Merge tag 'zynqmp-soc-for-v5.7' of https://github.com/Xilinx/linux-xlnx into arm/soc
[linux-2.6-microblaze.git] / fs / btrfs / ordered-data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "misc.h"
11 #include "ctree.h"
12 #include "transaction.h"
13 #include "btrfs_inode.h"
14 #include "extent_io.h"
15 #include "disk-io.h"
16 #include "compression.h"
17 #include "delalloc-space.h"
18
19 static struct kmem_cache *btrfs_ordered_extent_cache;
20
21 static u64 entry_end(struct btrfs_ordered_extent *entry)
22 {
23         if (entry->file_offset + entry->num_bytes < entry->file_offset)
24                 return (u64)-1;
25         return entry->file_offset + entry->num_bytes;
26 }
27
28 /* returns NULL if the insertion worked, or it returns the node it did find
29  * in the tree
30  */
31 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
32                                    struct rb_node *node)
33 {
34         struct rb_node **p = &root->rb_node;
35         struct rb_node *parent = NULL;
36         struct btrfs_ordered_extent *entry;
37
38         while (*p) {
39                 parent = *p;
40                 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
41
42                 if (file_offset < entry->file_offset)
43                         p = &(*p)->rb_left;
44                 else if (file_offset >= entry_end(entry))
45                         p = &(*p)->rb_right;
46                 else
47                         return parent;
48         }
49
50         rb_link_node(node, parent, p);
51         rb_insert_color(node, root);
52         return NULL;
53 }
54
55 /*
56  * look for a given offset in the tree, and if it can't be found return the
57  * first lesser offset
58  */
59 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
60                                      struct rb_node **prev_ret)
61 {
62         struct rb_node *n = root->rb_node;
63         struct rb_node *prev = NULL;
64         struct rb_node *test;
65         struct btrfs_ordered_extent *entry;
66         struct btrfs_ordered_extent *prev_entry = NULL;
67
68         while (n) {
69                 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
70                 prev = n;
71                 prev_entry = entry;
72
73                 if (file_offset < entry->file_offset)
74                         n = n->rb_left;
75                 else if (file_offset >= entry_end(entry))
76                         n = n->rb_right;
77                 else
78                         return n;
79         }
80         if (!prev_ret)
81                 return NULL;
82
83         while (prev && file_offset >= entry_end(prev_entry)) {
84                 test = rb_next(prev);
85                 if (!test)
86                         break;
87                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
88                                       rb_node);
89                 if (file_offset < entry_end(prev_entry))
90                         break;
91
92                 prev = test;
93         }
94         if (prev)
95                 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
96                                       rb_node);
97         while (prev && file_offset < entry_end(prev_entry)) {
98                 test = rb_prev(prev);
99                 if (!test)
100                         break;
101                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
102                                       rb_node);
103                 prev = test;
104         }
105         *prev_ret = prev;
106         return NULL;
107 }
108
109 /*
110  * helper to check if a given offset is inside a given entry
111  */
112 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
113 {
114         if (file_offset < entry->file_offset ||
115             entry->file_offset + entry->num_bytes <= file_offset)
116                 return 0;
117         return 1;
118 }
119
120 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
121                           u64 len)
122 {
123         if (file_offset + len <= entry->file_offset ||
124             entry->file_offset + entry->num_bytes <= file_offset)
125                 return 0;
126         return 1;
127 }
128
129 /*
130  * look find the first ordered struct that has this offset, otherwise
131  * the first one less than this offset
132  */
133 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
134                                           u64 file_offset)
135 {
136         struct rb_root *root = &tree->tree;
137         struct rb_node *prev = NULL;
138         struct rb_node *ret;
139         struct btrfs_ordered_extent *entry;
140
141         if (tree->last) {
142                 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
143                                  rb_node);
144                 if (offset_in_entry(entry, file_offset))
145                         return tree->last;
146         }
147         ret = __tree_search(root, file_offset, &prev);
148         if (!ret)
149                 ret = prev;
150         if (ret)
151                 tree->last = ret;
152         return ret;
153 }
154
155 /* allocate and add a new ordered_extent into the per-inode tree.
156  *
157  * The tree is given a single reference on the ordered extent that was
158  * inserted.
159  */
160 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
161                                       u64 disk_bytenr, u64 num_bytes,
162                                       u64 disk_num_bytes, int type, int dio,
163                                       int compress_type)
164 {
165         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
166         struct btrfs_root *root = BTRFS_I(inode)->root;
167         struct btrfs_ordered_inode_tree *tree;
168         struct rb_node *node;
169         struct btrfs_ordered_extent *entry;
170
171         tree = &BTRFS_I(inode)->ordered_tree;
172         entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
173         if (!entry)
174                 return -ENOMEM;
175
176         entry->file_offset = file_offset;
177         entry->disk_bytenr = disk_bytenr;
178         entry->num_bytes = num_bytes;
179         entry->disk_num_bytes = disk_num_bytes;
180         entry->bytes_left = num_bytes;
181         entry->inode = igrab(inode);
182         entry->compress_type = compress_type;
183         entry->truncated_len = (u64)-1;
184         if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
185                 set_bit(type, &entry->flags);
186
187         if (dio) {
188                 percpu_counter_add_batch(&fs_info->dio_bytes, num_bytes,
189                                          fs_info->delalloc_batch);
190                 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
191         }
192
193         /* one ref for the tree */
194         refcount_set(&entry->refs, 1);
195         init_waitqueue_head(&entry->wait);
196         INIT_LIST_HEAD(&entry->list);
197         INIT_LIST_HEAD(&entry->root_extent_list);
198         INIT_LIST_HEAD(&entry->work_list);
199         init_completion(&entry->completion);
200         INIT_LIST_HEAD(&entry->log_list);
201         INIT_LIST_HEAD(&entry->trans_list);
202
203         trace_btrfs_ordered_extent_add(inode, entry);
204
205         spin_lock_irq(&tree->lock);
206         node = tree_insert(&tree->tree, file_offset,
207                            &entry->rb_node);
208         if (node)
209                 btrfs_panic(fs_info, -EEXIST,
210                                 "inconsistency in ordered tree at offset %llu",
211                                 file_offset);
212         spin_unlock_irq(&tree->lock);
213
214         spin_lock(&root->ordered_extent_lock);
215         list_add_tail(&entry->root_extent_list,
216                       &root->ordered_extents);
217         root->nr_ordered_extents++;
218         if (root->nr_ordered_extents == 1) {
219                 spin_lock(&fs_info->ordered_root_lock);
220                 BUG_ON(!list_empty(&root->ordered_root));
221                 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
222                 spin_unlock(&fs_info->ordered_root_lock);
223         }
224         spin_unlock(&root->ordered_extent_lock);
225
226         /*
227          * We don't need the count_max_extents here, we can assume that all of
228          * that work has been done at higher layers, so this is truly the
229          * smallest the extent is going to get.
230          */
231         spin_lock(&BTRFS_I(inode)->lock);
232         btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
233         spin_unlock(&BTRFS_I(inode)->lock);
234
235         return 0;
236 }
237
238 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
239                              u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes,
240                              int type)
241 {
242         return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
243                                           num_bytes, disk_num_bytes, type, 0,
244                                           BTRFS_COMPRESS_NONE);
245 }
246
247 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
248                                  u64 disk_bytenr, u64 num_bytes,
249                                  u64 disk_num_bytes, int type)
250 {
251         return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
252                                           num_bytes, disk_num_bytes, type, 1,
253                                           BTRFS_COMPRESS_NONE);
254 }
255
256 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
257                                       u64 disk_bytenr, u64 num_bytes,
258                                       u64 disk_num_bytes, int type,
259                                       int compress_type)
260 {
261         return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
262                                           num_bytes, disk_num_bytes, type, 0,
263                                           compress_type);
264 }
265
266 /*
267  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
268  * when an ordered extent is finished.  If the list covers more than one
269  * ordered extent, it is split across multiples.
270  */
271 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
272                            struct btrfs_ordered_sum *sum)
273 {
274         struct btrfs_ordered_inode_tree *tree;
275
276         tree = &BTRFS_I(entry->inode)->ordered_tree;
277         spin_lock_irq(&tree->lock);
278         list_add_tail(&sum->list, &entry->list);
279         spin_unlock_irq(&tree->lock);
280 }
281
282 /*
283  * this is used to account for finished IO across a given range
284  * of the file.  The IO may span ordered extents.  If
285  * a given ordered_extent is completely done, 1 is returned, otherwise
286  * 0.
287  *
288  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
289  * to make sure this function only returns 1 once for a given ordered extent.
290  *
291  * file_offset is updated to one byte past the range that is recorded as
292  * complete.  This allows you to walk forward in the file.
293  */
294 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
295                                    struct btrfs_ordered_extent **cached,
296                                    u64 *file_offset, u64 io_size, int uptodate)
297 {
298         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
299         struct btrfs_ordered_inode_tree *tree;
300         struct rb_node *node;
301         struct btrfs_ordered_extent *entry = NULL;
302         int ret;
303         unsigned long flags;
304         u64 dec_end;
305         u64 dec_start;
306         u64 to_dec;
307
308         tree = &BTRFS_I(inode)->ordered_tree;
309         spin_lock_irqsave(&tree->lock, flags);
310         node = tree_search(tree, *file_offset);
311         if (!node) {
312                 ret = 1;
313                 goto out;
314         }
315
316         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
317         if (!offset_in_entry(entry, *file_offset)) {
318                 ret = 1;
319                 goto out;
320         }
321
322         dec_start = max(*file_offset, entry->file_offset);
323         dec_end = min(*file_offset + io_size,
324                       entry->file_offset + entry->num_bytes);
325         *file_offset = dec_end;
326         if (dec_start > dec_end) {
327                 btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
328                            dec_start, dec_end);
329         }
330         to_dec = dec_end - dec_start;
331         if (to_dec > entry->bytes_left) {
332                 btrfs_crit(fs_info,
333                            "bad ordered accounting left %llu size %llu",
334                            entry->bytes_left, to_dec);
335         }
336         entry->bytes_left -= to_dec;
337         if (!uptodate)
338                 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
339
340         if (entry->bytes_left == 0) {
341                 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
342                 /* test_and_set_bit implies a barrier */
343                 cond_wake_up_nomb(&entry->wait);
344         } else {
345                 ret = 1;
346         }
347 out:
348         if (!ret && cached && entry) {
349                 *cached = entry;
350                 refcount_inc(&entry->refs);
351         }
352         spin_unlock_irqrestore(&tree->lock, flags);
353         return ret == 0;
354 }
355
356 /*
357  * this is used to account for finished IO across a given range
358  * of the file.  The IO should not span ordered extents.  If
359  * a given ordered_extent is completely done, 1 is returned, otherwise
360  * 0.
361  *
362  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
363  * to make sure this function only returns 1 once for a given ordered extent.
364  */
365 int btrfs_dec_test_ordered_pending(struct inode *inode,
366                                    struct btrfs_ordered_extent **cached,
367                                    u64 file_offset, u64 io_size, int uptodate)
368 {
369         struct btrfs_ordered_inode_tree *tree;
370         struct rb_node *node;
371         struct btrfs_ordered_extent *entry = NULL;
372         unsigned long flags;
373         int ret;
374
375         tree = &BTRFS_I(inode)->ordered_tree;
376         spin_lock_irqsave(&tree->lock, flags);
377         if (cached && *cached) {
378                 entry = *cached;
379                 goto have_entry;
380         }
381
382         node = tree_search(tree, file_offset);
383         if (!node) {
384                 ret = 1;
385                 goto out;
386         }
387
388         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
389 have_entry:
390         if (!offset_in_entry(entry, file_offset)) {
391                 ret = 1;
392                 goto out;
393         }
394
395         if (io_size > entry->bytes_left) {
396                 btrfs_crit(BTRFS_I(inode)->root->fs_info,
397                            "bad ordered accounting left %llu size %llu",
398                        entry->bytes_left, io_size);
399         }
400         entry->bytes_left -= io_size;
401         if (!uptodate)
402                 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
403
404         if (entry->bytes_left == 0) {
405                 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
406                 /* test_and_set_bit implies a barrier */
407                 cond_wake_up_nomb(&entry->wait);
408         } else {
409                 ret = 1;
410         }
411 out:
412         if (!ret && cached && entry) {
413                 *cached = entry;
414                 refcount_inc(&entry->refs);
415         }
416         spin_unlock_irqrestore(&tree->lock, flags);
417         return ret == 0;
418 }
419
420 /*
421  * used to drop a reference on an ordered extent.  This will free
422  * the extent if the last reference is dropped
423  */
424 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
425 {
426         struct list_head *cur;
427         struct btrfs_ordered_sum *sum;
428
429         trace_btrfs_ordered_extent_put(entry->inode, entry);
430
431         if (refcount_dec_and_test(&entry->refs)) {
432                 ASSERT(list_empty(&entry->log_list));
433                 ASSERT(list_empty(&entry->trans_list));
434                 ASSERT(list_empty(&entry->root_extent_list));
435                 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
436                 if (entry->inode)
437                         btrfs_add_delayed_iput(entry->inode);
438                 while (!list_empty(&entry->list)) {
439                         cur = entry->list.next;
440                         sum = list_entry(cur, struct btrfs_ordered_sum, list);
441                         list_del(&sum->list);
442                         kvfree(sum);
443                 }
444                 kmem_cache_free(btrfs_ordered_extent_cache, entry);
445         }
446 }
447
448 /*
449  * remove an ordered extent from the tree.  No references are dropped
450  * and waiters are woken up.
451  */
452 void btrfs_remove_ordered_extent(struct inode *inode,
453                                  struct btrfs_ordered_extent *entry)
454 {
455         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
456         struct btrfs_ordered_inode_tree *tree;
457         struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
458         struct btrfs_root *root = btrfs_inode->root;
459         struct rb_node *node;
460
461         /* This is paired with btrfs_add_ordered_extent. */
462         spin_lock(&btrfs_inode->lock);
463         btrfs_mod_outstanding_extents(btrfs_inode, -1);
464         spin_unlock(&btrfs_inode->lock);
465         if (root != fs_info->tree_root)
466                 btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes,
467                                                 false);
468
469         if (test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
470                 percpu_counter_add_batch(&fs_info->dio_bytes, -entry->num_bytes,
471                                          fs_info->delalloc_batch);
472
473         tree = &btrfs_inode->ordered_tree;
474         spin_lock_irq(&tree->lock);
475         node = &entry->rb_node;
476         rb_erase(node, &tree->tree);
477         RB_CLEAR_NODE(node);
478         if (tree->last == node)
479                 tree->last = NULL;
480         set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
481         spin_unlock_irq(&tree->lock);
482
483         spin_lock(&root->ordered_extent_lock);
484         list_del_init(&entry->root_extent_list);
485         root->nr_ordered_extents--;
486
487         trace_btrfs_ordered_extent_remove(inode, entry);
488
489         if (!root->nr_ordered_extents) {
490                 spin_lock(&fs_info->ordered_root_lock);
491                 BUG_ON(list_empty(&root->ordered_root));
492                 list_del_init(&root->ordered_root);
493                 spin_unlock(&fs_info->ordered_root_lock);
494         }
495         spin_unlock(&root->ordered_extent_lock);
496         wake_up(&entry->wait);
497 }
498
499 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
500 {
501         struct btrfs_ordered_extent *ordered;
502
503         ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
504         btrfs_start_ordered_extent(ordered->inode, ordered, 1);
505         complete(&ordered->completion);
506 }
507
508 /*
509  * wait for all the ordered extents in a root.  This is done when balancing
510  * space between drives.
511  */
512 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
513                                const u64 range_start, const u64 range_len)
514 {
515         struct btrfs_fs_info *fs_info = root->fs_info;
516         LIST_HEAD(splice);
517         LIST_HEAD(skipped);
518         LIST_HEAD(works);
519         struct btrfs_ordered_extent *ordered, *next;
520         u64 count = 0;
521         const u64 range_end = range_start + range_len;
522
523         mutex_lock(&root->ordered_extent_mutex);
524         spin_lock(&root->ordered_extent_lock);
525         list_splice_init(&root->ordered_extents, &splice);
526         while (!list_empty(&splice) && nr) {
527                 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
528                                            root_extent_list);
529
530                 if (range_end <= ordered->disk_bytenr ||
531                     ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
532                         list_move_tail(&ordered->root_extent_list, &skipped);
533                         cond_resched_lock(&root->ordered_extent_lock);
534                         continue;
535                 }
536
537                 list_move_tail(&ordered->root_extent_list,
538                                &root->ordered_extents);
539                 refcount_inc(&ordered->refs);
540                 spin_unlock(&root->ordered_extent_lock);
541
542                 btrfs_init_work(&ordered->flush_work,
543                                 btrfs_run_ordered_extent_work, NULL, NULL);
544                 list_add_tail(&ordered->work_list, &works);
545                 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
546
547                 cond_resched();
548                 spin_lock(&root->ordered_extent_lock);
549                 if (nr != U64_MAX)
550                         nr--;
551                 count++;
552         }
553         list_splice_tail(&skipped, &root->ordered_extents);
554         list_splice_tail(&splice, &root->ordered_extents);
555         spin_unlock(&root->ordered_extent_lock);
556
557         list_for_each_entry_safe(ordered, next, &works, work_list) {
558                 list_del_init(&ordered->work_list);
559                 wait_for_completion(&ordered->completion);
560                 btrfs_put_ordered_extent(ordered);
561                 cond_resched();
562         }
563         mutex_unlock(&root->ordered_extent_mutex);
564
565         return count;
566 }
567
568 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
569                              const u64 range_start, const u64 range_len)
570 {
571         struct btrfs_root *root;
572         struct list_head splice;
573         u64 done;
574
575         INIT_LIST_HEAD(&splice);
576
577         mutex_lock(&fs_info->ordered_operations_mutex);
578         spin_lock(&fs_info->ordered_root_lock);
579         list_splice_init(&fs_info->ordered_roots, &splice);
580         while (!list_empty(&splice) && nr) {
581                 root = list_first_entry(&splice, struct btrfs_root,
582                                         ordered_root);
583                 root = btrfs_grab_fs_root(root);
584                 BUG_ON(!root);
585                 list_move_tail(&root->ordered_root,
586                                &fs_info->ordered_roots);
587                 spin_unlock(&fs_info->ordered_root_lock);
588
589                 done = btrfs_wait_ordered_extents(root, nr,
590                                                   range_start, range_len);
591                 btrfs_put_fs_root(root);
592
593                 spin_lock(&fs_info->ordered_root_lock);
594                 if (nr != U64_MAX) {
595                         nr -= done;
596                 }
597         }
598         list_splice_tail(&splice, &fs_info->ordered_roots);
599         spin_unlock(&fs_info->ordered_root_lock);
600         mutex_unlock(&fs_info->ordered_operations_mutex);
601 }
602
603 /*
604  * Used to start IO or wait for a given ordered extent to finish.
605  *
606  * If wait is one, this effectively waits on page writeback for all the pages
607  * in the extent, and it waits on the io completion code to insert
608  * metadata into the btree corresponding to the extent
609  */
610 void btrfs_start_ordered_extent(struct inode *inode,
611                                        struct btrfs_ordered_extent *entry,
612                                        int wait)
613 {
614         u64 start = entry->file_offset;
615         u64 end = start + entry->num_bytes - 1;
616
617         trace_btrfs_ordered_extent_start(inode, entry);
618
619         /*
620          * pages in the range can be dirty, clean or writeback.  We
621          * start IO on any dirty ones so the wait doesn't stall waiting
622          * for the flusher thread to find them
623          */
624         if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
625                 filemap_fdatawrite_range(inode->i_mapping, start, end);
626         if (wait) {
627                 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
628                                                  &entry->flags));
629         }
630 }
631
632 /*
633  * Used to wait on ordered extents across a large range of bytes.
634  */
635 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
636 {
637         int ret = 0;
638         int ret_wb = 0;
639         u64 end;
640         u64 orig_end;
641         struct btrfs_ordered_extent *ordered;
642
643         if (start + len < start) {
644                 orig_end = INT_LIMIT(loff_t);
645         } else {
646                 orig_end = start + len - 1;
647                 if (orig_end > INT_LIMIT(loff_t))
648                         orig_end = INT_LIMIT(loff_t);
649         }
650
651         /* start IO across the range first to instantiate any delalloc
652          * extents
653          */
654         ret = btrfs_fdatawrite_range(inode, start, orig_end);
655         if (ret)
656                 return ret;
657
658         /*
659          * If we have a writeback error don't return immediately. Wait first
660          * for any ordered extents that haven't completed yet. This is to make
661          * sure no one can dirty the same page ranges and call writepages()
662          * before the ordered extents complete - to avoid failures (-EEXIST)
663          * when adding the new ordered extents to the ordered tree.
664          */
665         ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
666
667         end = orig_end;
668         while (1) {
669                 ordered = btrfs_lookup_first_ordered_extent(inode, end);
670                 if (!ordered)
671                         break;
672                 if (ordered->file_offset > orig_end) {
673                         btrfs_put_ordered_extent(ordered);
674                         break;
675                 }
676                 if (ordered->file_offset + ordered->num_bytes <= start) {
677                         btrfs_put_ordered_extent(ordered);
678                         break;
679                 }
680                 btrfs_start_ordered_extent(inode, ordered, 1);
681                 end = ordered->file_offset;
682                 /*
683                  * If the ordered extent had an error save the error but don't
684                  * exit without waiting first for all other ordered extents in
685                  * the range to complete.
686                  */
687                 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
688                         ret = -EIO;
689                 btrfs_put_ordered_extent(ordered);
690                 if (end == 0 || end == start)
691                         break;
692                 end--;
693         }
694         return ret_wb ? ret_wb : ret;
695 }
696
697 /*
698  * find an ordered extent corresponding to file_offset.  return NULL if
699  * nothing is found, otherwise take a reference on the extent and return it
700  */
701 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
702                                                          u64 file_offset)
703 {
704         struct btrfs_ordered_inode_tree *tree;
705         struct rb_node *node;
706         struct btrfs_ordered_extent *entry = NULL;
707
708         tree = &BTRFS_I(inode)->ordered_tree;
709         spin_lock_irq(&tree->lock);
710         node = tree_search(tree, file_offset);
711         if (!node)
712                 goto out;
713
714         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
715         if (!offset_in_entry(entry, file_offset))
716                 entry = NULL;
717         if (entry)
718                 refcount_inc(&entry->refs);
719 out:
720         spin_unlock_irq(&tree->lock);
721         return entry;
722 }
723
724 /* Since the DIO code tries to lock a wide area we need to look for any ordered
725  * extents that exist in the range, rather than just the start of the range.
726  */
727 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
728                 struct btrfs_inode *inode, u64 file_offset, u64 len)
729 {
730         struct btrfs_ordered_inode_tree *tree;
731         struct rb_node *node;
732         struct btrfs_ordered_extent *entry = NULL;
733
734         tree = &inode->ordered_tree;
735         spin_lock_irq(&tree->lock);
736         node = tree_search(tree, file_offset);
737         if (!node) {
738                 node = tree_search(tree, file_offset + len);
739                 if (!node)
740                         goto out;
741         }
742
743         while (1) {
744                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
745                 if (range_overlaps(entry, file_offset, len))
746                         break;
747
748                 if (entry->file_offset >= file_offset + len) {
749                         entry = NULL;
750                         break;
751                 }
752                 entry = NULL;
753                 node = rb_next(node);
754                 if (!node)
755                         break;
756         }
757 out:
758         if (entry)
759                 refcount_inc(&entry->refs);
760         spin_unlock_irq(&tree->lock);
761         return entry;
762 }
763
764 /*
765  * lookup and return any extent before 'file_offset'.  NULL is returned
766  * if none is found
767  */
768 struct btrfs_ordered_extent *
769 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
770 {
771         struct btrfs_ordered_inode_tree *tree;
772         struct rb_node *node;
773         struct btrfs_ordered_extent *entry = NULL;
774
775         tree = &BTRFS_I(inode)->ordered_tree;
776         spin_lock_irq(&tree->lock);
777         node = tree_search(tree, file_offset);
778         if (!node)
779                 goto out;
780
781         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
782         refcount_inc(&entry->refs);
783 out:
784         spin_unlock_irq(&tree->lock);
785         return entry;
786 }
787
788 /*
789  * After an extent is done, call this to conditionally update the on disk
790  * i_size.  i_size is updated to cover any fully written part of the file.
791  */
792 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
793                                 struct btrfs_ordered_extent *ordered)
794 {
795         struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
796         u64 disk_i_size;
797         u64 new_i_size;
798         u64 i_size = i_size_read(inode);
799         struct rb_node *node;
800         struct rb_node *prev = NULL;
801         struct btrfs_ordered_extent *test;
802         int ret = 1;
803         u64 orig_offset = offset;
804
805         spin_lock_irq(&tree->lock);
806         if (ordered) {
807                 offset = entry_end(ordered);
808                 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
809                         offset = min(offset,
810                                      ordered->file_offset +
811                                      ordered->truncated_len);
812         } else {
813                 offset = ALIGN(offset, btrfs_inode_sectorsize(inode));
814         }
815         disk_i_size = BTRFS_I(inode)->disk_i_size;
816
817         /*
818          * truncate file.
819          * If ordered is not NULL, then this is called from endio and
820          * disk_i_size will be updated by either truncate itself or any
821          * in-flight IOs which are inside the disk_i_size.
822          *
823          * Because btrfs_setsize() may set i_size with disk_i_size if truncate
824          * fails somehow, we need to make sure we have a precise disk_i_size by
825          * updating it as usual.
826          *
827          */
828         if (!ordered && disk_i_size > i_size) {
829                 BTRFS_I(inode)->disk_i_size = orig_offset;
830                 ret = 0;
831                 goto out;
832         }
833
834         /*
835          * if the disk i_size is already at the inode->i_size, or
836          * this ordered extent is inside the disk i_size, we're done
837          */
838         if (disk_i_size == i_size)
839                 goto out;
840
841         /*
842          * We still need to update disk_i_size if outstanding_isize is greater
843          * than disk_i_size.
844          */
845         if (offset <= disk_i_size &&
846             (!ordered || ordered->outstanding_isize <= disk_i_size))
847                 goto out;
848
849         /*
850          * walk backward from this ordered extent to disk_i_size.
851          * if we find an ordered extent then we can't update disk i_size
852          * yet
853          */
854         if (ordered) {
855                 node = rb_prev(&ordered->rb_node);
856         } else {
857                 prev = tree_search(tree, offset);
858                 /*
859                  * we insert file extents without involving ordered struct,
860                  * so there should be no ordered struct cover this offset
861                  */
862                 if (prev) {
863                         test = rb_entry(prev, struct btrfs_ordered_extent,
864                                         rb_node);
865                         BUG_ON(offset_in_entry(test, offset));
866                 }
867                 node = prev;
868         }
869         for (; node; node = rb_prev(node)) {
870                 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
871
872                 /* We treat this entry as if it doesn't exist */
873                 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
874                         continue;
875
876                 if (entry_end(test) <= disk_i_size)
877                         break;
878                 if (test->file_offset >= i_size)
879                         break;
880
881                 /*
882                  * We don't update disk_i_size now, so record this undealt
883                  * i_size. Or we will not know the real i_size.
884                  */
885                 if (test->outstanding_isize < offset)
886                         test->outstanding_isize = offset;
887                 if (ordered &&
888                     ordered->outstanding_isize > test->outstanding_isize)
889                         test->outstanding_isize = ordered->outstanding_isize;
890                 goto out;
891         }
892         new_i_size = min_t(u64, offset, i_size);
893
894         /*
895          * Some ordered extents may completed before the current one, and
896          * we hold the real i_size in ->outstanding_isize.
897          */
898         if (ordered && ordered->outstanding_isize > new_i_size)
899                 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
900         BTRFS_I(inode)->disk_i_size = new_i_size;
901         ret = 0;
902 out:
903         /*
904          * We need to do this because we can't remove ordered extents until
905          * after the i_disk_size has been updated and then the inode has been
906          * updated to reflect the change, so we need to tell anybody who finds
907          * this ordered extent that we've already done all the real work, we
908          * just haven't completed all the other work.
909          */
910         if (ordered)
911                 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
912         spin_unlock_irq(&tree->lock);
913         return ret;
914 }
915
916 /*
917  * search the ordered extents for one corresponding to 'offset' and
918  * try to find a checksum.  This is used because we allow pages to
919  * be reclaimed before their checksum is actually put into the btree
920  */
921 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
922                            u8 *sum, int len)
923 {
924         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
925         struct btrfs_ordered_sum *ordered_sum;
926         struct btrfs_ordered_extent *ordered;
927         struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
928         unsigned long num_sectors;
929         unsigned long i;
930         u32 sectorsize = btrfs_inode_sectorsize(inode);
931         const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
932         int index = 0;
933
934         ordered = btrfs_lookup_ordered_extent(inode, offset);
935         if (!ordered)
936                 return 0;
937
938         spin_lock_irq(&tree->lock);
939         list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
940                 if (disk_bytenr >= ordered_sum->bytenr &&
941                     disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
942                         i = (disk_bytenr - ordered_sum->bytenr) >>
943                             inode->i_sb->s_blocksize_bits;
944                         num_sectors = ordered_sum->len >>
945                                       inode->i_sb->s_blocksize_bits;
946                         num_sectors = min_t(int, len - index, num_sectors - i);
947                         memcpy(sum + index, ordered_sum->sums + i * csum_size,
948                                num_sectors * csum_size);
949
950                         index += (int)num_sectors * csum_size;
951                         if (index == len)
952                                 goto out;
953                         disk_bytenr += num_sectors * sectorsize;
954                 }
955         }
956 out:
957         spin_unlock_irq(&tree->lock);
958         btrfs_put_ordered_extent(ordered);
959         return index;
960 }
961
962 /*
963  * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
964  * ordered extents in it are run to completion.
965  *
966  * @tree:         IO tree used for locking out other users of the range
967  * @inode:        Inode whose ordered tree is to be searched
968  * @start:        Beginning of range to flush
969  * @end:          Last byte of range to lock
970  * @cached_state: If passed, will return the extent state responsible for the
971  * locked range. It's the caller's responsibility to free the cached state.
972  *
973  * This function always returns with the given range locked, ensuring after it's
974  * called no order extent can be pending.
975  */
976 void btrfs_lock_and_flush_ordered_range(struct extent_io_tree *tree,
977                                         struct btrfs_inode *inode, u64 start,
978                                         u64 end,
979                                         struct extent_state **cached_state)
980 {
981         struct btrfs_ordered_extent *ordered;
982         struct extent_state *cache = NULL;
983         struct extent_state **cachedp = &cache;
984
985         if (cached_state)
986                 cachedp = cached_state;
987
988         while (1) {
989                 lock_extent_bits(tree, start, end, cachedp);
990                 ordered = btrfs_lookup_ordered_range(inode, start,
991                                                      end - start + 1);
992                 if (!ordered) {
993                         /*
994                          * If no external cached_state has been passed then
995                          * decrement the extra ref taken for cachedp since we
996                          * aren't exposing it outside of this function
997                          */
998                         if (!cached_state)
999                                 refcount_dec(&cache->refs);
1000                         break;
1001                 }
1002                 unlock_extent_cached(tree, start, end, cachedp);
1003                 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
1004                 btrfs_put_ordered_extent(ordered);
1005         }
1006 }
1007
1008 int __init ordered_data_init(void)
1009 {
1010         btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1011                                      sizeof(struct btrfs_ordered_extent), 0,
1012                                      SLAB_MEM_SPREAD,
1013                                      NULL);
1014         if (!btrfs_ordered_extent_cache)
1015                 return -ENOMEM;
1016
1017         return 0;
1018 }
1019
1020 void __cold ordered_data_exit(void)
1021 {
1022         kmem_cache_destroy(btrfs_ordered_extent_cache);
1023 }