Merge branch 'kvm-selftest' into kvm-master
[linux-2.6-microblaze.git] / fs / btrfs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "btrfs_inode.h"
24 #include "print-tree.h"
25 #include "tree-log.h"
26 #include "locking.h"
27 #include "volumes.h"
28 #include "qgroup.h"
29 #include "compression.h"
30 #include "delalloc-space.h"
31 #include "reflink.h"
32 #include "subpage.h"
33
34 static struct kmem_cache *btrfs_inode_defrag_cachep;
35 /*
36  * when auto defrag is enabled we
37  * queue up these defrag structs to remember which
38  * inodes need defragging passes
39  */
40 struct inode_defrag {
41         struct rb_node rb_node;
42         /* objectid */
43         u64 ino;
44         /*
45          * transid where the defrag was added, we search for
46          * extents newer than this
47          */
48         u64 transid;
49
50         /* root objectid */
51         u64 root;
52
53         /* last offset we were able to defrag */
54         u64 last_offset;
55
56         /* if we've wrapped around back to zero once already */
57         int cycled;
58 };
59
60 static int __compare_inode_defrag(struct inode_defrag *defrag1,
61                                   struct inode_defrag *defrag2)
62 {
63         if (defrag1->root > defrag2->root)
64                 return 1;
65         else if (defrag1->root < defrag2->root)
66                 return -1;
67         else if (defrag1->ino > defrag2->ino)
68                 return 1;
69         else if (defrag1->ino < defrag2->ino)
70                 return -1;
71         else
72                 return 0;
73 }
74
75 /* pop a record for an inode into the defrag tree.  The lock
76  * must be held already
77  *
78  * If you're inserting a record for an older transid than an
79  * existing record, the transid already in the tree is lowered
80  *
81  * If an existing record is found the defrag item you
82  * pass in is freed
83  */
84 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
85                                     struct inode_defrag *defrag)
86 {
87         struct btrfs_fs_info *fs_info = inode->root->fs_info;
88         struct inode_defrag *entry;
89         struct rb_node **p;
90         struct rb_node *parent = NULL;
91         int ret;
92
93         p = &fs_info->defrag_inodes.rb_node;
94         while (*p) {
95                 parent = *p;
96                 entry = rb_entry(parent, struct inode_defrag, rb_node);
97
98                 ret = __compare_inode_defrag(defrag, entry);
99                 if (ret < 0)
100                         p = &parent->rb_left;
101                 else if (ret > 0)
102                         p = &parent->rb_right;
103                 else {
104                         /* if we're reinserting an entry for
105                          * an old defrag run, make sure to
106                          * lower the transid of our existing record
107                          */
108                         if (defrag->transid < entry->transid)
109                                 entry->transid = defrag->transid;
110                         if (defrag->last_offset > entry->last_offset)
111                                 entry->last_offset = defrag->last_offset;
112                         return -EEXIST;
113                 }
114         }
115         set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
116         rb_link_node(&defrag->rb_node, parent, p);
117         rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
118         return 0;
119 }
120
121 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
122 {
123         if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
124                 return 0;
125
126         if (btrfs_fs_closing(fs_info))
127                 return 0;
128
129         return 1;
130 }
131
132 /*
133  * insert a defrag record for this inode if auto defrag is
134  * enabled
135  */
136 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
137                            struct btrfs_inode *inode)
138 {
139         struct btrfs_root *root = inode->root;
140         struct btrfs_fs_info *fs_info = root->fs_info;
141         struct inode_defrag *defrag;
142         u64 transid;
143         int ret;
144
145         if (!__need_auto_defrag(fs_info))
146                 return 0;
147
148         if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
149                 return 0;
150
151         if (trans)
152                 transid = trans->transid;
153         else
154                 transid = inode->root->last_trans;
155
156         defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
157         if (!defrag)
158                 return -ENOMEM;
159
160         defrag->ino = btrfs_ino(inode);
161         defrag->transid = transid;
162         defrag->root = root->root_key.objectid;
163
164         spin_lock(&fs_info->defrag_inodes_lock);
165         if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
166                 /*
167                  * If we set IN_DEFRAG flag and evict the inode from memory,
168                  * and then re-read this inode, this new inode doesn't have
169                  * IN_DEFRAG flag. At the case, we may find the existed defrag.
170                  */
171                 ret = __btrfs_add_inode_defrag(inode, defrag);
172                 if (ret)
173                         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
174         } else {
175                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
176         }
177         spin_unlock(&fs_info->defrag_inodes_lock);
178         return 0;
179 }
180
181 /*
182  * Requeue the defrag object. If there is a defrag object that points to
183  * the same inode in the tree, we will merge them together (by
184  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
185  */
186 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
187                                        struct inode_defrag *defrag)
188 {
189         struct btrfs_fs_info *fs_info = inode->root->fs_info;
190         int ret;
191
192         if (!__need_auto_defrag(fs_info))
193                 goto out;
194
195         /*
196          * Here we don't check the IN_DEFRAG flag, because we need merge
197          * them together.
198          */
199         spin_lock(&fs_info->defrag_inodes_lock);
200         ret = __btrfs_add_inode_defrag(inode, defrag);
201         spin_unlock(&fs_info->defrag_inodes_lock);
202         if (ret)
203                 goto out;
204         return;
205 out:
206         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
207 }
208
209 /*
210  * pick the defragable inode that we want, if it doesn't exist, we will get
211  * the next one.
212  */
213 static struct inode_defrag *
214 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
215 {
216         struct inode_defrag *entry = NULL;
217         struct inode_defrag tmp;
218         struct rb_node *p;
219         struct rb_node *parent = NULL;
220         int ret;
221
222         tmp.ino = ino;
223         tmp.root = root;
224
225         spin_lock(&fs_info->defrag_inodes_lock);
226         p = fs_info->defrag_inodes.rb_node;
227         while (p) {
228                 parent = p;
229                 entry = rb_entry(parent, struct inode_defrag, rb_node);
230
231                 ret = __compare_inode_defrag(&tmp, entry);
232                 if (ret < 0)
233                         p = parent->rb_left;
234                 else if (ret > 0)
235                         p = parent->rb_right;
236                 else
237                         goto out;
238         }
239
240         if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
241                 parent = rb_next(parent);
242                 if (parent)
243                         entry = rb_entry(parent, struct inode_defrag, rb_node);
244                 else
245                         entry = NULL;
246         }
247 out:
248         if (entry)
249                 rb_erase(parent, &fs_info->defrag_inodes);
250         spin_unlock(&fs_info->defrag_inodes_lock);
251         return entry;
252 }
253
254 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
255 {
256         struct inode_defrag *defrag;
257         struct rb_node *node;
258
259         spin_lock(&fs_info->defrag_inodes_lock);
260         node = rb_first(&fs_info->defrag_inodes);
261         while (node) {
262                 rb_erase(node, &fs_info->defrag_inodes);
263                 defrag = rb_entry(node, struct inode_defrag, rb_node);
264                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
265
266                 cond_resched_lock(&fs_info->defrag_inodes_lock);
267
268                 node = rb_first(&fs_info->defrag_inodes);
269         }
270         spin_unlock(&fs_info->defrag_inodes_lock);
271 }
272
273 #define BTRFS_DEFRAG_BATCH      1024
274
275 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
276                                     struct inode_defrag *defrag)
277 {
278         struct btrfs_root *inode_root;
279         struct inode *inode;
280         struct btrfs_ioctl_defrag_range_args range;
281         int num_defrag;
282         int ret;
283
284         /* get the inode */
285         inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
286         if (IS_ERR(inode_root)) {
287                 ret = PTR_ERR(inode_root);
288                 goto cleanup;
289         }
290
291         inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
292         btrfs_put_root(inode_root);
293         if (IS_ERR(inode)) {
294                 ret = PTR_ERR(inode);
295                 goto cleanup;
296         }
297
298         /* do a chunk of defrag */
299         clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
300         memset(&range, 0, sizeof(range));
301         range.len = (u64)-1;
302         range.start = defrag->last_offset;
303
304         sb_start_write(fs_info->sb);
305         num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
306                                        BTRFS_DEFRAG_BATCH);
307         sb_end_write(fs_info->sb);
308         /*
309          * if we filled the whole defrag batch, there
310          * must be more work to do.  Queue this defrag
311          * again
312          */
313         if (num_defrag == BTRFS_DEFRAG_BATCH) {
314                 defrag->last_offset = range.start;
315                 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
316         } else if (defrag->last_offset && !defrag->cycled) {
317                 /*
318                  * we didn't fill our defrag batch, but
319                  * we didn't start at zero.  Make sure we loop
320                  * around to the start of the file.
321                  */
322                 defrag->last_offset = 0;
323                 defrag->cycled = 1;
324                 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
325         } else {
326                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
327         }
328
329         iput(inode);
330         return 0;
331 cleanup:
332         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
333         return ret;
334 }
335
336 /*
337  * run through the list of inodes in the FS that need
338  * defragging
339  */
340 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
341 {
342         struct inode_defrag *defrag;
343         u64 first_ino = 0;
344         u64 root_objectid = 0;
345
346         atomic_inc(&fs_info->defrag_running);
347         while (1) {
348                 /* Pause the auto defragger. */
349                 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
350                              &fs_info->fs_state))
351                         break;
352
353                 if (!__need_auto_defrag(fs_info))
354                         break;
355
356                 /* find an inode to defrag */
357                 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
358                                                  first_ino);
359                 if (!defrag) {
360                         if (root_objectid || first_ino) {
361                                 root_objectid = 0;
362                                 first_ino = 0;
363                                 continue;
364                         } else {
365                                 break;
366                         }
367                 }
368
369                 first_ino = defrag->ino + 1;
370                 root_objectid = defrag->root;
371
372                 __btrfs_run_defrag_inode(fs_info, defrag);
373         }
374         atomic_dec(&fs_info->defrag_running);
375
376         /*
377          * during unmount, we use the transaction_wait queue to
378          * wait for the defragger to stop
379          */
380         wake_up(&fs_info->transaction_wait);
381         return 0;
382 }
383
384 /* simple helper to fault in pages and copy.  This should go away
385  * and be replaced with calls into generic code.
386  */
387 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
388                                          struct page **prepared_pages,
389                                          struct iov_iter *i)
390 {
391         size_t copied = 0;
392         size_t total_copied = 0;
393         int pg = 0;
394         int offset = offset_in_page(pos);
395
396         while (write_bytes > 0) {
397                 size_t count = min_t(size_t,
398                                      PAGE_SIZE - offset, write_bytes);
399                 struct page *page = prepared_pages[pg];
400                 /*
401                  * Copy data from userspace to the current page
402                  */
403                 copied = copy_page_from_iter_atomic(page, offset, count, i);
404
405                 /* Flush processor's dcache for this page */
406                 flush_dcache_page(page);
407
408                 /*
409                  * if we get a partial write, we can end up with
410                  * partially up to date pages.  These add
411                  * a lot of complexity, so make sure they don't
412                  * happen by forcing this copy to be retried.
413                  *
414                  * The rest of the btrfs_file_write code will fall
415                  * back to page at a time copies after we return 0.
416                  */
417                 if (unlikely(copied < count)) {
418                         if (!PageUptodate(page)) {
419                                 iov_iter_revert(i, copied);
420                                 copied = 0;
421                         }
422                         if (!copied)
423                                 break;
424                 }
425
426                 write_bytes -= copied;
427                 total_copied += copied;
428                 offset += copied;
429                 if (offset == PAGE_SIZE) {
430                         pg++;
431                         offset = 0;
432                 }
433         }
434         return total_copied;
435 }
436
437 /*
438  * unlocks pages after btrfs_file_write is done with them
439  */
440 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
441                              struct page **pages, size_t num_pages,
442                              u64 pos, u64 copied)
443 {
444         size_t i;
445         u64 block_start = round_down(pos, fs_info->sectorsize);
446         u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
447
448         ASSERT(block_len <= U32_MAX);
449         for (i = 0; i < num_pages; i++) {
450                 /* page checked is some magic around finding pages that
451                  * have been modified without going through btrfs_set_page_dirty
452                  * clear it here. There should be no need to mark the pages
453                  * accessed as prepare_pages should have marked them accessed
454                  * in prepare_pages via find_or_create_page()
455                  */
456                 btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start,
457                                                block_len);
458                 unlock_page(pages[i]);
459                 put_page(pages[i]);
460         }
461 }
462
463 /*
464  * After btrfs_copy_from_user(), update the following things for delalloc:
465  * - Mark newly dirtied pages as DELALLOC in the io tree.
466  *   Used to advise which range is to be written back.
467  * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
468  * - Update inode size for past EOF write
469  */
470 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
471                       size_t num_pages, loff_t pos, size_t write_bytes,
472                       struct extent_state **cached, bool noreserve)
473 {
474         struct btrfs_fs_info *fs_info = inode->root->fs_info;
475         int err = 0;
476         int i;
477         u64 num_bytes;
478         u64 start_pos;
479         u64 end_of_last_block;
480         u64 end_pos = pos + write_bytes;
481         loff_t isize = i_size_read(&inode->vfs_inode);
482         unsigned int extra_bits = 0;
483
484         if (write_bytes == 0)
485                 return 0;
486
487         if (noreserve)
488                 extra_bits |= EXTENT_NORESERVE;
489
490         start_pos = round_down(pos, fs_info->sectorsize);
491         num_bytes = round_up(write_bytes + pos - start_pos,
492                              fs_info->sectorsize);
493         ASSERT(num_bytes <= U32_MAX);
494
495         end_of_last_block = start_pos + num_bytes - 1;
496
497         /*
498          * The pages may have already been dirty, clear out old accounting so
499          * we can set things up properly
500          */
501         clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
502                          EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
503                          0, 0, cached);
504
505         err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
506                                         extra_bits, cached);
507         if (err)
508                 return err;
509
510         for (i = 0; i < num_pages; i++) {
511                 struct page *p = pages[i];
512
513                 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
514                 btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes);
515                 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
516         }
517
518         /*
519          * we've only changed i_size in ram, and we haven't updated
520          * the disk i_size.  There is no need to log the inode
521          * at this time.
522          */
523         if (end_pos > isize)
524                 i_size_write(&inode->vfs_inode, end_pos);
525         return 0;
526 }
527
528 /*
529  * this drops all the extents in the cache that intersect the range
530  * [start, end].  Existing extents are split as required.
531  */
532 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
533                              int skip_pinned)
534 {
535         struct extent_map *em;
536         struct extent_map *split = NULL;
537         struct extent_map *split2 = NULL;
538         struct extent_map_tree *em_tree = &inode->extent_tree;
539         u64 len = end - start + 1;
540         u64 gen;
541         int ret;
542         int testend = 1;
543         unsigned long flags;
544         int compressed = 0;
545         bool modified;
546
547         WARN_ON(end < start);
548         if (end == (u64)-1) {
549                 len = (u64)-1;
550                 testend = 0;
551         }
552         while (1) {
553                 int no_splits = 0;
554
555                 modified = false;
556                 if (!split)
557                         split = alloc_extent_map();
558                 if (!split2)
559                         split2 = alloc_extent_map();
560                 if (!split || !split2)
561                         no_splits = 1;
562
563                 write_lock(&em_tree->lock);
564                 em = lookup_extent_mapping(em_tree, start, len);
565                 if (!em) {
566                         write_unlock(&em_tree->lock);
567                         break;
568                 }
569                 flags = em->flags;
570                 gen = em->generation;
571                 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
572                         if (testend && em->start + em->len >= start + len) {
573                                 free_extent_map(em);
574                                 write_unlock(&em_tree->lock);
575                                 break;
576                         }
577                         start = em->start + em->len;
578                         if (testend)
579                                 len = start + len - (em->start + em->len);
580                         free_extent_map(em);
581                         write_unlock(&em_tree->lock);
582                         continue;
583                 }
584                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
585                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
586                 clear_bit(EXTENT_FLAG_LOGGING, &flags);
587                 modified = !list_empty(&em->list);
588                 if (no_splits)
589                         goto next;
590
591                 if (em->start < start) {
592                         split->start = em->start;
593                         split->len = start - em->start;
594
595                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
596                                 split->orig_start = em->orig_start;
597                                 split->block_start = em->block_start;
598
599                                 if (compressed)
600                                         split->block_len = em->block_len;
601                                 else
602                                         split->block_len = split->len;
603                                 split->orig_block_len = max(split->block_len,
604                                                 em->orig_block_len);
605                                 split->ram_bytes = em->ram_bytes;
606                         } else {
607                                 split->orig_start = split->start;
608                                 split->block_len = 0;
609                                 split->block_start = em->block_start;
610                                 split->orig_block_len = 0;
611                                 split->ram_bytes = split->len;
612                         }
613
614                         split->generation = gen;
615                         split->flags = flags;
616                         split->compress_type = em->compress_type;
617                         replace_extent_mapping(em_tree, em, split, modified);
618                         free_extent_map(split);
619                         split = split2;
620                         split2 = NULL;
621                 }
622                 if (testend && em->start + em->len > start + len) {
623                         u64 diff = start + len - em->start;
624
625                         split->start = start + len;
626                         split->len = em->start + em->len - (start + len);
627                         split->flags = flags;
628                         split->compress_type = em->compress_type;
629                         split->generation = gen;
630
631                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
632                                 split->orig_block_len = max(em->block_len,
633                                                     em->orig_block_len);
634
635                                 split->ram_bytes = em->ram_bytes;
636                                 if (compressed) {
637                                         split->block_len = em->block_len;
638                                         split->block_start = em->block_start;
639                                         split->orig_start = em->orig_start;
640                                 } else {
641                                         split->block_len = split->len;
642                                         split->block_start = em->block_start
643                                                 + diff;
644                                         split->orig_start = em->orig_start;
645                                 }
646                         } else {
647                                 split->ram_bytes = split->len;
648                                 split->orig_start = split->start;
649                                 split->block_len = 0;
650                                 split->block_start = em->block_start;
651                                 split->orig_block_len = 0;
652                         }
653
654                         if (extent_map_in_tree(em)) {
655                                 replace_extent_mapping(em_tree, em, split,
656                                                        modified);
657                         } else {
658                                 ret = add_extent_mapping(em_tree, split,
659                                                          modified);
660                                 ASSERT(ret == 0); /* Logic error */
661                         }
662                         free_extent_map(split);
663                         split = NULL;
664                 }
665 next:
666                 if (extent_map_in_tree(em))
667                         remove_extent_mapping(em_tree, em);
668                 write_unlock(&em_tree->lock);
669
670                 /* once for us */
671                 free_extent_map(em);
672                 /* once for the tree*/
673                 free_extent_map(em);
674         }
675         if (split)
676                 free_extent_map(split);
677         if (split2)
678                 free_extent_map(split2);
679 }
680
681 /*
682  * this is very complex, but the basic idea is to drop all extents
683  * in the range start - end.  hint_block is filled in with a block number
684  * that would be a good hint to the block allocator for this file.
685  *
686  * If an extent intersects the range but is not entirely inside the range
687  * it is either truncated or split.  Anything entirely inside the range
688  * is deleted from the tree.
689  *
690  * Note: the VFS' inode number of bytes is not updated, it's up to the caller
691  * to deal with that. We set the field 'bytes_found' of the arguments structure
692  * with the number of allocated bytes found in the target range, so that the
693  * caller can update the inode's number of bytes in an atomic way when
694  * replacing extents in a range to avoid races with stat(2).
695  */
696 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
697                        struct btrfs_root *root, struct btrfs_inode *inode,
698                        struct btrfs_drop_extents_args *args)
699 {
700         struct btrfs_fs_info *fs_info = root->fs_info;
701         struct extent_buffer *leaf;
702         struct btrfs_file_extent_item *fi;
703         struct btrfs_ref ref = { 0 };
704         struct btrfs_key key;
705         struct btrfs_key new_key;
706         u64 ino = btrfs_ino(inode);
707         u64 search_start = args->start;
708         u64 disk_bytenr = 0;
709         u64 num_bytes = 0;
710         u64 extent_offset = 0;
711         u64 extent_end = 0;
712         u64 last_end = args->start;
713         int del_nr = 0;
714         int del_slot = 0;
715         int extent_type;
716         int recow;
717         int ret;
718         int modify_tree = -1;
719         int update_refs;
720         int found = 0;
721         int leafs_visited = 0;
722         struct btrfs_path *path = args->path;
723
724         args->bytes_found = 0;
725         args->extent_inserted = false;
726
727         /* Must always have a path if ->replace_extent is true */
728         ASSERT(!(args->replace_extent && !args->path));
729
730         if (!path) {
731                 path = btrfs_alloc_path();
732                 if (!path) {
733                         ret = -ENOMEM;
734                         goto out;
735                 }
736         }
737
738         if (args->drop_cache)
739                 btrfs_drop_extent_cache(inode, args->start, args->end - 1, 0);
740
741         if (args->start >= inode->disk_i_size && !args->replace_extent)
742                 modify_tree = 0;
743
744         update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
745         while (1) {
746                 recow = 0;
747                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
748                                                search_start, modify_tree);
749                 if (ret < 0)
750                         break;
751                 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
752                         leaf = path->nodes[0];
753                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
754                         if (key.objectid == ino &&
755                             key.type == BTRFS_EXTENT_DATA_KEY)
756                                 path->slots[0]--;
757                 }
758                 ret = 0;
759                 leafs_visited++;
760 next_slot:
761                 leaf = path->nodes[0];
762                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
763                         BUG_ON(del_nr > 0);
764                         ret = btrfs_next_leaf(root, path);
765                         if (ret < 0)
766                                 break;
767                         if (ret > 0) {
768                                 ret = 0;
769                                 break;
770                         }
771                         leafs_visited++;
772                         leaf = path->nodes[0];
773                         recow = 1;
774                 }
775
776                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
777
778                 if (key.objectid > ino)
779                         break;
780                 if (WARN_ON_ONCE(key.objectid < ino) ||
781                     key.type < BTRFS_EXTENT_DATA_KEY) {
782                         ASSERT(del_nr == 0);
783                         path->slots[0]++;
784                         goto next_slot;
785                 }
786                 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
787                         break;
788
789                 fi = btrfs_item_ptr(leaf, path->slots[0],
790                                     struct btrfs_file_extent_item);
791                 extent_type = btrfs_file_extent_type(leaf, fi);
792
793                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
794                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
795                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
796                         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
797                         extent_offset = btrfs_file_extent_offset(leaf, fi);
798                         extent_end = key.offset +
799                                 btrfs_file_extent_num_bytes(leaf, fi);
800                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
801                         extent_end = key.offset +
802                                 btrfs_file_extent_ram_bytes(leaf, fi);
803                 } else {
804                         /* can't happen */
805                         BUG();
806                 }
807
808                 /*
809                  * Don't skip extent items representing 0 byte lengths. They
810                  * used to be created (bug) if while punching holes we hit
811                  * -ENOSPC condition. So if we find one here, just ensure we
812                  * delete it, otherwise we would insert a new file extent item
813                  * with the same key (offset) as that 0 bytes length file
814                  * extent item in the call to setup_items_for_insert() later
815                  * in this function.
816                  */
817                 if (extent_end == key.offset && extent_end >= search_start) {
818                         last_end = extent_end;
819                         goto delete_extent_item;
820                 }
821
822                 if (extent_end <= search_start) {
823                         path->slots[0]++;
824                         goto next_slot;
825                 }
826
827                 found = 1;
828                 search_start = max(key.offset, args->start);
829                 if (recow || !modify_tree) {
830                         modify_tree = -1;
831                         btrfs_release_path(path);
832                         continue;
833                 }
834
835                 /*
836                  *     | - range to drop - |
837                  *  | -------- extent -------- |
838                  */
839                 if (args->start > key.offset && args->end < extent_end) {
840                         BUG_ON(del_nr > 0);
841                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
842                                 ret = -EOPNOTSUPP;
843                                 break;
844                         }
845
846                         memcpy(&new_key, &key, sizeof(new_key));
847                         new_key.offset = args->start;
848                         ret = btrfs_duplicate_item(trans, root, path,
849                                                    &new_key);
850                         if (ret == -EAGAIN) {
851                                 btrfs_release_path(path);
852                                 continue;
853                         }
854                         if (ret < 0)
855                                 break;
856
857                         leaf = path->nodes[0];
858                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
859                                             struct btrfs_file_extent_item);
860                         btrfs_set_file_extent_num_bytes(leaf, fi,
861                                                         args->start - key.offset);
862
863                         fi = btrfs_item_ptr(leaf, path->slots[0],
864                                             struct btrfs_file_extent_item);
865
866                         extent_offset += args->start - key.offset;
867                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
868                         btrfs_set_file_extent_num_bytes(leaf, fi,
869                                                         extent_end - args->start);
870                         btrfs_mark_buffer_dirty(leaf);
871
872                         if (update_refs && disk_bytenr > 0) {
873                                 btrfs_init_generic_ref(&ref,
874                                                 BTRFS_ADD_DELAYED_REF,
875                                                 disk_bytenr, num_bytes, 0);
876                                 btrfs_init_data_ref(&ref,
877                                                 root->root_key.objectid,
878                                                 new_key.objectid,
879                                                 args->start - extent_offset,
880                                                 0, false);
881                                 ret = btrfs_inc_extent_ref(trans, &ref);
882                                 BUG_ON(ret); /* -ENOMEM */
883                         }
884                         key.offset = args->start;
885                 }
886                 /*
887                  * From here on out we will have actually dropped something, so
888                  * last_end can be updated.
889                  */
890                 last_end = extent_end;
891
892                 /*
893                  *  | ---- range to drop ----- |
894                  *      | -------- extent -------- |
895                  */
896                 if (args->start <= key.offset && args->end < extent_end) {
897                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
898                                 ret = -EOPNOTSUPP;
899                                 break;
900                         }
901
902                         memcpy(&new_key, &key, sizeof(new_key));
903                         new_key.offset = args->end;
904                         btrfs_set_item_key_safe(fs_info, path, &new_key);
905
906                         extent_offset += args->end - key.offset;
907                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
908                         btrfs_set_file_extent_num_bytes(leaf, fi,
909                                                         extent_end - args->end);
910                         btrfs_mark_buffer_dirty(leaf);
911                         if (update_refs && disk_bytenr > 0)
912                                 args->bytes_found += args->end - key.offset;
913                         break;
914                 }
915
916                 search_start = extent_end;
917                 /*
918                  *       | ---- range to drop ----- |
919                  *  | -------- extent -------- |
920                  */
921                 if (args->start > key.offset && args->end >= extent_end) {
922                         BUG_ON(del_nr > 0);
923                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
924                                 ret = -EOPNOTSUPP;
925                                 break;
926                         }
927
928                         btrfs_set_file_extent_num_bytes(leaf, fi,
929                                                         args->start - key.offset);
930                         btrfs_mark_buffer_dirty(leaf);
931                         if (update_refs && disk_bytenr > 0)
932                                 args->bytes_found += extent_end - args->start;
933                         if (args->end == extent_end)
934                                 break;
935
936                         path->slots[0]++;
937                         goto next_slot;
938                 }
939
940                 /*
941                  *  | ---- range to drop ----- |
942                  *    | ------ extent ------ |
943                  */
944                 if (args->start <= key.offset && args->end >= extent_end) {
945 delete_extent_item:
946                         if (del_nr == 0) {
947                                 del_slot = path->slots[0];
948                                 del_nr = 1;
949                         } else {
950                                 BUG_ON(del_slot + del_nr != path->slots[0]);
951                                 del_nr++;
952                         }
953
954                         if (update_refs &&
955                             extent_type == BTRFS_FILE_EXTENT_INLINE) {
956                                 args->bytes_found += extent_end - key.offset;
957                                 extent_end = ALIGN(extent_end,
958                                                    fs_info->sectorsize);
959                         } else if (update_refs && disk_bytenr > 0) {
960                                 btrfs_init_generic_ref(&ref,
961                                                 BTRFS_DROP_DELAYED_REF,
962                                                 disk_bytenr, num_bytes, 0);
963                                 btrfs_init_data_ref(&ref,
964                                                 root->root_key.objectid,
965                                                 key.objectid,
966                                                 key.offset - extent_offset, 0,
967                                                 false);
968                                 ret = btrfs_free_extent(trans, &ref);
969                                 BUG_ON(ret); /* -ENOMEM */
970                                 args->bytes_found += extent_end - key.offset;
971                         }
972
973                         if (args->end == extent_end)
974                                 break;
975
976                         if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
977                                 path->slots[0]++;
978                                 goto next_slot;
979                         }
980
981                         ret = btrfs_del_items(trans, root, path, del_slot,
982                                               del_nr);
983                         if (ret) {
984                                 btrfs_abort_transaction(trans, ret);
985                                 break;
986                         }
987
988                         del_nr = 0;
989                         del_slot = 0;
990
991                         btrfs_release_path(path);
992                         continue;
993                 }
994
995                 BUG();
996         }
997
998         if (!ret && del_nr > 0) {
999                 /*
1000                  * Set path->slots[0] to first slot, so that after the delete
1001                  * if items are move off from our leaf to its immediate left or
1002                  * right neighbor leafs, we end up with a correct and adjusted
1003                  * path->slots[0] for our insertion (if args->replace_extent).
1004                  */
1005                 path->slots[0] = del_slot;
1006                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1007                 if (ret)
1008                         btrfs_abort_transaction(trans, ret);
1009         }
1010
1011         leaf = path->nodes[0];
1012         /*
1013          * If btrfs_del_items() was called, it might have deleted a leaf, in
1014          * which case it unlocked our path, so check path->locks[0] matches a
1015          * write lock.
1016          */
1017         if (!ret && args->replace_extent && leafs_visited == 1 &&
1018             path->locks[0] == BTRFS_WRITE_LOCK &&
1019             btrfs_leaf_free_space(leaf) >=
1020             sizeof(struct btrfs_item) + args->extent_item_size) {
1021
1022                 key.objectid = ino;
1023                 key.type = BTRFS_EXTENT_DATA_KEY;
1024                 key.offset = args->start;
1025                 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1026                         struct btrfs_key slot_key;
1027
1028                         btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1029                         if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1030                                 path->slots[0]++;
1031                 }
1032                 btrfs_setup_item_for_insert(root, path, &key, args->extent_item_size);
1033                 args->extent_inserted = true;
1034         }
1035
1036         if (!args->path)
1037                 btrfs_free_path(path);
1038         else if (!args->extent_inserted)
1039                 btrfs_release_path(path);
1040 out:
1041         args->drop_end = found ? min(args->end, last_end) : args->end;
1042
1043         return ret;
1044 }
1045
1046 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1047                             u64 objectid, u64 bytenr, u64 orig_offset,
1048                             u64 *start, u64 *end)
1049 {
1050         struct btrfs_file_extent_item *fi;
1051         struct btrfs_key key;
1052         u64 extent_end;
1053
1054         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1055                 return 0;
1056
1057         btrfs_item_key_to_cpu(leaf, &key, slot);
1058         if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1059                 return 0;
1060
1061         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1062         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1063             btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1064             btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1065             btrfs_file_extent_compression(leaf, fi) ||
1066             btrfs_file_extent_encryption(leaf, fi) ||
1067             btrfs_file_extent_other_encoding(leaf, fi))
1068                 return 0;
1069
1070         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1071         if ((*start && *start != key.offset) || (*end && *end != extent_end))
1072                 return 0;
1073
1074         *start = key.offset;
1075         *end = extent_end;
1076         return 1;
1077 }
1078
1079 /*
1080  * Mark extent in the range start - end as written.
1081  *
1082  * This changes extent type from 'pre-allocated' to 'regular'. If only
1083  * part of extent is marked as written, the extent will be split into
1084  * two or three.
1085  */
1086 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1087                               struct btrfs_inode *inode, u64 start, u64 end)
1088 {
1089         struct btrfs_fs_info *fs_info = trans->fs_info;
1090         struct btrfs_root *root = inode->root;
1091         struct extent_buffer *leaf;
1092         struct btrfs_path *path;
1093         struct btrfs_file_extent_item *fi;
1094         struct btrfs_ref ref = { 0 };
1095         struct btrfs_key key;
1096         struct btrfs_key new_key;
1097         u64 bytenr;
1098         u64 num_bytes;
1099         u64 extent_end;
1100         u64 orig_offset;
1101         u64 other_start;
1102         u64 other_end;
1103         u64 split;
1104         int del_nr = 0;
1105         int del_slot = 0;
1106         int recow;
1107         int ret = 0;
1108         u64 ino = btrfs_ino(inode);
1109
1110         path = btrfs_alloc_path();
1111         if (!path)
1112                 return -ENOMEM;
1113 again:
1114         recow = 0;
1115         split = start;
1116         key.objectid = ino;
1117         key.type = BTRFS_EXTENT_DATA_KEY;
1118         key.offset = split;
1119
1120         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1121         if (ret < 0)
1122                 goto out;
1123         if (ret > 0 && path->slots[0] > 0)
1124                 path->slots[0]--;
1125
1126         leaf = path->nodes[0];
1127         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1128         if (key.objectid != ino ||
1129             key.type != BTRFS_EXTENT_DATA_KEY) {
1130                 ret = -EINVAL;
1131                 btrfs_abort_transaction(trans, ret);
1132                 goto out;
1133         }
1134         fi = btrfs_item_ptr(leaf, path->slots[0],
1135                             struct btrfs_file_extent_item);
1136         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1137                 ret = -EINVAL;
1138                 btrfs_abort_transaction(trans, ret);
1139                 goto out;
1140         }
1141         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1142         if (key.offset > start || extent_end < end) {
1143                 ret = -EINVAL;
1144                 btrfs_abort_transaction(trans, ret);
1145                 goto out;
1146         }
1147
1148         bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1149         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1150         orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1151         memcpy(&new_key, &key, sizeof(new_key));
1152
1153         if (start == key.offset && end < extent_end) {
1154                 other_start = 0;
1155                 other_end = start;
1156                 if (extent_mergeable(leaf, path->slots[0] - 1,
1157                                      ino, bytenr, orig_offset,
1158                                      &other_start, &other_end)) {
1159                         new_key.offset = end;
1160                         btrfs_set_item_key_safe(fs_info, path, &new_key);
1161                         fi = btrfs_item_ptr(leaf, path->slots[0],
1162                                             struct btrfs_file_extent_item);
1163                         btrfs_set_file_extent_generation(leaf, fi,
1164                                                          trans->transid);
1165                         btrfs_set_file_extent_num_bytes(leaf, fi,
1166                                                         extent_end - end);
1167                         btrfs_set_file_extent_offset(leaf, fi,
1168                                                      end - orig_offset);
1169                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1170                                             struct btrfs_file_extent_item);
1171                         btrfs_set_file_extent_generation(leaf, fi,
1172                                                          trans->transid);
1173                         btrfs_set_file_extent_num_bytes(leaf, fi,
1174                                                         end - other_start);
1175                         btrfs_mark_buffer_dirty(leaf);
1176                         goto out;
1177                 }
1178         }
1179
1180         if (start > key.offset && end == extent_end) {
1181                 other_start = end;
1182                 other_end = 0;
1183                 if (extent_mergeable(leaf, path->slots[0] + 1,
1184                                      ino, bytenr, orig_offset,
1185                                      &other_start, &other_end)) {
1186                         fi = btrfs_item_ptr(leaf, path->slots[0],
1187                                             struct btrfs_file_extent_item);
1188                         btrfs_set_file_extent_num_bytes(leaf, fi,
1189                                                         start - key.offset);
1190                         btrfs_set_file_extent_generation(leaf, fi,
1191                                                          trans->transid);
1192                         path->slots[0]++;
1193                         new_key.offset = start;
1194                         btrfs_set_item_key_safe(fs_info, path, &new_key);
1195
1196                         fi = btrfs_item_ptr(leaf, path->slots[0],
1197                                             struct btrfs_file_extent_item);
1198                         btrfs_set_file_extent_generation(leaf, fi,
1199                                                          trans->transid);
1200                         btrfs_set_file_extent_num_bytes(leaf, fi,
1201                                                         other_end - start);
1202                         btrfs_set_file_extent_offset(leaf, fi,
1203                                                      start - orig_offset);
1204                         btrfs_mark_buffer_dirty(leaf);
1205                         goto out;
1206                 }
1207         }
1208
1209         while (start > key.offset || end < extent_end) {
1210                 if (key.offset == start)
1211                         split = end;
1212
1213                 new_key.offset = split;
1214                 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1215                 if (ret == -EAGAIN) {
1216                         btrfs_release_path(path);
1217                         goto again;
1218                 }
1219                 if (ret < 0) {
1220                         btrfs_abort_transaction(trans, ret);
1221                         goto out;
1222                 }
1223
1224                 leaf = path->nodes[0];
1225                 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1226                                     struct btrfs_file_extent_item);
1227                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1228                 btrfs_set_file_extent_num_bytes(leaf, fi,
1229                                                 split - key.offset);
1230
1231                 fi = btrfs_item_ptr(leaf, path->slots[0],
1232                                     struct btrfs_file_extent_item);
1233
1234                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1235                 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1236                 btrfs_set_file_extent_num_bytes(leaf, fi,
1237                                                 extent_end - split);
1238                 btrfs_mark_buffer_dirty(leaf);
1239
1240                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1241                                        num_bytes, 0);
1242                 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1243                                     orig_offset, 0, false);
1244                 ret = btrfs_inc_extent_ref(trans, &ref);
1245                 if (ret) {
1246                         btrfs_abort_transaction(trans, ret);
1247                         goto out;
1248                 }
1249
1250                 if (split == start) {
1251                         key.offset = start;
1252                 } else {
1253                         if (start != key.offset) {
1254                                 ret = -EINVAL;
1255                                 btrfs_abort_transaction(trans, ret);
1256                                 goto out;
1257                         }
1258                         path->slots[0]--;
1259                         extent_end = end;
1260                 }
1261                 recow = 1;
1262         }
1263
1264         other_start = end;
1265         other_end = 0;
1266         btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1267                                num_bytes, 0);
1268         btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset,
1269                             0, false);
1270         if (extent_mergeable(leaf, path->slots[0] + 1,
1271                              ino, bytenr, orig_offset,
1272                              &other_start, &other_end)) {
1273                 if (recow) {
1274                         btrfs_release_path(path);
1275                         goto again;
1276                 }
1277                 extent_end = other_end;
1278                 del_slot = path->slots[0] + 1;
1279                 del_nr++;
1280                 ret = btrfs_free_extent(trans, &ref);
1281                 if (ret) {
1282                         btrfs_abort_transaction(trans, ret);
1283                         goto out;
1284                 }
1285         }
1286         other_start = 0;
1287         other_end = start;
1288         if (extent_mergeable(leaf, path->slots[0] - 1,
1289                              ino, bytenr, orig_offset,
1290                              &other_start, &other_end)) {
1291                 if (recow) {
1292                         btrfs_release_path(path);
1293                         goto again;
1294                 }
1295                 key.offset = other_start;
1296                 del_slot = path->slots[0];
1297                 del_nr++;
1298                 ret = btrfs_free_extent(trans, &ref);
1299                 if (ret) {
1300                         btrfs_abort_transaction(trans, ret);
1301                         goto out;
1302                 }
1303         }
1304         if (del_nr == 0) {
1305                 fi = btrfs_item_ptr(leaf, path->slots[0],
1306                            struct btrfs_file_extent_item);
1307                 btrfs_set_file_extent_type(leaf, fi,
1308                                            BTRFS_FILE_EXTENT_REG);
1309                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1310                 btrfs_mark_buffer_dirty(leaf);
1311         } else {
1312                 fi = btrfs_item_ptr(leaf, del_slot - 1,
1313                            struct btrfs_file_extent_item);
1314                 btrfs_set_file_extent_type(leaf, fi,
1315                                            BTRFS_FILE_EXTENT_REG);
1316                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1317                 btrfs_set_file_extent_num_bytes(leaf, fi,
1318                                                 extent_end - key.offset);
1319                 btrfs_mark_buffer_dirty(leaf);
1320
1321                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1322                 if (ret < 0) {
1323                         btrfs_abort_transaction(trans, ret);
1324                         goto out;
1325                 }
1326         }
1327 out:
1328         btrfs_free_path(path);
1329         return ret;
1330 }
1331
1332 /*
1333  * on error we return an unlocked page and the error value
1334  * on success we return a locked page and 0
1335  */
1336 static int prepare_uptodate_page(struct inode *inode,
1337                                  struct page *page, u64 pos,
1338                                  bool force_uptodate)
1339 {
1340         int ret = 0;
1341
1342         if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1343             !PageUptodate(page)) {
1344                 ret = btrfs_readpage(NULL, page);
1345                 if (ret)
1346                         return ret;
1347                 lock_page(page);
1348                 if (!PageUptodate(page)) {
1349                         unlock_page(page);
1350                         return -EIO;
1351                 }
1352
1353                 /*
1354                  * Since btrfs_readpage() will unlock the page before it
1355                  * returns, there is a window where btrfs_releasepage() can be
1356                  * called to release the page.  Here we check both inode
1357                  * mapping and PagePrivate() to make sure the page was not
1358                  * released.
1359                  *
1360                  * The private flag check is essential for subpage as we need
1361                  * to store extra bitmap using page->private.
1362                  */
1363                 if (page->mapping != inode->i_mapping || !PagePrivate(page)) {
1364                         unlock_page(page);
1365                         return -EAGAIN;
1366                 }
1367         }
1368         return 0;
1369 }
1370
1371 /*
1372  * this just gets pages into the page cache and locks them down.
1373  */
1374 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1375                                   size_t num_pages, loff_t pos,
1376                                   size_t write_bytes, bool force_uptodate)
1377 {
1378         int i;
1379         unsigned long index = pos >> PAGE_SHIFT;
1380         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1381         int err = 0;
1382         int faili;
1383
1384         for (i = 0; i < num_pages; i++) {
1385 again:
1386                 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1387                                                mask | __GFP_WRITE);
1388                 if (!pages[i]) {
1389                         faili = i - 1;
1390                         err = -ENOMEM;
1391                         goto fail;
1392                 }
1393
1394                 err = set_page_extent_mapped(pages[i]);
1395                 if (err < 0) {
1396                         faili = i;
1397                         goto fail;
1398                 }
1399
1400                 if (i == 0)
1401                         err = prepare_uptodate_page(inode, pages[i], pos,
1402                                                     force_uptodate);
1403                 if (!err && i == num_pages - 1)
1404                         err = prepare_uptodate_page(inode, pages[i],
1405                                                     pos + write_bytes, false);
1406                 if (err) {
1407                         put_page(pages[i]);
1408                         if (err == -EAGAIN) {
1409                                 err = 0;
1410                                 goto again;
1411                         }
1412                         faili = i - 1;
1413                         goto fail;
1414                 }
1415                 wait_on_page_writeback(pages[i]);
1416         }
1417
1418         return 0;
1419 fail:
1420         while (faili >= 0) {
1421                 unlock_page(pages[faili]);
1422                 put_page(pages[faili]);
1423                 faili--;
1424         }
1425         return err;
1426
1427 }
1428
1429 /*
1430  * This function locks the extent and properly waits for data=ordered extents
1431  * to finish before allowing the pages to be modified if need.
1432  *
1433  * The return value:
1434  * 1 - the extent is locked
1435  * 0 - the extent is not locked, and everything is OK
1436  * -EAGAIN - need re-prepare the pages
1437  * the other < 0 number - Something wrong happens
1438  */
1439 static noinline int
1440 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1441                                 size_t num_pages, loff_t pos,
1442                                 size_t write_bytes,
1443                                 u64 *lockstart, u64 *lockend,
1444                                 struct extent_state **cached_state)
1445 {
1446         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1447         u64 start_pos;
1448         u64 last_pos;
1449         int i;
1450         int ret = 0;
1451
1452         start_pos = round_down(pos, fs_info->sectorsize);
1453         last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1454
1455         if (start_pos < inode->vfs_inode.i_size) {
1456                 struct btrfs_ordered_extent *ordered;
1457
1458                 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1459                                 cached_state);
1460                 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1461                                                      last_pos - start_pos + 1);
1462                 if (ordered &&
1463                     ordered->file_offset + ordered->num_bytes > start_pos &&
1464                     ordered->file_offset <= last_pos) {
1465                         unlock_extent_cached(&inode->io_tree, start_pos,
1466                                         last_pos, cached_state);
1467                         for (i = 0; i < num_pages; i++) {
1468                                 unlock_page(pages[i]);
1469                                 put_page(pages[i]);
1470                         }
1471                         btrfs_start_ordered_extent(ordered, 1);
1472                         btrfs_put_ordered_extent(ordered);
1473                         return -EAGAIN;
1474                 }
1475                 if (ordered)
1476                         btrfs_put_ordered_extent(ordered);
1477
1478                 *lockstart = start_pos;
1479                 *lockend = last_pos;
1480                 ret = 1;
1481         }
1482
1483         /*
1484          * We should be called after prepare_pages() which should have locked
1485          * all pages in the range.
1486          */
1487         for (i = 0; i < num_pages; i++)
1488                 WARN_ON(!PageLocked(pages[i]));
1489
1490         return ret;
1491 }
1492
1493 static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1494                            size_t *write_bytes, bool nowait)
1495 {
1496         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1497         struct btrfs_root *root = inode->root;
1498         u64 lockstart, lockend;
1499         u64 num_bytes;
1500         int ret;
1501
1502         if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1503                 return 0;
1504
1505         if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
1506                 return -EAGAIN;
1507
1508         lockstart = round_down(pos, fs_info->sectorsize);
1509         lockend = round_up(pos + *write_bytes,
1510                            fs_info->sectorsize) - 1;
1511         num_bytes = lockend - lockstart + 1;
1512
1513         if (nowait) {
1514                 struct btrfs_ordered_extent *ordered;
1515
1516                 if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1517                         return -EAGAIN;
1518
1519                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1520                                                      num_bytes);
1521                 if (ordered) {
1522                         btrfs_put_ordered_extent(ordered);
1523                         ret = -EAGAIN;
1524                         goto out_unlock;
1525                 }
1526         } else {
1527                 btrfs_lock_and_flush_ordered_range(inode, lockstart,
1528                                                    lockend, NULL);
1529         }
1530
1531         ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1532                         NULL, NULL, NULL, false);
1533         if (ret <= 0) {
1534                 ret = 0;
1535                 if (!nowait)
1536                         btrfs_drew_write_unlock(&root->snapshot_lock);
1537         } else {
1538                 *write_bytes = min_t(size_t, *write_bytes ,
1539                                      num_bytes - pos + lockstart);
1540         }
1541 out_unlock:
1542         unlock_extent(&inode->io_tree, lockstart, lockend);
1543
1544         return ret;
1545 }
1546
1547 static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1548                               size_t *write_bytes)
1549 {
1550         return check_can_nocow(inode, pos, write_bytes, true);
1551 }
1552
1553 /*
1554  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1555  *
1556  * @pos:         File offset
1557  * @write_bytes: The length to write, will be updated to the nocow writeable
1558  *               range
1559  *
1560  * This function will flush ordered extents in the range to ensure proper
1561  * nocow checks.
1562  *
1563  * Return:
1564  * >0           and update @write_bytes if we can do nocow write
1565  *  0           if we can't do nocow write
1566  * -EAGAIN      if we can't get the needed lock or there are ordered extents
1567  *              for * (nowait == true) case
1568  * <0           if other error happened
1569  *
1570  * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1571  */
1572 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1573                            size_t *write_bytes)
1574 {
1575         return check_can_nocow(inode, pos, write_bytes, false);
1576 }
1577
1578 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1579 {
1580         btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1581 }
1582
1583 static void update_time_for_write(struct inode *inode)
1584 {
1585         struct timespec64 now;
1586
1587         if (IS_NOCMTIME(inode))
1588                 return;
1589
1590         now = current_time(inode);
1591         if (!timespec64_equal(&inode->i_mtime, &now))
1592                 inode->i_mtime = now;
1593
1594         if (!timespec64_equal(&inode->i_ctime, &now))
1595                 inode->i_ctime = now;
1596
1597         if (IS_I_VERSION(inode))
1598                 inode_inc_iversion(inode);
1599 }
1600
1601 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1602                              size_t count)
1603 {
1604         struct file *file = iocb->ki_filp;
1605         struct inode *inode = file_inode(file);
1606         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1607         loff_t pos = iocb->ki_pos;
1608         int ret;
1609         loff_t oldsize;
1610         loff_t start_pos;
1611
1612         if (iocb->ki_flags & IOCB_NOWAIT) {
1613                 size_t nocow_bytes = count;
1614
1615                 /* We will allocate space in case nodatacow is not set, so bail */
1616                 if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes) <= 0)
1617                         return -EAGAIN;
1618                 /*
1619                  * There are holes in the range or parts of the range that must
1620                  * be COWed (shared extents, RO block groups, etc), so just bail
1621                  * out.
1622                  */
1623                 if (nocow_bytes < count)
1624                         return -EAGAIN;
1625         }
1626
1627         current->backing_dev_info = inode_to_bdi(inode);
1628         ret = file_remove_privs(file);
1629         if (ret)
1630                 return ret;
1631
1632         /*
1633          * We reserve space for updating the inode when we reserve space for the
1634          * extent we are going to write, so we will enospc out there.  We don't
1635          * need to start yet another transaction to update the inode as we will
1636          * update the inode when we finish writing whatever data we write.
1637          */
1638         update_time_for_write(inode);
1639
1640         start_pos = round_down(pos, fs_info->sectorsize);
1641         oldsize = i_size_read(inode);
1642         if (start_pos > oldsize) {
1643                 /* Expand hole size to cover write data, preventing empty gap */
1644                 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1645
1646                 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1647                 if (ret) {
1648                         current->backing_dev_info = NULL;
1649                         return ret;
1650                 }
1651         }
1652
1653         return 0;
1654 }
1655
1656 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1657                                                struct iov_iter *i)
1658 {
1659         struct file *file = iocb->ki_filp;
1660         loff_t pos;
1661         struct inode *inode = file_inode(file);
1662         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1663         struct page **pages = NULL;
1664         struct extent_changeset *data_reserved = NULL;
1665         u64 release_bytes = 0;
1666         u64 lockstart;
1667         u64 lockend;
1668         size_t num_written = 0;
1669         int nrptrs;
1670         ssize_t ret;
1671         bool only_release_metadata = false;
1672         bool force_page_uptodate = false;
1673         loff_t old_isize = i_size_read(inode);
1674         unsigned int ilock_flags = 0;
1675
1676         if (iocb->ki_flags & IOCB_NOWAIT)
1677                 ilock_flags |= BTRFS_ILOCK_TRY;
1678
1679         ret = btrfs_inode_lock(inode, ilock_flags);
1680         if (ret < 0)
1681                 return ret;
1682
1683         ret = generic_write_checks(iocb, i);
1684         if (ret <= 0)
1685                 goto out;
1686
1687         ret = btrfs_write_check(iocb, i, ret);
1688         if (ret < 0)
1689                 goto out;
1690
1691         pos = iocb->ki_pos;
1692         nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1693                         PAGE_SIZE / (sizeof(struct page *)));
1694         nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1695         nrptrs = max(nrptrs, 8);
1696         pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1697         if (!pages) {
1698                 ret = -ENOMEM;
1699                 goto out;
1700         }
1701
1702         while (iov_iter_count(i) > 0) {
1703                 struct extent_state *cached_state = NULL;
1704                 size_t offset = offset_in_page(pos);
1705                 size_t sector_offset;
1706                 size_t write_bytes = min(iov_iter_count(i),
1707                                          nrptrs * (size_t)PAGE_SIZE -
1708                                          offset);
1709                 size_t num_pages;
1710                 size_t reserve_bytes;
1711                 size_t dirty_pages;
1712                 size_t copied;
1713                 size_t dirty_sectors;
1714                 size_t num_sectors;
1715                 int extents_locked;
1716
1717                 /*
1718                  * Fault pages before locking them in prepare_pages
1719                  * to avoid recursive lock
1720                  */
1721                 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1722                         ret = -EFAULT;
1723                         break;
1724                 }
1725
1726                 only_release_metadata = false;
1727                 sector_offset = pos & (fs_info->sectorsize - 1);
1728
1729                 extent_changeset_release(data_reserved);
1730                 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1731                                                   &data_reserved, pos,
1732                                                   write_bytes);
1733                 if (ret < 0) {
1734                         /*
1735                          * If we don't have to COW at the offset, reserve
1736                          * metadata only. write_bytes may get smaller than
1737                          * requested here.
1738                          */
1739                         if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1740                                                    &write_bytes) > 0)
1741                                 only_release_metadata = true;
1742                         else
1743                                 break;
1744                 }
1745
1746                 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1747                 WARN_ON(num_pages > nrptrs);
1748                 reserve_bytes = round_up(write_bytes + sector_offset,
1749                                          fs_info->sectorsize);
1750                 WARN_ON(reserve_bytes == 0);
1751                 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1752                                 reserve_bytes);
1753                 if (ret) {
1754                         if (!only_release_metadata)
1755                                 btrfs_free_reserved_data_space(BTRFS_I(inode),
1756                                                 data_reserved, pos,
1757                                                 write_bytes);
1758                         else
1759                                 btrfs_check_nocow_unlock(BTRFS_I(inode));
1760                         break;
1761                 }
1762
1763                 release_bytes = reserve_bytes;
1764 again:
1765                 /*
1766                  * This is going to setup the pages array with the number of
1767                  * pages we want, so we don't really need to worry about the
1768                  * contents of pages from loop to loop
1769                  */
1770                 ret = prepare_pages(inode, pages, num_pages,
1771                                     pos, write_bytes,
1772                                     force_page_uptodate);
1773                 if (ret) {
1774                         btrfs_delalloc_release_extents(BTRFS_I(inode),
1775                                                        reserve_bytes);
1776                         break;
1777                 }
1778
1779                 extents_locked = lock_and_cleanup_extent_if_need(
1780                                 BTRFS_I(inode), pages,
1781                                 num_pages, pos, write_bytes, &lockstart,
1782                                 &lockend, &cached_state);
1783                 if (extents_locked < 0) {
1784                         if (extents_locked == -EAGAIN)
1785                                 goto again;
1786                         btrfs_delalloc_release_extents(BTRFS_I(inode),
1787                                                        reserve_bytes);
1788                         ret = extents_locked;
1789                         break;
1790                 }
1791
1792                 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1793
1794                 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1795                 dirty_sectors = round_up(copied + sector_offset,
1796                                         fs_info->sectorsize);
1797                 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1798
1799                 /*
1800                  * if we have trouble faulting in the pages, fall
1801                  * back to one page at a time
1802                  */
1803                 if (copied < write_bytes)
1804                         nrptrs = 1;
1805
1806                 if (copied == 0) {
1807                         force_page_uptodate = true;
1808                         dirty_sectors = 0;
1809                         dirty_pages = 0;
1810                 } else {
1811                         force_page_uptodate = false;
1812                         dirty_pages = DIV_ROUND_UP(copied + offset,
1813                                                    PAGE_SIZE);
1814                 }
1815
1816                 if (num_sectors > dirty_sectors) {
1817                         /* release everything except the sectors we dirtied */
1818                         release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1819                         if (only_release_metadata) {
1820                                 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1821                                                         release_bytes, true);
1822                         } else {
1823                                 u64 __pos;
1824
1825                                 __pos = round_down(pos,
1826                                                    fs_info->sectorsize) +
1827                                         (dirty_pages << PAGE_SHIFT);
1828                                 btrfs_delalloc_release_space(BTRFS_I(inode),
1829                                                 data_reserved, __pos,
1830                                                 release_bytes, true);
1831                         }
1832                 }
1833
1834                 release_bytes = round_up(copied + sector_offset,
1835                                         fs_info->sectorsize);
1836
1837                 ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1838                                         dirty_pages, pos, copied,
1839                                         &cached_state, only_release_metadata);
1840
1841                 /*
1842                  * If we have not locked the extent range, because the range's
1843                  * start offset is >= i_size, we might still have a non-NULL
1844                  * cached extent state, acquired while marking the extent range
1845                  * as delalloc through btrfs_dirty_pages(). Therefore free any
1846                  * possible cached extent state to avoid a memory leak.
1847                  */
1848                 if (extents_locked)
1849                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1850                                              lockstart, lockend, &cached_state);
1851                 else
1852                         free_extent_state(cached_state);
1853
1854                 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1855                 if (ret) {
1856                         btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1857                         break;
1858                 }
1859
1860                 release_bytes = 0;
1861                 if (only_release_metadata)
1862                         btrfs_check_nocow_unlock(BTRFS_I(inode));
1863
1864                 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1865
1866                 cond_resched();
1867
1868                 balance_dirty_pages_ratelimited(inode->i_mapping);
1869
1870                 pos += copied;
1871                 num_written += copied;
1872         }
1873
1874         kfree(pages);
1875
1876         if (release_bytes) {
1877                 if (only_release_metadata) {
1878                         btrfs_check_nocow_unlock(BTRFS_I(inode));
1879                         btrfs_delalloc_release_metadata(BTRFS_I(inode),
1880                                         release_bytes, true);
1881                 } else {
1882                         btrfs_delalloc_release_space(BTRFS_I(inode),
1883                                         data_reserved,
1884                                         round_down(pos, fs_info->sectorsize),
1885                                         release_bytes, true);
1886                 }
1887         }
1888
1889         extent_changeset_free(data_reserved);
1890         if (num_written > 0) {
1891                 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1892                 iocb->ki_pos += num_written;
1893         }
1894 out:
1895         btrfs_inode_unlock(inode, ilock_flags);
1896         return num_written ? num_written : ret;
1897 }
1898
1899 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1900                                const struct iov_iter *iter, loff_t offset)
1901 {
1902         const u32 blocksize_mask = fs_info->sectorsize - 1;
1903
1904         if (offset & blocksize_mask)
1905                 return -EINVAL;
1906
1907         if (iov_iter_alignment(iter) & blocksize_mask)
1908                 return -EINVAL;
1909
1910         return 0;
1911 }
1912
1913 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1914 {
1915         const bool is_sync_write = (iocb->ki_flags & IOCB_DSYNC);
1916         struct file *file = iocb->ki_filp;
1917         struct inode *inode = file_inode(file);
1918         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1919         loff_t pos;
1920         ssize_t written = 0;
1921         ssize_t written_buffered;
1922         size_t prev_left = 0;
1923         loff_t endbyte;
1924         ssize_t err;
1925         unsigned int ilock_flags = 0;
1926
1927         if (iocb->ki_flags & IOCB_NOWAIT)
1928                 ilock_flags |= BTRFS_ILOCK_TRY;
1929
1930         /* If the write DIO is within EOF, use a shared lock */
1931         if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1932                 ilock_flags |= BTRFS_ILOCK_SHARED;
1933
1934 relock:
1935         err = btrfs_inode_lock(inode, ilock_flags);
1936         if (err < 0)
1937                 return err;
1938
1939         err = generic_write_checks(iocb, from);
1940         if (err <= 0) {
1941                 btrfs_inode_unlock(inode, ilock_flags);
1942                 return err;
1943         }
1944
1945         err = btrfs_write_check(iocb, from, err);
1946         if (err < 0) {
1947                 btrfs_inode_unlock(inode, ilock_flags);
1948                 goto out;
1949         }
1950
1951         pos = iocb->ki_pos;
1952         /*
1953          * Re-check since file size may have changed just before taking the
1954          * lock or pos may have changed because of O_APPEND in generic_write_check()
1955          */
1956         if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1957             pos + iov_iter_count(from) > i_size_read(inode)) {
1958                 btrfs_inode_unlock(inode, ilock_flags);
1959                 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1960                 goto relock;
1961         }
1962
1963         if (check_direct_IO(fs_info, from, pos)) {
1964                 btrfs_inode_unlock(inode, ilock_flags);
1965                 goto buffered;
1966         }
1967
1968         /*
1969          * We remove IOCB_DSYNC so that we don't deadlock when iomap_dio_rw()
1970          * calls generic_write_sync() (through iomap_dio_complete()), because
1971          * that results in calling fsync (btrfs_sync_file()) which will try to
1972          * lock the inode in exclusive/write mode.
1973          */
1974         if (is_sync_write)
1975                 iocb->ki_flags &= ~IOCB_DSYNC;
1976
1977         /*
1978          * The iov_iter can be mapped to the same file range we are writing to.
1979          * If that's the case, then we will deadlock in the iomap code, because
1980          * it first calls our callback btrfs_dio_iomap_begin(), which will create
1981          * an ordered extent, and after that it will fault in the pages that the
1982          * iov_iter refers to. During the fault in we end up in the readahead
1983          * pages code (starting at btrfs_readahead()), which will lock the range,
1984          * find that ordered extent and then wait for it to complete (at
1985          * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1986          * obviously the ordered extent can never complete as we didn't submit
1987          * yet the respective bio(s). This always happens when the buffer is
1988          * memory mapped to the same file range, since the iomap DIO code always
1989          * invalidates pages in the target file range (after starting and waiting
1990          * for any writeback).
1991          *
1992          * So here we disable page faults in the iov_iter and then retry if we
1993          * got -EFAULT, faulting in the pages before the retry.
1994          */
1995 again:
1996         from->nofault = true;
1997         err = iomap_dio_rw(iocb, from, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
1998                            IOMAP_DIO_PARTIAL, written);
1999         from->nofault = false;
2000
2001         /* No increment (+=) because iomap returns a cumulative value. */
2002         if (err > 0)
2003                 written = err;
2004
2005         if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) {
2006                 const size_t left = iov_iter_count(from);
2007                 /*
2008                  * We have more data left to write. Try to fault in as many as
2009                  * possible of the remainder pages and retry. We do this without
2010                  * releasing and locking again the inode, to prevent races with
2011                  * truncate.
2012                  *
2013                  * Also, in case the iov refers to pages in the file range of the
2014                  * file we want to write to (due to a mmap), we could enter an
2015                  * infinite loop if we retry after faulting the pages in, since
2016                  * iomap will invalidate any pages in the range early on, before
2017                  * it tries to fault in the pages of the iov. So we keep track of
2018                  * how much was left of iov in the previous EFAULT and fallback
2019                  * to buffered IO in case we haven't made any progress.
2020                  */
2021                 if (left == prev_left) {
2022                         err = -ENOTBLK;
2023                 } else {
2024                         fault_in_iov_iter_readable(from, left);
2025                         prev_left = left;
2026                         goto again;
2027                 }
2028         }
2029
2030         btrfs_inode_unlock(inode, ilock_flags);
2031
2032         /*
2033          * Add back IOCB_DSYNC. Our caller, btrfs_file_write_iter(), will do
2034          * the fsync (call generic_write_sync()).
2035          */
2036         if (is_sync_write)
2037                 iocb->ki_flags |= IOCB_DSYNC;
2038
2039         /* If 'err' is -ENOTBLK then it means we must fallback to buffered IO. */
2040         if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from))
2041                 goto out;
2042
2043 buffered:
2044         pos = iocb->ki_pos;
2045         written_buffered = btrfs_buffered_write(iocb, from);
2046         if (written_buffered < 0) {
2047                 err = written_buffered;
2048                 goto out;
2049         }
2050         /*
2051          * Ensure all data is persisted. We want the next direct IO read to be
2052          * able to read what was just written.
2053          */
2054         endbyte = pos + written_buffered - 1;
2055         err = btrfs_fdatawrite_range(inode, pos, endbyte);
2056         if (err)
2057                 goto out;
2058         err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
2059         if (err)
2060                 goto out;
2061         written += written_buffered;
2062         iocb->ki_pos = pos + written_buffered;
2063         invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
2064                                  endbyte >> PAGE_SHIFT);
2065 out:
2066         return err < 0 ? err : written;
2067 }
2068
2069 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
2070                                     struct iov_iter *from)
2071 {
2072         struct file *file = iocb->ki_filp;
2073         struct btrfs_inode *inode = BTRFS_I(file_inode(file));
2074         ssize_t num_written = 0;
2075         const bool sync = iocb->ki_flags & IOCB_DSYNC;
2076
2077         /*
2078          * If the fs flips readonly due to some impossible error, although we
2079          * have opened a file as writable, we have to stop this write operation
2080          * to ensure consistency.
2081          */
2082         if (BTRFS_FS_ERROR(inode->root->fs_info))
2083                 return -EROFS;
2084
2085         if (!(iocb->ki_flags & IOCB_DIRECT) &&
2086             (iocb->ki_flags & IOCB_NOWAIT))
2087                 return -EOPNOTSUPP;
2088
2089         if (sync)
2090                 atomic_inc(&inode->sync_writers);
2091
2092         if (iocb->ki_flags & IOCB_DIRECT)
2093                 num_written = btrfs_direct_write(iocb, from);
2094         else
2095                 num_written = btrfs_buffered_write(iocb, from);
2096
2097         btrfs_set_inode_last_sub_trans(inode);
2098
2099         if (num_written > 0)
2100                 num_written = generic_write_sync(iocb, num_written);
2101
2102         if (sync)
2103                 atomic_dec(&inode->sync_writers);
2104
2105         current->backing_dev_info = NULL;
2106         return num_written;
2107 }
2108
2109 int btrfs_release_file(struct inode *inode, struct file *filp)
2110 {
2111         struct btrfs_file_private *private = filp->private_data;
2112
2113         if (private && private->filldir_buf)
2114                 kfree(private->filldir_buf);
2115         kfree(private);
2116         filp->private_data = NULL;
2117
2118         /*
2119          * Set by setattr when we are about to truncate a file from a non-zero
2120          * size to a zero size.  This tries to flush down new bytes that may
2121          * have been written if the application were using truncate to replace
2122          * a file in place.
2123          */
2124         if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
2125                                &BTRFS_I(inode)->runtime_flags))
2126                         filemap_flush(inode->i_mapping);
2127         return 0;
2128 }
2129
2130 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2131 {
2132         int ret;
2133         struct blk_plug plug;
2134
2135         /*
2136          * This is only called in fsync, which would do synchronous writes, so
2137          * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2138          * multiple disks using raid profile, a large IO can be split to
2139          * several segments of stripe length (currently 64K).
2140          */
2141         blk_start_plug(&plug);
2142         atomic_inc(&BTRFS_I(inode)->sync_writers);
2143         ret = btrfs_fdatawrite_range(inode, start, end);
2144         atomic_dec(&BTRFS_I(inode)->sync_writers);
2145         blk_finish_plug(&plug);
2146
2147         return ret;
2148 }
2149
2150 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
2151 {
2152         struct btrfs_inode *inode = BTRFS_I(ctx->inode);
2153         struct btrfs_fs_info *fs_info = inode->root->fs_info;
2154
2155         if (btrfs_inode_in_log(inode, fs_info->generation) &&
2156             list_empty(&ctx->ordered_extents))
2157                 return true;
2158
2159         /*
2160          * If we are doing a fast fsync we can not bail out if the inode's
2161          * last_trans is <= then the last committed transaction, because we only
2162          * update the last_trans of the inode during ordered extent completion,
2163          * and for a fast fsync we don't wait for that, we only wait for the
2164          * writeback to complete.
2165          */
2166         if (inode->last_trans <= fs_info->last_trans_committed &&
2167             (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
2168              list_empty(&ctx->ordered_extents)))
2169                 return true;
2170
2171         return false;
2172 }
2173
2174 /*
2175  * fsync call for both files and directories.  This logs the inode into
2176  * the tree log instead of forcing full commits whenever possible.
2177  *
2178  * It needs to call filemap_fdatawait so that all ordered extent updates are
2179  * in the metadata btree are up to date for copying to the log.
2180  *
2181  * It drops the inode mutex before doing the tree log commit.  This is an
2182  * important optimization for directories because holding the mutex prevents
2183  * new operations on the dir while we write to disk.
2184  */
2185 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2186 {
2187         struct dentry *dentry = file_dentry(file);
2188         struct inode *inode = d_inode(dentry);
2189         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2190         struct btrfs_root *root = BTRFS_I(inode)->root;
2191         struct btrfs_trans_handle *trans;
2192         struct btrfs_log_ctx ctx;
2193         int ret = 0, err;
2194         u64 len;
2195         bool full_sync;
2196
2197         trace_btrfs_sync_file(file, datasync);
2198
2199         btrfs_init_log_ctx(&ctx, inode);
2200
2201         /*
2202          * Always set the range to a full range, otherwise we can get into
2203          * several problems, from missing file extent items to represent holes
2204          * when not using the NO_HOLES feature, to log tree corruption due to
2205          * races between hole detection during logging and completion of ordered
2206          * extents outside the range, to missing checksums due to ordered extents
2207          * for which we flushed only a subset of their pages.
2208          */
2209         start = 0;
2210         end = LLONG_MAX;
2211         len = (u64)LLONG_MAX + 1;
2212
2213         /*
2214          * We write the dirty pages in the range and wait until they complete
2215          * out of the ->i_mutex. If so, we can flush the dirty pages by
2216          * multi-task, and make the performance up.  See
2217          * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2218          */
2219         ret = start_ordered_ops(inode, start, end);
2220         if (ret)
2221                 goto out;
2222
2223         btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2224
2225         atomic_inc(&root->log_batch);
2226
2227         /*
2228          * Always check for the full sync flag while holding the inode's lock,
2229          * to avoid races with other tasks. The flag must be either set all the
2230          * time during logging or always off all the time while logging.
2231          */
2232         full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2233                              &BTRFS_I(inode)->runtime_flags);
2234
2235         /*
2236          * Before we acquired the inode's lock and the mmap lock, someone may
2237          * have dirtied more pages in the target range. We need to make sure
2238          * that writeback for any such pages does not start while we are logging
2239          * the inode, because if it does, any of the following might happen when
2240          * we are not doing a full inode sync:
2241          *
2242          * 1) We log an extent after its writeback finishes but before its
2243          *    checksums are added to the csum tree, leading to -EIO errors
2244          *    when attempting to read the extent after a log replay.
2245          *
2246          * 2) We can end up logging an extent before its writeback finishes.
2247          *    Therefore after the log replay we will have a file extent item
2248          *    pointing to an unwritten extent (and no data checksums as well).
2249          *
2250          * So trigger writeback for any eventual new dirty pages and then we
2251          * wait for all ordered extents to complete below.
2252          */
2253         ret = start_ordered_ops(inode, start, end);
2254         if (ret) {
2255                 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2256                 goto out;
2257         }
2258
2259         /*
2260          * We have to do this here to avoid the priority inversion of waiting on
2261          * IO of a lower priority task while holding a transaction open.
2262          *
2263          * For a full fsync we wait for the ordered extents to complete while
2264          * for a fast fsync we wait just for writeback to complete, and then
2265          * attach the ordered extents to the transaction so that a transaction
2266          * commit waits for their completion, to avoid data loss if we fsync,
2267          * the current transaction commits before the ordered extents complete
2268          * and a power failure happens right after that.
2269          *
2270          * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
2271          * logical address recorded in the ordered extent may change. We need
2272          * to wait for the IO to stabilize the logical address.
2273          */
2274         if (full_sync || btrfs_is_zoned(fs_info)) {
2275                 ret = btrfs_wait_ordered_range(inode, start, len);
2276         } else {
2277                 /*
2278                  * Get our ordered extents as soon as possible to avoid doing
2279                  * checksum lookups in the csum tree, and use instead the
2280                  * checksums attached to the ordered extents.
2281                  */
2282                 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2283                                                       &ctx.ordered_extents);
2284                 ret = filemap_fdatawait_range(inode->i_mapping, start, end);
2285         }
2286
2287         if (ret)
2288                 goto out_release_extents;
2289
2290         atomic_inc(&root->log_batch);
2291
2292         smp_mb();
2293         if (skip_inode_logging(&ctx)) {
2294                 /*
2295                  * We've had everything committed since the last time we were
2296                  * modified so clear this flag in case it was set for whatever
2297                  * reason, it's no longer relevant.
2298                  */
2299                 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2300                           &BTRFS_I(inode)->runtime_flags);
2301                 /*
2302                  * An ordered extent might have started before and completed
2303                  * already with io errors, in which case the inode was not
2304                  * updated and we end up here. So check the inode's mapping
2305                  * for any errors that might have happened since we last
2306                  * checked called fsync.
2307                  */
2308                 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2309                 goto out_release_extents;
2310         }
2311
2312         /*
2313          * We use start here because we will need to wait on the IO to complete
2314          * in btrfs_sync_log, which could require joining a transaction (for
2315          * example checking cross references in the nocow path).  If we use join
2316          * here we could get into a situation where we're waiting on IO to
2317          * happen that is blocked on a transaction trying to commit.  With start
2318          * we inc the extwriter counter, so we wait for all extwriters to exit
2319          * before we start blocking joiners.  This comment is to keep somebody
2320          * from thinking they are super smart and changing this to
2321          * btrfs_join_transaction *cough*Josef*cough*.
2322          */
2323         trans = btrfs_start_transaction(root, 0);
2324         if (IS_ERR(trans)) {
2325                 ret = PTR_ERR(trans);
2326                 goto out_release_extents;
2327         }
2328         trans->in_fsync = true;
2329
2330         ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2331         btrfs_release_log_ctx_extents(&ctx);
2332         if (ret < 0) {
2333                 /* Fallthrough and commit/free transaction. */
2334                 ret = 1;
2335         }
2336
2337         /* we've logged all the items and now have a consistent
2338          * version of the file in the log.  It is possible that
2339          * someone will come in and modify the file, but that's
2340          * fine because the log is consistent on disk, and we
2341          * have references to all of the file's extents
2342          *
2343          * It is possible that someone will come in and log the
2344          * file again, but that will end up using the synchronization
2345          * inside btrfs_sync_log to keep things safe.
2346          */
2347         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2348
2349         if (ret != BTRFS_NO_LOG_SYNC) {
2350                 if (!ret) {
2351                         ret = btrfs_sync_log(trans, root, &ctx);
2352                         if (!ret) {
2353                                 ret = btrfs_end_transaction(trans);
2354                                 goto out;
2355                         }
2356                 }
2357                 if (!full_sync) {
2358                         ret = btrfs_wait_ordered_range(inode, start, len);
2359                         if (ret) {
2360                                 btrfs_end_transaction(trans);
2361                                 goto out;
2362                         }
2363                 }
2364                 ret = btrfs_commit_transaction(trans);
2365         } else {
2366                 ret = btrfs_end_transaction(trans);
2367         }
2368 out:
2369         ASSERT(list_empty(&ctx.list));
2370         err = file_check_and_advance_wb_err(file);
2371         if (!ret)
2372                 ret = err;
2373         return ret > 0 ? -EIO : ret;
2374
2375 out_release_extents:
2376         btrfs_release_log_ctx_extents(&ctx);
2377         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2378         goto out;
2379 }
2380
2381 static const struct vm_operations_struct btrfs_file_vm_ops = {
2382         .fault          = filemap_fault,
2383         .map_pages      = filemap_map_pages,
2384         .page_mkwrite   = btrfs_page_mkwrite,
2385 };
2386
2387 static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
2388 {
2389         struct address_space *mapping = filp->f_mapping;
2390
2391         if (!mapping->a_ops->readpage)
2392                 return -ENOEXEC;
2393
2394         file_accessed(filp);
2395         vma->vm_ops = &btrfs_file_vm_ops;
2396
2397         return 0;
2398 }
2399
2400 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2401                           int slot, u64 start, u64 end)
2402 {
2403         struct btrfs_file_extent_item *fi;
2404         struct btrfs_key key;
2405
2406         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2407                 return 0;
2408
2409         btrfs_item_key_to_cpu(leaf, &key, slot);
2410         if (key.objectid != btrfs_ino(inode) ||
2411             key.type != BTRFS_EXTENT_DATA_KEY)
2412                 return 0;
2413
2414         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2415
2416         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2417                 return 0;
2418
2419         if (btrfs_file_extent_disk_bytenr(leaf, fi))
2420                 return 0;
2421
2422         if (key.offset == end)
2423                 return 1;
2424         if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2425                 return 1;
2426         return 0;
2427 }
2428
2429 static int fill_holes(struct btrfs_trans_handle *trans,
2430                 struct btrfs_inode *inode,
2431                 struct btrfs_path *path, u64 offset, u64 end)
2432 {
2433         struct btrfs_fs_info *fs_info = trans->fs_info;
2434         struct btrfs_root *root = inode->root;
2435         struct extent_buffer *leaf;
2436         struct btrfs_file_extent_item *fi;
2437         struct extent_map *hole_em;
2438         struct extent_map_tree *em_tree = &inode->extent_tree;
2439         struct btrfs_key key;
2440         int ret;
2441
2442         if (btrfs_fs_incompat(fs_info, NO_HOLES))
2443                 goto out;
2444
2445         key.objectid = btrfs_ino(inode);
2446         key.type = BTRFS_EXTENT_DATA_KEY;
2447         key.offset = offset;
2448
2449         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2450         if (ret <= 0) {
2451                 /*
2452                  * We should have dropped this offset, so if we find it then
2453                  * something has gone horribly wrong.
2454                  */
2455                 if (ret == 0)
2456                         ret = -EINVAL;
2457                 return ret;
2458         }
2459
2460         leaf = path->nodes[0];
2461         if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2462                 u64 num_bytes;
2463
2464                 path->slots[0]--;
2465                 fi = btrfs_item_ptr(leaf, path->slots[0],
2466                                     struct btrfs_file_extent_item);
2467                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2468                         end - offset;
2469                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2470                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2471                 btrfs_set_file_extent_offset(leaf, fi, 0);
2472                 btrfs_mark_buffer_dirty(leaf);
2473                 goto out;
2474         }
2475
2476         if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2477                 u64 num_bytes;
2478
2479                 key.offset = offset;
2480                 btrfs_set_item_key_safe(fs_info, path, &key);
2481                 fi = btrfs_item_ptr(leaf, path->slots[0],
2482                                     struct btrfs_file_extent_item);
2483                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2484                         offset;
2485                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2486                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2487                 btrfs_set_file_extent_offset(leaf, fi, 0);
2488                 btrfs_mark_buffer_dirty(leaf);
2489                 goto out;
2490         }
2491         btrfs_release_path(path);
2492
2493         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2494                         offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2495         if (ret)
2496                 return ret;
2497
2498 out:
2499         btrfs_release_path(path);
2500
2501         hole_em = alloc_extent_map();
2502         if (!hole_em) {
2503                 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2504                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2505         } else {
2506                 hole_em->start = offset;
2507                 hole_em->len = end - offset;
2508                 hole_em->ram_bytes = hole_em->len;
2509                 hole_em->orig_start = offset;
2510
2511                 hole_em->block_start = EXTENT_MAP_HOLE;
2512                 hole_em->block_len = 0;
2513                 hole_em->orig_block_len = 0;
2514                 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2515                 hole_em->generation = trans->transid;
2516
2517                 do {
2518                         btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2519                         write_lock(&em_tree->lock);
2520                         ret = add_extent_mapping(em_tree, hole_em, 1);
2521                         write_unlock(&em_tree->lock);
2522                 } while (ret == -EEXIST);
2523                 free_extent_map(hole_em);
2524                 if (ret)
2525                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2526                                         &inode->runtime_flags);
2527         }
2528
2529         return 0;
2530 }
2531
2532 /*
2533  * Find a hole extent on given inode and change start/len to the end of hole
2534  * extent.(hole/vacuum extent whose em->start <= start &&
2535  *         em->start + em->len > start)
2536  * When a hole extent is found, return 1 and modify start/len.
2537  */
2538 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2539 {
2540         struct btrfs_fs_info *fs_info = inode->root->fs_info;
2541         struct extent_map *em;
2542         int ret = 0;
2543
2544         em = btrfs_get_extent(inode, NULL, 0,
2545                               round_down(*start, fs_info->sectorsize),
2546                               round_up(*len, fs_info->sectorsize));
2547         if (IS_ERR(em))
2548                 return PTR_ERR(em);
2549
2550         /* Hole or vacuum extent(only exists in no-hole mode) */
2551         if (em->block_start == EXTENT_MAP_HOLE) {
2552                 ret = 1;
2553                 *len = em->start + em->len > *start + *len ?
2554                        0 : *start + *len - em->start - em->len;
2555                 *start = em->start + em->len;
2556         }
2557         free_extent_map(em);
2558         return ret;
2559 }
2560
2561 static int btrfs_punch_hole_lock_range(struct inode *inode,
2562                                        const u64 lockstart,
2563                                        const u64 lockend,
2564                                        struct extent_state **cached_state)
2565 {
2566         /*
2567          * For subpage case, if the range is not at page boundary, we could
2568          * have pages at the leading/tailing part of the range.
2569          * This could lead to dead loop since filemap_range_has_page()
2570          * will always return true.
2571          * So here we need to do extra page alignment for
2572          * filemap_range_has_page().
2573          */
2574         const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2575         const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2576
2577         while (1) {
2578                 struct btrfs_ordered_extent *ordered;
2579                 int ret;
2580
2581                 truncate_pagecache_range(inode, lockstart, lockend);
2582
2583                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2584                                  cached_state);
2585                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
2586                                                             lockend);
2587
2588                 /*
2589                  * We need to make sure we have no ordered extents in this range
2590                  * and nobody raced in and read a page in this range, if we did
2591                  * we need to try again.
2592                  */
2593                 if ((!ordered ||
2594                     (ordered->file_offset + ordered->num_bytes <= lockstart ||
2595                      ordered->file_offset > lockend)) &&
2596                      !filemap_range_has_page(inode->i_mapping,
2597                                              page_lockstart, page_lockend)) {
2598                         if (ordered)
2599                                 btrfs_put_ordered_extent(ordered);
2600                         break;
2601                 }
2602                 if (ordered)
2603                         btrfs_put_ordered_extent(ordered);
2604                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2605                                      lockend, cached_state);
2606                 ret = btrfs_wait_ordered_range(inode, lockstart,
2607                                                lockend - lockstart + 1);
2608                 if (ret)
2609                         return ret;
2610         }
2611         return 0;
2612 }
2613
2614 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2615                                      struct btrfs_inode *inode,
2616                                      struct btrfs_path *path,
2617                                      struct btrfs_replace_extent_info *extent_info,
2618                                      const u64 replace_len,
2619                                      const u64 bytes_to_drop)
2620 {
2621         struct btrfs_fs_info *fs_info = trans->fs_info;
2622         struct btrfs_root *root = inode->root;
2623         struct btrfs_file_extent_item *extent;
2624         struct extent_buffer *leaf;
2625         struct btrfs_key key;
2626         int slot;
2627         struct btrfs_ref ref = { 0 };
2628         int ret;
2629
2630         if (replace_len == 0)
2631                 return 0;
2632
2633         if (extent_info->disk_offset == 0 &&
2634             btrfs_fs_incompat(fs_info, NO_HOLES)) {
2635                 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2636                 return 0;
2637         }
2638
2639         key.objectid = btrfs_ino(inode);
2640         key.type = BTRFS_EXTENT_DATA_KEY;
2641         key.offset = extent_info->file_offset;
2642         ret = btrfs_insert_empty_item(trans, root, path, &key,
2643                                       sizeof(struct btrfs_file_extent_item));
2644         if (ret)
2645                 return ret;
2646         leaf = path->nodes[0];
2647         slot = path->slots[0];
2648         write_extent_buffer(leaf, extent_info->extent_buf,
2649                             btrfs_item_ptr_offset(leaf, slot),
2650                             sizeof(struct btrfs_file_extent_item));
2651         extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2652         ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2653         btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2654         btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2655         if (extent_info->is_new_extent)
2656                 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2657         btrfs_mark_buffer_dirty(leaf);
2658         btrfs_release_path(path);
2659
2660         ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2661                                                 replace_len);
2662         if (ret)
2663                 return ret;
2664
2665         /* If it's a hole, nothing more needs to be done. */
2666         if (extent_info->disk_offset == 0) {
2667                 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2668                 return 0;
2669         }
2670
2671         btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2672
2673         if (extent_info->is_new_extent && extent_info->insertions == 0) {
2674                 key.objectid = extent_info->disk_offset;
2675                 key.type = BTRFS_EXTENT_ITEM_KEY;
2676                 key.offset = extent_info->disk_len;
2677                 ret = btrfs_alloc_reserved_file_extent(trans, root,
2678                                                        btrfs_ino(inode),
2679                                                        extent_info->file_offset,
2680                                                        extent_info->qgroup_reserved,
2681                                                        &key);
2682         } else {
2683                 u64 ref_offset;
2684
2685                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2686                                        extent_info->disk_offset,
2687                                        extent_info->disk_len, 0);
2688                 ref_offset = extent_info->file_offset - extent_info->data_offset;
2689                 btrfs_init_data_ref(&ref, root->root_key.objectid,
2690                                     btrfs_ino(inode), ref_offset, 0, false);
2691                 ret = btrfs_inc_extent_ref(trans, &ref);
2692         }
2693
2694         extent_info->insertions++;
2695
2696         return ret;
2697 }
2698
2699 /*
2700  * The respective range must have been previously locked, as well as the inode.
2701  * The end offset is inclusive (last byte of the range).
2702  * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2703  * the file range with an extent.
2704  * When not punching a hole, we don't want to end up in a state where we dropped
2705  * extents without inserting a new one, so we must abort the transaction to avoid
2706  * a corruption.
2707  */
2708 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2709                                struct btrfs_path *path, const u64 start,
2710                                const u64 end,
2711                                struct btrfs_replace_extent_info *extent_info,
2712                                struct btrfs_trans_handle **trans_out)
2713 {
2714         struct btrfs_drop_extents_args drop_args = { 0 };
2715         struct btrfs_root *root = inode->root;
2716         struct btrfs_fs_info *fs_info = root->fs_info;
2717         u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2718         u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2719         struct btrfs_trans_handle *trans = NULL;
2720         struct btrfs_block_rsv *rsv;
2721         unsigned int rsv_count;
2722         u64 cur_offset;
2723         u64 len = end - start;
2724         int ret = 0;
2725
2726         if (end <= start)
2727                 return -EINVAL;
2728
2729         rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2730         if (!rsv) {
2731                 ret = -ENOMEM;
2732                 goto out;
2733         }
2734         rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2735         rsv->failfast = 1;
2736
2737         /*
2738          * 1 - update the inode
2739          * 1 - removing the extents in the range
2740          * 1 - adding the hole extent if no_holes isn't set or if we are
2741          *     replacing the range with a new extent
2742          */
2743         if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2744                 rsv_count = 3;
2745         else
2746                 rsv_count = 2;
2747
2748         trans = btrfs_start_transaction(root, rsv_count);
2749         if (IS_ERR(trans)) {
2750                 ret = PTR_ERR(trans);
2751                 trans = NULL;
2752                 goto out_free;
2753         }
2754
2755         ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2756                                       min_size, false);
2757         BUG_ON(ret);
2758         trans->block_rsv = rsv;
2759
2760         cur_offset = start;
2761         drop_args.path = path;
2762         drop_args.end = end + 1;
2763         drop_args.drop_cache = true;
2764         while (cur_offset < end) {
2765                 drop_args.start = cur_offset;
2766                 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2767                 /* If we are punching a hole decrement the inode's byte count */
2768                 if (!extent_info)
2769                         btrfs_update_inode_bytes(inode, 0,
2770                                                  drop_args.bytes_found);
2771                 if (ret != -ENOSPC) {
2772                         /*
2773                          * The only time we don't want to abort is if we are
2774                          * attempting to clone a partial inline extent, in which
2775                          * case we'll get EOPNOTSUPP.  However if we aren't
2776                          * clone we need to abort no matter what, because if we
2777                          * got EOPNOTSUPP via prealloc then we messed up and
2778                          * need to abort.
2779                          */
2780                         if (ret &&
2781                             (ret != -EOPNOTSUPP ||
2782                              (extent_info && extent_info->is_new_extent)))
2783                                 btrfs_abort_transaction(trans, ret);
2784                         break;
2785                 }
2786
2787                 trans->block_rsv = &fs_info->trans_block_rsv;
2788
2789                 if (!extent_info && cur_offset < drop_args.drop_end &&
2790                     cur_offset < ino_size) {
2791                         ret = fill_holes(trans, inode, path, cur_offset,
2792                                          drop_args.drop_end);
2793                         if (ret) {
2794                                 /*
2795                                  * If we failed then we didn't insert our hole
2796                                  * entries for the area we dropped, so now the
2797                                  * fs is corrupted, so we must abort the
2798                                  * transaction.
2799                                  */
2800                                 btrfs_abort_transaction(trans, ret);
2801                                 break;
2802                         }
2803                 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2804                         /*
2805                          * We are past the i_size here, but since we didn't
2806                          * insert holes we need to clear the mapped area so we
2807                          * know to not set disk_i_size in this area until a new
2808                          * file extent is inserted here.
2809                          */
2810                         ret = btrfs_inode_clear_file_extent_range(inode,
2811                                         cur_offset,
2812                                         drop_args.drop_end - cur_offset);
2813                         if (ret) {
2814                                 /*
2815                                  * We couldn't clear our area, so we could
2816                                  * presumably adjust up and corrupt the fs, so
2817                                  * we need to abort.
2818                                  */
2819                                 btrfs_abort_transaction(trans, ret);
2820                                 break;
2821                         }
2822                 }
2823
2824                 if (extent_info &&
2825                     drop_args.drop_end > extent_info->file_offset) {
2826                         u64 replace_len = drop_args.drop_end -
2827                                           extent_info->file_offset;
2828
2829                         ret = btrfs_insert_replace_extent(trans, inode, path,
2830                                         extent_info, replace_len,
2831                                         drop_args.bytes_found);
2832                         if (ret) {
2833                                 btrfs_abort_transaction(trans, ret);
2834                                 break;
2835                         }
2836                         extent_info->data_len -= replace_len;
2837                         extent_info->data_offset += replace_len;
2838                         extent_info->file_offset += replace_len;
2839                 }
2840
2841                 ret = btrfs_update_inode(trans, root, inode);
2842                 if (ret)
2843                         break;
2844
2845                 btrfs_end_transaction(trans);
2846                 btrfs_btree_balance_dirty(fs_info);
2847
2848                 trans = btrfs_start_transaction(root, rsv_count);
2849                 if (IS_ERR(trans)) {
2850                         ret = PTR_ERR(trans);
2851                         trans = NULL;
2852                         break;
2853                 }
2854
2855                 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2856                                               rsv, min_size, false);
2857                 BUG_ON(ret);    /* shouldn't happen */
2858                 trans->block_rsv = rsv;
2859
2860                 cur_offset = drop_args.drop_end;
2861                 len = end - cur_offset;
2862                 if (!extent_info && len) {
2863                         ret = find_first_non_hole(inode, &cur_offset, &len);
2864                         if (unlikely(ret < 0))
2865                                 break;
2866                         if (ret && !len) {
2867                                 ret = 0;
2868                                 break;
2869                         }
2870                 }
2871         }
2872
2873         /*
2874          * If we were cloning, force the next fsync to be a full one since we
2875          * we replaced (or just dropped in the case of cloning holes when
2876          * NO_HOLES is enabled) file extent items and did not setup new extent
2877          * maps for the replacement extents (or holes).
2878          */
2879         if (extent_info && !extent_info->is_new_extent)
2880                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2881
2882         if (ret)
2883                 goto out_trans;
2884
2885         trans->block_rsv = &fs_info->trans_block_rsv;
2886         /*
2887          * If we are using the NO_HOLES feature we might have had already an
2888          * hole that overlaps a part of the region [lockstart, lockend] and
2889          * ends at (or beyond) lockend. Since we have no file extent items to
2890          * represent holes, drop_end can be less than lockend and so we must
2891          * make sure we have an extent map representing the existing hole (the
2892          * call to __btrfs_drop_extents() might have dropped the existing extent
2893          * map representing the existing hole), otherwise the fast fsync path
2894          * will not record the existence of the hole region
2895          * [existing_hole_start, lockend].
2896          */
2897         if (drop_args.drop_end <= end)
2898                 drop_args.drop_end = end + 1;
2899         /*
2900          * Don't insert file hole extent item if it's for a range beyond eof
2901          * (because it's useless) or if it represents a 0 bytes range (when
2902          * cur_offset == drop_end).
2903          */
2904         if (!extent_info && cur_offset < ino_size &&
2905             cur_offset < drop_args.drop_end) {
2906                 ret = fill_holes(trans, inode, path, cur_offset,
2907                                  drop_args.drop_end);
2908                 if (ret) {
2909                         /* Same comment as above. */
2910                         btrfs_abort_transaction(trans, ret);
2911                         goto out_trans;
2912                 }
2913         } else if (!extent_info && cur_offset < drop_args.drop_end) {
2914                 /* See the comment in the loop above for the reasoning here. */
2915                 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2916                                         drop_args.drop_end - cur_offset);
2917                 if (ret) {
2918                         btrfs_abort_transaction(trans, ret);
2919                         goto out_trans;
2920                 }
2921
2922         }
2923         if (extent_info) {
2924                 ret = btrfs_insert_replace_extent(trans, inode, path,
2925                                 extent_info, extent_info->data_len,
2926                                 drop_args.bytes_found);
2927                 if (ret) {
2928                         btrfs_abort_transaction(trans, ret);
2929                         goto out_trans;
2930                 }
2931         }
2932
2933 out_trans:
2934         if (!trans)
2935                 goto out_free;
2936
2937         trans->block_rsv = &fs_info->trans_block_rsv;
2938         if (ret)
2939                 btrfs_end_transaction(trans);
2940         else
2941                 *trans_out = trans;
2942 out_free:
2943         btrfs_free_block_rsv(fs_info, rsv);
2944 out:
2945         return ret;
2946 }
2947
2948 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2949 {
2950         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2951         struct btrfs_root *root = BTRFS_I(inode)->root;
2952         struct extent_state *cached_state = NULL;
2953         struct btrfs_path *path;
2954         struct btrfs_trans_handle *trans = NULL;
2955         u64 lockstart;
2956         u64 lockend;
2957         u64 tail_start;
2958         u64 tail_len;
2959         u64 orig_start = offset;
2960         int ret = 0;
2961         bool same_block;
2962         u64 ino_size;
2963         bool truncated_block = false;
2964         bool updated_inode = false;
2965
2966         ret = btrfs_wait_ordered_range(inode, offset, len);
2967         if (ret)
2968                 return ret;
2969
2970         btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2971         ino_size = round_up(inode->i_size, fs_info->sectorsize);
2972         ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2973         if (ret < 0)
2974                 goto out_only_mutex;
2975         if (ret && !len) {
2976                 /* Already in a large hole */
2977                 ret = 0;
2978                 goto out_only_mutex;
2979         }
2980
2981         lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode)));
2982         lockend = round_down(offset + len,
2983                              btrfs_inode_sectorsize(BTRFS_I(inode))) - 1;
2984         same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2985                 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2986         /*
2987          * We needn't truncate any block which is beyond the end of the file
2988          * because we are sure there is no data there.
2989          */
2990         /*
2991          * Only do this if we are in the same block and we aren't doing the
2992          * entire block.
2993          */
2994         if (same_block && len < fs_info->sectorsize) {
2995                 if (offset < ino_size) {
2996                         truncated_block = true;
2997                         ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2998                                                    0);
2999                 } else {
3000                         ret = 0;
3001                 }
3002                 goto out_only_mutex;
3003         }
3004
3005         /* zero back part of the first block */
3006         if (offset < ino_size) {
3007                 truncated_block = true;
3008                 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
3009                 if (ret) {
3010                         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3011                         return ret;
3012                 }
3013         }
3014
3015         /* Check the aligned pages after the first unaligned page,
3016          * if offset != orig_start, which means the first unaligned page
3017          * including several following pages are already in holes,
3018          * the extra check can be skipped */
3019         if (offset == orig_start) {
3020                 /* after truncate page, check hole again */
3021                 len = offset + len - lockstart;
3022                 offset = lockstart;
3023                 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
3024                 if (ret < 0)
3025                         goto out_only_mutex;
3026                 if (ret && !len) {
3027                         ret = 0;
3028                         goto out_only_mutex;
3029                 }
3030                 lockstart = offset;
3031         }
3032
3033         /* Check the tail unaligned part is in a hole */
3034         tail_start = lockend + 1;
3035         tail_len = offset + len - tail_start;
3036         if (tail_len) {
3037                 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
3038                 if (unlikely(ret < 0))
3039                         goto out_only_mutex;
3040                 if (!ret) {
3041                         /* zero the front end of the last page */
3042                         if (tail_start + tail_len < ino_size) {
3043                                 truncated_block = true;
3044                                 ret = btrfs_truncate_block(BTRFS_I(inode),
3045                                                         tail_start + tail_len,
3046                                                         0, 1);
3047                                 if (ret)
3048                                         goto out_only_mutex;
3049                         }
3050                 }
3051         }
3052
3053         if (lockend < lockstart) {
3054                 ret = 0;
3055                 goto out_only_mutex;
3056         }
3057
3058         ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3059                                           &cached_state);
3060         if (ret)
3061                 goto out_only_mutex;
3062
3063         path = btrfs_alloc_path();
3064         if (!path) {
3065                 ret = -ENOMEM;
3066                 goto out;
3067         }
3068
3069         ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
3070                                          lockend, NULL, &trans);
3071         btrfs_free_path(path);
3072         if (ret)
3073                 goto out;
3074
3075         ASSERT(trans != NULL);
3076         inode_inc_iversion(inode);
3077         inode->i_mtime = inode->i_ctime = current_time(inode);
3078         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3079         updated_inode = true;
3080         btrfs_end_transaction(trans);
3081         btrfs_btree_balance_dirty(fs_info);
3082 out:
3083         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3084                              &cached_state);
3085 out_only_mutex:
3086         if (!updated_inode && truncated_block && !ret) {
3087                 /*
3088                  * If we only end up zeroing part of a page, we still need to
3089                  * update the inode item, so that all the time fields are
3090                  * updated as well as the necessary btrfs inode in memory fields
3091                  * for detecting, at fsync time, if the inode isn't yet in the
3092                  * log tree or it's there but not up to date.
3093                  */
3094                 struct timespec64 now = current_time(inode);
3095
3096                 inode_inc_iversion(inode);
3097                 inode->i_mtime = now;
3098                 inode->i_ctime = now;
3099                 trans = btrfs_start_transaction(root, 1);
3100                 if (IS_ERR(trans)) {
3101                         ret = PTR_ERR(trans);
3102                 } else {
3103                         int ret2;
3104
3105                         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3106                         ret2 = btrfs_end_transaction(trans);
3107                         if (!ret)
3108                                 ret = ret2;
3109                 }
3110         }
3111         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3112         return ret;
3113 }
3114
3115 /* Helper structure to record which range is already reserved */
3116 struct falloc_range {
3117         struct list_head list;
3118         u64 start;
3119         u64 len;
3120 };
3121
3122 /*
3123  * Helper function to add falloc range
3124  *
3125  * Caller should have locked the larger range of extent containing
3126  * [start, len)
3127  */
3128 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3129 {
3130         struct falloc_range *range = NULL;
3131
3132         if (!list_empty(head)) {
3133                 /*
3134                  * As fallocate iterates by bytenr order, we only need to check
3135                  * the last range.
3136                  */
3137                 range = list_last_entry(head, struct falloc_range, list);
3138                 if (range->start + range->len == start) {
3139                         range->len += len;
3140                         return 0;
3141                 }
3142         }
3143
3144         range = kmalloc(sizeof(*range), GFP_KERNEL);
3145         if (!range)
3146                 return -ENOMEM;
3147         range->start = start;
3148         range->len = len;
3149         list_add_tail(&range->list, head);
3150         return 0;
3151 }
3152
3153 static int btrfs_fallocate_update_isize(struct inode *inode,
3154                                         const u64 end,
3155                                         const int mode)
3156 {
3157         struct btrfs_trans_handle *trans;
3158         struct btrfs_root *root = BTRFS_I(inode)->root;
3159         int ret;
3160         int ret2;
3161
3162         if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3163                 return 0;
3164
3165         trans = btrfs_start_transaction(root, 1);
3166         if (IS_ERR(trans))
3167                 return PTR_ERR(trans);
3168
3169         inode->i_ctime = current_time(inode);
3170         i_size_write(inode, end);
3171         btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
3172         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3173         ret2 = btrfs_end_transaction(trans);
3174
3175         return ret ? ret : ret2;
3176 }
3177
3178 enum {
3179         RANGE_BOUNDARY_WRITTEN_EXTENT,
3180         RANGE_BOUNDARY_PREALLOC_EXTENT,
3181         RANGE_BOUNDARY_HOLE,
3182 };
3183
3184 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3185                                                  u64 offset)
3186 {
3187         const u64 sectorsize = btrfs_inode_sectorsize(inode);
3188         struct extent_map *em;
3189         int ret;
3190
3191         offset = round_down(offset, sectorsize);
3192         em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
3193         if (IS_ERR(em))
3194                 return PTR_ERR(em);
3195
3196         if (em->block_start == EXTENT_MAP_HOLE)
3197                 ret = RANGE_BOUNDARY_HOLE;
3198         else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3199                 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3200         else
3201                 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3202
3203         free_extent_map(em);
3204         return ret;
3205 }
3206
3207 static int btrfs_zero_range(struct inode *inode,
3208                             loff_t offset,
3209                             loff_t len,
3210                             const int mode)
3211 {
3212         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3213         struct extent_map *em;
3214         struct extent_changeset *data_reserved = NULL;
3215         int ret;
3216         u64 alloc_hint = 0;
3217         const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode));
3218         u64 alloc_start = round_down(offset, sectorsize);
3219         u64 alloc_end = round_up(offset + len, sectorsize);
3220         u64 bytes_to_reserve = 0;
3221         bool space_reserved = false;
3222
3223         inode_dio_wait(inode);
3224
3225         em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3226                               alloc_end - alloc_start);
3227         if (IS_ERR(em)) {
3228                 ret = PTR_ERR(em);
3229                 goto out;
3230         }
3231
3232         /*
3233          * Avoid hole punching and extent allocation for some cases. More cases
3234          * could be considered, but these are unlikely common and we keep things
3235          * as simple as possible for now. Also, intentionally, if the target
3236          * range contains one or more prealloc extents together with regular
3237          * extents and holes, we drop all the existing extents and allocate a
3238          * new prealloc extent, so that we get a larger contiguous disk extent.
3239          */
3240         if (em->start <= alloc_start &&
3241             test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3242                 const u64 em_end = em->start + em->len;
3243
3244                 if (em_end >= offset + len) {
3245                         /*
3246                          * The whole range is already a prealloc extent,
3247                          * do nothing except updating the inode's i_size if
3248                          * needed.
3249                          */
3250                         free_extent_map(em);
3251                         ret = btrfs_fallocate_update_isize(inode, offset + len,
3252                                                            mode);
3253                         goto out;
3254                 }
3255                 /*
3256                  * Part of the range is already a prealloc extent, so operate
3257                  * only on the remaining part of the range.
3258                  */
3259                 alloc_start = em_end;
3260                 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3261                 len = offset + len - alloc_start;
3262                 offset = alloc_start;
3263                 alloc_hint = em->block_start + em->len;
3264         }
3265         free_extent_map(em);
3266
3267         if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3268             BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3269                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3270                                       sectorsize);
3271                 if (IS_ERR(em)) {
3272                         ret = PTR_ERR(em);
3273                         goto out;
3274                 }
3275
3276                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3277                         free_extent_map(em);
3278                         ret = btrfs_fallocate_update_isize(inode, offset + len,
3279                                                            mode);
3280                         goto out;
3281                 }
3282                 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3283                         free_extent_map(em);
3284                         ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3285                                                    0);
3286                         if (!ret)
3287                                 ret = btrfs_fallocate_update_isize(inode,
3288                                                                    offset + len,
3289                                                                    mode);
3290                         return ret;
3291                 }
3292                 free_extent_map(em);
3293                 alloc_start = round_down(offset, sectorsize);
3294                 alloc_end = alloc_start + sectorsize;
3295                 goto reserve_space;
3296         }
3297
3298         alloc_start = round_up(offset, sectorsize);
3299         alloc_end = round_down(offset + len, sectorsize);
3300
3301         /*
3302          * For unaligned ranges, check the pages at the boundaries, they might
3303          * map to an extent, in which case we need to partially zero them, or
3304          * they might map to a hole, in which case we need our allocation range
3305          * to cover them.
3306          */
3307         if (!IS_ALIGNED(offset, sectorsize)) {
3308                 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3309                                                             offset);
3310                 if (ret < 0)
3311                         goto out;
3312                 if (ret == RANGE_BOUNDARY_HOLE) {
3313                         alloc_start = round_down(offset, sectorsize);
3314                         ret = 0;
3315                 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3316                         ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
3317                         if (ret)
3318                                 goto out;
3319                 } else {
3320                         ret = 0;
3321                 }
3322         }
3323
3324         if (!IS_ALIGNED(offset + len, sectorsize)) {
3325                 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3326                                                             offset + len);
3327                 if (ret < 0)
3328                         goto out;
3329                 if (ret == RANGE_BOUNDARY_HOLE) {
3330                         alloc_end = round_up(offset + len, sectorsize);
3331                         ret = 0;
3332                 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3333                         ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
3334                                                    0, 1);
3335                         if (ret)
3336                                 goto out;
3337                 } else {
3338                         ret = 0;
3339                 }
3340         }
3341
3342 reserve_space:
3343         if (alloc_start < alloc_end) {
3344                 struct extent_state *cached_state = NULL;
3345                 const u64 lockstart = alloc_start;
3346                 const u64 lockend = alloc_end - 1;
3347
3348                 bytes_to_reserve = alloc_end - alloc_start;
3349                 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3350                                                       bytes_to_reserve);
3351                 if (ret < 0)
3352                         goto out;
3353                 space_reserved = true;
3354                 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3355                                                   &cached_state);
3356                 if (ret)
3357                         goto out;
3358                 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3359                                                 alloc_start, bytes_to_reserve);
3360                 if (ret) {
3361                         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3362                                              lockend, &cached_state);
3363                         goto out;
3364                 }
3365                 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3366                                                 alloc_end - alloc_start,
3367                                                 i_blocksize(inode),
3368                                                 offset + len, &alloc_hint);
3369                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3370                                      lockend, &cached_state);
3371                 /* btrfs_prealloc_file_range releases reserved space on error */
3372                 if (ret) {
3373                         space_reserved = false;
3374                         goto out;
3375                 }
3376         }
3377         ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3378  out:
3379         if (ret && space_reserved)
3380                 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3381                                                alloc_start, bytes_to_reserve);
3382         extent_changeset_free(data_reserved);
3383
3384         return ret;
3385 }
3386
3387 static long btrfs_fallocate(struct file *file, int mode,
3388                             loff_t offset, loff_t len)
3389 {
3390         struct inode *inode = file_inode(file);
3391         struct extent_state *cached_state = NULL;
3392         struct extent_changeset *data_reserved = NULL;
3393         struct falloc_range *range;
3394         struct falloc_range *tmp;
3395         struct list_head reserve_list;
3396         u64 cur_offset;
3397         u64 last_byte;
3398         u64 alloc_start;
3399         u64 alloc_end;
3400         u64 alloc_hint = 0;
3401         u64 locked_end;
3402         u64 actual_end = 0;
3403         struct extent_map *em;
3404         int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode));
3405         int ret;
3406
3407         /* Do not allow fallocate in ZONED mode */
3408         if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3409                 return -EOPNOTSUPP;
3410
3411         alloc_start = round_down(offset, blocksize);
3412         alloc_end = round_up(offset + len, blocksize);
3413         cur_offset = alloc_start;
3414
3415         /* Make sure we aren't being give some crap mode */
3416         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3417                      FALLOC_FL_ZERO_RANGE))
3418                 return -EOPNOTSUPP;
3419
3420         if (mode & FALLOC_FL_PUNCH_HOLE)
3421                 return btrfs_punch_hole(inode, offset, len);
3422
3423         /*
3424          * Only trigger disk allocation, don't trigger qgroup reserve
3425          *
3426          * For qgroup space, it will be checked later.
3427          */
3428         if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3429                 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3430                                                       alloc_end - alloc_start);
3431                 if (ret < 0)
3432                         return ret;
3433         }
3434
3435         btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
3436
3437         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3438                 ret = inode_newsize_ok(inode, offset + len);
3439                 if (ret)
3440                         goto out;
3441         }
3442
3443         /*
3444          * TODO: Move these two operations after we have checked
3445          * accurate reserved space, or fallocate can still fail but
3446          * with page truncated or size expanded.
3447          *
3448          * But that's a minor problem and won't do much harm BTW.
3449          */
3450         if (alloc_start > inode->i_size) {
3451                 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3452                                         alloc_start);
3453                 if (ret)
3454                         goto out;
3455         } else if (offset + len > inode->i_size) {
3456                 /*
3457                  * If we are fallocating from the end of the file onward we
3458                  * need to zero out the end of the block if i_size lands in the
3459                  * middle of a block.
3460                  */
3461                 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3462                 if (ret)
3463                         goto out;
3464         }
3465
3466         /*
3467          * wait for ordered IO before we have any locks.  We'll loop again
3468          * below with the locks held.
3469          */
3470         ret = btrfs_wait_ordered_range(inode, alloc_start,
3471                                        alloc_end - alloc_start);
3472         if (ret)
3473                 goto out;
3474
3475         if (mode & FALLOC_FL_ZERO_RANGE) {
3476                 ret = btrfs_zero_range(inode, offset, len, mode);
3477                 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3478                 return ret;
3479         }
3480
3481         locked_end = alloc_end - 1;
3482         while (1) {
3483                 struct btrfs_ordered_extent *ordered;
3484
3485                 /* the extent lock is ordered inside the running
3486                  * transaction
3487                  */
3488                 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3489                                  locked_end, &cached_state);
3490                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
3491                                                             locked_end);
3492
3493                 if (ordered &&
3494                     ordered->file_offset + ordered->num_bytes > alloc_start &&
3495                     ordered->file_offset < alloc_end) {
3496                         btrfs_put_ordered_extent(ordered);
3497                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3498                                              alloc_start, locked_end,
3499                                              &cached_state);
3500                         /*
3501                          * we can't wait on the range with the transaction
3502                          * running or with the extent lock held
3503                          */
3504                         ret = btrfs_wait_ordered_range(inode, alloc_start,
3505                                                        alloc_end - alloc_start);
3506                         if (ret)
3507                                 goto out;
3508                 } else {
3509                         if (ordered)
3510                                 btrfs_put_ordered_extent(ordered);
3511                         break;
3512                 }
3513         }
3514
3515         /* First, check if we exceed the qgroup limit */
3516         INIT_LIST_HEAD(&reserve_list);
3517         while (cur_offset < alloc_end) {
3518                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3519                                       alloc_end - cur_offset);
3520                 if (IS_ERR(em)) {
3521                         ret = PTR_ERR(em);
3522                         break;
3523                 }
3524                 last_byte = min(extent_map_end(em), alloc_end);
3525                 actual_end = min_t(u64, extent_map_end(em), offset + len);
3526                 last_byte = ALIGN(last_byte, blocksize);
3527                 if (em->block_start == EXTENT_MAP_HOLE ||
3528                     (cur_offset >= inode->i_size &&
3529                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3530                         ret = add_falloc_range(&reserve_list, cur_offset,
3531                                                last_byte - cur_offset);
3532                         if (ret < 0) {
3533                                 free_extent_map(em);
3534                                 break;
3535                         }
3536                         ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3537                                         &data_reserved, cur_offset,
3538                                         last_byte - cur_offset);
3539                         if (ret < 0) {
3540                                 cur_offset = last_byte;
3541                                 free_extent_map(em);
3542                                 break;
3543                         }
3544                 } else {
3545                         /*
3546                          * Do not need to reserve unwritten extent for this
3547                          * range, free reserved data space first, otherwise
3548                          * it'll result in false ENOSPC error.
3549                          */
3550                         btrfs_free_reserved_data_space(BTRFS_I(inode),
3551                                 data_reserved, cur_offset,
3552                                 last_byte - cur_offset);
3553                 }
3554                 free_extent_map(em);
3555                 cur_offset = last_byte;
3556         }
3557
3558         /*
3559          * If ret is still 0, means we're OK to fallocate.
3560          * Or just cleanup the list and exit.
3561          */
3562         list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3563                 if (!ret)
3564                         ret = btrfs_prealloc_file_range(inode, mode,
3565                                         range->start,
3566                                         range->len, i_blocksize(inode),
3567                                         offset + len, &alloc_hint);
3568                 else
3569                         btrfs_free_reserved_data_space(BTRFS_I(inode),
3570                                         data_reserved, range->start,
3571                                         range->len);
3572                 list_del(&range->list);
3573                 kfree(range);
3574         }
3575         if (ret < 0)
3576                 goto out_unlock;
3577
3578         /*
3579          * We didn't need to allocate any more space, but we still extended the
3580          * size of the file so we need to update i_size and the inode item.
3581          */
3582         ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3583 out_unlock:
3584         unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3585                              &cached_state);
3586 out:
3587         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3588         /* Let go of our reservation. */
3589         if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3590                 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3591                                 cur_offset, alloc_end - cur_offset);
3592         extent_changeset_free(data_reserved);
3593         return ret;
3594 }
3595
3596 static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset,
3597                                   int whence)
3598 {
3599         struct btrfs_fs_info *fs_info = inode->root->fs_info;
3600         struct extent_map *em = NULL;
3601         struct extent_state *cached_state = NULL;
3602         loff_t i_size = inode->vfs_inode.i_size;
3603         u64 lockstart;
3604         u64 lockend;
3605         u64 start;
3606         u64 len;
3607         int ret = 0;
3608
3609         if (i_size == 0 || offset >= i_size)
3610                 return -ENXIO;
3611
3612         /*
3613          * offset can be negative, in this case we start finding DATA/HOLE from
3614          * the very start of the file.
3615          */
3616         start = max_t(loff_t, 0, offset);
3617
3618         lockstart = round_down(start, fs_info->sectorsize);
3619         lockend = round_up(i_size, fs_info->sectorsize);
3620         if (lockend <= lockstart)
3621                 lockend = lockstart + fs_info->sectorsize;
3622         lockend--;
3623         len = lockend - lockstart + 1;
3624
3625         lock_extent_bits(&inode->io_tree, lockstart, lockend, &cached_state);
3626
3627         while (start < i_size) {
3628                 em = btrfs_get_extent_fiemap(inode, start, len);
3629                 if (IS_ERR(em)) {
3630                         ret = PTR_ERR(em);
3631                         em = NULL;
3632                         break;
3633                 }
3634
3635                 if (whence == SEEK_HOLE &&
3636                     (em->block_start == EXTENT_MAP_HOLE ||
3637                      test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3638                         break;
3639                 else if (whence == SEEK_DATA &&
3640                            (em->block_start != EXTENT_MAP_HOLE &&
3641                             !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3642                         break;
3643
3644                 start = em->start + em->len;
3645                 free_extent_map(em);
3646                 em = NULL;
3647                 cond_resched();
3648         }
3649         free_extent_map(em);
3650         unlock_extent_cached(&inode->io_tree, lockstart, lockend,
3651                              &cached_state);
3652         if (ret) {
3653                 offset = ret;
3654         } else {
3655                 if (whence == SEEK_DATA && start >= i_size)
3656                         offset = -ENXIO;
3657                 else
3658                         offset = min_t(loff_t, start, i_size);
3659         }
3660
3661         return offset;
3662 }
3663
3664 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3665 {
3666         struct inode *inode = file->f_mapping->host;
3667
3668         switch (whence) {
3669         default:
3670                 return generic_file_llseek(file, offset, whence);
3671         case SEEK_DATA:
3672         case SEEK_HOLE:
3673                 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3674                 offset = find_desired_extent(BTRFS_I(inode), offset, whence);
3675                 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3676                 break;
3677         }
3678
3679         if (offset < 0)
3680                 return offset;
3681
3682         return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3683 }
3684
3685 static int btrfs_file_open(struct inode *inode, struct file *filp)
3686 {
3687         int ret;
3688
3689         filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
3690
3691         ret = fsverity_file_open(inode, filp);
3692         if (ret)
3693                 return ret;
3694         return generic_file_open(inode, filp);
3695 }
3696
3697 static int check_direct_read(struct btrfs_fs_info *fs_info,
3698                              const struct iov_iter *iter, loff_t offset)
3699 {
3700         int ret;
3701         int i, seg;
3702
3703         ret = check_direct_IO(fs_info, iter, offset);
3704         if (ret < 0)
3705                 return ret;
3706
3707         if (!iter_is_iovec(iter))
3708                 return 0;
3709
3710         for (seg = 0; seg < iter->nr_segs; seg++)
3711                 for (i = seg + 1; i < iter->nr_segs; i++)
3712                         if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
3713                                 return -EINVAL;
3714         return 0;
3715 }
3716
3717 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3718 {
3719         struct inode *inode = file_inode(iocb->ki_filp);
3720         size_t prev_left = 0;
3721         ssize_t read = 0;
3722         ssize_t ret;
3723
3724         if (fsverity_active(inode))
3725                 return 0;
3726
3727         if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3728                 return 0;
3729
3730         btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3731 again:
3732         /*
3733          * This is similar to what we do for direct IO writes, see the comment
3734          * at btrfs_direct_write(), but we also disable page faults in addition
3735          * to disabling them only at the iov_iter level. This is because when
3736          * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
3737          * which can still trigger page fault ins despite having set ->nofault
3738          * to true of our 'to' iov_iter.
3739          *
3740          * The difference to direct IO writes is that we deadlock when trying
3741          * to lock the extent range in the inode's tree during he page reads
3742          * triggered by the fault in (while for writes it is due to waiting for
3743          * our own ordered extent). This is because for direct IO reads,
3744          * btrfs_dio_iomap_begin() returns with the extent range locked, which
3745          * is only unlocked in the endio callback (end_bio_extent_readpage()).
3746          */
3747         pagefault_disable();
3748         to->nofault = true;
3749         ret = iomap_dio_rw(iocb, to, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
3750                            IOMAP_DIO_PARTIAL, read);
3751         to->nofault = false;
3752         pagefault_enable();
3753
3754         /* No increment (+=) because iomap returns a cumulative value. */
3755         if (ret > 0)
3756                 read = ret;
3757
3758         if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
3759                 const size_t left = iov_iter_count(to);
3760
3761                 if (left == prev_left) {
3762                         /*
3763                          * We didn't make any progress since the last attempt,
3764                          * fallback to a buffered read for the remainder of the
3765                          * range. This is just to avoid any possibility of looping
3766                          * for too long.
3767                          */
3768                         ret = read;
3769                 } else {
3770                         /*
3771                          * We made some progress since the last retry or this is
3772                          * the first time we are retrying. Fault in as many pages
3773                          * as possible and retry.
3774                          */
3775                         fault_in_iov_iter_writeable(to, left);
3776                         prev_left = left;
3777                         goto again;
3778                 }
3779         }
3780         btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3781         return ret < 0 ? ret : read;
3782 }
3783
3784 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3785 {
3786         ssize_t ret = 0;
3787
3788         if (iocb->ki_flags & IOCB_DIRECT) {
3789                 ret = btrfs_direct_read(iocb, to);
3790                 if (ret < 0 || !iov_iter_count(to) ||
3791                     iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3792                         return ret;
3793         }
3794
3795         return filemap_read(iocb, to, ret);
3796 }
3797
3798 const struct file_operations btrfs_file_operations = {
3799         .llseek         = btrfs_file_llseek,
3800         .read_iter      = btrfs_file_read_iter,
3801         .splice_read    = generic_file_splice_read,
3802         .write_iter     = btrfs_file_write_iter,
3803         .splice_write   = iter_file_splice_write,
3804         .mmap           = btrfs_file_mmap,
3805         .open           = btrfs_file_open,
3806         .release        = btrfs_release_file,
3807         .fsync          = btrfs_sync_file,
3808         .fallocate      = btrfs_fallocate,
3809         .unlocked_ioctl = btrfs_ioctl,
3810 #ifdef CONFIG_COMPAT
3811         .compat_ioctl   = btrfs_compat_ioctl,
3812 #endif
3813         .remap_file_range = btrfs_remap_file_range,
3814 };
3815
3816 void __cold btrfs_auto_defrag_exit(void)
3817 {
3818         kmem_cache_destroy(btrfs_inode_defrag_cachep);
3819 }
3820
3821 int __init btrfs_auto_defrag_init(void)
3822 {
3823         btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3824                                         sizeof(struct inode_defrag), 0,
3825                                         SLAB_MEM_SPREAD,
3826                                         NULL);
3827         if (!btrfs_inode_defrag_cachep)
3828                 return -ENOMEM;
3829
3830         return 0;
3831 }
3832
3833 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3834 {
3835         int ret;
3836
3837         /*
3838          * So with compression we will find and lock a dirty page and clear the
3839          * first one as dirty, setup an async extent, and immediately return
3840          * with the entire range locked but with nobody actually marked with
3841          * writeback.  So we can't just filemap_write_and_wait_range() and
3842          * expect it to work since it will just kick off a thread to do the
3843          * actual work.  So we need to call filemap_fdatawrite_range _again_
3844          * since it will wait on the page lock, which won't be unlocked until
3845          * after the pages have been marked as writeback and so we're good to go
3846          * from there.  We have to do this otherwise we'll miss the ordered
3847          * extents and that results in badness.  Please Josef, do not think you
3848          * know better and pull this out at some point in the future, it is
3849          * right and you are wrong.
3850          */
3851         ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3852         if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3853                              &BTRFS_I(inode)->runtime_flags))
3854                 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3855
3856         return ret;
3857 }