device-dax/kmem: use struct_size()
[linux-2.6-microblaze.git] / fs / btrfs / reada.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/slab.h>
11 #include <linux/workqueue.h>
12 #include "ctree.h"
13 #include "volumes.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "dev-replace.h"
17 #include "block-group.h"
18
19 #undef DEBUG
20
21 /*
22  * This is the implementation for the generic read ahead framework.
23  *
24  * To trigger a readahead, btrfs_reada_add must be called. It will start
25  * a read ahead for the given range [start, end) on tree root. The returned
26  * handle can either be used to wait on the readahead to finish
27  * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
28  *
29  * The read ahead works as follows:
30  * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
31  * reada_start_machine will then search for extents to prefetch and trigger
32  * some reads. When a read finishes for a node, all contained node/leaf
33  * pointers that lie in the given range will also be enqueued. The reads will
34  * be triggered in sequential order, thus giving a big win over a naive
35  * enumeration. It will also make use of multi-device layouts. Each disk
36  * will have its on read pointer and all disks will by utilized in parallel.
37  * Also will no two disks read both sides of a mirror simultaneously, as this
38  * would waste seeking capacity. Instead both disks will read different parts
39  * of the filesystem.
40  * Any number of readaheads can be started in parallel. The read order will be
41  * determined globally, i.e. 2 parallel readaheads will normally finish faster
42  * than the 2 started one after another.
43  */
44
45 #define MAX_IN_FLIGHT 6
46
47 struct reada_extctl {
48         struct list_head        list;
49         struct reada_control    *rc;
50         u64                     generation;
51 };
52
53 struct reada_extent {
54         u64                     logical;
55         struct btrfs_key        top;
56         struct list_head        extctl;
57         int                     refcnt;
58         spinlock_t              lock;
59         struct reada_zone       *zones[BTRFS_MAX_MIRRORS];
60         int                     nzones;
61         int                     scheduled;
62 };
63
64 struct reada_zone {
65         u64                     start;
66         u64                     end;
67         u64                     elems;
68         struct list_head        list;
69         spinlock_t              lock;
70         int                     locked;
71         struct btrfs_device     *device;
72         struct btrfs_device     *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
73                                                            * self */
74         int                     ndevs;
75         struct kref             refcnt;
76 };
77
78 struct reada_machine_work {
79         struct btrfs_work       work;
80         struct btrfs_fs_info    *fs_info;
81 };
82
83 static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
84 static void reada_control_release(struct kref *kref);
85 static void reada_zone_release(struct kref *kref);
86 static void reada_start_machine(struct btrfs_fs_info *fs_info);
87 static void __reada_start_machine(struct btrfs_fs_info *fs_info);
88
89 static int reada_add_block(struct reada_control *rc, u64 logical,
90                            struct btrfs_key *top, u64 generation);
91
92 /* recurses */
93 /* in case of err, eb might be NULL */
94 static void __readahead_hook(struct btrfs_fs_info *fs_info,
95                              struct reada_extent *re, struct extent_buffer *eb,
96                              int err)
97 {
98         int nritems;
99         int i;
100         u64 bytenr;
101         u64 generation;
102         struct list_head list;
103
104         spin_lock(&re->lock);
105         /*
106          * just take the full list from the extent. afterwards we
107          * don't need the lock anymore
108          */
109         list_replace_init(&re->extctl, &list);
110         re->scheduled = 0;
111         spin_unlock(&re->lock);
112
113         /*
114          * this is the error case, the extent buffer has not been
115          * read correctly. We won't access anything from it and
116          * just cleanup our data structures. Effectively this will
117          * cut the branch below this node from read ahead.
118          */
119         if (err)
120                 goto cleanup;
121
122         /*
123          * FIXME: currently we just set nritems to 0 if this is a leaf,
124          * effectively ignoring the content. In a next step we could
125          * trigger more readahead depending from the content, e.g.
126          * fetch the checksums for the extents in the leaf.
127          */
128         if (!btrfs_header_level(eb))
129                 goto cleanup;
130
131         nritems = btrfs_header_nritems(eb);
132         generation = btrfs_header_generation(eb);
133         for (i = 0; i < nritems; i++) {
134                 struct reada_extctl *rec;
135                 u64 n_gen;
136                 struct btrfs_key key;
137                 struct btrfs_key next_key;
138
139                 btrfs_node_key_to_cpu(eb, &key, i);
140                 if (i + 1 < nritems)
141                         btrfs_node_key_to_cpu(eb, &next_key, i + 1);
142                 else
143                         next_key = re->top;
144                 bytenr = btrfs_node_blockptr(eb, i);
145                 n_gen = btrfs_node_ptr_generation(eb, i);
146
147                 list_for_each_entry(rec, &list, list) {
148                         struct reada_control *rc = rec->rc;
149
150                         /*
151                          * if the generation doesn't match, just ignore this
152                          * extctl. This will probably cut off a branch from
153                          * prefetch. Alternatively one could start a new (sub-)
154                          * prefetch for this branch, starting again from root.
155                          * FIXME: move the generation check out of this loop
156                          */
157 #ifdef DEBUG
158                         if (rec->generation != generation) {
159                                 btrfs_debug(fs_info,
160                                             "generation mismatch for (%llu,%d,%llu) %llu != %llu",
161                                             key.objectid, key.type, key.offset,
162                                             rec->generation, generation);
163                         }
164 #endif
165                         if (rec->generation == generation &&
166                             btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
167                             btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
168                                 reada_add_block(rc, bytenr, &next_key, n_gen);
169                 }
170         }
171
172 cleanup:
173         /*
174          * free extctl records
175          */
176         while (!list_empty(&list)) {
177                 struct reada_control *rc;
178                 struct reada_extctl *rec;
179
180                 rec = list_first_entry(&list, struct reada_extctl, list);
181                 list_del(&rec->list);
182                 rc = rec->rc;
183                 kfree(rec);
184
185                 kref_get(&rc->refcnt);
186                 if (atomic_dec_and_test(&rc->elems)) {
187                         kref_put(&rc->refcnt, reada_control_release);
188                         wake_up(&rc->wait);
189                 }
190                 kref_put(&rc->refcnt, reada_control_release);
191
192                 reada_extent_put(fs_info, re);  /* one ref for each entry */
193         }
194
195         return;
196 }
197
198 int btree_readahead_hook(struct extent_buffer *eb, int err)
199 {
200         struct btrfs_fs_info *fs_info = eb->fs_info;
201         int ret = 0;
202         struct reada_extent *re;
203
204         /* find extent */
205         spin_lock(&fs_info->reada_lock);
206         re = radix_tree_lookup(&fs_info->reada_tree,
207                                eb->start >> PAGE_SHIFT);
208         if (re)
209                 re->refcnt++;
210         spin_unlock(&fs_info->reada_lock);
211         if (!re) {
212                 ret = -1;
213                 goto start_machine;
214         }
215
216         __readahead_hook(fs_info, re, eb, err);
217         reada_extent_put(fs_info, re);  /* our ref */
218
219 start_machine:
220         reada_start_machine(fs_info);
221         return ret;
222 }
223
224 static struct reada_zone *reada_find_zone(struct btrfs_device *dev, u64 logical,
225                                           struct btrfs_bio *bbio)
226 {
227         struct btrfs_fs_info *fs_info = dev->fs_info;
228         int ret;
229         struct reada_zone *zone;
230         struct btrfs_block_group *cache = NULL;
231         u64 start;
232         u64 end;
233         int i;
234
235         zone = NULL;
236         spin_lock(&fs_info->reada_lock);
237         ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
238                                      logical >> PAGE_SHIFT, 1);
239         if (ret == 1 && logical >= zone->start && logical <= zone->end) {
240                 kref_get(&zone->refcnt);
241                 spin_unlock(&fs_info->reada_lock);
242                 return zone;
243         }
244
245         spin_unlock(&fs_info->reada_lock);
246
247         cache = btrfs_lookup_block_group(fs_info, logical);
248         if (!cache)
249                 return NULL;
250
251         start = cache->start;
252         end = start + cache->length - 1;
253         btrfs_put_block_group(cache);
254
255         zone = kzalloc(sizeof(*zone), GFP_KERNEL);
256         if (!zone)
257                 return NULL;
258
259         ret = radix_tree_preload(GFP_KERNEL);
260         if (ret) {
261                 kfree(zone);
262                 return NULL;
263         }
264
265         zone->start = start;
266         zone->end = end;
267         INIT_LIST_HEAD(&zone->list);
268         spin_lock_init(&zone->lock);
269         zone->locked = 0;
270         kref_init(&zone->refcnt);
271         zone->elems = 0;
272         zone->device = dev; /* our device always sits at index 0 */
273         for (i = 0; i < bbio->num_stripes; ++i) {
274                 /* bounds have already been checked */
275                 zone->devs[i] = bbio->stripes[i].dev;
276         }
277         zone->ndevs = bbio->num_stripes;
278
279         spin_lock(&fs_info->reada_lock);
280         ret = radix_tree_insert(&dev->reada_zones,
281                                 (unsigned long)(zone->end >> PAGE_SHIFT),
282                                 zone);
283
284         if (ret == -EEXIST) {
285                 kfree(zone);
286                 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
287                                              logical >> PAGE_SHIFT, 1);
288                 if (ret == 1 && logical >= zone->start && logical <= zone->end)
289                         kref_get(&zone->refcnt);
290                 else
291                         zone = NULL;
292         }
293         spin_unlock(&fs_info->reada_lock);
294         radix_tree_preload_end();
295
296         return zone;
297 }
298
299 static struct reada_extent *reada_find_extent(struct btrfs_fs_info *fs_info,
300                                               u64 logical,
301                                               struct btrfs_key *top)
302 {
303         int ret;
304         struct reada_extent *re = NULL;
305         struct reada_extent *re_exist = NULL;
306         struct btrfs_bio *bbio = NULL;
307         struct btrfs_device *dev;
308         struct btrfs_device *prev_dev;
309         u64 length;
310         int real_stripes;
311         int nzones = 0;
312         unsigned long index = logical >> PAGE_SHIFT;
313         int dev_replace_is_ongoing;
314         int have_zone = 0;
315
316         spin_lock(&fs_info->reada_lock);
317         re = radix_tree_lookup(&fs_info->reada_tree, index);
318         if (re)
319                 re->refcnt++;
320         spin_unlock(&fs_info->reada_lock);
321
322         if (re)
323                 return re;
324
325         re = kzalloc(sizeof(*re), GFP_KERNEL);
326         if (!re)
327                 return NULL;
328
329         re->logical = logical;
330         re->top = *top;
331         INIT_LIST_HEAD(&re->extctl);
332         spin_lock_init(&re->lock);
333         re->refcnt = 1;
334
335         /*
336          * map block
337          */
338         length = fs_info->nodesize;
339         ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
340                         &length, &bbio, 0);
341         if (ret || !bbio || length < fs_info->nodesize)
342                 goto error;
343
344         if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
345                 btrfs_err(fs_info,
346                            "readahead: more than %d copies not supported",
347                            BTRFS_MAX_MIRRORS);
348                 goto error;
349         }
350
351         real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
352         for (nzones = 0; nzones < real_stripes; ++nzones) {
353                 struct reada_zone *zone;
354
355                 dev = bbio->stripes[nzones].dev;
356
357                 /* cannot read ahead on missing device. */
358                 if (!dev->bdev)
359                         continue;
360
361                 zone = reada_find_zone(dev, logical, bbio);
362                 if (!zone)
363                         continue;
364
365                 re->zones[re->nzones++] = zone;
366                 spin_lock(&zone->lock);
367                 if (!zone->elems)
368                         kref_get(&zone->refcnt);
369                 ++zone->elems;
370                 spin_unlock(&zone->lock);
371                 spin_lock(&fs_info->reada_lock);
372                 kref_put(&zone->refcnt, reada_zone_release);
373                 spin_unlock(&fs_info->reada_lock);
374         }
375         if (re->nzones == 0) {
376                 /* not a single zone found, error and out */
377                 goto error;
378         }
379
380         /* Insert extent in reada tree + all per-device trees, all or nothing */
381         down_read(&fs_info->dev_replace.rwsem);
382         ret = radix_tree_preload(GFP_KERNEL);
383         if (ret) {
384                 up_read(&fs_info->dev_replace.rwsem);
385                 goto error;
386         }
387
388         spin_lock(&fs_info->reada_lock);
389         ret = radix_tree_insert(&fs_info->reada_tree, index, re);
390         if (ret == -EEXIST) {
391                 re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
392                 re_exist->refcnt++;
393                 spin_unlock(&fs_info->reada_lock);
394                 radix_tree_preload_end();
395                 up_read(&fs_info->dev_replace.rwsem);
396                 goto error;
397         }
398         if (ret) {
399                 spin_unlock(&fs_info->reada_lock);
400                 radix_tree_preload_end();
401                 up_read(&fs_info->dev_replace.rwsem);
402                 goto error;
403         }
404         radix_tree_preload_end();
405         prev_dev = NULL;
406         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
407                         &fs_info->dev_replace);
408         for (nzones = 0; nzones < re->nzones; ++nzones) {
409                 dev = re->zones[nzones]->device;
410
411                 if (dev == prev_dev) {
412                         /*
413                          * in case of DUP, just add the first zone. As both
414                          * are on the same device, there's nothing to gain
415                          * from adding both.
416                          * Also, it wouldn't work, as the tree is per device
417                          * and adding would fail with EEXIST
418                          */
419                         continue;
420                 }
421                 if (!dev->bdev)
422                         continue;
423
424                 if (test_bit(BTRFS_DEV_STATE_NO_READA, &dev->dev_state))
425                         continue;
426
427                 if (dev_replace_is_ongoing &&
428                     dev == fs_info->dev_replace.tgtdev) {
429                         /*
430                          * as this device is selected for reading only as
431                          * a last resort, skip it for read ahead.
432                          */
433                         continue;
434                 }
435                 prev_dev = dev;
436                 ret = radix_tree_insert(&dev->reada_extents, index, re);
437                 if (ret) {
438                         while (--nzones >= 0) {
439                                 dev = re->zones[nzones]->device;
440                                 BUG_ON(dev == NULL);
441                                 /* ignore whether the entry was inserted */
442                                 radix_tree_delete(&dev->reada_extents, index);
443                         }
444                         radix_tree_delete(&fs_info->reada_tree, index);
445                         spin_unlock(&fs_info->reada_lock);
446                         up_read(&fs_info->dev_replace.rwsem);
447                         goto error;
448                 }
449                 have_zone = 1;
450         }
451         if (!have_zone)
452                 radix_tree_delete(&fs_info->reada_tree, index);
453         spin_unlock(&fs_info->reada_lock);
454         up_read(&fs_info->dev_replace.rwsem);
455
456         if (!have_zone)
457                 goto error;
458
459         btrfs_put_bbio(bbio);
460         return re;
461
462 error:
463         for (nzones = 0; nzones < re->nzones; ++nzones) {
464                 struct reada_zone *zone;
465
466                 zone = re->zones[nzones];
467                 kref_get(&zone->refcnt);
468                 spin_lock(&zone->lock);
469                 --zone->elems;
470                 if (zone->elems == 0) {
471                         /*
472                          * no fs_info->reada_lock needed, as this can't be
473                          * the last ref
474                          */
475                         kref_put(&zone->refcnt, reada_zone_release);
476                 }
477                 spin_unlock(&zone->lock);
478
479                 spin_lock(&fs_info->reada_lock);
480                 kref_put(&zone->refcnt, reada_zone_release);
481                 spin_unlock(&fs_info->reada_lock);
482         }
483         btrfs_put_bbio(bbio);
484         kfree(re);
485         return re_exist;
486 }
487
488 static void reada_extent_put(struct btrfs_fs_info *fs_info,
489                              struct reada_extent *re)
490 {
491         int i;
492         unsigned long index = re->logical >> PAGE_SHIFT;
493
494         spin_lock(&fs_info->reada_lock);
495         if (--re->refcnt) {
496                 spin_unlock(&fs_info->reada_lock);
497                 return;
498         }
499
500         radix_tree_delete(&fs_info->reada_tree, index);
501         for (i = 0; i < re->nzones; ++i) {
502                 struct reada_zone *zone = re->zones[i];
503
504                 radix_tree_delete(&zone->device->reada_extents, index);
505         }
506
507         spin_unlock(&fs_info->reada_lock);
508
509         for (i = 0; i < re->nzones; ++i) {
510                 struct reada_zone *zone = re->zones[i];
511
512                 kref_get(&zone->refcnt);
513                 spin_lock(&zone->lock);
514                 --zone->elems;
515                 if (zone->elems == 0) {
516                         /* no fs_info->reada_lock needed, as this can't be
517                          * the last ref */
518                         kref_put(&zone->refcnt, reada_zone_release);
519                 }
520                 spin_unlock(&zone->lock);
521
522                 spin_lock(&fs_info->reada_lock);
523                 kref_put(&zone->refcnt, reada_zone_release);
524                 spin_unlock(&fs_info->reada_lock);
525         }
526
527         kfree(re);
528 }
529
530 static void reada_zone_release(struct kref *kref)
531 {
532         struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
533
534         radix_tree_delete(&zone->device->reada_zones,
535                           zone->end >> PAGE_SHIFT);
536
537         kfree(zone);
538 }
539
540 static void reada_control_release(struct kref *kref)
541 {
542         struct reada_control *rc = container_of(kref, struct reada_control,
543                                                 refcnt);
544
545         kfree(rc);
546 }
547
548 static int reada_add_block(struct reada_control *rc, u64 logical,
549                            struct btrfs_key *top, u64 generation)
550 {
551         struct btrfs_fs_info *fs_info = rc->fs_info;
552         struct reada_extent *re;
553         struct reada_extctl *rec;
554
555         /* takes one ref */
556         re = reada_find_extent(fs_info, logical, top);
557         if (!re)
558                 return -1;
559
560         rec = kzalloc(sizeof(*rec), GFP_KERNEL);
561         if (!rec) {
562                 reada_extent_put(fs_info, re);
563                 return -ENOMEM;
564         }
565
566         rec->rc = rc;
567         rec->generation = generation;
568         atomic_inc(&rc->elems);
569
570         spin_lock(&re->lock);
571         list_add_tail(&rec->list, &re->extctl);
572         spin_unlock(&re->lock);
573
574         /* leave the ref on the extent */
575
576         return 0;
577 }
578
579 /*
580  * called with fs_info->reada_lock held
581  */
582 static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
583 {
584         int i;
585         unsigned long index = zone->end >> PAGE_SHIFT;
586
587         for (i = 0; i < zone->ndevs; ++i) {
588                 struct reada_zone *peer;
589                 peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
590                 if (peer && peer->device != zone->device)
591                         peer->locked = lock;
592         }
593 }
594
595 /*
596  * called with fs_info->reada_lock held
597  */
598 static int reada_pick_zone(struct btrfs_device *dev)
599 {
600         struct reada_zone *top_zone = NULL;
601         struct reada_zone *top_locked_zone = NULL;
602         u64 top_elems = 0;
603         u64 top_locked_elems = 0;
604         unsigned long index = 0;
605         int ret;
606
607         if (dev->reada_curr_zone) {
608                 reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
609                 kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
610                 dev->reada_curr_zone = NULL;
611         }
612         /* pick the zone with the most elements */
613         while (1) {
614                 struct reada_zone *zone;
615
616                 ret = radix_tree_gang_lookup(&dev->reada_zones,
617                                              (void **)&zone, index, 1);
618                 if (ret == 0)
619                         break;
620                 index = (zone->end >> PAGE_SHIFT) + 1;
621                 if (zone->locked) {
622                         if (zone->elems > top_locked_elems) {
623                                 top_locked_elems = zone->elems;
624                                 top_locked_zone = zone;
625                         }
626                 } else {
627                         if (zone->elems > top_elems) {
628                                 top_elems = zone->elems;
629                                 top_zone = zone;
630                         }
631                 }
632         }
633         if (top_zone)
634                 dev->reada_curr_zone = top_zone;
635         else if (top_locked_zone)
636                 dev->reada_curr_zone = top_locked_zone;
637         else
638                 return 0;
639
640         dev->reada_next = dev->reada_curr_zone->start;
641         kref_get(&dev->reada_curr_zone->refcnt);
642         reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
643
644         return 1;
645 }
646
647 static int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
648                                     int mirror_num, struct extent_buffer **eb)
649 {
650         struct extent_buffer *buf = NULL;
651         int ret;
652
653         buf = btrfs_find_create_tree_block(fs_info, bytenr);
654         if (IS_ERR(buf))
655                 return 0;
656
657         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
658
659         ret = read_extent_buffer_pages(buf, WAIT_PAGE_LOCK, mirror_num);
660         if (ret) {
661                 free_extent_buffer_stale(buf);
662                 return ret;
663         }
664
665         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
666                 free_extent_buffer_stale(buf);
667                 return -EIO;
668         } else if (extent_buffer_uptodate(buf)) {
669                 *eb = buf;
670         } else {
671                 free_extent_buffer(buf);
672         }
673         return 0;
674 }
675
676 static int reada_start_machine_dev(struct btrfs_device *dev)
677 {
678         struct btrfs_fs_info *fs_info = dev->fs_info;
679         struct reada_extent *re = NULL;
680         int mirror_num = 0;
681         struct extent_buffer *eb = NULL;
682         u64 logical;
683         int ret;
684         int i;
685
686         spin_lock(&fs_info->reada_lock);
687         if (dev->reada_curr_zone == NULL) {
688                 ret = reada_pick_zone(dev);
689                 if (!ret) {
690                         spin_unlock(&fs_info->reada_lock);
691                         return 0;
692                 }
693         }
694         /*
695          * FIXME currently we issue the reads one extent at a time. If we have
696          * a contiguous block of extents, we could also coagulate them or use
697          * plugging to speed things up
698          */
699         ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
700                                      dev->reada_next >> PAGE_SHIFT, 1);
701         if (ret == 0 || re->logical > dev->reada_curr_zone->end) {
702                 ret = reada_pick_zone(dev);
703                 if (!ret) {
704                         spin_unlock(&fs_info->reada_lock);
705                         return 0;
706                 }
707                 re = NULL;
708                 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
709                                         dev->reada_next >> PAGE_SHIFT, 1);
710         }
711         if (ret == 0) {
712                 spin_unlock(&fs_info->reada_lock);
713                 return 0;
714         }
715         dev->reada_next = re->logical + fs_info->nodesize;
716         re->refcnt++;
717
718         spin_unlock(&fs_info->reada_lock);
719
720         spin_lock(&re->lock);
721         if (re->scheduled || list_empty(&re->extctl)) {
722                 spin_unlock(&re->lock);
723                 reada_extent_put(fs_info, re);
724                 return 0;
725         }
726         re->scheduled = 1;
727         spin_unlock(&re->lock);
728
729         /*
730          * find mirror num
731          */
732         for (i = 0; i < re->nzones; ++i) {
733                 if (re->zones[i]->device == dev) {
734                         mirror_num = i + 1;
735                         break;
736                 }
737         }
738         logical = re->logical;
739
740         atomic_inc(&dev->reada_in_flight);
741         ret = reada_tree_block_flagged(fs_info, logical, mirror_num, &eb);
742         if (ret)
743                 __readahead_hook(fs_info, re, NULL, ret);
744         else if (eb)
745                 __readahead_hook(fs_info, re, eb, ret);
746
747         if (eb)
748                 free_extent_buffer(eb);
749
750         atomic_dec(&dev->reada_in_flight);
751         reada_extent_put(fs_info, re);
752
753         return 1;
754
755 }
756
757 static void reada_start_machine_worker(struct btrfs_work *work)
758 {
759         struct reada_machine_work *rmw;
760         int old_ioprio;
761
762         rmw = container_of(work, struct reada_machine_work, work);
763
764         old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
765                                        task_nice_ioprio(current));
766         set_task_ioprio(current, BTRFS_IOPRIO_READA);
767         __reada_start_machine(rmw->fs_info);
768         set_task_ioprio(current, old_ioprio);
769
770         atomic_dec(&rmw->fs_info->reada_works_cnt);
771
772         kfree(rmw);
773 }
774
775 /* Try to start up to 10k READA requests for a group of devices */
776 static int reada_start_for_fsdevs(struct btrfs_fs_devices *fs_devices)
777 {
778         u64 enqueued;
779         u64 total = 0;
780         struct btrfs_device *device;
781
782         do {
783                 enqueued = 0;
784                 list_for_each_entry(device, &fs_devices->devices, dev_list) {
785                         if (atomic_read(&device->reada_in_flight) <
786                             MAX_IN_FLIGHT)
787                                 enqueued += reada_start_machine_dev(device);
788                 }
789                 total += enqueued;
790         } while (enqueued && total < 10000);
791
792         return total;
793 }
794
795 static void __reada_start_machine(struct btrfs_fs_info *fs_info)
796 {
797         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
798         int i;
799         u64 enqueued = 0;
800
801         mutex_lock(&fs_devices->device_list_mutex);
802
803         enqueued += reada_start_for_fsdevs(fs_devices);
804         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
805                 enqueued += reada_start_for_fsdevs(seed_devs);
806
807         mutex_unlock(&fs_devices->device_list_mutex);
808         if (enqueued == 0)
809                 return;
810
811         /*
812          * If everything is already in the cache, this is effectively single
813          * threaded. To a) not hold the caller for too long and b) to utilize
814          * more cores, we broke the loop above after 10000 iterations and now
815          * enqueue to workers to finish it. This will distribute the load to
816          * the cores.
817          */
818         for (i = 0; i < 2; ++i) {
819                 reada_start_machine(fs_info);
820                 if (atomic_read(&fs_info->reada_works_cnt) >
821                     BTRFS_MAX_MIRRORS * 2)
822                         break;
823         }
824 }
825
826 static void reada_start_machine(struct btrfs_fs_info *fs_info)
827 {
828         struct reada_machine_work *rmw;
829
830         rmw = kzalloc(sizeof(*rmw), GFP_KERNEL);
831         if (!rmw) {
832                 /* FIXME we cannot handle this properly right now */
833                 BUG();
834         }
835         btrfs_init_work(&rmw->work, reada_start_machine_worker, NULL, NULL);
836         rmw->fs_info = fs_info;
837
838         btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
839         atomic_inc(&fs_info->reada_works_cnt);
840 }
841
842 #ifdef DEBUG
843 static void dump_devs(struct btrfs_fs_info *fs_info, int all)
844 {
845         struct btrfs_device *device;
846         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
847         unsigned long index;
848         int ret;
849         int i;
850         int j;
851         int cnt;
852
853         spin_lock(&fs_info->reada_lock);
854         list_for_each_entry(device, &fs_devices->devices, dev_list) {
855                 btrfs_debug(fs_info, "dev %lld has %d in flight", device->devid,
856                         atomic_read(&device->reada_in_flight));
857                 index = 0;
858                 while (1) {
859                         struct reada_zone *zone;
860                         ret = radix_tree_gang_lookup(&device->reada_zones,
861                                                      (void **)&zone, index, 1);
862                         if (ret == 0)
863                                 break;
864                         pr_debug("  zone %llu-%llu elems %llu locked %d devs",
865                                     zone->start, zone->end, zone->elems,
866                                     zone->locked);
867                         for (j = 0; j < zone->ndevs; ++j) {
868                                 pr_cont(" %lld",
869                                         zone->devs[j]->devid);
870                         }
871                         if (device->reada_curr_zone == zone)
872                                 pr_cont(" curr off %llu",
873                                         device->reada_next - zone->start);
874                         pr_cont("\n");
875                         index = (zone->end >> PAGE_SHIFT) + 1;
876                 }
877                 cnt = 0;
878                 index = 0;
879                 while (all) {
880                         struct reada_extent *re = NULL;
881
882                         ret = radix_tree_gang_lookup(&device->reada_extents,
883                                                      (void **)&re, index, 1);
884                         if (ret == 0)
885                                 break;
886                         pr_debug("  re: logical %llu size %u empty %d scheduled %d",
887                                 re->logical, fs_info->nodesize,
888                                 list_empty(&re->extctl), re->scheduled);
889
890                         for (i = 0; i < re->nzones; ++i) {
891                                 pr_cont(" zone %llu-%llu devs",
892                                         re->zones[i]->start,
893                                         re->zones[i]->end);
894                                 for (j = 0; j < re->zones[i]->ndevs; ++j) {
895                                         pr_cont(" %lld",
896                                                 re->zones[i]->devs[j]->devid);
897                                 }
898                         }
899                         pr_cont("\n");
900                         index = (re->logical >> PAGE_SHIFT) + 1;
901                         if (++cnt > 15)
902                                 break;
903                 }
904         }
905
906         index = 0;
907         cnt = 0;
908         while (all) {
909                 struct reada_extent *re = NULL;
910
911                 ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
912                                              index, 1);
913                 if (ret == 0)
914                         break;
915                 if (!re->scheduled) {
916                         index = (re->logical >> PAGE_SHIFT) + 1;
917                         continue;
918                 }
919                 pr_debug("re: logical %llu size %u list empty %d scheduled %d",
920                         re->logical, fs_info->nodesize,
921                         list_empty(&re->extctl), re->scheduled);
922                 for (i = 0; i < re->nzones; ++i) {
923                         pr_cont(" zone %llu-%llu devs",
924                                 re->zones[i]->start,
925                                 re->zones[i]->end);
926                         for (j = 0; j < re->zones[i]->ndevs; ++j) {
927                                 pr_cont(" %lld",
928                                        re->zones[i]->devs[j]->devid);
929                         }
930                 }
931                 pr_cont("\n");
932                 index = (re->logical >> PAGE_SHIFT) + 1;
933         }
934         spin_unlock(&fs_info->reada_lock);
935 }
936 #endif
937
938 /*
939  * interface
940  */
941 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
942                         struct btrfs_key *key_start, struct btrfs_key *key_end)
943 {
944         struct reada_control *rc;
945         u64 start;
946         u64 generation;
947         int ret;
948         struct extent_buffer *node;
949         static struct btrfs_key max_key = {
950                 .objectid = (u64)-1,
951                 .type = (u8)-1,
952                 .offset = (u64)-1
953         };
954
955         rc = kzalloc(sizeof(*rc), GFP_KERNEL);
956         if (!rc)
957                 return ERR_PTR(-ENOMEM);
958
959         rc->fs_info = root->fs_info;
960         rc->key_start = *key_start;
961         rc->key_end = *key_end;
962         atomic_set(&rc->elems, 0);
963         init_waitqueue_head(&rc->wait);
964         kref_init(&rc->refcnt);
965         kref_get(&rc->refcnt); /* one ref for having elements */
966
967         node = btrfs_root_node(root);
968         start = node->start;
969         generation = btrfs_header_generation(node);
970         free_extent_buffer(node);
971
972         ret = reada_add_block(rc, start, &max_key, generation);
973         if (ret) {
974                 kfree(rc);
975                 return ERR_PTR(ret);
976         }
977
978         reada_start_machine(root->fs_info);
979
980         return rc;
981 }
982
983 #ifdef DEBUG
984 int btrfs_reada_wait(void *handle)
985 {
986         struct reada_control *rc = handle;
987         struct btrfs_fs_info *fs_info = rc->fs_info;
988
989         while (atomic_read(&rc->elems)) {
990                 if (!atomic_read(&fs_info->reada_works_cnt))
991                         reada_start_machine(fs_info);
992                 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
993                                    5 * HZ);
994                 dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
995         }
996
997         dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
998
999         kref_put(&rc->refcnt, reada_control_release);
1000
1001         return 0;
1002 }
1003 #else
1004 int btrfs_reada_wait(void *handle)
1005 {
1006         struct reada_control *rc = handle;
1007         struct btrfs_fs_info *fs_info = rc->fs_info;
1008
1009         while (atomic_read(&rc->elems)) {
1010                 if (!atomic_read(&fs_info->reada_works_cnt))
1011                         reada_start_machine(fs_info);
1012                 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
1013                                    (HZ + 9) / 10);
1014         }
1015
1016         kref_put(&rc->refcnt, reada_control_release);
1017
1018         return 0;
1019 }
1020 #endif
1021
1022 void btrfs_reada_detach(void *handle)
1023 {
1024         struct reada_control *rc = handle;
1025
1026         kref_put(&rc->refcnt, reada_control_release);
1027 }
1028
1029 /*
1030  * Before removing a device (device replace or device remove ioctls), call this
1031  * function to wait for all existing readahead requests on the device and to
1032  * make sure no one queues more readahead requests for the device.
1033  *
1034  * Must be called without holding neither the device list mutex nor the device
1035  * replace semaphore, otherwise it will deadlock.
1036  */
1037 void btrfs_reada_remove_dev(struct btrfs_device *dev)
1038 {
1039         struct btrfs_fs_info *fs_info = dev->fs_info;
1040
1041         /* Serialize with readahead extent creation at reada_find_extent(). */
1042         spin_lock(&fs_info->reada_lock);
1043         set_bit(BTRFS_DEV_STATE_NO_READA, &dev->dev_state);
1044         spin_unlock(&fs_info->reada_lock);
1045
1046         /*
1047          * There might be readahead requests added to the radix trees which
1048          * were not yet added to the readahead work queue. We need to start
1049          * them and wait for their completion, otherwise we can end up with
1050          * use-after-free problems when dropping the last reference on the
1051          * readahead extents and their zones, as they need to access the
1052          * device structure.
1053          */
1054         reada_start_machine(fs_info);
1055         btrfs_flush_workqueue(fs_info->readahead_workers);
1056 }
1057
1058 /*
1059  * If when removing a device (device replace or device remove ioctls) an error
1060  * happens after calling btrfs_reada_remove_dev(), call this to undo what that
1061  * function did. This is safe to call even if btrfs_reada_remove_dev() was not
1062  * called before.
1063  */
1064 void btrfs_reada_undo_remove_dev(struct btrfs_device *dev)
1065 {
1066         spin_lock(&dev->fs_info->reada_lock);
1067         clear_bit(BTRFS_DEV_STATE_NO_READA, &dev->dev_state);
1068         spin_unlock(&dev->fs_info->reada_lock);
1069 }