Merge branch 'topic/ppc-kvm' of https://git.kernel.org/pub/scm/linux/kernel/git/power...
[linux-2.6-microblaze.git] / fs / btrfs / ordered-data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "misc.h"
11 #include "ctree.h"
12 #include "transaction.h"
13 #include "btrfs_inode.h"
14 #include "extent_io.h"
15 #include "disk-io.h"
16 #include "compression.h"
17 #include "delalloc-space.h"
18 #include "qgroup.h"
19
20 static struct kmem_cache *btrfs_ordered_extent_cache;
21
22 static u64 entry_end(struct btrfs_ordered_extent *entry)
23 {
24         if (entry->file_offset + entry->num_bytes < entry->file_offset)
25                 return (u64)-1;
26         return entry->file_offset + entry->num_bytes;
27 }
28
29 /* returns NULL if the insertion worked, or it returns the node it did find
30  * in the tree
31  */
32 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
33                                    struct rb_node *node)
34 {
35         struct rb_node **p = &root->rb_node;
36         struct rb_node *parent = NULL;
37         struct btrfs_ordered_extent *entry;
38
39         while (*p) {
40                 parent = *p;
41                 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
42
43                 if (file_offset < entry->file_offset)
44                         p = &(*p)->rb_left;
45                 else if (file_offset >= entry_end(entry))
46                         p = &(*p)->rb_right;
47                 else
48                         return parent;
49         }
50
51         rb_link_node(node, parent, p);
52         rb_insert_color(node, root);
53         return NULL;
54 }
55
56 /*
57  * look for a given offset in the tree, and if it can't be found return the
58  * first lesser offset
59  */
60 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
61                                      struct rb_node **prev_ret)
62 {
63         struct rb_node *n = root->rb_node;
64         struct rb_node *prev = NULL;
65         struct rb_node *test;
66         struct btrfs_ordered_extent *entry;
67         struct btrfs_ordered_extent *prev_entry = NULL;
68
69         while (n) {
70                 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
71                 prev = n;
72                 prev_entry = entry;
73
74                 if (file_offset < entry->file_offset)
75                         n = n->rb_left;
76                 else if (file_offset >= entry_end(entry))
77                         n = n->rb_right;
78                 else
79                         return n;
80         }
81         if (!prev_ret)
82                 return NULL;
83
84         while (prev && file_offset >= entry_end(prev_entry)) {
85                 test = rb_next(prev);
86                 if (!test)
87                         break;
88                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
89                                       rb_node);
90                 if (file_offset < entry_end(prev_entry))
91                         break;
92
93                 prev = test;
94         }
95         if (prev)
96                 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
97                                       rb_node);
98         while (prev && file_offset < entry_end(prev_entry)) {
99                 test = rb_prev(prev);
100                 if (!test)
101                         break;
102                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
103                                       rb_node);
104                 prev = test;
105         }
106         *prev_ret = prev;
107         return NULL;
108 }
109
110 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
111                           u64 len)
112 {
113         if (file_offset + len <= entry->file_offset ||
114             entry->file_offset + entry->num_bytes <= file_offset)
115                 return 0;
116         return 1;
117 }
118
119 /*
120  * look find the first ordered struct that has this offset, otherwise
121  * the first one less than this offset
122  */
123 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
124                                           u64 file_offset)
125 {
126         struct rb_root *root = &tree->tree;
127         struct rb_node *prev = NULL;
128         struct rb_node *ret;
129         struct btrfs_ordered_extent *entry;
130
131         if (tree->last) {
132                 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
133                                  rb_node);
134                 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
135                         return tree->last;
136         }
137         ret = __tree_search(root, file_offset, &prev);
138         if (!ret)
139                 ret = prev;
140         if (ret)
141                 tree->last = ret;
142         return ret;
143 }
144
145 /*
146  * Allocate and add a new ordered_extent into the per-inode tree.
147  *
148  * The tree is given a single reference on the ordered extent that was
149  * inserted.
150  */
151 static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
152                                       u64 disk_bytenr, u64 num_bytes,
153                                       u64 disk_num_bytes, int type, int dio,
154                                       int compress_type)
155 {
156         struct btrfs_root *root = inode->root;
157         struct btrfs_fs_info *fs_info = root->fs_info;
158         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
159         struct rb_node *node;
160         struct btrfs_ordered_extent *entry;
161         int ret;
162
163         if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) {
164                 /* For nocow write, we can release the qgroup rsv right now */
165                 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
166                 if (ret < 0)
167                         return ret;
168                 ret = 0;
169         } else {
170                 /*
171                  * The ordered extent has reserved qgroup space, release now
172                  * and pass the reserved number for qgroup_record to free.
173                  */
174                 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
175                 if (ret < 0)
176                         return ret;
177         }
178         entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
179         if (!entry)
180                 return -ENOMEM;
181
182         entry->file_offset = file_offset;
183         entry->disk_bytenr = disk_bytenr;
184         entry->num_bytes = num_bytes;
185         entry->disk_num_bytes = disk_num_bytes;
186         entry->bytes_left = num_bytes;
187         entry->inode = igrab(&inode->vfs_inode);
188         entry->compress_type = compress_type;
189         entry->truncated_len = (u64)-1;
190         entry->qgroup_rsv = ret;
191         entry->physical = (u64)-1;
192         entry->disk = NULL;
193         entry->partno = (u8)-1;
194
195         ASSERT(type == BTRFS_ORDERED_REGULAR ||
196                type == BTRFS_ORDERED_NOCOW ||
197                type == BTRFS_ORDERED_PREALLOC ||
198                type == BTRFS_ORDERED_COMPRESSED);
199         set_bit(type, &entry->flags);
200
201         percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes,
202                                  fs_info->delalloc_batch);
203
204         if (dio)
205                 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
206
207         /* one ref for the tree */
208         refcount_set(&entry->refs, 1);
209         init_waitqueue_head(&entry->wait);
210         INIT_LIST_HEAD(&entry->list);
211         INIT_LIST_HEAD(&entry->log_list);
212         INIT_LIST_HEAD(&entry->root_extent_list);
213         INIT_LIST_HEAD(&entry->work_list);
214         init_completion(&entry->completion);
215
216         trace_btrfs_ordered_extent_add(inode, entry);
217
218         spin_lock_irq(&tree->lock);
219         node = tree_insert(&tree->tree, file_offset,
220                            &entry->rb_node);
221         if (node)
222                 btrfs_panic(fs_info, -EEXIST,
223                                 "inconsistency in ordered tree at offset %llu",
224                                 file_offset);
225         spin_unlock_irq(&tree->lock);
226
227         spin_lock(&root->ordered_extent_lock);
228         list_add_tail(&entry->root_extent_list,
229                       &root->ordered_extents);
230         root->nr_ordered_extents++;
231         if (root->nr_ordered_extents == 1) {
232                 spin_lock(&fs_info->ordered_root_lock);
233                 BUG_ON(!list_empty(&root->ordered_root));
234                 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
235                 spin_unlock(&fs_info->ordered_root_lock);
236         }
237         spin_unlock(&root->ordered_extent_lock);
238
239         /*
240          * We don't need the count_max_extents here, we can assume that all of
241          * that work has been done at higher layers, so this is truly the
242          * smallest the extent is going to get.
243          */
244         spin_lock(&inode->lock);
245         btrfs_mod_outstanding_extents(inode, 1);
246         spin_unlock(&inode->lock);
247
248         return 0;
249 }
250
251 int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
252                              u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes,
253                              int type)
254 {
255         ASSERT(type == BTRFS_ORDERED_REGULAR ||
256                type == BTRFS_ORDERED_NOCOW ||
257                type == BTRFS_ORDERED_PREALLOC);
258         return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
259                                           num_bytes, disk_num_bytes, type, 0,
260                                           BTRFS_COMPRESS_NONE);
261 }
262
263 int btrfs_add_ordered_extent_dio(struct btrfs_inode *inode, u64 file_offset,
264                                  u64 disk_bytenr, u64 num_bytes,
265                                  u64 disk_num_bytes, int type)
266 {
267         ASSERT(type == BTRFS_ORDERED_REGULAR ||
268                type == BTRFS_ORDERED_NOCOW ||
269                type == BTRFS_ORDERED_PREALLOC);
270         return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
271                                           num_bytes, disk_num_bytes, type, 1,
272                                           BTRFS_COMPRESS_NONE);
273 }
274
275 int btrfs_add_ordered_extent_compress(struct btrfs_inode *inode, u64 file_offset,
276                                       u64 disk_bytenr, u64 num_bytes,
277                                       u64 disk_num_bytes, int compress_type)
278 {
279         ASSERT(compress_type != BTRFS_COMPRESS_NONE);
280         return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
281                                           num_bytes, disk_num_bytes,
282                                           BTRFS_ORDERED_COMPRESSED, 0,
283                                           compress_type);
284 }
285
286 /*
287  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
288  * when an ordered extent is finished.  If the list covers more than one
289  * ordered extent, it is split across multiples.
290  */
291 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
292                            struct btrfs_ordered_sum *sum)
293 {
294         struct btrfs_ordered_inode_tree *tree;
295
296         tree = &BTRFS_I(entry->inode)->ordered_tree;
297         spin_lock_irq(&tree->lock);
298         list_add_tail(&sum->list, &entry->list);
299         spin_unlock_irq(&tree->lock);
300 }
301
302 /*
303  * Finish IO for one ordered extent across a given range.  The range can
304  * contain several ordered extents.
305  *
306  * @found_ret:   Return the finished ordered extent
307  * @file_offset: File offset for the finished IO
308  *               Will also be updated to one byte past the range that is
309  *               recordered as finished. This allows caller to walk forward.
310  * @io_size:     Length of the finish IO range
311  * @uptodate:    If the IO finished without problem
312  *
313  * Return true if any ordered extent is finished in the range, and update
314  * @found_ret and @file_offset.
315  * Return false otherwise.
316  *
317  * NOTE: Although The range can cross multiple ordered extents, only one
318  * ordered extent will be updated during one call. The caller is responsible to
319  * iterate all ordered extents in the range.
320  */
321 bool btrfs_dec_test_first_ordered_pending(struct btrfs_inode *inode,
322                                    struct btrfs_ordered_extent **finished_ret,
323                                    u64 *file_offset, u64 io_size, int uptodate)
324 {
325         struct btrfs_fs_info *fs_info = inode->root->fs_info;
326         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
327         struct rb_node *node;
328         struct btrfs_ordered_extent *entry = NULL;
329         bool finished = false;
330         unsigned long flags;
331         u64 dec_end;
332         u64 dec_start;
333         u64 to_dec;
334
335         spin_lock_irqsave(&tree->lock, flags);
336         node = tree_search(tree, *file_offset);
337         if (!node)
338                 goto out;
339
340         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
341         if (!in_range(*file_offset, entry->file_offset, entry->num_bytes))
342                 goto out;
343
344         dec_start = max(*file_offset, entry->file_offset);
345         dec_end = min(*file_offset + io_size,
346                       entry->file_offset + entry->num_bytes);
347         *file_offset = dec_end;
348         if (dec_start > dec_end) {
349                 btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
350                            dec_start, dec_end);
351         }
352         to_dec = dec_end - dec_start;
353         if (to_dec > entry->bytes_left) {
354                 btrfs_crit(fs_info,
355                            "bad ordered accounting left %llu size %llu",
356                            entry->bytes_left, to_dec);
357         }
358         entry->bytes_left -= to_dec;
359         if (!uptodate)
360                 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
361
362         if (entry->bytes_left == 0) {
363                 /*
364                  * Ensure only one caller can set the flag and finished_ret
365                  * accordingly
366                  */
367                 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
368                 /* test_and_set_bit implies a barrier */
369                 cond_wake_up_nomb(&entry->wait);
370         }
371 out:
372         if (finished && finished_ret && entry) {
373                 *finished_ret = entry;
374                 refcount_inc(&entry->refs);
375         }
376         spin_unlock_irqrestore(&tree->lock, flags);
377         return finished;
378 }
379
380 /*
381  * Finish IO for one ordered extent across a given range.  The range can only
382  * contain one ordered extent.
383  *
384  * @cached:      The cached ordered extent. If not NULL, we can skip the tree
385  *               search and use the ordered extent directly.
386  *               Will be also used to store the finished ordered extent.
387  * @file_offset: File offset for the finished IO
388  * @io_size:     Length of the finish IO range
389  * @uptodate:    If the IO finishes without problem
390  *
391  * Return true if the ordered extent is finished in the range, and update
392  * @cached.
393  * Return false otherwise.
394  *
395  * NOTE: The range can NOT cross multiple ordered extents.
396  * Thus caller should ensure the range doesn't cross ordered extents.
397  */
398 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
399                                     struct btrfs_ordered_extent **cached,
400                                     u64 file_offset, u64 io_size, int uptodate)
401 {
402         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
403         struct rb_node *node;
404         struct btrfs_ordered_extent *entry = NULL;
405         unsigned long flags;
406         bool finished = false;
407
408         spin_lock_irqsave(&tree->lock, flags);
409         if (cached && *cached) {
410                 entry = *cached;
411                 goto have_entry;
412         }
413
414         node = tree_search(tree, file_offset);
415         if (!node)
416                 goto out;
417
418         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
419 have_entry:
420         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
421                 goto out;
422
423         if (io_size > entry->bytes_left)
424                 btrfs_crit(inode->root->fs_info,
425                            "bad ordered accounting left %llu size %llu",
426                        entry->bytes_left, io_size);
427
428         entry->bytes_left -= io_size;
429         if (!uptodate)
430                 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
431
432         if (entry->bytes_left == 0) {
433                 /*
434                  * Ensure only one caller can set the flag and finished_ret
435                  * accordingly
436                  */
437                 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
438                 /* test_and_set_bit implies a barrier */
439                 cond_wake_up_nomb(&entry->wait);
440         }
441 out:
442         if (finished && cached && entry) {
443                 *cached = entry;
444                 refcount_inc(&entry->refs);
445         }
446         spin_unlock_irqrestore(&tree->lock, flags);
447         return finished;
448 }
449
450 /*
451  * used to drop a reference on an ordered extent.  This will free
452  * the extent if the last reference is dropped
453  */
454 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
455 {
456         struct list_head *cur;
457         struct btrfs_ordered_sum *sum;
458
459         trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
460
461         if (refcount_dec_and_test(&entry->refs)) {
462                 ASSERT(list_empty(&entry->root_extent_list));
463                 ASSERT(list_empty(&entry->log_list));
464                 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
465                 if (entry->inode)
466                         btrfs_add_delayed_iput(entry->inode);
467                 while (!list_empty(&entry->list)) {
468                         cur = entry->list.next;
469                         sum = list_entry(cur, struct btrfs_ordered_sum, list);
470                         list_del(&sum->list);
471                         kvfree(sum);
472                 }
473                 kmem_cache_free(btrfs_ordered_extent_cache, entry);
474         }
475 }
476
477 /*
478  * remove an ordered extent from the tree.  No references are dropped
479  * and waiters are woken up.
480  */
481 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
482                                  struct btrfs_ordered_extent *entry)
483 {
484         struct btrfs_ordered_inode_tree *tree;
485         struct btrfs_root *root = btrfs_inode->root;
486         struct btrfs_fs_info *fs_info = root->fs_info;
487         struct rb_node *node;
488         bool pending;
489
490         /* This is paired with btrfs_add_ordered_extent. */
491         spin_lock(&btrfs_inode->lock);
492         btrfs_mod_outstanding_extents(btrfs_inode, -1);
493         spin_unlock(&btrfs_inode->lock);
494         if (root != fs_info->tree_root)
495                 btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes,
496                                                 false);
497
498         percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
499                                  fs_info->delalloc_batch);
500
501         tree = &btrfs_inode->ordered_tree;
502         spin_lock_irq(&tree->lock);
503         node = &entry->rb_node;
504         rb_erase(node, &tree->tree);
505         RB_CLEAR_NODE(node);
506         if (tree->last == node)
507                 tree->last = NULL;
508         set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
509         pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
510         spin_unlock_irq(&tree->lock);
511
512         /*
513          * The current running transaction is waiting on us, we need to let it
514          * know that we're complete and wake it up.
515          */
516         if (pending) {
517                 struct btrfs_transaction *trans;
518
519                 /*
520                  * The checks for trans are just a formality, it should be set,
521                  * but if it isn't we don't want to deref/assert under the spin
522                  * lock, so be nice and check if trans is set, but ASSERT() so
523                  * if it isn't set a developer will notice.
524                  */
525                 spin_lock(&fs_info->trans_lock);
526                 trans = fs_info->running_transaction;
527                 if (trans)
528                         refcount_inc(&trans->use_count);
529                 spin_unlock(&fs_info->trans_lock);
530
531                 ASSERT(trans);
532                 if (trans) {
533                         if (atomic_dec_and_test(&trans->pending_ordered))
534                                 wake_up(&trans->pending_wait);
535                         btrfs_put_transaction(trans);
536                 }
537         }
538
539         spin_lock(&root->ordered_extent_lock);
540         list_del_init(&entry->root_extent_list);
541         root->nr_ordered_extents--;
542
543         trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
544
545         if (!root->nr_ordered_extents) {
546                 spin_lock(&fs_info->ordered_root_lock);
547                 BUG_ON(list_empty(&root->ordered_root));
548                 list_del_init(&root->ordered_root);
549                 spin_unlock(&fs_info->ordered_root_lock);
550         }
551         spin_unlock(&root->ordered_extent_lock);
552         wake_up(&entry->wait);
553 }
554
555 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
556 {
557         struct btrfs_ordered_extent *ordered;
558
559         ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
560         btrfs_start_ordered_extent(ordered, 1);
561         complete(&ordered->completion);
562 }
563
564 /*
565  * wait for all the ordered extents in a root.  This is done when balancing
566  * space between drives.
567  */
568 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
569                                const u64 range_start, const u64 range_len)
570 {
571         struct btrfs_fs_info *fs_info = root->fs_info;
572         LIST_HEAD(splice);
573         LIST_HEAD(skipped);
574         LIST_HEAD(works);
575         struct btrfs_ordered_extent *ordered, *next;
576         u64 count = 0;
577         const u64 range_end = range_start + range_len;
578
579         mutex_lock(&root->ordered_extent_mutex);
580         spin_lock(&root->ordered_extent_lock);
581         list_splice_init(&root->ordered_extents, &splice);
582         while (!list_empty(&splice) && nr) {
583                 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
584                                            root_extent_list);
585
586                 if (range_end <= ordered->disk_bytenr ||
587                     ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
588                         list_move_tail(&ordered->root_extent_list, &skipped);
589                         cond_resched_lock(&root->ordered_extent_lock);
590                         continue;
591                 }
592
593                 list_move_tail(&ordered->root_extent_list,
594                                &root->ordered_extents);
595                 refcount_inc(&ordered->refs);
596                 spin_unlock(&root->ordered_extent_lock);
597
598                 btrfs_init_work(&ordered->flush_work,
599                                 btrfs_run_ordered_extent_work, NULL, NULL);
600                 list_add_tail(&ordered->work_list, &works);
601                 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
602
603                 cond_resched();
604                 spin_lock(&root->ordered_extent_lock);
605                 if (nr != U64_MAX)
606                         nr--;
607                 count++;
608         }
609         list_splice_tail(&skipped, &root->ordered_extents);
610         list_splice_tail(&splice, &root->ordered_extents);
611         spin_unlock(&root->ordered_extent_lock);
612
613         list_for_each_entry_safe(ordered, next, &works, work_list) {
614                 list_del_init(&ordered->work_list);
615                 wait_for_completion(&ordered->completion);
616                 btrfs_put_ordered_extent(ordered);
617                 cond_resched();
618         }
619         mutex_unlock(&root->ordered_extent_mutex);
620
621         return count;
622 }
623
624 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
625                              const u64 range_start, const u64 range_len)
626 {
627         struct btrfs_root *root;
628         struct list_head splice;
629         u64 done;
630
631         INIT_LIST_HEAD(&splice);
632
633         mutex_lock(&fs_info->ordered_operations_mutex);
634         spin_lock(&fs_info->ordered_root_lock);
635         list_splice_init(&fs_info->ordered_roots, &splice);
636         while (!list_empty(&splice) && nr) {
637                 root = list_first_entry(&splice, struct btrfs_root,
638                                         ordered_root);
639                 root = btrfs_grab_root(root);
640                 BUG_ON(!root);
641                 list_move_tail(&root->ordered_root,
642                                &fs_info->ordered_roots);
643                 spin_unlock(&fs_info->ordered_root_lock);
644
645                 done = btrfs_wait_ordered_extents(root, nr,
646                                                   range_start, range_len);
647                 btrfs_put_root(root);
648
649                 spin_lock(&fs_info->ordered_root_lock);
650                 if (nr != U64_MAX) {
651                         nr -= done;
652                 }
653         }
654         list_splice_tail(&splice, &fs_info->ordered_roots);
655         spin_unlock(&fs_info->ordered_root_lock);
656         mutex_unlock(&fs_info->ordered_operations_mutex);
657 }
658
659 /*
660  * Used to start IO or wait for a given ordered extent to finish.
661  *
662  * If wait is one, this effectively waits on page writeback for all the pages
663  * in the extent, and it waits on the io completion code to insert
664  * metadata into the btree corresponding to the extent
665  */
666 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
667 {
668         u64 start = entry->file_offset;
669         u64 end = start + entry->num_bytes - 1;
670         struct btrfs_inode *inode = BTRFS_I(entry->inode);
671
672         trace_btrfs_ordered_extent_start(inode, entry);
673
674         /*
675          * pages in the range can be dirty, clean or writeback.  We
676          * start IO on any dirty ones so the wait doesn't stall waiting
677          * for the flusher thread to find them
678          */
679         if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
680                 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
681         if (wait) {
682                 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
683                                                  &entry->flags));
684         }
685 }
686
687 /*
688  * Used to wait on ordered extents across a large range of bytes.
689  */
690 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
691 {
692         int ret = 0;
693         int ret_wb = 0;
694         u64 end;
695         u64 orig_end;
696         struct btrfs_ordered_extent *ordered;
697
698         if (start + len < start) {
699                 orig_end = INT_LIMIT(loff_t);
700         } else {
701                 orig_end = start + len - 1;
702                 if (orig_end > INT_LIMIT(loff_t))
703                         orig_end = INT_LIMIT(loff_t);
704         }
705
706         /* start IO across the range first to instantiate any delalloc
707          * extents
708          */
709         ret = btrfs_fdatawrite_range(inode, start, orig_end);
710         if (ret)
711                 return ret;
712
713         /*
714          * If we have a writeback error don't return immediately. Wait first
715          * for any ordered extents that haven't completed yet. This is to make
716          * sure no one can dirty the same page ranges and call writepages()
717          * before the ordered extents complete - to avoid failures (-EEXIST)
718          * when adding the new ordered extents to the ordered tree.
719          */
720         ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
721
722         end = orig_end;
723         while (1) {
724                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
725                 if (!ordered)
726                         break;
727                 if (ordered->file_offset > orig_end) {
728                         btrfs_put_ordered_extent(ordered);
729                         break;
730                 }
731                 if (ordered->file_offset + ordered->num_bytes <= start) {
732                         btrfs_put_ordered_extent(ordered);
733                         break;
734                 }
735                 btrfs_start_ordered_extent(ordered, 1);
736                 end = ordered->file_offset;
737                 /*
738                  * If the ordered extent had an error save the error but don't
739                  * exit without waiting first for all other ordered extents in
740                  * the range to complete.
741                  */
742                 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
743                         ret = -EIO;
744                 btrfs_put_ordered_extent(ordered);
745                 if (end == 0 || end == start)
746                         break;
747                 end--;
748         }
749         return ret_wb ? ret_wb : ret;
750 }
751
752 /*
753  * find an ordered extent corresponding to file_offset.  return NULL if
754  * nothing is found, otherwise take a reference on the extent and return it
755  */
756 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
757                                                          u64 file_offset)
758 {
759         struct btrfs_ordered_inode_tree *tree;
760         struct rb_node *node;
761         struct btrfs_ordered_extent *entry = NULL;
762         unsigned long flags;
763
764         tree = &inode->ordered_tree;
765         spin_lock_irqsave(&tree->lock, flags);
766         node = tree_search(tree, file_offset);
767         if (!node)
768                 goto out;
769
770         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
771         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
772                 entry = NULL;
773         if (entry)
774                 refcount_inc(&entry->refs);
775 out:
776         spin_unlock_irqrestore(&tree->lock, flags);
777         return entry;
778 }
779
780 /* Since the DIO code tries to lock a wide area we need to look for any ordered
781  * extents that exist in the range, rather than just the start of the range.
782  */
783 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
784                 struct btrfs_inode *inode, u64 file_offset, u64 len)
785 {
786         struct btrfs_ordered_inode_tree *tree;
787         struct rb_node *node;
788         struct btrfs_ordered_extent *entry = NULL;
789
790         tree = &inode->ordered_tree;
791         spin_lock_irq(&tree->lock);
792         node = tree_search(tree, file_offset);
793         if (!node) {
794                 node = tree_search(tree, file_offset + len);
795                 if (!node)
796                         goto out;
797         }
798
799         while (1) {
800                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
801                 if (range_overlaps(entry, file_offset, len))
802                         break;
803
804                 if (entry->file_offset >= file_offset + len) {
805                         entry = NULL;
806                         break;
807                 }
808                 entry = NULL;
809                 node = rb_next(node);
810                 if (!node)
811                         break;
812         }
813 out:
814         if (entry)
815                 refcount_inc(&entry->refs);
816         spin_unlock_irq(&tree->lock);
817         return entry;
818 }
819
820 /*
821  * Adds all ordered extents to the given list. The list ends up sorted by the
822  * file_offset of the ordered extents.
823  */
824 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
825                                            struct list_head *list)
826 {
827         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
828         struct rb_node *n;
829
830         ASSERT(inode_is_locked(&inode->vfs_inode));
831
832         spin_lock_irq(&tree->lock);
833         for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
834                 struct btrfs_ordered_extent *ordered;
835
836                 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
837
838                 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
839                         continue;
840
841                 ASSERT(list_empty(&ordered->log_list));
842                 list_add_tail(&ordered->log_list, list);
843                 refcount_inc(&ordered->refs);
844         }
845         spin_unlock_irq(&tree->lock);
846 }
847
848 /*
849  * lookup and return any extent before 'file_offset'.  NULL is returned
850  * if none is found
851  */
852 struct btrfs_ordered_extent *
853 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
854 {
855         struct btrfs_ordered_inode_tree *tree;
856         struct rb_node *node;
857         struct btrfs_ordered_extent *entry = NULL;
858
859         tree = &inode->ordered_tree;
860         spin_lock_irq(&tree->lock);
861         node = tree_search(tree, file_offset);
862         if (!node)
863                 goto out;
864
865         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
866         refcount_inc(&entry->refs);
867 out:
868         spin_unlock_irq(&tree->lock);
869         return entry;
870 }
871
872 /*
873  * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
874  * ordered extents in it are run to completion.
875  *
876  * @inode:        Inode whose ordered tree is to be searched
877  * @start:        Beginning of range to flush
878  * @end:          Last byte of range to lock
879  * @cached_state: If passed, will return the extent state responsible for the
880  * locked range. It's the caller's responsibility to free the cached state.
881  *
882  * This function always returns with the given range locked, ensuring after it's
883  * called no order extent can be pending.
884  */
885 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
886                                         u64 end,
887                                         struct extent_state **cached_state)
888 {
889         struct btrfs_ordered_extent *ordered;
890         struct extent_state *cache = NULL;
891         struct extent_state **cachedp = &cache;
892
893         if (cached_state)
894                 cachedp = cached_state;
895
896         while (1) {
897                 lock_extent_bits(&inode->io_tree, start, end, cachedp);
898                 ordered = btrfs_lookup_ordered_range(inode, start,
899                                                      end - start + 1);
900                 if (!ordered) {
901                         /*
902                          * If no external cached_state has been passed then
903                          * decrement the extra ref taken for cachedp since we
904                          * aren't exposing it outside of this function
905                          */
906                         if (!cached_state)
907                                 refcount_dec(&cache->refs);
908                         break;
909                 }
910                 unlock_extent_cached(&inode->io_tree, start, end, cachedp);
911                 btrfs_start_ordered_extent(ordered, 1);
912                 btrfs_put_ordered_extent(ordered);
913         }
914 }
915
916 static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos,
917                                 u64 len)
918 {
919         struct inode *inode = ordered->inode;
920         u64 file_offset = ordered->file_offset + pos;
921         u64 disk_bytenr = ordered->disk_bytenr + pos;
922         u64 num_bytes = len;
923         u64 disk_num_bytes = len;
924         int type;
925         unsigned long flags_masked = ordered->flags & ~(1 << BTRFS_ORDERED_DIRECT);
926         int compress_type = ordered->compress_type;
927         unsigned long weight;
928         int ret;
929
930         weight = hweight_long(flags_masked);
931         WARN_ON_ONCE(weight > 1);
932         if (!weight)
933                 type = 0;
934         else
935                 type = __ffs(flags_masked);
936
937         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered->flags)) {
938                 WARN_ON_ONCE(1);
939                 ret = btrfs_add_ordered_extent_compress(BTRFS_I(inode),
940                                 file_offset, disk_bytenr, num_bytes,
941                                 disk_num_bytes, compress_type);
942         } else if (test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
943                 ret = btrfs_add_ordered_extent_dio(BTRFS_I(inode), file_offset,
944                                 disk_bytenr, num_bytes, disk_num_bytes, type);
945         } else {
946                 ret = btrfs_add_ordered_extent(BTRFS_I(inode), file_offset,
947                                 disk_bytenr, num_bytes, disk_num_bytes, type);
948         }
949
950         return ret;
951 }
952
953 int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre,
954                                 u64 post)
955 {
956         struct inode *inode = ordered->inode;
957         struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
958         struct rb_node *node;
959         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
960         int ret = 0;
961
962         spin_lock_irq(&tree->lock);
963         /* Remove from tree once */
964         node = &ordered->rb_node;
965         rb_erase(node, &tree->tree);
966         RB_CLEAR_NODE(node);
967         if (tree->last == node)
968                 tree->last = NULL;
969
970         ordered->file_offset += pre;
971         ordered->disk_bytenr += pre;
972         ordered->num_bytes -= (pre + post);
973         ordered->disk_num_bytes -= (pre + post);
974         ordered->bytes_left -= (pre + post);
975
976         /* Re-insert the node */
977         node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
978         if (node)
979                 btrfs_panic(fs_info, -EEXIST,
980                         "zoned: inconsistency in ordered tree at offset %llu",
981                             ordered->file_offset);
982
983         spin_unlock_irq(&tree->lock);
984
985         if (pre)
986                 ret = clone_ordered_extent(ordered, 0, pre);
987         if (ret == 0 && post)
988                 ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes,
989                                            post);
990
991         return ret;
992 }
993
994 int __init ordered_data_init(void)
995 {
996         btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
997                                      sizeof(struct btrfs_ordered_extent), 0,
998                                      SLAB_MEM_SPREAD,
999                                      NULL);
1000         if (!btrfs_ordered_extent_cache)
1001                 return -ENOMEM;
1002
1003         return 0;
1004 }
1005
1006 void __cold ordered_data_exit(void)
1007 {
1008         kmem_cache_destroy(btrfs_ordered_extent_cache);
1009 }