1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2011 STRATO. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/slab.h>
11 #include <linux/workqueue.h>
15 #include "transaction.h"
16 #include "dev-replace.h"
17 #include "block-group.h"
22 * This is the implementation for the generic read ahead framework.
24 * To trigger a readahead, btrfs_reada_add must be called. It will start
25 * a read ahead for the given range [start, end) on tree root. The returned
26 * handle can either be used to wait on the readahead to finish
27 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
29 * The read ahead works as follows:
30 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
31 * reada_start_machine will then search for extents to prefetch and trigger
32 * some reads. When a read finishes for a node, all contained node/leaf
33 * pointers that lie in the given range will also be enqueued. The reads will
34 * be triggered in sequential order, thus giving a big win over a naive
35 * enumeration. It will also make use of multi-device layouts. Each disk
36 * will have its on read pointer and all disks will by utilized in parallel.
37 * Also will no two disks read both sides of a mirror simultaneously, as this
38 * would waste seeking capacity. Instead both disks will read different parts
40 * Any number of readaheads can be started in parallel. The read order will be
41 * determined globally, i.e. 2 parallel readaheads will normally finish faster
42 * than the 2 started one after another.
45 #define MAX_IN_FLIGHT 6
48 struct list_head list;
49 struct reada_control *rc;
56 struct list_head extctl;
59 struct reada_zone *zones[BTRFS_MAX_MIRRORS];
68 struct list_head list;
71 struct btrfs_device *device;
72 struct btrfs_device *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
78 struct reada_machine_work {
79 struct btrfs_work work;
80 struct btrfs_fs_info *fs_info;
83 static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
84 static void reada_control_release(struct kref *kref);
85 static void reada_zone_release(struct kref *kref);
86 static void reada_start_machine(struct btrfs_fs_info *fs_info);
87 static void __reada_start_machine(struct btrfs_fs_info *fs_info);
89 static int reada_add_block(struct reada_control *rc, u64 logical,
90 struct btrfs_key *top, u64 generation);
93 /* in case of err, eb might be NULL */
94 static void __readahead_hook(struct btrfs_fs_info *fs_info,
95 struct reada_extent *re, struct extent_buffer *eb,
102 struct list_head list;
104 spin_lock(&re->lock);
106 * just take the full list from the extent. afterwards we
107 * don't need the lock anymore
109 list_replace_init(&re->extctl, &list);
111 spin_unlock(&re->lock);
114 * this is the error case, the extent buffer has not been
115 * read correctly. We won't access anything from it and
116 * just cleanup our data structures. Effectively this will
117 * cut the branch below this node from read ahead.
123 * FIXME: currently we just set nritems to 0 if this is a leaf,
124 * effectively ignoring the content. In a next step we could
125 * trigger more readahead depending from the content, e.g.
126 * fetch the checksums for the extents in the leaf.
128 if (!btrfs_header_level(eb))
131 nritems = btrfs_header_nritems(eb);
132 generation = btrfs_header_generation(eb);
133 for (i = 0; i < nritems; i++) {
134 struct reada_extctl *rec;
136 struct btrfs_key key;
137 struct btrfs_key next_key;
139 btrfs_node_key_to_cpu(eb, &key, i);
141 btrfs_node_key_to_cpu(eb, &next_key, i + 1);
144 bytenr = btrfs_node_blockptr(eb, i);
145 n_gen = btrfs_node_ptr_generation(eb, i);
147 list_for_each_entry(rec, &list, list) {
148 struct reada_control *rc = rec->rc;
151 * if the generation doesn't match, just ignore this
152 * extctl. This will probably cut off a branch from
153 * prefetch. Alternatively one could start a new (sub-)
154 * prefetch for this branch, starting again from root.
155 * FIXME: move the generation check out of this loop
158 if (rec->generation != generation) {
160 "generation mismatch for (%llu,%d,%llu) %llu != %llu",
161 key.objectid, key.type, key.offset,
162 rec->generation, generation);
165 if (rec->generation == generation &&
166 btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
167 btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
168 reada_add_block(rc, bytenr, &next_key, n_gen);
174 * free extctl records
176 while (!list_empty(&list)) {
177 struct reada_control *rc;
178 struct reada_extctl *rec;
180 rec = list_first_entry(&list, struct reada_extctl, list);
181 list_del(&rec->list);
185 kref_get(&rc->refcnt);
186 if (atomic_dec_and_test(&rc->elems)) {
187 kref_put(&rc->refcnt, reada_control_release);
190 kref_put(&rc->refcnt, reada_control_release);
192 reada_extent_put(fs_info, re); /* one ref for each entry */
198 int btree_readahead_hook(struct extent_buffer *eb, int err)
200 struct btrfs_fs_info *fs_info = eb->fs_info;
202 struct reada_extent *re;
205 spin_lock(&fs_info->reada_lock);
206 re = radix_tree_lookup(&fs_info->reada_tree,
207 eb->start >> PAGE_SHIFT);
210 spin_unlock(&fs_info->reada_lock);
216 __readahead_hook(fs_info, re, eb, err);
217 reada_extent_put(fs_info, re); /* our ref */
220 reada_start_machine(fs_info);
224 static struct reada_zone *reada_find_zone(struct btrfs_device *dev, u64 logical,
225 struct btrfs_bio *bbio)
227 struct btrfs_fs_info *fs_info = dev->fs_info;
229 struct reada_zone *zone;
230 struct btrfs_block_group *cache = NULL;
236 spin_lock(&fs_info->reada_lock);
237 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
238 logical >> PAGE_SHIFT, 1);
239 if (ret == 1 && logical >= zone->start && logical <= zone->end) {
240 kref_get(&zone->refcnt);
241 spin_unlock(&fs_info->reada_lock);
245 spin_unlock(&fs_info->reada_lock);
247 cache = btrfs_lookup_block_group(fs_info, logical);
251 start = cache->start;
252 end = start + cache->length - 1;
253 btrfs_put_block_group(cache);
255 zone = kzalloc(sizeof(*zone), GFP_KERNEL);
259 ret = radix_tree_preload(GFP_KERNEL);
267 INIT_LIST_HEAD(&zone->list);
268 spin_lock_init(&zone->lock);
270 kref_init(&zone->refcnt);
272 zone->device = dev; /* our device always sits at index 0 */
273 for (i = 0; i < bbio->num_stripes; ++i) {
274 /* bounds have already been checked */
275 zone->devs[i] = bbio->stripes[i].dev;
277 zone->ndevs = bbio->num_stripes;
279 spin_lock(&fs_info->reada_lock);
280 ret = radix_tree_insert(&dev->reada_zones,
281 (unsigned long)(zone->end >> PAGE_SHIFT),
284 if (ret == -EEXIST) {
286 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
287 logical >> PAGE_SHIFT, 1);
288 if (ret == 1 && logical >= zone->start && logical <= zone->end)
289 kref_get(&zone->refcnt);
293 spin_unlock(&fs_info->reada_lock);
294 radix_tree_preload_end();
299 static struct reada_extent *reada_find_extent(struct btrfs_fs_info *fs_info,
301 struct btrfs_key *top)
304 struct reada_extent *re = NULL;
305 struct reada_extent *re_exist = NULL;
306 struct btrfs_bio *bbio = NULL;
307 struct btrfs_device *dev;
308 struct btrfs_device *prev_dev;
312 unsigned long index = logical >> PAGE_SHIFT;
313 int dev_replace_is_ongoing;
316 spin_lock(&fs_info->reada_lock);
317 re = radix_tree_lookup(&fs_info->reada_tree, index);
320 spin_unlock(&fs_info->reada_lock);
325 re = kzalloc(sizeof(*re), GFP_KERNEL);
329 re->logical = logical;
331 INIT_LIST_HEAD(&re->extctl);
332 spin_lock_init(&re->lock);
338 length = fs_info->nodesize;
339 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
341 if (ret || !bbio || length < fs_info->nodesize)
344 if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
346 "readahead: more than %d copies not supported",
351 real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
352 for (nzones = 0; nzones < real_stripes; ++nzones) {
353 struct reada_zone *zone;
355 dev = bbio->stripes[nzones].dev;
357 /* cannot read ahead on missing device. */
361 zone = reada_find_zone(dev, logical, bbio);
365 re->zones[re->nzones++] = zone;
366 spin_lock(&zone->lock);
368 kref_get(&zone->refcnt);
370 spin_unlock(&zone->lock);
371 spin_lock(&fs_info->reada_lock);
372 kref_put(&zone->refcnt, reada_zone_release);
373 spin_unlock(&fs_info->reada_lock);
375 if (re->nzones == 0) {
376 /* not a single zone found, error and out */
380 /* Insert extent in reada tree + all per-device trees, all or nothing */
381 down_read(&fs_info->dev_replace.rwsem);
382 ret = radix_tree_preload(GFP_KERNEL);
384 up_read(&fs_info->dev_replace.rwsem);
388 spin_lock(&fs_info->reada_lock);
389 ret = radix_tree_insert(&fs_info->reada_tree, index, re);
390 if (ret == -EEXIST) {
391 re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
393 spin_unlock(&fs_info->reada_lock);
394 radix_tree_preload_end();
395 up_read(&fs_info->dev_replace.rwsem);
399 spin_unlock(&fs_info->reada_lock);
400 radix_tree_preload_end();
401 up_read(&fs_info->dev_replace.rwsem);
404 radix_tree_preload_end();
406 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
407 &fs_info->dev_replace);
408 for (nzones = 0; nzones < re->nzones; ++nzones) {
409 dev = re->zones[nzones]->device;
411 if (dev == prev_dev) {
413 * in case of DUP, just add the first zone. As both
414 * are on the same device, there's nothing to gain
416 * Also, it wouldn't work, as the tree is per device
417 * and adding would fail with EEXIST
424 if (test_bit(BTRFS_DEV_STATE_NO_READA, &dev->dev_state))
427 if (dev_replace_is_ongoing &&
428 dev == fs_info->dev_replace.tgtdev) {
430 * as this device is selected for reading only as
431 * a last resort, skip it for read ahead.
436 ret = radix_tree_insert(&dev->reada_extents, index, re);
438 while (--nzones >= 0) {
439 dev = re->zones[nzones]->device;
441 /* ignore whether the entry was inserted */
442 radix_tree_delete(&dev->reada_extents, index);
444 radix_tree_delete(&fs_info->reada_tree, index);
445 spin_unlock(&fs_info->reada_lock);
446 up_read(&fs_info->dev_replace.rwsem);
452 radix_tree_delete(&fs_info->reada_tree, index);
453 spin_unlock(&fs_info->reada_lock);
454 up_read(&fs_info->dev_replace.rwsem);
459 btrfs_put_bbio(bbio);
463 for (nzones = 0; nzones < re->nzones; ++nzones) {
464 struct reada_zone *zone;
466 zone = re->zones[nzones];
467 kref_get(&zone->refcnt);
468 spin_lock(&zone->lock);
470 if (zone->elems == 0) {
472 * no fs_info->reada_lock needed, as this can't be
475 kref_put(&zone->refcnt, reada_zone_release);
477 spin_unlock(&zone->lock);
479 spin_lock(&fs_info->reada_lock);
480 kref_put(&zone->refcnt, reada_zone_release);
481 spin_unlock(&fs_info->reada_lock);
483 btrfs_put_bbio(bbio);
488 static void reada_extent_put(struct btrfs_fs_info *fs_info,
489 struct reada_extent *re)
492 unsigned long index = re->logical >> PAGE_SHIFT;
494 spin_lock(&fs_info->reada_lock);
496 spin_unlock(&fs_info->reada_lock);
500 radix_tree_delete(&fs_info->reada_tree, index);
501 for (i = 0; i < re->nzones; ++i) {
502 struct reada_zone *zone = re->zones[i];
504 radix_tree_delete(&zone->device->reada_extents, index);
507 spin_unlock(&fs_info->reada_lock);
509 for (i = 0; i < re->nzones; ++i) {
510 struct reada_zone *zone = re->zones[i];
512 kref_get(&zone->refcnt);
513 spin_lock(&zone->lock);
515 if (zone->elems == 0) {
516 /* no fs_info->reada_lock needed, as this can't be
518 kref_put(&zone->refcnt, reada_zone_release);
520 spin_unlock(&zone->lock);
522 spin_lock(&fs_info->reada_lock);
523 kref_put(&zone->refcnt, reada_zone_release);
524 spin_unlock(&fs_info->reada_lock);
530 static void reada_zone_release(struct kref *kref)
532 struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
534 radix_tree_delete(&zone->device->reada_zones,
535 zone->end >> PAGE_SHIFT);
540 static void reada_control_release(struct kref *kref)
542 struct reada_control *rc = container_of(kref, struct reada_control,
548 static int reada_add_block(struct reada_control *rc, u64 logical,
549 struct btrfs_key *top, u64 generation)
551 struct btrfs_fs_info *fs_info = rc->fs_info;
552 struct reada_extent *re;
553 struct reada_extctl *rec;
556 re = reada_find_extent(fs_info, logical, top);
560 rec = kzalloc(sizeof(*rec), GFP_KERNEL);
562 reada_extent_put(fs_info, re);
567 rec->generation = generation;
568 atomic_inc(&rc->elems);
570 spin_lock(&re->lock);
571 list_add_tail(&rec->list, &re->extctl);
572 spin_unlock(&re->lock);
574 /* leave the ref on the extent */
580 * called with fs_info->reada_lock held
582 static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
585 unsigned long index = zone->end >> PAGE_SHIFT;
587 for (i = 0; i < zone->ndevs; ++i) {
588 struct reada_zone *peer;
589 peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
590 if (peer && peer->device != zone->device)
596 * called with fs_info->reada_lock held
598 static int reada_pick_zone(struct btrfs_device *dev)
600 struct reada_zone *top_zone = NULL;
601 struct reada_zone *top_locked_zone = NULL;
603 u64 top_locked_elems = 0;
604 unsigned long index = 0;
607 if (dev->reada_curr_zone) {
608 reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
609 kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
610 dev->reada_curr_zone = NULL;
612 /* pick the zone with the most elements */
614 struct reada_zone *zone;
616 ret = radix_tree_gang_lookup(&dev->reada_zones,
617 (void **)&zone, index, 1);
620 index = (zone->end >> PAGE_SHIFT) + 1;
622 if (zone->elems > top_locked_elems) {
623 top_locked_elems = zone->elems;
624 top_locked_zone = zone;
627 if (zone->elems > top_elems) {
628 top_elems = zone->elems;
634 dev->reada_curr_zone = top_zone;
635 else if (top_locked_zone)
636 dev->reada_curr_zone = top_locked_zone;
640 dev->reada_next = dev->reada_curr_zone->start;
641 kref_get(&dev->reada_curr_zone->refcnt);
642 reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
647 static int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
648 int mirror_num, struct extent_buffer **eb)
650 struct extent_buffer *buf = NULL;
653 buf = btrfs_find_create_tree_block(fs_info, bytenr);
657 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
659 ret = read_extent_buffer_pages(buf, WAIT_PAGE_LOCK, mirror_num);
661 free_extent_buffer_stale(buf);
665 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
666 free_extent_buffer_stale(buf);
668 } else if (extent_buffer_uptodate(buf)) {
671 free_extent_buffer(buf);
676 static int reada_start_machine_dev(struct btrfs_device *dev)
678 struct btrfs_fs_info *fs_info = dev->fs_info;
679 struct reada_extent *re = NULL;
681 struct extent_buffer *eb = NULL;
686 spin_lock(&fs_info->reada_lock);
687 if (dev->reada_curr_zone == NULL) {
688 ret = reada_pick_zone(dev);
690 spin_unlock(&fs_info->reada_lock);
695 * FIXME currently we issue the reads one extent at a time. If we have
696 * a contiguous block of extents, we could also coagulate them or use
697 * plugging to speed things up
699 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
700 dev->reada_next >> PAGE_SHIFT, 1);
701 if (ret == 0 || re->logical > dev->reada_curr_zone->end) {
702 ret = reada_pick_zone(dev);
704 spin_unlock(&fs_info->reada_lock);
708 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
709 dev->reada_next >> PAGE_SHIFT, 1);
712 spin_unlock(&fs_info->reada_lock);
715 dev->reada_next = re->logical + fs_info->nodesize;
718 spin_unlock(&fs_info->reada_lock);
720 spin_lock(&re->lock);
721 if (re->scheduled || list_empty(&re->extctl)) {
722 spin_unlock(&re->lock);
723 reada_extent_put(fs_info, re);
727 spin_unlock(&re->lock);
732 for (i = 0; i < re->nzones; ++i) {
733 if (re->zones[i]->device == dev) {
738 logical = re->logical;
740 atomic_inc(&dev->reada_in_flight);
741 ret = reada_tree_block_flagged(fs_info, logical, mirror_num, &eb);
743 __readahead_hook(fs_info, re, NULL, ret);
745 __readahead_hook(fs_info, re, eb, ret);
748 free_extent_buffer(eb);
750 atomic_dec(&dev->reada_in_flight);
751 reada_extent_put(fs_info, re);
757 static void reada_start_machine_worker(struct btrfs_work *work)
759 struct reada_machine_work *rmw;
762 rmw = container_of(work, struct reada_machine_work, work);
764 old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
765 task_nice_ioprio(current));
766 set_task_ioprio(current, BTRFS_IOPRIO_READA);
767 __reada_start_machine(rmw->fs_info);
768 set_task_ioprio(current, old_ioprio);
770 atomic_dec(&rmw->fs_info->reada_works_cnt);
775 /* Try to start up to 10k READA requests for a group of devices */
776 static int reada_start_for_fsdevs(struct btrfs_fs_devices *fs_devices)
780 struct btrfs_device *device;
784 list_for_each_entry(device, &fs_devices->devices, dev_list) {
785 if (atomic_read(&device->reada_in_flight) <
787 enqueued += reada_start_machine_dev(device);
790 } while (enqueued && total < 10000);
795 static void __reada_start_machine(struct btrfs_fs_info *fs_info)
797 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
801 mutex_lock(&fs_devices->device_list_mutex);
803 enqueued += reada_start_for_fsdevs(fs_devices);
804 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
805 enqueued += reada_start_for_fsdevs(seed_devs);
807 mutex_unlock(&fs_devices->device_list_mutex);
812 * If everything is already in the cache, this is effectively single
813 * threaded. To a) not hold the caller for too long and b) to utilize
814 * more cores, we broke the loop above after 10000 iterations and now
815 * enqueue to workers to finish it. This will distribute the load to
818 for (i = 0; i < 2; ++i) {
819 reada_start_machine(fs_info);
820 if (atomic_read(&fs_info->reada_works_cnt) >
821 BTRFS_MAX_MIRRORS * 2)
826 static void reada_start_machine(struct btrfs_fs_info *fs_info)
828 struct reada_machine_work *rmw;
830 rmw = kzalloc(sizeof(*rmw), GFP_KERNEL);
832 /* FIXME we cannot handle this properly right now */
835 btrfs_init_work(&rmw->work, reada_start_machine_worker, NULL, NULL);
836 rmw->fs_info = fs_info;
838 btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
839 atomic_inc(&fs_info->reada_works_cnt);
843 static void dump_devs(struct btrfs_fs_info *fs_info, int all)
845 struct btrfs_device *device;
846 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
853 spin_lock(&fs_info->reada_lock);
854 list_for_each_entry(device, &fs_devices->devices, dev_list) {
855 btrfs_debug(fs_info, "dev %lld has %d in flight", device->devid,
856 atomic_read(&device->reada_in_flight));
859 struct reada_zone *zone;
860 ret = radix_tree_gang_lookup(&device->reada_zones,
861 (void **)&zone, index, 1);
864 pr_debug(" zone %llu-%llu elems %llu locked %d devs",
865 zone->start, zone->end, zone->elems,
867 for (j = 0; j < zone->ndevs; ++j) {
869 zone->devs[j]->devid);
871 if (device->reada_curr_zone == zone)
872 pr_cont(" curr off %llu",
873 device->reada_next - zone->start);
875 index = (zone->end >> PAGE_SHIFT) + 1;
880 struct reada_extent *re = NULL;
882 ret = radix_tree_gang_lookup(&device->reada_extents,
883 (void **)&re, index, 1);
886 pr_debug(" re: logical %llu size %u empty %d scheduled %d",
887 re->logical, fs_info->nodesize,
888 list_empty(&re->extctl), re->scheduled);
890 for (i = 0; i < re->nzones; ++i) {
891 pr_cont(" zone %llu-%llu devs",
894 for (j = 0; j < re->zones[i]->ndevs; ++j) {
896 re->zones[i]->devs[j]->devid);
900 index = (re->logical >> PAGE_SHIFT) + 1;
909 struct reada_extent *re = NULL;
911 ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
915 if (!re->scheduled) {
916 index = (re->logical >> PAGE_SHIFT) + 1;
919 pr_debug("re: logical %llu size %u list empty %d scheduled %d",
920 re->logical, fs_info->nodesize,
921 list_empty(&re->extctl), re->scheduled);
922 for (i = 0; i < re->nzones; ++i) {
923 pr_cont(" zone %llu-%llu devs",
926 for (j = 0; j < re->zones[i]->ndevs; ++j) {
928 re->zones[i]->devs[j]->devid);
932 index = (re->logical >> PAGE_SHIFT) + 1;
934 spin_unlock(&fs_info->reada_lock);
941 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
942 struct btrfs_key *key_start, struct btrfs_key *key_end)
944 struct reada_control *rc;
948 struct extent_buffer *node;
949 static struct btrfs_key max_key = {
955 rc = kzalloc(sizeof(*rc), GFP_KERNEL);
957 return ERR_PTR(-ENOMEM);
959 rc->fs_info = root->fs_info;
960 rc->key_start = *key_start;
961 rc->key_end = *key_end;
962 atomic_set(&rc->elems, 0);
963 init_waitqueue_head(&rc->wait);
964 kref_init(&rc->refcnt);
965 kref_get(&rc->refcnt); /* one ref for having elements */
967 node = btrfs_root_node(root);
969 generation = btrfs_header_generation(node);
970 free_extent_buffer(node);
972 ret = reada_add_block(rc, start, &max_key, generation);
978 reada_start_machine(root->fs_info);
984 int btrfs_reada_wait(void *handle)
986 struct reada_control *rc = handle;
987 struct btrfs_fs_info *fs_info = rc->fs_info;
989 while (atomic_read(&rc->elems)) {
990 if (!atomic_read(&fs_info->reada_works_cnt))
991 reada_start_machine(fs_info);
992 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
994 dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
997 dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
999 kref_put(&rc->refcnt, reada_control_release);
1004 int btrfs_reada_wait(void *handle)
1006 struct reada_control *rc = handle;
1007 struct btrfs_fs_info *fs_info = rc->fs_info;
1009 while (atomic_read(&rc->elems)) {
1010 if (!atomic_read(&fs_info->reada_works_cnt))
1011 reada_start_machine(fs_info);
1012 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
1016 kref_put(&rc->refcnt, reada_control_release);
1022 void btrfs_reada_detach(void *handle)
1024 struct reada_control *rc = handle;
1026 kref_put(&rc->refcnt, reada_control_release);
1030 * Before removing a device (device replace or device remove ioctls), call this
1031 * function to wait for all existing readahead requests on the device and to
1032 * make sure no one queues more readahead requests for the device.
1034 * Must be called without holding neither the device list mutex nor the device
1035 * replace semaphore, otherwise it will deadlock.
1037 void btrfs_reada_remove_dev(struct btrfs_device *dev)
1039 struct btrfs_fs_info *fs_info = dev->fs_info;
1041 /* Serialize with readahead extent creation at reada_find_extent(). */
1042 spin_lock(&fs_info->reada_lock);
1043 set_bit(BTRFS_DEV_STATE_NO_READA, &dev->dev_state);
1044 spin_unlock(&fs_info->reada_lock);
1047 * There might be readahead requests added to the radix trees which
1048 * were not yet added to the readahead work queue. We need to start
1049 * them and wait for their completion, otherwise we can end up with
1050 * use-after-free problems when dropping the last reference on the
1051 * readahead extents and their zones, as they need to access the
1054 reada_start_machine(fs_info);
1055 btrfs_flush_workqueue(fs_info->readahead_workers);
1059 * If when removing a device (device replace or device remove ioctls) an error
1060 * happens after calling btrfs_reada_remove_dev(), call this to undo what that
1061 * function did. This is safe to call even if btrfs_reada_remove_dev() was not
1064 void btrfs_reada_undo_remove_dev(struct btrfs_device *dev)
1066 spin_lock(&dev->fs_info->reada_lock);
1067 clear_bit(BTRFS_DEV_STATE_NO_READA, &dev->dev_state);
1068 spin_unlock(&dev->fs_info->reada_lock);