Merge tag 's390-5.6-4' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[linux-2.6-microblaze.git] / fs / btrfs / space-info.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12
13 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
14                           bool may_use_included)
15 {
16         ASSERT(s_info);
17         return s_info->bytes_used + s_info->bytes_reserved +
18                 s_info->bytes_pinned + s_info->bytes_readonly +
19                 (may_use_included ? s_info->bytes_may_use : 0);
20 }
21
22 /*
23  * after adding space to the filesystem, we need to clear the full flags
24  * on all the space infos.
25  */
26 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
27 {
28         struct list_head *head = &info->space_info;
29         struct btrfs_space_info *found;
30
31         rcu_read_lock();
32         list_for_each_entry_rcu(found, head, list)
33                 found->full = 0;
34         rcu_read_unlock();
35 }
36
37 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
38 {
39
40         struct btrfs_space_info *space_info;
41         int i;
42         int ret;
43
44         space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
45         if (!space_info)
46                 return -ENOMEM;
47
48         ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
49                                  GFP_KERNEL);
50         if (ret) {
51                 kfree(space_info);
52                 return ret;
53         }
54
55         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
56                 INIT_LIST_HEAD(&space_info->block_groups[i]);
57         init_rwsem(&space_info->groups_sem);
58         spin_lock_init(&space_info->lock);
59         space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
60         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
61         INIT_LIST_HEAD(&space_info->ro_bgs);
62         INIT_LIST_HEAD(&space_info->tickets);
63         INIT_LIST_HEAD(&space_info->priority_tickets);
64
65         ret = btrfs_sysfs_add_space_info_type(info, space_info);
66         if (ret)
67                 return ret;
68
69         list_add_rcu(&space_info->list, &info->space_info);
70         if (flags & BTRFS_BLOCK_GROUP_DATA)
71                 info->data_sinfo = space_info;
72
73         return ret;
74 }
75
76 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
77 {
78         struct btrfs_super_block *disk_super;
79         u64 features;
80         u64 flags;
81         int mixed = 0;
82         int ret;
83
84         disk_super = fs_info->super_copy;
85         if (!btrfs_super_root(disk_super))
86                 return -EINVAL;
87
88         features = btrfs_super_incompat_flags(disk_super);
89         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
90                 mixed = 1;
91
92         flags = BTRFS_BLOCK_GROUP_SYSTEM;
93         ret = create_space_info(fs_info, flags);
94         if (ret)
95                 goto out;
96
97         if (mixed) {
98                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
99                 ret = create_space_info(fs_info, flags);
100         } else {
101                 flags = BTRFS_BLOCK_GROUP_METADATA;
102                 ret = create_space_info(fs_info, flags);
103                 if (ret)
104                         goto out;
105
106                 flags = BTRFS_BLOCK_GROUP_DATA;
107                 ret = create_space_info(fs_info, flags);
108         }
109 out:
110         return ret;
111 }
112
113 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
114                              u64 total_bytes, u64 bytes_used,
115                              u64 bytes_readonly,
116                              struct btrfs_space_info **space_info)
117 {
118         struct btrfs_space_info *found;
119         int factor;
120
121         factor = btrfs_bg_type_to_factor(flags);
122
123         found = btrfs_find_space_info(info, flags);
124         ASSERT(found);
125         spin_lock(&found->lock);
126         found->total_bytes += total_bytes;
127         found->disk_total += total_bytes * factor;
128         found->bytes_used += bytes_used;
129         found->disk_used += bytes_used * factor;
130         found->bytes_readonly += bytes_readonly;
131         if (total_bytes > 0)
132                 found->full = 0;
133         btrfs_try_granting_tickets(info, found);
134         spin_unlock(&found->lock);
135         *space_info = found;
136 }
137
138 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
139                                                u64 flags)
140 {
141         struct list_head *head = &info->space_info;
142         struct btrfs_space_info *found;
143
144         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
145
146         rcu_read_lock();
147         list_for_each_entry_rcu(found, head, list) {
148                 if (found->flags & flags) {
149                         rcu_read_unlock();
150                         return found;
151                 }
152         }
153         rcu_read_unlock();
154         return NULL;
155 }
156
157 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
158 {
159         return (global->size << 1);
160 }
161
162 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
163                          struct btrfs_space_info *space_info, u64 bytes,
164                          enum btrfs_reserve_flush_enum flush)
165 {
166         u64 profile;
167         u64 avail;
168         u64 used;
169         int factor;
170
171         /* Don't overcommit when in mixed mode. */
172         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
173                 return 0;
174
175         if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
176                 profile = btrfs_system_alloc_profile(fs_info);
177         else
178                 profile = btrfs_metadata_alloc_profile(fs_info);
179
180         used = btrfs_space_info_used(space_info, true);
181         avail = atomic64_read(&fs_info->free_chunk_space);
182
183         /*
184          * If we have dup, raid1 or raid10 then only half of the free
185          * space is actually usable.  For raid56, the space info used
186          * doesn't include the parity drive, so we don't have to
187          * change the math
188          */
189         factor = btrfs_bg_type_to_factor(profile);
190         avail = div_u64(avail, factor);
191
192         /*
193          * If we aren't flushing all things, let us overcommit up to
194          * 1/2th of the space. If we can flush, don't let us overcommit
195          * too much, let it overcommit up to 1/8 of the space.
196          */
197         if (flush == BTRFS_RESERVE_FLUSH_ALL)
198                 avail >>= 3;
199         else
200                 avail >>= 1;
201
202         if (used + bytes < space_info->total_bytes + avail)
203                 return 1;
204         return 0;
205 }
206
207 /*
208  * This is for space we already have accounted in space_info->bytes_may_use, so
209  * basically when we're returning space from block_rsv's.
210  */
211 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
212                                 struct btrfs_space_info *space_info)
213 {
214         struct list_head *head;
215         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
216
217         lockdep_assert_held(&space_info->lock);
218
219         head = &space_info->priority_tickets;
220 again:
221         while (!list_empty(head)) {
222                 struct reserve_ticket *ticket;
223                 u64 used = btrfs_space_info_used(space_info, true);
224
225                 ticket = list_first_entry(head, struct reserve_ticket, list);
226
227                 /* Check and see if our ticket can be satisified now. */
228                 if ((used + ticket->bytes <= space_info->total_bytes) ||
229                     btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
230                                          flush)) {
231                         btrfs_space_info_update_bytes_may_use(fs_info,
232                                                               space_info,
233                                                               ticket->bytes);
234                         list_del_init(&ticket->list);
235                         ticket->bytes = 0;
236                         space_info->tickets_id++;
237                         wake_up(&ticket->wait);
238                 } else {
239                         break;
240                 }
241         }
242
243         if (head == &space_info->priority_tickets) {
244                 head = &space_info->tickets;
245                 flush = BTRFS_RESERVE_FLUSH_ALL;
246                 goto again;
247         }
248 }
249
250 #define DUMP_BLOCK_RSV(fs_info, rsv_name)                               \
251 do {                                                                    \
252         struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;           \
253         spin_lock(&__rsv->lock);                                        \
254         btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",      \
255                    __rsv->size, __rsv->reserved);                       \
256         spin_unlock(&__rsv->lock);                                      \
257 } while (0)
258
259 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
260                                     struct btrfs_space_info *info)
261 {
262         lockdep_assert_held(&info->lock);
263
264         btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
265                    info->flags,
266                    info->total_bytes - btrfs_space_info_used(info, true),
267                    info->full ? "" : "not ");
268         btrfs_info(fs_info,
269                 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
270                 info->total_bytes, info->bytes_used, info->bytes_pinned,
271                 info->bytes_reserved, info->bytes_may_use,
272                 info->bytes_readonly);
273
274         DUMP_BLOCK_RSV(fs_info, global_block_rsv);
275         DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
276         DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
277         DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
278         DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
279
280 }
281
282 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
283                            struct btrfs_space_info *info, u64 bytes,
284                            int dump_block_groups)
285 {
286         struct btrfs_block_group *cache;
287         int index = 0;
288
289         spin_lock(&info->lock);
290         __btrfs_dump_space_info(fs_info, info);
291         spin_unlock(&info->lock);
292
293         if (!dump_block_groups)
294                 return;
295
296         down_read(&info->groups_sem);
297 again:
298         list_for_each_entry(cache, &info->block_groups[index], list) {
299                 spin_lock(&cache->lock);
300                 btrfs_info(fs_info,
301                         "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
302                         cache->start, cache->length, cache->used, cache->pinned,
303                         cache->reserved, cache->ro ? "[readonly]" : "");
304                 btrfs_dump_free_space(cache, bytes);
305                 spin_unlock(&cache->lock);
306         }
307         if (++index < BTRFS_NR_RAID_TYPES)
308                 goto again;
309         up_read(&info->groups_sem);
310 }
311
312 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
313                                          unsigned long nr_pages, int nr_items)
314 {
315         struct super_block *sb = fs_info->sb;
316
317         if (down_read_trylock(&sb->s_umount)) {
318                 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
319                 up_read(&sb->s_umount);
320         } else {
321                 /*
322                  * We needn't worry the filesystem going from r/w to r/o though
323                  * we don't acquire ->s_umount mutex, because the filesystem
324                  * should guarantee the delalloc inodes list be empty after
325                  * the filesystem is readonly(all dirty pages are written to
326                  * the disk).
327                  */
328                 btrfs_start_delalloc_roots(fs_info, nr_items);
329                 if (!current->journal_info)
330                         btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
331         }
332 }
333
334 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
335                                         u64 to_reclaim)
336 {
337         u64 bytes;
338         u64 nr;
339
340         bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
341         nr = div64_u64(to_reclaim, bytes);
342         if (!nr)
343                 nr = 1;
344         return nr;
345 }
346
347 #define EXTENT_SIZE_PER_ITEM    SZ_256K
348
349 /*
350  * shrink metadata reservation for delalloc
351  */
352 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
353                             u64 orig, bool wait_ordered)
354 {
355         struct btrfs_space_info *space_info;
356         struct btrfs_trans_handle *trans;
357         u64 delalloc_bytes;
358         u64 dio_bytes;
359         u64 async_pages;
360         u64 items;
361         long time_left;
362         unsigned long nr_pages;
363         int loops;
364
365         /* Calc the number of the pages we need flush for space reservation */
366         items = calc_reclaim_items_nr(fs_info, to_reclaim);
367         to_reclaim = items * EXTENT_SIZE_PER_ITEM;
368
369         trans = (struct btrfs_trans_handle *)current->journal_info;
370         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
371
372         delalloc_bytes = percpu_counter_sum_positive(
373                                                 &fs_info->delalloc_bytes);
374         dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
375         if (delalloc_bytes == 0 && dio_bytes == 0) {
376                 if (trans)
377                         return;
378                 if (wait_ordered)
379                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
380                 return;
381         }
382
383         /*
384          * If we are doing more ordered than delalloc we need to just wait on
385          * ordered extents, otherwise we'll waste time trying to flush delalloc
386          * that likely won't give us the space back we need.
387          */
388         if (dio_bytes > delalloc_bytes)
389                 wait_ordered = true;
390
391         loops = 0;
392         while ((delalloc_bytes || dio_bytes) && loops < 3) {
393                 nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
394
395                 /*
396                  * Triggers inode writeback for up to nr_pages. This will invoke
397                  * ->writepages callback and trigger delalloc filling
398                  *  (btrfs_run_delalloc_range()).
399                  */
400                 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
401
402                 /*
403                  * We need to wait for the compressed pages to start before
404                  * we continue.
405                  */
406                 async_pages = atomic_read(&fs_info->async_delalloc_pages);
407                 if (!async_pages)
408                         goto skip_async;
409
410                 /*
411                  * Calculate how many compressed pages we want to be written
412                  * before we continue. I.e if there are more async pages than we
413                  * require wait_event will wait until nr_pages are written.
414                  */
415                 if (async_pages <= nr_pages)
416                         async_pages = 0;
417                 else
418                         async_pages -= nr_pages;
419
420                 wait_event(fs_info->async_submit_wait,
421                            atomic_read(&fs_info->async_delalloc_pages) <=
422                            (int)async_pages);
423 skip_async:
424                 spin_lock(&space_info->lock);
425                 if (list_empty(&space_info->tickets) &&
426                     list_empty(&space_info->priority_tickets)) {
427                         spin_unlock(&space_info->lock);
428                         break;
429                 }
430                 spin_unlock(&space_info->lock);
431
432                 loops++;
433                 if (wait_ordered && !trans) {
434                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
435                 } else {
436                         time_left = schedule_timeout_killable(1);
437                         if (time_left)
438                                 break;
439                 }
440                 delalloc_bytes = percpu_counter_sum_positive(
441                                                 &fs_info->delalloc_bytes);
442                 dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
443         }
444 }
445
446 /**
447  * maybe_commit_transaction - possibly commit the transaction if its ok to
448  * @root - the root we're allocating for
449  * @bytes - the number of bytes we want to reserve
450  * @force - force the commit
451  *
452  * This will check to make sure that committing the transaction will actually
453  * get us somewhere and then commit the transaction if it does.  Otherwise it
454  * will return -ENOSPC.
455  */
456 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
457                                   struct btrfs_space_info *space_info)
458 {
459         struct reserve_ticket *ticket = NULL;
460         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
461         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
462         struct btrfs_trans_handle *trans;
463         u64 bytes_needed;
464         u64 reclaim_bytes = 0;
465         u64 cur_free_bytes = 0;
466
467         trans = (struct btrfs_trans_handle *)current->journal_info;
468         if (trans)
469                 return -EAGAIN;
470
471         spin_lock(&space_info->lock);
472         cur_free_bytes = btrfs_space_info_used(space_info, true);
473         if (cur_free_bytes < space_info->total_bytes)
474                 cur_free_bytes = space_info->total_bytes - cur_free_bytes;
475         else
476                 cur_free_bytes = 0;
477
478         if (!list_empty(&space_info->priority_tickets))
479                 ticket = list_first_entry(&space_info->priority_tickets,
480                                           struct reserve_ticket, list);
481         else if (!list_empty(&space_info->tickets))
482                 ticket = list_first_entry(&space_info->tickets,
483                                           struct reserve_ticket, list);
484         bytes_needed = (ticket) ? ticket->bytes : 0;
485
486         if (bytes_needed > cur_free_bytes)
487                 bytes_needed -= cur_free_bytes;
488         else
489                 bytes_needed = 0;
490         spin_unlock(&space_info->lock);
491
492         if (!bytes_needed)
493                 return 0;
494
495         trans = btrfs_join_transaction(fs_info->extent_root);
496         if (IS_ERR(trans))
497                 return PTR_ERR(trans);
498
499         /*
500          * See if there is enough pinned space to make this reservation, or if
501          * we have block groups that are going to be freed, allowing us to
502          * possibly do a chunk allocation the next loop through.
503          */
504         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
505             __percpu_counter_compare(&space_info->total_bytes_pinned,
506                                      bytes_needed,
507                                      BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
508                 goto commit;
509
510         /*
511          * See if there is some space in the delayed insertion reservation for
512          * this reservation.
513          */
514         if (space_info != delayed_rsv->space_info)
515                 goto enospc;
516
517         spin_lock(&delayed_rsv->lock);
518         reclaim_bytes += delayed_rsv->reserved;
519         spin_unlock(&delayed_rsv->lock);
520
521         spin_lock(&delayed_refs_rsv->lock);
522         reclaim_bytes += delayed_refs_rsv->reserved;
523         spin_unlock(&delayed_refs_rsv->lock);
524         if (reclaim_bytes >= bytes_needed)
525                 goto commit;
526         bytes_needed -= reclaim_bytes;
527
528         if (__percpu_counter_compare(&space_info->total_bytes_pinned,
529                                    bytes_needed,
530                                    BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
531                 goto enospc;
532
533 commit:
534         return btrfs_commit_transaction(trans);
535 enospc:
536         btrfs_end_transaction(trans);
537         return -ENOSPC;
538 }
539
540 /*
541  * Try to flush some data based on policy set by @state. This is only advisory
542  * and may fail for various reasons. The caller is supposed to examine the
543  * state of @space_info to detect the outcome.
544  */
545 static void flush_space(struct btrfs_fs_info *fs_info,
546                        struct btrfs_space_info *space_info, u64 num_bytes,
547                        int state)
548 {
549         struct btrfs_root *root = fs_info->extent_root;
550         struct btrfs_trans_handle *trans;
551         int nr;
552         int ret = 0;
553
554         switch (state) {
555         case FLUSH_DELAYED_ITEMS_NR:
556         case FLUSH_DELAYED_ITEMS:
557                 if (state == FLUSH_DELAYED_ITEMS_NR)
558                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
559                 else
560                         nr = -1;
561
562                 trans = btrfs_join_transaction(root);
563                 if (IS_ERR(trans)) {
564                         ret = PTR_ERR(trans);
565                         break;
566                 }
567                 ret = btrfs_run_delayed_items_nr(trans, nr);
568                 btrfs_end_transaction(trans);
569                 break;
570         case FLUSH_DELALLOC:
571         case FLUSH_DELALLOC_WAIT:
572                 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
573                                 state == FLUSH_DELALLOC_WAIT);
574                 break;
575         case FLUSH_DELAYED_REFS_NR:
576         case FLUSH_DELAYED_REFS:
577                 trans = btrfs_join_transaction(root);
578                 if (IS_ERR(trans)) {
579                         ret = PTR_ERR(trans);
580                         break;
581                 }
582                 if (state == FLUSH_DELAYED_REFS_NR)
583                         nr = calc_reclaim_items_nr(fs_info, num_bytes);
584                 else
585                         nr = 0;
586                 btrfs_run_delayed_refs(trans, nr);
587                 btrfs_end_transaction(trans);
588                 break;
589         case ALLOC_CHUNK:
590         case ALLOC_CHUNK_FORCE:
591                 trans = btrfs_join_transaction(root);
592                 if (IS_ERR(trans)) {
593                         ret = PTR_ERR(trans);
594                         break;
595                 }
596                 ret = btrfs_chunk_alloc(trans,
597                                 btrfs_metadata_alloc_profile(fs_info),
598                                 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
599                                         CHUNK_ALLOC_FORCE);
600                 btrfs_end_transaction(trans);
601                 if (ret > 0 || ret == -ENOSPC)
602                         ret = 0;
603                 break;
604         case RUN_DELAYED_IPUTS:
605                 /*
606                  * If we have pending delayed iputs then we could free up a
607                  * bunch of pinned space, so make sure we run the iputs before
608                  * we do our pinned bytes check below.
609                  */
610                 btrfs_run_delayed_iputs(fs_info);
611                 btrfs_wait_on_delayed_iputs(fs_info);
612                 break;
613         case COMMIT_TRANS:
614                 ret = may_commit_transaction(fs_info, space_info);
615                 break;
616         default:
617                 ret = -ENOSPC;
618                 break;
619         }
620
621         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
622                                 ret);
623         return;
624 }
625
626 static inline u64
627 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
628                                  struct btrfs_space_info *space_info)
629 {
630         struct reserve_ticket *ticket;
631         u64 used;
632         u64 expected;
633         u64 to_reclaim = 0;
634
635         list_for_each_entry(ticket, &space_info->tickets, list)
636                 to_reclaim += ticket->bytes;
637         list_for_each_entry(ticket, &space_info->priority_tickets, list)
638                 to_reclaim += ticket->bytes;
639         if (to_reclaim)
640                 return to_reclaim;
641
642         to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
643         if (btrfs_can_overcommit(fs_info, space_info, to_reclaim,
644                                  BTRFS_RESERVE_FLUSH_ALL))
645                 return 0;
646
647         used = btrfs_space_info_used(space_info, true);
648
649         if (btrfs_can_overcommit(fs_info, space_info, SZ_1M,
650                                  BTRFS_RESERVE_FLUSH_ALL))
651                 expected = div_factor_fine(space_info->total_bytes, 95);
652         else
653                 expected = div_factor_fine(space_info->total_bytes, 90);
654
655         if (used > expected)
656                 to_reclaim = used - expected;
657         else
658                 to_reclaim = 0;
659         to_reclaim = min(to_reclaim, space_info->bytes_may_use +
660                                      space_info->bytes_reserved);
661         return to_reclaim;
662 }
663
664 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
665                                         struct btrfs_space_info *space_info,
666                                         u64 used)
667 {
668         u64 thresh = div_factor_fine(space_info->total_bytes, 98);
669
670         /* If we're just plain full then async reclaim just slows us down. */
671         if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
672                 return 0;
673
674         if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info))
675                 return 0;
676
677         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
678                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
679 }
680
681 /*
682  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
683  * @fs_info - fs_info for this fs
684  * @space_info - the space info we were flushing
685  *
686  * We call this when we've exhausted our flushing ability and haven't made
687  * progress in satisfying tickets.  The reservation code handles tickets in
688  * order, so if there is a large ticket first and then smaller ones we could
689  * very well satisfy the smaller tickets.  This will attempt to wake up any
690  * tickets in the list to catch this case.
691  *
692  * This function returns true if it was able to make progress by clearing out
693  * other tickets, or if it stumbles across a ticket that was smaller than the
694  * first ticket.
695  */
696 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
697                                    struct btrfs_space_info *space_info)
698 {
699         struct reserve_ticket *ticket;
700         u64 tickets_id = space_info->tickets_id;
701         u64 first_ticket_bytes = 0;
702
703         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
704                 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
705                 __btrfs_dump_space_info(fs_info, space_info);
706         }
707
708         while (!list_empty(&space_info->tickets) &&
709                tickets_id == space_info->tickets_id) {
710                 ticket = list_first_entry(&space_info->tickets,
711                                           struct reserve_ticket, list);
712
713                 /*
714                  * may_commit_transaction will avoid committing the transaction
715                  * if it doesn't feel like the space reclaimed by the commit
716                  * would result in the ticket succeeding.  However if we have a
717                  * smaller ticket in the queue it may be small enough to be
718                  * satisified by committing the transaction, so if any
719                  * subsequent ticket is smaller than the first ticket go ahead
720                  * and send us back for another loop through the enospc flushing
721                  * code.
722                  */
723                 if (first_ticket_bytes == 0)
724                         first_ticket_bytes = ticket->bytes;
725                 else if (first_ticket_bytes > ticket->bytes)
726                         return true;
727
728                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
729                         btrfs_info(fs_info, "failing ticket with %llu bytes",
730                                    ticket->bytes);
731
732                 list_del_init(&ticket->list);
733                 ticket->error = -ENOSPC;
734                 wake_up(&ticket->wait);
735
736                 /*
737                  * We're just throwing tickets away, so more flushing may not
738                  * trip over btrfs_try_granting_tickets, so we need to call it
739                  * here to see if we can make progress with the next ticket in
740                  * the list.
741                  */
742                 btrfs_try_granting_tickets(fs_info, space_info);
743         }
744         return (tickets_id != space_info->tickets_id);
745 }
746
747 /*
748  * This is for normal flushers, we can wait all goddamned day if we want to.  We
749  * will loop and continuously try to flush as long as we are making progress.
750  * We count progress as clearing off tickets each time we have to loop.
751  */
752 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
753 {
754         struct btrfs_fs_info *fs_info;
755         struct btrfs_space_info *space_info;
756         u64 to_reclaim;
757         int flush_state;
758         int commit_cycles = 0;
759         u64 last_tickets_id;
760
761         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
762         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
763
764         spin_lock(&space_info->lock);
765         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
766         if (!to_reclaim) {
767                 space_info->flush = 0;
768                 spin_unlock(&space_info->lock);
769                 return;
770         }
771         last_tickets_id = space_info->tickets_id;
772         spin_unlock(&space_info->lock);
773
774         flush_state = FLUSH_DELAYED_ITEMS_NR;
775         do {
776                 flush_space(fs_info, space_info, to_reclaim, flush_state);
777                 spin_lock(&space_info->lock);
778                 if (list_empty(&space_info->tickets)) {
779                         space_info->flush = 0;
780                         spin_unlock(&space_info->lock);
781                         return;
782                 }
783                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
784                                                               space_info);
785                 if (last_tickets_id == space_info->tickets_id) {
786                         flush_state++;
787                 } else {
788                         last_tickets_id = space_info->tickets_id;
789                         flush_state = FLUSH_DELAYED_ITEMS_NR;
790                         if (commit_cycles)
791                                 commit_cycles--;
792                 }
793
794                 /*
795                  * We don't want to force a chunk allocation until we've tried
796                  * pretty hard to reclaim space.  Think of the case where we
797                  * freed up a bunch of space and so have a lot of pinned space
798                  * to reclaim.  We would rather use that than possibly create a
799                  * underutilized metadata chunk.  So if this is our first run
800                  * through the flushing state machine skip ALLOC_CHUNK_FORCE and
801                  * commit the transaction.  If nothing has changed the next go
802                  * around then we can force a chunk allocation.
803                  */
804                 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
805                         flush_state++;
806
807                 if (flush_state > COMMIT_TRANS) {
808                         commit_cycles++;
809                         if (commit_cycles > 2) {
810                                 if (maybe_fail_all_tickets(fs_info, space_info)) {
811                                         flush_state = FLUSH_DELAYED_ITEMS_NR;
812                                         commit_cycles--;
813                                 } else {
814                                         space_info->flush = 0;
815                                 }
816                         } else {
817                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
818                         }
819                 }
820                 spin_unlock(&space_info->lock);
821         } while (flush_state <= COMMIT_TRANS);
822 }
823
824 void btrfs_init_async_reclaim_work(struct work_struct *work)
825 {
826         INIT_WORK(work, btrfs_async_reclaim_metadata_space);
827 }
828
829 static const enum btrfs_flush_state priority_flush_states[] = {
830         FLUSH_DELAYED_ITEMS_NR,
831         FLUSH_DELAYED_ITEMS,
832         ALLOC_CHUNK,
833 };
834
835 static const enum btrfs_flush_state evict_flush_states[] = {
836         FLUSH_DELAYED_ITEMS_NR,
837         FLUSH_DELAYED_ITEMS,
838         FLUSH_DELAYED_REFS_NR,
839         FLUSH_DELAYED_REFS,
840         FLUSH_DELALLOC,
841         FLUSH_DELALLOC_WAIT,
842         ALLOC_CHUNK,
843         COMMIT_TRANS,
844 };
845
846 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
847                                 struct btrfs_space_info *space_info,
848                                 struct reserve_ticket *ticket,
849                                 const enum btrfs_flush_state *states,
850                                 int states_nr)
851 {
852         u64 to_reclaim;
853         int flush_state;
854
855         spin_lock(&space_info->lock);
856         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
857         if (!to_reclaim) {
858                 spin_unlock(&space_info->lock);
859                 return;
860         }
861         spin_unlock(&space_info->lock);
862
863         flush_state = 0;
864         do {
865                 flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
866                 flush_state++;
867                 spin_lock(&space_info->lock);
868                 if (ticket->bytes == 0) {
869                         spin_unlock(&space_info->lock);
870                         return;
871                 }
872                 spin_unlock(&space_info->lock);
873         } while (flush_state < states_nr);
874 }
875
876 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
877                                 struct btrfs_space_info *space_info,
878                                 struct reserve_ticket *ticket)
879
880 {
881         DEFINE_WAIT(wait);
882         int ret = 0;
883
884         spin_lock(&space_info->lock);
885         while (ticket->bytes > 0 && ticket->error == 0) {
886                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
887                 if (ret) {
888                         /*
889                          * Delete us from the list. After we unlock the space
890                          * info, we don't want the async reclaim job to reserve
891                          * space for this ticket. If that would happen, then the
892                          * ticket's task would not known that space was reserved
893                          * despite getting an error, resulting in a space leak
894                          * (bytes_may_use counter of our space_info).
895                          */
896                         list_del_init(&ticket->list);
897                         ticket->error = -EINTR;
898                         break;
899                 }
900                 spin_unlock(&space_info->lock);
901
902                 schedule();
903
904                 finish_wait(&ticket->wait, &wait);
905                 spin_lock(&space_info->lock);
906         }
907         spin_unlock(&space_info->lock);
908 }
909
910 /**
911  * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket
912  * @fs_info - the fs
913  * @space_info - the space_info for the reservation
914  * @ticket - the ticket for the reservation
915  * @flush - how much we can flush
916  *
917  * This does the work of figuring out how to flush for the ticket, waiting for
918  * the reservation, and returning the appropriate error if there is one.
919  */
920 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
921                                  struct btrfs_space_info *space_info,
922                                  struct reserve_ticket *ticket,
923                                  enum btrfs_reserve_flush_enum flush)
924 {
925         int ret;
926
927         switch (flush) {
928         case BTRFS_RESERVE_FLUSH_ALL:
929                 wait_reserve_ticket(fs_info, space_info, ticket);
930                 break;
931         case BTRFS_RESERVE_FLUSH_LIMIT:
932                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
933                                                 priority_flush_states,
934                                                 ARRAY_SIZE(priority_flush_states));
935                 break;
936         case BTRFS_RESERVE_FLUSH_EVICT:
937                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
938                                                 evict_flush_states,
939                                                 ARRAY_SIZE(evict_flush_states));
940                 break;
941         default:
942                 ASSERT(0);
943                 break;
944         }
945
946         spin_lock(&space_info->lock);
947         ret = ticket->error;
948         if (ticket->bytes || ticket->error) {
949                 /*
950                  * Need to delete here for priority tickets. For regular tickets
951                  * either the async reclaim job deletes the ticket from the list
952                  * or we delete it ourselves at wait_reserve_ticket().
953                  */
954                 list_del_init(&ticket->list);
955                 if (!ret)
956                         ret = -ENOSPC;
957         }
958         spin_unlock(&space_info->lock);
959         ASSERT(list_empty(&ticket->list));
960         /*
961          * Check that we can't have an error set if the reservation succeeded,
962          * as that would confuse tasks and lead them to error out without
963          * releasing reserved space (if an error happens the expectation is that
964          * space wasn't reserved at all).
965          */
966         ASSERT(!(ticket->bytes == 0 && ticket->error));
967         return ret;
968 }
969
970 /**
971  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
972  * @root - the root we're allocating for
973  * @space_info - the space info we want to allocate from
974  * @orig_bytes - the number of bytes we want
975  * @flush - whether or not we can flush to make our reservation
976  *
977  * This will reserve orig_bytes number of bytes from the space info associated
978  * with the block_rsv.  If there is not enough space it will make an attempt to
979  * flush out space to make room.  It will do this by flushing delalloc if
980  * possible or committing the transaction.  If flush is 0 then no attempts to
981  * regain reservations will be made and this will fail if there is not enough
982  * space already.
983  */
984 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
985                                     struct btrfs_space_info *space_info,
986                                     u64 orig_bytes,
987                                     enum btrfs_reserve_flush_enum flush)
988 {
989         struct reserve_ticket ticket;
990         u64 used;
991         int ret = 0;
992         bool pending_tickets;
993
994         ASSERT(orig_bytes);
995         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
996
997         spin_lock(&space_info->lock);
998         ret = -ENOSPC;
999         used = btrfs_space_info_used(space_info, true);
1000         pending_tickets = !list_empty(&space_info->tickets) ||
1001                 !list_empty(&space_info->priority_tickets);
1002
1003         /*
1004          * Carry on if we have enough space (short-circuit) OR call
1005          * can_overcommit() to ensure we can overcommit to continue.
1006          */
1007         if (!pending_tickets &&
1008             ((used + orig_bytes <= space_info->total_bytes) ||
1009              btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1010                 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1011                                                       orig_bytes);
1012                 ret = 0;
1013         }
1014
1015         /*
1016          * If we couldn't make a reservation then setup our reservation ticket
1017          * and kick the async worker if it's not already running.
1018          *
1019          * If we are a priority flusher then we just need to add our ticket to
1020          * the list and we will do our own flushing further down.
1021          */
1022         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1023                 ticket.bytes = orig_bytes;
1024                 ticket.error = 0;
1025                 init_waitqueue_head(&ticket.wait);
1026                 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
1027                         list_add_tail(&ticket.list, &space_info->tickets);
1028                         if (!space_info->flush) {
1029                                 space_info->flush = 1;
1030                                 trace_btrfs_trigger_flush(fs_info,
1031                                                           space_info->flags,
1032                                                           orig_bytes, flush,
1033                                                           "enospc");
1034                                 queue_work(system_unbound_wq,
1035                                            &fs_info->async_reclaim_work);
1036                         }
1037                 } else {
1038                         list_add_tail(&ticket.list,
1039                                       &space_info->priority_tickets);
1040                 }
1041         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1042                 used += orig_bytes;
1043                 /*
1044                  * We will do the space reservation dance during log replay,
1045                  * which means we won't have fs_info->fs_root set, so don't do
1046                  * the async reclaim as we will panic.
1047                  */
1048                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1049                     need_do_async_reclaim(fs_info, space_info, used) &&
1050                     !work_busy(&fs_info->async_reclaim_work)) {
1051                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
1052                                                   orig_bytes, flush, "preempt");
1053                         queue_work(system_unbound_wq,
1054                                    &fs_info->async_reclaim_work);
1055                 }
1056         }
1057         spin_unlock(&space_info->lock);
1058         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1059                 return ret;
1060
1061         return handle_reserve_ticket(fs_info, space_info, &ticket, flush);
1062 }
1063
1064 /**
1065  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1066  * @root - the root we're allocating for
1067  * @block_rsv - the block_rsv we're allocating for
1068  * @orig_bytes - the number of bytes we want
1069  * @flush - whether or not we can flush to make our reservation
1070  *
1071  * This will reserve orig_bytes number of bytes from the space info associated
1072  * with the block_rsv.  If there is not enough space it will make an attempt to
1073  * flush out space to make room.  It will do this by flushing delalloc if
1074  * possible or committing the transaction.  If flush is 0 then no attempts to
1075  * regain reservations will be made and this will fail if there is not enough
1076  * space already.
1077  */
1078 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1079                                  struct btrfs_block_rsv *block_rsv,
1080                                  u64 orig_bytes,
1081                                  enum btrfs_reserve_flush_enum flush)
1082 {
1083         struct btrfs_fs_info *fs_info = root->fs_info;
1084         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1085         int ret;
1086
1087         ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
1088                                        orig_bytes, flush);
1089         if (ret == -ENOSPC &&
1090             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1091                 if (block_rsv != global_rsv &&
1092                     !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1093                         ret = 0;
1094         }
1095         if (ret == -ENOSPC) {
1096                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1097                                               block_rsv->space_info->flags,
1098                                               orig_bytes, 1);
1099
1100                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1101                         btrfs_dump_space_info(fs_info, block_rsv->space_info,
1102                                               orig_bytes, 0);
1103         }
1104         return ret;
1105 }