4b8753b1a62847b6e424666d50a704d5a2fe52a7
[linux-2.6-microblaze.git] / fs / btrfs / space-info.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12
13 /*
14  * HOW DOES SPACE RESERVATION WORK
15  *
16  * If you want to know about delalloc specifically, there is a separate comment
17  * for that with the delalloc code.  This comment is about how the whole system
18  * works generally.
19  *
20  * BASIC CONCEPTS
21  *
22  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
23  *   There's a description of the bytes_ fields with the struct declaration,
24  *   refer to that for specifics on each field.  Suffice it to say that for
25  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
26  *   determining if there is space to make an allocation.  There is a space_info
27  *   for METADATA, SYSTEM, and DATA areas.
28  *
29  *   2) block_rsv's.  These are basically buckets for every different type of
30  *   metadata reservation we have.  You can see the comment in the block_rsv
31  *   code on the rules for each type, but generally block_rsv->reserved is how
32  *   much space is accounted for in space_info->bytes_may_use.
33  *
34  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
35  *   on the number of items we will want to modify.  We have one for changing
36  *   items, and one for inserting new items.  Generally we use these helpers to
37  *   determine the size of the block reserves, and then use the actual bytes
38  *   values to adjust the space_info counters.
39  *
40  * MAKING RESERVATIONS, THE NORMAL CASE
41  *
42  *   We call into either btrfs_reserve_data_bytes() or
43  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44  *   num_bytes we want to reserve.
45  *
46  *   ->reserve
47  *     space_info->bytes_may_reserve += num_bytes
48  *
49  *   ->extent allocation
50  *     Call btrfs_add_reserved_bytes() which does
51  *     space_info->bytes_may_reserve -= num_bytes
52  *     space_info->bytes_reserved += extent_bytes
53  *
54  *   ->insert reference
55  *     Call btrfs_update_block_group() which does
56  *     space_info->bytes_reserved -= extent_bytes
57  *     space_info->bytes_used += extent_bytes
58  *
59  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
60  *
61  *   Assume we are unable to simply make the reservation because we do not have
62  *   enough space
63  *
64  *   -> __reserve_bytes
65  *     create a reserve_ticket with ->bytes set to our reservation, add it to
66  *     the tail of space_info->tickets, kick async flush thread
67  *
68  *   ->handle_reserve_ticket
69  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70  *     on the ticket.
71  *
72  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73  *     Flushes various things attempting to free up space.
74  *
75  *   -> btrfs_try_granting_tickets()
76  *     This is called by anything that either subtracts space from
77  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78  *     space_info->total_bytes.  This loops through the ->priority_tickets and
79  *     then the ->tickets list checking to see if the reservation can be
80  *     completed.  If it can the space is added to space_info->bytes_may_use and
81  *     the ticket is woken up.
82  *
83  *   -> ticket wakeup
84  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
85  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86  *     were interrupted.)
87  *
88  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
89  *
90  *   Same as the above, except we add ourselves to the
91  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
92  *   call flush_space() ourselves for the states that are safe for us to call
93  *   without deadlocking and hope for the best.
94  *
95  * THE FLUSHING STATES
96  *
97  *   Generally speaking we will have two cases for each state, a "nice" state
98  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
99  *   reduce the locking over head on the various trees, and even to keep from
100  *   doing any work at all in the case of delayed refs.  Each of these delayed
101  *   things however hold reservations, and so letting them run allows us to
102  *   reclaim space so we can make new reservations.
103  *
104  *   FLUSH_DELAYED_ITEMS
105  *     Every inode has a delayed item to update the inode.  Take a simple write
106  *     for example, we would update the inode item at write time to update the
107  *     mtime, and then again at finish_ordered_io() time in order to update the
108  *     isize or bytes.  We keep these delayed items to coalesce these operations
109  *     into a single operation done on demand.  These are an easy way to reclaim
110  *     metadata space.
111  *
112  *   FLUSH_DELALLOC
113  *     Look at the delalloc comment to get an idea of how much space is reserved
114  *     for delayed allocation.  We can reclaim some of this space simply by
115  *     running delalloc, but usually we need to wait for ordered extents to
116  *     reclaim the bulk of this space.
117  *
118  *   FLUSH_DELAYED_REFS
119  *     We have a block reserve for the outstanding delayed refs space, and every
120  *     delayed ref operation holds a reservation.  Running these is a quick way
121  *     to reclaim space, but we want to hold this until the end because COW can
122  *     churn a lot and we can avoid making some extent tree modifications if we
123  *     are able to delay for as long as possible.
124  *
125  *   ALLOC_CHUNK
126  *     We will skip this the first time through space reservation, because of
127  *     overcommit and we don't want to have a lot of useless metadata space when
128  *     our worst case reservations will likely never come true.
129  *
130  *   RUN_DELAYED_IPUTS
131  *     If we're freeing inodes we're likely freeing checksums, file extent
132  *     items, and extent tree items.  Loads of space could be freed up by these
133  *     operations, however they won't be usable until the transaction commits.
134  *
135  *   COMMIT_TRANS
136  *     may_commit_transaction() is the ultimate arbiter on whether we commit the
137  *     transaction or not.  In order to avoid constantly churning we do all the
138  *     above flushing first and then commit the transaction as the last resort.
139  *     However we need to take into account things like pinned space that would
140  *     be freed, plus any delayed work we may not have gotten rid of in the case
141  *     of metadata.
142  *
143  * OVERCOMMIT
144  *
145  *   Because we hold so many reservations for metadata we will allow you to
146  *   reserve more space than is currently free in the currently allocate
147  *   metadata space.  This only happens with metadata, data does not allow
148  *   overcommitting.
149  *
150  *   You can see the current logic for when we allow overcommit in
151  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
152  *   is no unallocated space to be had, all reservations are kept within the
153  *   free space in the allocated metadata chunks.
154  *
155  *   Because of overcommitting, you generally want to use the
156  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
157  *   thing with or without extra unallocated space.
158  */
159
160 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
161                           bool may_use_included)
162 {
163         ASSERT(s_info);
164         return s_info->bytes_used + s_info->bytes_reserved +
165                 s_info->bytes_pinned + s_info->bytes_readonly +
166                 (may_use_included ? s_info->bytes_may_use : 0);
167 }
168
169 /*
170  * after adding space to the filesystem, we need to clear the full flags
171  * on all the space infos.
172  */
173 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
174 {
175         struct list_head *head = &info->space_info;
176         struct btrfs_space_info *found;
177
178         rcu_read_lock();
179         list_for_each_entry_rcu(found, head, list)
180                 found->full = 0;
181         rcu_read_unlock();
182 }
183
184 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
185 {
186
187         struct btrfs_space_info *space_info;
188         int i;
189         int ret;
190
191         space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
192         if (!space_info)
193                 return -ENOMEM;
194
195         ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
196                                  GFP_KERNEL);
197         if (ret) {
198                 kfree(space_info);
199                 return ret;
200         }
201
202         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
203                 INIT_LIST_HEAD(&space_info->block_groups[i]);
204         init_rwsem(&space_info->groups_sem);
205         spin_lock_init(&space_info->lock);
206         space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
207         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
208         INIT_LIST_HEAD(&space_info->ro_bgs);
209         INIT_LIST_HEAD(&space_info->tickets);
210         INIT_LIST_HEAD(&space_info->priority_tickets);
211
212         ret = btrfs_sysfs_add_space_info_type(info, space_info);
213         if (ret)
214                 return ret;
215
216         list_add_rcu(&space_info->list, &info->space_info);
217         if (flags & BTRFS_BLOCK_GROUP_DATA)
218                 info->data_sinfo = space_info;
219
220         return ret;
221 }
222
223 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
224 {
225         struct btrfs_super_block *disk_super;
226         u64 features;
227         u64 flags;
228         int mixed = 0;
229         int ret;
230
231         disk_super = fs_info->super_copy;
232         if (!btrfs_super_root(disk_super))
233                 return -EINVAL;
234
235         features = btrfs_super_incompat_flags(disk_super);
236         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
237                 mixed = 1;
238
239         flags = BTRFS_BLOCK_GROUP_SYSTEM;
240         ret = create_space_info(fs_info, flags);
241         if (ret)
242                 goto out;
243
244         if (mixed) {
245                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
246                 ret = create_space_info(fs_info, flags);
247         } else {
248                 flags = BTRFS_BLOCK_GROUP_METADATA;
249                 ret = create_space_info(fs_info, flags);
250                 if (ret)
251                         goto out;
252
253                 flags = BTRFS_BLOCK_GROUP_DATA;
254                 ret = create_space_info(fs_info, flags);
255         }
256 out:
257         return ret;
258 }
259
260 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
261                              u64 total_bytes, u64 bytes_used,
262                              u64 bytes_readonly,
263                              struct btrfs_space_info **space_info)
264 {
265         struct btrfs_space_info *found;
266         int factor;
267
268         factor = btrfs_bg_type_to_factor(flags);
269
270         found = btrfs_find_space_info(info, flags);
271         ASSERT(found);
272         spin_lock(&found->lock);
273         found->total_bytes += total_bytes;
274         found->disk_total += total_bytes * factor;
275         found->bytes_used += bytes_used;
276         found->disk_used += bytes_used * factor;
277         found->bytes_readonly += bytes_readonly;
278         if (total_bytes > 0)
279                 found->full = 0;
280         btrfs_try_granting_tickets(info, found);
281         spin_unlock(&found->lock);
282         *space_info = found;
283 }
284
285 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
286                                                u64 flags)
287 {
288         struct list_head *head = &info->space_info;
289         struct btrfs_space_info *found;
290
291         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
292
293         rcu_read_lock();
294         list_for_each_entry_rcu(found, head, list) {
295                 if (found->flags & flags) {
296                         rcu_read_unlock();
297                         return found;
298                 }
299         }
300         rcu_read_unlock();
301         return NULL;
302 }
303
304 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
305 {
306         return (global->size << 1);
307 }
308
309 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
310                           struct btrfs_space_info *space_info,
311                           enum btrfs_reserve_flush_enum flush)
312 {
313         u64 profile;
314         u64 avail;
315         int factor;
316
317         if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
318                 profile = btrfs_system_alloc_profile(fs_info);
319         else
320                 profile = btrfs_metadata_alloc_profile(fs_info);
321
322         avail = atomic64_read(&fs_info->free_chunk_space);
323
324         /*
325          * If we have dup, raid1 or raid10 then only half of the free
326          * space is actually usable.  For raid56, the space info used
327          * doesn't include the parity drive, so we don't have to
328          * change the math
329          */
330         factor = btrfs_bg_type_to_factor(profile);
331         avail = div_u64(avail, factor);
332
333         /*
334          * If we aren't flushing all things, let us overcommit up to
335          * 1/2th of the space. If we can flush, don't let us overcommit
336          * too much, let it overcommit up to 1/8 of the space.
337          */
338         if (flush == BTRFS_RESERVE_FLUSH_ALL)
339                 avail >>= 3;
340         else
341                 avail >>= 1;
342         return avail;
343 }
344
345 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
346                          struct btrfs_space_info *space_info, u64 bytes,
347                          enum btrfs_reserve_flush_enum flush)
348 {
349         u64 avail;
350         u64 used;
351
352         /* Don't overcommit when in mixed mode */
353         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
354                 return 0;
355
356         used = btrfs_space_info_used(space_info, true);
357         avail = calc_available_free_space(fs_info, space_info, flush);
358
359         if (used + bytes < space_info->total_bytes + avail)
360                 return 1;
361         return 0;
362 }
363
364 static void remove_ticket(struct btrfs_space_info *space_info,
365                           struct reserve_ticket *ticket)
366 {
367         if (!list_empty(&ticket->list)) {
368                 list_del_init(&ticket->list);
369                 ASSERT(space_info->reclaim_size >= ticket->bytes);
370                 space_info->reclaim_size -= ticket->bytes;
371         }
372 }
373
374 /*
375  * This is for space we already have accounted in space_info->bytes_may_use, so
376  * basically when we're returning space from block_rsv's.
377  */
378 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
379                                 struct btrfs_space_info *space_info)
380 {
381         struct list_head *head;
382         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
383
384         lockdep_assert_held(&space_info->lock);
385
386         head = &space_info->priority_tickets;
387 again:
388         while (!list_empty(head)) {
389                 struct reserve_ticket *ticket;
390                 u64 used = btrfs_space_info_used(space_info, true);
391
392                 ticket = list_first_entry(head, struct reserve_ticket, list);
393
394                 /* Check and see if our ticket can be satisified now. */
395                 if ((used + ticket->bytes <= space_info->total_bytes) ||
396                     btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
397                                          flush)) {
398                         btrfs_space_info_update_bytes_may_use(fs_info,
399                                                               space_info,
400                                                               ticket->bytes);
401                         remove_ticket(space_info, ticket);
402                         ticket->bytes = 0;
403                         space_info->tickets_id++;
404                         wake_up(&ticket->wait);
405                 } else {
406                         break;
407                 }
408         }
409
410         if (head == &space_info->priority_tickets) {
411                 head = &space_info->tickets;
412                 flush = BTRFS_RESERVE_FLUSH_ALL;
413                 goto again;
414         }
415 }
416
417 #define DUMP_BLOCK_RSV(fs_info, rsv_name)                               \
418 do {                                                                    \
419         struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;           \
420         spin_lock(&__rsv->lock);                                        \
421         btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",      \
422                    __rsv->size, __rsv->reserved);                       \
423         spin_unlock(&__rsv->lock);                                      \
424 } while (0)
425
426 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
427                                     struct btrfs_space_info *info)
428 {
429         lockdep_assert_held(&info->lock);
430
431         btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
432                    info->flags,
433                    info->total_bytes - btrfs_space_info_used(info, true),
434                    info->full ? "" : "not ");
435         btrfs_info(fs_info,
436                 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
437                 info->total_bytes, info->bytes_used, info->bytes_pinned,
438                 info->bytes_reserved, info->bytes_may_use,
439                 info->bytes_readonly);
440
441         DUMP_BLOCK_RSV(fs_info, global_block_rsv);
442         DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
443         DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
444         DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
445         DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
446
447 }
448
449 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
450                            struct btrfs_space_info *info, u64 bytes,
451                            int dump_block_groups)
452 {
453         struct btrfs_block_group *cache;
454         int index = 0;
455
456         spin_lock(&info->lock);
457         __btrfs_dump_space_info(fs_info, info);
458         spin_unlock(&info->lock);
459
460         if (!dump_block_groups)
461                 return;
462
463         down_read(&info->groups_sem);
464 again:
465         list_for_each_entry(cache, &info->block_groups[index], list) {
466                 spin_lock(&cache->lock);
467                 btrfs_info(fs_info,
468                         "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
469                         cache->start, cache->length, cache->used, cache->pinned,
470                         cache->reserved, cache->ro ? "[readonly]" : "");
471                 spin_unlock(&cache->lock);
472                 btrfs_dump_free_space(cache, bytes);
473         }
474         if (++index < BTRFS_NR_RAID_TYPES)
475                 goto again;
476         up_read(&info->groups_sem);
477 }
478
479 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
480                                         u64 to_reclaim)
481 {
482         u64 bytes;
483         u64 nr;
484
485         bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
486         nr = div64_u64(to_reclaim, bytes);
487         if (!nr)
488                 nr = 1;
489         return nr;
490 }
491
492 #define EXTENT_SIZE_PER_ITEM    SZ_256K
493
494 /*
495  * shrink metadata reservation for delalloc
496  */
497 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
498                             struct btrfs_space_info *space_info,
499                             u64 to_reclaim, bool wait_ordered)
500 {
501         struct btrfs_trans_handle *trans;
502         u64 delalloc_bytes;
503         u64 dio_bytes;
504         u64 items;
505         long time_left;
506         int loops;
507
508         /* Calc the number of the pages we need flush for space reservation */
509         if (to_reclaim == U64_MAX) {
510                 items = U64_MAX;
511         } else {
512                 /*
513                  * to_reclaim is set to however much metadata we need to
514                  * reclaim, but reclaiming that much data doesn't really track
515                  * exactly, so increase the amount to reclaim by 2x in order to
516                  * make sure we're flushing enough delalloc to hopefully reclaim
517                  * some metadata reservations.
518                  */
519                 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
520                 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
521         }
522
523         trans = (struct btrfs_trans_handle *)current->journal_info;
524
525         delalloc_bytes = percpu_counter_sum_positive(
526                                                 &fs_info->delalloc_bytes);
527         dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
528         if (delalloc_bytes == 0 && dio_bytes == 0) {
529                 if (trans)
530                         return;
531                 if (wait_ordered)
532                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
533                 return;
534         }
535
536         /*
537          * If we are doing more ordered than delalloc we need to just wait on
538          * ordered extents, otherwise we'll waste time trying to flush delalloc
539          * that likely won't give us the space back we need.
540          */
541         if (dio_bytes > delalloc_bytes)
542                 wait_ordered = true;
543
544         loops = 0;
545         while ((delalloc_bytes || dio_bytes) && loops < 3) {
546                 btrfs_start_delalloc_roots(fs_info, items);
547
548                 spin_lock(&space_info->lock);
549                 if (list_empty(&space_info->tickets) &&
550                     list_empty(&space_info->priority_tickets)) {
551                         spin_unlock(&space_info->lock);
552                         break;
553                 }
554                 spin_unlock(&space_info->lock);
555
556                 loops++;
557                 if (wait_ordered && !trans) {
558                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
559                 } else {
560                         time_left = schedule_timeout_killable(1);
561                         if (time_left)
562                                 break;
563                 }
564                 delalloc_bytes = percpu_counter_sum_positive(
565                                                 &fs_info->delalloc_bytes);
566                 dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
567         }
568 }
569
570 /**
571  * maybe_commit_transaction - possibly commit the transaction if its ok to
572  * @root - the root we're allocating for
573  * @bytes - the number of bytes we want to reserve
574  * @force - force the commit
575  *
576  * This will check to make sure that committing the transaction will actually
577  * get us somewhere and then commit the transaction if it does.  Otherwise it
578  * will return -ENOSPC.
579  */
580 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
581                                   struct btrfs_space_info *space_info)
582 {
583         struct reserve_ticket *ticket = NULL;
584         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
585         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
586         struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
587         struct btrfs_trans_handle *trans;
588         u64 bytes_needed;
589         u64 reclaim_bytes = 0;
590         u64 cur_free_bytes = 0;
591
592         trans = (struct btrfs_trans_handle *)current->journal_info;
593         if (trans)
594                 return -EAGAIN;
595
596         spin_lock(&space_info->lock);
597         cur_free_bytes = btrfs_space_info_used(space_info, true);
598         if (cur_free_bytes < space_info->total_bytes)
599                 cur_free_bytes = space_info->total_bytes - cur_free_bytes;
600         else
601                 cur_free_bytes = 0;
602
603         if (!list_empty(&space_info->priority_tickets))
604                 ticket = list_first_entry(&space_info->priority_tickets,
605                                           struct reserve_ticket, list);
606         else if (!list_empty(&space_info->tickets))
607                 ticket = list_first_entry(&space_info->tickets,
608                                           struct reserve_ticket, list);
609         bytes_needed = (ticket) ? ticket->bytes : 0;
610
611         if (bytes_needed > cur_free_bytes)
612                 bytes_needed -= cur_free_bytes;
613         else
614                 bytes_needed = 0;
615         spin_unlock(&space_info->lock);
616
617         if (!bytes_needed)
618                 return 0;
619
620         trans = btrfs_join_transaction(fs_info->extent_root);
621         if (IS_ERR(trans))
622                 return PTR_ERR(trans);
623
624         /*
625          * See if there is enough pinned space to make this reservation, or if
626          * we have block groups that are going to be freed, allowing us to
627          * possibly do a chunk allocation the next loop through.
628          */
629         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
630             __percpu_counter_compare(&space_info->total_bytes_pinned,
631                                      bytes_needed,
632                                      BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
633                 goto commit;
634
635         /*
636          * See if there is some space in the delayed insertion reservation for
637          * this reservation.
638          */
639         if (space_info != delayed_rsv->space_info)
640                 goto enospc;
641
642         spin_lock(&delayed_rsv->lock);
643         reclaim_bytes += delayed_rsv->reserved;
644         spin_unlock(&delayed_rsv->lock);
645
646         spin_lock(&delayed_refs_rsv->lock);
647         reclaim_bytes += delayed_refs_rsv->reserved;
648         spin_unlock(&delayed_refs_rsv->lock);
649
650         spin_lock(&trans_rsv->lock);
651         reclaim_bytes += trans_rsv->reserved;
652         spin_unlock(&trans_rsv->lock);
653
654         if (reclaim_bytes >= bytes_needed)
655                 goto commit;
656         bytes_needed -= reclaim_bytes;
657
658         if (__percpu_counter_compare(&space_info->total_bytes_pinned,
659                                    bytes_needed,
660                                    BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
661                 goto enospc;
662
663 commit:
664         return btrfs_commit_transaction(trans);
665 enospc:
666         btrfs_end_transaction(trans);
667         return -ENOSPC;
668 }
669
670 /*
671  * Try to flush some data based on policy set by @state. This is only advisory
672  * and may fail for various reasons. The caller is supposed to examine the
673  * state of @space_info to detect the outcome.
674  */
675 static void flush_space(struct btrfs_fs_info *fs_info,
676                        struct btrfs_space_info *space_info, u64 num_bytes,
677                        int state)
678 {
679         struct btrfs_root *root = fs_info->extent_root;
680         struct btrfs_trans_handle *trans;
681         int nr;
682         int ret = 0;
683
684         switch (state) {
685         case FLUSH_DELAYED_ITEMS_NR:
686         case FLUSH_DELAYED_ITEMS:
687                 if (state == FLUSH_DELAYED_ITEMS_NR)
688                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
689                 else
690                         nr = -1;
691
692                 trans = btrfs_join_transaction(root);
693                 if (IS_ERR(trans)) {
694                         ret = PTR_ERR(trans);
695                         break;
696                 }
697                 ret = btrfs_run_delayed_items_nr(trans, nr);
698                 btrfs_end_transaction(trans);
699                 break;
700         case FLUSH_DELALLOC:
701         case FLUSH_DELALLOC_WAIT:
702                 shrink_delalloc(fs_info, space_info, num_bytes,
703                                 state == FLUSH_DELALLOC_WAIT);
704                 break;
705         case FLUSH_DELAYED_REFS_NR:
706         case FLUSH_DELAYED_REFS:
707                 trans = btrfs_join_transaction(root);
708                 if (IS_ERR(trans)) {
709                         ret = PTR_ERR(trans);
710                         break;
711                 }
712                 if (state == FLUSH_DELAYED_REFS_NR)
713                         nr = calc_reclaim_items_nr(fs_info, num_bytes);
714                 else
715                         nr = 0;
716                 btrfs_run_delayed_refs(trans, nr);
717                 btrfs_end_transaction(trans);
718                 break;
719         case ALLOC_CHUNK:
720         case ALLOC_CHUNK_FORCE:
721                 trans = btrfs_join_transaction(root);
722                 if (IS_ERR(trans)) {
723                         ret = PTR_ERR(trans);
724                         break;
725                 }
726                 ret = btrfs_chunk_alloc(trans,
727                                 btrfs_get_alloc_profile(fs_info, space_info->flags),
728                                 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
729                                         CHUNK_ALLOC_FORCE);
730                 btrfs_end_transaction(trans);
731                 if (ret > 0 || ret == -ENOSPC)
732                         ret = 0;
733                 break;
734         case RUN_DELAYED_IPUTS:
735                 /*
736                  * If we have pending delayed iputs then we could free up a
737                  * bunch of pinned space, so make sure we run the iputs before
738                  * we do our pinned bytes check below.
739                  */
740                 btrfs_run_delayed_iputs(fs_info);
741                 btrfs_wait_on_delayed_iputs(fs_info);
742                 break;
743         case COMMIT_TRANS:
744                 ret = may_commit_transaction(fs_info, space_info);
745                 break;
746         default:
747                 ret = -ENOSPC;
748                 break;
749         }
750
751         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
752                                 ret);
753         return;
754 }
755
756 static inline u64
757 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
758                                  struct btrfs_space_info *space_info)
759 {
760         u64 used;
761         u64 avail;
762         u64 expected;
763         u64 to_reclaim = space_info->reclaim_size;
764
765         lockdep_assert_held(&space_info->lock);
766
767         avail = calc_available_free_space(fs_info, space_info,
768                                           BTRFS_RESERVE_FLUSH_ALL);
769         used = btrfs_space_info_used(space_info, true);
770
771         /*
772          * We may be flushing because suddenly we have less space than we had
773          * before, and now we're well over-committed based on our current free
774          * space.  If that's the case add in our overage so we make sure to put
775          * appropriate pressure on the flushing state machine.
776          */
777         if (space_info->total_bytes + avail < used)
778                 to_reclaim += used - (space_info->total_bytes + avail);
779
780         if (to_reclaim)
781                 return to_reclaim;
782
783         to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
784         if (btrfs_can_overcommit(fs_info, space_info, to_reclaim,
785                                  BTRFS_RESERVE_FLUSH_ALL))
786                 return 0;
787
788         used = btrfs_space_info_used(space_info, true);
789
790         if (btrfs_can_overcommit(fs_info, space_info, SZ_1M,
791                                  BTRFS_RESERVE_FLUSH_ALL))
792                 expected = div_factor_fine(space_info->total_bytes, 95);
793         else
794                 expected = div_factor_fine(space_info->total_bytes, 90);
795
796         if (used > expected)
797                 to_reclaim = used - expected;
798         else
799                 to_reclaim = 0;
800         to_reclaim = min(to_reclaim, space_info->bytes_may_use +
801                                      space_info->bytes_reserved);
802         return to_reclaim;
803 }
804
805 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
806                                         struct btrfs_space_info *space_info,
807                                         u64 used)
808 {
809         u64 thresh = div_factor_fine(space_info->total_bytes, 98);
810
811         /* If we're just plain full then async reclaim just slows us down. */
812         if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
813                 return 0;
814
815         if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info))
816                 return 0;
817
818         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
819                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
820 }
821
822 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
823                                   struct btrfs_space_info *space_info,
824                                   struct reserve_ticket *ticket)
825 {
826         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
827         u64 min_bytes;
828
829         if (global_rsv->space_info != space_info)
830                 return false;
831
832         spin_lock(&global_rsv->lock);
833         min_bytes = div_factor(global_rsv->size, 1);
834         if (global_rsv->reserved < min_bytes + ticket->bytes) {
835                 spin_unlock(&global_rsv->lock);
836                 return false;
837         }
838         global_rsv->reserved -= ticket->bytes;
839         remove_ticket(space_info, ticket);
840         ticket->bytes = 0;
841         wake_up(&ticket->wait);
842         space_info->tickets_id++;
843         if (global_rsv->reserved < global_rsv->size)
844                 global_rsv->full = 0;
845         spin_unlock(&global_rsv->lock);
846
847         return true;
848 }
849
850 /*
851  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
852  * @fs_info - fs_info for this fs
853  * @space_info - the space info we were flushing
854  *
855  * We call this when we've exhausted our flushing ability and haven't made
856  * progress in satisfying tickets.  The reservation code handles tickets in
857  * order, so if there is a large ticket first and then smaller ones we could
858  * very well satisfy the smaller tickets.  This will attempt to wake up any
859  * tickets in the list to catch this case.
860  *
861  * This function returns true if it was able to make progress by clearing out
862  * other tickets, or if it stumbles across a ticket that was smaller than the
863  * first ticket.
864  */
865 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
866                                    struct btrfs_space_info *space_info)
867 {
868         struct reserve_ticket *ticket;
869         u64 tickets_id = space_info->tickets_id;
870         u64 first_ticket_bytes = 0;
871
872         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
873                 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
874                 __btrfs_dump_space_info(fs_info, space_info);
875         }
876
877         while (!list_empty(&space_info->tickets) &&
878                tickets_id == space_info->tickets_id) {
879                 ticket = list_first_entry(&space_info->tickets,
880                                           struct reserve_ticket, list);
881
882                 if (ticket->steal &&
883                     steal_from_global_rsv(fs_info, space_info, ticket))
884                         return true;
885
886                 /*
887                  * may_commit_transaction will avoid committing the transaction
888                  * if it doesn't feel like the space reclaimed by the commit
889                  * would result in the ticket succeeding.  However if we have a
890                  * smaller ticket in the queue it may be small enough to be
891                  * satisified by committing the transaction, so if any
892                  * subsequent ticket is smaller than the first ticket go ahead
893                  * and send us back for another loop through the enospc flushing
894                  * code.
895                  */
896                 if (first_ticket_bytes == 0)
897                         first_ticket_bytes = ticket->bytes;
898                 else if (first_ticket_bytes > ticket->bytes)
899                         return true;
900
901                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
902                         btrfs_info(fs_info, "failing ticket with %llu bytes",
903                                    ticket->bytes);
904
905                 remove_ticket(space_info, ticket);
906                 ticket->error = -ENOSPC;
907                 wake_up(&ticket->wait);
908
909                 /*
910                  * We're just throwing tickets away, so more flushing may not
911                  * trip over btrfs_try_granting_tickets, so we need to call it
912                  * here to see if we can make progress with the next ticket in
913                  * the list.
914                  */
915                 btrfs_try_granting_tickets(fs_info, space_info);
916         }
917         return (tickets_id != space_info->tickets_id);
918 }
919
920 /*
921  * This is for normal flushers, we can wait all goddamned day if we want to.  We
922  * will loop and continuously try to flush as long as we are making progress.
923  * We count progress as clearing off tickets each time we have to loop.
924  */
925 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
926 {
927         struct btrfs_fs_info *fs_info;
928         struct btrfs_space_info *space_info;
929         u64 to_reclaim;
930         int flush_state;
931         int commit_cycles = 0;
932         u64 last_tickets_id;
933
934         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
935         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
936
937         spin_lock(&space_info->lock);
938         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
939         if (!to_reclaim) {
940                 space_info->flush = 0;
941                 spin_unlock(&space_info->lock);
942                 return;
943         }
944         last_tickets_id = space_info->tickets_id;
945         spin_unlock(&space_info->lock);
946
947         flush_state = FLUSH_DELAYED_ITEMS_NR;
948         do {
949                 flush_space(fs_info, space_info, to_reclaim, flush_state);
950                 spin_lock(&space_info->lock);
951                 if (list_empty(&space_info->tickets)) {
952                         space_info->flush = 0;
953                         spin_unlock(&space_info->lock);
954                         return;
955                 }
956                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
957                                                               space_info);
958                 if (last_tickets_id == space_info->tickets_id) {
959                         flush_state++;
960                 } else {
961                         last_tickets_id = space_info->tickets_id;
962                         flush_state = FLUSH_DELAYED_ITEMS_NR;
963                         if (commit_cycles)
964                                 commit_cycles--;
965                 }
966
967                 /*
968                  * We don't want to force a chunk allocation until we've tried
969                  * pretty hard to reclaim space.  Think of the case where we
970                  * freed up a bunch of space and so have a lot of pinned space
971                  * to reclaim.  We would rather use that than possibly create a
972                  * underutilized metadata chunk.  So if this is our first run
973                  * through the flushing state machine skip ALLOC_CHUNK_FORCE and
974                  * commit the transaction.  If nothing has changed the next go
975                  * around then we can force a chunk allocation.
976                  */
977                 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
978                         flush_state++;
979
980                 if (flush_state > COMMIT_TRANS) {
981                         commit_cycles++;
982                         if (commit_cycles > 2) {
983                                 if (maybe_fail_all_tickets(fs_info, space_info)) {
984                                         flush_state = FLUSH_DELAYED_ITEMS_NR;
985                                         commit_cycles--;
986                                 } else {
987                                         space_info->flush = 0;
988                                 }
989                         } else {
990                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
991                         }
992                 }
993                 spin_unlock(&space_info->lock);
994         } while (flush_state <= COMMIT_TRANS);
995 }
996
997 void btrfs_init_async_reclaim_work(struct work_struct *work)
998 {
999         INIT_WORK(work, btrfs_async_reclaim_metadata_space);
1000 }
1001
1002 static const enum btrfs_flush_state priority_flush_states[] = {
1003         FLUSH_DELAYED_ITEMS_NR,
1004         FLUSH_DELAYED_ITEMS,
1005         ALLOC_CHUNK,
1006 };
1007
1008 static const enum btrfs_flush_state evict_flush_states[] = {
1009         FLUSH_DELAYED_ITEMS_NR,
1010         FLUSH_DELAYED_ITEMS,
1011         FLUSH_DELAYED_REFS_NR,
1012         FLUSH_DELAYED_REFS,
1013         FLUSH_DELALLOC,
1014         FLUSH_DELALLOC_WAIT,
1015         ALLOC_CHUNK,
1016         COMMIT_TRANS,
1017 };
1018
1019 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1020                                 struct btrfs_space_info *space_info,
1021                                 struct reserve_ticket *ticket,
1022                                 const enum btrfs_flush_state *states,
1023                                 int states_nr)
1024 {
1025         u64 to_reclaim;
1026         int flush_state;
1027
1028         spin_lock(&space_info->lock);
1029         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1030         if (!to_reclaim) {
1031                 spin_unlock(&space_info->lock);
1032                 return;
1033         }
1034         spin_unlock(&space_info->lock);
1035
1036         flush_state = 0;
1037         do {
1038                 flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
1039                 flush_state++;
1040                 spin_lock(&space_info->lock);
1041                 if (ticket->bytes == 0) {
1042                         spin_unlock(&space_info->lock);
1043                         return;
1044                 }
1045                 spin_unlock(&space_info->lock);
1046         } while (flush_state < states_nr);
1047 }
1048
1049 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1050                                 struct btrfs_space_info *space_info,
1051                                 struct reserve_ticket *ticket)
1052
1053 {
1054         DEFINE_WAIT(wait);
1055         int ret = 0;
1056
1057         spin_lock(&space_info->lock);
1058         while (ticket->bytes > 0 && ticket->error == 0) {
1059                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1060                 if (ret) {
1061                         /*
1062                          * Delete us from the list. After we unlock the space
1063                          * info, we don't want the async reclaim job to reserve
1064                          * space for this ticket. If that would happen, then the
1065                          * ticket's task would not known that space was reserved
1066                          * despite getting an error, resulting in a space leak
1067                          * (bytes_may_use counter of our space_info).
1068                          */
1069                         remove_ticket(space_info, ticket);
1070                         ticket->error = -EINTR;
1071                         break;
1072                 }
1073                 spin_unlock(&space_info->lock);
1074
1075                 schedule();
1076
1077                 finish_wait(&ticket->wait, &wait);
1078                 spin_lock(&space_info->lock);
1079         }
1080         spin_unlock(&space_info->lock);
1081 }
1082
1083 /**
1084  * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket
1085  * @fs_info - the fs
1086  * @space_info - the space_info for the reservation
1087  * @ticket - the ticket for the reservation
1088  * @flush - how much we can flush
1089  *
1090  * This does the work of figuring out how to flush for the ticket, waiting for
1091  * the reservation, and returning the appropriate error if there is one.
1092  */
1093 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1094                                  struct btrfs_space_info *space_info,
1095                                  struct reserve_ticket *ticket,
1096                                  enum btrfs_reserve_flush_enum flush)
1097 {
1098         int ret;
1099
1100         switch (flush) {
1101         case BTRFS_RESERVE_FLUSH_ALL:
1102         case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1103                 wait_reserve_ticket(fs_info, space_info, ticket);
1104                 break;
1105         case BTRFS_RESERVE_FLUSH_LIMIT:
1106                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1107                                                 priority_flush_states,
1108                                                 ARRAY_SIZE(priority_flush_states));
1109                 break;
1110         case BTRFS_RESERVE_FLUSH_EVICT:
1111                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1112                                                 evict_flush_states,
1113                                                 ARRAY_SIZE(evict_flush_states));
1114                 break;
1115         default:
1116                 ASSERT(0);
1117                 break;
1118         }
1119
1120         spin_lock(&space_info->lock);
1121         ret = ticket->error;
1122         if (ticket->bytes || ticket->error) {
1123                 /*
1124                  * We were a priority ticket, so we need to delete ourselves
1125                  * from the list.  Because we could have other priority tickets
1126                  * behind us that require less space, run
1127                  * btrfs_try_granting_tickets() to see if their reservations can
1128                  * now be made.
1129                  */
1130                 if (!list_empty(&ticket->list)) {
1131                         remove_ticket(space_info, ticket);
1132                         btrfs_try_granting_tickets(fs_info, space_info);
1133                 }
1134
1135                 if (!ret)
1136                         ret = -ENOSPC;
1137         }
1138         spin_unlock(&space_info->lock);
1139         ASSERT(list_empty(&ticket->list));
1140         /*
1141          * Check that we can't have an error set if the reservation succeeded,
1142          * as that would confuse tasks and lead them to error out without
1143          * releasing reserved space (if an error happens the expectation is that
1144          * space wasn't reserved at all).
1145          */
1146         ASSERT(!(ticket->bytes == 0 && ticket->error));
1147         return ret;
1148 }
1149
1150 /*
1151  * This returns true if this flush state will go through the ordinary flushing
1152  * code.
1153  */
1154 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1155 {
1156         return  (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1157                 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1158 }
1159
1160 /**
1161  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1162  * @root - the root we're allocating for
1163  * @space_info - the space info we want to allocate from
1164  * @orig_bytes - the number of bytes we want
1165  * @flush - whether or not we can flush to make our reservation
1166  *
1167  * This will reserve orig_bytes number of bytes from the space info associated
1168  * with the block_rsv.  If there is not enough space it will make an attempt to
1169  * flush out space to make room.  It will do this by flushing delalloc if
1170  * possible or committing the transaction.  If flush is 0 then no attempts to
1171  * regain reservations will be made and this will fail if there is not enough
1172  * space already.
1173  */
1174 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1175                                     struct btrfs_space_info *space_info,
1176                                     u64 orig_bytes,
1177                                     enum btrfs_reserve_flush_enum flush)
1178 {
1179         struct reserve_ticket ticket;
1180         u64 used;
1181         int ret = 0;
1182         bool pending_tickets;
1183
1184         ASSERT(orig_bytes);
1185         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1186
1187         spin_lock(&space_info->lock);
1188         ret = -ENOSPC;
1189         used = btrfs_space_info_used(space_info, true);
1190
1191         /*
1192          * We don't want NO_FLUSH allocations to jump everybody, they can
1193          * generally handle ENOSPC in a different way, so treat them the same as
1194          * normal flushers when it comes to skipping pending tickets.
1195          */
1196         if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1197                 pending_tickets = !list_empty(&space_info->tickets) ||
1198                         !list_empty(&space_info->priority_tickets);
1199         else
1200                 pending_tickets = !list_empty(&space_info->priority_tickets);
1201
1202         /*
1203          * Carry on if we have enough space (short-circuit) OR call
1204          * can_overcommit() to ensure we can overcommit to continue.
1205          */
1206         if (!pending_tickets &&
1207             ((used + orig_bytes <= space_info->total_bytes) ||
1208              btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1209                 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1210                                                       orig_bytes);
1211                 ret = 0;
1212         }
1213
1214         /*
1215          * If we couldn't make a reservation then setup our reservation ticket
1216          * and kick the async worker if it's not already running.
1217          *
1218          * If we are a priority flusher then we just need to add our ticket to
1219          * the list and we will do our own flushing further down.
1220          */
1221         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1222                 ticket.bytes = orig_bytes;
1223                 ticket.error = 0;
1224                 space_info->reclaim_size += ticket.bytes;
1225                 init_waitqueue_head(&ticket.wait);
1226                 ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1227                 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1228                     flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
1229                         list_add_tail(&ticket.list, &space_info->tickets);
1230                         if (!space_info->flush) {
1231                                 space_info->flush = 1;
1232                                 trace_btrfs_trigger_flush(fs_info,
1233                                                           space_info->flags,
1234                                                           orig_bytes, flush,
1235                                                           "enospc");
1236                                 queue_work(system_unbound_wq,
1237                                            &fs_info->async_reclaim_work);
1238                         }
1239                 } else {
1240                         list_add_tail(&ticket.list,
1241                                       &space_info->priority_tickets);
1242                 }
1243         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1244                 used += orig_bytes;
1245                 /*
1246                  * We will do the space reservation dance during log replay,
1247                  * which means we won't have fs_info->fs_root set, so don't do
1248                  * the async reclaim as we will panic.
1249                  */
1250                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1251                     need_do_async_reclaim(fs_info, space_info, used) &&
1252                     !work_busy(&fs_info->async_reclaim_work)) {
1253                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
1254                                                   orig_bytes, flush, "preempt");
1255                         queue_work(system_unbound_wq,
1256                                    &fs_info->async_reclaim_work);
1257                 }
1258         }
1259         spin_unlock(&space_info->lock);
1260         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1261                 return ret;
1262
1263         return handle_reserve_ticket(fs_info, space_info, &ticket, flush);
1264 }
1265
1266 /**
1267  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1268  * @root - the root we're allocating for
1269  * @block_rsv - the block_rsv we're allocating for
1270  * @orig_bytes - the number of bytes we want
1271  * @flush - whether or not we can flush to make our reservation
1272  *
1273  * This will reserve orig_bytes number of bytes from the space info associated
1274  * with the block_rsv.  If there is not enough space it will make an attempt to
1275  * flush out space to make room.  It will do this by flushing delalloc if
1276  * possible or committing the transaction.  If flush is 0 then no attempts to
1277  * regain reservations will be made and this will fail if there is not enough
1278  * space already.
1279  */
1280 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1281                                  struct btrfs_block_rsv *block_rsv,
1282                                  u64 orig_bytes,
1283                                  enum btrfs_reserve_flush_enum flush)
1284 {
1285         struct btrfs_fs_info *fs_info = root->fs_info;
1286         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1287         int ret;
1288
1289         ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
1290                                        orig_bytes, flush);
1291         if (ret == -ENOSPC &&
1292             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1293                 if (block_rsv != global_rsv &&
1294                     !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1295                         ret = 0;
1296         }
1297         if (ret == -ENOSPC) {
1298                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1299                                               block_rsv->space_info->flags,
1300                                               orig_bytes, 1);
1301
1302                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1303                         btrfs_dump_space_info(fs_info, block_rsv->space_info,
1304                                               orig_bytes, 0);
1305         }
1306         return ret;
1307 }