Merge tag 'mips_5.14_1' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux
[linux-2.6-microblaze.git] / fs / btrfs / ordered-data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "misc.h"
11 #include "ctree.h"
12 #include "transaction.h"
13 #include "btrfs_inode.h"
14 #include "extent_io.h"
15 #include "disk-io.h"
16 #include "compression.h"
17 #include "delalloc-space.h"
18 #include "qgroup.h"
19 #include "subpage.h"
20
21 static struct kmem_cache *btrfs_ordered_extent_cache;
22
23 static u64 entry_end(struct btrfs_ordered_extent *entry)
24 {
25         if (entry->file_offset + entry->num_bytes < entry->file_offset)
26                 return (u64)-1;
27         return entry->file_offset + entry->num_bytes;
28 }
29
30 /* returns NULL if the insertion worked, or it returns the node it did find
31  * in the tree
32  */
33 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
34                                    struct rb_node *node)
35 {
36         struct rb_node **p = &root->rb_node;
37         struct rb_node *parent = NULL;
38         struct btrfs_ordered_extent *entry;
39
40         while (*p) {
41                 parent = *p;
42                 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
43
44                 if (file_offset < entry->file_offset)
45                         p = &(*p)->rb_left;
46                 else if (file_offset >= entry_end(entry))
47                         p = &(*p)->rb_right;
48                 else
49                         return parent;
50         }
51
52         rb_link_node(node, parent, p);
53         rb_insert_color(node, root);
54         return NULL;
55 }
56
57 /*
58  * look for a given offset in the tree, and if it can't be found return the
59  * first lesser offset
60  */
61 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
62                                      struct rb_node **prev_ret)
63 {
64         struct rb_node *n = root->rb_node;
65         struct rb_node *prev = NULL;
66         struct rb_node *test;
67         struct btrfs_ordered_extent *entry;
68         struct btrfs_ordered_extent *prev_entry = NULL;
69
70         while (n) {
71                 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
72                 prev = n;
73                 prev_entry = entry;
74
75                 if (file_offset < entry->file_offset)
76                         n = n->rb_left;
77                 else if (file_offset >= entry_end(entry))
78                         n = n->rb_right;
79                 else
80                         return n;
81         }
82         if (!prev_ret)
83                 return NULL;
84
85         while (prev && file_offset >= entry_end(prev_entry)) {
86                 test = rb_next(prev);
87                 if (!test)
88                         break;
89                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
90                                       rb_node);
91                 if (file_offset < entry_end(prev_entry))
92                         break;
93
94                 prev = test;
95         }
96         if (prev)
97                 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
98                                       rb_node);
99         while (prev && file_offset < entry_end(prev_entry)) {
100                 test = rb_prev(prev);
101                 if (!test)
102                         break;
103                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
104                                       rb_node);
105                 prev = test;
106         }
107         *prev_ret = prev;
108         return NULL;
109 }
110
111 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
112                           u64 len)
113 {
114         if (file_offset + len <= entry->file_offset ||
115             entry->file_offset + entry->num_bytes <= file_offset)
116                 return 0;
117         return 1;
118 }
119
120 /*
121  * look find the first ordered struct that has this offset, otherwise
122  * the first one less than this offset
123  */
124 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
125                                           u64 file_offset)
126 {
127         struct rb_root *root = &tree->tree;
128         struct rb_node *prev = NULL;
129         struct rb_node *ret;
130         struct btrfs_ordered_extent *entry;
131
132         if (tree->last) {
133                 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
134                                  rb_node);
135                 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
136                         return tree->last;
137         }
138         ret = __tree_search(root, file_offset, &prev);
139         if (!ret)
140                 ret = prev;
141         if (ret)
142                 tree->last = ret;
143         return ret;
144 }
145
146 /*
147  * Allocate and add a new ordered_extent into the per-inode tree.
148  *
149  * The tree is given a single reference on the ordered extent that was
150  * inserted.
151  */
152 static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
153                                       u64 disk_bytenr, u64 num_bytes,
154                                       u64 disk_num_bytes, int type, int dio,
155                                       int compress_type)
156 {
157         struct btrfs_root *root = inode->root;
158         struct btrfs_fs_info *fs_info = root->fs_info;
159         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
160         struct rb_node *node;
161         struct btrfs_ordered_extent *entry;
162         int ret;
163
164         if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) {
165                 /* For nocow write, we can release the qgroup rsv right now */
166                 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
167                 if (ret < 0)
168                         return ret;
169                 ret = 0;
170         } else {
171                 /*
172                  * The ordered extent has reserved qgroup space, release now
173                  * and pass the reserved number for qgroup_record to free.
174                  */
175                 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
176                 if (ret < 0)
177                         return ret;
178         }
179         entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
180         if (!entry)
181                 return -ENOMEM;
182
183         entry->file_offset = file_offset;
184         entry->disk_bytenr = disk_bytenr;
185         entry->num_bytes = num_bytes;
186         entry->disk_num_bytes = disk_num_bytes;
187         entry->bytes_left = num_bytes;
188         entry->inode = igrab(&inode->vfs_inode);
189         entry->compress_type = compress_type;
190         entry->truncated_len = (u64)-1;
191         entry->qgroup_rsv = ret;
192         entry->physical = (u64)-1;
193         entry->disk = NULL;
194         entry->partno = (u8)-1;
195
196         ASSERT(type == BTRFS_ORDERED_REGULAR ||
197                type == BTRFS_ORDERED_NOCOW ||
198                type == BTRFS_ORDERED_PREALLOC ||
199                type == BTRFS_ORDERED_COMPRESSED);
200         set_bit(type, &entry->flags);
201
202         percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes,
203                                  fs_info->delalloc_batch);
204
205         if (dio)
206                 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
207
208         /* one ref for the tree */
209         refcount_set(&entry->refs, 1);
210         init_waitqueue_head(&entry->wait);
211         INIT_LIST_HEAD(&entry->list);
212         INIT_LIST_HEAD(&entry->log_list);
213         INIT_LIST_HEAD(&entry->root_extent_list);
214         INIT_LIST_HEAD(&entry->work_list);
215         init_completion(&entry->completion);
216
217         trace_btrfs_ordered_extent_add(inode, entry);
218
219         spin_lock_irq(&tree->lock);
220         node = tree_insert(&tree->tree, file_offset,
221                            &entry->rb_node);
222         if (node)
223                 btrfs_panic(fs_info, -EEXIST,
224                                 "inconsistency in ordered tree at offset %llu",
225                                 file_offset);
226         spin_unlock_irq(&tree->lock);
227
228         spin_lock(&root->ordered_extent_lock);
229         list_add_tail(&entry->root_extent_list,
230                       &root->ordered_extents);
231         root->nr_ordered_extents++;
232         if (root->nr_ordered_extents == 1) {
233                 spin_lock(&fs_info->ordered_root_lock);
234                 BUG_ON(!list_empty(&root->ordered_root));
235                 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
236                 spin_unlock(&fs_info->ordered_root_lock);
237         }
238         spin_unlock(&root->ordered_extent_lock);
239
240         /*
241          * We don't need the count_max_extents here, we can assume that all of
242          * that work has been done at higher layers, so this is truly the
243          * smallest the extent is going to get.
244          */
245         spin_lock(&inode->lock);
246         btrfs_mod_outstanding_extents(inode, 1);
247         spin_unlock(&inode->lock);
248
249         return 0;
250 }
251
252 int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
253                              u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes,
254                              int type)
255 {
256         ASSERT(type == BTRFS_ORDERED_REGULAR ||
257                type == BTRFS_ORDERED_NOCOW ||
258                type == BTRFS_ORDERED_PREALLOC);
259         return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
260                                           num_bytes, disk_num_bytes, type, 0,
261                                           BTRFS_COMPRESS_NONE);
262 }
263
264 int btrfs_add_ordered_extent_dio(struct btrfs_inode *inode, u64 file_offset,
265                                  u64 disk_bytenr, u64 num_bytes,
266                                  u64 disk_num_bytes, int type)
267 {
268         ASSERT(type == BTRFS_ORDERED_REGULAR ||
269                type == BTRFS_ORDERED_NOCOW ||
270                type == BTRFS_ORDERED_PREALLOC);
271         return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
272                                           num_bytes, disk_num_bytes, type, 1,
273                                           BTRFS_COMPRESS_NONE);
274 }
275
276 int btrfs_add_ordered_extent_compress(struct btrfs_inode *inode, u64 file_offset,
277                                       u64 disk_bytenr, u64 num_bytes,
278                                       u64 disk_num_bytes, int compress_type)
279 {
280         ASSERT(compress_type != BTRFS_COMPRESS_NONE);
281         return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
282                                           num_bytes, disk_num_bytes,
283                                           BTRFS_ORDERED_COMPRESSED, 0,
284                                           compress_type);
285 }
286
287 /*
288  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
289  * when an ordered extent is finished.  If the list covers more than one
290  * ordered extent, it is split across multiples.
291  */
292 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
293                            struct btrfs_ordered_sum *sum)
294 {
295         struct btrfs_ordered_inode_tree *tree;
296
297         tree = &BTRFS_I(entry->inode)->ordered_tree;
298         spin_lock_irq(&tree->lock);
299         list_add_tail(&sum->list, &entry->list);
300         spin_unlock_irq(&tree->lock);
301 }
302
303 /*
304  * Mark all ordered extents io inside the specified range finished.
305  *
306  * @page:        The invovled page for the opeartion.
307  *               For uncompressed buffered IO, the page status also needs to be
308  *               updated to indicate whether the pending ordered io is finished.
309  *               Can be NULL for direct IO and compressed write.
310  *               For these cases, callers are ensured they won't execute the
311  *               endio function twice.
312  * @finish_func: The function to be executed when all the IO of an ordered
313  *               extent are finished.
314  *
315  * This function is called for endio, thus the range must have ordered
316  * extent(s) coveri it.
317  */
318 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
319                                 struct page *page, u64 file_offset,
320                                 u64 num_bytes, btrfs_func_t finish_func,
321                                 bool uptodate)
322 {
323         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
324         struct btrfs_fs_info *fs_info = inode->root->fs_info;
325         struct btrfs_workqueue *wq;
326         struct rb_node *node;
327         struct btrfs_ordered_extent *entry = NULL;
328         unsigned long flags;
329         u64 cur = file_offset;
330
331         if (btrfs_is_free_space_inode(inode))
332                 wq = fs_info->endio_freespace_worker;
333         else
334                 wq = fs_info->endio_write_workers;
335
336         if (page)
337                 ASSERT(page->mapping && page_offset(page) <= file_offset &&
338                        file_offset + num_bytes <= page_offset(page) + PAGE_SIZE);
339
340         spin_lock_irqsave(&tree->lock, flags);
341         while (cur < file_offset + num_bytes) {
342                 u64 entry_end;
343                 u64 end;
344                 u32 len;
345
346                 node = tree_search(tree, cur);
347                 /* No ordered extents at all */
348                 if (!node)
349                         break;
350
351                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
352                 entry_end = entry->file_offset + entry->num_bytes;
353                 /*
354                  * |<-- OE --->|  |
355                  *                cur
356                  * Go to next OE.
357                  */
358                 if (cur >= entry_end) {
359                         node = rb_next(node);
360                         /* No more ordered extents, exit */
361                         if (!node)
362                                 break;
363                         entry = rb_entry(node, struct btrfs_ordered_extent,
364                                          rb_node);
365
366                         /* Go to next ordered extent and continue */
367                         cur = entry->file_offset;
368                         continue;
369                 }
370                 /*
371                  * |    |<--- OE --->|
372                  * cur
373                  * Go to the start of OE.
374                  */
375                 if (cur < entry->file_offset) {
376                         cur = entry->file_offset;
377                         continue;
378                 }
379
380                 /*
381                  * Now we are definitely inside one ordered extent.
382                  *
383                  * |<--- OE --->|
384                  *      |
385                  *      cur
386                  */
387                 end = min(entry->file_offset + entry->num_bytes,
388                           file_offset + num_bytes) - 1;
389                 ASSERT(end + 1 - cur < U32_MAX);
390                 len = end + 1 - cur;
391
392                 if (page) {
393                         /*
394                          * Ordered (Private2) bit indicates whether we still
395                          * have pending io unfinished for the ordered extent.
396                          *
397                          * If there's no such bit, we need to skip to next range.
398                          */
399                         if (!btrfs_page_test_ordered(fs_info, page, cur, len)) {
400                                 cur += len;
401                                 continue;
402                         }
403                         btrfs_page_clear_ordered(fs_info, page, cur, len);
404                 }
405
406                 /* Now we're fine to update the accounting */
407                 if (unlikely(len > entry->bytes_left)) {
408                         WARN_ON(1);
409                         btrfs_crit(fs_info,
410 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu",
411                                    inode->root->root_key.objectid,
412                                    btrfs_ino(inode),
413                                    entry->file_offset,
414                                    entry->num_bytes,
415                                    len, entry->bytes_left);
416                         entry->bytes_left = 0;
417                 } else {
418                         entry->bytes_left -= len;
419                 }
420
421                 if (!uptodate)
422                         set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
423
424                 /*
425                  * All the IO of the ordered extent is finished, we need to queue
426                  * the finish_func to be executed.
427                  */
428                 if (entry->bytes_left == 0) {
429                         set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
430                         cond_wake_up(&entry->wait);
431                         refcount_inc(&entry->refs);
432                         spin_unlock_irqrestore(&tree->lock, flags);
433                         btrfs_init_work(&entry->work, finish_func, NULL, NULL);
434                         btrfs_queue_work(wq, &entry->work);
435                         spin_lock_irqsave(&tree->lock, flags);
436                 }
437                 cur += len;
438         }
439         spin_unlock_irqrestore(&tree->lock, flags);
440 }
441
442 /*
443  * Finish IO for one ordered extent across a given range.  The range can only
444  * contain one ordered extent.
445  *
446  * @cached:      The cached ordered extent. If not NULL, we can skip the tree
447  *               search and use the ordered extent directly.
448  *               Will be also used to store the finished ordered extent.
449  * @file_offset: File offset for the finished IO
450  * @io_size:     Length of the finish IO range
451  * @uptodate:    If the IO finishes without problem
452  *
453  * Return true if the ordered extent is finished in the range, and update
454  * @cached.
455  * Return false otherwise.
456  *
457  * NOTE: The range can NOT cross multiple ordered extents.
458  * Thus caller should ensure the range doesn't cross ordered extents.
459  */
460 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
461                                     struct btrfs_ordered_extent **cached,
462                                     u64 file_offset, u64 io_size, int uptodate)
463 {
464         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
465         struct rb_node *node;
466         struct btrfs_ordered_extent *entry = NULL;
467         unsigned long flags;
468         bool finished = false;
469
470         spin_lock_irqsave(&tree->lock, flags);
471         if (cached && *cached) {
472                 entry = *cached;
473                 goto have_entry;
474         }
475
476         node = tree_search(tree, file_offset);
477         if (!node)
478                 goto out;
479
480         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
481 have_entry:
482         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
483                 goto out;
484
485         if (io_size > entry->bytes_left)
486                 btrfs_crit(inode->root->fs_info,
487                            "bad ordered accounting left %llu size %llu",
488                        entry->bytes_left, io_size);
489
490         entry->bytes_left -= io_size;
491         if (!uptodate)
492                 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
493
494         if (entry->bytes_left == 0) {
495                 /*
496                  * Ensure only one caller can set the flag and finished_ret
497                  * accordingly
498                  */
499                 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
500                 /* test_and_set_bit implies a barrier */
501                 cond_wake_up_nomb(&entry->wait);
502         }
503 out:
504         if (finished && cached && entry) {
505                 *cached = entry;
506                 refcount_inc(&entry->refs);
507         }
508         spin_unlock_irqrestore(&tree->lock, flags);
509         return finished;
510 }
511
512 /*
513  * used to drop a reference on an ordered extent.  This will free
514  * the extent if the last reference is dropped
515  */
516 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
517 {
518         struct list_head *cur;
519         struct btrfs_ordered_sum *sum;
520
521         trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
522
523         if (refcount_dec_and_test(&entry->refs)) {
524                 ASSERT(list_empty(&entry->root_extent_list));
525                 ASSERT(list_empty(&entry->log_list));
526                 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
527                 if (entry->inode)
528                         btrfs_add_delayed_iput(entry->inode);
529                 while (!list_empty(&entry->list)) {
530                         cur = entry->list.next;
531                         sum = list_entry(cur, struct btrfs_ordered_sum, list);
532                         list_del(&sum->list);
533                         kvfree(sum);
534                 }
535                 kmem_cache_free(btrfs_ordered_extent_cache, entry);
536         }
537 }
538
539 /*
540  * remove an ordered extent from the tree.  No references are dropped
541  * and waiters are woken up.
542  */
543 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
544                                  struct btrfs_ordered_extent *entry)
545 {
546         struct btrfs_ordered_inode_tree *tree;
547         struct btrfs_root *root = btrfs_inode->root;
548         struct btrfs_fs_info *fs_info = root->fs_info;
549         struct rb_node *node;
550         bool pending;
551
552         /* This is paired with btrfs_add_ordered_extent. */
553         spin_lock(&btrfs_inode->lock);
554         btrfs_mod_outstanding_extents(btrfs_inode, -1);
555         spin_unlock(&btrfs_inode->lock);
556         if (root != fs_info->tree_root)
557                 btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes,
558                                                 false);
559
560         percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
561                                  fs_info->delalloc_batch);
562
563         tree = &btrfs_inode->ordered_tree;
564         spin_lock_irq(&tree->lock);
565         node = &entry->rb_node;
566         rb_erase(node, &tree->tree);
567         RB_CLEAR_NODE(node);
568         if (tree->last == node)
569                 tree->last = NULL;
570         set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
571         pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
572         spin_unlock_irq(&tree->lock);
573
574         /*
575          * The current running transaction is waiting on us, we need to let it
576          * know that we're complete and wake it up.
577          */
578         if (pending) {
579                 struct btrfs_transaction *trans;
580
581                 /*
582                  * The checks for trans are just a formality, it should be set,
583                  * but if it isn't we don't want to deref/assert under the spin
584                  * lock, so be nice and check if trans is set, but ASSERT() so
585                  * if it isn't set a developer will notice.
586                  */
587                 spin_lock(&fs_info->trans_lock);
588                 trans = fs_info->running_transaction;
589                 if (trans)
590                         refcount_inc(&trans->use_count);
591                 spin_unlock(&fs_info->trans_lock);
592
593                 ASSERT(trans);
594                 if (trans) {
595                         if (atomic_dec_and_test(&trans->pending_ordered))
596                                 wake_up(&trans->pending_wait);
597                         btrfs_put_transaction(trans);
598                 }
599         }
600
601         spin_lock(&root->ordered_extent_lock);
602         list_del_init(&entry->root_extent_list);
603         root->nr_ordered_extents--;
604
605         trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
606
607         if (!root->nr_ordered_extents) {
608                 spin_lock(&fs_info->ordered_root_lock);
609                 BUG_ON(list_empty(&root->ordered_root));
610                 list_del_init(&root->ordered_root);
611                 spin_unlock(&fs_info->ordered_root_lock);
612         }
613         spin_unlock(&root->ordered_extent_lock);
614         wake_up(&entry->wait);
615 }
616
617 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
618 {
619         struct btrfs_ordered_extent *ordered;
620
621         ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
622         btrfs_start_ordered_extent(ordered, 1);
623         complete(&ordered->completion);
624 }
625
626 /*
627  * wait for all the ordered extents in a root.  This is done when balancing
628  * space between drives.
629  */
630 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
631                                const u64 range_start, const u64 range_len)
632 {
633         struct btrfs_fs_info *fs_info = root->fs_info;
634         LIST_HEAD(splice);
635         LIST_HEAD(skipped);
636         LIST_HEAD(works);
637         struct btrfs_ordered_extent *ordered, *next;
638         u64 count = 0;
639         const u64 range_end = range_start + range_len;
640
641         mutex_lock(&root->ordered_extent_mutex);
642         spin_lock(&root->ordered_extent_lock);
643         list_splice_init(&root->ordered_extents, &splice);
644         while (!list_empty(&splice) && nr) {
645                 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
646                                            root_extent_list);
647
648                 if (range_end <= ordered->disk_bytenr ||
649                     ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
650                         list_move_tail(&ordered->root_extent_list, &skipped);
651                         cond_resched_lock(&root->ordered_extent_lock);
652                         continue;
653                 }
654
655                 list_move_tail(&ordered->root_extent_list,
656                                &root->ordered_extents);
657                 refcount_inc(&ordered->refs);
658                 spin_unlock(&root->ordered_extent_lock);
659
660                 btrfs_init_work(&ordered->flush_work,
661                                 btrfs_run_ordered_extent_work, NULL, NULL);
662                 list_add_tail(&ordered->work_list, &works);
663                 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
664
665                 cond_resched();
666                 spin_lock(&root->ordered_extent_lock);
667                 if (nr != U64_MAX)
668                         nr--;
669                 count++;
670         }
671         list_splice_tail(&skipped, &root->ordered_extents);
672         list_splice_tail(&splice, &root->ordered_extents);
673         spin_unlock(&root->ordered_extent_lock);
674
675         list_for_each_entry_safe(ordered, next, &works, work_list) {
676                 list_del_init(&ordered->work_list);
677                 wait_for_completion(&ordered->completion);
678                 btrfs_put_ordered_extent(ordered);
679                 cond_resched();
680         }
681         mutex_unlock(&root->ordered_extent_mutex);
682
683         return count;
684 }
685
686 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
687                              const u64 range_start, const u64 range_len)
688 {
689         struct btrfs_root *root;
690         struct list_head splice;
691         u64 done;
692
693         INIT_LIST_HEAD(&splice);
694
695         mutex_lock(&fs_info->ordered_operations_mutex);
696         spin_lock(&fs_info->ordered_root_lock);
697         list_splice_init(&fs_info->ordered_roots, &splice);
698         while (!list_empty(&splice) && nr) {
699                 root = list_first_entry(&splice, struct btrfs_root,
700                                         ordered_root);
701                 root = btrfs_grab_root(root);
702                 BUG_ON(!root);
703                 list_move_tail(&root->ordered_root,
704                                &fs_info->ordered_roots);
705                 spin_unlock(&fs_info->ordered_root_lock);
706
707                 done = btrfs_wait_ordered_extents(root, nr,
708                                                   range_start, range_len);
709                 btrfs_put_root(root);
710
711                 spin_lock(&fs_info->ordered_root_lock);
712                 if (nr != U64_MAX) {
713                         nr -= done;
714                 }
715         }
716         list_splice_tail(&splice, &fs_info->ordered_roots);
717         spin_unlock(&fs_info->ordered_root_lock);
718         mutex_unlock(&fs_info->ordered_operations_mutex);
719 }
720
721 /*
722  * Used to start IO or wait for a given ordered extent to finish.
723  *
724  * If wait is one, this effectively waits on page writeback for all the pages
725  * in the extent, and it waits on the io completion code to insert
726  * metadata into the btree corresponding to the extent
727  */
728 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
729 {
730         u64 start = entry->file_offset;
731         u64 end = start + entry->num_bytes - 1;
732         struct btrfs_inode *inode = BTRFS_I(entry->inode);
733
734         trace_btrfs_ordered_extent_start(inode, entry);
735
736         /*
737          * pages in the range can be dirty, clean or writeback.  We
738          * start IO on any dirty ones so the wait doesn't stall waiting
739          * for the flusher thread to find them
740          */
741         if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
742                 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
743         if (wait) {
744                 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
745                                                  &entry->flags));
746         }
747 }
748
749 /*
750  * Used to wait on ordered extents across a large range of bytes.
751  */
752 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
753 {
754         int ret = 0;
755         int ret_wb = 0;
756         u64 end;
757         u64 orig_end;
758         struct btrfs_ordered_extent *ordered;
759
760         if (start + len < start) {
761                 orig_end = INT_LIMIT(loff_t);
762         } else {
763                 orig_end = start + len - 1;
764                 if (orig_end > INT_LIMIT(loff_t))
765                         orig_end = INT_LIMIT(loff_t);
766         }
767
768         /* start IO across the range first to instantiate any delalloc
769          * extents
770          */
771         ret = btrfs_fdatawrite_range(inode, start, orig_end);
772         if (ret)
773                 return ret;
774
775         /*
776          * If we have a writeback error don't return immediately. Wait first
777          * for any ordered extents that haven't completed yet. This is to make
778          * sure no one can dirty the same page ranges and call writepages()
779          * before the ordered extents complete - to avoid failures (-EEXIST)
780          * when adding the new ordered extents to the ordered tree.
781          */
782         ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
783
784         end = orig_end;
785         while (1) {
786                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
787                 if (!ordered)
788                         break;
789                 if (ordered->file_offset > orig_end) {
790                         btrfs_put_ordered_extent(ordered);
791                         break;
792                 }
793                 if (ordered->file_offset + ordered->num_bytes <= start) {
794                         btrfs_put_ordered_extent(ordered);
795                         break;
796                 }
797                 btrfs_start_ordered_extent(ordered, 1);
798                 end = ordered->file_offset;
799                 /*
800                  * If the ordered extent had an error save the error but don't
801                  * exit without waiting first for all other ordered extents in
802                  * the range to complete.
803                  */
804                 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
805                         ret = -EIO;
806                 btrfs_put_ordered_extent(ordered);
807                 if (end == 0 || end == start)
808                         break;
809                 end--;
810         }
811         return ret_wb ? ret_wb : ret;
812 }
813
814 /*
815  * find an ordered extent corresponding to file_offset.  return NULL if
816  * nothing is found, otherwise take a reference on the extent and return it
817  */
818 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
819                                                          u64 file_offset)
820 {
821         struct btrfs_ordered_inode_tree *tree;
822         struct rb_node *node;
823         struct btrfs_ordered_extent *entry = NULL;
824         unsigned long flags;
825
826         tree = &inode->ordered_tree;
827         spin_lock_irqsave(&tree->lock, flags);
828         node = tree_search(tree, file_offset);
829         if (!node)
830                 goto out;
831
832         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
833         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
834                 entry = NULL;
835         if (entry)
836                 refcount_inc(&entry->refs);
837 out:
838         spin_unlock_irqrestore(&tree->lock, flags);
839         return entry;
840 }
841
842 /* Since the DIO code tries to lock a wide area we need to look for any ordered
843  * extents that exist in the range, rather than just the start of the range.
844  */
845 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
846                 struct btrfs_inode *inode, u64 file_offset, u64 len)
847 {
848         struct btrfs_ordered_inode_tree *tree;
849         struct rb_node *node;
850         struct btrfs_ordered_extent *entry = NULL;
851
852         tree = &inode->ordered_tree;
853         spin_lock_irq(&tree->lock);
854         node = tree_search(tree, file_offset);
855         if (!node) {
856                 node = tree_search(tree, file_offset + len);
857                 if (!node)
858                         goto out;
859         }
860
861         while (1) {
862                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
863                 if (range_overlaps(entry, file_offset, len))
864                         break;
865
866                 if (entry->file_offset >= file_offset + len) {
867                         entry = NULL;
868                         break;
869                 }
870                 entry = NULL;
871                 node = rb_next(node);
872                 if (!node)
873                         break;
874         }
875 out:
876         if (entry)
877                 refcount_inc(&entry->refs);
878         spin_unlock_irq(&tree->lock);
879         return entry;
880 }
881
882 /*
883  * Adds all ordered extents to the given list. The list ends up sorted by the
884  * file_offset of the ordered extents.
885  */
886 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
887                                            struct list_head *list)
888 {
889         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
890         struct rb_node *n;
891
892         ASSERT(inode_is_locked(&inode->vfs_inode));
893
894         spin_lock_irq(&tree->lock);
895         for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
896                 struct btrfs_ordered_extent *ordered;
897
898                 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
899
900                 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
901                         continue;
902
903                 ASSERT(list_empty(&ordered->log_list));
904                 list_add_tail(&ordered->log_list, list);
905                 refcount_inc(&ordered->refs);
906         }
907         spin_unlock_irq(&tree->lock);
908 }
909
910 /*
911  * lookup and return any extent before 'file_offset'.  NULL is returned
912  * if none is found
913  */
914 struct btrfs_ordered_extent *
915 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
916 {
917         struct btrfs_ordered_inode_tree *tree;
918         struct rb_node *node;
919         struct btrfs_ordered_extent *entry = NULL;
920
921         tree = &inode->ordered_tree;
922         spin_lock_irq(&tree->lock);
923         node = tree_search(tree, file_offset);
924         if (!node)
925                 goto out;
926
927         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
928         refcount_inc(&entry->refs);
929 out:
930         spin_unlock_irq(&tree->lock);
931         return entry;
932 }
933
934 /*
935  * Lookup the first ordered extent that overlaps the range
936  * [@file_offset, @file_offset + @len).
937  *
938  * The difference between this and btrfs_lookup_first_ordered_extent() is
939  * that this one won't return any ordered extent that does not overlap the range.
940  * And the difference against btrfs_lookup_ordered_extent() is, this function
941  * ensures the first ordered extent gets returned.
942  */
943 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
944                         struct btrfs_inode *inode, u64 file_offset, u64 len)
945 {
946         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
947         struct rb_node *node;
948         struct rb_node *cur;
949         struct rb_node *prev;
950         struct rb_node *next;
951         struct btrfs_ordered_extent *entry = NULL;
952
953         spin_lock_irq(&tree->lock);
954         node = tree->tree.rb_node;
955         /*
956          * Here we don't want to use tree_search() which will use tree->last
957          * and screw up the search order.
958          * And __tree_search() can't return the adjacent ordered extents
959          * either, thus here we do our own search.
960          */
961         while (node) {
962                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
963
964                 if (file_offset < entry->file_offset) {
965                         node = node->rb_left;
966                 } else if (file_offset >= entry_end(entry)) {
967                         node = node->rb_right;
968                 } else {
969                         /*
970                          * Direct hit, got an ordered extent that starts at
971                          * @file_offset
972                          */
973                         goto out;
974                 }
975         }
976         if (!entry) {
977                 /* Empty tree */
978                 goto out;
979         }
980
981         cur = &entry->rb_node;
982         /* We got an entry around @file_offset, check adjacent entries */
983         if (entry->file_offset < file_offset) {
984                 prev = cur;
985                 next = rb_next(cur);
986         } else {
987                 prev = rb_prev(cur);
988                 next = cur;
989         }
990         if (prev) {
991                 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
992                 if (range_overlaps(entry, file_offset, len))
993                         goto out;
994         }
995         if (next) {
996                 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
997                 if (range_overlaps(entry, file_offset, len))
998                         goto out;
999         }
1000         /* No ordered extent in the range */
1001         entry = NULL;
1002 out:
1003         if (entry)
1004                 refcount_inc(&entry->refs);
1005         spin_unlock_irq(&tree->lock);
1006         return entry;
1007 }
1008
1009 /*
1010  * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
1011  * ordered extents in it are run to completion.
1012  *
1013  * @inode:        Inode whose ordered tree is to be searched
1014  * @start:        Beginning of range to flush
1015  * @end:          Last byte of range to lock
1016  * @cached_state: If passed, will return the extent state responsible for the
1017  * locked range. It's the caller's responsibility to free the cached state.
1018  *
1019  * This function always returns with the given range locked, ensuring after it's
1020  * called no order extent can be pending.
1021  */
1022 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1023                                         u64 end,
1024                                         struct extent_state **cached_state)
1025 {
1026         struct btrfs_ordered_extent *ordered;
1027         struct extent_state *cache = NULL;
1028         struct extent_state **cachedp = &cache;
1029
1030         if (cached_state)
1031                 cachedp = cached_state;
1032
1033         while (1) {
1034                 lock_extent_bits(&inode->io_tree, start, end, cachedp);
1035                 ordered = btrfs_lookup_ordered_range(inode, start,
1036                                                      end - start + 1);
1037                 if (!ordered) {
1038                         /*
1039                          * If no external cached_state has been passed then
1040                          * decrement the extra ref taken for cachedp since we
1041                          * aren't exposing it outside of this function
1042                          */
1043                         if (!cached_state)
1044                                 refcount_dec(&cache->refs);
1045                         break;
1046                 }
1047                 unlock_extent_cached(&inode->io_tree, start, end, cachedp);
1048                 btrfs_start_ordered_extent(ordered, 1);
1049                 btrfs_put_ordered_extent(ordered);
1050         }
1051 }
1052
1053 static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos,
1054                                 u64 len)
1055 {
1056         struct inode *inode = ordered->inode;
1057         u64 file_offset = ordered->file_offset + pos;
1058         u64 disk_bytenr = ordered->disk_bytenr + pos;
1059         u64 num_bytes = len;
1060         u64 disk_num_bytes = len;
1061         int type;
1062         unsigned long flags_masked = ordered->flags & ~(1 << BTRFS_ORDERED_DIRECT);
1063         int compress_type = ordered->compress_type;
1064         unsigned long weight;
1065         int ret;
1066
1067         weight = hweight_long(flags_masked);
1068         WARN_ON_ONCE(weight > 1);
1069         if (!weight)
1070                 type = 0;
1071         else
1072                 type = __ffs(flags_masked);
1073
1074         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered->flags)) {
1075                 WARN_ON_ONCE(1);
1076                 ret = btrfs_add_ordered_extent_compress(BTRFS_I(inode),
1077                                 file_offset, disk_bytenr, num_bytes,
1078                                 disk_num_bytes, compress_type);
1079         } else if (test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
1080                 ret = btrfs_add_ordered_extent_dio(BTRFS_I(inode), file_offset,
1081                                 disk_bytenr, num_bytes, disk_num_bytes, type);
1082         } else {
1083                 ret = btrfs_add_ordered_extent(BTRFS_I(inode), file_offset,
1084                                 disk_bytenr, num_bytes, disk_num_bytes, type);
1085         }
1086
1087         return ret;
1088 }
1089
1090 int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre,
1091                                 u64 post)
1092 {
1093         struct inode *inode = ordered->inode;
1094         struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1095         struct rb_node *node;
1096         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1097         int ret = 0;
1098
1099         spin_lock_irq(&tree->lock);
1100         /* Remove from tree once */
1101         node = &ordered->rb_node;
1102         rb_erase(node, &tree->tree);
1103         RB_CLEAR_NODE(node);
1104         if (tree->last == node)
1105                 tree->last = NULL;
1106
1107         ordered->file_offset += pre;
1108         ordered->disk_bytenr += pre;
1109         ordered->num_bytes -= (pre + post);
1110         ordered->disk_num_bytes -= (pre + post);
1111         ordered->bytes_left -= (pre + post);
1112
1113         /* Re-insert the node */
1114         node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1115         if (node)
1116                 btrfs_panic(fs_info, -EEXIST,
1117                         "zoned: inconsistency in ordered tree at offset %llu",
1118                             ordered->file_offset);
1119
1120         spin_unlock_irq(&tree->lock);
1121
1122         if (pre)
1123                 ret = clone_ordered_extent(ordered, 0, pre);
1124         if (ret == 0 && post)
1125                 ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes,
1126                                            post);
1127
1128         return ret;
1129 }
1130
1131 int __init ordered_data_init(void)
1132 {
1133         btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1134                                      sizeof(struct btrfs_ordered_extent), 0,
1135                                      SLAB_MEM_SPREAD,
1136                                      NULL);
1137         if (!btrfs_ordered_extent_cache)
1138                 return -ENOMEM;
1139
1140         return 0;
1141 }
1142
1143 void __cold ordered_data_exit(void)
1144 {
1145         kmem_cache_destroy(btrfs_ordered_extent_cache);
1146 }