it was able to make progress by clearing out
863  * other tickets, or if it stumbles across a ticket that was smaller than the
864  * first ticket.
865  */
866 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
867                                    struct btrfs_space_info *space_info)
868 {
869         struct reserve_ticket *ticket;
870         u64 tickets_id = space_info->tickets_id;
871         u64 first_ticket_bytes = 0;
872
873         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
874                 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
875                 __btrfs_dump_space_info(fs_info, space_info);
876         }
877
878         while (!list_empty(&space_info->tickets) &&
879                tickets_id == space_info->tickets_id) {
880                 ticket = list_first_entry(&space_info->tickets,
881                                           struct reserve_ticket, list);
882
883                 /*
884                  * may_commit_transaction will avoid committing the transaction
885                  * if it doesn't feel like the space reclaimed by the commit
886                  * would result in the ticket succeeding.  However if we have a
887                  * smaller ticket in the queue it may be small enough to be
888                  * satisified by committing the transaction, so if any
889                  * subsequent ticket is smaller than the first ticket go ahead
890                  * and send us back for another loop through the enospc flushing
891                  * code.
892                  */
893                 if (first_ticket_bytes == 0)
894                         first_ticket_bytes = ticket->bytes;
895                 else if (first_ticket_bytes > ticket->bytes)
896                         return true;
897
898                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
899                         btrfs_info(fs_info, "failing ticket with %llu bytes",
900                                    ticket->bytes);
901
902                 list_del_init(&ticket->list);
903                 ticket->error = -ENOSPC;
904                 wake_up(&ticket->wait);
905
906                 /*
907                  * We're just throwing tickets away, so more flushing may not
908                  * trip over btrfs_try_granting_tickets, so we need to call it
909                  * here to see if we can make progress with the next ticket in
910                  * the list.
911                  */
912                 btrfs_try_granting_tickets(fs_info, space_info);
913         }
914         return (tickets_id != space_info->tickets_id);
915 }
916
917 /*
918  * This is for normal flushers, we can wait all goddamned day if we want to.  We
919  * will loop and continuously try to flush as long as we are making progress.
920  * We count progress as clearing off tickets each time we have to loop.
921  */
922 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
923 {
924         struct btrfs_fs_info *fs_info;
925         struct btrfs_space_info *space_info;
926         u64 to_reclaim;
927         int flush_state;
928         int commit_cycles = 0;
929         u64 last_tickets_id;
930
931         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
932         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
933
934         spin_lock(&space_info->lock);
935         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
936         if (!to_reclaim) {
937                 space_info->flush = 0;
938                 spin_unlock(&space_info->lock);
939                 return;
940         }
941         last_tickets_id = space_info->tickets_id;
942         spin_unlock(&space_info->lock);
943
944         flush_state = FLUSH_DELAYED_ITEMS_NR;
945         do {
946                 flush_space(fs_info, space_info, to_reclaim, flush_state);
947                 spin_lock(&space_info->lock);
948                 if (list_empty(&space_info->tickets)) {
949                         space_info->flush = 0;
950                         spin_unlock(&space_info->lock);
951                         return;
952                 }
953                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
954                                                               space_info);
955                 if (last_tickets_id == space_info->tickets_id) {
956                         flush_state++;
957                 } else {
958                         last_tickets_id = space_info->tickets_id;
959                         flush_state = FLUSH_DELAYED_ITEMS_NR;
960                         if (commit_cycles)
961                                 commit_cycles--;
962                 }
963
964                 /*
965                  * We don't want to force a chunk allocation until we've tried
966                  * pretty hard to reclaim space.  Think of the case where we
967                  * freed up a bunch of space and so have a lot of pinned space
968                  * to reclaim.  We would rather use that than possibly create a
969                  * underutilized metadata chunk.  So if this is our first run
970                  * through the flushing state machine skip ALLOC_CHUNK_FORCE and
971                  * commit the transaction.  If nothing has changed the next go
972                  * around then we can force a chunk allocation.
973                  */
974                 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
975                         flush_state++;
976
977                 if (flush_state > COMMIT_TRANS) {
978                         commit_cycles++;
979                         if (commit_cycles > 2) {
980                                 if (maybe_fail_all_tickets(fs_info, space_info)) {
981                                         flush_state = FLUSH_DELAYED_ITEMS_NR;
982                                         commit_cycles--;
983                                 } else {
984                                         space_info->flush = 0;
985                                 }
986                         } else {
987                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
988                         }
989                 }
990                 spin_unlock(&space_info->lock);
991         } while (flush_state <= COMMIT_TRANS);
992 }
993
994 void btrfs_init_async_reclaim_work(struct work_struct *work)
995 {
996         INIT_WORK(work, btrfs_async_reclaim_metadata_space);
997 }
998
999 static const enum btrfs_flush_state priority_flush_states[] = {
1000         FLUSH_DELAYED_ITEMS_NR,
1001         FLUSH_DELAYED_ITEMS,
1002         ALLOC_CHUNK,
1003 };
1004
1005 static const enum btrfs_flush_state evict_flush_states[] = {
1006         FLUSH_DELAYED_ITEMS_NR,
1007         FLUSH_DELAYED_ITEMS,
1008         FLUSH_DELAYED_REFS_NR,
1009         FLUSH_DELAYED_REFS,
1010         FLUSH_DELALLOC,
1011         FLUSH_DELALLOC_WAIT,
1012         ALLOC_CHUNK,
1013         COMMIT_TRANS,
1014 };
1015
1016 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1017                                 struct btrfs_space_info *space_info,
1018                                 struct reserve_ticket *ticket,
1019                                 const enum btrfs_flush_state *states,
1020                                 int states_nr)
1021 {
1022         u64 to_reclaim;
1023         int flush_state;
1024
1025         spin_lock(&space_info->lock);
1026         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1027         if (!to_reclaim) {
1028                 spin_unlock(&space_info->lock);
1029                 return;
1030         }
1031         spin_unlock(&space_info->lock);
1032
1033         flush_state = 0;
1034         do {
1035                 flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
1036                 flush_state++;
1037                 spin_lock(&space_info->lock);
1038                 if (ticket->bytes == 0) {
1039                         spin_unlock(&space_info->lock);
1040                         return;
1041                 }
1042                 spin_unlock(&space_info->lock);
1043         } while (flush_state < states_nr);
1044 }
1045
1046 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1047                                 struct btrfs_space_info *space_info,
1048                                 struct reserve_ticket *ticket)
1049
1050 {
1051         DEFINE_WAIT(wait);
1052         int ret = 0;
1053
1054         spin_lock(&space_info->lock);
1055         while (ticket->bytes > 0 && ticket->error == 0) {
1056                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1057                 if (ret) {
1058                         /*
1059                          * Delete us from the list. After we unlock the space
1060                          * info, we don't want the async reclaim job to reserve
1061                          * space for this ticket. If that would happen, then the
1062                          * ticket's task would not known that space was reserved
1063                          * despite getting an error, resulting in a space leak
1064                          * (bytes_may_use counter of our space_info).
1065                          */
1066                         list_del_init(&ticket->list);
1067                         ticket->error = -EINTR;
1068                         break;
1069                 }
1070                 spin_unlock(&space_info->lock);
1071
1072                 schedule();
1073
1074                 finish_wait(&ticket->wait, &wait);
1075                 spin_lock(&space_info->lock);
1076         }
1077         spin_unlock(&space_info->lock);
1078 }
1079
1080 /**
1081  * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket
1082  * @fs_info - the fs
1083  * @space_info - the space_info for the reservation
1084  * @ticket - the ticket for the reservation
1085  * @flush - how much we can flush
1086  *
1087  * This does the work of figuring out how to flush for the ticket, waiting for
1088  * the reservation, and returning the appropriate error if there is one.
1089  */
1090 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1091                                  struct btrfs_space_info *space_info,
1092                                  struct reserve_ticket *ticket,
1093                                  enum btrfs_reserve_flush_enum flush)
1094 {
1095         int ret;
1096
1097         switch (flush) {
1098         case BTRFS_RESERVE_FLUSH_ALL:
1099                 wait_reserve_ticket(fs_info, space_info, ticket);
1100                 break;
1101         case BTRFS_RESERVE_FLUSH_LIMIT:
1102                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1103                                                 priority_flush_states,
1104                                                 ARRAY_SIZE(priority_flush_states));
1105                 break;
1106         case BTRFS_RESERVE_FLUSH_EVICT:
1107                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1108                                                 evict_flush_states,
1109                                                 ARRAY_SIZE(evict_flush_states));
1110                 break;
1111         default:
1112                 ASSERT(0);
1113                 break;
1114         }
1115
1116         spin_lock(&space_info->lock);
1117         ret = ticket->error;
1118         if (ticket->bytes || ticket->error) {
1119                 /*
1120                  * Need to delete here for priority tickets. For regular tickets
1121                  * either the async reclaim job deletes the ticket from the list
1122                  * or we delete it ourselves at wait_reserve_ticket().
1123                  */
1124                 list_del_init(&ticket->list);
1125                 if (!ret)
1126                         ret = -ENOSPC;
1127         }
1128         spin_unlock(&space_info->lock);
1129         ASSERT(list_empty(&ticket->list));
1130         /*
1131          * Check that we can't have an error set if the reservation succeeded,
1132          * as that would confuse tasks and lead them to error out without
1133          * releasing reserved space (if an error happens the expectation is that
1134          * space wasn't reserved at all).
1135          */
1136         ASSERT(!(ticket->bytes == 0 && ticket->error));
1137         return ret;
1138 }
1139
1140 /**
1141  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1142  * @root - the root we're allocating for
1143  * @space_info - the space info we want to allocate from
1144  * @orig_bytes - the number of bytes we want
1145  * @flush - whether or not we can flush to make our reservation
1146  *
1147  * This will reserve orig_bytes number of bytes from the space info associated
1148  * with the block_rsv.  If there is not enough space it will make an attempt to
1149  * flush out space to make room.  It will do this by flushing delalloc if
1150  * possible or committing the transaction.  If flush is 0 then no attempts to
1151  * regain reservations will be made and this will fail if there is not enough
1152  * space already.
1153  */
1154 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1155                                     struct btrfs_space_info *space_info,
1156                                     u64 orig_bytes,
1157                                     enum btrfs_reserve_flush_enum flush)
1158 {
1159         struct reserve_ticket ticket;
1160         u64 used;
1161         int ret = 0;
1162         bool pending_tickets;
1163
1164         ASSERT(orig_bytes);
1165         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1166
1167         spin_lock(&space_info->lock);
1168         ret = -ENOSPC;
1169         used = btrfs_space_info_used(space_info, true);
1170         pending_tickets = !list_empty(&space_info->tickets) ||
1171                 !list_empty(&space_info->priority_tickets);
1172
1173         /*
1174          * Carry on if we have enough space (short-circuit) OR call
1175          * can_overcommit() to ensure we can overcommit to continue.
1176          */
1177         if (!pending_tickets &&
1178             ((used + orig_bytes <= space_info->total_bytes) ||
1179              btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1180                 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1181                                                       orig_bytes);
1182                 ret = 0;
1183         }
1184
1185         /*
1186          * If we couldn't make a reservation then setup our reservation ticket
1187          * and kick the async worker if it's not already running.
1188          *
1189          * If we are a priority flusher then we just need to add our ticket to
1190          * the list and we will do our own flushing further down.
1191          */
1192         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1193                 ASSERT(space_info->reclaim_size >= 0);
1194                 ticket.bytes = orig_bytes;
1195                 ticket.error = 0;
1196                 space_info->reclaim_size += ticket.bytes;
1197                 init_waitqueue_head(&ticket.wait);
1198                 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
1199                         list_add_tail(&ticket.list, &space_info->tickets);
1200                         if (!space_info->flush) {
1201                                 space_info->flush = 1;
1202                                 trace_btrfs_trigger_flush(fs_info,
1203                                                           space_info->flags,
1204                                                           orig_bytes, flush,
1205                                                           "enospc");
1206                                 queue_work(system_unbound_wq,
1207                                            &fs_info->async_reclaim_work);
1208                         }
1209                 } else {
1210                         list_add_tail(&ticket.list,
1211                                       &space_info->priority_tickets);
1212                 }
1213         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1214                 used += orig_bytes;
1215                 /*
1216                  * We will do the space reservation dance during log replay,
1217                  * which means we won't have fs_info->fs_root set, so don't do
1218                  * the async reclaim as we will panic.
1219                  */
1220                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1221                     need_do_async_reclaim(fs_info, space_info, used) &&
1222                     !work_busy(&fs_info->async_reclaim_work)) {
1223                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
1224                                                   orig_bytes, flush, "preempt");
1225                         queue_work(system_unbound_wq,
1226                                    &fs_info->async_reclaim_work);
1227                 }
1228         }
1229         spin_unlock(&space_info->lock);
1230         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1231                 return ret;
1232
1233         return handle_reserve_ticket(fs_info, space_info, &ticket, flush);
1234 }
1235
1236 /**
1237  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1238  * @root - the root we're allocating for
1239  * @block_rsv - the block_rsv we're allocating for
1240  * @orig_bytes - the number of bytes we want
1241  * @flush - whether or not we can flush to make our reservation
1242  *
1243  * This will reserve orig_bytes number of bytes from the space info associated
1244  * with the block_rsv.  If there is not enough space it will make an attempt to
1245  * flush out space to make room.  It will do this by flushing delalloc if
1246  * possible or committing the transaction.  If flush is 0 then no attempts to
1247  * regain reservations will be made and this will fail if there is not enough
1248  * space already.
1249  */
1250 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1251                                  struct btrfs_block_rsv *block_rsv,
1252                                  u64 orig_bytes,
1253                                  enum btrfs_reserve_flush_enum flush)
1254 {
1255         struct btrfs_fs_info *fs_info = root->fs_info;
1256         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1257         int ret;
1258
1259         ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
1260                                        orig_bytes, flush);
1261         if (ret == -ENOSPC &&
1262             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1263                 if (block_rsv != global_rsv &&
1264                     !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1265                         ret = 0;
1266         }
1267         if (ret == -ENOSPC) {
1268                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1269                                               block_rsv->space_info->flags,
1270                                               orig_bytes, 1);
1271
1272                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1273                         btrfs_dump_space_info(fs_info, block_rsv->space_info,
1274                                               orig_bytes, 0);
1275         }
1276         return ret;
1277 }