Merge branch 'work.namespace' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux-2.6-microblaze.git] / fs / btrfs / ordered-data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "messages.h"
11 #include "misc.h"
12 #include "ctree.h"
13 #include "transaction.h"
14 #include "btrfs_inode.h"
15 #include "extent_io.h"
16 #include "disk-io.h"
17 #include "compression.h"
18 #include "delalloc-space.h"
19 #include "qgroup.h"
20 #include "subpage.h"
21 #include "file.h"
22 #include "super.h"
23
24 static struct kmem_cache *btrfs_ordered_extent_cache;
25
26 static u64 entry_end(struct btrfs_ordered_extent *entry)
27 {
28         if (entry->file_offset + entry->num_bytes < entry->file_offset)
29                 return (u64)-1;
30         return entry->file_offset + entry->num_bytes;
31 }
32
33 /* returns NULL if the insertion worked, or it returns the node it did find
34  * in the tree
35  */
36 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
37                                    struct rb_node *node)
38 {
39         struct rb_node **p = &root->rb_node;
40         struct rb_node *parent = NULL;
41         struct btrfs_ordered_extent *entry;
42
43         while (*p) {
44                 parent = *p;
45                 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
46
47                 if (file_offset < entry->file_offset)
48                         p = &(*p)->rb_left;
49                 else if (file_offset >= entry_end(entry))
50                         p = &(*p)->rb_right;
51                 else
52                         return parent;
53         }
54
55         rb_link_node(node, parent, p);
56         rb_insert_color(node, root);
57         return NULL;
58 }
59
60 /*
61  * look for a given offset in the tree, and if it can't be found return the
62  * first lesser offset
63  */
64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
65                                      struct rb_node **prev_ret)
66 {
67         struct rb_node *n = root->rb_node;
68         struct rb_node *prev = NULL;
69         struct rb_node *test;
70         struct btrfs_ordered_extent *entry;
71         struct btrfs_ordered_extent *prev_entry = NULL;
72
73         while (n) {
74                 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
75                 prev = n;
76                 prev_entry = entry;
77
78                 if (file_offset < entry->file_offset)
79                         n = n->rb_left;
80                 else if (file_offset >= entry_end(entry))
81                         n = n->rb_right;
82                 else
83                         return n;
84         }
85         if (!prev_ret)
86                 return NULL;
87
88         while (prev && file_offset >= entry_end(prev_entry)) {
89                 test = rb_next(prev);
90                 if (!test)
91                         break;
92                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
93                                       rb_node);
94                 if (file_offset < entry_end(prev_entry))
95                         break;
96
97                 prev = test;
98         }
99         if (prev)
100                 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
101                                       rb_node);
102         while (prev && file_offset < entry_end(prev_entry)) {
103                 test = rb_prev(prev);
104                 if (!test)
105                         break;
106                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107                                       rb_node);
108                 prev = test;
109         }
110         *prev_ret = prev;
111         return NULL;
112 }
113
114 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
115                           u64 len)
116 {
117         if (file_offset + len <= entry->file_offset ||
118             entry->file_offset + entry->num_bytes <= file_offset)
119                 return 0;
120         return 1;
121 }
122
123 /*
124  * look find the first ordered struct that has this offset, otherwise
125  * the first one less than this offset
126  */
127 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
128                                           u64 file_offset)
129 {
130         struct rb_root *root = &tree->tree;
131         struct rb_node *prev = NULL;
132         struct rb_node *ret;
133         struct btrfs_ordered_extent *entry;
134
135         if (tree->last) {
136                 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
137                                  rb_node);
138                 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
139                         return tree->last;
140         }
141         ret = __tree_search(root, file_offset, &prev);
142         if (!ret)
143                 ret = prev;
144         if (ret)
145                 tree->last = ret;
146         return ret;
147 }
148
149 /*
150  * Add an ordered extent to the per-inode tree.
151  *
152  * @inode:           Inode that this extent is for.
153  * @file_offset:     Logical offset in file where the extent starts.
154  * @num_bytes:       Logical length of extent in file.
155  * @ram_bytes:       Full length of unencoded data.
156  * @disk_bytenr:     Offset of extent on disk.
157  * @disk_num_bytes:  Size of extent on disk.
158  * @offset:          Offset into unencoded data where file data starts.
159  * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
160  * @compress_type:   Compression algorithm used for data.
161  *
162  * Most of these parameters correspond to &struct btrfs_file_extent_item. The
163  * tree is given a single reference on the ordered extent that was inserted.
164  *
165  * Return: 0 or -ENOMEM.
166  */
167 int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
168                              u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
169                              u64 disk_num_bytes, u64 offset, unsigned flags,
170                              int compress_type)
171 {
172         struct btrfs_root *root = inode->root;
173         struct btrfs_fs_info *fs_info = root->fs_info;
174         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
175         struct rb_node *node;
176         struct btrfs_ordered_extent *entry;
177         int ret;
178
179         if (flags &
180             ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
181                 /* For nocow write, we can release the qgroup rsv right now */
182                 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
183                 if (ret < 0)
184                         return ret;
185                 ret = 0;
186         } else {
187                 /*
188                  * The ordered extent has reserved qgroup space, release now
189                  * and pass the reserved number for qgroup_record to free.
190                  */
191                 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
192                 if (ret < 0)
193                         return ret;
194         }
195         entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
196         if (!entry)
197                 return -ENOMEM;
198
199         entry->file_offset = file_offset;
200         entry->num_bytes = num_bytes;
201         entry->ram_bytes = ram_bytes;
202         entry->disk_bytenr = disk_bytenr;
203         entry->disk_num_bytes = disk_num_bytes;
204         entry->offset = offset;
205         entry->bytes_left = num_bytes;
206         entry->inode = igrab(&inode->vfs_inode);
207         entry->compress_type = compress_type;
208         entry->truncated_len = (u64)-1;
209         entry->qgroup_rsv = ret;
210         entry->physical = (u64)-1;
211
212         ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
213         entry->flags = flags;
214
215         percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes,
216                                  fs_info->delalloc_batch);
217
218         /* one ref for the tree */
219         refcount_set(&entry->refs, 1);
220         init_waitqueue_head(&entry->wait);
221         INIT_LIST_HEAD(&entry->list);
222         INIT_LIST_HEAD(&entry->log_list);
223         INIT_LIST_HEAD(&entry->root_extent_list);
224         INIT_LIST_HEAD(&entry->work_list);
225         init_completion(&entry->completion);
226
227         trace_btrfs_ordered_extent_add(inode, entry);
228
229         spin_lock_irq(&tree->lock);
230         node = tree_insert(&tree->tree, file_offset,
231                            &entry->rb_node);
232         if (node)
233                 btrfs_panic(fs_info, -EEXIST,
234                                 "inconsistency in ordered tree at offset %llu",
235                                 file_offset);
236         spin_unlock_irq(&tree->lock);
237
238         spin_lock(&root->ordered_extent_lock);
239         list_add_tail(&entry->root_extent_list,
240                       &root->ordered_extents);
241         root->nr_ordered_extents++;
242         if (root->nr_ordered_extents == 1) {
243                 spin_lock(&fs_info->ordered_root_lock);
244                 BUG_ON(!list_empty(&root->ordered_root));
245                 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
246                 spin_unlock(&fs_info->ordered_root_lock);
247         }
248         spin_unlock(&root->ordered_extent_lock);
249
250         /*
251          * We don't need the count_max_extents here, we can assume that all of
252          * that work has been done at higher layers, so this is truly the
253          * smallest the extent is going to get.
254          */
255         spin_lock(&inode->lock);
256         btrfs_mod_outstanding_extents(inode, 1);
257         spin_unlock(&inode->lock);
258
259         return 0;
260 }
261
262 /*
263  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
264  * when an ordered extent is finished.  If the list covers more than one
265  * ordered extent, it is split across multiples.
266  */
267 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
268                            struct btrfs_ordered_sum *sum)
269 {
270         struct btrfs_ordered_inode_tree *tree;
271
272         tree = &BTRFS_I(entry->inode)->ordered_tree;
273         spin_lock_irq(&tree->lock);
274         list_add_tail(&sum->list, &entry->list);
275         spin_unlock_irq(&tree->lock);
276 }
277
278 static void finish_ordered_fn(struct btrfs_work *work)
279 {
280         struct btrfs_ordered_extent *ordered_extent;
281
282         ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
283         btrfs_finish_ordered_io(ordered_extent);
284 }
285
286 /*
287  * Mark all ordered extents io inside the specified range finished.
288  *
289  * @page:        The involved page for the operation.
290  *               For uncompressed buffered IO, the page status also needs to be
291  *               updated to indicate whether the pending ordered io is finished.
292  *               Can be NULL for direct IO and compressed write.
293  *               For these cases, callers are ensured they won't execute the
294  *               endio function twice.
295  *
296  * This function is called for endio, thus the range must have ordered
297  * extent(s) covering it.
298  */
299 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
300                                     struct page *page, u64 file_offset,
301                                     u64 num_bytes, bool uptodate)
302 {
303         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
304         struct btrfs_fs_info *fs_info = inode->root->fs_info;
305         struct btrfs_workqueue *wq;
306         struct rb_node *node;
307         struct btrfs_ordered_extent *entry = NULL;
308         unsigned long flags;
309         u64 cur = file_offset;
310
311         if (btrfs_is_free_space_inode(inode))
312                 wq = fs_info->endio_freespace_worker;
313         else
314                 wq = fs_info->endio_write_workers;
315
316         if (page)
317                 ASSERT(page->mapping && page_offset(page) <= file_offset &&
318                        file_offset + num_bytes <= page_offset(page) + PAGE_SIZE);
319
320         spin_lock_irqsave(&tree->lock, flags);
321         while (cur < file_offset + num_bytes) {
322                 u64 entry_end;
323                 u64 end;
324                 u32 len;
325
326                 node = tree_search(tree, cur);
327                 /* No ordered extents at all */
328                 if (!node)
329                         break;
330
331                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
332                 entry_end = entry->file_offset + entry->num_bytes;
333                 /*
334                  * |<-- OE --->|  |
335                  *                cur
336                  * Go to next OE.
337                  */
338                 if (cur >= entry_end) {
339                         node = rb_next(node);
340                         /* No more ordered extents, exit */
341                         if (!node)
342                                 break;
343                         entry = rb_entry(node, struct btrfs_ordered_extent,
344                                          rb_node);
345
346                         /* Go to next ordered extent and continue */
347                         cur = entry->file_offset;
348                         continue;
349                 }
350                 /*
351                  * |    |<--- OE --->|
352                  * cur
353                  * Go to the start of OE.
354                  */
355                 if (cur < entry->file_offset) {
356                         cur = entry->file_offset;
357                         continue;
358                 }
359
360                 /*
361                  * Now we are definitely inside one ordered extent.
362                  *
363                  * |<--- OE --->|
364                  *      |
365                  *      cur
366                  */
367                 end = min(entry->file_offset + entry->num_bytes,
368                           file_offset + num_bytes) - 1;
369                 ASSERT(end + 1 - cur < U32_MAX);
370                 len = end + 1 - cur;
371
372                 if (page) {
373                         /*
374                          * Ordered (Private2) bit indicates whether we still
375                          * have pending io unfinished for the ordered extent.
376                          *
377                          * If there's no such bit, we need to skip to next range.
378                          */
379                         if (!btrfs_page_test_ordered(fs_info, page, cur, len)) {
380                                 cur += len;
381                                 continue;
382                         }
383                         btrfs_page_clear_ordered(fs_info, page, cur, len);
384                 }
385
386                 /* Now we're fine to update the accounting */
387                 if (unlikely(len > entry->bytes_left)) {
388                         WARN_ON(1);
389                         btrfs_crit(fs_info,
390 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu",
391                                    inode->root->root_key.objectid,
392                                    btrfs_ino(inode),
393                                    entry->file_offset,
394                                    entry->num_bytes,
395                                    len, entry->bytes_left);
396                         entry->bytes_left = 0;
397                 } else {
398                         entry->bytes_left -= len;
399                 }
400
401                 if (!uptodate)
402                         set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
403
404                 /*
405                  * All the IO of the ordered extent is finished, we need to queue
406                  * the finish_func to be executed.
407                  */
408                 if (entry->bytes_left == 0) {
409                         set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
410                         cond_wake_up(&entry->wait);
411                         refcount_inc(&entry->refs);
412                         trace_btrfs_ordered_extent_mark_finished(inode, entry);
413                         spin_unlock_irqrestore(&tree->lock, flags);
414                         btrfs_init_work(&entry->work, finish_ordered_fn, NULL, NULL);
415                         btrfs_queue_work(wq, &entry->work);
416                         spin_lock_irqsave(&tree->lock, flags);
417                 }
418                 cur += len;
419         }
420         spin_unlock_irqrestore(&tree->lock, flags);
421 }
422
423 /*
424  * Finish IO for one ordered extent across a given range.  The range can only
425  * contain one ordered extent.
426  *
427  * @cached:      The cached ordered extent. If not NULL, we can skip the tree
428  *               search and use the ordered extent directly.
429  *               Will be also used to store the finished ordered extent.
430  * @file_offset: File offset for the finished IO
431  * @io_size:     Length of the finish IO range
432  *
433  * Return true if the ordered extent is finished in the range, and update
434  * @cached.
435  * Return false otherwise.
436  *
437  * NOTE: The range can NOT cross multiple ordered extents.
438  * Thus caller should ensure the range doesn't cross ordered extents.
439  */
440 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
441                                     struct btrfs_ordered_extent **cached,
442                                     u64 file_offset, u64 io_size)
443 {
444         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
445         struct rb_node *node;
446         struct btrfs_ordered_extent *entry = NULL;
447         unsigned long flags;
448         bool finished = false;
449
450         spin_lock_irqsave(&tree->lock, flags);
451         if (cached && *cached) {
452                 entry = *cached;
453                 goto have_entry;
454         }
455
456         node = tree_search(tree, file_offset);
457         if (!node)
458                 goto out;
459
460         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
461 have_entry:
462         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
463                 goto out;
464
465         if (io_size > entry->bytes_left)
466                 btrfs_crit(inode->root->fs_info,
467                            "bad ordered accounting left %llu size %llu",
468                        entry->bytes_left, io_size);
469
470         entry->bytes_left -= io_size;
471
472         if (entry->bytes_left == 0) {
473                 /*
474                  * Ensure only one caller can set the flag and finished_ret
475                  * accordingly
476                  */
477                 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
478                 /* test_and_set_bit implies a barrier */
479                 cond_wake_up_nomb(&entry->wait);
480         }
481 out:
482         if (finished && cached && entry) {
483                 *cached = entry;
484                 refcount_inc(&entry->refs);
485                 trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
486         }
487         spin_unlock_irqrestore(&tree->lock, flags);
488         return finished;
489 }
490
491 /*
492  * used to drop a reference on an ordered extent.  This will free
493  * the extent if the last reference is dropped
494  */
495 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
496 {
497         struct list_head *cur;
498         struct btrfs_ordered_sum *sum;
499
500         trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
501
502         if (refcount_dec_and_test(&entry->refs)) {
503                 ASSERT(list_empty(&entry->root_extent_list));
504                 ASSERT(list_empty(&entry->log_list));
505                 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
506                 if (entry->inode)
507                         btrfs_add_delayed_iput(BTRFS_I(entry->inode));
508                 while (!list_empty(&entry->list)) {
509                         cur = entry->list.next;
510                         sum = list_entry(cur, struct btrfs_ordered_sum, list);
511                         list_del(&sum->list);
512                         kvfree(sum);
513                 }
514                 kmem_cache_free(btrfs_ordered_extent_cache, entry);
515         }
516 }
517
518 /*
519  * remove an ordered extent from the tree.  No references are dropped
520  * and waiters are woken up.
521  */
522 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
523                                  struct btrfs_ordered_extent *entry)
524 {
525         struct btrfs_ordered_inode_tree *tree;
526         struct btrfs_root *root = btrfs_inode->root;
527         struct btrfs_fs_info *fs_info = root->fs_info;
528         struct rb_node *node;
529         bool pending;
530         bool freespace_inode;
531
532         /*
533          * If this is a free space inode the thread has not acquired the ordered
534          * extents lockdep map.
535          */
536         freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
537
538         btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
539         /* This is paired with btrfs_add_ordered_extent. */
540         spin_lock(&btrfs_inode->lock);
541         btrfs_mod_outstanding_extents(btrfs_inode, -1);
542         spin_unlock(&btrfs_inode->lock);
543         if (root != fs_info->tree_root) {
544                 u64 release;
545
546                 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
547                         release = entry->disk_num_bytes;
548                 else
549                         release = entry->num_bytes;
550                 btrfs_delalloc_release_metadata(btrfs_inode, release, false);
551         }
552
553         percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
554                                  fs_info->delalloc_batch);
555
556         tree = &btrfs_inode->ordered_tree;
557         spin_lock_irq(&tree->lock);
558         node = &entry->rb_node;
559         rb_erase(node, &tree->tree);
560         RB_CLEAR_NODE(node);
561         if (tree->last == node)
562                 tree->last = NULL;
563         set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
564         pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
565         spin_unlock_irq(&tree->lock);
566
567         /*
568          * The current running transaction is waiting on us, we need to let it
569          * know that we're complete and wake it up.
570          */
571         if (pending) {
572                 struct btrfs_transaction *trans;
573
574                 /*
575                  * The checks for trans are just a formality, it should be set,
576                  * but if it isn't we don't want to deref/assert under the spin
577                  * lock, so be nice and check if trans is set, but ASSERT() so
578                  * if it isn't set a developer will notice.
579                  */
580                 spin_lock(&fs_info->trans_lock);
581                 trans = fs_info->running_transaction;
582                 if (trans)
583                         refcount_inc(&trans->use_count);
584                 spin_unlock(&fs_info->trans_lock);
585
586                 ASSERT(trans);
587                 if (trans) {
588                         if (atomic_dec_and_test(&trans->pending_ordered))
589                                 wake_up(&trans->pending_wait);
590                         btrfs_put_transaction(trans);
591                 }
592         }
593
594         btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
595
596         spin_lock(&root->ordered_extent_lock);
597         list_del_init(&entry->root_extent_list);
598         root->nr_ordered_extents--;
599
600         trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
601
602         if (!root->nr_ordered_extents) {
603                 spin_lock(&fs_info->ordered_root_lock);
604                 BUG_ON(list_empty(&root->ordered_root));
605                 list_del_init(&root->ordered_root);
606                 spin_unlock(&fs_info->ordered_root_lock);
607         }
608         spin_unlock(&root->ordered_extent_lock);
609         wake_up(&entry->wait);
610         if (!freespace_inode)
611                 btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
612 }
613
614 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
615 {
616         struct btrfs_ordered_extent *ordered;
617
618         ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
619         btrfs_start_ordered_extent(ordered);
620         complete(&ordered->completion);
621 }
622
623 /*
624  * wait for all the ordered extents in a root.  This is done when balancing
625  * space between drives.
626  */
627 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
628                                const u64 range_start, const u64 range_len)
629 {
630         struct btrfs_fs_info *fs_info = root->fs_info;
631         LIST_HEAD(splice);
632         LIST_HEAD(skipped);
633         LIST_HEAD(works);
634         struct btrfs_ordered_extent *ordered, *next;
635         u64 count = 0;
636         const u64 range_end = range_start + range_len;
637
638         mutex_lock(&root->ordered_extent_mutex);
639         spin_lock(&root->ordered_extent_lock);
640         list_splice_init(&root->ordered_extents, &splice);
641         while (!list_empty(&splice) && nr) {
642                 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
643                                            root_extent_list);
644
645                 if (range_end <= ordered->disk_bytenr ||
646                     ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
647                         list_move_tail(&ordered->root_extent_list, &skipped);
648                         cond_resched_lock(&root->ordered_extent_lock);
649                         continue;
650                 }
651
652                 list_move_tail(&ordered->root_extent_list,
653                                &root->ordered_extents);
654                 refcount_inc(&ordered->refs);
655                 spin_unlock(&root->ordered_extent_lock);
656
657                 btrfs_init_work(&ordered->flush_work,
658                                 btrfs_run_ordered_extent_work, NULL, NULL);
659                 list_add_tail(&ordered->work_list, &works);
660                 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
661
662                 cond_resched();
663                 spin_lock(&root->ordered_extent_lock);
664                 if (nr != U64_MAX)
665                         nr--;
666                 count++;
667         }
668         list_splice_tail(&skipped, &root->ordered_extents);
669         list_splice_tail(&splice, &root->ordered_extents);
670         spin_unlock(&root->ordered_extent_lock);
671
672         list_for_each_entry_safe(ordered, next, &works, work_list) {
673                 list_del_init(&ordered->work_list);
674                 wait_for_completion(&ordered->completion);
675                 btrfs_put_ordered_extent(ordered);
676                 cond_resched();
677         }
678         mutex_unlock(&root->ordered_extent_mutex);
679
680         return count;
681 }
682
683 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
684                              const u64 range_start, const u64 range_len)
685 {
686         struct btrfs_root *root;
687         struct list_head splice;
688         u64 done;
689
690         INIT_LIST_HEAD(&splice);
691
692         mutex_lock(&fs_info->ordered_operations_mutex);
693         spin_lock(&fs_info->ordered_root_lock);
694         list_splice_init(&fs_info->ordered_roots, &splice);
695         while (!list_empty(&splice) && nr) {
696                 root = list_first_entry(&splice, struct btrfs_root,
697                                         ordered_root);
698                 root = btrfs_grab_root(root);
699                 BUG_ON(!root);
700                 list_move_tail(&root->ordered_root,
701                                &fs_info->ordered_roots);
702                 spin_unlock(&fs_info->ordered_root_lock);
703
704                 done = btrfs_wait_ordered_extents(root, nr,
705                                                   range_start, range_len);
706                 btrfs_put_root(root);
707
708                 spin_lock(&fs_info->ordered_root_lock);
709                 if (nr != U64_MAX) {
710                         nr -= done;
711                 }
712         }
713         list_splice_tail(&splice, &fs_info->ordered_roots);
714         spin_unlock(&fs_info->ordered_root_lock);
715         mutex_unlock(&fs_info->ordered_operations_mutex);
716 }
717
718 /*
719  * Start IO and wait for a given ordered extent to finish.
720  *
721  * Wait on page writeback for all the pages in the extent and the IO completion
722  * code to insert metadata into the btree corresponding to the extent.
723  */
724 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
725 {
726         u64 start = entry->file_offset;
727         u64 end = start + entry->num_bytes - 1;
728         struct btrfs_inode *inode = BTRFS_I(entry->inode);
729         bool freespace_inode;
730
731         trace_btrfs_ordered_extent_start(inode, entry);
732
733         /*
734          * If this is a free space inode do not take the ordered extents lockdep
735          * map.
736          */
737         freespace_inode = btrfs_is_free_space_inode(inode);
738
739         /*
740          * pages in the range can be dirty, clean or writeback.  We
741          * start IO on any dirty ones so the wait doesn't stall waiting
742          * for the flusher thread to find them
743          */
744         if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
745                 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
746
747         if (!freespace_inode)
748                 btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
749         wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
750 }
751
752 /*
753  * Used to wait on ordered extents across a large range of bytes.
754  */
755 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
756 {
757         int ret = 0;
758         int ret_wb = 0;
759         u64 end;
760         u64 orig_end;
761         struct btrfs_ordered_extent *ordered;
762
763         if (start + len < start) {
764                 orig_end = OFFSET_MAX;
765         } else {
766                 orig_end = start + len - 1;
767                 if (orig_end > OFFSET_MAX)
768                         orig_end = OFFSET_MAX;
769         }
770
771         /* start IO across the range first to instantiate any delalloc
772          * extents
773          */
774         ret = btrfs_fdatawrite_range(inode, start, orig_end);
775         if (ret)
776                 return ret;
777
778         /*
779          * If we have a writeback error don't return immediately. Wait first
780          * for any ordered extents that haven't completed yet. This is to make
781          * sure no one can dirty the same page ranges and call writepages()
782          * before the ordered extents complete - to avoid failures (-EEXIST)
783          * when adding the new ordered extents to the ordered tree.
784          */
785         ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
786
787         end = orig_end;
788         while (1) {
789                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
790                 if (!ordered)
791                         break;
792                 if (ordered->file_offset > orig_end) {
793                         btrfs_put_ordered_extent(ordered);
794                         break;
795                 }
796                 if (ordered->file_offset + ordered->num_bytes <= start) {
797                         btrfs_put_ordered_extent(ordered);
798                         break;
799                 }
800                 btrfs_start_ordered_extent(ordered);
801                 end = ordered->file_offset;
802                 /*
803                  * If the ordered extent had an error save the error but don't
804                  * exit without waiting first for all other ordered extents in
805                  * the range to complete.
806                  */
807                 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
808                         ret = -EIO;
809                 btrfs_put_ordered_extent(ordered);
810                 if (end == 0 || end == start)
811                         break;
812                 end--;
813         }
814         return ret_wb ? ret_wb : ret;
815 }
816
817 /*
818  * find an ordered extent corresponding to file_offset.  return NULL if
819  * nothing is found, otherwise take a reference on the extent and return it
820  */
821 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
822                                                          u64 file_offset)
823 {
824         struct btrfs_ordered_inode_tree *tree;
825         struct rb_node *node;
826         struct btrfs_ordered_extent *entry = NULL;
827         unsigned long flags;
828
829         tree = &inode->ordered_tree;
830         spin_lock_irqsave(&tree->lock, flags);
831         node = tree_search(tree, file_offset);
832         if (!node)
833                 goto out;
834
835         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
836         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
837                 entry = NULL;
838         if (entry) {
839                 refcount_inc(&entry->refs);
840                 trace_btrfs_ordered_extent_lookup(inode, entry);
841         }
842 out:
843         spin_unlock_irqrestore(&tree->lock, flags);
844         return entry;
845 }
846
847 /* Since the DIO code tries to lock a wide area we need to look for any ordered
848  * extents that exist in the range, rather than just the start of the range.
849  */
850 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
851                 struct btrfs_inode *inode, u64 file_offset, u64 len)
852 {
853         struct btrfs_ordered_inode_tree *tree;
854         struct rb_node *node;
855         struct btrfs_ordered_extent *entry = NULL;
856
857         tree = &inode->ordered_tree;
858         spin_lock_irq(&tree->lock);
859         node = tree_search(tree, file_offset);
860         if (!node) {
861                 node = tree_search(tree, file_offset + len);
862                 if (!node)
863                         goto out;
864         }
865
866         while (1) {
867                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
868                 if (range_overlaps(entry, file_offset, len))
869                         break;
870
871                 if (entry->file_offset >= file_offset + len) {
872                         entry = NULL;
873                         break;
874                 }
875                 entry = NULL;
876                 node = rb_next(node);
877                 if (!node)
878                         break;
879         }
880 out:
881         if (entry) {
882                 refcount_inc(&entry->refs);
883                 trace_btrfs_ordered_extent_lookup_range(inode, entry);
884         }
885         spin_unlock_irq(&tree->lock);
886         return entry;
887 }
888
889 /*
890  * Adds all ordered extents to the given list. The list ends up sorted by the
891  * file_offset of the ordered extents.
892  */
893 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
894                                            struct list_head *list)
895 {
896         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
897         struct rb_node *n;
898
899         ASSERT(inode_is_locked(&inode->vfs_inode));
900
901         spin_lock_irq(&tree->lock);
902         for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
903                 struct btrfs_ordered_extent *ordered;
904
905                 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
906
907                 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
908                         continue;
909
910                 ASSERT(list_empty(&ordered->log_list));
911                 list_add_tail(&ordered->log_list, list);
912                 refcount_inc(&ordered->refs);
913                 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
914         }
915         spin_unlock_irq(&tree->lock);
916 }
917
918 /*
919  * lookup and return any extent before 'file_offset'.  NULL is returned
920  * if none is found
921  */
922 struct btrfs_ordered_extent *
923 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
924 {
925         struct btrfs_ordered_inode_tree *tree;
926         struct rb_node *node;
927         struct btrfs_ordered_extent *entry = NULL;
928
929         tree = &inode->ordered_tree;
930         spin_lock_irq(&tree->lock);
931         node = tree_search(tree, file_offset);
932         if (!node)
933                 goto out;
934
935         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
936         refcount_inc(&entry->refs);
937         trace_btrfs_ordered_extent_lookup_first(inode, entry);
938 out:
939         spin_unlock_irq(&tree->lock);
940         return entry;
941 }
942
943 /*
944  * Lookup the first ordered extent that overlaps the range
945  * [@file_offset, @file_offset + @len).
946  *
947  * The difference between this and btrfs_lookup_first_ordered_extent() is
948  * that this one won't return any ordered extent that does not overlap the range.
949  * And the difference against btrfs_lookup_ordered_extent() is, this function
950  * ensures the first ordered extent gets returned.
951  */
952 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
953                         struct btrfs_inode *inode, u64 file_offset, u64 len)
954 {
955         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
956         struct rb_node *node;
957         struct rb_node *cur;
958         struct rb_node *prev;
959         struct rb_node *next;
960         struct btrfs_ordered_extent *entry = NULL;
961
962         spin_lock_irq(&tree->lock);
963         node = tree->tree.rb_node;
964         /*
965          * Here we don't want to use tree_search() which will use tree->last
966          * and screw up the search order.
967          * And __tree_search() can't return the adjacent ordered extents
968          * either, thus here we do our own search.
969          */
970         while (node) {
971                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
972
973                 if (file_offset < entry->file_offset) {
974                         node = node->rb_left;
975                 } else if (file_offset >= entry_end(entry)) {
976                         node = node->rb_right;
977                 } else {
978                         /*
979                          * Direct hit, got an ordered extent that starts at
980                          * @file_offset
981                          */
982                         goto out;
983                 }
984         }
985         if (!entry) {
986                 /* Empty tree */
987                 goto out;
988         }
989
990         cur = &entry->rb_node;
991         /* We got an entry around @file_offset, check adjacent entries */
992         if (entry->file_offset < file_offset) {
993                 prev = cur;
994                 next = rb_next(cur);
995         } else {
996                 prev = rb_prev(cur);
997                 next = cur;
998         }
999         if (prev) {
1000                 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1001                 if (range_overlaps(entry, file_offset, len))
1002                         goto out;
1003         }
1004         if (next) {
1005                 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1006                 if (range_overlaps(entry, file_offset, len))
1007                         goto out;
1008         }
1009         /* No ordered extent in the range */
1010         entry = NULL;
1011 out:
1012         if (entry) {
1013                 refcount_inc(&entry->refs);
1014                 trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1015         }
1016
1017         spin_unlock_irq(&tree->lock);
1018         return entry;
1019 }
1020
1021 /*
1022  * Lock the passed range and ensures all pending ordered extents in it are run
1023  * to completion.
1024  *
1025  * @inode:        Inode whose ordered tree is to be searched
1026  * @start:        Beginning of range to flush
1027  * @end:          Last byte of range to lock
1028  * @cached_state: If passed, will return the extent state responsible for the
1029  *                locked range. It's the caller's responsibility to free the
1030  *                cached state.
1031  *
1032  * Always return with the given range locked, ensuring after it's called no
1033  * order extent can be pending.
1034  */
1035 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1036                                         u64 end,
1037                                         struct extent_state **cached_state)
1038 {
1039         struct btrfs_ordered_extent *ordered;
1040         struct extent_state *cache = NULL;
1041         struct extent_state **cachedp = &cache;
1042
1043         if (cached_state)
1044                 cachedp = cached_state;
1045
1046         while (1) {
1047                 lock_extent(&inode->io_tree, start, end, cachedp);
1048                 ordered = btrfs_lookup_ordered_range(inode, start,
1049                                                      end - start + 1);
1050                 if (!ordered) {
1051                         /*
1052                          * If no external cached_state has been passed then
1053                          * decrement the extra ref taken for cachedp since we
1054                          * aren't exposing it outside of this function
1055                          */
1056                         if (!cached_state)
1057                                 refcount_dec(&cache->refs);
1058                         break;
1059                 }
1060                 unlock_extent(&inode->io_tree, start, end, cachedp);
1061                 btrfs_start_ordered_extent(ordered);
1062                 btrfs_put_ordered_extent(ordered);
1063         }
1064 }
1065
1066 /*
1067  * Lock the passed range and ensure all pending ordered extents in it are run
1068  * to completion in nowait mode.
1069  *
1070  * Return true if btrfs_lock_ordered_range does not return any extents,
1071  * otherwise false.
1072  */
1073 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1074                                   struct extent_state **cached_state)
1075 {
1076         struct btrfs_ordered_extent *ordered;
1077
1078         if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1079                 return false;
1080
1081         ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1082         if (!ordered)
1083                 return true;
1084
1085         btrfs_put_ordered_extent(ordered);
1086         unlock_extent(&inode->io_tree, start, end, cached_state);
1087
1088         return false;
1089 }
1090
1091
1092 static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos,
1093                                 u64 len)
1094 {
1095         struct inode *inode = ordered->inode;
1096         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1097         u64 file_offset = ordered->file_offset + pos;
1098         u64 disk_bytenr = ordered->disk_bytenr + pos;
1099         unsigned long flags = ordered->flags & BTRFS_ORDERED_TYPE_FLAGS;
1100
1101         /*
1102          * The splitting extent is already counted and will be added again in
1103          * btrfs_add_ordered_extent_*(). Subtract len to avoid double counting.
1104          */
1105         percpu_counter_add_batch(&fs_info->ordered_bytes, -len,
1106                                  fs_info->delalloc_batch);
1107         WARN_ON_ONCE(flags & (1 << BTRFS_ORDERED_COMPRESSED));
1108         return btrfs_add_ordered_extent(BTRFS_I(inode), file_offset, len, len,
1109                                         disk_bytenr, len, 0, flags,
1110                                         ordered->compress_type);
1111 }
1112
1113 int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre,
1114                                 u64 post)
1115 {
1116         struct inode *inode = ordered->inode;
1117         struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1118         struct rb_node *node;
1119         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1120         int ret = 0;
1121
1122         trace_btrfs_ordered_extent_split(BTRFS_I(inode), ordered);
1123
1124         spin_lock_irq(&tree->lock);
1125         /* Remove from tree once */
1126         node = &ordered->rb_node;
1127         rb_erase(node, &tree->tree);
1128         RB_CLEAR_NODE(node);
1129         if (tree->last == node)
1130                 tree->last = NULL;
1131
1132         ordered->file_offset += pre;
1133         ordered->disk_bytenr += pre;
1134         ordered->num_bytes -= (pre + post);
1135         ordered->disk_num_bytes -= (pre + post);
1136         ordered->bytes_left -= (pre + post);
1137
1138         /* Re-insert the node */
1139         node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1140         if (node)
1141                 btrfs_panic(fs_info, -EEXIST,
1142                         "zoned: inconsistency in ordered tree at offset %llu",
1143                             ordered->file_offset);
1144
1145         spin_unlock_irq(&tree->lock);
1146
1147         if (pre)
1148                 ret = clone_ordered_extent(ordered, 0, pre);
1149         if (ret == 0 && post)
1150                 ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes,
1151                                            post);
1152
1153         return ret;
1154 }
1155
1156 int __init ordered_data_init(void)
1157 {
1158         btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1159                                      sizeof(struct btrfs_ordered_extent), 0,
1160                                      SLAB_MEM_SPREAD,
1161                                      NULL);
1162         if (!btrfs_ordered_extent_cache)
1163                 return -ENOMEM;
1164
1165         return 0;
1166 }
1167
1168 void __cold ordered_data_exit(void)
1169 {
1170         kmem_cache_destroy(btrfs_ordered_extent_cache);
1171 }