Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux-2.6-microblaze.git] / fs / btrfs / inode-map.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/kthread.h>
7 #include <linux/pagemap.h>
8
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "free-space-cache.h"
12 #include "inode-map.h"
13 #include "transaction.h"
14 #include "delalloc-space.h"
15
16 static void fail_caching_thread(struct btrfs_root *root)
17 {
18         struct btrfs_fs_info *fs_info = root->fs_info;
19
20         btrfs_warn(fs_info, "failed to start inode caching task");
21         btrfs_clear_pending_and_info(fs_info, INODE_MAP_CACHE,
22                                      "disabling inode map caching");
23         spin_lock(&root->ino_cache_lock);
24         root->ino_cache_state = BTRFS_CACHE_ERROR;
25         spin_unlock(&root->ino_cache_lock);
26         wake_up(&root->ino_cache_wait);
27 }
28
29 static int caching_kthread(void *data)
30 {
31         struct btrfs_root *root = data;
32         struct btrfs_fs_info *fs_info = root->fs_info;
33         struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
34         struct btrfs_key key;
35         struct btrfs_path *path;
36         struct extent_buffer *leaf;
37         u64 last = (u64)-1;
38         int slot;
39         int ret;
40
41         if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
42                 return 0;
43
44         path = btrfs_alloc_path();
45         if (!path) {
46                 fail_caching_thread(root);
47                 return -ENOMEM;
48         }
49
50         /* Since the commit root is read-only, we can safely skip locking. */
51         path->skip_locking = 1;
52         path->search_commit_root = 1;
53         path->reada = READA_FORWARD;
54
55         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
56         key.offset = 0;
57         key.type = BTRFS_INODE_ITEM_KEY;
58 again:
59         /* need to make sure the commit_root doesn't disappear */
60         down_read(&fs_info->commit_root_sem);
61
62         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
63         if (ret < 0)
64                 goto out;
65
66         while (1) {
67                 if (btrfs_fs_closing(fs_info))
68                         goto out;
69
70                 leaf = path->nodes[0];
71                 slot = path->slots[0];
72                 if (slot >= btrfs_header_nritems(leaf)) {
73                         ret = btrfs_next_leaf(root, path);
74                         if (ret < 0)
75                                 goto out;
76                         else if (ret > 0)
77                                 break;
78
79                         if (need_resched() ||
80                             btrfs_transaction_in_commit(fs_info)) {
81                                 leaf = path->nodes[0];
82
83                                 if (WARN_ON(btrfs_header_nritems(leaf) == 0))
84                                         break;
85
86                                 /*
87                                  * Save the key so we can advances forward
88                                  * in the next search.
89                                  */
90                                 btrfs_item_key_to_cpu(leaf, &key, 0);
91                                 btrfs_release_path(path);
92                                 root->ino_cache_progress = last;
93                                 up_read(&fs_info->commit_root_sem);
94                                 schedule_timeout(1);
95                                 goto again;
96                         } else
97                                 continue;
98                 }
99
100                 btrfs_item_key_to_cpu(leaf, &key, slot);
101
102                 if (key.type != BTRFS_INODE_ITEM_KEY)
103                         goto next;
104
105                 if (key.objectid >= root->highest_objectid)
106                         break;
107
108                 if (last != (u64)-1 && last + 1 != key.objectid) {
109                         __btrfs_add_free_space(fs_info, ctl, last + 1,
110                                                key.objectid - last - 1);
111                         wake_up(&root->ino_cache_wait);
112                 }
113
114                 last = key.objectid;
115 next:
116                 path->slots[0]++;
117         }
118
119         if (last < root->highest_objectid - 1) {
120                 __btrfs_add_free_space(fs_info, ctl, last + 1,
121                                        root->highest_objectid - last - 1);
122         }
123
124         spin_lock(&root->ino_cache_lock);
125         root->ino_cache_state = BTRFS_CACHE_FINISHED;
126         spin_unlock(&root->ino_cache_lock);
127
128         root->ino_cache_progress = (u64)-1;
129         btrfs_unpin_free_ino(root);
130 out:
131         wake_up(&root->ino_cache_wait);
132         up_read(&fs_info->commit_root_sem);
133
134         btrfs_free_path(path);
135
136         return ret;
137 }
138
139 static void start_caching(struct btrfs_root *root)
140 {
141         struct btrfs_fs_info *fs_info = root->fs_info;
142         struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
143         struct task_struct *tsk;
144         int ret;
145         u64 objectid;
146
147         if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
148                 return;
149
150         spin_lock(&root->ino_cache_lock);
151         if (root->ino_cache_state != BTRFS_CACHE_NO) {
152                 spin_unlock(&root->ino_cache_lock);
153                 return;
154         }
155
156         root->ino_cache_state = BTRFS_CACHE_STARTED;
157         spin_unlock(&root->ino_cache_lock);
158
159         ret = load_free_ino_cache(fs_info, root);
160         if (ret == 1) {
161                 spin_lock(&root->ino_cache_lock);
162                 root->ino_cache_state = BTRFS_CACHE_FINISHED;
163                 spin_unlock(&root->ino_cache_lock);
164                 wake_up(&root->ino_cache_wait);
165                 return;
166         }
167
168         /*
169          * It can be quite time-consuming to fill the cache by searching
170          * through the extent tree, and this can keep ino allocation path
171          * waiting. Therefore at start we quickly find out the highest
172          * inode number and we know we can use inode numbers which fall in
173          * [highest_ino + 1, BTRFS_LAST_FREE_OBJECTID].
174          */
175         ret = btrfs_find_free_objectid(root, &objectid);
176         if (!ret && objectid <= BTRFS_LAST_FREE_OBJECTID) {
177                 __btrfs_add_free_space(fs_info, ctl, objectid,
178                                        BTRFS_LAST_FREE_OBJECTID - objectid + 1);
179                 wake_up(&root->ino_cache_wait);
180         }
181
182         tsk = kthread_run(caching_kthread, root, "btrfs-ino-cache-%llu",
183                           root->root_key.objectid);
184         if (IS_ERR(tsk))
185                 fail_caching_thread(root);
186 }
187
188 int btrfs_find_free_ino(struct btrfs_root *root, u64 *objectid)
189 {
190         if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
191                 return btrfs_find_free_objectid(root, objectid);
192
193 again:
194         *objectid = btrfs_find_ino_for_alloc(root);
195
196         if (*objectid != 0)
197                 return 0;
198
199         start_caching(root);
200
201         wait_event(root->ino_cache_wait,
202                    root->ino_cache_state == BTRFS_CACHE_FINISHED ||
203                    root->ino_cache_state == BTRFS_CACHE_ERROR ||
204                    root->free_ino_ctl->free_space > 0);
205
206         if (root->ino_cache_state == BTRFS_CACHE_FINISHED &&
207             root->free_ino_ctl->free_space == 0)
208                 return -ENOSPC;
209         else if (root->ino_cache_state == BTRFS_CACHE_ERROR)
210                 return btrfs_find_free_objectid(root, objectid);
211         else
212                 goto again;
213 }
214
215 void btrfs_return_ino(struct btrfs_root *root, u64 objectid)
216 {
217         struct btrfs_fs_info *fs_info = root->fs_info;
218         struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
219
220         if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
221                 return;
222 again:
223         if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
224                 __btrfs_add_free_space(fs_info, pinned, objectid, 1);
225         } else {
226                 down_write(&fs_info->commit_root_sem);
227                 spin_lock(&root->ino_cache_lock);
228                 if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
229                         spin_unlock(&root->ino_cache_lock);
230                         up_write(&fs_info->commit_root_sem);
231                         goto again;
232                 }
233                 spin_unlock(&root->ino_cache_lock);
234
235                 start_caching(root);
236
237                 __btrfs_add_free_space(fs_info, pinned, objectid, 1);
238
239                 up_write(&fs_info->commit_root_sem);
240         }
241 }
242
243 /*
244  * When a transaction is committed, we'll move those inode numbers which are
245  * smaller than root->ino_cache_progress from pinned tree to free_ino tree, and
246  * others will just be dropped, because the commit root we were searching has
247  * changed.
248  *
249  * Must be called with root->fs_info->commit_root_sem held
250  */
251 void btrfs_unpin_free_ino(struct btrfs_root *root)
252 {
253         struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
254         struct rb_root *rbroot = &root->free_ino_pinned->free_space_offset;
255         spinlock_t *rbroot_lock = &root->free_ino_pinned->tree_lock;
256         struct btrfs_free_space *info;
257         struct rb_node *n;
258         u64 count;
259
260         if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
261                 return;
262
263         while (1) {
264                 spin_lock(rbroot_lock);
265                 n = rb_first(rbroot);
266                 if (!n) {
267                         spin_unlock(rbroot_lock);
268                         break;
269                 }
270
271                 info = rb_entry(n, struct btrfs_free_space, offset_index);
272                 BUG_ON(info->bitmap); /* Logic error */
273
274                 if (info->offset > root->ino_cache_progress)
275                         count = 0;
276                 else
277                         count = min(root->ino_cache_progress - info->offset + 1,
278                                     info->bytes);
279
280                 rb_erase(&info->offset_index, rbroot);
281                 spin_unlock(rbroot_lock);
282                 if (count)
283                         __btrfs_add_free_space(root->fs_info, ctl,
284                                                info->offset, count);
285                 kmem_cache_free(btrfs_free_space_cachep, info);
286         }
287 }
288
289 #define INIT_THRESHOLD  ((SZ_32K / 2) / sizeof(struct btrfs_free_space))
290 #define INODES_PER_BITMAP (PAGE_SIZE * 8)
291
292 /*
293  * The goal is to keep the memory used by the free_ino tree won't
294  * exceed the memory if we use bitmaps only.
295  */
296 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
297 {
298         struct btrfs_free_space *info;
299         struct rb_node *n;
300         int max_ino;
301         int max_bitmaps;
302
303         n = rb_last(&ctl->free_space_offset);
304         if (!n) {
305                 ctl->extents_thresh = INIT_THRESHOLD;
306                 return;
307         }
308         info = rb_entry(n, struct btrfs_free_space, offset_index);
309
310         /*
311          * Find the maximum inode number in the filesystem. Note we
312          * ignore the fact that this can be a bitmap, because we are
313          * not doing precise calculation.
314          */
315         max_ino = info->bytes - 1;
316
317         max_bitmaps = ALIGN(max_ino, INODES_PER_BITMAP) / INODES_PER_BITMAP;
318         if (max_bitmaps <= ctl->total_bitmaps) {
319                 ctl->extents_thresh = 0;
320                 return;
321         }
322
323         ctl->extents_thresh = (max_bitmaps - ctl->total_bitmaps) *
324                                 PAGE_SIZE / sizeof(*info);
325 }
326
327 /*
328  * We don't fall back to bitmap, if we are below the extents threshold
329  * or this chunk of inode numbers is a big one.
330  */
331 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
332                        struct btrfs_free_space *info)
333 {
334         if (ctl->free_extents < ctl->extents_thresh ||
335             info->bytes > INODES_PER_BITMAP / 10)
336                 return false;
337
338         return true;
339 }
340
341 static const struct btrfs_free_space_op free_ino_op = {
342         .recalc_thresholds      = recalculate_thresholds,
343         .use_bitmap             = use_bitmap,
344 };
345
346 static void pinned_recalc_thresholds(struct btrfs_free_space_ctl *ctl)
347 {
348 }
349
350 static bool pinned_use_bitmap(struct btrfs_free_space_ctl *ctl,
351                               struct btrfs_free_space *info)
352 {
353         /*
354          * We always use extents for two reasons:
355          *
356          * - The pinned tree is only used during the process of caching
357          *   work.
358          * - Make code simpler. See btrfs_unpin_free_ino().
359          */
360         return false;
361 }
362
363 static const struct btrfs_free_space_op pinned_free_ino_op = {
364         .recalc_thresholds      = pinned_recalc_thresholds,
365         .use_bitmap             = pinned_use_bitmap,
366 };
367
368 void btrfs_init_free_ino_ctl(struct btrfs_root *root)
369 {
370         struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
371         struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
372
373         spin_lock_init(&ctl->tree_lock);
374         ctl->unit = 1;
375         ctl->start = 0;
376         ctl->private = NULL;
377         ctl->op = &free_ino_op;
378         INIT_LIST_HEAD(&ctl->trimming_ranges);
379         mutex_init(&ctl->cache_writeout_mutex);
380
381         /*
382          * Initially we allow to use 16K of ram to cache chunks of
383          * inode numbers before we resort to bitmaps. This is somewhat
384          * arbitrary, but it will be adjusted in runtime.
385          */
386         ctl->extents_thresh = INIT_THRESHOLD;
387
388         spin_lock_init(&pinned->tree_lock);
389         pinned->unit = 1;
390         pinned->start = 0;
391         pinned->private = NULL;
392         pinned->extents_thresh = 0;
393         pinned->op = &pinned_free_ino_op;
394 }
395
396 int btrfs_save_ino_cache(struct btrfs_root *root,
397                          struct btrfs_trans_handle *trans)
398 {
399         struct btrfs_fs_info *fs_info = root->fs_info;
400         struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
401         struct btrfs_path *path;
402         struct inode *inode;
403         struct btrfs_block_rsv *rsv;
404         struct extent_changeset *data_reserved = NULL;
405         u64 num_bytes;
406         u64 alloc_hint = 0;
407         int ret;
408         int prealloc;
409         bool retry = false;
410
411         /* only fs tree and subvol/snap needs ino cache */
412         if (root->root_key.objectid != BTRFS_FS_TREE_OBJECTID &&
413             (root->root_key.objectid < BTRFS_FIRST_FREE_OBJECTID ||
414              root->root_key.objectid > BTRFS_LAST_FREE_OBJECTID))
415                 return 0;
416
417         /* Don't save inode cache if we are deleting this root */
418         if (btrfs_root_refs(&root->root_item) == 0)
419                 return 0;
420
421         if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
422                 return 0;
423
424         path = btrfs_alloc_path();
425         if (!path)
426                 return -ENOMEM;
427
428         rsv = trans->block_rsv;
429         trans->block_rsv = &fs_info->trans_block_rsv;
430
431         num_bytes = trans->bytes_reserved;
432         /*
433          * 1 item for inode item insertion if need
434          * 4 items for inode item update (in the worst case)
435          * 1 items for slack space if we need do truncation
436          * 1 item for free space object
437          * 3 items for pre-allocation
438          */
439         trans->bytes_reserved = btrfs_calc_insert_metadata_size(fs_info, 10);
440         ret = btrfs_block_rsv_add(root, trans->block_rsv,
441                                   trans->bytes_reserved,
442                                   BTRFS_RESERVE_NO_FLUSH);
443         if (ret)
444                 goto out;
445         trace_btrfs_space_reservation(fs_info, "ino_cache", trans->transid,
446                                       trans->bytes_reserved, 1);
447 again:
448         inode = lookup_free_ino_inode(root, path);
449         if (IS_ERR(inode) && (PTR_ERR(inode) != -ENOENT || retry)) {
450                 ret = PTR_ERR(inode);
451                 goto out_release;
452         }
453
454         if (IS_ERR(inode)) {
455                 BUG_ON(retry); /* Logic error */
456                 retry = true;
457
458                 ret = create_free_ino_inode(root, trans, path);
459                 if (ret)
460                         goto out_release;
461                 goto again;
462         }
463
464         BTRFS_I(inode)->generation = 0;
465         ret = btrfs_update_inode(trans, root, inode);
466         if (ret) {
467                 btrfs_abort_transaction(trans, ret);
468                 goto out_put;
469         }
470
471         if (i_size_read(inode) > 0) {
472                 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
473                 if (ret) {
474                         if (ret != -ENOSPC)
475                                 btrfs_abort_transaction(trans, ret);
476                         goto out_put;
477                 }
478         }
479
480         spin_lock(&root->ino_cache_lock);
481         if (root->ino_cache_state != BTRFS_CACHE_FINISHED) {
482                 ret = -1;
483                 spin_unlock(&root->ino_cache_lock);
484                 goto out_put;
485         }
486         spin_unlock(&root->ino_cache_lock);
487
488         spin_lock(&ctl->tree_lock);
489         prealloc = sizeof(struct btrfs_free_space) * ctl->free_extents;
490         prealloc = ALIGN(prealloc, PAGE_SIZE);
491         prealloc += ctl->total_bitmaps * PAGE_SIZE;
492         spin_unlock(&ctl->tree_lock);
493
494         /* Just to make sure we have enough space */
495         prealloc += 8 * PAGE_SIZE;
496
497         ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 0, prealloc);
498         if (ret)
499                 goto out_put;
500
501         ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, prealloc,
502                                               prealloc, prealloc, &alloc_hint);
503         if (ret) {
504                 btrfs_delalloc_release_extents(BTRFS_I(inode), prealloc);
505                 btrfs_delalloc_release_metadata(BTRFS_I(inode), prealloc, true);
506                 goto out_put;
507         }
508
509         ret = btrfs_write_out_ino_cache(root, trans, path, inode);
510         btrfs_delalloc_release_extents(BTRFS_I(inode), prealloc);
511 out_put:
512         iput(inode);
513 out_release:
514         trace_btrfs_space_reservation(fs_info, "ino_cache", trans->transid,
515                                       trans->bytes_reserved, 0);
516         btrfs_block_rsv_release(fs_info, trans->block_rsv,
517                                 trans->bytes_reserved);
518 out:
519         trans->block_rsv = rsv;
520         trans->bytes_reserved = num_bytes;
521
522         btrfs_free_path(path);
523         extent_changeset_free(data_reserved);
524         return ret;
525 }
526
527 int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid)
528 {
529         struct btrfs_path *path;
530         int ret;
531         struct extent_buffer *l;
532         struct btrfs_key search_key;
533         struct btrfs_key found_key;
534         int slot;
535
536         path = btrfs_alloc_path();
537         if (!path)
538                 return -ENOMEM;
539
540         search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
541         search_key.type = -1;
542         search_key.offset = (u64)-1;
543         ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
544         if (ret < 0)
545                 goto error;
546         BUG_ON(ret == 0); /* Corruption */
547         if (path->slots[0] > 0) {
548                 slot = path->slots[0] - 1;
549                 l = path->nodes[0];
550                 btrfs_item_key_to_cpu(l, &found_key, slot);
551                 *objectid = max_t(u64, found_key.objectid,
552                                   BTRFS_FIRST_FREE_OBJECTID - 1);
553         } else {
554                 *objectid = BTRFS_FIRST_FREE_OBJECTID - 1;
555         }
556         ret = 0;
557 error:
558         btrfs_free_path(path);
559         return ret;
560 }
561
562 int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid)
563 {
564         int ret;
565         mutex_lock(&root->objectid_mutex);
566
567         if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
568                 btrfs_warn(root->fs_info,
569                            "the objectid of root %llu reaches its highest value",
570                            root->root_key.objectid);
571                 ret = -ENOSPC;
572                 goto out;
573         }
574
575         *objectid = ++root->highest_objectid;
576         ret = 0;
577 out:
578         mutex_unlock(&root->objectid_mutex);
579         return ret;
580 }