1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
12 #include "ordered-data.h"
13 #include "transaction.h"
15 #include "extent_io.h"
16 #include "dev-replace.h"
17 #include "check-integrity.h"
18 #include "rcu-string.h"
22 * This is only the first step towards a full-features scrub. It reads all
23 * extent and super block and verifies the checksums. In case a bad checksum
24 * is found or the extent cannot be read, good data will be written back if
27 * Future enhancements:
28 * - In case an unrepairable extent is encountered, track which files are
29 * affected and report them
30 * - track and record media errors, throw out bad devices
31 * - add a mode to also read unallocated space
38 * the following three values only influence the performance.
39 * The last one configures the number of parallel and outstanding I/O
40 * operations. The first two values configure an upper limit for the number
41 * of (dynamically allocated) pages that are added to a bio.
43 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
44 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
45 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
48 * the following value times PAGE_SIZE needs to be large enough to match the
49 * largest node/leaf/sector size that shall be supported.
50 * Values larger than BTRFS_STRIPE_LEN are not supported.
52 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
54 struct scrub_recover {
56 struct btrfs_bio *bbio;
61 struct scrub_block *sblock;
63 struct btrfs_device *dev;
64 struct list_head list;
65 u64 flags; /* extent flags */
69 u64 physical_for_dev_replace;
72 unsigned int mirror_num:8;
73 unsigned int have_csum:1;
74 unsigned int io_error:1;
76 u8 csum[BTRFS_CSUM_SIZE];
78 struct scrub_recover *recover;
83 struct scrub_ctx *sctx;
84 struct btrfs_device *dev;
89 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
90 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
92 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
96 struct btrfs_work work;
100 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
102 atomic_t outstanding_pages;
103 refcount_t refs; /* free mem on transition to zero */
104 struct scrub_ctx *sctx;
105 struct scrub_parity *sparity;
107 unsigned int header_error:1;
108 unsigned int checksum_error:1;
109 unsigned int no_io_error_seen:1;
110 unsigned int generation_error:1; /* also sets header_error */
112 /* The following is for the data used to check parity */
113 /* It is for the data with checksum */
114 unsigned int data_corrected:1;
116 struct btrfs_work work;
119 /* Used for the chunks with parity stripe such RAID5/6 */
120 struct scrub_parity {
121 struct scrub_ctx *sctx;
123 struct btrfs_device *scrub_dev;
135 struct list_head spages;
137 /* Work of parity check and repair */
138 struct btrfs_work work;
140 /* Mark the parity blocks which have data */
141 unsigned long *dbitmap;
144 * Mark the parity blocks which have data, but errors happen when
145 * read data or check data
147 unsigned long *ebitmap;
149 unsigned long bitmap[0];
153 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
154 struct btrfs_fs_info *fs_info;
157 atomic_t bios_in_flight;
158 atomic_t workers_pending;
159 spinlock_t list_lock;
160 wait_queue_head_t list_wait;
162 struct list_head csum_list;
165 int pages_per_rd_bio;
169 struct scrub_bio *wr_curr_bio;
170 struct mutex wr_lock;
171 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
172 struct btrfs_device *wr_tgtdev;
173 bool flush_all_writes;
178 struct btrfs_scrub_progress stat;
179 spinlock_t stat_lock;
182 * Use a ref counter to avoid use-after-free issues. Scrub workers
183 * decrement bios_in_flight and workers_pending and then do a wakeup
184 * on the list_wait wait queue. We must ensure the main scrub task
185 * doesn't free the scrub context before or while the workers are
186 * doing the wakeup() call.
191 struct scrub_fixup_nodatasum {
192 struct scrub_ctx *sctx;
193 struct btrfs_device *dev;
195 struct btrfs_root *root;
196 struct btrfs_work work;
200 struct scrub_nocow_inode {
204 struct list_head list;
207 struct scrub_copy_nocow_ctx {
208 struct scrub_ctx *sctx;
212 u64 physical_for_dev_replace;
213 struct list_head inodes;
214 struct btrfs_work work;
217 struct scrub_warning {
218 struct btrfs_path *path;
219 u64 extent_item_size;
223 struct btrfs_device *dev;
226 struct full_stripe_lock {
233 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
234 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
235 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
236 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
237 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
238 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
239 struct scrub_block *sblocks_for_recheck);
240 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
241 struct scrub_block *sblock,
242 int retry_failed_mirror);
243 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
244 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
245 struct scrub_block *sblock_good);
246 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
247 struct scrub_block *sblock_good,
248 int page_num, int force_write);
249 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
250 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
252 static int scrub_checksum_data(struct scrub_block *sblock);
253 static int scrub_checksum_tree_block(struct scrub_block *sblock);
254 static int scrub_checksum_super(struct scrub_block *sblock);
255 static void scrub_block_get(struct scrub_block *sblock);
256 static void scrub_block_put(struct scrub_block *sblock);
257 static void scrub_page_get(struct scrub_page *spage);
258 static void scrub_page_put(struct scrub_page *spage);
259 static void scrub_parity_get(struct scrub_parity *sparity);
260 static void scrub_parity_put(struct scrub_parity *sparity);
261 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
262 struct scrub_page *spage);
263 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
264 u64 physical, struct btrfs_device *dev, u64 flags,
265 u64 gen, int mirror_num, u8 *csum, int force,
266 u64 physical_for_dev_replace);
267 static void scrub_bio_end_io(struct bio *bio);
268 static void scrub_bio_end_io_worker(struct btrfs_work *work);
269 static void scrub_block_complete(struct scrub_block *sblock);
270 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
271 u64 extent_logical, u64 extent_len,
272 u64 *extent_physical,
273 struct btrfs_device **extent_dev,
274 int *extent_mirror_num);
275 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
276 struct scrub_page *spage);
277 static void scrub_wr_submit(struct scrub_ctx *sctx);
278 static void scrub_wr_bio_end_io(struct bio *bio);
279 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
280 static int write_page_nocow(struct scrub_ctx *sctx,
281 u64 physical_for_dev_replace, struct page *page);
282 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
283 struct scrub_copy_nocow_ctx *ctx);
284 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
285 int mirror_num, u64 physical_for_dev_replace);
286 static void copy_nocow_pages_worker(struct btrfs_work *work);
287 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
288 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
289 static void scrub_put_ctx(struct scrub_ctx *sctx);
291 static inline int scrub_is_page_on_raid56(struct scrub_page *page)
293 return page->recover &&
294 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
297 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
299 refcount_inc(&sctx->refs);
300 atomic_inc(&sctx->bios_in_flight);
303 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
305 atomic_dec(&sctx->bios_in_flight);
306 wake_up(&sctx->list_wait);
310 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
312 while (atomic_read(&fs_info->scrub_pause_req)) {
313 mutex_unlock(&fs_info->scrub_lock);
314 wait_event(fs_info->scrub_pause_wait,
315 atomic_read(&fs_info->scrub_pause_req) == 0);
316 mutex_lock(&fs_info->scrub_lock);
320 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
322 atomic_inc(&fs_info->scrubs_paused);
323 wake_up(&fs_info->scrub_pause_wait);
326 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
328 mutex_lock(&fs_info->scrub_lock);
329 __scrub_blocked_if_needed(fs_info);
330 atomic_dec(&fs_info->scrubs_paused);
331 mutex_unlock(&fs_info->scrub_lock);
333 wake_up(&fs_info->scrub_pause_wait);
336 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
338 scrub_pause_on(fs_info);
339 scrub_pause_off(fs_info);
343 * Insert new full stripe lock into full stripe locks tree
345 * Return pointer to existing or newly inserted full_stripe_lock structure if
346 * everything works well.
347 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
349 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
352 static struct full_stripe_lock *insert_full_stripe_lock(
353 struct btrfs_full_stripe_locks_tree *locks_root,
357 struct rb_node *parent = NULL;
358 struct full_stripe_lock *entry;
359 struct full_stripe_lock *ret;
361 lockdep_assert_held(&locks_root->lock);
363 p = &locks_root->root.rb_node;
366 entry = rb_entry(parent, struct full_stripe_lock, node);
367 if (fstripe_logical < entry->logical) {
369 } else if (fstripe_logical > entry->logical) {
377 /* Insert new lock */
378 ret = kmalloc(sizeof(*ret), GFP_KERNEL);
380 return ERR_PTR(-ENOMEM);
381 ret->logical = fstripe_logical;
383 mutex_init(&ret->mutex);
385 rb_link_node(&ret->node, parent, p);
386 rb_insert_color(&ret->node, &locks_root->root);
391 * Search for a full stripe lock of a block group
393 * Return pointer to existing full stripe lock if found
394 * Return NULL if not found
396 static struct full_stripe_lock *search_full_stripe_lock(
397 struct btrfs_full_stripe_locks_tree *locks_root,
400 struct rb_node *node;
401 struct full_stripe_lock *entry;
403 lockdep_assert_held(&locks_root->lock);
405 node = locks_root->root.rb_node;
407 entry = rb_entry(node, struct full_stripe_lock, node);
408 if (fstripe_logical < entry->logical)
409 node = node->rb_left;
410 else if (fstripe_logical > entry->logical)
411 node = node->rb_right;
419 * Helper to get full stripe logical from a normal bytenr.
421 * Caller must ensure @cache is a RAID56 block group.
423 static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
429 * Due to chunk item size limit, full stripe length should not be
430 * larger than U32_MAX. Just a sanity check here.
432 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
435 * round_down() can only handle power of 2, while RAID56 full
436 * stripe length can be 64KiB * n, so we need to manually round down.
438 ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
439 cache->full_stripe_len + cache->key.objectid;
444 * Lock a full stripe to avoid concurrency of recovery and read
446 * It's only used for profiles with parities (RAID5/6), for other profiles it
449 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
450 * So caller must call unlock_full_stripe() at the same context.
452 * Return <0 if encounters error.
454 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
457 struct btrfs_block_group_cache *bg_cache;
458 struct btrfs_full_stripe_locks_tree *locks_root;
459 struct full_stripe_lock *existing;
464 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
470 /* Profiles not based on parity don't need full stripe lock */
471 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
473 locks_root = &bg_cache->full_stripe_locks_root;
475 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
477 /* Now insert the full stripe lock */
478 mutex_lock(&locks_root->lock);
479 existing = insert_full_stripe_lock(locks_root, fstripe_start);
480 mutex_unlock(&locks_root->lock);
481 if (IS_ERR(existing)) {
482 ret = PTR_ERR(existing);
485 mutex_lock(&existing->mutex);
488 btrfs_put_block_group(bg_cache);
493 * Unlock a full stripe.
495 * NOTE: Caller must ensure it's the same context calling corresponding
496 * lock_full_stripe().
498 * Return 0 if we unlock full stripe without problem.
499 * Return <0 for error
501 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
504 struct btrfs_block_group_cache *bg_cache;
505 struct btrfs_full_stripe_locks_tree *locks_root;
506 struct full_stripe_lock *fstripe_lock;
511 /* If we didn't acquire full stripe lock, no need to continue */
515 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
520 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
523 locks_root = &bg_cache->full_stripe_locks_root;
524 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
526 mutex_lock(&locks_root->lock);
527 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
528 /* Unpaired unlock_full_stripe() detected */
532 mutex_unlock(&locks_root->lock);
536 if (fstripe_lock->refs == 0) {
538 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
539 fstripe_lock->logical);
541 fstripe_lock->refs--;
544 if (fstripe_lock->refs == 0) {
545 rb_erase(&fstripe_lock->node, &locks_root->root);
548 mutex_unlock(&locks_root->lock);
550 mutex_unlock(&fstripe_lock->mutex);
554 btrfs_put_block_group(bg_cache);
559 * used for workers that require transaction commits (i.e., for the
562 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
564 struct btrfs_fs_info *fs_info = sctx->fs_info;
566 refcount_inc(&sctx->refs);
568 * increment scrubs_running to prevent cancel requests from
569 * completing as long as a worker is running. we must also
570 * increment scrubs_paused to prevent deadlocking on pause
571 * requests used for transactions commits (as the worker uses a
572 * transaction context). it is safe to regard the worker
573 * as paused for all matters practical. effectively, we only
574 * avoid cancellation requests from completing.
576 mutex_lock(&fs_info->scrub_lock);
577 atomic_inc(&fs_info->scrubs_running);
578 atomic_inc(&fs_info->scrubs_paused);
579 mutex_unlock(&fs_info->scrub_lock);
582 * check if @scrubs_running=@scrubs_paused condition
583 * inside wait_event() is not an atomic operation.
584 * which means we may inc/dec @scrub_running/paused
585 * at any time. Let's wake up @scrub_pause_wait as
586 * much as we can to let commit transaction blocked less.
588 wake_up(&fs_info->scrub_pause_wait);
590 atomic_inc(&sctx->workers_pending);
593 /* used for workers that require transaction commits */
594 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
596 struct btrfs_fs_info *fs_info = sctx->fs_info;
599 * see scrub_pending_trans_workers_inc() why we're pretending
600 * to be paused in the scrub counters
602 mutex_lock(&fs_info->scrub_lock);
603 atomic_dec(&fs_info->scrubs_running);
604 atomic_dec(&fs_info->scrubs_paused);
605 mutex_unlock(&fs_info->scrub_lock);
606 atomic_dec(&sctx->workers_pending);
607 wake_up(&fs_info->scrub_pause_wait);
608 wake_up(&sctx->list_wait);
612 static void scrub_free_csums(struct scrub_ctx *sctx)
614 while (!list_empty(&sctx->csum_list)) {
615 struct btrfs_ordered_sum *sum;
616 sum = list_first_entry(&sctx->csum_list,
617 struct btrfs_ordered_sum, list);
618 list_del(&sum->list);
623 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
630 /* this can happen when scrub is cancelled */
631 if (sctx->curr != -1) {
632 struct scrub_bio *sbio = sctx->bios[sctx->curr];
634 for (i = 0; i < sbio->page_count; i++) {
635 WARN_ON(!sbio->pagev[i]->page);
636 scrub_block_put(sbio->pagev[i]->sblock);
641 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
642 struct scrub_bio *sbio = sctx->bios[i];
649 kfree(sctx->wr_curr_bio);
650 scrub_free_csums(sctx);
654 static void scrub_put_ctx(struct scrub_ctx *sctx)
656 if (refcount_dec_and_test(&sctx->refs))
657 scrub_free_ctx(sctx);
660 static noinline_for_stack
661 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
663 struct scrub_ctx *sctx;
665 struct btrfs_fs_info *fs_info = dev->fs_info;
667 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
670 refcount_set(&sctx->refs, 1);
671 sctx->is_dev_replace = is_dev_replace;
672 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
674 sctx->fs_info = dev->fs_info;
675 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
676 struct scrub_bio *sbio;
678 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
681 sctx->bios[i] = sbio;
685 sbio->page_count = 0;
686 btrfs_init_work(&sbio->work, btrfs_scrub_helper,
687 scrub_bio_end_io_worker, NULL, NULL);
689 if (i != SCRUB_BIOS_PER_SCTX - 1)
690 sctx->bios[i]->next_free = i + 1;
692 sctx->bios[i]->next_free = -1;
694 sctx->first_free = 0;
695 atomic_set(&sctx->bios_in_flight, 0);
696 atomic_set(&sctx->workers_pending, 0);
697 atomic_set(&sctx->cancel_req, 0);
698 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
699 INIT_LIST_HEAD(&sctx->csum_list);
701 spin_lock_init(&sctx->list_lock);
702 spin_lock_init(&sctx->stat_lock);
703 init_waitqueue_head(&sctx->list_wait);
705 WARN_ON(sctx->wr_curr_bio != NULL);
706 mutex_init(&sctx->wr_lock);
707 sctx->wr_curr_bio = NULL;
708 if (is_dev_replace) {
709 WARN_ON(!fs_info->dev_replace.tgtdev);
710 sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
711 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
712 sctx->flush_all_writes = false;
718 scrub_free_ctx(sctx);
719 return ERR_PTR(-ENOMEM);
722 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
730 struct extent_buffer *eb;
731 struct btrfs_inode_item *inode_item;
732 struct scrub_warning *swarn = warn_ctx;
733 struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
734 struct inode_fs_paths *ipath = NULL;
735 struct btrfs_root *local_root;
736 struct btrfs_key root_key;
737 struct btrfs_key key;
739 root_key.objectid = root;
740 root_key.type = BTRFS_ROOT_ITEM_KEY;
741 root_key.offset = (u64)-1;
742 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
743 if (IS_ERR(local_root)) {
744 ret = PTR_ERR(local_root);
749 * this makes the path point to (inum INODE_ITEM ioff)
752 key.type = BTRFS_INODE_ITEM_KEY;
755 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
757 btrfs_release_path(swarn->path);
761 eb = swarn->path->nodes[0];
762 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
763 struct btrfs_inode_item);
764 isize = btrfs_inode_size(eb, inode_item);
765 nlink = btrfs_inode_nlink(eb, inode_item);
766 btrfs_release_path(swarn->path);
769 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
770 * uses GFP_NOFS in this context, so we keep it consistent but it does
771 * not seem to be strictly necessary.
773 nofs_flag = memalloc_nofs_save();
774 ipath = init_ipath(4096, local_root, swarn->path);
775 memalloc_nofs_restore(nofs_flag);
777 ret = PTR_ERR(ipath);
781 ret = paths_from_inode(inum, ipath);
787 * we deliberately ignore the bit ipath might have been too small to
788 * hold all of the paths here
790 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
791 btrfs_warn_in_rcu(fs_info,
792 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
793 swarn->errstr, swarn->logical,
794 rcu_str_deref(swarn->dev->name),
797 min(isize - offset, (u64)PAGE_SIZE), nlink,
798 (char *)(unsigned long)ipath->fspath->val[i]);
804 btrfs_warn_in_rcu(fs_info,
805 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
806 swarn->errstr, swarn->logical,
807 rcu_str_deref(swarn->dev->name),
809 root, inum, offset, ret);
815 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
817 struct btrfs_device *dev;
818 struct btrfs_fs_info *fs_info;
819 struct btrfs_path *path;
820 struct btrfs_key found_key;
821 struct extent_buffer *eb;
822 struct btrfs_extent_item *ei;
823 struct scrub_warning swarn;
824 unsigned long ptr = 0;
832 WARN_ON(sblock->page_count < 1);
833 dev = sblock->pagev[0]->dev;
834 fs_info = sblock->sctx->fs_info;
836 path = btrfs_alloc_path();
840 swarn.physical = sblock->pagev[0]->physical;
841 swarn.logical = sblock->pagev[0]->logical;
842 swarn.errstr = errstr;
845 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
850 extent_item_pos = swarn.logical - found_key.objectid;
851 swarn.extent_item_size = found_key.offset;
854 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
855 item_size = btrfs_item_size_nr(eb, path->slots[0]);
857 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
859 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
860 item_size, &ref_root,
862 btrfs_warn_in_rcu(fs_info,
863 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
864 errstr, swarn.logical,
865 rcu_str_deref(dev->name),
867 ref_level ? "node" : "leaf",
868 ret < 0 ? -1 : ref_level,
869 ret < 0 ? -1 : ref_root);
871 btrfs_release_path(path);
873 btrfs_release_path(path);
876 iterate_extent_inodes(fs_info, found_key.objectid,
878 scrub_print_warning_inode, &swarn, false);
882 btrfs_free_path(path);
885 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
887 struct page *page = NULL;
889 struct scrub_fixup_nodatasum *fixup = fixup_ctx;
892 struct btrfs_key key;
893 struct inode *inode = NULL;
894 struct btrfs_fs_info *fs_info;
895 u64 end = offset + PAGE_SIZE - 1;
896 struct btrfs_root *local_root;
900 key.type = BTRFS_ROOT_ITEM_KEY;
901 key.offset = (u64)-1;
903 fs_info = fixup->root->fs_info;
904 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
906 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
907 if (IS_ERR(local_root)) {
908 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
909 return PTR_ERR(local_root);
912 key.type = BTRFS_INODE_ITEM_KEY;
915 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
916 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
918 return PTR_ERR(inode);
920 index = offset >> PAGE_SHIFT;
922 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
928 if (PageUptodate(page)) {
929 if (PageDirty(page)) {
931 * we need to write the data to the defect sector. the
932 * data that was in that sector is not in memory,
933 * because the page was modified. we must not write the
934 * modified page to that sector.
936 * TODO: what could be done here: wait for the delalloc
937 * runner to write out that page (might involve
938 * COW) and see whether the sector is still
939 * referenced afterwards.
941 * For the meantime, we'll treat this error
942 * incorrectable, although there is a chance that a
943 * later scrub will find the bad sector again and that
944 * there's no dirty page in memory, then.
949 ret = repair_io_failure(fs_info, inum, offset, PAGE_SIZE,
950 fixup->logical, page,
951 offset - page_offset(page),
957 * we need to get good data first. the general readpage path
958 * will call repair_io_failure for us, we just have to make
959 * sure we read the bad mirror.
961 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
964 /* set_extent_bits should give proper error */
971 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
974 wait_on_page_locked(page);
976 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
977 end, EXTENT_DAMAGED, 0, NULL);
979 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
992 if (ret == 0 && corrected) {
994 * we only need to call readpage for one of the inodes belonging
995 * to this extent. so make iterate_extent_inodes stop
1003 static void scrub_fixup_nodatasum(struct btrfs_work *work)
1005 struct btrfs_fs_info *fs_info;
1007 struct scrub_fixup_nodatasum *fixup;
1008 struct scrub_ctx *sctx;
1009 struct btrfs_trans_handle *trans = NULL;
1010 struct btrfs_path *path;
1011 int uncorrectable = 0;
1013 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
1015 fs_info = fixup->root->fs_info;
1017 path = btrfs_alloc_path();
1019 spin_lock(&sctx->stat_lock);
1020 ++sctx->stat.malloc_errors;
1021 spin_unlock(&sctx->stat_lock);
1026 trans = btrfs_join_transaction(fixup->root);
1027 if (IS_ERR(trans)) {
1033 * the idea is to trigger a regular read through the standard path. we
1034 * read a page from the (failed) logical address by specifying the
1035 * corresponding copynum of the failed sector. thus, that readpage is
1037 * that is the point where on-the-fly error correction will kick in
1038 * (once it's finished) and rewrite the failed sector if a good copy
1041 ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
1042 scrub_fixup_readpage, fixup, false);
1049 spin_lock(&sctx->stat_lock);
1050 ++sctx->stat.corrected_errors;
1051 spin_unlock(&sctx->stat_lock);
1054 if (trans && !IS_ERR(trans))
1055 btrfs_end_transaction(trans);
1056 if (uncorrectable) {
1057 spin_lock(&sctx->stat_lock);
1058 ++sctx->stat.uncorrectable_errors;
1059 spin_unlock(&sctx->stat_lock);
1060 btrfs_dev_replace_stats_inc(
1061 &fs_info->dev_replace.num_uncorrectable_read_errors);
1062 btrfs_err_rl_in_rcu(fs_info,
1063 "unable to fixup (nodatasum) error at logical %llu on dev %s",
1064 fixup->logical, rcu_str_deref(fixup->dev->name));
1067 btrfs_free_path(path);
1070 scrub_pending_trans_workers_dec(sctx);
1073 static inline void scrub_get_recover(struct scrub_recover *recover)
1075 refcount_inc(&recover->refs);
1078 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
1079 struct scrub_recover *recover)
1081 if (refcount_dec_and_test(&recover->refs)) {
1082 btrfs_bio_counter_dec(fs_info);
1083 btrfs_put_bbio(recover->bbio);
1089 * scrub_handle_errored_block gets called when either verification of the
1090 * pages failed or the bio failed to read, e.g. with EIO. In the latter
1091 * case, this function handles all pages in the bio, even though only one
1093 * The goal of this function is to repair the errored block by using the
1094 * contents of one of the mirrors.
1096 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
1098 struct scrub_ctx *sctx = sblock_to_check->sctx;
1099 struct btrfs_device *dev;
1100 struct btrfs_fs_info *fs_info;
1102 unsigned int failed_mirror_index;
1103 unsigned int is_metadata;
1104 unsigned int have_csum;
1105 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
1106 struct scrub_block *sblock_bad;
1111 bool full_stripe_locked;
1112 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1113 DEFAULT_RATELIMIT_BURST);
1115 BUG_ON(sblock_to_check->page_count < 1);
1116 fs_info = sctx->fs_info;
1117 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
1119 * if we find an error in a super block, we just report it.
1120 * They will get written with the next transaction commit
1123 spin_lock(&sctx->stat_lock);
1124 ++sctx->stat.super_errors;
1125 spin_unlock(&sctx->stat_lock);
1128 logical = sblock_to_check->pagev[0]->logical;
1129 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
1130 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
1131 is_metadata = !(sblock_to_check->pagev[0]->flags &
1132 BTRFS_EXTENT_FLAG_DATA);
1133 have_csum = sblock_to_check->pagev[0]->have_csum;
1134 dev = sblock_to_check->pagev[0]->dev;
1137 * For RAID5/6, race can happen for a different device scrub thread.
1138 * For data corruption, Parity and Data threads will both try
1139 * to recovery the data.
1140 * Race can lead to doubly added csum error, or even unrecoverable
1143 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
1145 spin_lock(&sctx->stat_lock);
1147 sctx->stat.malloc_errors++;
1148 sctx->stat.read_errors++;
1149 sctx->stat.uncorrectable_errors++;
1150 spin_unlock(&sctx->stat_lock);
1154 if (sctx->is_dev_replace && !is_metadata && !have_csum) {
1155 sblocks_for_recheck = NULL;
1156 goto nodatasum_case;
1160 * read all mirrors one after the other. This includes to
1161 * re-read the extent or metadata block that failed (that was
1162 * the cause that this fixup code is called) another time,
1163 * page by page this time in order to know which pages
1164 * caused I/O errors and which ones are good (for all mirrors).
1165 * It is the goal to handle the situation when more than one
1166 * mirror contains I/O errors, but the errors do not
1167 * overlap, i.e. the data can be repaired by selecting the
1168 * pages from those mirrors without I/O error on the
1169 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
1170 * would be that mirror #1 has an I/O error on the first page,
1171 * the second page is good, and mirror #2 has an I/O error on
1172 * the second page, but the first page is good.
1173 * Then the first page of the first mirror can be repaired by
1174 * taking the first page of the second mirror, and the
1175 * second page of the second mirror can be repaired by
1176 * copying the contents of the 2nd page of the 1st mirror.
1177 * One more note: if the pages of one mirror contain I/O
1178 * errors, the checksum cannot be verified. In order to get
1179 * the best data for repairing, the first attempt is to find
1180 * a mirror without I/O errors and with a validated checksum.
1181 * Only if this is not possible, the pages are picked from
1182 * mirrors with I/O errors without considering the checksum.
1183 * If the latter is the case, at the end, the checksum of the
1184 * repaired area is verified in order to correctly maintain
1188 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
1189 sizeof(*sblocks_for_recheck), GFP_NOFS);
1190 if (!sblocks_for_recheck) {
1191 spin_lock(&sctx->stat_lock);
1192 sctx->stat.malloc_errors++;
1193 sctx->stat.read_errors++;
1194 sctx->stat.uncorrectable_errors++;
1195 spin_unlock(&sctx->stat_lock);
1196 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1200 /* setup the context, map the logical blocks and alloc the pages */
1201 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
1203 spin_lock(&sctx->stat_lock);
1204 sctx->stat.read_errors++;
1205 sctx->stat.uncorrectable_errors++;
1206 spin_unlock(&sctx->stat_lock);
1207 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1210 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
1211 sblock_bad = sblocks_for_recheck + failed_mirror_index;
1213 /* build and submit the bios for the failed mirror, check checksums */
1214 scrub_recheck_block(fs_info, sblock_bad, 1);
1216 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
1217 sblock_bad->no_io_error_seen) {
1219 * the error disappeared after reading page by page, or
1220 * the area was part of a huge bio and other parts of the
1221 * bio caused I/O errors, or the block layer merged several
1222 * read requests into one and the error is caused by a
1223 * different bio (usually one of the two latter cases is
1226 spin_lock(&sctx->stat_lock);
1227 sctx->stat.unverified_errors++;
1228 sblock_to_check->data_corrected = 1;
1229 spin_unlock(&sctx->stat_lock);
1231 if (sctx->is_dev_replace)
1232 scrub_write_block_to_dev_replace(sblock_bad);
1236 if (!sblock_bad->no_io_error_seen) {
1237 spin_lock(&sctx->stat_lock);
1238 sctx->stat.read_errors++;
1239 spin_unlock(&sctx->stat_lock);
1240 if (__ratelimit(&_rs))
1241 scrub_print_warning("i/o error", sblock_to_check);
1242 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1243 } else if (sblock_bad->checksum_error) {
1244 spin_lock(&sctx->stat_lock);
1245 sctx->stat.csum_errors++;
1246 spin_unlock(&sctx->stat_lock);
1247 if (__ratelimit(&_rs))
1248 scrub_print_warning("checksum error", sblock_to_check);
1249 btrfs_dev_stat_inc_and_print(dev,
1250 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1251 } else if (sblock_bad->header_error) {
1252 spin_lock(&sctx->stat_lock);
1253 sctx->stat.verify_errors++;
1254 spin_unlock(&sctx->stat_lock);
1255 if (__ratelimit(&_rs))
1256 scrub_print_warning("checksum/header error",
1258 if (sblock_bad->generation_error)
1259 btrfs_dev_stat_inc_and_print(dev,
1260 BTRFS_DEV_STAT_GENERATION_ERRS);
1262 btrfs_dev_stat_inc_and_print(dev,
1263 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1266 if (sctx->readonly) {
1267 ASSERT(!sctx->is_dev_replace);
1271 if (!is_metadata && !have_csum) {
1272 struct scrub_fixup_nodatasum *fixup_nodatasum;
1274 WARN_ON(sctx->is_dev_replace);
1279 * !is_metadata and !have_csum, this means that the data
1280 * might not be COWed, that it might be modified
1281 * concurrently. The general strategy to work on the
1282 * commit root does not help in the case when COW is not
1285 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1286 if (!fixup_nodatasum)
1287 goto did_not_correct_error;
1288 fixup_nodatasum->sctx = sctx;
1289 fixup_nodatasum->dev = dev;
1290 fixup_nodatasum->logical = logical;
1291 fixup_nodatasum->root = fs_info->extent_root;
1292 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1293 scrub_pending_trans_workers_inc(sctx);
1294 btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1295 scrub_fixup_nodatasum, NULL, NULL);
1296 btrfs_queue_work(fs_info->scrub_workers,
1297 &fixup_nodatasum->work);
1302 * now build and submit the bios for the other mirrors, check
1304 * First try to pick the mirror which is completely without I/O
1305 * errors and also does not have a checksum error.
1306 * If one is found, and if a checksum is present, the full block
1307 * that is known to contain an error is rewritten. Afterwards
1308 * the block is known to be corrected.
1309 * If a mirror is found which is completely correct, and no
1310 * checksum is present, only those pages are rewritten that had
1311 * an I/O error in the block to be repaired, since it cannot be
1312 * determined, which copy of the other pages is better (and it
1313 * could happen otherwise that a correct page would be
1314 * overwritten by a bad one).
1316 for (mirror_index = 0; ;mirror_index++) {
1317 struct scrub_block *sblock_other;
1319 if (mirror_index == failed_mirror_index)
1322 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1323 if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1324 if (mirror_index >= BTRFS_MAX_MIRRORS)
1326 if (!sblocks_for_recheck[mirror_index].page_count)
1329 sblock_other = sblocks_for_recheck + mirror_index;
1331 struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1332 int max_allowed = r->bbio->num_stripes -
1333 r->bbio->num_tgtdevs;
1335 if (mirror_index >= max_allowed)
1337 if (!sblocks_for_recheck[1].page_count)
1340 ASSERT(failed_mirror_index == 0);
1341 sblock_other = sblocks_for_recheck + 1;
1342 sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1345 /* build and submit the bios, check checksums */
1346 scrub_recheck_block(fs_info, sblock_other, 0);
1348 if (!sblock_other->header_error &&
1349 !sblock_other->checksum_error &&
1350 sblock_other->no_io_error_seen) {
1351 if (sctx->is_dev_replace) {
1352 scrub_write_block_to_dev_replace(sblock_other);
1353 goto corrected_error;
1355 ret = scrub_repair_block_from_good_copy(
1356 sblock_bad, sblock_other);
1358 goto corrected_error;
1363 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1364 goto did_not_correct_error;
1367 * In case of I/O errors in the area that is supposed to be
1368 * repaired, continue by picking good copies of those pages.
1369 * Select the good pages from mirrors to rewrite bad pages from
1370 * the area to fix. Afterwards verify the checksum of the block
1371 * that is supposed to be repaired. This verification step is
1372 * only done for the purpose of statistic counting and for the
1373 * final scrub report, whether errors remain.
1374 * A perfect algorithm could make use of the checksum and try
1375 * all possible combinations of pages from the different mirrors
1376 * until the checksum verification succeeds. For example, when
1377 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1378 * of mirror #2 is readable but the final checksum test fails,
1379 * then the 2nd page of mirror #3 could be tried, whether now
1380 * the final checksum succeeds. But this would be a rare
1381 * exception and is therefore not implemented. At least it is
1382 * avoided that the good copy is overwritten.
1383 * A more useful improvement would be to pick the sectors
1384 * without I/O error based on sector sizes (512 bytes on legacy
1385 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1386 * mirror could be repaired by taking 512 byte of a different
1387 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1388 * area are unreadable.
1391 for (page_num = 0; page_num < sblock_bad->page_count;
1393 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1394 struct scrub_block *sblock_other = NULL;
1396 /* skip no-io-error page in scrub */
1397 if (!page_bad->io_error && !sctx->is_dev_replace)
1400 if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1402 * In case of dev replace, if raid56 rebuild process
1403 * didn't work out correct data, then copy the content
1404 * in sblock_bad to make sure target device is identical
1405 * to source device, instead of writing garbage data in
1406 * sblock_for_recheck array to target device.
1408 sblock_other = NULL;
1409 } else if (page_bad->io_error) {
1410 /* try to find no-io-error page in mirrors */
1411 for (mirror_index = 0;
1412 mirror_index < BTRFS_MAX_MIRRORS &&
1413 sblocks_for_recheck[mirror_index].page_count > 0;
1415 if (!sblocks_for_recheck[mirror_index].
1416 pagev[page_num]->io_error) {
1417 sblock_other = sblocks_for_recheck +
1426 if (sctx->is_dev_replace) {
1428 * did not find a mirror to fetch the page
1429 * from. scrub_write_page_to_dev_replace()
1430 * handles this case (page->io_error), by
1431 * filling the block with zeros before
1432 * submitting the write request
1435 sblock_other = sblock_bad;
1437 if (scrub_write_page_to_dev_replace(sblock_other,
1439 btrfs_dev_replace_stats_inc(
1440 &fs_info->dev_replace.num_write_errors);
1443 } else if (sblock_other) {
1444 ret = scrub_repair_page_from_good_copy(sblock_bad,
1448 page_bad->io_error = 0;
1454 if (success && !sctx->is_dev_replace) {
1455 if (is_metadata || have_csum) {
1457 * need to verify the checksum now that all
1458 * sectors on disk are repaired (the write
1459 * request for data to be repaired is on its way).
1460 * Just be lazy and use scrub_recheck_block()
1461 * which re-reads the data before the checksum
1462 * is verified, but most likely the data comes out
1463 * of the page cache.
1465 scrub_recheck_block(fs_info, sblock_bad, 1);
1466 if (!sblock_bad->header_error &&
1467 !sblock_bad->checksum_error &&
1468 sblock_bad->no_io_error_seen)
1469 goto corrected_error;
1471 goto did_not_correct_error;
1474 spin_lock(&sctx->stat_lock);
1475 sctx->stat.corrected_errors++;
1476 sblock_to_check->data_corrected = 1;
1477 spin_unlock(&sctx->stat_lock);
1478 btrfs_err_rl_in_rcu(fs_info,
1479 "fixed up error at logical %llu on dev %s",
1480 logical, rcu_str_deref(dev->name));
1483 did_not_correct_error:
1484 spin_lock(&sctx->stat_lock);
1485 sctx->stat.uncorrectable_errors++;
1486 spin_unlock(&sctx->stat_lock);
1487 btrfs_err_rl_in_rcu(fs_info,
1488 "unable to fixup (regular) error at logical %llu on dev %s",
1489 logical, rcu_str_deref(dev->name));
1493 if (sblocks_for_recheck) {
1494 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1496 struct scrub_block *sblock = sblocks_for_recheck +
1498 struct scrub_recover *recover;
1501 for (page_index = 0; page_index < sblock->page_count;
1503 sblock->pagev[page_index]->sblock = NULL;
1504 recover = sblock->pagev[page_index]->recover;
1506 scrub_put_recover(fs_info, recover);
1507 sblock->pagev[page_index]->recover =
1510 scrub_page_put(sblock->pagev[page_index]);
1513 kfree(sblocks_for_recheck);
1516 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1522 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1524 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1526 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1529 return (int)bbio->num_stripes;
1532 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1535 int nstripes, int mirror,
1541 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1543 for (i = 0; i < nstripes; i++) {
1544 if (raid_map[i] == RAID6_Q_STRIPE ||
1545 raid_map[i] == RAID5_P_STRIPE)
1548 if (logical >= raid_map[i] &&
1549 logical < raid_map[i] + mapped_length)
1554 *stripe_offset = logical - raid_map[i];
1556 /* The other RAID type */
1557 *stripe_index = mirror;
1562 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1563 struct scrub_block *sblocks_for_recheck)
1565 struct scrub_ctx *sctx = original_sblock->sctx;
1566 struct btrfs_fs_info *fs_info = sctx->fs_info;
1567 u64 length = original_sblock->page_count * PAGE_SIZE;
1568 u64 logical = original_sblock->pagev[0]->logical;
1569 u64 generation = original_sblock->pagev[0]->generation;
1570 u64 flags = original_sblock->pagev[0]->flags;
1571 u64 have_csum = original_sblock->pagev[0]->have_csum;
1572 struct scrub_recover *recover;
1573 struct btrfs_bio *bbio;
1584 * note: the two members refs and outstanding_pages
1585 * are not used (and not set) in the blocks that are used for
1586 * the recheck procedure
1589 while (length > 0) {
1590 sublen = min_t(u64, length, PAGE_SIZE);
1591 mapped_length = sublen;
1595 * with a length of PAGE_SIZE, each returned stripe
1596 * represents one mirror
1598 btrfs_bio_counter_inc_blocked(fs_info);
1599 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1600 logical, &mapped_length, &bbio);
1601 if (ret || !bbio || mapped_length < sublen) {
1602 btrfs_put_bbio(bbio);
1603 btrfs_bio_counter_dec(fs_info);
1607 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1609 btrfs_put_bbio(bbio);
1610 btrfs_bio_counter_dec(fs_info);
1614 refcount_set(&recover->refs, 1);
1615 recover->bbio = bbio;
1616 recover->map_length = mapped_length;
1618 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1620 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1622 for (mirror_index = 0; mirror_index < nmirrors;
1624 struct scrub_block *sblock;
1625 struct scrub_page *page;
1627 sblock = sblocks_for_recheck + mirror_index;
1628 sblock->sctx = sctx;
1630 page = kzalloc(sizeof(*page), GFP_NOFS);
1633 spin_lock(&sctx->stat_lock);
1634 sctx->stat.malloc_errors++;
1635 spin_unlock(&sctx->stat_lock);
1636 scrub_put_recover(fs_info, recover);
1639 scrub_page_get(page);
1640 sblock->pagev[page_index] = page;
1641 page->sblock = sblock;
1642 page->flags = flags;
1643 page->generation = generation;
1644 page->logical = logical;
1645 page->have_csum = have_csum;
1648 original_sblock->pagev[0]->csum,
1651 scrub_stripe_index_and_offset(logical,
1660 page->physical = bbio->stripes[stripe_index].physical +
1662 page->dev = bbio->stripes[stripe_index].dev;
1664 BUG_ON(page_index >= original_sblock->page_count);
1665 page->physical_for_dev_replace =
1666 original_sblock->pagev[page_index]->
1667 physical_for_dev_replace;
1668 /* for missing devices, dev->bdev is NULL */
1669 page->mirror_num = mirror_index + 1;
1670 sblock->page_count++;
1671 page->page = alloc_page(GFP_NOFS);
1675 scrub_get_recover(recover);
1676 page->recover = recover;
1678 scrub_put_recover(fs_info, recover);
1687 static void scrub_bio_wait_endio(struct bio *bio)
1689 complete(bio->bi_private);
1692 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1694 struct scrub_page *page)
1696 DECLARE_COMPLETION_ONSTACK(done);
1700 bio->bi_iter.bi_sector = page->logical >> 9;
1701 bio->bi_private = &done;
1702 bio->bi_end_io = scrub_bio_wait_endio;
1704 mirror_num = page->sblock->pagev[0]->mirror_num;
1705 ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1706 page->recover->map_length,
1711 wait_for_completion_io(&done);
1712 return blk_status_to_errno(bio->bi_status);
1715 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1716 struct scrub_block *sblock)
1718 struct scrub_page *first_page = sblock->pagev[0];
1722 /* All pages in sblock belong to the same stripe on the same device. */
1723 ASSERT(first_page->dev);
1724 if (!first_page->dev->bdev)
1727 bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1728 bio_set_dev(bio, first_page->dev->bdev);
1730 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1731 struct scrub_page *page = sblock->pagev[page_num];
1733 WARN_ON(!page->page);
1734 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1737 if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1744 scrub_recheck_block_checksum(sblock);
1748 for (page_num = 0; page_num < sblock->page_count; page_num++)
1749 sblock->pagev[page_num]->io_error = 1;
1751 sblock->no_io_error_seen = 0;
1755 * this function will check the on disk data for checksum errors, header
1756 * errors and read I/O errors. If any I/O errors happen, the exact pages
1757 * which are errored are marked as being bad. The goal is to enable scrub
1758 * to take those pages that are not errored from all the mirrors so that
1759 * the pages that are errored in the just handled mirror can be repaired.
1761 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1762 struct scrub_block *sblock,
1763 int retry_failed_mirror)
1767 sblock->no_io_error_seen = 1;
1769 /* short cut for raid56 */
1770 if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1771 return scrub_recheck_block_on_raid56(fs_info, sblock);
1773 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1775 struct scrub_page *page = sblock->pagev[page_num];
1777 if (page->dev->bdev == NULL) {
1779 sblock->no_io_error_seen = 0;
1783 WARN_ON(!page->page);
1784 bio = btrfs_io_bio_alloc(1);
1785 bio_set_dev(bio, page->dev->bdev);
1787 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1788 bio->bi_iter.bi_sector = page->physical >> 9;
1789 bio->bi_opf = REQ_OP_READ;
1791 if (btrfsic_submit_bio_wait(bio)) {
1793 sblock->no_io_error_seen = 0;
1799 if (sblock->no_io_error_seen)
1800 scrub_recheck_block_checksum(sblock);
1803 static inline int scrub_check_fsid(u8 fsid[],
1804 struct scrub_page *spage)
1806 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1809 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1813 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1815 sblock->header_error = 0;
1816 sblock->checksum_error = 0;
1817 sblock->generation_error = 0;
1819 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1820 scrub_checksum_data(sblock);
1822 scrub_checksum_tree_block(sblock);
1825 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1826 struct scrub_block *sblock_good)
1831 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1834 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1844 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1845 struct scrub_block *sblock_good,
1846 int page_num, int force_write)
1848 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1849 struct scrub_page *page_good = sblock_good->pagev[page_num];
1850 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1852 BUG_ON(page_bad->page == NULL);
1853 BUG_ON(page_good->page == NULL);
1854 if (force_write || sblock_bad->header_error ||
1855 sblock_bad->checksum_error || page_bad->io_error) {
1859 if (!page_bad->dev->bdev) {
1860 btrfs_warn_rl(fs_info,
1861 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1865 bio = btrfs_io_bio_alloc(1);
1866 bio_set_dev(bio, page_bad->dev->bdev);
1867 bio->bi_iter.bi_sector = page_bad->physical >> 9;
1868 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1870 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1871 if (PAGE_SIZE != ret) {
1876 if (btrfsic_submit_bio_wait(bio)) {
1877 btrfs_dev_stat_inc_and_print(page_bad->dev,
1878 BTRFS_DEV_STAT_WRITE_ERRS);
1879 btrfs_dev_replace_stats_inc(
1880 &fs_info->dev_replace.num_write_errors);
1890 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1892 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1896 * This block is used for the check of the parity on the source device,
1897 * so the data needn't be written into the destination device.
1899 if (sblock->sparity)
1902 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1905 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1907 btrfs_dev_replace_stats_inc(
1908 &fs_info->dev_replace.num_write_errors);
1912 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1915 struct scrub_page *spage = sblock->pagev[page_num];
1917 BUG_ON(spage->page == NULL);
1918 if (spage->io_error) {
1919 void *mapped_buffer = kmap_atomic(spage->page);
1921 clear_page(mapped_buffer);
1922 flush_dcache_page(spage->page);
1923 kunmap_atomic(mapped_buffer);
1925 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1928 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1929 struct scrub_page *spage)
1931 struct scrub_bio *sbio;
1934 mutex_lock(&sctx->wr_lock);
1936 if (!sctx->wr_curr_bio) {
1937 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1939 if (!sctx->wr_curr_bio) {
1940 mutex_unlock(&sctx->wr_lock);
1943 sctx->wr_curr_bio->sctx = sctx;
1944 sctx->wr_curr_bio->page_count = 0;
1946 sbio = sctx->wr_curr_bio;
1947 if (sbio->page_count == 0) {
1950 sbio->physical = spage->physical_for_dev_replace;
1951 sbio->logical = spage->logical;
1952 sbio->dev = sctx->wr_tgtdev;
1955 bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1959 bio->bi_private = sbio;
1960 bio->bi_end_io = scrub_wr_bio_end_io;
1961 bio_set_dev(bio, sbio->dev->bdev);
1962 bio->bi_iter.bi_sector = sbio->physical >> 9;
1963 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1965 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1966 spage->physical_for_dev_replace ||
1967 sbio->logical + sbio->page_count * PAGE_SIZE !=
1969 scrub_wr_submit(sctx);
1973 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1974 if (ret != PAGE_SIZE) {
1975 if (sbio->page_count < 1) {
1978 mutex_unlock(&sctx->wr_lock);
1981 scrub_wr_submit(sctx);
1985 sbio->pagev[sbio->page_count] = spage;
1986 scrub_page_get(spage);
1988 if (sbio->page_count == sctx->pages_per_wr_bio)
1989 scrub_wr_submit(sctx);
1990 mutex_unlock(&sctx->wr_lock);
1995 static void scrub_wr_submit(struct scrub_ctx *sctx)
1997 struct scrub_bio *sbio;
1999 if (!sctx->wr_curr_bio)
2002 sbio = sctx->wr_curr_bio;
2003 sctx->wr_curr_bio = NULL;
2004 WARN_ON(!sbio->bio->bi_disk);
2005 scrub_pending_bio_inc(sctx);
2006 /* process all writes in a single worker thread. Then the block layer
2007 * orders the requests before sending them to the driver which
2008 * doubled the write performance on spinning disks when measured
2010 btrfsic_submit_bio(sbio->bio);
2013 static void scrub_wr_bio_end_io(struct bio *bio)
2015 struct scrub_bio *sbio = bio->bi_private;
2016 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2018 sbio->status = bio->bi_status;
2021 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
2022 scrub_wr_bio_end_io_worker, NULL, NULL);
2023 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
2026 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
2028 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2029 struct scrub_ctx *sctx = sbio->sctx;
2032 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
2034 struct btrfs_dev_replace *dev_replace =
2035 &sbio->sctx->fs_info->dev_replace;
2037 for (i = 0; i < sbio->page_count; i++) {
2038 struct scrub_page *spage = sbio->pagev[i];
2040 spage->io_error = 1;
2041 btrfs_dev_replace_stats_inc(&dev_replace->
2046 for (i = 0; i < sbio->page_count; i++)
2047 scrub_page_put(sbio->pagev[i]);
2051 scrub_pending_bio_dec(sctx);
2054 static int scrub_checksum(struct scrub_block *sblock)
2060 * No need to initialize these stats currently,
2061 * because this function only use return value
2062 * instead of these stats value.
2067 sblock->header_error = 0;
2068 sblock->generation_error = 0;
2069 sblock->checksum_error = 0;
2071 WARN_ON(sblock->page_count < 1);
2072 flags = sblock->pagev[0]->flags;
2074 if (flags & BTRFS_EXTENT_FLAG_DATA)
2075 ret = scrub_checksum_data(sblock);
2076 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2077 ret = scrub_checksum_tree_block(sblock);
2078 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
2079 (void)scrub_checksum_super(sblock);
2083 scrub_handle_errored_block(sblock);
2088 static int scrub_checksum_data(struct scrub_block *sblock)
2090 struct scrub_ctx *sctx = sblock->sctx;
2091 u8 csum[BTRFS_CSUM_SIZE];
2099 BUG_ON(sblock->page_count < 1);
2100 if (!sblock->pagev[0]->have_csum)
2103 on_disk_csum = sblock->pagev[0]->csum;
2104 page = sblock->pagev[0]->page;
2105 buffer = kmap_atomic(page);
2107 len = sctx->fs_info->sectorsize;
2110 u64 l = min_t(u64, len, PAGE_SIZE);
2112 crc = btrfs_csum_data(buffer, crc, l);
2113 kunmap_atomic(buffer);
2118 BUG_ON(index >= sblock->page_count);
2119 BUG_ON(!sblock->pagev[index]->page);
2120 page = sblock->pagev[index]->page;
2121 buffer = kmap_atomic(page);
2124 btrfs_csum_final(crc, csum);
2125 if (memcmp(csum, on_disk_csum, sctx->csum_size))
2126 sblock->checksum_error = 1;
2128 return sblock->checksum_error;
2131 static int scrub_checksum_tree_block(struct scrub_block *sblock)
2133 struct scrub_ctx *sctx = sblock->sctx;
2134 struct btrfs_header *h;
2135 struct btrfs_fs_info *fs_info = sctx->fs_info;
2136 u8 calculated_csum[BTRFS_CSUM_SIZE];
2137 u8 on_disk_csum[BTRFS_CSUM_SIZE];
2139 void *mapped_buffer;
2146 BUG_ON(sblock->page_count < 1);
2147 page = sblock->pagev[0]->page;
2148 mapped_buffer = kmap_atomic(page);
2149 h = (struct btrfs_header *)mapped_buffer;
2150 memcpy(on_disk_csum, h->csum, sctx->csum_size);
2153 * we don't use the getter functions here, as we
2154 * a) don't have an extent buffer and
2155 * b) the page is already kmapped
2157 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
2158 sblock->header_error = 1;
2160 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
2161 sblock->header_error = 1;
2162 sblock->generation_error = 1;
2165 if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
2166 sblock->header_error = 1;
2168 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
2170 sblock->header_error = 1;
2172 len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
2173 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2174 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2177 u64 l = min_t(u64, len, mapped_size);
2179 crc = btrfs_csum_data(p, crc, l);
2180 kunmap_atomic(mapped_buffer);
2185 BUG_ON(index >= sblock->page_count);
2186 BUG_ON(!sblock->pagev[index]->page);
2187 page = sblock->pagev[index]->page;
2188 mapped_buffer = kmap_atomic(page);
2189 mapped_size = PAGE_SIZE;
2193 btrfs_csum_final(crc, calculated_csum);
2194 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2195 sblock->checksum_error = 1;
2197 return sblock->header_error || sblock->checksum_error;
2200 static int scrub_checksum_super(struct scrub_block *sblock)
2202 struct btrfs_super_block *s;
2203 struct scrub_ctx *sctx = sblock->sctx;
2204 u8 calculated_csum[BTRFS_CSUM_SIZE];
2205 u8 on_disk_csum[BTRFS_CSUM_SIZE];
2207 void *mapped_buffer;
2216 BUG_ON(sblock->page_count < 1);
2217 page = sblock->pagev[0]->page;
2218 mapped_buffer = kmap_atomic(page);
2219 s = (struct btrfs_super_block *)mapped_buffer;
2220 memcpy(on_disk_csum, s->csum, sctx->csum_size);
2222 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
2225 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
2228 if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
2231 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
2232 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2233 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2236 u64 l = min_t(u64, len, mapped_size);
2238 crc = btrfs_csum_data(p, crc, l);
2239 kunmap_atomic(mapped_buffer);
2244 BUG_ON(index >= sblock->page_count);
2245 BUG_ON(!sblock->pagev[index]->page);
2246 page = sblock->pagev[index]->page;
2247 mapped_buffer = kmap_atomic(page);
2248 mapped_size = PAGE_SIZE;
2252 btrfs_csum_final(crc, calculated_csum);
2253 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2256 if (fail_cor + fail_gen) {
2258 * if we find an error in a super block, we just report it.
2259 * They will get written with the next transaction commit
2262 spin_lock(&sctx->stat_lock);
2263 ++sctx->stat.super_errors;
2264 spin_unlock(&sctx->stat_lock);
2266 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2267 BTRFS_DEV_STAT_CORRUPTION_ERRS);
2269 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2270 BTRFS_DEV_STAT_GENERATION_ERRS);
2273 return fail_cor + fail_gen;
2276 static void scrub_block_get(struct scrub_block *sblock)
2278 refcount_inc(&sblock->refs);
2281 static void scrub_block_put(struct scrub_block *sblock)
2283 if (refcount_dec_and_test(&sblock->refs)) {
2286 if (sblock->sparity)
2287 scrub_parity_put(sblock->sparity);
2289 for (i = 0; i < sblock->page_count; i++)
2290 scrub_page_put(sblock->pagev[i]);
2295 static void scrub_page_get(struct scrub_page *spage)
2297 atomic_inc(&spage->refs);
2300 static void scrub_page_put(struct scrub_page *spage)
2302 if (atomic_dec_and_test(&spage->refs)) {
2304 __free_page(spage->page);
2309 static void scrub_submit(struct scrub_ctx *sctx)
2311 struct scrub_bio *sbio;
2313 if (sctx->curr == -1)
2316 sbio = sctx->bios[sctx->curr];
2318 scrub_pending_bio_inc(sctx);
2319 btrfsic_submit_bio(sbio->bio);
2322 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2323 struct scrub_page *spage)
2325 struct scrub_block *sblock = spage->sblock;
2326 struct scrub_bio *sbio;
2331 * grab a fresh bio or wait for one to become available
2333 while (sctx->curr == -1) {
2334 spin_lock(&sctx->list_lock);
2335 sctx->curr = sctx->first_free;
2336 if (sctx->curr != -1) {
2337 sctx->first_free = sctx->bios[sctx->curr]->next_free;
2338 sctx->bios[sctx->curr]->next_free = -1;
2339 sctx->bios[sctx->curr]->page_count = 0;
2340 spin_unlock(&sctx->list_lock);
2342 spin_unlock(&sctx->list_lock);
2343 wait_event(sctx->list_wait, sctx->first_free != -1);
2346 sbio = sctx->bios[sctx->curr];
2347 if (sbio->page_count == 0) {
2350 sbio->physical = spage->physical;
2351 sbio->logical = spage->logical;
2352 sbio->dev = spage->dev;
2355 bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2359 bio->bi_private = sbio;
2360 bio->bi_end_io = scrub_bio_end_io;
2361 bio_set_dev(bio, sbio->dev->bdev);
2362 bio->bi_iter.bi_sector = sbio->physical >> 9;
2363 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2365 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2367 sbio->logical + sbio->page_count * PAGE_SIZE !=
2369 sbio->dev != spage->dev) {
2374 sbio->pagev[sbio->page_count] = spage;
2375 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2376 if (ret != PAGE_SIZE) {
2377 if (sbio->page_count < 1) {
2386 scrub_block_get(sblock); /* one for the page added to the bio */
2387 atomic_inc(&sblock->outstanding_pages);
2389 if (sbio->page_count == sctx->pages_per_rd_bio)
2395 static void scrub_missing_raid56_end_io(struct bio *bio)
2397 struct scrub_block *sblock = bio->bi_private;
2398 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2401 sblock->no_io_error_seen = 0;
2405 btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2408 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2410 struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2411 struct scrub_ctx *sctx = sblock->sctx;
2412 struct btrfs_fs_info *fs_info = sctx->fs_info;
2414 struct btrfs_device *dev;
2416 logical = sblock->pagev[0]->logical;
2417 dev = sblock->pagev[0]->dev;
2419 if (sblock->no_io_error_seen)
2420 scrub_recheck_block_checksum(sblock);
2422 if (!sblock->no_io_error_seen) {
2423 spin_lock(&sctx->stat_lock);
2424 sctx->stat.read_errors++;
2425 spin_unlock(&sctx->stat_lock);
2426 btrfs_err_rl_in_rcu(fs_info,
2427 "IO error rebuilding logical %llu for dev %s",
2428 logical, rcu_str_deref(dev->name));
2429 } else if (sblock->header_error || sblock->checksum_error) {
2430 spin_lock(&sctx->stat_lock);
2431 sctx->stat.uncorrectable_errors++;
2432 spin_unlock(&sctx->stat_lock);
2433 btrfs_err_rl_in_rcu(fs_info,
2434 "failed to rebuild valid logical %llu for dev %s",
2435 logical, rcu_str_deref(dev->name));
2437 scrub_write_block_to_dev_replace(sblock);
2440 scrub_block_put(sblock);
2442 if (sctx->is_dev_replace && sctx->flush_all_writes) {
2443 mutex_lock(&sctx->wr_lock);
2444 scrub_wr_submit(sctx);
2445 mutex_unlock(&sctx->wr_lock);
2448 scrub_pending_bio_dec(sctx);
2451 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2453 struct scrub_ctx *sctx = sblock->sctx;
2454 struct btrfs_fs_info *fs_info = sctx->fs_info;
2455 u64 length = sblock->page_count * PAGE_SIZE;
2456 u64 logical = sblock->pagev[0]->logical;
2457 struct btrfs_bio *bbio = NULL;
2459 struct btrfs_raid_bio *rbio;
2463 btrfs_bio_counter_inc_blocked(fs_info);
2464 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2466 if (ret || !bbio || !bbio->raid_map)
2469 if (WARN_ON(!sctx->is_dev_replace ||
2470 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2472 * We shouldn't be scrubbing a missing device. Even for dev
2473 * replace, we should only get here for RAID 5/6. We either
2474 * managed to mount something with no mirrors remaining or
2475 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2480 bio = btrfs_io_bio_alloc(0);
2481 bio->bi_iter.bi_sector = logical >> 9;
2482 bio->bi_private = sblock;
2483 bio->bi_end_io = scrub_missing_raid56_end_io;
2485 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2489 for (i = 0; i < sblock->page_count; i++) {
2490 struct scrub_page *spage = sblock->pagev[i];
2492 raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2495 btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2496 scrub_missing_raid56_worker, NULL, NULL);
2497 scrub_block_get(sblock);
2498 scrub_pending_bio_inc(sctx);
2499 raid56_submit_missing_rbio(rbio);
2505 btrfs_bio_counter_dec(fs_info);
2506 btrfs_put_bbio(bbio);
2507 spin_lock(&sctx->stat_lock);
2508 sctx->stat.malloc_errors++;
2509 spin_unlock(&sctx->stat_lock);
2512 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2513 u64 physical, struct btrfs_device *dev, u64 flags,
2514 u64 gen, int mirror_num, u8 *csum, int force,
2515 u64 physical_for_dev_replace)
2517 struct scrub_block *sblock;
2520 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2522 spin_lock(&sctx->stat_lock);
2523 sctx->stat.malloc_errors++;
2524 spin_unlock(&sctx->stat_lock);
2528 /* one ref inside this function, plus one for each page added to
2530 refcount_set(&sblock->refs, 1);
2531 sblock->sctx = sctx;
2532 sblock->no_io_error_seen = 1;
2534 for (index = 0; len > 0; index++) {
2535 struct scrub_page *spage;
2536 u64 l = min_t(u64, len, PAGE_SIZE);
2538 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2541 spin_lock(&sctx->stat_lock);
2542 sctx->stat.malloc_errors++;
2543 spin_unlock(&sctx->stat_lock);
2544 scrub_block_put(sblock);
2547 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2548 scrub_page_get(spage);
2549 sblock->pagev[index] = spage;
2550 spage->sblock = sblock;
2552 spage->flags = flags;
2553 spage->generation = gen;
2554 spage->logical = logical;
2555 spage->physical = physical;
2556 spage->physical_for_dev_replace = physical_for_dev_replace;
2557 spage->mirror_num = mirror_num;
2559 spage->have_csum = 1;
2560 memcpy(spage->csum, csum, sctx->csum_size);
2562 spage->have_csum = 0;
2564 sblock->page_count++;
2565 spage->page = alloc_page(GFP_KERNEL);
2571 physical_for_dev_replace += l;
2574 WARN_ON(sblock->page_count == 0);
2575 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2577 * This case should only be hit for RAID 5/6 device replace. See
2578 * the comment in scrub_missing_raid56_pages() for details.
2580 scrub_missing_raid56_pages(sblock);
2582 for (index = 0; index < sblock->page_count; index++) {
2583 struct scrub_page *spage = sblock->pagev[index];
2586 ret = scrub_add_page_to_rd_bio(sctx, spage);
2588 scrub_block_put(sblock);
2597 /* last one frees, either here or in bio completion for last page */
2598 scrub_block_put(sblock);
2602 static void scrub_bio_end_io(struct bio *bio)
2604 struct scrub_bio *sbio = bio->bi_private;
2605 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2607 sbio->status = bio->bi_status;
2610 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2613 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2615 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2616 struct scrub_ctx *sctx = sbio->sctx;
2619 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2621 for (i = 0; i < sbio->page_count; i++) {
2622 struct scrub_page *spage = sbio->pagev[i];
2624 spage->io_error = 1;
2625 spage->sblock->no_io_error_seen = 0;
2629 /* now complete the scrub_block items that have all pages completed */
2630 for (i = 0; i < sbio->page_count; i++) {
2631 struct scrub_page *spage = sbio->pagev[i];
2632 struct scrub_block *sblock = spage->sblock;
2634 if (atomic_dec_and_test(&sblock->outstanding_pages))
2635 scrub_block_complete(sblock);
2636 scrub_block_put(sblock);
2641 spin_lock(&sctx->list_lock);
2642 sbio->next_free = sctx->first_free;
2643 sctx->first_free = sbio->index;
2644 spin_unlock(&sctx->list_lock);
2646 if (sctx->is_dev_replace && sctx->flush_all_writes) {
2647 mutex_lock(&sctx->wr_lock);
2648 scrub_wr_submit(sctx);
2649 mutex_unlock(&sctx->wr_lock);
2652 scrub_pending_bio_dec(sctx);
2655 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2656 unsigned long *bitmap,
2662 int sectorsize = sparity->sctx->fs_info->sectorsize;
2664 if (len >= sparity->stripe_len) {
2665 bitmap_set(bitmap, 0, sparity->nsectors);
2669 start -= sparity->logic_start;
2670 start = div64_u64_rem(start, sparity->stripe_len, &offset);
2671 offset = div_u64(offset, sectorsize);
2672 nsectors64 = div_u64(len, sectorsize);
2674 ASSERT(nsectors64 < UINT_MAX);
2675 nsectors = (u32)nsectors64;
2677 if (offset + nsectors <= sparity->nsectors) {
2678 bitmap_set(bitmap, offset, nsectors);
2682 bitmap_set(bitmap, offset, sparity->nsectors - offset);
2683 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2686 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2689 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2692 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2695 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2698 static void scrub_block_complete(struct scrub_block *sblock)
2702 if (!sblock->no_io_error_seen) {
2704 scrub_handle_errored_block(sblock);
2707 * if has checksum error, write via repair mechanism in
2708 * dev replace case, otherwise write here in dev replace
2711 corrupted = scrub_checksum(sblock);
2712 if (!corrupted && sblock->sctx->is_dev_replace)
2713 scrub_write_block_to_dev_replace(sblock);
2716 if (sblock->sparity && corrupted && !sblock->data_corrected) {
2717 u64 start = sblock->pagev[0]->logical;
2718 u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2721 scrub_parity_mark_sectors_error(sblock->sparity,
2722 start, end - start);
2726 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2728 struct btrfs_ordered_sum *sum = NULL;
2729 unsigned long index;
2730 unsigned long num_sectors;
2732 while (!list_empty(&sctx->csum_list)) {
2733 sum = list_first_entry(&sctx->csum_list,
2734 struct btrfs_ordered_sum, list);
2735 if (sum->bytenr > logical)
2737 if (sum->bytenr + sum->len > logical)
2740 ++sctx->stat.csum_discards;
2741 list_del(&sum->list);
2748 index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2749 ASSERT(index < UINT_MAX);
2751 num_sectors = sum->len / sctx->fs_info->sectorsize;
2752 memcpy(csum, sum->sums + index, sctx->csum_size);
2753 if (index == num_sectors - 1) {
2754 list_del(&sum->list);
2760 /* scrub extent tries to collect up to 64 kB for each bio */
2761 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2762 u64 logical, u64 len,
2763 u64 physical, struct btrfs_device *dev, u64 flags,
2764 u64 gen, int mirror_num, u64 physical_for_dev_replace)
2767 u8 csum[BTRFS_CSUM_SIZE];
2770 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2771 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2772 blocksize = map->stripe_len;
2774 blocksize = sctx->fs_info->sectorsize;
2775 spin_lock(&sctx->stat_lock);
2776 sctx->stat.data_extents_scrubbed++;
2777 sctx->stat.data_bytes_scrubbed += len;
2778 spin_unlock(&sctx->stat_lock);
2779 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2780 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2781 blocksize = map->stripe_len;
2783 blocksize = sctx->fs_info->nodesize;
2784 spin_lock(&sctx->stat_lock);
2785 sctx->stat.tree_extents_scrubbed++;
2786 sctx->stat.tree_bytes_scrubbed += len;
2787 spin_unlock(&sctx->stat_lock);
2789 blocksize = sctx->fs_info->sectorsize;
2794 u64 l = min_t(u64, len, blocksize);
2797 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2798 /* push csums to sbio */
2799 have_csum = scrub_find_csum(sctx, logical, csum);
2801 ++sctx->stat.no_csum;
2802 if (sctx->is_dev_replace && !have_csum) {
2803 ret = copy_nocow_pages(sctx, logical, l,
2805 physical_for_dev_replace);
2806 goto behind_scrub_pages;
2809 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2810 mirror_num, have_csum ? csum : NULL, 0,
2811 physical_for_dev_replace);
2818 physical_for_dev_replace += l;
2823 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2824 u64 logical, u64 len,
2825 u64 physical, struct btrfs_device *dev,
2826 u64 flags, u64 gen, int mirror_num, u8 *csum)
2828 struct scrub_ctx *sctx = sparity->sctx;
2829 struct scrub_block *sblock;
2832 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2834 spin_lock(&sctx->stat_lock);
2835 sctx->stat.malloc_errors++;
2836 spin_unlock(&sctx->stat_lock);
2840 /* one ref inside this function, plus one for each page added to
2842 refcount_set(&sblock->refs, 1);
2843 sblock->sctx = sctx;
2844 sblock->no_io_error_seen = 1;
2845 sblock->sparity = sparity;
2846 scrub_parity_get(sparity);
2848 for (index = 0; len > 0; index++) {
2849 struct scrub_page *spage;
2850 u64 l = min_t(u64, len, PAGE_SIZE);
2852 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2855 spin_lock(&sctx->stat_lock);
2856 sctx->stat.malloc_errors++;
2857 spin_unlock(&sctx->stat_lock);
2858 scrub_block_put(sblock);
2861 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2862 /* For scrub block */
2863 scrub_page_get(spage);
2864 sblock->pagev[index] = spage;
2865 /* For scrub parity */
2866 scrub_page_get(spage);
2867 list_add_tail(&spage->list, &sparity->spages);
2868 spage->sblock = sblock;
2870 spage->flags = flags;
2871 spage->generation = gen;
2872 spage->logical = logical;
2873 spage->physical = physical;
2874 spage->mirror_num = mirror_num;
2876 spage->have_csum = 1;
2877 memcpy(spage->csum, csum, sctx->csum_size);
2879 spage->have_csum = 0;
2881 sblock->page_count++;
2882 spage->page = alloc_page(GFP_KERNEL);
2890 WARN_ON(sblock->page_count == 0);
2891 for (index = 0; index < sblock->page_count; index++) {
2892 struct scrub_page *spage = sblock->pagev[index];
2895 ret = scrub_add_page_to_rd_bio(sctx, spage);
2897 scrub_block_put(sblock);
2902 /* last one frees, either here or in bio completion for last page */
2903 scrub_block_put(sblock);
2907 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2908 u64 logical, u64 len,
2909 u64 physical, struct btrfs_device *dev,
2910 u64 flags, u64 gen, int mirror_num)
2912 struct scrub_ctx *sctx = sparity->sctx;
2914 u8 csum[BTRFS_CSUM_SIZE];
2917 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2918 scrub_parity_mark_sectors_error(sparity, logical, len);
2922 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2923 blocksize = sparity->stripe_len;
2924 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2925 blocksize = sparity->stripe_len;
2927 blocksize = sctx->fs_info->sectorsize;
2932 u64 l = min_t(u64, len, blocksize);
2935 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2936 /* push csums to sbio */
2937 have_csum = scrub_find_csum(sctx, logical, csum);
2941 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2942 flags, gen, mirror_num,
2943 have_csum ? csum : NULL);
2955 * Given a physical address, this will calculate it's
2956 * logical offset. if this is a parity stripe, it will return
2957 * the most left data stripe's logical offset.
2959 * return 0 if it is a data stripe, 1 means parity stripe.
2961 static int get_raid56_logic_offset(u64 physical, int num,
2962 struct map_lookup *map, u64 *offset,
2972 last_offset = (physical - map->stripes[num].physical) *
2973 nr_data_stripes(map);
2975 *stripe_start = last_offset;
2977 *offset = last_offset;
2978 for (i = 0; i < nr_data_stripes(map); i++) {
2979 *offset = last_offset + i * map->stripe_len;
2981 stripe_nr = div64_u64(*offset, map->stripe_len);
2982 stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2984 /* Work out the disk rotation on this stripe-set */
2985 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2986 /* calculate which stripe this data locates */
2988 stripe_index = rot % map->num_stripes;
2989 if (stripe_index == num)
2991 if (stripe_index < num)
2994 *offset = last_offset + j * map->stripe_len;
2998 static void scrub_free_parity(struct scrub_parity *sparity)
3000 struct scrub_ctx *sctx = sparity->sctx;
3001 struct scrub_page *curr, *next;
3004 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
3006 spin_lock(&sctx->stat_lock);
3007 sctx->stat.read_errors += nbits;
3008 sctx->stat.uncorrectable_errors += nbits;
3009 spin_unlock(&sctx->stat_lock);
3012 list_for_each_entry_safe(curr, next, &sparity->spages, list) {
3013 list_del_init(&curr->list);
3014 scrub_page_put(curr);
3020 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
3022 struct scrub_parity *sparity = container_of(work, struct scrub_parity,
3024 struct scrub_ctx *sctx = sparity->sctx;
3026 scrub_free_parity(sparity);
3027 scrub_pending_bio_dec(sctx);
3030 static void scrub_parity_bio_endio(struct bio *bio)
3032 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
3033 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
3036 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
3041 btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
3042 scrub_parity_bio_endio_worker, NULL, NULL);
3043 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
3046 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
3048 struct scrub_ctx *sctx = sparity->sctx;
3049 struct btrfs_fs_info *fs_info = sctx->fs_info;
3051 struct btrfs_raid_bio *rbio;
3052 struct btrfs_bio *bbio = NULL;
3056 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
3060 length = sparity->logic_end - sparity->logic_start;
3062 btrfs_bio_counter_inc_blocked(fs_info);
3063 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
3065 if (ret || !bbio || !bbio->raid_map)
3068 bio = btrfs_io_bio_alloc(0);
3069 bio->bi_iter.bi_sector = sparity->logic_start >> 9;
3070 bio->bi_private = sparity;
3071 bio->bi_end_io = scrub_parity_bio_endio;
3073 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
3074 length, sparity->scrub_dev,
3080 scrub_pending_bio_inc(sctx);
3081 raid56_parity_submit_scrub_rbio(rbio);
3087 btrfs_bio_counter_dec(fs_info);
3088 btrfs_put_bbio(bbio);
3089 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
3091 spin_lock(&sctx->stat_lock);
3092 sctx->stat.malloc_errors++;
3093 spin_unlock(&sctx->stat_lock);
3095 scrub_free_parity(sparity);
3098 static inline int scrub_calc_parity_bitmap_len(int nsectors)
3100 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
3103 static void scrub_parity_get(struct scrub_parity *sparity)
3105 refcount_inc(&sparity->refs);
3108 static void scrub_parity_put(struct scrub_parity *sparity)
3110 if (!refcount_dec_and_test(&sparity->refs))
3113 scrub_parity_check_and_repair(sparity);
3116 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
3117 struct map_lookup *map,
3118 struct btrfs_device *sdev,
3119 struct btrfs_path *path,
3123 struct btrfs_fs_info *fs_info = sctx->fs_info;
3124 struct btrfs_root *root = fs_info->extent_root;
3125 struct btrfs_root *csum_root = fs_info->csum_root;
3126 struct btrfs_extent_item *extent;
3127 struct btrfs_bio *bbio = NULL;
3131 struct extent_buffer *l;
3132 struct btrfs_key key;
3135 u64 extent_physical;
3138 struct btrfs_device *extent_dev;
3139 struct scrub_parity *sparity;
3142 int extent_mirror_num;
3145 nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
3146 bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
3147 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
3150 spin_lock(&sctx->stat_lock);
3151 sctx->stat.malloc_errors++;
3152 spin_unlock(&sctx->stat_lock);
3156 sparity->stripe_len = map->stripe_len;
3157 sparity->nsectors = nsectors;
3158 sparity->sctx = sctx;
3159 sparity->scrub_dev = sdev;
3160 sparity->logic_start = logic_start;
3161 sparity->logic_end = logic_end;
3162 refcount_set(&sparity->refs, 1);
3163 INIT_LIST_HEAD(&sparity->spages);
3164 sparity->dbitmap = sparity->bitmap;
3165 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
3168 while (logic_start < logic_end) {
3169 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3170 key.type = BTRFS_METADATA_ITEM_KEY;
3172 key.type = BTRFS_EXTENT_ITEM_KEY;
3173 key.objectid = logic_start;
3174 key.offset = (u64)-1;
3176 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3181 ret = btrfs_previous_extent_item(root, path, 0);
3185 btrfs_release_path(path);
3186 ret = btrfs_search_slot(NULL, root, &key,
3198 slot = path->slots[0];
3199 if (slot >= btrfs_header_nritems(l)) {
3200 ret = btrfs_next_leaf(root, path);
3209 btrfs_item_key_to_cpu(l, &key, slot);
3211 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3212 key.type != BTRFS_METADATA_ITEM_KEY)
3215 if (key.type == BTRFS_METADATA_ITEM_KEY)
3216 bytes = fs_info->nodesize;
3220 if (key.objectid + bytes <= logic_start)
3223 if (key.objectid >= logic_end) {
3228 while (key.objectid >= logic_start + map->stripe_len)
3229 logic_start += map->stripe_len;
3231 extent = btrfs_item_ptr(l, slot,
3232 struct btrfs_extent_item);
3233 flags = btrfs_extent_flags(l, extent);
3234 generation = btrfs_extent_generation(l, extent);
3236 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3237 (key.objectid < logic_start ||
3238 key.objectid + bytes >
3239 logic_start + map->stripe_len)) {
3241 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3242 key.objectid, logic_start);
3243 spin_lock(&sctx->stat_lock);
3244 sctx->stat.uncorrectable_errors++;
3245 spin_unlock(&sctx->stat_lock);
3249 extent_logical = key.objectid;
3252 if (extent_logical < logic_start) {
3253 extent_len -= logic_start - extent_logical;
3254 extent_logical = logic_start;
3257 if (extent_logical + extent_len >
3258 logic_start + map->stripe_len)
3259 extent_len = logic_start + map->stripe_len -
3262 scrub_parity_mark_sectors_data(sparity, extent_logical,
3265 mapped_length = extent_len;
3267 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
3268 extent_logical, &mapped_length, &bbio,
3271 if (!bbio || mapped_length < extent_len)
3275 btrfs_put_bbio(bbio);
3278 extent_physical = bbio->stripes[0].physical;
3279 extent_mirror_num = bbio->mirror_num;
3280 extent_dev = bbio->stripes[0].dev;
3281 btrfs_put_bbio(bbio);
3283 ret = btrfs_lookup_csums_range(csum_root,
3285 extent_logical + extent_len - 1,
3286 &sctx->csum_list, 1);
3290 ret = scrub_extent_for_parity(sparity, extent_logical,
3297 scrub_free_csums(sctx);
3302 if (extent_logical + extent_len <
3303 key.objectid + bytes) {
3304 logic_start += map->stripe_len;
3306 if (logic_start >= logic_end) {
3311 if (logic_start < key.objectid + bytes) {
3320 btrfs_release_path(path);
3325 logic_start += map->stripe_len;
3329 scrub_parity_mark_sectors_error(sparity, logic_start,
3330 logic_end - logic_start);
3331 scrub_parity_put(sparity);
3333 mutex_lock(&sctx->wr_lock);
3334 scrub_wr_submit(sctx);
3335 mutex_unlock(&sctx->wr_lock);
3337 btrfs_release_path(path);
3338 return ret < 0 ? ret : 0;
3341 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3342 struct map_lookup *map,
3343 struct btrfs_device *scrub_dev,
3344 int num, u64 base, u64 length,
3347 struct btrfs_path *path, *ppath;
3348 struct btrfs_fs_info *fs_info = sctx->fs_info;
3349 struct btrfs_root *root = fs_info->extent_root;
3350 struct btrfs_root *csum_root = fs_info->csum_root;
3351 struct btrfs_extent_item *extent;
3352 struct blk_plug plug;
3357 struct extent_buffer *l;
3364 struct reada_control *reada1;
3365 struct reada_control *reada2;
3366 struct btrfs_key key;
3367 struct btrfs_key key_end;
3368 u64 increment = map->stripe_len;
3371 u64 extent_physical;
3375 struct btrfs_device *extent_dev;
3376 int extent_mirror_num;
3379 physical = map->stripes[num].physical;
3381 nstripes = div64_u64(length, map->stripe_len);
3382 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3383 offset = map->stripe_len * num;
3384 increment = map->stripe_len * map->num_stripes;
3386 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3387 int factor = map->num_stripes / map->sub_stripes;
3388 offset = map->stripe_len * (num / map->sub_stripes);
3389 increment = map->stripe_len * factor;
3390 mirror_num = num % map->sub_stripes + 1;
3391 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3392 increment = map->stripe_len;
3393 mirror_num = num % map->num_stripes + 1;
3394 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3395 increment = map->stripe_len;
3396 mirror_num = num % map->num_stripes + 1;
3397 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3398 get_raid56_logic_offset(physical, num, map, &offset, NULL);
3399 increment = map->stripe_len * nr_data_stripes(map);
3402 increment = map->stripe_len;
3406 path = btrfs_alloc_path();
3410 ppath = btrfs_alloc_path();
3412 btrfs_free_path(path);
3417 * work on commit root. The related disk blocks are static as
3418 * long as COW is applied. This means, it is save to rewrite
3419 * them to repair disk errors without any race conditions
3421 path->search_commit_root = 1;
3422 path->skip_locking = 1;
3424 ppath->search_commit_root = 1;
3425 ppath->skip_locking = 1;
3427 * trigger the readahead for extent tree csum tree and wait for
3428 * completion. During readahead, the scrub is officially paused
3429 * to not hold off transaction commits
3431 logical = base + offset;
3432 physical_end = physical + nstripes * map->stripe_len;
3433 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3434 get_raid56_logic_offset(physical_end, num,
3435 map, &logic_end, NULL);
3438 logic_end = logical + increment * nstripes;
3440 wait_event(sctx->list_wait,
3441 atomic_read(&sctx->bios_in_flight) == 0);
3442 scrub_blocked_if_needed(fs_info);
3444 /* FIXME it might be better to start readahead at commit root */
3445 key.objectid = logical;
3446 key.type = BTRFS_EXTENT_ITEM_KEY;
3447 key.offset = (u64)0;
3448 key_end.objectid = logic_end;
3449 key_end.type = BTRFS_METADATA_ITEM_KEY;
3450 key_end.offset = (u64)-1;
3451 reada1 = btrfs_reada_add(root, &key, &key_end);
3453 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3454 key.type = BTRFS_EXTENT_CSUM_KEY;
3455 key.offset = logical;
3456 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3457 key_end.type = BTRFS_EXTENT_CSUM_KEY;
3458 key_end.offset = logic_end;
3459 reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3461 if (!IS_ERR(reada1))
3462 btrfs_reada_wait(reada1);
3463 if (!IS_ERR(reada2))
3464 btrfs_reada_wait(reada2);
3468 * collect all data csums for the stripe to avoid seeking during
3469 * the scrub. This might currently (crc32) end up to be about 1MB
3471 blk_start_plug(&plug);
3474 * now find all extents for each stripe and scrub them
3477 while (physical < physical_end) {
3481 if (atomic_read(&fs_info->scrub_cancel_req) ||
3482 atomic_read(&sctx->cancel_req)) {
3487 * check to see if we have to pause
3489 if (atomic_read(&fs_info->scrub_pause_req)) {
3490 /* push queued extents */
3491 sctx->flush_all_writes = true;
3493 mutex_lock(&sctx->wr_lock);
3494 scrub_wr_submit(sctx);
3495 mutex_unlock(&sctx->wr_lock);
3496 wait_event(sctx->list_wait,
3497 atomic_read(&sctx->bios_in_flight) == 0);
3498 sctx->flush_all_writes = false;
3499 scrub_blocked_if_needed(fs_info);
3502 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3503 ret = get_raid56_logic_offset(physical, num, map,
3508 /* it is parity strip */
3509 stripe_logical += base;
3510 stripe_end = stripe_logical + increment;
3511 ret = scrub_raid56_parity(sctx, map, scrub_dev,
3512 ppath, stripe_logical,
3520 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3521 key.type = BTRFS_METADATA_ITEM_KEY;
3523 key.type = BTRFS_EXTENT_ITEM_KEY;
3524 key.objectid = logical;
3525 key.offset = (u64)-1;
3527 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3532 ret = btrfs_previous_extent_item(root, path, 0);
3536 /* there's no smaller item, so stick with the
3538 btrfs_release_path(path);
3539 ret = btrfs_search_slot(NULL, root, &key,
3551 slot = path->slots[0];
3552 if (slot >= btrfs_header_nritems(l)) {
3553 ret = btrfs_next_leaf(root, path);
3562 btrfs_item_key_to_cpu(l, &key, slot);
3564 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3565 key.type != BTRFS_METADATA_ITEM_KEY)
3568 if (key.type == BTRFS_METADATA_ITEM_KEY)
3569 bytes = fs_info->nodesize;
3573 if (key.objectid + bytes <= logical)
3576 if (key.objectid >= logical + map->stripe_len) {
3577 /* out of this device extent */
3578 if (key.objectid >= logic_end)
3583 extent = btrfs_item_ptr(l, slot,
3584 struct btrfs_extent_item);
3585 flags = btrfs_extent_flags(l, extent);
3586 generation = btrfs_extent_generation(l, extent);
3588 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3589 (key.objectid < logical ||
3590 key.objectid + bytes >
3591 logical + map->stripe_len)) {
3593 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3594 key.objectid, logical);
3595 spin_lock(&sctx->stat_lock);
3596 sctx->stat.uncorrectable_errors++;
3597 spin_unlock(&sctx->stat_lock);
3602 extent_logical = key.objectid;
3606 * trim extent to this stripe
3608 if (extent_logical < logical) {
3609 extent_len -= logical - extent_logical;
3610 extent_logical = logical;
3612 if (extent_logical + extent_len >
3613 logical + map->stripe_len) {
3614 extent_len = logical + map->stripe_len -
3618 extent_physical = extent_logical - logical + physical;
3619 extent_dev = scrub_dev;
3620 extent_mirror_num = mirror_num;
3622 scrub_remap_extent(fs_info, extent_logical,
3623 extent_len, &extent_physical,
3625 &extent_mirror_num);
3627 ret = btrfs_lookup_csums_range(csum_root,
3631 &sctx->csum_list, 1);
3635 ret = scrub_extent(sctx, map, extent_logical, extent_len,
3636 extent_physical, extent_dev, flags,
3637 generation, extent_mirror_num,
3638 extent_logical - logical + physical);
3640 scrub_free_csums(sctx);
3645 if (extent_logical + extent_len <
3646 key.objectid + bytes) {
3647 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3649 * loop until we find next data stripe
3650 * or we have finished all stripes.
3653 physical += map->stripe_len;
3654 ret = get_raid56_logic_offset(physical,
3659 if (ret && physical < physical_end) {
3660 stripe_logical += base;
3661 stripe_end = stripe_logical +
3663 ret = scrub_raid56_parity(sctx,
3664 map, scrub_dev, ppath,
3672 physical += map->stripe_len;
3673 logical += increment;
3675 if (logical < key.objectid + bytes) {
3680 if (physical >= physical_end) {
3688 btrfs_release_path(path);
3690 logical += increment;
3691 physical += map->stripe_len;
3692 spin_lock(&sctx->stat_lock);
3694 sctx->stat.last_physical = map->stripes[num].physical +
3697 sctx->stat.last_physical = physical;
3698 spin_unlock(&sctx->stat_lock);
3703 /* push queued extents */
3705 mutex_lock(&sctx->wr_lock);
3706 scrub_wr_submit(sctx);
3707 mutex_unlock(&sctx->wr_lock);
3709 blk_finish_plug(&plug);
3710 btrfs_free_path(path);
3711 btrfs_free_path(ppath);
3712 return ret < 0 ? ret : 0;
3715 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3716 struct btrfs_device *scrub_dev,
3717 u64 chunk_offset, u64 length,
3719 struct btrfs_block_group_cache *cache,
3722 struct btrfs_fs_info *fs_info = sctx->fs_info;
3723 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
3724 struct map_lookup *map;
3725 struct extent_map *em;
3729 read_lock(&map_tree->map_tree.lock);
3730 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3731 read_unlock(&map_tree->map_tree.lock);
3735 * Might have been an unused block group deleted by the cleaner
3736 * kthread or relocation.
3738 spin_lock(&cache->lock);
3739 if (!cache->removed)
3741 spin_unlock(&cache->lock);
3746 map = em->map_lookup;
3747 if (em->start != chunk_offset)
3750 if (em->len < length)
3753 for (i = 0; i < map->num_stripes; ++i) {
3754 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3755 map->stripes[i].physical == dev_offset) {
3756 ret = scrub_stripe(sctx, map, scrub_dev, i,
3757 chunk_offset, length,
3764 free_extent_map(em);
3769 static noinline_for_stack
3770 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3771 struct btrfs_device *scrub_dev, u64 start, u64 end,
3774 struct btrfs_dev_extent *dev_extent = NULL;
3775 struct btrfs_path *path;
3776 struct btrfs_fs_info *fs_info = sctx->fs_info;
3777 struct btrfs_root *root = fs_info->dev_root;
3783 struct extent_buffer *l;
3784 struct btrfs_key key;
3785 struct btrfs_key found_key;
3786 struct btrfs_block_group_cache *cache;
3787 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3789 path = btrfs_alloc_path();
3793 path->reada = READA_FORWARD;
3794 path->search_commit_root = 1;
3795 path->skip_locking = 1;
3797 key.objectid = scrub_dev->devid;
3799 key.type = BTRFS_DEV_EXTENT_KEY;
3802 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3806 if (path->slots[0] >=
3807 btrfs_header_nritems(path->nodes[0])) {
3808 ret = btrfs_next_leaf(root, path);
3821 slot = path->slots[0];
3823 btrfs_item_key_to_cpu(l, &found_key, slot);
3825 if (found_key.objectid != scrub_dev->devid)
3828 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3831 if (found_key.offset >= end)
3834 if (found_key.offset < key.offset)
3837 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3838 length = btrfs_dev_extent_length(l, dev_extent);
3840 if (found_key.offset + length <= start)
3843 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3846 * get a reference on the corresponding block group to prevent
3847 * the chunk from going away while we scrub it
3849 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3851 /* some chunks are removed but not committed to disk yet,
3852 * continue scrubbing */
3857 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3858 * to avoid deadlock caused by:
3859 * btrfs_inc_block_group_ro()
3860 * -> btrfs_wait_for_commit()
3861 * -> btrfs_commit_transaction()
3862 * -> btrfs_scrub_pause()
3864 scrub_pause_on(fs_info);
3865 ret = btrfs_inc_block_group_ro(fs_info, cache);
3866 if (!ret && is_dev_replace) {
3868 * If we are doing a device replace wait for any tasks
3869 * that started dellaloc right before we set the block
3870 * group to RO mode, as they might have just allocated
3871 * an extent from it or decided they could do a nocow
3872 * write. And if any such tasks did that, wait for their
3873 * ordered extents to complete and then commit the
3874 * current transaction, so that we can later see the new
3875 * extent items in the extent tree - the ordered extents
3876 * create delayed data references (for cow writes) when
3877 * they complete, which will be run and insert the
3878 * corresponding extent items into the extent tree when
3879 * we commit the transaction they used when running
3880 * inode.c:btrfs_finish_ordered_io(). We later use
3881 * the commit root of the extent tree to find extents
3882 * to copy from the srcdev into the tgtdev, and we don't
3883 * want to miss any new extents.
3885 btrfs_wait_block_group_reservations(cache);
3886 btrfs_wait_nocow_writers(cache);
3887 ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3888 cache->key.objectid,
3891 struct btrfs_trans_handle *trans;
3893 trans = btrfs_join_transaction(root);
3895 ret = PTR_ERR(trans);
3897 ret = btrfs_commit_transaction(trans);
3899 scrub_pause_off(fs_info);
3900 btrfs_put_block_group(cache);
3905 scrub_pause_off(fs_info);
3909 } else if (ret == -ENOSPC) {
3911 * btrfs_inc_block_group_ro return -ENOSPC when it
3912 * failed in creating new chunk for metadata.
3913 * It is not a problem for scrub/replace, because
3914 * metadata are always cowed, and our scrub paused
3915 * commit_transactions.
3920 "failed setting block group ro: %d", ret);
3921 btrfs_put_block_group(cache);
3925 btrfs_dev_replace_write_lock(&fs_info->dev_replace);
3926 dev_replace->cursor_right = found_key.offset + length;
3927 dev_replace->cursor_left = found_key.offset;
3928 dev_replace->item_needs_writeback = 1;
3929 btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3930 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3931 found_key.offset, cache, is_dev_replace);
3934 * flush, submit all pending read and write bios, afterwards
3936 * Note that in the dev replace case, a read request causes
3937 * write requests that are submitted in the read completion
3938 * worker. Therefore in the current situation, it is required
3939 * that all write requests are flushed, so that all read and
3940 * write requests are really completed when bios_in_flight
3943 sctx->flush_all_writes = true;
3945 mutex_lock(&sctx->wr_lock);
3946 scrub_wr_submit(sctx);
3947 mutex_unlock(&sctx->wr_lock);
3949 wait_event(sctx->list_wait,
3950 atomic_read(&sctx->bios_in_flight) == 0);
3952 scrub_pause_on(fs_info);
3955 * must be called before we decrease @scrub_paused.
3956 * make sure we don't block transaction commit while
3957 * we are waiting pending workers finished.
3959 wait_event(sctx->list_wait,
3960 atomic_read(&sctx->workers_pending) == 0);
3961 sctx->flush_all_writes = false;
3963 scrub_pause_off(fs_info);
3965 btrfs_dev_replace_write_lock(&fs_info->dev_replace);
3966 dev_replace->cursor_left = dev_replace->cursor_right;
3967 dev_replace->item_needs_writeback = 1;
3968 btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3971 btrfs_dec_block_group_ro(cache);
3974 * We might have prevented the cleaner kthread from deleting
3975 * this block group if it was already unused because we raced
3976 * and set it to RO mode first. So add it back to the unused
3977 * list, otherwise it might not ever be deleted unless a manual
3978 * balance is triggered or it becomes used and unused again.
3980 spin_lock(&cache->lock);
3981 if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3982 btrfs_block_group_used(&cache->item) == 0) {
3983 spin_unlock(&cache->lock);
3984 spin_lock(&fs_info->unused_bgs_lock);
3985 if (list_empty(&cache->bg_list)) {
3986 btrfs_get_block_group(cache);
3987 trace_btrfs_add_unused_block_group(cache);
3988 list_add_tail(&cache->bg_list,
3989 &fs_info->unused_bgs);
3991 spin_unlock(&fs_info->unused_bgs_lock);
3993 spin_unlock(&cache->lock);
3996 btrfs_put_block_group(cache);
3999 if (is_dev_replace &&
4000 atomic64_read(&dev_replace->num_write_errors) > 0) {
4004 if (sctx->stat.malloc_errors > 0) {
4009 key.offset = found_key.offset + length;
4010 btrfs_release_path(path);
4013 btrfs_free_path(path);
4018 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
4019 struct btrfs_device *scrub_dev)
4025 struct btrfs_fs_info *fs_info = sctx->fs_info;
4027 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4030 /* Seed devices of a new filesystem has their own generation. */
4031 if (scrub_dev->fs_devices != fs_info->fs_devices)
4032 gen = scrub_dev->generation;
4034 gen = fs_info->last_trans_committed;
4036 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
4037 bytenr = btrfs_sb_offset(i);
4038 if (bytenr + BTRFS_SUPER_INFO_SIZE >
4039 scrub_dev->commit_total_bytes)
4042 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
4043 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
4048 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4054 * get a reference count on fs_info->scrub_workers. start worker if necessary
4056 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
4059 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4060 int max_active = fs_info->thread_pool_size;
4062 if (fs_info->scrub_workers_refcnt == 0) {
4063 fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
4064 flags, is_dev_replace ? 1 : max_active, 4);
4065 if (!fs_info->scrub_workers)
4066 goto fail_scrub_workers;
4068 fs_info->scrub_wr_completion_workers =
4069 btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
4071 if (!fs_info->scrub_wr_completion_workers)
4072 goto fail_scrub_wr_completion_workers;
4074 fs_info->scrub_nocow_workers =
4075 btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
4076 if (!fs_info->scrub_nocow_workers)
4077 goto fail_scrub_nocow_workers;
4078 fs_info->scrub_parity_workers =
4079 btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
4081 if (!fs_info->scrub_parity_workers)
4082 goto fail_scrub_parity_workers;
4084 ++fs_info->scrub_workers_refcnt;
4087 fail_scrub_parity_workers:
4088 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4089 fail_scrub_nocow_workers:
4090 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
4091 fail_scrub_wr_completion_workers:
4092 btrfs_destroy_workqueue(fs_info->scrub_workers);
4097 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
4099 if (--fs_info->scrub_workers_refcnt == 0) {
4100 btrfs_destroy_workqueue(fs_info->scrub_workers);
4101 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
4102 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4103 btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
4105 WARN_ON(fs_info->scrub_workers_refcnt < 0);
4108 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4109 u64 end, struct btrfs_scrub_progress *progress,
4110 int readonly, int is_dev_replace)
4112 struct scrub_ctx *sctx;
4114 struct btrfs_device *dev;
4115 struct rcu_string *name;
4117 if (btrfs_fs_closing(fs_info))
4120 if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4122 * in this case scrub is unable to calculate the checksum
4123 * the way scrub is implemented. Do not handle this
4124 * situation at all because it won't ever happen.
4127 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4133 if (fs_info->sectorsize != PAGE_SIZE) {
4134 /* not supported for data w/o checksums */
4135 btrfs_err_rl(fs_info,
4136 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
4137 fs_info->sectorsize, PAGE_SIZE);
4141 if (fs_info->nodesize >
4142 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4143 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4145 * would exhaust the array bounds of pagev member in
4146 * struct scrub_block
4149 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4151 SCRUB_MAX_PAGES_PER_BLOCK,
4152 fs_info->sectorsize,
4153 SCRUB_MAX_PAGES_PER_BLOCK);
4158 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4159 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4160 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
4162 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4166 if (!is_dev_replace && !readonly &&
4167 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4168 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4170 name = rcu_dereference(dev->name);
4171 btrfs_err(fs_info, "scrub: device %s is not writable",
4177 mutex_lock(&fs_info->scrub_lock);
4178 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4179 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
4180 mutex_unlock(&fs_info->scrub_lock);
4181 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4185 btrfs_dev_replace_read_lock(&fs_info->dev_replace);
4186 if (dev->scrub_ctx ||
4188 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4189 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
4190 mutex_unlock(&fs_info->scrub_lock);
4191 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4192 return -EINPROGRESS;
4194 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
4196 ret = scrub_workers_get(fs_info, is_dev_replace);
4198 mutex_unlock(&fs_info->scrub_lock);
4199 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4203 sctx = scrub_setup_ctx(dev, is_dev_replace);
4205 mutex_unlock(&fs_info->scrub_lock);
4206 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4207 scrub_workers_put(fs_info);
4208 return PTR_ERR(sctx);
4210 sctx->readonly = readonly;
4211 dev->scrub_ctx = sctx;
4212 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4215 * checking @scrub_pause_req here, we can avoid
4216 * race between committing transaction and scrubbing.
4218 __scrub_blocked_if_needed(fs_info);
4219 atomic_inc(&fs_info->scrubs_running);
4220 mutex_unlock(&fs_info->scrub_lock);
4222 if (!is_dev_replace) {
4224 * by holding device list mutex, we can
4225 * kick off writing super in log tree sync.
4227 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4228 ret = scrub_supers(sctx, dev);
4229 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4233 ret = scrub_enumerate_chunks(sctx, dev, start, end,
4236 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4237 atomic_dec(&fs_info->scrubs_running);
4238 wake_up(&fs_info->scrub_pause_wait);
4240 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4243 memcpy(progress, &sctx->stat, sizeof(*progress));
4245 mutex_lock(&fs_info->scrub_lock);
4246 dev->scrub_ctx = NULL;
4247 scrub_workers_put(fs_info);
4248 mutex_unlock(&fs_info->scrub_lock);
4250 scrub_put_ctx(sctx);
4255 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4257 mutex_lock(&fs_info->scrub_lock);
4258 atomic_inc(&fs_info->scrub_pause_req);
4259 while (atomic_read(&fs_info->scrubs_paused) !=
4260 atomic_read(&fs_info->scrubs_running)) {
4261 mutex_unlock(&fs_info->scrub_lock);
4262 wait_event(fs_info->scrub_pause_wait,
4263 atomic_read(&fs_info->scrubs_paused) ==
4264 atomic_read(&fs_info->scrubs_running));
4265 mutex_lock(&fs_info->scrub_lock);
4267 mutex_unlock(&fs_info->scrub_lock);
4270 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4272 atomic_dec(&fs_info->scrub_pause_req);
4273 wake_up(&fs_info->scrub_pause_wait);
4276 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4278 mutex_lock(&fs_info->scrub_lock);
4279 if (!atomic_read(&fs_info->scrubs_running)) {
4280 mutex_unlock(&fs_info->scrub_lock);
4284 atomic_inc(&fs_info->scrub_cancel_req);
4285 while (atomic_read(&fs_info->scrubs_running)) {
4286 mutex_unlock(&fs_info->scrub_lock);
4287 wait_event(fs_info->scrub_pause_wait,
4288 atomic_read(&fs_info->scrubs_running) == 0);
4289 mutex_lock(&fs_info->scrub_lock);
4291 atomic_dec(&fs_info->scrub_cancel_req);
4292 mutex_unlock(&fs_info->scrub_lock);
4297 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
4298 struct btrfs_device *dev)
4300 struct scrub_ctx *sctx;
4302 mutex_lock(&fs_info->scrub_lock);
4303 sctx = dev->scrub_ctx;
4305 mutex_unlock(&fs_info->scrub_lock);
4308 atomic_inc(&sctx->cancel_req);
4309 while (dev->scrub_ctx) {
4310 mutex_unlock(&fs_info->scrub_lock);
4311 wait_event(fs_info->scrub_pause_wait,
4312 dev->scrub_ctx == NULL);
4313 mutex_lock(&fs_info->scrub_lock);
4315 mutex_unlock(&fs_info->scrub_lock);
4320 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4321 struct btrfs_scrub_progress *progress)
4323 struct btrfs_device *dev;
4324 struct scrub_ctx *sctx = NULL;
4326 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4327 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4329 sctx = dev->scrub_ctx;
4331 memcpy(progress, &sctx->stat, sizeof(*progress));
4332 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4334 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4337 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4338 u64 extent_logical, u64 extent_len,
4339 u64 *extent_physical,
4340 struct btrfs_device **extent_dev,
4341 int *extent_mirror_num)
4344 struct btrfs_bio *bbio = NULL;
4347 mapped_length = extent_len;
4348 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4349 &mapped_length, &bbio, 0);
4350 if (ret || !bbio || mapped_length < extent_len ||
4351 !bbio->stripes[0].dev->bdev) {
4352 btrfs_put_bbio(bbio);
4356 *extent_physical = bbio->stripes[0].physical;
4357 *extent_mirror_num = bbio->mirror_num;
4358 *extent_dev = bbio->stripes[0].dev;
4359 btrfs_put_bbio(bbio);
4362 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
4363 int mirror_num, u64 physical_for_dev_replace)
4365 struct scrub_copy_nocow_ctx *nocow_ctx;
4366 struct btrfs_fs_info *fs_info = sctx->fs_info;
4368 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
4370 spin_lock(&sctx->stat_lock);
4371 sctx->stat.malloc_errors++;
4372 spin_unlock(&sctx->stat_lock);
4376 scrub_pending_trans_workers_inc(sctx);
4378 nocow_ctx->sctx = sctx;
4379 nocow_ctx->logical = logical;
4380 nocow_ctx->len = len;
4381 nocow_ctx->mirror_num = mirror_num;
4382 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4383 btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
4384 copy_nocow_pages_worker, NULL, NULL);
4385 INIT_LIST_HEAD(&nocow_ctx->inodes);
4386 btrfs_queue_work(fs_info->scrub_nocow_workers,
4392 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
4394 struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
4395 struct scrub_nocow_inode *nocow_inode;
4397 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
4400 nocow_inode->inum = inum;
4401 nocow_inode->offset = offset;
4402 nocow_inode->root = root;
4403 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
4407 #define COPY_COMPLETE 1
4409 static void copy_nocow_pages_worker(struct btrfs_work *work)
4411 struct scrub_copy_nocow_ctx *nocow_ctx =
4412 container_of(work, struct scrub_copy_nocow_ctx, work);
4413 struct scrub_ctx *sctx = nocow_ctx->sctx;
4414 struct btrfs_fs_info *fs_info = sctx->fs_info;
4415 struct btrfs_root *root = fs_info->extent_root;
4416 u64 logical = nocow_ctx->logical;
4417 u64 len = nocow_ctx->len;
4418 int mirror_num = nocow_ctx->mirror_num;
4419 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4421 struct btrfs_trans_handle *trans = NULL;
4422 struct btrfs_path *path;
4423 int not_written = 0;
4425 path = btrfs_alloc_path();
4427 spin_lock(&sctx->stat_lock);
4428 sctx->stat.malloc_errors++;
4429 spin_unlock(&sctx->stat_lock);
4434 trans = btrfs_join_transaction(root);
4435 if (IS_ERR(trans)) {
4440 ret = iterate_inodes_from_logical(logical, fs_info, path,
4441 record_inode_for_nocow, nocow_ctx, false);
4442 if (ret != 0 && ret != -ENOENT) {
4444 "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
4445 logical, physical_for_dev_replace, len, mirror_num,
4451 btrfs_end_transaction(trans);
4453 while (!list_empty(&nocow_ctx->inodes)) {
4454 struct scrub_nocow_inode *entry;
4455 entry = list_first_entry(&nocow_ctx->inodes,
4456 struct scrub_nocow_inode,
4458 list_del_init(&entry->list);
4459 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4460 entry->root, nocow_ctx);
4462 if (ret == COPY_COMPLETE) {
4470 while (!list_empty(&nocow_ctx->inodes)) {
4471 struct scrub_nocow_inode *entry;
4472 entry = list_first_entry(&nocow_ctx->inodes,
4473 struct scrub_nocow_inode,
4475 list_del_init(&entry->list);
4478 if (trans && !IS_ERR(trans))
4479 btrfs_end_transaction(trans);
4481 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4482 num_uncorrectable_read_errors);
4484 btrfs_free_path(path);
4487 scrub_pending_trans_workers_dec(sctx);
4490 static int check_extent_to_block(struct btrfs_inode *inode, u64 start, u64 len,
4493 struct extent_state *cached_state = NULL;
4494 struct btrfs_ordered_extent *ordered;
4495 struct extent_io_tree *io_tree;
4496 struct extent_map *em;
4497 u64 lockstart = start, lockend = start + len - 1;
4500 io_tree = &inode->io_tree;
4502 lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4503 ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4505 btrfs_put_ordered_extent(ordered);
4510 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4517 * This extent does not actually cover the logical extent anymore,
4518 * move on to the next inode.
4520 if (em->block_start > logical ||
4521 em->block_start + em->block_len < logical + len ||
4522 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4523 free_extent_map(em);
4527 free_extent_map(em);
4530 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state);
4534 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4535 struct scrub_copy_nocow_ctx *nocow_ctx)
4537 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
4538 struct btrfs_key key;
4539 struct inode *inode;
4541 struct btrfs_root *local_root;
4542 struct extent_io_tree *io_tree;
4543 u64 physical_for_dev_replace;
4544 u64 nocow_ctx_logical;
4545 u64 len = nocow_ctx->len;
4546 unsigned long index;
4551 key.objectid = root;
4552 key.type = BTRFS_ROOT_ITEM_KEY;
4553 key.offset = (u64)-1;
4555 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4557 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4558 if (IS_ERR(local_root)) {
4559 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4560 return PTR_ERR(local_root);
4563 key.type = BTRFS_INODE_ITEM_KEY;
4564 key.objectid = inum;
4566 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4567 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4569 return PTR_ERR(inode);
4571 /* Avoid truncate/dio/punch hole.. */
4573 inode_dio_wait(inode);
4575 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4576 io_tree = &BTRFS_I(inode)->io_tree;
4577 nocow_ctx_logical = nocow_ctx->logical;
4579 ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4582 ret = ret > 0 ? 0 : ret;
4586 while (len >= PAGE_SIZE) {
4587 index = offset >> PAGE_SHIFT;
4589 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4591 btrfs_err(fs_info, "find_or_create_page() failed");
4596 if (PageUptodate(page)) {
4597 if (PageDirty(page))
4600 ClearPageError(page);
4601 err = extent_read_full_page(io_tree, page,
4603 nocow_ctx->mirror_num);
4611 * If the page has been remove from the page cache,
4612 * the data on it is meaningless, because it may be
4613 * old one, the new data may be written into the new
4614 * page in the page cache.
4616 if (page->mapping != inode->i_mapping) {
4621 if (!PageUptodate(page)) {
4627 ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4630 ret = ret > 0 ? 0 : ret;
4634 err = write_page_nocow(nocow_ctx->sctx,
4635 physical_for_dev_replace, page);
4645 offset += PAGE_SIZE;
4646 physical_for_dev_replace += PAGE_SIZE;
4647 nocow_ctx_logical += PAGE_SIZE;
4650 ret = COPY_COMPLETE;
4652 inode_unlock(inode);
4657 static int write_page_nocow(struct scrub_ctx *sctx,
4658 u64 physical_for_dev_replace, struct page *page)
4661 struct btrfs_device *dev;
4663 dev = sctx->wr_tgtdev;
4667 btrfs_warn_rl(dev->fs_info,
4668 "scrub write_page_nocow(bdev == NULL) is unexpected");
4671 bio = btrfs_io_bio_alloc(1);
4672 bio->bi_iter.bi_size = 0;
4673 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4674 bio_set_dev(bio, dev->bdev);
4675 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
4676 /* bio_add_page won't fail on a freshly allocated bio */
4677 bio_add_page(bio, page, PAGE_SIZE, 0);
4679 if (btrfsic_submit_bio_wait(bio)) {
4681 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);