btrfs: rework the order of btrfs_ordered_extent::flags
[linux-2.6-microblaze.git] / fs / btrfs / ordered-data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "misc.h"
11 #include "ctree.h"
12 #include "transaction.h"
13 #include "btrfs_inode.h"
14 #include "extent_io.h"
15 #include "disk-io.h"
16 #include "compression.h"
17 #include "delalloc-space.h"
18 #include "qgroup.h"
19
20 static struct kmem_cache *btrfs_ordered_extent_cache;
21
22 static u64 entry_end(struct btrfs_ordered_extent *entry)
23 {
24         if (entry->file_offset + entry->num_bytes < entry->file_offset)
25                 return (u64)-1;
26         return entry->file_offset + entry->num_bytes;
27 }
28
29 /* returns NULL if the insertion worked, or it returns the node it did find
30  * in the tree
31  */
32 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
33                                    struct rb_node *node)
34 {
35         struct rb_node **p = &root->rb_node;
36         struct rb_node *parent = NULL;
37         struct btrfs_ordered_extent *entry;
38
39         while (*p) {
40                 parent = *p;
41                 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
42
43                 if (file_offset < entry->file_offset)
44                         p = &(*p)->rb_left;
45                 else if (file_offset >= entry_end(entry))
46                         p = &(*p)->rb_right;
47                 else
48                         return parent;
49         }
50
51         rb_link_node(node, parent, p);
52         rb_insert_color(node, root);
53         return NULL;
54 }
55
56 /*
57  * look for a given offset in the tree, and if it can't be found return the
58  * first lesser offset
59  */
60 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
61                                      struct rb_node **prev_ret)
62 {
63         struct rb_node *n = root->rb_node;
64         struct rb_node *prev = NULL;
65         struct rb_node *test;
66         struct btrfs_ordered_extent *entry;
67         struct btrfs_ordered_extent *prev_entry = NULL;
68
69         while (n) {
70                 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
71                 prev = n;
72                 prev_entry = entry;
73
74                 if (file_offset < entry->file_offset)
75                         n = n->rb_left;
76                 else if (file_offset >= entry_end(entry))
77                         n = n->rb_right;
78                 else
79                         return n;
80         }
81         if (!prev_ret)
82                 return NULL;
83
84         while (prev && file_offset >= entry_end(prev_entry)) {
85                 test = rb_next(prev);
86                 if (!test)
87                         break;
88                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
89                                       rb_node);
90                 if (file_offset < entry_end(prev_entry))
91                         break;
92
93                 prev = test;
94         }
95         if (prev)
96                 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
97                                       rb_node);
98         while (prev && file_offset < entry_end(prev_entry)) {
99                 test = rb_prev(prev);
100                 if (!test)
101                         break;
102                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
103                                       rb_node);
104                 prev = test;
105         }
106         *prev_ret = prev;
107         return NULL;
108 }
109
110 /*
111  * helper to check if a given offset is inside a given entry
112  */
113 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
114 {
115         if (file_offset < entry->file_offset ||
116             entry->file_offset + entry->num_bytes <= file_offset)
117                 return 0;
118         return 1;
119 }
120
121 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
122                           u64 len)
123 {
124         if (file_offset + len <= entry->file_offset ||
125             entry->file_offset + entry->num_bytes <= file_offset)
126                 return 0;
127         return 1;
128 }
129
130 /*
131  * look find the first ordered struct that has this offset, otherwise
132  * the first one less than this offset
133  */
134 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
135                                           u64 file_offset)
136 {
137         struct rb_root *root = &tree->tree;
138         struct rb_node *prev = NULL;
139         struct rb_node *ret;
140         struct btrfs_ordered_extent *entry;
141
142         if (tree->last) {
143                 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
144                                  rb_node);
145                 if (offset_in_entry(entry, file_offset))
146                         return tree->last;
147         }
148         ret = __tree_search(root, file_offset, &prev);
149         if (!ret)
150                 ret = prev;
151         if (ret)
152                 tree->last = ret;
153         return ret;
154 }
155
156 /*
157  * Allocate and add a new ordered_extent into the per-inode tree.
158  *
159  * The tree is given a single reference on the ordered extent that was
160  * inserted.
161  */
162 static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
163                                       u64 disk_bytenr, u64 num_bytes,
164                                       u64 disk_num_bytes, int type, int dio,
165                                       int compress_type)
166 {
167         struct btrfs_root *root = inode->root;
168         struct btrfs_fs_info *fs_info = root->fs_info;
169         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
170         struct rb_node *node;
171         struct btrfs_ordered_extent *entry;
172         int ret;
173
174         if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) {
175                 /* For nocow write, we can release the qgroup rsv right now */
176                 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
177                 if (ret < 0)
178                         return ret;
179                 ret = 0;
180         } else {
181                 /*
182                  * The ordered extent has reserved qgroup space, release now
183                  * and pass the reserved number for qgroup_record to free.
184                  */
185                 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
186                 if (ret < 0)
187                         return ret;
188         }
189         entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
190         if (!entry)
191                 return -ENOMEM;
192
193         entry->file_offset = file_offset;
194         entry->disk_bytenr = disk_bytenr;
195         entry->num_bytes = num_bytes;
196         entry->disk_num_bytes = disk_num_bytes;
197         entry->bytes_left = num_bytes;
198         entry->inode = igrab(&inode->vfs_inode);
199         entry->compress_type = compress_type;
200         entry->truncated_len = (u64)-1;
201         entry->qgroup_rsv = ret;
202
203         ASSERT(type == BTRFS_ORDERED_REGULAR ||
204                type == BTRFS_ORDERED_NOCOW ||
205                type == BTRFS_ORDERED_PREALLOC ||
206                type == BTRFS_ORDERED_COMPRESSED);
207         set_bit(type, &entry->flags);
208
209         if (dio) {
210                 percpu_counter_add_batch(&fs_info->dio_bytes, num_bytes,
211                                          fs_info->delalloc_batch);
212                 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
213         }
214
215         /* one ref for the tree */
216         refcount_set(&entry->refs, 1);
217         init_waitqueue_head(&entry->wait);
218         INIT_LIST_HEAD(&entry->list);
219         INIT_LIST_HEAD(&entry->log_list);
220         INIT_LIST_HEAD(&entry->root_extent_list);
221         INIT_LIST_HEAD(&entry->work_list);
222         init_completion(&entry->completion);
223
224         trace_btrfs_ordered_extent_add(inode, entry);
225
226         spin_lock_irq(&tree->lock);
227         node = tree_insert(&tree->tree, file_offset,
228                            &entry->rb_node);
229         if (node)
230                 btrfs_panic(fs_info, -EEXIST,
231                                 "inconsistency in ordered tree at offset %llu",
232                                 file_offset);
233         spin_unlock_irq(&tree->lock);
234
235         spin_lock(&root->ordered_extent_lock);
236         list_add_tail(&entry->root_extent_list,
237                       &root->ordered_extents);
238         root->nr_ordered_extents++;
239         if (root->nr_ordered_extents == 1) {
240                 spin_lock(&fs_info->ordered_root_lock);
241                 BUG_ON(!list_empty(&root->ordered_root));
242                 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
243                 spin_unlock(&fs_info->ordered_root_lock);
244         }
245         spin_unlock(&root->ordered_extent_lock);
246
247         /*
248          * We don't need the count_max_extents here, we can assume that all of
249          * that work has been done at higher layers, so this is truly the
250          * smallest the extent is going to get.
251          */
252         spin_lock(&inode->lock);
253         btrfs_mod_outstanding_extents(inode, 1);
254         spin_unlock(&inode->lock);
255
256         return 0;
257 }
258
259 int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
260                              u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes,
261                              int type)
262 {
263         ASSERT(type == BTRFS_ORDERED_REGULAR ||
264                type == BTRFS_ORDERED_NOCOW ||
265                type == BTRFS_ORDERED_PREALLOC);
266         return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
267                                           num_bytes, disk_num_bytes, type, 0,
268                                           BTRFS_COMPRESS_NONE);
269 }
270
271 int btrfs_add_ordered_extent_dio(struct btrfs_inode *inode, u64 file_offset,
272                                  u64 disk_bytenr, u64 num_bytes,
273                                  u64 disk_num_bytes, int type)
274 {
275         ASSERT(type == BTRFS_ORDERED_REGULAR ||
276                type == BTRFS_ORDERED_NOCOW ||
277                type == BTRFS_ORDERED_PREALLOC);
278         return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
279                                           num_bytes, disk_num_bytes, type, 1,
280                                           BTRFS_COMPRESS_NONE);
281 }
282
283 int btrfs_add_ordered_extent_compress(struct btrfs_inode *inode, u64 file_offset,
284                                       u64 disk_bytenr, u64 num_bytes,
285                                       u64 disk_num_bytes, int compress_type)
286 {
287         ASSERT(compress_type != BTRFS_COMPRESS_NONE);
288         return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
289                                           num_bytes, disk_num_bytes,
290                                           BTRFS_ORDERED_COMPRESSED, 0,
291                                           compress_type);
292 }
293
294 /*
295  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
296  * when an ordered extent is finished.  If the list covers more than one
297  * ordered extent, it is split across multiples.
298  */
299 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
300                            struct btrfs_ordered_sum *sum)
301 {
302         struct btrfs_ordered_inode_tree *tree;
303
304         tree = &BTRFS_I(entry->inode)->ordered_tree;
305         spin_lock_irq(&tree->lock);
306         list_add_tail(&sum->list, &entry->list);
307         spin_unlock_irq(&tree->lock);
308 }
309
310 /*
311  * Finish IO for one ordered extent across a given range.  The range can
312  * contain several ordered extents.
313  *
314  * @found_ret:   Return the finished ordered extent
315  * @file_offset: File offset for the finished IO
316  *               Will also be updated to one byte past the range that is
317  *               recordered as finished. This allows caller to walk forward.
318  * @io_size:     Length of the finish IO range
319  * @uptodate:    If the IO finished without problem
320  *
321  * Return true if any ordered extent is finished in the range, and update
322  * @found_ret and @file_offset.
323  * Return false otherwise.
324  *
325  * NOTE: Although The range can cross multiple ordered extents, only one
326  * ordered extent will be updated during one call. The caller is responsible to
327  * iterate all ordered extents in the range.
328  */
329 bool btrfs_dec_test_first_ordered_pending(struct btrfs_inode *inode,
330                                    struct btrfs_ordered_extent **finished_ret,
331                                    u64 *file_offset, u64 io_size, int uptodate)
332 {
333         struct btrfs_fs_info *fs_info = inode->root->fs_info;
334         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
335         struct rb_node *node;
336         struct btrfs_ordered_extent *entry = NULL;
337         bool finished = false;
338         unsigned long flags;
339         u64 dec_end;
340         u64 dec_start;
341         u64 to_dec;
342
343         spin_lock_irqsave(&tree->lock, flags);
344         node = tree_search(tree, *file_offset);
345         if (!node)
346                 goto out;
347
348         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
349         if (!offset_in_entry(entry, *file_offset))
350                 goto out;
351
352         dec_start = max(*file_offset, entry->file_offset);
353         dec_end = min(*file_offset + io_size,
354                       entry->file_offset + entry->num_bytes);
355         *file_offset = dec_end;
356         if (dec_start > dec_end) {
357                 btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
358                            dec_start, dec_end);
359         }
360         to_dec = dec_end - dec_start;
361         if (to_dec > entry->bytes_left) {
362                 btrfs_crit(fs_info,
363                            "bad ordered accounting left %llu size %llu",
364                            entry->bytes_left, to_dec);
365         }
366         entry->bytes_left -= to_dec;
367         if (!uptodate)
368                 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
369
370         if (entry->bytes_left == 0) {
371                 /*
372                  * Ensure only one caller can set the flag and finished_ret
373                  * accordingly
374                  */
375                 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
376                 /* test_and_set_bit implies a barrier */
377                 cond_wake_up_nomb(&entry->wait);
378         }
379 out:
380         if (finished && finished_ret && entry) {
381                 *finished_ret = entry;
382                 refcount_inc(&entry->refs);
383         }
384         spin_unlock_irqrestore(&tree->lock, flags);
385         return finished;
386 }
387
388 /*
389  * Finish IO for one ordered extent across a given range.  The range can only
390  * contain one ordered extent.
391  *
392  * @cached:      The cached ordered extent. If not NULL, we can skip the tree
393  *               search and use the ordered extent directly.
394  *               Will be also used to store the finished ordered extent.
395  * @file_offset: File offset for the finished IO
396  * @io_size:     Length of the finish IO range
397  * @uptodate:    If the IO finishes without problem
398  *
399  * Return true if the ordered extent is finished in the range, and update
400  * @cached.
401  * Return false otherwise.
402  *
403  * NOTE: The range can NOT cross multiple ordered extents.
404  * Thus caller should ensure the range doesn't cross ordered extents.
405  */
406 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
407                                     struct btrfs_ordered_extent **cached,
408                                     u64 file_offset, u64 io_size, int uptodate)
409 {
410         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
411         struct rb_node *node;
412         struct btrfs_ordered_extent *entry = NULL;
413         unsigned long flags;
414         bool finished = false;
415
416         spin_lock_irqsave(&tree->lock, flags);
417         if (cached && *cached) {
418                 entry = *cached;
419                 goto have_entry;
420         }
421
422         node = tree_search(tree, file_offset);
423         if (!node)
424                 goto out;
425
426         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
427 have_entry:
428         if (!offset_in_entry(entry, file_offset))
429                 goto out;
430
431         if (io_size > entry->bytes_left)
432                 btrfs_crit(inode->root->fs_info,
433                            "bad ordered accounting left %llu size %llu",
434                        entry->bytes_left, io_size);
435
436         entry->bytes_left -= io_size;
437         if (!uptodate)
438                 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
439
440         if (entry->bytes_left == 0) {
441                 /*
442                  * Ensure only one caller can set the flag and finished_ret
443                  * accordingly
444                  */
445                 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
446                 /* test_and_set_bit implies a barrier */
447                 cond_wake_up_nomb(&entry->wait);
448         }
449 out:
450         if (finished && cached && entry) {
451                 *cached = entry;
452                 refcount_inc(&entry->refs);
453         }
454         spin_unlock_irqrestore(&tree->lock, flags);
455         return finished;
456 }
457
458 /*
459  * used to drop a reference on an ordered extent.  This will free
460  * the extent if the last reference is dropped
461  */
462 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
463 {
464         struct list_head *cur;
465         struct btrfs_ordered_sum *sum;
466
467         trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
468
469         if (refcount_dec_and_test(&entry->refs)) {
470                 ASSERT(list_empty(&entry->root_extent_list));
471                 ASSERT(list_empty(&entry->log_list));
472                 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
473                 if (entry->inode)
474                         btrfs_add_delayed_iput(entry->inode);
475                 while (!list_empty(&entry->list)) {
476                         cur = entry->list.next;
477                         sum = list_entry(cur, struct btrfs_ordered_sum, list);
478                         list_del(&sum->list);
479                         kvfree(sum);
480                 }
481                 kmem_cache_free(btrfs_ordered_extent_cache, entry);
482         }
483 }
484
485 /*
486  * remove an ordered extent from the tree.  No references are dropped
487  * and waiters are woken up.
488  */
489 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
490                                  struct btrfs_ordered_extent *entry)
491 {
492         struct btrfs_ordered_inode_tree *tree;
493         struct btrfs_root *root = btrfs_inode->root;
494         struct btrfs_fs_info *fs_info = root->fs_info;
495         struct rb_node *node;
496         bool pending;
497
498         /* This is paired with btrfs_add_ordered_extent. */
499         spin_lock(&btrfs_inode->lock);
500         btrfs_mod_outstanding_extents(btrfs_inode, -1);
501         spin_unlock(&btrfs_inode->lock);
502         if (root != fs_info->tree_root)
503                 btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes,
504                                                 false);
505
506         if (test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
507                 percpu_counter_add_batch(&fs_info->dio_bytes, -entry->num_bytes,
508                                          fs_info->delalloc_batch);
509
510         tree = &btrfs_inode->ordered_tree;
511         spin_lock_irq(&tree->lock);
512         node = &entry->rb_node;
513         rb_erase(node, &tree->tree);
514         RB_CLEAR_NODE(node);
515         if (tree->last == node)
516                 tree->last = NULL;
517         set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
518         pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
519         spin_unlock_irq(&tree->lock);
520
521         /*
522          * The current running transaction is waiting on us, we need to let it
523          * know that we're complete and wake it up.
524          */
525         if (pending) {
526                 struct btrfs_transaction *trans;
527
528                 /*
529                  * The checks for trans are just a formality, it should be set,
530                  * but if it isn't we don't want to deref/assert under the spin
531                  * lock, so be nice and check if trans is set, but ASSERT() so
532                  * if it isn't set a developer will notice.
533                  */
534                 spin_lock(&fs_info->trans_lock);
535                 trans = fs_info->running_transaction;
536                 if (trans)
537                         refcount_inc(&trans->use_count);
538                 spin_unlock(&fs_info->trans_lock);
539
540                 ASSERT(trans);
541                 if (trans) {
542                         if (atomic_dec_and_test(&trans->pending_ordered))
543                                 wake_up(&trans->pending_wait);
544                         btrfs_put_transaction(trans);
545                 }
546         }
547
548         spin_lock(&root->ordered_extent_lock);
549         list_del_init(&entry->root_extent_list);
550         root->nr_ordered_extents--;
551
552         trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
553
554         if (!root->nr_ordered_extents) {
555                 spin_lock(&fs_info->ordered_root_lock);
556                 BUG_ON(list_empty(&root->ordered_root));
557                 list_del_init(&root->ordered_root);
558                 spin_unlock(&fs_info->ordered_root_lock);
559         }
560         spin_unlock(&root->ordered_extent_lock);
561         wake_up(&entry->wait);
562 }
563
564 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
565 {
566         struct btrfs_ordered_extent *ordered;
567
568         ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
569         btrfs_start_ordered_extent(ordered, 1);
570         complete(&ordered->completion);
571 }
572
573 /*
574  * wait for all the ordered extents in a root.  This is done when balancing
575  * space between drives.
576  */
577 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
578                                const u64 range_start, const u64 range_len)
579 {
580         struct btrfs_fs_info *fs_info = root->fs_info;
581         LIST_HEAD(splice);
582         LIST_HEAD(skipped);
583         LIST_HEAD(works);
584         struct btrfs_ordered_extent *ordered, *next;
585         u64 count = 0;
586         const u64 range_end = range_start + range_len;
587
588         mutex_lock(&root->ordered_extent_mutex);
589         spin_lock(&root->ordered_extent_lock);
590         list_splice_init(&root->ordered_extents, &splice);
591         while (!list_empty(&splice) && nr) {
592                 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
593                                            root_extent_list);
594
595                 if (range_end <= ordered->disk_bytenr ||
596                     ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
597                         list_move_tail(&ordered->root_extent_list, &skipped);
598                         cond_resched_lock(&root->ordered_extent_lock);
599                         continue;
600                 }
601
602                 list_move_tail(&ordered->root_extent_list,
603                                &root->ordered_extents);
604                 refcount_inc(&ordered->refs);
605                 spin_unlock(&root->ordered_extent_lock);
606
607                 btrfs_init_work(&ordered->flush_work,
608                                 btrfs_run_ordered_extent_work, NULL, NULL);
609                 list_add_tail(&ordered->work_list, &works);
610                 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
611
612                 cond_resched();
613                 spin_lock(&root->ordered_extent_lock);
614                 if (nr != U64_MAX)
615                         nr--;
616                 count++;
617         }
618         list_splice_tail(&skipped, &root->ordered_extents);
619         list_splice_tail(&splice, &root->ordered_extents);
620         spin_unlock(&root->ordered_extent_lock);
621
622         list_for_each_entry_safe(ordered, next, &works, work_list) {
623                 list_del_init(&ordered->work_list);
624                 wait_for_completion(&ordered->completion);
625                 btrfs_put_ordered_extent(ordered);
626                 cond_resched();
627         }
628         mutex_unlock(&root->ordered_extent_mutex);
629
630         return count;
631 }
632
633 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
634                              const u64 range_start, const u64 range_len)
635 {
636         struct btrfs_root *root;
637         struct list_head splice;
638         u64 done;
639
640         INIT_LIST_HEAD(&splice);
641
642         mutex_lock(&fs_info->ordered_operations_mutex);
643         spin_lock(&fs_info->ordered_root_lock);
644         list_splice_init(&fs_info->ordered_roots, &splice);
645         while (!list_empty(&splice) && nr) {
646                 root = list_first_entry(&splice, struct btrfs_root,
647                                         ordered_root);
648                 root = btrfs_grab_root(root);
649                 BUG_ON(!root);
650                 list_move_tail(&root->ordered_root,
651                                &fs_info->ordered_roots);
652                 spin_unlock(&fs_info->ordered_root_lock);
653
654                 done = btrfs_wait_ordered_extents(root, nr,
655                                                   range_start, range_len);
656                 btrfs_put_root(root);
657
658                 spin_lock(&fs_info->ordered_root_lock);
659                 if (nr != U64_MAX) {
660                         nr -= done;
661                 }
662         }
663         list_splice_tail(&splice, &fs_info->ordered_roots);
664         spin_unlock(&fs_info->ordered_root_lock);
665         mutex_unlock(&fs_info->ordered_operations_mutex);
666 }
667
668 /*
669  * Used to start IO or wait for a given ordered extent to finish.
670  *
671  * If wait is one, this effectively waits on page writeback for all the pages
672  * in the extent, and it waits on the io completion code to insert
673  * metadata into the btree corresponding to the extent
674  */
675 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
676 {
677         u64 start = entry->file_offset;
678         u64 end = start + entry->num_bytes - 1;
679         struct btrfs_inode *inode = BTRFS_I(entry->inode);
680
681         trace_btrfs_ordered_extent_start(inode, entry);
682
683         /*
684          * pages in the range can be dirty, clean or writeback.  We
685          * start IO on any dirty ones so the wait doesn't stall waiting
686          * for the flusher thread to find them
687          */
688         if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
689                 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
690         if (wait) {
691                 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
692                                                  &entry->flags));
693         }
694 }
695
696 /*
697  * Used to wait on ordered extents across a large range of bytes.
698  */
699 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
700 {
701         int ret = 0;
702         int ret_wb = 0;
703         u64 end;
704         u64 orig_end;
705         struct btrfs_ordered_extent *ordered;
706
707         if (start + len < start) {
708                 orig_end = INT_LIMIT(loff_t);
709         } else {
710                 orig_end = start + len - 1;
711                 if (orig_end > INT_LIMIT(loff_t))
712                         orig_end = INT_LIMIT(loff_t);
713         }
714
715         /* start IO across the range first to instantiate any delalloc
716          * extents
717          */
718         ret = btrfs_fdatawrite_range(inode, start, orig_end);
719         if (ret)
720                 return ret;
721
722         /*
723          * If we have a writeback error don't return immediately. Wait first
724          * for any ordered extents that haven't completed yet. This is to make
725          * sure no one can dirty the same page ranges and call writepages()
726          * before the ordered extents complete - to avoid failures (-EEXIST)
727          * when adding the new ordered extents to the ordered tree.
728          */
729         ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
730
731         end = orig_end;
732         while (1) {
733                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
734                 if (!ordered)
735                         break;
736                 if (ordered->file_offset > orig_end) {
737                         btrfs_put_ordered_extent(ordered);
738                         break;
739                 }
740                 if (ordered->file_offset + ordered->num_bytes <= start) {
741                         btrfs_put_ordered_extent(ordered);
742                         break;
743                 }
744                 btrfs_start_ordered_extent(ordered, 1);
745                 end = ordered->file_offset;
746                 /*
747                  * If the ordered extent had an error save the error but don't
748                  * exit without waiting first for all other ordered extents in
749                  * the range to complete.
750                  */
751                 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
752                         ret = -EIO;
753                 btrfs_put_ordered_extent(ordered);
754                 if (end == 0 || end == start)
755                         break;
756                 end--;
757         }
758         return ret_wb ? ret_wb : ret;
759 }
760
761 /*
762  * find an ordered extent corresponding to file_offset.  return NULL if
763  * nothing is found, otherwise take a reference on the extent and return it
764  */
765 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
766                                                          u64 file_offset)
767 {
768         struct btrfs_ordered_inode_tree *tree;
769         struct rb_node *node;
770         struct btrfs_ordered_extent *entry = NULL;
771
772         tree = &inode->ordered_tree;
773         spin_lock_irq(&tree->lock);
774         node = tree_search(tree, file_offset);
775         if (!node)
776                 goto out;
777
778         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
779         if (!offset_in_entry(entry, file_offset))
780                 entry = NULL;
781         if (entry)
782                 refcount_inc(&entry->refs);
783 out:
784         spin_unlock_irq(&tree->lock);
785         return entry;
786 }
787
788 /* Since the DIO code tries to lock a wide area we need to look for any ordered
789  * extents that exist in the range, rather than just the start of the range.
790  */
791 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
792                 struct btrfs_inode *inode, u64 file_offset, u64 len)
793 {
794         struct btrfs_ordered_inode_tree *tree;
795         struct rb_node *node;
796         struct btrfs_ordered_extent *entry = NULL;
797
798         tree = &inode->ordered_tree;
799         spin_lock_irq(&tree->lock);
800         node = tree_search(tree, file_offset);
801         if (!node) {
802                 node = tree_search(tree, file_offset + len);
803                 if (!node)
804                         goto out;
805         }
806
807         while (1) {
808                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
809                 if (range_overlaps(entry, file_offset, len))
810                         break;
811
812                 if (entry->file_offset >= file_offset + len) {
813                         entry = NULL;
814                         break;
815                 }
816                 entry = NULL;
817                 node = rb_next(node);
818                 if (!node)
819                         break;
820         }
821 out:
822         if (entry)
823                 refcount_inc(&entry->refs);
824         spin_unlock_irq(&tree->lock);
825         return entry;
826 }
827
828 /*
829  * Adds all ordered extents to the given list. The list ends up sorted by the
830  * file_offset of the ordered extents.
831  */
832 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
833                                            struct list_head *list)
834 {
835         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
836         struct rb_node *n;
837
838         ASSERT(inode_is_locked(&inode->vfs_inode));
839
840         spin_lock_irq(&tree->lock);
841         for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
842                 struct btrfs_ordered_extent *ordered;
843
844                 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
845
846                 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
847                         continue;
848
849                 ASSERT(list_empty(&ordered->log_list));
850                 list_add_tail(&ordered->log_list, list);
851                 refcount_inc(&ordered->refs);
852         }
853         spin_unlock_irq(&tree->lock);
854 }
855
856 /*
857  * lookup and return any extent before 'file_offset'.  NULL is returned
858  * if none is found
859  */
860 struct btrfs_ordered_extent *
861 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
862 {
863         struct btrfs_ordered_inode_tree *tree;
864         struct rb_node *node;
865         struct btrfs_ordered_extent *entry = NULL;
866
867         tree = &inode->ordered_tree;
868         spin_lock_irq(&tree->lock);
869         node = tree_search(tree, file_offset);
870         if (!node)
871                 goto out;
872
873         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
874         refcount_inc(&entry->refs);
875 out:
876         spin_unlock_irq(&tree->lock);
877         return entry;
878 }
879
880 /*
881  * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
882  * ordered extents in it are run to completion.
883  *
884  * @inode:        Inode whose ordered tree is to be searched
885  * @start:        Beginning of range to flush
886  * @end:          Last byte of range to lock
887  * @cached_state: If passed, will return the extent state responsible for the
888  * locked range. It's the caller's responsibility to free the cached state.
889  *
890  * This function always returns with the given range locked, ensuring after it's
891  * called no order extent can be pending.
892  */
893 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
894                                         u64 end,
895                                         struct extent_state **cached_state)
896 {
897         struct btrfs_ordered_extent *ordered;
898         struct extent_state *cache = NULL;
899         struct extent_state **cachedp = &cache;
900
901         if (cached_state)
902                 cachedp = cached_state;
903
904         while (1) {
905                 lock_extent_bits(&inode->io_tree, start, end, cachedp);
906                 ordered = btrfs_lookup_ordered_range(inode, start,
907                                                      end - start + 1);
908                 if (!ordered) {
909                         /*
910                          * If no external cached_state has been passed then
911                          * decrement the extra ref taken for cachedp since we
912                          * aren't exposing it outside of this function
913                          */
914                         if (!cached_state)
915                                 refcount_dec(&cache->refs);
916                         break;
917                 }
918                 unlock_extent_cached(&inode->io_tree, start, end, cachedp);
919                 btrfs_start_ordered_extent(ordered, 1);
920                 btrfs_put_ordered_extent(ordered);
921         }
922 }
923
924 int __init ordered_data_init(void)
925 {
926         btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
927                                      sizeof(struct btrfs_ordered_extent), 0,
928                                      SLAB_MEM_SPREAD,
929                                      NULL);
930         if (!btrfs_ordered_extent_cache)
931                 return -ENOMEM;
932
933         return 0;
934 }
935
936 void __cold ordered_data_exit(void)
937 {
938         kmem_cache_destroy(btrfs_ordered_extent_cache);
939 }