Linux 6.9-rc1
[linux-2.6-microblaze.git] / fs / btrfs / ref-verify.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2014 Facebook.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/stacktrace.h>
8 #include "messages.h"
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "locking.h"
12 #include "delayed-ref.h"
13 #include "ref-verify.h"
14 #include "fs.h"
15 #include "accessors.h"
16
17 /*
18  * Used to keep track the roots and number of refs each root has for a given
19  * bytenr.  This just tracks the number of direct references, no shared
20  * references.
21  */
22 struct root_entry {
23         u64 root_objectid;
24         u64 num_refs;
25         struct rb_node node;
26 };
27
28 /*
29  * These are meant to represent what should exist in the extent tree, these can
30  * be used to verify the extent tree is consistent as these should all match
31  * what the extent tree says.
32  */
33 struct ref_entry {
34         u64 root_objectid;
35         u64 parent;
36         u64 owner;
37         u64 offset;
38         u64 num_refs;
39         struct rb_node node;
40 };
41
42 #define MAX_TRACE       16
43
44 /*
45  * Whenever we add/remove a reference we record the action.  The action maps
46  * back to the delayed ref action.  We hold the ref we are changing in the
47  * action so we can account for the history properly, and we record the root we
48  * were called with since it could be different from ref_root.  We also store
49  * stack traces because that's how I roll.
50  */
51 struct ref_action {
52         int action;
53         u64 root;
54         struct ref_entry ref;
55         struct list_head list;
56         unsigned long trace[MAX_TRACE];
57         unsigned int trace_len;
58 };
59
60 /*
61  * One of these for every block we reference, it holds the roots and references
62  * to it as well as all of the ref actions that have occurred to it.  We never
63  * free it until we unmount the file system in order to make sure re-allocations
64  * are happening properly.
65  */
66 struct block_entry {
67         u64 bytenr;
68         u64 len;
69         u64 num_refs;
70         int metadata;
71         int from_disk;
72         struct rb_root roots;
73         struct rb_root refs;
74         struct rb_node node;
75         struct list_head actions;
76 };
77
78 static struct block_entry *insert_block_entry(struct rb_root *root,
79                                               struct block_entry *be)
80 {
81         struct rb_node **p = &root->rb_node;
82         struct rb_node *parent_node = NULL;
83         struct block_entry *entry;
84
85         while (*p) {
86                 parent_node = *p;
87                 entry = rb_entry(parent_node, struct block_entry, node);
88                 if (entry->bytenr > be->bytenr)
89                         p = &(*p)->rb_left;
90                 else if (entry->bytenr < be->bytenr)
91                         p = &(*p)->rb_right;
92                 else
93                         return entry;
94         }
95
96         rb_link_node(&be->node, parent_node, p);
97         rb_insert_color(&be->node, root);
98         return NULL;
99 }
100
101 static struct block_entry *lookup_block_entry(struct rb_root *root, u64 bytenr)
102 {
103         struct rb_node *n;
104         struct block_entry *entry = NULL;
105
106         n = root->rb_node;
107         while (n) {
108                 entry = rb_entry(n, struct block_entry, node);
109                 if (entry->bytenr < bytenr)
110                         n = n->rb_right;
111                 else if (entry->bytenr > bytenr)
112                         n = n->rb_left;
113                 else
114                         return entry;
115         }
116         return NULL;
117 }
118
119 static struct root_entry *insert_root_entry(struct rb_root *root,
120                                             struct root_entry *re)
121 {
122         struct rb_node **p = &root->rb_node;
123         struct rb_node *parent_node = NULL;
124         struct root_entry *entry;
125
126         while (*p) {
127                 parent_node = *p;
128                 entry = rb_entry(parent_node, struct root_entry, node);
129                 if (entry->root_objectid > re->root_objectid)
130                         p = &(*p)->rb_left;
131                 else if (entry->root_objectid < re->root_objectid)
132                         p = &(*p)->rb_right;
133                 else
134                         return entry;
135         }
136
137         rb_link_node(&re->node, parent_node, p);
138         rb_insert_color(&re->node, root);
139         return NULL;
140
141 }
142
143 static int comp_refs(struct ref_entry *ref1, struct ref_entry *ref2)
144 {
145         if (ref1->root_objectid < ref2->root_objectid)
146                 return -1;
147         if (ref1->root_objectid > ref2->root_objectid)
148                 return 1;
149         if (ref1->parent < ref2->parent)
150                 return -1;
151         if (ref1->parent > ref2->parent)
152                 return 1;
153         if (ref1->owner < ref2->owner)
154                 return -1;
155         if (ref1->owner > ref2->owner)
156                 return 1;
157         if (ref1->offset < ref2->offset)
158                 return -1;
159         if (ref1->offset > ref2->offset)
160                 return 1;
161         return 0;
162 }
163
164 static struct ref_entry *insert_ref_entry(struct rb_root *root,
165                                           struct ref_entry *ref)
166 {
167         struct rb_node **p = &root->rb_node;
168         struct rb_node *parent_node = NULL;
169         struct ref_entry *entry;
170         int cmp;
171
172         while (*p) {
173                 parent_node = *p;
174                 entry = rb_entry(parent_node, struct ref_entry, node);
175                 cmp = comp_refs(entry, ref);
176                 if (cmp > 0)
177                         p = &(*p)->rb_left;
178                 else if (cmp < 0)
179                         p = &(*p)->rb_right;
180                 else
181                         return entry;
182         }
183
184         rb_link_node(&ref->node, parent_node, p);
185         rb_insert_color(&ref->node, root);
186         return NULL;
187
188 }
189
190 static struct root_entry *lookup_root_entry(struct rb_root *root, u64 objectid)
191 {
192         struct rb_node *n;
193         struct root_entry *entry = NULL;
194
195         n = root->rb_node;
196         while (n) {
197                 entry = rb_entry(n, struct root_entry, node);
198                 if (entry->root_objectid < objectid)
199                         n = n->rb_right;
200                 else if (entry->root_objectid > objectid)
201                         n = n->rb_left;
202                 else
203                         return entry;
204         }
205         return NULL;
206 }
207
208 #ifdef CONFIG_STACKTRACE
209 static void __save_stack_trace(struct ref_action *ra)
210 {
211         ra->trace_len = stack_trace_save(ra->trace, MAX_TRACE, 2);
212 }
213
214 static void __print_stack_trace(struct btrfs_fs_info *fs_info,
215                                 struct ref_action *ra)
216 {
217         if (ra->trace_len == 0) {
218                 btrfs_err(fs_info, "  ref-verify: no stacktrace");
219                 return;
220         }
221         stack_trace_print(ra->trace, ra->trace_len, 2);
222 }
223 #else
224 static inline void __save_stack_trace(struct ref_action *ra)
225 {
226 }
227
228 static inline void __print_stack_trace(struct btrfs_fs_info *fs_info,
229                                        struct ref_action *ra)
230 {
231         btrfs_err(fs_info, "  ref-verify: no stacktrace support");
232 }
233 #endif
234
235 static void free_block_entry(struct block_entry *be)
236 {
237         struct root_entry *re;
238         struct ref_entry *ref;
239         struct ref_action *ra;
240         struct rb_node *n;
241
242         while ((n = rb_first(&be->roots))) {
243                 re = rb_entry(n, struct root_entry, node);
244                 rb_erase(&re->node, &be->roots);
245                 kfree(re);
246         }
247
248         while((n = rb_first(&be->refs))) {
249                 ref = rb_entry(n, struct ref_entry, node);
250                 rb_erase(&ref->node, &be->refs);
251                 kfree(ref);
252         }
253
254         while (!list_empty(&be->actions)) {
255                 ra = list_first_entry(&be->actions, struct ref_action,
256                                       list);
257                 list_del(&ra->list);
258                 kfree(ra);
259         }
260         kfree(be);
261 }
262
263 static struct block_entry *add_block_entry(struct btrfs_fs_info *fs_info,
264                                            u64 bytenr, u64 len,
265                                            u64 root_objectid)
266 {
267         struct block_entry *be = NULL, *exist;
268         struct root_entry *re = NULL;
269
270         re = kzalloc(sizeof(struct root_entry), GFP_NOFS);
271         be = kzalloc(sizeof(struct block_entry), GFP_NOFS);
272         if (!be || !re) {
273                 kfree(re);
274                 kfree(be);
275                 return ERR_PTR(-ENOMEM);
276         }
277         be->bytenr = bytenr;
278         be->len = len;
279
280         re->root_objectid = root_objectid;
281         re->num_refs = 0;
282
283         spin_lock(&fs_info->ref_verify_lock);
284         exist = insert_block_entry(&fs_info->block_tree, be);
285         if (exist) {
286                 if (root_objectid) {
287                         struct root_entry *exist_re;
288
289                         exist_re = insert_root_entry(&exist->roots, re);
290                         if (exist_re)
291                                 kfree(re);
292                 } else {
293                         kfree(re);
294                 }
295                 kfree(be);
296                 return exist;
297         }
298
299         be->num_refs = 0;
300         be->metadata = 0;
301         be->from_disk = 0;
302         be->roots = RB_ROOT;
303         be->refs = RB_ROOT;
304         INIT_LIST_HEAD(&be->actions);
305         if (root_objectid)
306                 insert_root_entry(&be->roots, re);
307         else
308                 kfree(re);
309         return be;
310 }
311
312 static int add_tree_block(struct btrfs_fs_info *fs_info, u64 ref_root,
313                           u64 parent, u64 bytenr, int level)
314 {
315         struct block_entry *be;
316         struct root_entry *re;
317         struct ref_entry *ref = NULL, *exist;
318
319         ref = kmalloc(sizeof(struct ref_entry), GFP_NOFS);
320         if (!ref)
321                 return -ENOMEM;
322
323         if (parent)
324                 ref->root_objectid = 0;
325         else
326                 ref->root_objectid = ref_root;
327         ref->parent = parent;
328         ref->owner = level;
329         ref->offset = 0;
330         ref->num_refs = 1;
331
332         be = add_block_entry(fs_info, bytenr, fs_info->nodesize, ref_root);
333         if (IS_ERR(be)) {
334                 kfree(ref);
335                 return PTR_ERR(be);
336         }
337         be->num_refs++;
338         be->from_disk = 1;
339         be->metadata = 1;
340
341         if (!parent) {
342                 ASSERT(ref_root);
343                 re = lookup_root_entry(&be->roots, ref_root);
344                 ASSERT(re);
345                 re->num_refs++;
346         }
347         exist = insert_ref_entry(&be->refs, ref);
348         if (exist) {
349                 exist->num_refs++;
350                 kfree(ref);
351         }
352         spin_unlock(&fs_info->ref_verify_lock);
353
354         return 0;
355 }
356
357 static int add_shared_data_ref(struct btrfs_fs_info *fs_info,
358                                u64 parent, u32 num_refs, u64 bytenr,
359                                u64 num_bytes)
360 {
361         struct block_entry *be;
362         struct ref_entry *ref;
363
364         ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
365         if (!ref)
366                 return -ENOMEM;
367         be = add_block_entry(fs_info, bytenr, num_bytes, 0);
368         if (IS_ERR(be)) {
369                 kfree(ref);
370                 return PTR_ERR(be);
371         }
372         be->num_refs += num_refs;
373
374         ref->parent = parent;
375         ref->num_refs = num_refs;
376         if (insert_ref_entry(&be->refs, ref)) {
377                 spin_unlock(&fs_info->ref_verify_lock);
378                 btrfs_err(fs_info, "existing shared ref when reading from disk?");
379                 kfree(ref);
380                 return -EINVAL;
381         }
382         spin_unlock(&fs_info->ref_verify_lock);
383         return 0;
384 }
385
386 static int add_extent_data_ref(struct btrfs_fs_info *fs_info,
387                                struct extent_buffer *leaf,
388                                struct btrfs_extent_data_ref *dref,
389                                u64 bytenr, u64 num_bytes)
390 {
391         struct block_entry *be;
392         struct ref_entry *ref;
393         struct root_entry *re;
394         u64 ref_root = btrfs_extent_data_ref_root(leaf, dref);
395         u64 owner = btrfs_extent_data_ref_objectid(leaf, dref);
396         u64 offset = btrfs_extent_data_ref_offset(leaf, dref);
397         u32 num_refs = btrfs_extent_data_ref_count(leaf, dref);
398
399         ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
400         if (!ref)
401                 return -ENOMEM;
402         be = add_block_entry(fs_info, bytenr, num_bytes, ref_root);
403         if (IS_ERR(be)) {
404                 kfree(ref);
405                 return PTR_ERR(be);
406         }
407         be->num_refs += num_refs;
408
409         ref->parent = 0;
410         ref->owner = owner;
411         ref->root_objectid = ref_root;
412         ref->offset = offset;
413         ref->num_refs = num_refs;
414         if (insert_ref_entry(&be->refs, ref)) {
415                 spin_unlock(&fs_info->ref_verify_lock);
416                 btrfs_err(fs_info, "existing ref when reading from disk?");
417                 kfree(ref);
418                 return -EINVAL;
419         }
420
421         re = lookup_root_entry(&be->roots, ref_root);
422         if (!re) {
423                 spin_unlock(&fs_info->ref_verify_lock);
424                 btrfs_err(fs_info, "missing root in new block entry?");
425                 return -EINVAL;
426         }
427         re->num_refs += num_refs;
428         spin_unlock(&fs_info->ref_verify_lock);
429         return 0;
430 }
431
432 static int process_extent_item(struct btrfs_fs_info *fs_info,
433                                struct btrfs_path *path, struct btrfs_key *key,
434                                int slot, int *tree_block_level)
435 {
436         struct btrfs_extent_item *ei;
437         struct btrfs_extent_inline_ref *iref;
438         struct btrfs_extent_data_ref *dref;
439         struct btrfs_shared_data_ref *sref;
440         struct extent_buffer *leaf = path->nodes[0];
441         u32 item_size = btrfs_item_size(leaf, slot);
442         unsigned long end, ptr;
443         u64 offset, flags, count;
444         int type, ret;
445
446         ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
447         flags = btrfs_extent_flags(leaf, ei);
448
449         if ((key->type == BTRFS_EXTENT_ITEM_KEY) &&
450             flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
451                 struct btrfs_tree_block_info *info;
452
453                 info = (struct btrfs_tree_block_info *)(ei + 1);
454                 *tree_block_level = btrfs_tree_block_level(leaf, info);
455                 iref = (struct btrfs_extent_inline_ref *)(info + 1);
456         } else {
457                 if (key->type == BTRFS_METADATA_ITEM_KEY)
458                         *tree_block_level = key->offset;
459                 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
460         }
461
462         ptr = (unsigned long)iref;
463         end = (unsigned long)ei + item_size;
464         while (ptr < end) {
465                 iref = (struct btrfs_extent_inline_ref *)ptr;
466                 type = btrfs_extent_inline_ref_type(leaf, iref);
467                 offset = btrfs_extent_inline_ref_offset(leaf, iref);
468                 switch (type) {
469                 case BTRFS_TREE_BLOCK_REF_KEY:
470                         ret = add_tree_block(fs_info, offset, 0, key->objectid,
471                                              *tree_block_level);
472                         break;
473                 case BTRFS_SHARED_BLOCK_REF_KEY:
474                         ret = add_tree_block(fs_info, 0, offset, key->objectid,
475                                              *tree_block_level);
476                         break;
477                 case BTRFS_EXTENT_DATA_REF_KEY:
478                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
479                         ret = add_extent_data_ref(fs_info, leaf, dref,
480                                                   key->objectid, key->offset);
481                         break;
482                 case BTRFS_SHARED_DATA_REF_KEY:
483                         sref = (struct btrfs_shared_data_ref *)(iref + 1);
484                         count = btrfs_shared_data_ref_count(leaf, sref);
485                         ret = add_shared_data_ref(fs_info, offset, count,
486                                                   key->objectid, key->offset);
487                         break;
488                 case BTRFS_EXTENT_OWNER_REF_KEY:
489                         WARN_ON(!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
490                         break;
491                 default:
492                         btrfs_err(fs_info, "invalid key type in iref");
493                         ret = -EINVAL;
494                         break;
495                 }
496                 if (ret)
497                         break;
498                 ptr += btrfs_extent_inline_ref_size(type);
499         }
500         return ret;
501 }
502
503 static int process_leaf(struct btrfs_root *root,
504                         struct btrfs_path *path, u64 *bytenr, u64 *num_bytes,
505                         int *tree_block_level)
506 {
507         struct btrfs_fs_info *fs_info = root->fs_info;
508         struct extent_buffer *leaf = path->nodes[0];
509         struct btrfs_extent_data_ref *dref;
510         struct btrfs_shared_data_ref *sref;
511         u32 count;
512         int i = 0, ret = 0;
513         struct btrfs_key key;
514         int nritems = btrfs_header_nritems(leaf);
515
516         for (i = 0; i < nritems; i++) {
517                 btrfs_item_key_to_cpu(leaf, &key, i);
518                 switch (key.type) {
519                 case BTRFS_EXTENT_ITEM_KEY:
520                         *num_bytes = key.offset;
521                         fallthrough;
522                 case BTRFS_METADATA_ITEM_KEY:
523                         *bytenr = key.objectid;
524                         ret = process_extent_item(fs_info, path, &key, i,
525                                                   tree_block_level);
526                         break;
527                 case BTRFS_TREE_BLOCK_REF_KEY:
528                         ret = add_tree_block(fs_info, key.offset, 0,
529                                              key.objectid, *tree_block_level);
530                         break;
531                 case BTRFS_SHARED_BLOCK_REF_KEY:
532                         ret = add_tree_block(fs_info, 0, key.offset,
533                                              key.objectid, *tree_block_level);
534                         break;
535                 case BTRFS_EXTENT_DATA_REF_KEY:
536                         dref = btrfs_item_ptr(leaf, i,
537                                               struct btrfs_extent_data_ref);
538                         ret = add_extent_data_ref(fs_info, leaf, dref, *bytenr,
539                                                   *num_bytes);
540                         break;
541                 case BTRFS_SHARED_DATA_REF_KEY:
542                         sref = btrfs_item_ptr(leaf, i,
543                                               struct btrfs_shared_data_ref);
544                         count = btrfs_shared_data_ref_count(leaf, sref);
545                         ret = add_shared_data_ref(fs_info, key.offset, count,
546                                                   *bytenr, *num_bytes);
547                         break;
548                 default:
549                         break;
550                 }
551                 if (ret)
552                         break;
553         }
554         return ret;
555 }
556
557 /* Walk down to the leaf from the given level */
558 static int walk_down_tree(struct btrfs_root *root, struct btrfs_path *path,
559                           int level, u64 *bytenr, u64 *num_bytes,
560                           int *tree_block_level)
561 {
562         struct extent_buffer *eb;
563         int ret = 0;
564
565         while (level >= 0) {
566                 if (level) {
567                         eb = btrfs_read_node_slot(path->nodes[level],
568                                                   path->slots[level]);
569                         if (IS_ERR(eb))
570                                 return PTR_ERR(eb);
571                         btrfs_tree_read_lock(eb);
572                         path->nodes[level-1] = eb;
573                         path->slots[level-1] = 0;
574                         path->locks[level-1] = BTRFS_READ_LOCK;
575                 } else {
576                         ret = process_leaf(root, path, bytenr, num_bytes,
577                                            tree_block_level);
578                         if (ret)
579                                 break;
580                 }
581                 level--;
582         }
583         return ret;
584 }
585
586 /* Walk up to the next node that needs to be processed */
587 static int walk_up_tree(struct btrfs_path *path, int *level)
588 {
589         int l;
590
591         for (l = 0; l < BTRFS_MAX_LEVEL; l++) {
592                 if (!path->nodes[l])
593                         continue;
594                 if (l) {
595                         path->slots[l]++;
596                         if (path->slots[l] <
597                             btrfs_header_nritems(path->nodes[l])) {
598                                 *level = l;
599                                 return 0;
600                         }
601                 }
602                 btrfs_tree_unlock_rw(path->nodes[l], path->locks[l]);
603                 free_extent_buffer(path->nodes[l]);
604                 path->nodes[l] = NULL;
605                 path->slots[l] = 0;
606                 path->locks[l] = 0;
607         }
608
609         return 1;
610 }
611
612 static void dump_ref_action(struct btrfs_fs_info *fs_info,
613                             struct ref_action *ra)
614 {
615         btrfs_err(fs_info,
616 "  Ref action %d, root %llu, ref_root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
617                   ra->action, ra->root, ra->ref.root_objectid, ra->ref.parent,
618                   ra->ref.owner, ra->ref.offset, ra->ref.num_refs);
619         __print_stack_trace(fs_info, ra);
620 }
621
622 /*
623  * Dumps all the information from the block entry to printk, it's going to be
624  * awesome.
625  */
626 static void dump_block_entry(struct btrfs_fs_info *fs_info,
627                              struct block_entry *be)
628 {
629         struct ref_entry *ref;
630         struct root_entry *re;
631         struct ref_action *ra;
632         struct rb_node *n;
633
634         btrfs_err(fs_info,
635 "dumping block entry [%llu %llu], num_refs %llu, metadata %d, from disk %d",
636                   be->bytenr, be->len, be->num_refs, be->metadata,
637                   be->from_disk);
638
639         for (n = rb_first(&be->refs); n; n = rb_next(n)) {
640                 ref = rb_entry(n, struct ref_entry, node);
641                 btrfs_err(fs_info,
642 "  ref root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
643                           ref->root_objectid, ref->parent, ref->owner,
644                           ref->offset, ref->num_refs);
645         }
646
647         for (n = rb_first(&be->roots); n; n = rb_next(n)) {
648                 re = rb_entry(n, struct root_entry, node);
649                 btrfs_err(fs_info, "  root entry %llu, num_refs %llu",
650                           re->root_objectid, re->num_refs);
651         }
652
653         list_for_each_entry(ra, &be->actions, list)
654                 dump_ref_action(fs_info, ra);
655 }
656
657 /*
658  * Called when we modify a ref for a bytenr.
659  *
660  * This will add an action item to the given bytenr and do sanity checks to make
661  * sure we haven't messed something up.  If we are making a new allocation and
662  * this block entry has history we will delete all previous actions as long as
663  * our sanity checks pass as they are no longer needed.
664  */
665 int btrfs_ref_tree_mod(struct btrfs_fs_info *fs_info,
666                        struct btrfs_ref *generic_ref)
667 {
668         struct ref_entry *ref = NULL, *exist;
669         struct ref_action *ra = NULL;
670         struct block_entry *be = NULL;
671         struct root_entry *re = NULL;
672         int action = generic_ref->action;
673         int ret = 0;
674         bool metadata;
675         u64 bytenr = generic_ref->bytenr;
676         u64 num_bytes = generic_ref->len;
677         u64 parent = generic_ref->parent;
678         u64 ref_root = 0;
679         u64 owner = 0;
680         u64 offset = 0;
681
682         if (!btrfs_test_opt(fs_info, REF_VERIFY))
683                 return 0;
684
685         if (generic_ref->type == BTRFS_REF_METADATA) {
686                 if (!parent)
687                         ref_root = generic_ref->tree_ref.ref_root;
688                 owner = generic_ref->tree_ref.level;
689         } else if (!parent) {
690                 ref_root = generic_ref->data_ref.ref_root;
691                 owner = generic_ref->data_ref.ino;
692                 offset = generic_ref->data_ref.offset;
693         }
694         metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
695
696         ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
697         ra = kmalloc(sizeof(struct ref_action), GFP_NOFS);
698         if (!ra || !ref) {
699                 kfree(ref);
700                 kfree(ra);
701                 ret = -ENOMEM;
702                 goto out;
703         }
704
705         ref->parent = parent;
706         ref->owner = owner;
707         ref->root_objectid = ref_root;
708         ref->offset = offset;
709         ref->num_refs = (action == BTRFS_DROP_DELAYED_REF) ? -1 : 1;
710
711         memcpy(&ra->ref, ref, sizeof(struct ref_entry));
712         /*
713          * Save the extra info from the delayed ref in the ref action to make it
714          * easier to figure out what is happening.  The real ref's we add to the
715          * ref tree need to reflect what we save on disk so it matches any
716          * on-disk refs we pre-loaded.
717          */
718         ra->ref.owner = owner;
719         ra->ref.offset = offset;
720         ra->ref.root_objectid = ref_root;
721         __save_stack_trace(ra);
722
723         INIT_LIST_HEAD(&ra->list);
724         ra->action = action;
725         ra->root = generic_ref->real_root;
726
727         /*
728          * This is an allocation, preallocate the block_entry in case we haven't
729          * used it before.
730          */
731         ret = -EINVAL;
732         if (action == BTRFS_ADD_DELAYED_EXTENT) {
733                 /*
734                  * For subvol_create we'll just pass in whatever the parent root
735                  * is and the new root objectid, so let's not treat the passed
736                  * in root as if it really has a ref for this bytenr.
737                  */
738                 be = add_block_entry(fs_info, bytenr, num_bytes, ref_root);
739                 if (IS_ERR(be)) {
740                         kfree(ref);
741                         kfree(ra);
742                         ret = PTR_ERR(be);
743                         goto out;
744                 }
745                 be->num_refs++;
746                 if (metadata)
747                         be->metadata = 1;
748
749                 if (be->num_refs != 1) {
750                         btrfs_err(fs_info,
751                         "re-allocated a block that still has references to it!");
752                         dump_block_entry(fs_info, be);
753                         dump_ref_action(fs_info, ra);
754                         kfree(ref);
755                         kfree(ra);
756                         goto out_unlock;
757                 }
758
759                 while (!list_empty(&be->actions)) {
760                         struct ref_action *tmp;
761
762                         tmp = list_first_entry(&be->actions, struct ref_action,
763                                                list);
764                         list_del(&tmp->list);
765                         kfree(tmp);
766                 }
767         } else {
768                 struct root_entry *tmp;
769
770                 if (!parent) {
771                         re = kmalloc(sizeof(struct root_entry), GFP_NOFS);
772                         if (!re) {
773                                 kfree(ref);
774                                 kfree(ra);
775                                 ret = -ENOMEM;
776                                 goto out;
777                         }
778                         /*
779                          * This is the root that is modifying us, so it's the
780                          * one we want to lookup below when we modify the
781                          * re->num_refs.
782                          */
783                         ref_root = generic_ref->real_root;
784                         re->root_objectid = generic_ref->real_root;
785                         re->num_refs = 0;
786                 }
787
788                 spin_lock(&fs_info->ref_verify_lock);
789                 be = lookup_block_entry(&fs_info->block_tree, bytenr);
790                 if (!be) {
791                         btrfs_err(fs_info,
792 "trying to do action %d to bytenr %llu num_bytes %llu but there is no existing entry!",
793                                   action, bytenr, num_bytes);
794                         dump_ref_action(fs_info, ra);
795                         kfree(ref);
796                         kfree(ra);
797                         kfree(re);
798                         goto out_unlock;
799                 } else if (be->num_refs == 0) {
800                         btrfs_err(fs_info,
801                 "trying to do action %d for a bytenr that has 0 total references",
802                                 action);
803                         dump_block_entry(fs_info, be);
804                         dump_ref_action(fs_info, ra);
805                         kfree(ref);
806                         kfree(ra);
807                         kfree(re);
808                         goto out_unlock;
809                 }
810
811                 if (!parent) {
812                         tmp = insert_root_entry(&be->roots, re);
813                         if (tmp) {
814                                 kfree(re);
815                                 re = tmp;
816                         }
817                 }
818         }
819
820         exist = insert_ref_entry(&be->refs, ref);
821         if (exist) {
822                 if (action == BTRFS_DROP_DELAYED_REF) {
823                         if (exist->num_refs == 0) {
824                                 btrfs_err(fs_info,
825 "dropping a ref for a existing root that doesn't have a ref on the block");
826                                 dump_block_entry(fs_info, be);
827                                 dump_ref_action(fs_info, ra);
828                                 kfree(ref);
829                                 kfree(ra);
830                                 goto out_unlock;
831                         }
832                         exist->num_refs--;
833                         if (exist->num_refs == 0) {
834                                 rb_erase(&exist->node, &be->refs);
835                                 kfree(exist);
836                         }
837                 } else if (!be->metadata) {
838                         exist->num_refs++;
839                 } else {
840                         btrfs_err(fs_info,
841 "attempting to add another ref for an existing ref on a tree block");
842                         dump_block_entry(fs_info, be);
843                         dump_ref_action(fs_info, ra);
844                         kfree(ref);
845                         kfree(ra);
846                         goto out_unlock;
847                 }
848                 kfree(ref);
849         } else {
850                 if (action == BTRFS_DROP_DELAYED_REF) {
851                         btrfs_err(fs_info,
852 "dropping a ref for a root that doesn't have a ref on the block");
853                         dump_block_entry(fs_info, be);
854                         dump_ref_action(fs_info, ra);
855                         kfree(ref);
856                         kfree(ra);
857                         goto out_unlock;
858                 }
859         }
860
861         if (!parent && !re) {
862                 re = lookup_root_entry(&be->roots, ref_root);
863                 if (!re) {
864                         /*
865                          * This shouldn't happen because we will add our re
866                          * above when we lookup the be with !parent, but just in
867                          * case catch this case so we don't panic because I
868                          * didn't think of some other corner case.
869                          */
870                         btrfs_err(fs_info, "failed to find root %llu for %llu",
871                                   generic_ref->real_root, be->bytenr);
872                         dump_block_entry(fs_info, be);
873                         dump_ref_action(fs_info, ra);
874                         kfree(ra);
875                         goto out_unlock;
876                 }
877         }
878         if (action == BTRFS_DROP_DELAYED_REF) {
879                 if (re)
880                         re->num_refs--;
881                 be->num_refs--;
882         } else if (action == BTRFS_ADD_DELAYED_REF) {
883                 be->num_refs++;
884                 if (re)
885                         re->num_refs++;
886         }
887         list_add_tail(&ra->list, &be->actions);
888         ret = 0;
889 out_unlock:
890         spin_unlock(&fs_info->ref_verify_lock);
891 out:
892         if (ret) {
893                 btrfs_free_ref_cache(fs_info);
894                 btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
895         }
896         return ret;
897 }
898
899 /* Free up the ref cache */
900 void btrfs_free_ref_cache(struct btrfs_fs_info *fs_info)
901 {
902         struct block_entry *be;
903         struct rb_node *n;
904
905         if (!btrfs_test_opt(fs_info, REF_VERIFY))
906                 return;
907
908         spin_lock(&fs_info->ref_verify_lock);
909         while ((n = rb_first(&fs_info->block_tree))) {
910                 be = rb_entry(n, struct block_entry, node);
911                 rb_erase(&be->node, &fs_info->block_tree);
912                 free_block_entry(be);
913                 cond_resched_lock(&fs_info->ref_verify_lock);
914         }
915         spin_unlock(&fs_info->ref_verify_lock);
916 }
917
918 void btrfs_free_ref_tree_range(struct btrfs_fs_info *fs_info, u64 start,
919                                u64 len)
920 {
921         struct block_entry *be = NULL, *entry;
922         struct rb_node *n;
923
924         if (!btrfs_test_opt(fs_info, REF_VERIFY))
925                 return;
926
927         spin_lock(&fs_info->ref_verify_lock);
928         n = fs_info->block_tree.rb_node;
929         while (n) {
930                 entry = rb_entry(n, struct block_entry, node);
931                 if (entry->bytenr < start) {
932                         n = n->rb_right;
933                 } else if (entry->bytenr > start) {
934                         n = n->rb_left;
935                 } else {
936                         be = entry;
937                         break;
938                 }
939                 /* We want to get as close to start as possible */
940                 if (be == NULL ||
941                     (entry->bytenr < start && be->bytenr > start) ||
942                     (entry->bytenr < start && entry->bytenr > be->bytenr))
943                         be = entry;
944         }
945
946         /*
947          * Could have an empty block group, maybe have something to check for
948          * this case to verify we were actually empty?
949          */
950         if (!be) {
951                 spin_unlock(&fs_info->ref_verify_lock);
952                 return;
953         }
954
955         n = &be->node;
956         while (n) {
957                 be = rb_entry(n, struct block_entry, node);
958                 n = rb_next(n);
959                 if (be->bytenr < start && be->bytenr + be->len > start) {
960                         btrfs_err(fs_info,
961                                 "block entry overlaps a block group [%llu,%llu]!",
962                                 start, len);
963                         dump_block_entry(fs_info, be);
964                         continue;
965                 }
966                 if (be->bytenr < start)
967                         continue;
968                 if (be->bytenr >= start + len)
969                         break;
970                 if (be->bytenr + be->len > start + len) {
971                         btrfs_err(fs_info,
972                                 "block entry overlaps a block group [%llu,%llu]!",
973                                 start, len);
974                         dump_block_entry(fs_info, be);
975                 }
976                 rb_erase(&be->node, &fs_info->block_tree);
977                 free_block_entry(be);
978         }
979         spin_unlock(&fs_info->ref_verify_lock);
980 }
981
982 /* Walk down all roots and build the ref tree, meant to be called at mount */
983 int btrfs_build_ref_tree(struct btrfs_fs_info *fs_info)
984 {
985         struct btrfs_root *extent_root;
986         struct btrfs_path *path;
987         struct extent_buffer *eb;
988         int tree_block_level = 0;
989         u64 bytenr = 0, num_bytes = 0;
990         int ret, level;
991
992         if (!btrfs_test_opt(fs_info, REF_VERIFY))
993                 return 0;
994
995         path = btrfs_alloc_path();
996         if (!path)
997                 return -ENOMEM;
998
999         extent_root = btrfs_extent_root(fs_info, 0);
1000         eb = btrfs_read_lock_root_node(extent_root);
1001         level = btrfs_header_level(eb);
1002         path->nodes[level] = eb;
1003         path->slots[level] = 0;
1004         path->locks[level] = BTRFS_READ_LOCK;
1005
1006         while (1) {
1007                 /*
1008                  * We have to keep track of the bytenr/num_bytes we last hit
1009                  * because we could have run out of space for an inline ref, and
1010                  * would have had to added a ref key item which may appear on a
1011                  * different leaf from the original extent item.
1012                  */
1013                 ret = walk_down_tree(extent_root, path, level,
1014                                      &bytenr, &num_bytes, &tree_block_level);
1015                 if (ret)
1016                         break;
1017                 ret = walk_up_tree(path, &level);
1018                 if (ret < 0)
1019                         break;
1020                 if (ret > 0) {
1021                         ret = 0;
1022                         break;
1023                 }
1024         }
1025         if (ret) {
1026                 btrfs_free_ref_cache(fs_info);
1027                 btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
1028         }
1029         btrfs_free_path(path);
1030         return ret;
1031 }