Merge branch 'kvm-master' into kvm-next
[linux-2.6-microblaze.git] / fs / btrfs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "btrfs_inode.h"
23 #include "print-tree.h"
24 #include "tree-log.h"
25 #include "locking.h"
26 #include "volumes.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30 #include "reflink.h"
31
32 static struct kmem_cache *btrfs_inode_defrag_cachep;
33 /*
34  * when auto defrag is enabled we
35  * queue up these defrag structs to remember which
36  * inodes need defragging passes
37  */
38 struct inode_defrag {
39         struct rb_node rb_node;
40         /* objectid */
41         u64 ino;
42         /*
43          * transid where the defrag was added, we search for
44          * extents newer than this
45          */
46         u64 transid;
47
48         /* root objectid */
49         u64 root;
50
51         /* last offset we were able to defrag */
52         u64 last_offset;
53
54         /* if we've wrapped around back to zero once already */
55         int cycled;
56 };
57
58 static int __compare_inode_defrag(struct inode_defrag *defrag1,
59                                   struct inode_defrag *defrag2)
60 {
61         if (defrag1->root > defrag2->root)
62                 return 1;
63         else if (defrag1->root < defrag2->root)
64                 return -1;
65         else if (defrag1->ino > defrag2->ino)
66                 return 1;
67         else if (defrag1->ino < defrag2->ino)
68                 return -1;
69         else
70                 return 0;
71 }
72
73 /* pop a record for an inode into the defrag tree.  The lock
74  * must be held already
75  *
76  * If you're inserting a record for an older transid than an
77  * existing record, the transid already in the tree is lowered
78  *
79  * If an existing record is found the defrag item you
80  * pass in is freed
81  */
82 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
83                                     struct inode_defrag *defrag)
84 {
85         struct btrfs_fs_info *fs_info = inode->root->fs_info;
86         struct inode_defrag *entry;
87         struct rb_node **p;
88         struct rb_node *parent = NULL;
89         int ret;
90
91         p = &fs_info->defrag_inodes.rb_node;
92         while (*p) {
93                 parent = *p;
94                 entry = rb_entry(parent, struct inode_defrag, rb_node);
95
96                 ret = __compare_inode_defrag(defrag, entry);
97                 if (ret < 0)
98                         p = &parent->rb_left;
99                 else if (ret > 0)
100                         p = &parent->rb_right;
101                 else {
102                         /* if we're reinserting an entry for
103                          * an old defrag run, make sure to
104                          * lower the transid of our existing record
105                          */
106                         if (defrag->transid < entry->transid)
107                                 entry->transid = defrag->transid;
108                         if (defrag->last_offset > entry->last_offset)
109                                 entry->last_offset = defrag->last_offset;
110                         return -EEXIST;
111                 }
112         }
113         set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
114         rb_link_node(&defrag->rb_node, parent, p);
115         rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
116         return 0;
117 }
118
119 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
120 {
121         if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
122                 return 0;
123
124         if (btrfs_fs_closing(fs_info))
125                 return 0;
126
127         return 1;
128 }
129
130 /*
131  * insert a defrag record for this inode if auto defrag is
132  * enabled
133  */
134 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
135                            struct btrfs_inode *inode)
136 {
137         struct btrfs_root *root = inode->root;
138         struct btrfs_fs_info *fs_info = root->fs_info;
139         struct inode_defrag *defrag;
140         u64 transid;
141         int ret;
142
143         if (!__need_auto_defrag(fs_info))
144                 return 0;
145
146         if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
147                 return 0;
148
149         if (trans)
150                 transid = trans->transid;
151         else
152                 transid = inode->root->last_trans;
153
154         defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
155         if (!defrag)
156                 return -ENOMEM;
157
158         defrag->ino = btrfs_ino(inode);
159         defrag->transid = transid;
160         defrag->root = root->root_key.objectid;
161
162         spin_lock(&fs_info->defrag_inodes_lock);
163         if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
164                 /*
165                  * If we set IN_DEFRAG flag and evict the inode from memory,
166                  * and then re-read this inode, this new inode doesn't have
167                  * IN_DEFRAG flag. At the case, we may find the existed defrag.
168                  */
169                 ret = __btrfs_add_inode_defrag(inode, defrag);
170                 if (ret)
171                         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
172         } else {
173                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
174         }
175         spin_unlock(&fs_info->defrag_inodes_lock);
176         return 0;
177 }
178
179 /*
180  * Requeue the defrag object. If there is a defrag object that points to
181  * the same inode in the tree, we will merge them together (by
182  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
183  */
184 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
185                                        struct inode_defrag *defrag)
186 {
187         struct btrfs_fs_info *fs_info = inode->root->fs_info;
188         int ret;
189
190         if (!__need_auto_defrag(fs_info))
191                 goto out;
192
193         /*
194          * Here we don't check the IN_DEFRAG flag, because we need merge
195          * them together.
196          */
197         spin_lock(&fs_info->defrag_inodes_lock);
198         ret = __btrfs_add_inode_defrag(inode, defrag);
199         spin_unlock(&fs_info->defrag_inodes_lock);
200         if (ret)
201                 goto out;
202         return;
203 out:
204         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
205 }
206
207 /*
208  * pick the defragable inode that we want, if it doesn't exist, we will get
209  * the next one.
210  */
211 static struct inode_defrag *
212 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
213 {
214         struct inode_defrag *entry = NULL;
215         struct inode_defrag tmp;
216         struct rb_node *p;
217         struct rb_node *parent = NULL;
218         int ret;
219
220         tmp.ino = ino;
221         tmp.root = root;
222
223         spin_lock(&fs_info->defrag_inodes_lock);
224         p = fs_info->defrag_inodes.rb_node;
225         while (p) {
226                 parent = p;
227                 entry = rb_entry(parent, struct inode_defrag, rb_node);
228
229                 ret = __compare_inode_defrag(&tmp, entry);
230                 if (ret < 0)
231                         p = parent->rb_left;
232                 else if (ret > 0)
233                         p = parent->rb_right;
234                 else
235                         goto out;
236         }
237
238         if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
239                 parent = rb_next(parent);
240                 if (parent)
241                         entry = rb_entry(parent, struct inode_defrag, rb_node);
242                 else
243                         entry = NULL;
244         }
245 out:
246         if (entry)
247                 rb_erase(parent, &fs_info->defrag_inodes);
248         spin_unlock(&fs_info->defrag_inodes_lock);
249         return entry;
250 }
251
252 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
253 {
254         struct inode_defrag *defrag;
255         struct rb_node *node;
256
257         spin_lock(&fs_info->defrag_inodes_lock);
258         node = rb_first(&fs_info->defrag_inodes);
259         while (node) {
260                 rb_erase(node, &fs_info->defrag_inodes);
261                 defrag = rb_entry(node, struct inode_defrag, rb_node);
262                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
263
264                 cond_resched_lock(&fs_info->defrag_inodes_lock);
265
266                 node = rb_first(&fs_info->defrag_inodes);
267         }
268         spin_unlock(&fs_info->defrag_inodes_lock);
269 }
270
271 #define BTRFS_DEFRAG_BATCH      1024
272
273 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
274                                     struct inode_defrag *defrag)
275 {
276         struct btrfs_root *inode_root;
277         struct inode *inode;
278         struct btrfs_ioctl_defrag_range_args range;
279         int num_defrag;
280         int ret;
281
282         /* get the inode */
283         inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
284         if (IS_ERR(inode_root)) {
285                 ret = PTR_ERR(inode_root);
286                 goto cleanup;
287         }
288
289         inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
290         btrfs_put_root(inode_root);
291         if (IS_ERR(inode)) {
292                 ret = PTR_ERR(inode);
293                 goto cleanup;
294         }
295
296         /* do a chunk of defrag */
297         clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
298         memset(&range, 0, sizeof(range));
299         range.len = (u64)-1;
300         range.start = defrag->last_offset;
301
302         sb_start_write(fs_info->sb);
303         num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
304                                        BTRFS_DEFRAG_BATCH);
305         sb_end_write(fs_info->sb);
306         /*
307          * if we filled the whole defrag batch, there
308          * must be more work to do.  Queue this defrag
309          * again
310          */
311         if (num_defrag == BTRFS_DEFRAG_BATCH) {
312                 defrag->last_offset = range.start;
313                 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
314         } else if (defrag->last_offset && !defrag->cycled) {
315                 /*
316                  * we didn't fill our defrag batch, but
317                  * we didn't start at zero.  Make sure we loop
318                  * around to the start of the file.
319                  */
320                 defrag->last_offset = 0;
321                 defrag->cycled = 1;
322                 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
323         } else {
324                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
325         }
326
327         iput(inode);
328         return 0;
329 cleanup:
330         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
331         return ret;
332 }
333
334 /*
335  * run through the list of inodes in the FS that need
336  * defragging
337  */
338 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
339 {
340         struct inode_defrag *defrag;
341         u64 first_ino = 0;
342         u64 root_objectid = 0;
343
344         atomic_inc(&fs_info->defrag_running);
345         while (1) {
346                 /* Pause the auto defragger. */
347                 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
348                              &fs_info->fs_state))
349                         break;
350
351                 if (!__need_auto_defrag(fs_info))
352                         break;
353
354                 /* find an inode to defrag */
355                 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
356                                                  first_ino);
357                 if (!defrag) {
358                         if (root_objectid || first_ino) {
359                                 root_objectid = 0;
360                                 first_ino = 0;
361                                 continue;
362                         } else {
363                                 break;
364                         }
365                 }
366
367                 first_ino = defrag->ino + 1;
368                 root_objectid = defrag->root;
369
370                 __btrfs_run_defrag_inode(fs_info, defrag);
371         }
372         atomic_dec(&fs_info->defrag_running);
373
374         /*
375          * during unmount, we use the transaction_wait queue to
376          * wait for the defragger to stop
377          */
378         wake_up(&fs_info->transaction_wait);
379         return 0;
380 }
381
382 /* simple helper to fault in pages and copy.  This should go away
383  * and be replaced with calls into generic code.
384  */
385 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
386                                          struct page **prepared_pages,
387                                          struct iov_iter *i)
388 {
389         size_t copied = 0;
390         size_t total_copied = 0;
391         int pg = 0;
392         int offset = offset_in_page(pos);
393
394         while (write_bytes > 0) {
395                 size_t count = min_t(size_t,
396                                      PAGE_SIZE - offset, write_bytes);
397                 struct page *page = prepared_pages[pg];
398                 /*
399                  * Copy data from userspace to the current page
400                  */
401                 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
402
403                 /* Flush processor's dcache for this page */
404                 flush_dcache_page(page);
405
406                 /*
407                  * if we get a partial write, we can end up with
408                  * partially up to date pages.  These add
409                  * a lot of complexity, so make sure they don't
410                  * happen by forcing this copy to be retried.
411                  *
412                  * The rest of the btrfs_file_write code will fall
413                  * back to page at a time copies after we return 0.
414                  */
415                 if (!PageUptodate(page) && copied < count)
416                         copied = 0;
417
418                 iov_iter_advance(i, copied);
419                 write_bytes -= copied;
420                 total_copied += copied;
421
422                 /* Return to btrfs_file_write_iter to fault page */
423                 if (unlikely(copied == 0))
424                         break;
425
426                 if (copied < PAGE_SIZE - offset) {
427                         offset += copied;
428                 } else {
429                         pg++;
430                         offset = 0;
431                 }
432         }
433         return total_copied;
434 }
435
436 /*
437  * unlocks pages after btrfs_file_write is done with them
438  */
439 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
440 {
441         size_t i;
442         for (i = 0; i < num_pages; i++) {
443                 /* page checked is some magic around finding pages that
444                  * have been modified without going through btrfs_set_page_dirty
445                  * clear it here. There should be no need to mark the pages
446                  * accessed as prepare_pages should have marked them accessed
447                  * in prepare_pages via find_or_create_page()
448                  */
449                 ClearPageChecked(pages[i]);
450                 unlock_page(pages[i]);
451                 put_page(pages[i]);
452         }
453 }
454
455 /*
456  * after copy_from_user, pages need to be dirtied and we need to make
457  * sure holes are created between the current EOF and the start of
458  * any next extents (if required).
459  *
460  * this also makes the decision about creating an inline extent vs
461  * doing real data extents, marking pages dirty and delalloc as required.
462  */
463 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
464                       size_t num_pages, loff_t pos, size_t write_bytes,
465                       struct extent_state **cached)
466 {
467         struct btrfs_fs_info *fs_info = inode->root->fs_info;
468         int err = 0;
469         int i;
470         u64 num_bytes;
471         u64 start_pos;
472         u64 end_of_last_block;
473         u64 end_pos = pos + write_bytes;
474         loff_t isize = i_size_read(&inode->vfs_inode);
475         unsigned int extra_bits = 0;
476
477         start_pos = pos & ~((u64) fs_info->sectorsize - 1);
478         num_bytes = round_up(write_bytes + pos - start_pos,
479                              fs_info->sectorsize);
480
481         end_of_last_block = start_pos + num_bytes - 1;
482
483         /*
484          * The pages may have already been dirty, clear out old accounting so
485          * we can set things up properly
486          */
487         clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
488                          EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
489                          0, 0, cached);
490
491         err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
492                                         extra_bits, cached);
493         if (err)
494                 return err;
495
496         for (i = 0; i < num_pages; i++) {
497                 struct page *p = pages[i];
498                 SetPageUptodate(p);
499                 ClearPageChecked(p);
500                 set_page_dirty(p);
501         }
502
503         /*
504          * we've only changed i_size in ram, and we haven't updated
505          * the disk i_size.  There is no need to log the inode
506          * at this time.
507          */
508         if (end_pos > isize)
509                 i_size_write(&inode->vfs_inode, end_pos);
510         return 0;
511 }
512
513 /*
514  * this drops all the extents in the cache that intersect the range
515  * [start, end].  Existing extents are split as required.
516  */
517 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
518                              int skip_pinned)
519 {
520         struct extent_map *em;
521         struct extent_map *split = NULL;
522         struct extent_map *split2 = NULL;
523         struct extent_map_tree *em_tree = &inode->extent_tree;
524         u64 len = end - start + 1;
525         u64 gen;
526         int ret;
527         int testend = 1;
528         unsigned long flags;
529         int compressed = 0;
530         bool modified;
531
532         WARN_ON(end < start);
533         if (end == (u64)-1) {
534                 len = (u64)-1;
535                 testend = 0;
536         }
537         while (1) {
538                 int no_splits = 0;
539
540                 modified = false;
541                 if (!split)
542                         split = alloc_extent_map();
543                 if (!split2)
544                         split2 = alloc_extent_map();
545                 if (!split || !split2)
546                         no_splits = 1;
547
548                 write_lock(&em_tree->lock);
549                 em = lookup_extent_mapping(em_tree, start, len);
550                 if (!em) {
551                         write_unlock(&em_tree->lock);
552                         break;
553                 }
554                 flags = em->flags;
555                 gen = em->generation;
556                 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
557                         if (testend && em->start + em->len >= start + len) {
558                                 free_extent_map(em);
559                                 write_unlock(&em_tree->lock);
560                                 break;
561                         }
562                         start = em->start + em->len;
563                         if (testend)
564                                 len = start + len - (em->start + em->len);
565                         free_extent_map(em);
566                         write_unlock(&em_tree->lock);
567                         continue;
568                 }
569                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
570                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
571                 clear_bit(EXTENT_FLAG_LOGGING, &flags);
572                 modified = !list_empty(&em->list);
573                 if (no_splits)
574                         goto next;
575
576                 if (em->start < start) {
577                         split->start = em->start;
578                         split->len = start - em->start;
579
580                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
581                                 split->orig_start = em->orig_start;
582                                 split->block_start = em->block_start;
583
584                                 if (compressed)
585                                         split->block_len = em->block_len;
586                                 else
587                                         split->block_len = split->len;
588                                 split->orig_block_len = max(split->block_len,
589                                                 em->orig_block_len);
590                                 split->ram_bytes = em->ram_bytes;
591                         } else {
592                                 split->orig_start = split->start;
593                                 split->block_len = 0;
594                                 split->block_start = em->block_start;
595                                 split->orig_block_len = 0;
596                                 split->ram_bytes = split->len;
597                         }
598
599                         split->generation = gen;
600                         split->flags = flags;
601                         split->compress_type = em->compress_type;
602                         replace_extent_mapping(em_tree, em, split, modified);
603                         free_extent_map(split);
604                         split = split2;
605                         split2 = NULL;
606                 }
607                 if (testend && em->start + em->len > start + len) {
608                         u64 diff = start + len - em->start;
609
610                         split->start = start + len;
611                         split->len = em->start + em->len - (start + len);
612                         split->flags = flags;
613                         split->compress_type = em->compress_type;
614                         split->generation = gen;
615
616                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
617                                 split->orig_block_len = max(em->block_len,
618                                                     em->orig_block_len);
619
620                                 split->ram_bytes = em->ram_bytes;
621                                 if (compressed) {
622                                         split->block_len = em->block_len;
623                                         split->block_start = em->block_start;
624                                         split->orig_start = em->orig_start;
625                                 } else {
626                                         split->block_len = split->len;
627                                         split->block_start = em->block_start
628                                                 + diff;
629                                         split->orig_start = em->orig_start;
630                                 }
631                         } else {
632                                 split->ram_bytes = split->len;
633                                 split->orig_start = split->start;
634                                 split->block_len = 0;
635                                 split->block_start = em->block_start;
636                                 split->orig_block_len = 0;
637                         }
638
639                         if (extent_map_in_tree(em)) {
640                                 replace_extent_mapping(em_tree, em, split,
641                                                        modified);
642                         } else {
643                                 ret = add_extent_mapping(em_tree, split,
644                                                          modified);
645                                 ASSERT(ret == 0); /* Logic error */
646                         }
647                         free_extent_map(split);
648                         split = NULL;
649                 }
650 next:
651                 if (extent_map_in_tree(em))
652                         remove_extent_mapping(em_tree, em);
653                 write_unlock(&em_tree->lock);
654
655                 /* once for us */
656                 free_extent_map(em);
657                 /* once for the tree*/
658                 free_extent_map(em);
659         }
660         if (split)
661                 free_extent_map(split);
662         if (split2)
663                 free_extent_map(split2);
664 }
665
666 /*
667  * this is very complex, but the basic idea is to drop all extents
668  * in the range start - end.  hint_block is filled in with a block number
669  * that would be a good hint to the block allocator for this file.
670  *
671  * If an extent intersects the range but is not entirely inside the range
672  * it is either truncated or split.  Anything entirely inside the range
673  * is deleted from the tree.
674  */
675 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
676                          struct btrfs_root *root, struct btrfs_inode *inode,
677                          struct btrfs_path *path, u64 start, u64 end,
678                          u64 *drop_end, int drop_cache,
679                          int replace_extent,
680                          u32 extent_item_size,
681                          int *key_inserted)
682 {
683         struct btrfs_fs_info *fs_info = root->fs_info;
684         struct extent_buffer *leaf;
685         struct btrfs_file_extent_item *fi;
686         struct btrfs_ref ref = { 0 };
687         struct btrfs_key key;
688         struct btrfs_key new_key;
689         struct inode *vfs_inode = &inode->vfs_inode;
690         u64 ino = btrfs_ino(inode);
691         u64 search_start = start;
692         u64 disk_bytenr = 0;
693         u64 num_bytes = 0;
694         u64 extent_offset = 0;
695         u64 extent_end = 0;
696         u64 last_end = start;
697         int del_nr = 0;
698         int del_slot = 0;
699         int extent_type;
700         int recow;
701         int ret;
702         int modify_tree = -1;
703         int update_refs;
704         int found = 0;
705         int leafs_visited = 0;
706
707         if (drop_cache)
708                 btrfs_drop_extent_cache(inode, start, end - 1, 0);
709
710         if (start >= inode->disk_i_size && !replace_extent)
711                 modify_tree = 0;
712
713         update_refs = (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
714                        root == fs_info->tree_root);
715         while (1) {
716                 recow = 0;
717                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
718                                                search_start, modify_tree);
719                 if (ret < 0)
720                         break;
721                 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
722                         leaf = path->nodes[0];
723                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
724                         if (key.objectid == ino &&
725                             key.type == BTRFS_EXTENT_DATA_KEY)
726                                 path->slots[0]--;
727                 }
728                 ret = 0;
729                 leafs_visited++;
730 next_slot:
731                 leaf = path->nodes[0];
732                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
733                         BUG_ON(del_nr > 0);
734                         ret = btrfs_next_leaf(root, path);
735                         if (ret < 0)
736                                 break;
737                         if (ret > 0) {
738                                 ret = 0;
739                                 break;
740                         }
741                         leafs_visited++;
742                         leaf = path->nodes[0];
743                         recow = 1;
744                 }
745
746                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
747
748                 if (key.objectid > ino)
749                         break;
750                 if (WARN_ON_ONCE(key.objectid < ino) ||
751                     key.type < BTRFS_EXTENT_DATA_KEY) {
752                         ASSERT(del_nr == 0);
753                         path->slots[0]++;
754                         goto next_slot;
755                 }
756                 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
757                         break;
758
759                 fi = btrfs_item_ptr(leaf, path->slots[0],
760                                     struct btrfs_file_extent_item);
761                 extent_type = btrfs_file_extent_type(leaf, fi);
762
763                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
764                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
765                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
766                         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
767                         extent_offset = btrfs_file_extent_offset(leaf, fi);
768                         extent_end = key.offset +
769                                 btrfs_file_extent_num_bytes(leaf, fi);
770                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
771                         extent_end = key.offset +
772                                 btrfs_file_extent_ram_bytes(leaf, fi);
773                 } else {
774                         /* can't happen */
775                         BUG();
776                 }
777
778                 /*
779                  * Don't skip extent items representing 0 byte lengths. They
780                  * used to be created (bug) if while punching holes we hit
781                  * -ENOSPC condition. So if we find one here, just ensure we
782                  * delete it, otherwise we would insert a new file extent item
783                  * with the same key (offset) as that 0 bytes length file
784                  * extent item in the call to setup_items_for_insert() later
785                  * in this function.
786                  */
787                 if (extent_end == key.offset && extent_end >= search_start) {
788                         last_end = extent_end;
789                         goto delete_extent_item;
790                 }
791
792                 if (extent_end <= search_start) {
793                         path->slots[0]++;
794                         goto next_slot;
795                 }
796
797                 found = 1;
798                 search_start = max(key.offset, start);
799                 if (recow || !modify_tree) {
800                         modify_tree = -1;
801                         btrfs_release_path(path);
802                         continue;
803                 }
804
805                 /*
806                  *     | - range to drop - |
807                  *  | -------- extent -------- |
808                  */
809                 if (start > key.offset && end < extent_end) {
810                         BUG_ON(del_nr > 0);
811                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
812                                 ret = -EOPNOTSUPP;
813                                 break;
814                         }
815
816                         memcpy(&new_key, &key, sizeof(new_key));
817                         new_key.offset = start;
818                         ret = btrfs_duplicate_item(trans, root, path,
819                                                    &new_key);
820                         if (ret == -EAGAIN) {
821                                 btrfs_release_path(path);
822                                 continue;
823                         }
824                         if (ret < 0)
825                                 break;
826
827                         leaf = path->nodes[0];
828                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
829                                             struct btrfs_file_extent_item);
830                         btrfs_set_file_extent_num_bytes(leaf, fi,
831                                                         start - key.offset);
832
833                         fi = btrfs_item_ptr(leaf, path->slots[0],
834                                             struct btrfs_file_extent_item);
835
836                         extent_offset += start - key.offset;
837                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
838                         btrfs_set_file_extent_num_bytes(leaf, fi,
839                                                         extent_end - start);
840                         btrfs_mark_buffer_dirty(leaf);
841
842                         if (update_refs && disk_bytenr > 0) {
843                                 btrfs_init_generic_ref(&ref,
844                                                 BTRFS_ADD_DELAYED_REF,
845                                                 disk_bytenr, num_bytes, 0);
846                                 btrfs_init_data_ref(&ref,
847                                                 root->root_key.objectid,
848                                                 new_key.objectid,
849                                                 start - extent_offset);
850                                 ret = btrfs_inc_extent_ref(trans, &ref);
851                                 BUG_ON(ret); /* -ENOMEM */
852                         }
853                         key.offset = start;
854                 }
855                 /*
856                  * From here on out we will have actually dropped something, so
857                  * last_end can be updated.
858                  */
859                 last_end = extent_end;
860
861                 /*
862                  *  | ---- range to drop ----- |
863                  *      | -------- extent -------- |
864                  */
865                 if (start <= key.offset && end < extent_end) {
866                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
867                                 ret = -EOPNOTSUPP;
868                                 break;
869                         }
870
871                         memcpy(&new_key, &key, sizeof(new_key));
872                         new_key.offset = end;
873                         btrfs_set_item_key_safe(fs_info, path, &new_key);
874
875                         extent_offset += end - key.offset;
876                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
877                         btrfs_set_file_extent_num_bytes(leaf, fi,
878                                                         extent_end - end);
879                         btrfs_mark_buffer_dirty(leaf);
880                         if (update_refs && disk_bytenr > 0)
881                                 inode_sub_bytes(vfs_inode, end - key.offset);
882                         break;
883                 }
884
885                 search_start = extent_end;
886                 /*
887                  *       | ---- range to drop ----- |
888                  *  | -------- extent -------- |
889                  */
890                 if (start > key.offset && end >= extent_end) {
891                         BUG_ON(del_nr > 0);
892                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
893                                 ret = -EOPNOTSUPP;
894                                 break;
895                         }
896
897                         btrfs_set_file_extent_num_bytes(leaf, fi,
898                                                         start - key.offset);
899                         btrfs_mark_buffer_dirty(leaf);
900                         if (update_refs && disk_bytenr > 0)
901                                 inode_sub_bytes(vfs_inode, extent_end - start);
902                         if (end == extent_end)
903                                 break;
904
905                         path->slots[0]++;
906                         goto next_slot;
907                 }
908
909                 /*
910                  *  | ---- range to drop ----- |
911                  *    | ------ extent ------ |
912                  */
913                 if (start <= key.offset && end >= extent_end) {
914 delete_extent_item:
915                         if (del_nr == 0) {
916                                 del_slot = path->slots[0];
917                                 del_nr = 1;
918                         } else {
919                                 BUG_ON(del_slot + del_nr != path->slots[0]);
920                                 del_nr++;
921                         }
922
923                         if (update_refs &&
924                             extent_type == BTRFS_FILE_EXTENT_INLINE) {
925                                 inode_sub_bytes(vfs_inode,
926                                                 extent_end - key.offset);
927                                 extent_end = ALIGN(extent_end,
928                                                    fs_info->sectorsize);
929                         } else if (update_refs && disk_bytenr > 0) {
930                                 btrfs_init_generic_ref(&ref,
931                                                 BTRFS_DROP_DELAYED_REF,
932                                                 disk_bytenr, num_bytes, 0);
933                                 btrfs_init_data_ref(&ref,
934                                                 root->root_key.objectid,
935                                                 key.objectid,
936                                                 key.offset - extent_offset);
937                                 ret = btrfs_free_extent(trans, &ref);
938                                 BUG_ON(ret); /* -ENOMEM */
939                                 inode_sub_bytes(vfs_inode,
940                                                 extent_end - key.offset);
941                         }
942
943                         if (end == extent_end)
944                                 break;
945
946                         if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
947                                 path->slots[0]++;
948                                 goto next_slot;
949                         }
950
951                         ret = btrfs_del_items(trans, root, path, del_slot,
952                                               del_nr);
953                         if (ret) {
954                                 btrfs_abort_transaction(trans, ret);
955                                 break;
956                         }
957
958                         del_nr = 0;
959                         del_slot = 0;
960
961                         btrfs_release_path(path);
962                         continue;
963                 }
964
965                 BUG();
966         }
967
968         if (!ret && del_nr > 0) {
969                 /*
970                  * Set path->slots[0] to first slot, so that after the delete
971                  * if items are move off from our leaf to its immediate left or
972                  * right neighbor leafs, we end up with a correct and adjusted
973                  * path->slots[0] for our insertion (if replace_extent != 0).
974                  */
975                 path->slots[0] = del_slot;
976                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
977                 if (ret)
978                         btrfs_abort_transaction(trans, ret);
979         }
980
981         leaf = path->nodes[0];
982         /*
983          * If btrfs_del_items() was called, it might have deleted a leaf, in
984          * which case it unlocked our path, so check path->locks[0] matches a
985          * write lock.
986          */
987         if (!ret && replace_extent && leafs_visited == 1 &&
988             (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
989              path->locks[0] == BTRFS_WRITE_LOCK) &&
990             btrfs_leaf_free_space(leaf) >=
991             sizeof(struct btrfs_item) + extent_item_size) {
992
993                 key.objectid = ino;
994                 key.type = BTRFS_EXTENT_DATA_KEY;
995                 key.offset = start;
996                 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
997                         struct btrfs_key slot_key;
998
999                         btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1000                         if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1001                                 path->slots[0]++;
1002                 }
1003                 setup_items_for_insert(root, path, &key, &extent_item_size, 1);
1004                 *key_inserted = 1;
1005         }
1006
1007         if (!replace_extent || !(*key_inserted))
1008                 btrfs_release_path(path);
1009         if (drop_end)
1010                 *drop_end = found ? min(end, last_end) : end;
1011         return ret;
1012 }
1013
1014 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1015                        struct btrfs_root *root, struct inode *inode, u64 start,
1016                        u64 end, int drop_cache)
1017 {
1018         struct btrfs_path *path;
1019         int ret;
1020
1021         path = btrfs_alloc_path();
1022         if (!path)
1023                 return -ENOMEM;
1024         ret = __btrfs_drop_extents(trans, root, BTRFS_I(inode), path, start,
1025                                    end, NULL, drop_cache, 0, 0, NULL);
1026         btrfs_free_path(path);
1027         return ret;
1028 }
1029
1030 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1031                             u64 objectid, u64 bytenr, u64 orig_offset,
1032                             u64 *start, u64 *end)
1033 {
1034         struct btrfs_file_extent_item *fi;
1035         struct btrfs_key key;
1036         u64 extent_end;
1037
1038         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1039                 return 0;
1040
1041         btrfs_item_key_to_cpu(leaf, &key, slot);
1042         if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1043                 return 0;
1044
1045         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1046         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1047             btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1048             btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1049             btrfs_file_extent_compression(leaf, fi) ||
1050             btrfs_file_extent_encryption(leaf, fi) ||
1051             btrfs_file_extent_other_encoding(leaf, fi))
1052                 return 0;
1053
1054         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1055         if ((*start && *start != key.offset) || (*end && *end != extent_end))
1056                 return 0;
1057
1058         *start = key.offset;
1059         *end = extent_end;
1060         return 1;
1061 }
1062
1063 /*
1064  * Mark extent in the range start - end as written.
1065  *
1066  * This changes extent type from 'pre-allocated' to 'regular'. If only
1067  * part of extent is marked as written, the extent will be split into
1068  * two or three.
1069  */
1070 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1071                               struct btrfs_inode *inode, u64 start, u64 end)
1072 {
1073         struct btrfs_fs_info *fs_info = trans->fs_info;
1074         struct btrfs_root *root = inode->root;
1075         struct extent_buffer *leaf;
1076         struct btrfs_path *path;
1077         struct btrfs_file_extent_item *fi;
1078         struct btrfs_ref ref = { 0 };
1079         struct btrfs_key key;
1080         struct btrfs_key new_key;
1081         u64 bytenr;
1082         u64 num_bytes;
1083         u64 extent_end;
1084         u64 orig_offset;
1085         u64 other_start;
1086         u64 other_end;
1087         u64 split;
1088         int del_nr = 0;
1089         int del_slot = 0;
1090         int recow;
1091         int ret;
1092         u64 ino = btrfs_ino(inode);
1093
1094         path = btrfs_alloc_path();
1095         if (!path)
1096                 return -ENOMEM;
1097 again:
1098         recow = 0;
1099         split = start;
1100         key.objectid = ino;
1101         key.type = BTRFS_EXTENT_DATA_KEY;
1102         key.offset = split;
1103
1104         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1105         if (ret < 0)
1106                 goto out;
1107         if (ret > 0 && path->slots[0] > 0)
1108                 path->slots[0]--;
1109
1110         leaf = path->nodes[0];
1111         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1112         if (key.objectid != ino ||
1113             key.type != BTRFS_EXTENT_DATA_KEY) {
1114                 ret = -EINVAL;
1115                 btrfs_abort_transaction(trans, ret);
1116                 goto out;
1117         }
1118         fi = btrfs_item_ptr(leaf, path->slots[0],
1119                             struct btrfs_file_extent_item);
1120         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1121                 ret = -EINVAL;
1122                 btrfs_abort_transaction(trans, ret);
1123                 goto out;
1124         }
1125         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1126         if (key.offset > start || extent_end < end) {
1127                 ret = -EINVAL;
1128                 btrfs_abort_transaction(trans, ret);
1129                 goto out;
1130         }
1131
1132         bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1133         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1134         orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1135         memcpy(&new_key, &key, sizeof(new_key));
1136
1137         if (start == key.offset && end < extent_end) {
1138                 other_start = 0;
1139                 other_end = start;
1140                 if (extent_mergeable(leaf, path->slots[0] - 1,
1141                                      ino, bytenr, orig_offset,
1142                                      &other_start, &other_end)) {
1143                         new_key.offset = end;
1144                         btrfs_set_item_key_safe(fs_info, path, &new_key);
1145                         fi = btrfs_item_ptr(leaf, path->slots[0],
1146                                             struct btrfs_file_extent_item);
1147                         btrfs_set_file_extent_generation(leaf, fi,
1148                                                          trans->transid);
1149                         btrfs_set_file_extent_num_bytes(leaf, fi,
1150                                                         extent_end - end);
1151                         btrfs_set_file_extent_offset(leaf, fi,
1152                                                      end - orig_offset);
1153                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1154                                             struct btrfs_file_extent_item);
1155                         btrfs_set_file_extent_generation(leaf, fi,
1156                                                          trans->transid);
1157                         btrfs_set_file_extent_num_bytes(leaf, fi,
1158                                                         end - other_start);
1159                         btrfs_mark_buffer_dirty(leaf);
1160                         goto out;
1161                 }
1162         }
1163
1164         if (start > key.offset && end == extent_end) {
1165                 other_start = end;
1166                 other_end = 0;
1167                 if (extent_mergeable(leaf, path->slots[0] + 1,
1168                                      ino, bytenr, orig_offset,
1169                                      &other_start, &other_end)) {
1170                         fi = btrfs_item_ptr(leaf, path->slots[0],
1171                                             struct btrfs_file_extent_item);
1172                         btrfs_set_file_extent_num_bytes(leaf, fi,
1173                                                         start - key.offset);
1174                         btrfs_set_file_extent_generation(leaf, fi,
1175                                                          trans->transid);
1176                         path->slots[0]++;
1177                         new_key.offset = start;
1178                         btrfs_set_item_key_safe(fs_info, path, &new_key);
1179
1180                         fi = btrfs_item_ptr(leaf, path->slots[0],
1181                                             struct btrfs_file_extent_item);
1182                         btrfs_set_file_extent_generation(leaf, fi,
1183                                                          trans->transid);
1184                         btrfs_set_file_extent_num_bytes(leaf, fi,
1185                                                         other_end - start);
1186                         btrfs_set_file_extent_offset(leaf, fi,
1187                                                      start - orig_offset);
1188                         btrfs_mark_buffer_dirty(leaf);
1189                         goto out;
1190                 }
1191         }
1192
1193         while (start > key.offset || end < extent_end) {
1194                 if (key.offset == start)
1195                         split = end;
1196
1197                 new_key.offset = split;
1198                 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1199                 if (ret == -EAGAIN) {
1200                         btrfs_release_path(path);
1201                         goto again;
1202                 }
1203                 if (ret < 0) {
1204                         btrfs_abort_transaction(trans, ret);
1205                         goto out;
1206                 }
1207
1208                 leaf = path->nodes[0];
1209                 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1210                                     struct btrfs_file_extent_item);
1211                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1212                 btrfs_set_file_extent_num_bytes(leaf, fi,
1213                                                 split - key.offset);
1214
1215                 fi = btrfs_item_ptr(leaf, path->slots[0],
1216                                     struct btrfs_file_extent_item);
1217
1218                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1219                 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1220                 btrfs_set_file_extent_num_bytes(leaf, fi,
1221                                                 extent_end - split);
1222                 btrfs_mark_buffer_dirty(leaf);
1223
1224                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1225                                        num_bytes, 0);
1226                 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1227                                     orig_offset);
1228                 ret = btrfs_inc_extent_ref(trans, &ref);
1229                 if (ret) {
1230                         btrfs_abort_transaction(trans, ret);
1231                         goto out;
1232                 }
1233
1234                 if (split == start) {
1235                         key.offset = start;
1236                 } else {
1237                         if (start != key.offset) {
1238                                 ret = -EINVAL;
1239                                 btrfs_abort_transaction(trans, ret);
1240                                 goto out;
1241                         }
1242                         path->slots[0]--;
1243                         extent_end = end;
1244                 }
1245                 recow = 1;
1246         }
1247
1248         other_start = end;
1249         other_end = 0;
1250         btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1251                                num_bytes, 0);
1252         btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1253         if (extent_mergeable(leaf, path->slots[0] + 1,
1254                              ino, bytenr, orig_offset,
1255                              &other_start, &other_end)) {
1256                 if (recow) {
1257                         btrfs_release_path(path);
1258                         goto again;
1259                 }
1260                 extent_end = other_end;
1261                 del_slot = path->slots[0] + 1;
1262                 del_nr++;
1263                 ret = btrfs_free_extent(trans, &ref);
1264                 if (ret) {
1265                         btrfs_abort_transaction(trans, ret);
1266                         goto out;
1267                 }
1268         }
1269         other_start = 0;
1270         other_end = start;
1271         if (extent_mergeable(leaf, path->slots[0] - 1,
1272                              ino, bytenr, orig_offset,
1273                              &other_start, &other_end)) {
1274                 if (recow) {
1275                         btrfs_release_path(path);
1276                         goto again;
1277                 }
1278                 key.offset = other_start;
1279                 del_slot = path->slots[0];
1280                 del_nr++;
1281                 ret = btrfs_free_extent(trans, &ref);
1282                 if (ret) {
1283                         btrfs_abort_transaction(trans, ret);
1284                         goto out;
1285                 }
1286         }
1287         if (del_nr == 0) {
1288                 fi = btrfs_item_ptr(leaf, path->slots[0],
1289                            struct btrfs_file_extent_item);
1290                 btrfs_set_file_extent_type(leaf, fi,
1291                                            BTRFS_FILE_EXTENT_REG);
1292                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1293                 btrfs_mark_buffer_dirty(leaf);
1294         } else {
1295                 fi = btrfs_item_ptr(leaf, del_slot - 1,
1296                            struct btrfs_file_extent_item);
1297                 btrfs_set_file_extent_type(leaf, fi,
1298                                            BTRFS_FILE_EXTENT_REG);
1299                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1300                 btrfs_set_file_extent_num_bytes(leaf, fi,
1301                                                 extent_end - key.offset);
1302                 btrfs_mark_buffer_dirty(leaf);
1303
1304                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1305                 if (ret < 0) {
1306                         btrfs_abort_transaction(trans, ret);
1307                         goto out;
1308                 }
1309         }
1310 out:
1311         btrfs_free_path(path);
1312         return 0;
1313 }
1314
1315 /*
1316  * on error we return an unlocked page and the error value
1317  * on success we return a locked page and 0
1318  */
1319 static int prepare_uptodate_page(struct inode *inode,
1320                                  struct page *page, u64 pos,
1321                                  bool force_uptodate)
1322 {
1323         int ret = 0;
1324
1325         if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1326             !PageUptodate(page)) {
1327                 ret = btrfs_readpage(NULL, page);
1328                 if (ret)
1329                         return ret;
1330                 lock_page(page);
1331                 if (!PageUptodate(page)) {
1332                         unlock_page(page);
1333                         return -EIO;
1334                 }
1335                 if (page->mapping != inode->i_mapping) {
1336                         unlock_page(page);
1337                         return -EAGAIN;
1338                 }
1339         }
1340         return 0;
1341 }
1342
1343 /*
1344  * this just gets pages into the page cache and locks them down.
1345  */
1346 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1347                                   size_t num_pages, loff_t pos,
1348                                   size_t write_bytes, bool force_uptodate)
1349 {
1350         int i;
1351         unsigned long index = pos >> PAGE_SHIFT;
1352         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1353         int err = 0;
1354         int faili;
1355
1356         for (i = 0; i < num_pages; i++) {
1357 again:
1358                 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1359                                                mask | __GFP_WRITE);
1360                 if (!pages[i]) {
1361                         faili = i - 1;
1362                         err = -ENOMEM;
1363                         goto fail;
1364                 }
1365
1366                 if (i == 0)
1367                         err = prepare_uptodate_page(inode, pages[i], pos,
1368                                                     force_uptodate);
1369                 if (!err && i == num_pages - 1)
1370                         err = prepare_uptodate_page(inode, pages[i],
1371                                                     pos + write_bytes, false);
1372                 if (err) {
1373                         put_page(pages[i]);
1374                         if (err == -EAGAIN) {
1375                                 err = 0;
1376                                 goto again;
1377                         }
1378                         faili = i - 1;
1379                         goto fail;
1380                 }
1381                 wait_on_page_writeback(pages[i]);
1382         }
1383
1384         return 0;
1385 fail:
1386         while (faili >= 0) {
1387                 unlock_page(pages[faili]);
1388                 put_page(pages[faili]);
1389                 faili--;
1390         }
1391         return err;
1392
1393 }
1394
1395 /*
1396  * This function locks the extent and properly waits for data=ordered extents
1397  * to finish before allowing the pages to be modified if need.
1398  *
1399  * The return value:
1400  * 1 - the extent is locked
1401  * 0 - the extent is not locked, and everything is OK
1402  * -EAGAIN - need re-prepare the pages
1403  * the other < 0 number - Something wrong happens
1404  */
1405 static noinline int
1406 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1407                                 size_t num_pages, loff_t pos,
1408                                 size_t write_bytes,
1409                                 u64 *lockstart, u64 *lockend,
1410                                 struct extent_state **cached_state)
1411 {
1412         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1413         u64 start_pos;
1414         u64 last_pos;
1415         int i;
1416         int ret = 0;
1417
1418         start_pos = round_down(pos, fs_info->sectorsize);
1419         last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1420
1421         if (start_pos < inode->vfs_inode.i_size) {
1422                 struct btrfs_ordered_extent *ordered;
1423
1424                 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1425                                 cached_state);
1426                 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1427                                                      last_pos - start_pos + 1);
1428                 if (ordered &&
1429                     ordered->file_offset + ordered->num_bytes > start_pos &&
1430                     ordered->file_offset <= last_pos) {
1431                         unlock_extent_cached(&inode->io_tree, start_pos,
1432                                         last_pos, cached_state);
1433                         for (i = 0; i < num_pages; i++) {
1434                                 unlock_page(pages[i]);
1435                                 put_page(pages[i]);
1436                         }
1437                         btrfs_start_ordered_extent(ordered, 1);
1438                         btrfs_put_ordered_extent(ordered);
1439                         return -EAGAIN;
1440                 }
1441                 if (ordered)
1442                         btrfs_put_ordered_extent(ordered);
1443
1444                 *lockstart = start_pos;
1445                 *lockend = last_pos;
1446                 ret = 1;
1447         }
1448
1449         /*
1450          * It's possible the pages are dirty right now, but we don't want
1451          * to clean them yet because copy_from_user may catch a page fault
1452          * and we might have to fall back to one page at a time.  If that
1453          * happens, we'll unlock these pages and we'd have a window where
1454          * reclaim could sneak in and drop the once-dirty page on the floor
1455          * without writing it.
1456          *
1457          * We have the pages locked and the extent range locked, so there's
1458          * no way someone can start IO on any dirty pages in this range.
1459          *
1460          * We'll call btrfs_dirty_pages() later on, and that will flip around
1461          * delalloc bits and dirty the pages as required.
1462          */
1463         for (i = 0; i < num_pages; i++) {
1464                 set_page_extent_mapped(pages[i]);
1465                 WARN_ON(!PageLocked(pages[i]));
1466         }
1467
1468         return ret;
1469 }
1470
1471 static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1472                            size_t *write_bytes, bool nowait)
1473 {
1474         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1475         struct btrfs_root *root = inode->root;
1476         u64 lockstart, lockend;
1477         u64 num_bytes;
1478         int ret;
1479
1480         if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1481                 return 0;
1482
1483         if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
1484                 return -EAGAIN;
1485
1486         lockstart = round_down(pos, fs_info->sectorsize);
1487         lockend = round_up(pos + *write_bytes,
1488                            fs_info->sectorsize) - 1;
1489         num_bytes = lockend - lockstart + 1;
1490
1491         if (nowait) {
1492                 struct btrfs_ordered_extent *ordered;
1493
1494                 if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1495                         return -EAGAIN;
1496
1497                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1498                                                      num_bytes);
1499                 if (ordered) {
1500                         btrfs_put_ordered_extent(ordered);
1501                         ret = -EAGAIN;
1502                         goto out_unlock;
1503                 }
1504         } else {
1505                 btrfs_lock_and_flush_ordered_range(inode, lockstart,
1506                                                    lockend, NULL);
1507         }
1508
1509         ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1510                         NULL, NULL, NULL, false);
1511         if (ret <= 0) {
1512                 ret = 0;
1513                 if (!nowait)
1514                         btrfs_drew_write_unlock(&root->snapshot_lock);
1515         } else {
1516                 *write_bytes = min_t(size_t, *write_bytes ,
1517                                      num_bytes - pos + lockstart);
1518         }
1519 out_unlock:
1520         unlock_extent(&inode->io_tree, lockstart, lockend);
1521
1522         return ret;
1523 }
1524
1525 static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1526                               size_t *write_bytes)
1527 {
1528         return check_can_nocow(inode, pos, write_bytes, true);
1529 }
1530
1531 /*
1532  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1533  *
1534  * @pos:         File offset
1535  * @write_bytes: The length to write, will be updated to the nocow writeable
1536  *               range
1537  *
1538  * This function will flush ordered extents in the range to ensure proper
1539  * nocow checks.
1540  *
1541  * Return:
1542  * >0           and update @write_bytes if we can do nocow write
1543  *  0           if we can't do nocow write
1544  * -EAGAIN      if we can't get the needed lock or there are ordered extents
1545  *              for * (nowait == true) case
1546  * <0           if other error happened
1547  *
1548  * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1549  */
1550 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1551                            size_t *write_bytes)
1552 {
1553         return check_can_nocow(inode, pos, write_bytes, false);
1554 }
1555
1556 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1557 {
1558         btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1559 }
1560
1561 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1562                                                struct iov_iter *i)
1563 {
1564         struct file *file = iocb->ki_filp;
1565         loff_t pos = iocb->ki_pos;
1566         struct inode *inode = file_inode(file);
1567         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1568         struct page **pages = NULL;
1569         struct extent_changeset *data_reserved = NULL;
1570         u64 release_bytes = 0;
1571         u64 lockstart;
1572         u64 lockend;
1573         size_t num_written = 0;
1574         int nrptrs;
1575         int ret = 0;
1576         bool only_release_metadata = false;
1577         bool force_page_uptodate = false;
1578
1579         nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1580                         PAGE_SIZE / (sizeof(struct page *)));
1581         nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1582         nrptrs = max(nrptrs, 8);
1583         pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1584         if (!pages)
1585                 return -ENOMEM;
1586
1587         while (iov_iter_count(i) > 0) {
1588                 struct extent_state *cached_state = NULL;
1589                 size_t offset = offset_in_page(pos);
1590                 size_t sector_offset;
1591                 size_t write_bytes = min(iov_iter_count(i),
1592                                          nrptrs * (size_t)PAGE_SIZE -
1593                                          offset);
1594                 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1595                                                 PAGE_SIZE);
1596                 size_t reserve_bytes;
1597                 size_t dirty_pages;
1598                 size_t copied;
1599                 size_t dirty_sectors;
1600                 size_t num_sectors;
1601                 int extents_locked;
1602
1603                 WARN_ON(num_pages > nrptrs);
1604
1605                 /*
1606                  * Fault pages before locking them in prepare_pages
1607                  * to avoid recursive lock
1608                  */
1609                 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1610                         ret = -EFAULT;
1611                         break;
1612                 }
1613
1614                 only_release_metadata = false;
1615                 sector_offset = pos & (fs_info->sectorsize - 1);
1616                 reserve_bytes = round_up(write_bytes + sector_offset,
1617                                 fs_info->sectorsize);
1618
1619                 extent_changeset_release(data_reserved);
1620                 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1621                                                   &data_reserved, pos,
1622                                                   write_bytes);
1623                 if (ret < 0) {
1624                         if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1625                                                    &write_bytes) > 0) {
1626                                 /*
1627                                  * For nodata cow case, no need to reserve
1628                                  * data space.
1629                                  */
1630                                 only_release_metadata = true;
1631                                 /*
1632                                  * our prealloc extent may be smaller than
1633                                  * write_bytes, so scale down.
1634                                  */
1635                                 num_pages = DIV_ROUND_UP(write_bytes + offset,
1636                                                          PAGE_SIZE);
1637                                 reserve_bytes = round_up(write_bytes +
1638                                                          sector_offset,
1639                                                          fs_info->sectorsize);
1640                         } else {
1641                                 break;
1642                         }
1643                 }
1644
1645                 WARN_ON(reserve_bytes == 0);
1646                 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1647                                 reserve_bytes);
1648                 if (ret) {
1649                         if (!only_release_metadata)
1650                                 btrfs_free_reserved_data_space(BTRFS_I(inode),
1651                                                 data_reserved, pos,
1652                                                 write_bytes);
1653                         else
1654                                 btrfs_check_nocow_unlock(BTRFS_I(inode));
1655                         break;
1656                 }
1657
1658                 release_bytes = reserve_bytes;
1659 again:
1660                 /*
1661                  * This is going to setup the pages array with the number of
1662                  * pages we want, so we don't really need to worry about the
1663                  * contents of pages from loop to loop
1664                  */
1665                 ret = prepare_pages(inode, pages, num_pages,
1666                                     pos, write_bytes,
1667                                     force_page_uptodate);
1668                 if (ret) {
1669                         btrfs_delalloc_release_extents(BTRFS_I(inode),
1670                                                        reserve_bytes);
1671                         break;
1672                 }
1673
1674                 extents_locked = lock_and_cleanup_extent_if_need(
1675                                 BTRFS_I(inode), pages,
1676                                 num_pages, pos, write_bytes, &lockstart,
1677                                 &lockend, &cached_state);
1678                 if (extents_locked < 0) {
1679                         if (extents_locked == -EAGAIN)
1680                                 goto again;
1681                         btrfs_delalloc_release_extents(BTRFS_I(inode),
1682                                                        reserve_bytes);
1683                         ret = extents_locked;
1684                         break;
1685                 }
1686
1687                 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1688
1689                 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1690                 dirty_sectors = round_up(copied + sector_offset,
1691                                         fs_info->sectorsize);
1692                 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1693
1694                 /*
1695                  * if we have trouble faulting in the pages, fall
1696                  * back to one page at a time
1697                  */
1698                 if (copied < write_bytes)
1699                         nrptrs = 1;
1700
1701                 if (copied == 0) {
1702                         force_page_uptodate = true;
1703                         dirty_sectors = 0;
1704                         dirty_pages = 0;
1705                 } else {
1706                         force_page_uptodate = false;
1707                         dirty_pages = DIV_ROUND_UP(copied + offset,
1708                                                    PAGE_SIZE);
1709                 }
1710
1711                 if (num_sectors > dirty_sectors) {
1712                         /* release everything except the sectors we dirtied */
1713                         release_bytes -= dirty_sectors <<
1714                                                 fs_info->sb->s_blocksize_bits;
1715                         if (only_release_metadata) {
1716                                 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1717                                                         release_bytes, true);
1718                         } else {
1719                                 u64 __pos;
1720
1721                                 __pos = round_down(pos,
1722                                                    fs_info->sectorsize) +
1723                                         (dirty_pages << PAGE_SHIFT);
1724                                 btrfs_delalloc_release_space(BTRFS_I(inode),
1725                                                 data_reserved, __pos,
1726                                                 release_bytes, true);
1727                         }
1728                 }
1729
1730                 release_bytes = round_up(copied + sector_offset,
1731                                         fs_info->sectorsize);
1732
1733                 if (copied > 0)
1734                         ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1735                                                 dirty_pages, pos, copied,
1736                                                 &cached_state);
1737
1738                 /*
1739                  * If we have not locked the extent range, because the range's
1740                  * start offset is >= i_size, we might still have a non-NULL
1741                  * cached extent state, acquired while marking the extent range
1742                  * as delalloc through btrfs_dirty_pages(). Therefore free any
1743                  * possible cached extent state to avoid a memory leak.
1744                  */
1745                 if (extents_locked)
1746                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1747                                              lockstart, lockend, &cached_state);
1748                 else
1749                         free_extent_state(cached_state);
1750
1751                 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1752                 if (ret) {
1753                         btrfs_drop_pages(pages, num_pages);
1754                         break;
1755                 }
1756
1757                 release_bytes = 0;
1758                 if (only_release_metadata)
1759                         btrfs_check_nocow_unlock(BTRFS_I(inode));
1760
1761                 if (only_release_metadata && copied > 0) {
1762                         lockstart = round_down(pos,
1763                                                fs_info->sectorsize);
1764                         lockend = round_up(pos + copied,
1765                                            fs_info->sectorsize) - 1;
1766
1767                         set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1768                                        lockend, EXTENT_NORESERVE, NULL,
1769                                        NULL, GFP_NOFS);
1770                 }
1771
1772                 btrfs_drop_pages(pages, num_pages);
1773
1774                 cond_resched();
1775
1776                 balance_dirty_pages_ratelimited(inode->i_mapping);
1777
1778                 pos += copied;
1779                 num_written += copied;
1780         }
1781
1782         kfree(pages);
1783
1784         if (release_bytes) {
1785                 if (only_release_metadata) {
1786                         btrfs_check_nocow_unlock(BTRFS_I(inode));
1787                         btrfs_delalloc_release_metadata(BTRFS_I(inode),
1788                                         release_bytes, true);
1789                 } else {
1790                         btrfs_delalloc_release_space(BTRFS_I(inode),
1791                                         data_reserved,
1792                                         round_down(pos, fs_info->sectorsize),
1793                                         release_bytes, true);
1794                 }
1795         }
1796
1797         extent_changeset_free(data_reserved);
1798         return num_written ? num_written : ret;
1799 }
1800
1801 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1802 {
1803         struct file *file = iocb->ki_filp;
1804         struct inode *inode = file_inode(file);
1805         loff_t pos;
1806         ssize_t written;
1807         ssize_t written_buffered;
1808         loff_t endbyte;
1809         int err;
1810
1811         written = btrfs_direct_IO(iocb, from);
1812
1813         if (written < 0 || !iov_iter_count(from))
1814                 return written;
1815
1816         pos = iocb->ki_pos;
1817         written_buffered = btrfs_buffered_write(iocb, from);
1818         if (written_buffered < 0) {
1819                 err = written_buffered;
1820                 goto out;
1821         }
1822         /*
1823          * Ensure all data is persisted. We want the next direct IO read to be
1824          * able to read what was just written.
1825          */
1826         endbyte = pos + written_buffered - 1;
1827         err = btrfs_fdatawrite_range(inode, pos, endbyte);
1828         if (err)
1829                 goto out;
1830         err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1831         if (err)
1832                 goto out;
1833         written += written_buffered;
1834         iocb->ki_pos = pos + written_buffered;
1835         invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1836                                  endbyte >> PAGE_SHIFT);
1837 out:
1838         return written ? written : err;
1839 }
1840
1841 static void update_time_for_write(struct inode *inode)
1842 {
1843         struct timespec64 now;
1844
1845         if (IS_NOCMTIME(inode))
1846                 return;
1847
1848         now = current_time(inode);
1849         if (!timespec64_equal(&inode->i_mtime, &now))
1850                 inode->i_mtime = now;
1851
1852         if (!timespec64_equal(&inode->i_ctime, &now))
1853                 inode->i_ctime = now;
1854
1855         if (IS_I_VERSION(inode))
1856                 inode_inc_iversion(inode);
1857 }
1858
1859 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1860                                     struct iov_iter *from)
1861 {
1862         struct file *file = iocb->ki_filp;
1863         struct inode *inode = file_inode(file);
1864         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1865         struct btrfs_root *root = BTRFS_I(inode)->root;
1866         u64 start_pos;
1867         u64 end_pos;
1868         ssize_t num_written = 0;
1869         const bool sync = iocb->ki_flags & IOCB_DSYNC;
1870         ssize_t err;
1871         loff_t pos;
1872         size_t count;
1873         loff_t oldsize;
1874         int clean_page = 0;
1875
1876         if (!(iocb->ki_flags & IOCB_DIRECT) &&
1877             (iocb->ki_flags & IOCB_NOWAIT))
1878                 return -EOPNOTSUPP;
1879
1880         if (iocb->ki_flags & IOCB_NOWAIT) {
1881                 if (!inode_trylock(inode))
1882                         return -EAGAIN;
1883         } else {
1884                 inode_lock(inode);
1885         }
1886
1887         err = generic_write_checks(iocb, from);
1888         if (err <= 0) {
1889                 inode_unlock(inode);
1890                 return err;
1891         }
1892
1893         pos = iocb->ki_pos;
1894         count = iov_iter_count(from);
1895         if (iocb->ki_flags & IOCB_NOWAIT) {
1896                 size_t nocow_bytes = count;
1897
1898                 /*
1899                  * We will allocate space in case nodatacow is not set,
1900                  * so bail
1901                  */
1902                 if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes)
1903                     <= 0) {
1904                         inode_unlock(inode);
1905                         return -EAGAIN;
1906                 }
1907                 /*
1908                  * There are holes in the range or parts of the range that must
1909                  * be COWed (shared extents, RO block groups, etc), so just bail
1910                  * out.
1911                  */
1912                 if (nocow_bytes < count) {
1913                         inode_unlock(inode);
1914                         return -EAGAIN;
1915                 }
1916         }
1917
1918         current->backing_dev_info = inode_to_bdi(inode);
1919         err = file_remove_privs(file);
1920         if (err) {
1921                 inode_unlock(inode);
1922                 goto out;
1923         }
1924
1925         /*
1926          * If BTRFS flips readonly due to some impossible error
1927          * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1928          * although we have opened a file as writable, we have
1929          * to stop this write operation to ensure FS consistency.
1930          */
1931         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1932                 inode_unlock(inode);
1933                 err = -EROFS;
1934                 goto out;
1935         }
1936
1937         /*
1938          * We reserve space for updating the inode when we reserve space for the
1939          * extent we are going to write, so we will enospc out there.  We don't
1940          * need to start yet another transaction to update the inode as we will
1941          * update the inode when we finish writing whatever data we write.
1942          */
1943         update_time_for_write(inode);
1944
1945         start_pos = round_down(pos, fs_info->sectorsize);
1946         oldsize = i_size_read(inode);
1947         if (start_pos > oldsize) {
1948                 /* Expand hole size to cover write data, preventing empty gap */
1949                 end_pos = round_up(pos + count,
1950                                    fs_info->sectorsize);
1951                 err = btrfs_cont_expand(inode, oldsize, end_pos);
1952                 if (err) {
1953                         inode_unlock(inode);
1954                         goto out;
1955                 }
1956                 if (start_pos > round_up(oldsize, fs_info->sectorsize))
1957                         clean_page = 1;
1958         }
1959
1960         if (sync)
1961                 atomic_inc(&BTRFS_I(inode)->sync_writers);
1962
1963         if (iocb->ki_flags & IOCB_DIRECT) {
1964                 /*
1965                  * 1. We must always clear IOCB_DSYNC in order to not deadlock
1966                  *    in iomap, as it calls generic_write_sync() in this case.
1967                  * 2. If we are async, we can call iomap_dio_complete() either
1968                  *    in
1969                  *
1970                  *    2.1. A worker thread from the last bio completed.  In this
1971                  *         case we need to mark the btrfs_dio_data that it is
1972                  *         async in order to call generic_write_sync() properly.
1973                  *         This is handled by setting BTRFS_DIO_SYNC_STUB in the
1974                  *         current->journal_info.
1975                  *    2.2  The submitter context, because all IO completed
1976                  *         before we exited iomap_dio_rw().  In this case we can
1977                  *         just re-set the IOCB_DSYNC on the iocb and we'll do
1978                  *         the sync below.  If our ->end_io() gets called and
1979                  *         current->journal_info is set, then we know we're in
1980                  *         our current context and we will clear
1981                  *         current->journal_info to indicate that we need to
1982                  *         sync below.
1983                  */
1984                 if (sync) {
1985                         ASSERT(current->journal_info == NULL);
1986                         iocb->ki_flags &= ~IOCB_DSYNC;
1987                         current->journal_info = BTRFS_DIO_SYNC_STUB;
1988                 }
1989                 num_written = __btrfs_direct_write(iocb, from);
1990
1991                 /*
1992                  * As stated above, we cleared journal_info, so we need to do
1993                  * the sync ourselves.
1994                  */
1995                 if (sync && current->journal_info == NULL)
1996                         iocb->ki_flags |= IOCB_DSYNC;
1997                 current->journal_info = NULL;
1998         } else {
1999                 num_written = btrfs_buffered_write(iocb, from);
2000                 if (num_written > 0)
2001                         iocb->ki_pos = pos + num_written;
2002                 if (clean_page)
2003                         pagecache_isize_extended(inode, oldsize,
2004                                                 i_size_read(inode));
2005         }
2006
2007         inode_unlock(inode);
2008
2009         /*
2010          * We also have to set last_sub_trans to the current log transid,
2011          * otherwise subsequent syncs to a file that's been synced in this
2012          * transaction will appear to have already occurred.
2013          */
2014         spin_lock(&BTRFS_I(inode)->lock);
2015         BTRFS_I(inode)->last_sub_trans = root->log_transid;
2016         spin_unlock(&BTRFS_I(inode)->lock);
2017         if (num_written > 0)
2018                 num_written = generic_write_sync(iocb, num_written);
2019
2020         if (sync)
2021                 atomic_dec(&BTRFS_I(inode)->sync_writers);
2022 out:
2023         current->backing_dev_info = NULL;
2024         return num_written ? num_written : err;
2025 }
2026
2027 int btrfs_release_file(struct inode *inode, struct file *filp)
2028 {
2029         struct btrfs_file_private *private = filp->private_data;
2030
2031         if (private && private->filldir_buf)
2032                 kfree(private->filldir_buf);
2033         kfree(private);
2034         filp->private_data = NULL;
2035
2036         /*
2037          * Set by setattr when we are about to truncate a file from a non-zero
2038          * size to a zero size.  This tries to flush down new bytes that may
2039          * have been written if the application were using truncate to replace
2040          * a file in place.
2041          */
2042         if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
2043                                &BTRFS_I(inode)->runtime_flags))
2044                         filemap_flush(inode->i_mapping);
2045         return 0;
2046 }
2047
2048 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2049 {
2050         int ret;
2051         struct blk_plug plug;
2052
2053         /*
2054          * This is only called in fsync, which would do synchronous writes, so
2055          * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2056          * multiple disks using raid profile, a large IO can be split to
2057          * several segments of stripe length (currently 64K).
2058          */
2059         blk_start_plug(&plug);
2060         atomic_inc(&BTRFS_I(inode)->sync_writers);
2061         ret = btrfs_fdatawrite_range(inode, start, end);
2062         atomic_dec(&BTRFS_I(inode)->sync_writers);
2063         blk_finish_plug(&plug);
2064
2065         return ret;
2066 }
2067
2068 /*
2069  * fsync call for both files and directories.  This logs the inode into
2070  * the tree log instead of forcing full commits whenever possible.
2071  *
2072  * It needs to call filemap_fdatawait so that all ordered extent updates are
2073  * in the metadata btree are up to date for copying to the log.
2074  *
2075  * It drops the inode mutex before doing the tree log commit.  This is an
2076  * important optimization for directories because holding the mutex prevents
2077  * new operations on the dir while we write to disk.
2078  */
2079 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2080 {
2081         struct dentry *dentry = file_dentry(file);
2082         struct inode *inode = d_inode(dentry);
2083         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2084         struct btrfs_root *root = BTRFS_I(inode)->root;
2085         struct btrfs_trans_handle *trans;
2086         struct btrfs_log_ctx ctx;
2087         int ret = 0, err;
2088         u64 len;
2089         bool full_sync;
2090
2091         trace_btrfs_sync_file(file, datasync);
2092
2093         btrfs_init_log_ctx(&ctx, inode);
2094
2095         /*
2096          * Always set the range to a full range, otherwise we can get into
2097          * several problems, from missing file extent items to represent holes
2098          * when not using the NO_HOLES feature, to log tree corruption due to
2099          * races between hole detection during logging and completion of ordered
2100          * extents outside the range, to missing checksums due to ordered extents
2101          * for which we flushed only a subset of their pages.
2102          */
2103         start = 0;
2104         end = LLONG_MAX;
2105         len = (u64)LLONG_MAX + 1;
2106
2107         /*
2108          * We write the dirty pages in the range and wait until they complete
2109          * out of the ->i_mutex. If so, we can flush the dirty pages by
2110          * multi-task, and make the performance up.  See
2111          * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2112          */
2113         ret = start_ordered_ops(inode, start, end);
2114         if (ret)
2115                 goto out;
2116
2117         inode_lock(inode);
2118
2119         /*
2120          * We take the dio_sem here because the tree log stuff can race with
2121          * lockless dio writes and get an extent map logged for an extent we
2122          * never waited on.  We need it this high up for lockdep reasons.
2123          */
2124         down_write(&BTRFS_I(inode)->dio_sem);
2125
2126         atomic_inc(&root->log_batch);
2127
2128         /*
2129          * Always check for the full sync flag while holding the inode's lock,
2130          * to avoid races with other tasks. The flag must be either set all the
2131          * time during logging or always off all the time while logging.
2132          */
2133         full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2134                              &BTRFS_I(inode)->runtime_flags);
2135
2136         /*
2137          * Before we acquired the inode's lock, someone may have dirtied more
2138          * pages in the target range. We need to make sure that writeback for
2139          * any such pages does not start while we are logging the inode, because
2140          * if it does, any of the following might happen when we are not doing a
2141          * full inode sync:
2142          *
2143          * 1) We log an extent after its writeback finishes but before its
2144          *    checksums are added to the csum tree, leading to -EIO errors
2145          *    when attempting to read the extent after a log replay.
2146          *
2147          * 2) We can end up logging an extent before its writeback finishes.
2148          *    Therefore after the log replay we will have a file extent item
2149          *    pointing to an unwritten extent (and no data checksums as well).
2150          *
2151          * So trigger writeback for any eventual new dirty pages and then we
2152          * wait for all ordered extents to complete below.
2153          */
2154         ret = start_ordered_ops(inode, start, end);
2155         if (ret) {
2156                 up_write(&BTRFS_I(inode)->dio_sem);
2157                 inode_unlock(inode);
2158                 goto out;
2159         }
2160
2161         /*
2162          * We have to do this here to avoid the priority inversion of waiting on
2163          * IO of a lower priority task while holding a transaction open.
2164          *
2165          * For a full fsync we wait for the ordered extents to complete while
2166          * for a fast fsync we wait just for writeback to complete, and then
2167          * attach the ordered extents to the transaction so that a transaction
2168          * commit waits for their completion, to avoid data loss if we fsync,
2169          * the current transaction commits before the ordered extents complete
2170          * and a power failure happens right after that.
2171          */
2172         if (full_sync) {
2173                 ret = btrfs_wait_ordered_range(inode, start, len);
2174         } else {
2175                 /*
2176                  * Get our ordered extents as soon as possible to avoid doing
2177                  * checksum lookups in the csum tree, and use instead the
2178                  * checksums attached to the ordered extents.
2179                  */
2180                 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2181                                                       &ctx.ordered_extents);
2182                 ret = filemap_fdatawait_range(inode->i_mapping, start, end);
2183         }
2184
2185         if (ret)
2186                 goto out_release_extents;
2187
2188         atomic_inc(&root->log_batch);
2189
2190         /*
2191          * If we are doing a fast fsync we can not bail out if the inode's
2192          * last_trans is <= then the last committed transaction, because we only
2193          * update the last_trans of the inode during ordered extent completion,
2194          * and for a fast fsync we don't wait for that, we only wait for the
2195          * writeback to complete.
2196          */
2197         smp_mb();
2198         if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2199             (BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed &&
2200              (full_sync || list_empty(&ctx.ordered_extents)))) {
2201                 /*
2202                  * We've had everything committed since the last time we were
2203                  * modified so clear this flag in case it was set for whatever
2204                  * reason, it's no longer relevant.
2205                  */
2206                 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2207                           &BTRFS_I(inode)->runtime_flags);
2208                 /*
2209                  * An ordered extent might have started before and completed
2210                  * already with io errors, in which case the inode was not
2211                  * updated and we end up here. So check the inode's mapping
2212                  * for any errors that might have happened since we last
2213                  * checked called fsync.
2214                  */
2215                 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2216                 goto out_release_extents;
2217         }
2218
2219         /*
2220          * We use start here because we will need to wait on the IO to complete
2221          * in btrfs_sync_log, which could require joining a transaction (for
2222          * example checking cross references in the nocow path).  If we use join
2223          * here we could get into a situation where we're waiting on IO to
2224          * happen that is blocked on a transaction trying to commit.  With start
2225          * we inc the extwriter counter, so we wait for all extwriters to exit
2226          * before we start blocking joiners.  This comment is to keep somebody
2227          * from thinking they are super smart and changing this to
2228          * btrfs_join_transaction *cough*Josef*cough*.
2229          */
2230         trans = btrfs_start_transaction(root, 0);
2231         if (IS_ERR(trans)) {
2232                 ret = PTR_ERR(trans);
2233                 goto out_release_extents;
2234         }
2235
2236         ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2237         btrfs_release_log_ctx_extents(&ctx);
2238         if (ret < 0) {
2239                 /* Fallthrough and commit/free transaction. */
2240                 ret = 1;
2241         }
2242
2243         /* we've logged all the items and now have a consistent
2244          * version of the file in the log.  It is possible that
2245          * someone will come in and modify the file, but that's
2246          * fine because the log is consistent on disk, and we
2247          * have references to all of the file's extents
2248          *
2249          * It is possible that someone will come in and log the
2250          * file again, but that will end up using the synchronization
2251          * inside btrfs_sync_log to keep things safe.
2252          */
2253         up_write(&BTRFS_I(inode)->dio_sem);
2254         inode_unlock(inode);
2255
2256         if (ret != BTRFS_NO_LOG_SYNC) {
2257                 if (!ret) {
2258                         ret = btrfs_sync_log(trans, root, &ctx);
2259                         if (!ret) {
2260                                 ret = btrfs_end_transaction(trans);
2261                                 goto out;
2262                         }
2263                 }
2264                 if (!full_sync) {
2265                         ret = btrfs_wait_ordered_range(inode, start, len);
2266                         if (ret) {
2267                                 btrfs_end_transaction(trans);
2268                                 goto out;
2269                         }
2270                 }
2271                 ret = btrfs_commit_transaction(trans);
2272         } else {
2273                 ret = btrfs_end_transaction(trans);
2274         }
2275 out:
2276         ASSERT(list_empty(&ctx.list));
2277         err = file_check_and_advance_wb_err(file);
2278         if (!ret)
2279                 ret = err;
2280         return ret > 0 ? -EIO : ret;
2281
2282 out_release_extents:
2283         btrfs_release_log_ctx_extents(&ctx);
2284         up_write(&BTRFS_I(inode)->dio_sem);
2285         inode_unlock(inode);
2286         goto out;
2287 }
2288
2289 static const struct vm_operations_struct btrfs_file_vm_ops = {
2290         .fault          = filemap_fault,
2291         .map_pages      = filemap_map_pages,
2292         .page_mkwrite   = btrfs_page_mkwrite,
2293 };
2294
2295 static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
2296 {
2297         struct address_space *mapping = filp->f_mapping;
2298
2299         if (!mapping->a_ops->readpage)
2300                 return -ENOEXEC;
2301
2302         file_accessed(filp);
2303         vma->vm_ops = &btrfs_file_vm_ops;
2304
2305         return 0;
2306 }
2307
2308 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2309                           int slot, u64 start, u64 end)
2310 {
2311         struct btrfs_file_extent_item *fi;
2312         struct btrfs_key key;
2313
2314         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2315                 return 0;
2316
2317         btrfs_item_key_to_cpu(leaf, &key, slot);
2318         if (key.objectid != btrfs_ino(inode) ||
2319             key.type != BTRFS_EXTENT_DATA_KEY)
2320                 return 0;
2321
2322         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2323
2324         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2325                 return 0;
2326
2327         if (btrfs_file_extent_disk_bytenr(leaf, fi))
2328                 return 0;
2329
2330         if (key.offset == end)
2331                 return 1;
2332         if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2333                 return 1;
2334         return 0;
2335 }
2336
2337 static int fill_holes(struct btrfs_trans_handle *trans,
2338                 struct btrfs_inode *inode,
2339                 struct btrfs_path *path, u64 offset, u64 end)
2340 {
2341         struct btrfs_fs_info *fs_info = trans->fs_info;
2342         struct btrfs_root *root = inode->root;
2343         struct extent_buffer *leaf;
2344         struct btrfs_file_extent_item *fi;
2345         struct extent_map *hole_em;
2346         struct extent_map_tree *em_tree = &inode->extent_tree;
2347         struct btrfs_key key;
2348         int ret;
2349
2350         if (btrfs_fs_incompat(fs_info, NO_HOLES))
2351                 goto out;
2352
2353         key.objectid = btrfs_ino(inode);
2354         key.type = BTRFS_EXTENT_DATA_KEY;
2355         key.offset = offset;
2356
2357         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2358         if (ret <= 0) {
2359                 /*
2360                  * We should have dropped this offset, so if we find it then
2361                  * something has gone horribly wrong.
2362                  */
2363                 if (ret == 0)
2364                         ret = -EINVAL;
2365                 return ret;
2366         }
2367
2368         leaf = path->nodes[0];
2369         if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2370                 u64 num_bytes;
2371
2372                 path->slots[0]--;
2373                 fi = btrfs_item_ptr(leaf, path->slots[0],
2374                                     struct btrfs_file_extent_item);
2375                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2376                         end - offset;
2377                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2378                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2379                 btrfs_set_file_extent_offset(leaf, fi, 0);
2380                 btrfs_mark_buffer_dirty(leaf);
2381                 goto out;
2382         }
2383
2384         if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2385                 u64 num_bytes;
2386
2387                 key.offset = offset;
2388                 btrfs_set_item_key_safe(fs_info, path, &key);
2389                 fi = btrfs_item_ptr(leaf, path->slots[0],
2390                                     struct btrfs_file_extent_item);
2391                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2392                         offset;
2393                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2394                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2395                 btrfs_set_file_extent_offset(leaf, fi, 0);
2396                 btrfs_mark_buffer_dirty(leaf);
2397                 goto out;
2398         }
2399         btrfs_release_path(path);
2400
2401         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2402                         offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2403         if (ret)
2404                 return ret;
2405
2406 out:
2407         btrfs_release_path(path);
2408
2409         hole_em = alloc_extent_map();
2410         if (!hole_em) {
2411                 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2412                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2413         } else {
2414                 hole_em->start = offset;
2415                 hole_em->len = end - offset;
2416                 hole_em->ram_bytes = hole_em->len;
2417                 hole_em->orig_start = offset;
2418
2419                 hole_em->block_start = EXTENT_MAP_HOLE;
2420                 hole_em->block_len = 0;
2421                 hole_em->orig_block_len = 0;
2422                 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2423                 hole_em->generation = trans->transid;
2424
2425                 do {
2426                         btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2427                         write_lock(&em_tree->lock);
2428                         ret = add_extent_mapping(em_tree, hole_em, 1);
2429                         write_unlock(&em_tree->lock);
2430                 } while (ret == -EEXIST);
2431                 free_extent_map(hole_em);
2432                 if (ret)
2433                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2434                                         &inode->runtime_flags);
2435         }
2436
2437         return 0;
2438 }
2439
2440 /*
2441  * Find a hole extent on given inode and change start/len to the end of hole
2442  * extent.(hole/vacuum extent whose em->start <= start &&
2443  *         em->start + em->len > start)
2444  * When a hole extent is found, return 1 and modify start/len.
2445  */
2446 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2447 {
2448         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2449         struct extent_map *em;
2450         int ret = 0;
2451
2452         em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2453                               round_down(*start, fs_info->sectorsize),
2454                               round_up(*len, fs_info->sectorsize));
2455         if (IS_ERR(em))
2456                 return PTR_ERR(em);
2457
2458         /* Hole or vacuum extent(only exists in no-hole mode) */
2459         if (em->block_start == EXTENT_MAP_HOLE) {
2460                 ret = 1;
2461                 *len = em->start + em->len > *start + *len ?
2462                        0 : *start + *len - em->start - em->len;
2463                 *start = em->start + em->len;
2464         }
2465         free_extent_map(em);
2466         return ret;
2467 }
2468
2469 static int btrfs_punch_hole_lock_range(struct inode *inode,
2470                                        const u64 lockstart,
2471                                        const u64 lockend,
2472                                        struct extent_state **cached_state)
2473 {
2474         while (1) {
2475                 struct btrfs_ordered_extent *ordered;
2476                 int ret;
2477
2478                 truncate_pagecache_range(inode, lockstart, lockend);
2479
2480                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2481                                  cached_state);
2482                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
2483                                                             lockend);
2484
2485                 /*
2486                  * We need to make sure we have no ordered extents in this range
2487                  * and nobody raced in and read a page in this range, if we did
2488                  * we need to try again.
2489                  */
2490                 if ((!ordered ||
2491                     (ordered->file_offset + ordered->num_bytes <= lockstart ||
2492                      ordered->file_offset > lockend)) &&
2493                      !filemap_range_has_page(inode->i_mapping,
2494                                              lockstart, lockend)) {
2495                         if (ordered)
2496                                 btrfs_put_ordered_extent(ordered);
2497                         break;
2498                 }
2499                 if (ordered)
2500                         btrfs_put_ordered_extent(ordered);
2501                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2502                                      lockend, cached_state);
2503                 ret = btrfs_wait_ordered_range(inode, lockstart,
2504                                                lockend - lockstart + 1);
2505                 if (ret)
2506                         return ret;
2507         }
2508         return 0;
2509 }
2510
2511 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2512                                      struct inode *inode,
2513                                      struct btrfs_path *path,
2514                                      struct btrfs_replace_extent_info *extent_info,
2515                                      const u64 replace_len)
2516 {
2517         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2518         struct btrfs_root *root = BTRFS_I(inode)->root;
2519         struct btrfs_file_extent_item *extent;
2520         struct extent_buffer *leaf;
2521         struct btrfs_key key;
2522         int slot;
2523         struct btrfs_ref ref = { 0 };
2524         int ret;
2525
2526         if (replace_len == 0)
2527                 return 0;
2528
2529         if (extent_info->disk_offset == 0 &&
2530             btrfs_fs_incompat(fs_info, NO_HOLES))
2531                 return 0;
2532
2533         key.objectid = btrfs_ino(BTRFS_I(inode));
2534         key.type = BTRFS_EXTENT_DATA_KEY;
2535         key.offset = extent_info->file_offset;
2536         ret = btrfs_insert_empty_item(trans, root, path, &key,
2537                                       sizeof(struct btrfs_file_extent_item));
2538         if (ret)
2539                 return ret;
2540         leaf = path->nodes[0];
2541         slot = path->slots[0];
2542         write_extent_buffer(leaf, extent_info->extent_buf,
2543                             btrfs_item_ptr_offset(leaf, slot),
2544                             sizeof(struct btrfs_file_extent_item));
2545         extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2546         ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2547         btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2548         btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2549         if (extent_info->is_new_extent)
2550                 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2551         btrfs_mark_buffer_dirty(leaf);
2552         btrfs_release_path(path);
2553
2554         ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
2555                         extent_info->file_offset, replace_len);
2556         if (ret)
2557                 return ret;
2558
2559         /* If it's a hole, nothing more needs to be done. */
2560         if (extent_info->disk_offset == 0)
2561                 return 0;
2562
2563         inode_add_bytes(inode, replace_len);
2564
2565         if (extent_info->is_new_extent && extent_info->insertions == 0) {
2566                 key.objectid = extent_info->disk_offset;
2567                 key.type = BTRFS_EXTENT_ITEM_KEY;
2568                 key.offset = extent_info->disk_len;
2569                 ret = btrfs_alloc_reserved_file_extent(trans, root,
2570                                                        btrfs_ino(BTRFS_I(inode)),
2571                                                        extent_info->file_offset,
2572                                                        extent_info->qgroup_reserved,
2573                                                        &key);
2574         } else {
2575                 u64 ref_offset;
2576
2577                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2578                                        extent_info->disk_offset,
2579                                        extent_info->disk_len, 0);
2580                 ref_offset = extent_info->file_offset - extent_info->data_offset;
2581                 btrfs_init_data_ref(&ref, root->root_key.objectid,
2582                                     btrfs_ino(BTRFS_I(inode)), ref_offset);
2583                 ret = btrfs_inc_extent_ref(trans, &ref);
2584         }
2585
2586         extent_info->insertions++;
2587
2588         return ret;
2589 }
2590
2591 /*
2592  * The respective range must have been previously locked, as well as the inode.
2593  * The end offset is inclusive (last byte of the range).
2594  * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2595  * the file range with an extent.
2596  * When not punching a hole, we don't want to end up in a state where we dropped
2597  * extents without inserting a new one, so we must abort the transaction to avoid
2598  * a corruption.
2599  */
2600 int btrfs_replace_file_extents(struct inode *inode, struct btrfs_path *path,
2601                            const u64 start, const u64 end,
2602                            struct btrfs_replace_extent_info *extent_info,
2603                            struct btrfs_trans_handle **trans_out)
2604 {
2605         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2606         u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2607         u64 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2608         struct btrfs_root *root = BTRFS_I(inode)->root;
2609         struct btrfs_trans_handle *trans = NULL;
2610         struct btrfs_block_rsv *rsv;
2611         unsigned int rsv_count;
2612         u64 cur_offset;
2613         u64 drop_end;
2614         u64 len = end - start;
2615         int ret = 0;
2616
2617         if (end <= start)
2618                 return -EINVAL;
2619
2620         rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2621         if (!rsv) {
2622                 ret = -ENOMEM;
2623                 goto out;
2624         }
2625         rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2626         rsv->failfast = 1;
2627
2628         /*
2629          * 1 - update the inode
2630          * 1 - removing the extents in the range
2631          * 1 - adding the hole extent if no_holes isn't set or if we are
2632          *     replacing the range with a new extent
2633          */
2634         if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2635                 rsv_count = 3;
2636         else
2637                 rsv_count = 2;
2638
2639         trans = btrfs_start_transaction(root, rsv_count);
2640         if (IS_ERR(trans)) {
2641                 ret = PTR_ERR(trans);
2642                 trans = NULL;
2643                 goto out_free;
2644         }
2645
2646         ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2647                                       min_size, false);
2648         BUG_ON(ret);
2649         trans->block_rsv = rsv;
2650
2651         cur_offset = start;
2652         while (cur_offset < end) {
2653                 ret = __btrfs_drop_extents(trans, root, BTRFS_I(inode), path,
2654                                            cur_offset, end + 1, &drop_end,
2655                                            1, 0, 0, NULL);
2656                 if (ret != -ENOSPC) {
2657                         /*
2658                          * When cloning we want to avoid transaction aborts when
2659                          * nothing was done and we are attempting to clone parts
2660                          * of inline extents, in such cases -EOPNOTSUPP is
2661                          * returned by __btrfs_drop_extents() without having
2662                          * changed anything in the file.
2663                          */
2664                         if (extent_info && !extent_info->is_new_extent &&
2665                             ret && ret != -EOPNOTSUPP)
2666                                 btrfs_abort_transaction(trans, ret);
2667                         break;
2668                 }
2669
2670                 trans->block_rsv = &fs_info->trans_block_rsv;
2671
2672                 if (!extent_info && cur_offset < drop_end &&
2673                     cur_offset < ino_size) {
2674                         ret = fill_holes(trans, BTRFS_I(inode), path,
2675                                         cur_offset, drop_end);
2676                         if (ret) {
2677                                 /*
2678                                  * If we failed then we didn't insert our hole
2679                                  * entries for the area we dropped, so now the
2680                                  * fs is corrupted, so we must abort the
2681                                  * transaction.
2682                                  */
2683                                 btrfs_abort_transaction(trans, ret);
2684                                 break;
2685                         }
2686                 } else if (!extent_info && cur_offset < drop_end) {
2687                         /*
2688                          * We are past the i_size here, but since we didn't
2689                          * insert holes we need to clear the mapped area so we
2690                          * know to not set disk_i_size in this area until a new
2691                          * file extent is inserted here.
2692                          */
2693                         ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2694                                         cur_offset, drop_end - cur_offset);
2695                         if (ret) {
2696                                 /*
2697                                  * We couldn't clear our area, so we could
2698                                  * presumably adjust up and corrupt the fs, so
2699                                  * we need to abort.
2700                                  */
2701                                 btrfs_abort_transaction(trans, ret);
2702                                 break;
2703                         }
2704                 }
2705
2706                 if (extent_info && drop_end > extent_info->file_offset) {
2707                         u64 replace_len = drop_end - extent_info->file_offset;
2708
2709                         ret = btrfs_insert_replace_extent(trans, inode, path,
2710                                                         extent_info, replace_len);
2711                         if (ret) {
2712                                 btrfs_abort_transaction(trans, ret);
2713                                 break;
2714                         }
2715                         extent_info->data_len -= replace_len;
2716                         extent_info->data_offset += replace_len;
2717                         extent_info->file_offset += replace_len;
2718                 }
2719
2720                 cur_offset = drop_end;
2721
2722                 ret = btrfs_update_inode(trans, root, inode);
2723                 if (ret)
2724                         break;
2725
2726                 btrfs_end_transaction(trans);
2727                 btrfs_btree_balance_dirty(fs_info);
2728
2729                 trans = btrfs_start_transaction(root, rsv_count);
2730                 if (IS_ERR(trans)) {
2731                         ret = PTR_ERR(trans);
2732                         trans = NULL;
2733                         break;
2734                 }
2735
2736                 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2737                                               rsv, min_size, false);
2738                 BUG_ON(ret);    /* shouldn't happen */
2739                 trans->block_rsv = rsv;
2740
2741                 if (!extent_info) {
2742                         ret = find_first_non_hole(inode, &cur_offset, &len);
2743                         if (unlikely(ret < 0))
2744                                 break;
2745                         if (ret && !len) {
2746                                 ret = 0;
2747                                 break;
2748                         }
2749                 }
2750         }
2751
2752         /*
2753          * If we were cloning, force the next fsync to be a full one since we
2754          * we replaced (or just dropped in the case of cloning holes when
2755          * NO_HOLES is enabled) extents and extent maps.
2756          * This is for the sake of simplicity, and cloning into files larger
2757          * than 16Mb would force the full fsync any way (when
2758          * try_release_extent_mapping() is invoked during page cache truncation.
2759          */
2760         if (extent_info && !extent_info->is_new_extent)
2761                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2762                         &BTRFS_I(inode)->runtime_flags);
2763
2764         if (ret)
2765                 goto out_trans;
2766
2767         trans->block_rsv = &fs_info->trans_block_rsv;
2768         /*
2769          * If we are using the NO_HOLES feature we might have had already an
2770          * hole that overlaps a part of the region [lockstart, lockend] and
2771          * ends at (or beyond) lockend. Since we have no file extent items to
2772          * represent holes, drop_end can be less than lockend and so we must
2773          * make sure we have an extent map representing the existing hole (the
2774          * call to __btrfs_drop_extents() might have dropped the existing extent
2775          * map representing the existing hole), otherwise the fast fsync path
2776          * will not record the existence of the hole region
2777          * [existing_hole_start, lockend].
2778          */
2779         if (drop_end <= end)
2780                 drop_end = end + 1;
2781         /*
2782          * Don't insert file hole extent item if it's for a range beyond eof
2783          * (because it's useless) or if it represents a 0 bytes range (when
2784          * cur_offset == drop_end).
2785          */
2786         if (!extent_info && cur_offset < ino_size && cur_offset < drop_end) {
2787                 ret = fill_holes(trans, BTRFS_I(inode), path,
2788                                 cur_offset, drop_end);
2789                 if (ret) {
2790                         /* Same comment as above. */
2791                         btrfs_abort_transaction(trans, ret);
2792                         goto out_trans;
2793                 }
2794         } else if (!extent_info && cur_offset < drop_end) {
2795                 /* See the comment in the loop above for the reasoning here. */
2796                 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2797                                         cur_offset, drop_end - cur_offset);
2798                 if (ret) {
2799                         btrfs_abort_transaction(trans, ret);
2800                         goto out_trans;
2801                 }
2802
2803         }
2804         if (extent_info) {
2805                 ret = btrfs_insert_replace_extent(trans, inode, path, extent_info,
2806                                                 extent_info->data_len);
2807                 if (ret) {
2808                         btrfs_abort_transaction(trans, ret);
2809                         goto out_trans;
2810                 }
2811         }
2812
2813 out_trans:
2814         if (!trans)
2815                 goto out_free;
2816
2817         trans->block_rsv = &fs_info->trans_block_rsv;
2818         if (ret)
2819                 btrfs_end_transaction(trans);
2820         else
2821                 *trans_out = trans;
2822 out_free:
2823         btrfs_free_block_rsv(fs_info, rsv);
2824 out:
2825         return ret;
2826 }
2827
2828 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2829 {
2830         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2831         struct btrfs_root *root = BTRFS_I(inode)->root;
2832         struct extent_state *cached_state = NULL;
2833         struct btrfs_path *path;
2834         struct btrfs_trans_handle *trans = NULL;
2835         u64 lockstart;
2836         u64 lockend;
2837         u64 tail_start;
2838         u64 tail_len;
2839         u64 orig_start = offset;
2840         int ret = 0;
2841         bool same_block;
2842         u64 ino_size;
2843         bool truncated_block = false;
2844         bool updated_inode = false;
2845
2846         ret = btrfs_wait_ordered_range(inode, offset, len);
2847         if (ret)
2848                 return ret;
2849
2850         inode_lock(inode);
2851         ino_size = round_up(inode->i_size, fs_info->sectorsize);
2852         ret = find_first_non_hole(inode, &offset, &len);
2853         if (ret < 0)
2854                 goto out_only_mutex;
2855         if (ret && !len) {
2856                 /* Already in a large hole */
2857                 ret = 0;
2858                 goto out_only_mutex;
2859         }
2860
2861         lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode)));
2862         lockend = round_down(offset + len,
2863                              btrfs_inode_sectorsize(BTRFS_I(inode))) - 1;
2864         same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2865                 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2866         /*
2867          * We needn't truncate any block which is beyond the end of the file
2868          * because we are sure there is no data there.
2869          */
2870         /*
2871          * Only do this if we are in the same block and we aren't doing the
2872          * entire block.
2873          */
2874         if (same_block && len < fs_info->sectorsize) {
2875                 if (offset < ino_size) {
2876                         truncated_block = true;
2877                         ret = btrfs_truncate_block(inode, offset, len, 0);
2878                 } else {
2879                         ret = 0;
2880                 }
2881                 goto out_only_mutex;
2882         }
2883
2884         /* zero back part of the first block */
2885         if (offset < ino_size) {
2886                 truncated_block = true;
2887                 ret = btrfs_truncate_block(inode, offset, 0, 0);
2888                 if (ret) {
2889                         inode_unlock(inode);
2890                         return ret;
2891                 }
2892         }
2893
2894         /* Check the aligned pages after the first unaligned page,
2895          * if offset != orig_start, which means the first unaligned page
2896          * including several following pages are already in holes,
2897          * the extra check can be skipped */
2898         if (offset == orig_start) {
2899                 /* after truncate page, check hole again */
2900                 len = offset + len - lockstart;
2901                 offset = lockstart;
2902                 ret = find_first_non_hole(inode, &offset, &len);
2903                 if (ret < 0)
2904                         goto out_only_mutex;
2905                 if (ret && !len) {
2906                         ret = 0;
2907                         goto out_only_mutex;
2908                 }
2909                 lockstart = offset;
2910         }
2911
2912         /* Check the tail unaligned part is in a hole */
2913         tail_start = lockend + 1;
2914         tail_len = offset + len - tail_start;
2915         if (tail_len) {
2916                 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2917                 if (unlikely(ret < 0))
2918                         goto out_only_mutex;
2919                 if (!ret) {
2920                         /* zero the front end of the last page */
2921                         if (tail_start + tail_len < ino_size) {
2922                                 truncated_block = true;
2923                                 ret = btrfs_truncate_block(inode,
2924                                                         tail_start + tail_len,
2925                                                         0, 1);
2926                                 if (ret)
2927                                         goto out_only_mutex;
2928                         }
2929                 }
2930         }
2931
2932         if (lockend < lockstart) {
2933                 ret = 0;
2934                 goto out_only_mutex;
2935         }
2936
2937         ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2938                                           &cached_state);
2939         if (ret)
2940                 goto out_only_mutex;
2941
2942         path = btrfs_alloc_path();
2943         if (!path) {
2944                 ret = -ENOMEM;
2945                 goto out;
2946         }
2947
2948         ret = btrfs_replace_file_extents(inode, path, lockstart, lockend, NULL,
2949                                      &trans);
2950         btrfs_free_path(path);
2951         if (ret)
2952                 goto out;
2953
2954         ASSERT(trans != NULL);
2955         inode_inc_iversion(inode);
2956         inode->i_mtime = inode->i_ctime = current_time(inode);
2957         ret = btrfs_update_inode(trans, root, inode);
2958         updated_inode = true;
2959         btrfs_end_transaction(trans);
2960         btrfs_btree_balance_dirty(fs_info);
2961 out:
2962         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2963                              &cached_state);
2964 out_only_mutex:
2965         if (!updated_inode && truncated_block && !ret) {
2966                 /*
2967                  * If we only end up zeroing part of a page, we still need to
2968                  * update the inode item, so that all the time fields are
2969                  * updated as well as the necessary btrfs inode in memory fields
2970                  * for detecting, at fsync time, if the inode isn't yet in the
2971                  * log tree or it's there but not up to date.
2972                  */
2973                 struct timespec64 now = current_time(inode);
2974
2975                 inode_inc_iversion(inode);
2976                 inode->i_mtime = now;
2977                 inode->i_ctime = now;
2978                 trans = btrfs_start_transaction(root, 1);
2979                 if (IS_ERR(trans)) {
2980                         ret = PTR_ERR(trans);
2981                 } else {
2982                         int ret2;
2983
2984                         ret = btrfs_update_inode(trans, root, inode);
2985                         ret2 = btrfs_end_transaction(trans);
2986                         if (!ret)
2987                                 ret = ret2;
2988                 }
2989         }
2990         inode_unlock(inode);
2991         return ret;
2992 }
2993
2994 /* Helper structure to record which range is already reserved */
2995 struct falloc_range {
2996         struct list_head list;
2997         u64 start;
2998         u64 len;
2999 };
3000
3001 /*
3002  * Helper function to add falloc range
3003  *
3004  * Caller should have locked the larger range of extent containing
3005  * [start, len)
3006  */
3007 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3008 {
3009         struct falloc_range *prev = NULL;
3010         struct falloc_range *range = NULL;
3011
3012         if (list_empty(head))
3013                 goto insert;
3014
3015         /*
3016          * As fallocate iterate by bytenr order, we only need to check
3017          * the last range.
3018          */
3019         prev = list_entry(head->prev, struct falloc_range, list);
3020         if (prev->start + prev->len == start) {
3021                 prev->len += len;
3022                 return 0;
3023         }
3024 insert:
3025         range = kmalloc(sizeof(*range), GFP_KERNEL);
3026         if (!range)
3027                 return -ENOMEM;
3028         range->start = start;
3029         range->len = len;
3030         list_add_tail(&range->list, head);
3031         return 0;
3032 }
3033
3034 static int btrfs_fallocate_update_isize(struct inode *inode,
3035                                         const u64 end,
3036                                         const int mode)
3037 {
3038         struct btrfs_trans_handle *trans;
3039         struct btrfs_root *root = BTRFS_I(inode)->root;
3040         int ret;
3041         int ret2;
3042
3043         if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3044                 return 0;
3045
3046         trans = btrfs_start_transaction(root, 1);
3047         if (IS_ERR(trans))
3048                 return PTR_ERR(trans);
3049
3050         inode->i_ctime = current_time(inode);
3051         i_size_write(inode, end);
3052         btrfs_inode_safe_disk_i_size_write(inode, 0);
3053         ret = btrfs_update_inode(trans, root, inode);
3054         ret2 = btrfs_end_transaction(trans);
3055
3056         return ret ? ret : ret2;
3057 }
3058
3059 enum {
3060         RANGE_BOUNDARY_WRITTEN_EXTENT,
3061         RANGE_BOUNDARY_PREALLOC_EXTENT,
3062         RANGE_BOUNDARY_HOLE,
3063 };
3064
3065 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3066                                                  u64 offset)
3067 {
3068         const u64 sectorsize = btrfs_inode_sectorsize(inode);
3069         struct extent_map *em;
3070         int ret;
3071
3072         offset = round_down(offset, sectorsize);
3073         em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
3074         if (IS_ERR(em))
3075                 return PTR_ERR(em);
3076
3077         if (em->block_start == EXTENT_MAP_HOLE)
3078                 ret = RANGE_BOUNDARY_HOLE;
3079         else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3080                 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3081         else
3082                 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3083
3084         free_extent_map(em);
3085         return ret;
3086 }
3087
3088 static int btrfs_zero_range(struct inode *inode,
3089                             loff_t offset,
3090                             loff_t len,
3091                             const int mode)
3092 {
3093         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3094         struct extent_map *em;
3095         struct extent_changeset *data_reserved = NULL;
3096         int ret;
3097         u64 alloc_hint = 0;
3098         const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode));
3099         u64 alloc_start = round_down(offset, sectorsize);
3100         u64 alloc_end = round_up(offset + len, sectorsize);
3101         u64 bytes_to_reserve = 0;
3102         bool space_reserved = false;
3103
3104         inode_dio_wait(inode);
3105
3106         em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3107                               alloc_end - alloc_start);
3108         if (IS_ERR(em)) {
3109                 ret = PTR_ERR(em);
3110                 goto out;
3111         }
3112
3113         /*
3114          * Avoid hole punching and extent allocation for some cases. More cases
3115          * could be considered, but these are unlikely common and we keep things
3116          * as simple as possible for now. Also, intentionally, if the target
3117          * range contains one or more prealloc extents together with regular
3118          * extents and holes, we drop all the existing extents and allocate a
3119          * new prealloc extent, so that we get a larger contiguous disk extent.
3120          */
3121         if (em->start <= alloc_start &&
3122             test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3123                 const u64 em_end = em->start + em->len;
3124
3125                 if (em_end >= offset + len) {
3126                         /*
3127                          * The whole range is already a prealloc extent,
3128                          * do nothing except updating the inode's i_size if
3129                          * needed.
3130                          */
3131                         free_extent_map(em);
3132                         ret = btrfs_fallocate_update_isize(inode, offset + len,
3133                                                            mode);
3134                         goto out;
3135                 }
3136                 /*
3137                  * Part of the range is already a prealloc extent, so operate
3138                  * only on the remaining part of the range.
3139                  */
3140                 alloc_start = em_end;
3141                 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3142                 len = offset + len - alloc_start;
3143                 offset = alloc_start;
3144                 alloc_hint = em->block_start + em->len;
3145         }
3146         free_extent_map(em);
3147
3148         if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3149             BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3150                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3151                                       sectorsize);
3152                 if (IS_ERR(em)) {
3153                         ret = PTR_ERR(em);
3154                         goto out;
3155                 }
3156
3157                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3158                         free_extent_map(em);
3159                         ret = btrfs_fallocate_update_isize(inode, offset + len,
3160                                                            mode);
3161                         goto out;
3162                 }
3163                 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3164                         free_extent_map(em);
3165                         ret = btrfs_truncate_block(inode, offset, len, 0);
3166                         if (!ret)
3167                                 ret = btrfs_fallocate_update_isize(inode,
3168                                                                    offset + len,
3169                                                                    mode);
3170                         return ret;
3171                 }
3172                 free_extent_map(em);
3173                 alloc_start = round_down(offset, sectorsize);
3174                 alloc_end = alloc_start + sectorsize;
3175                 goto reserve_space;
3176         }
3177
3178         alloc_start = round_up(offset, sectorsize);
3179         alloc_end = round_down(offset + len, sectorsize);
3180
3181         /*
3182          * For unaligned ranges, check the pages at the boundaries, they might
3183          * map to an extent, in which case we need to partially zero them, or
3184          * they might map to a hole, in which case we need our allocation range
3185          * to cover them.
3186          */
3187         if (!IS_ALIGNED(offset, sectorsize)) {
3188                 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3189                                                             offset);
3190                 if (ret < 0)
3191                         goto out;
3192                 if (ret == RANGE_BOUNDARY_HOLE) {
3193                         alloc_start = round_down(offset, sectorsize);
3194                         ret = 0;
3195                 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3196                         ret = btrfs_truncate_block(inode, offset, 0, 0);
3197                         if (ret)
3198                                 goto out;
3199                 } else {
3200                         ret = 0;
3201                 }
3202         }
3203
3204         if (!IS_ALIGNED(offset + len, sectorsize)) {
3205                 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3206                                                             offset + len);
3207                 if (ret < 0)
3208                         goto out;
3209                 if (ret == RANGE_BOUNDARY_HOLE) {
3210                         alloc_end = round_up(offset + len, sectorsize);
3211                         ret = 0;
3212                 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3213                         ret = btrfs_truncate_block(inode, offset + len, 0, 1);
3214                         if (ret)
3215                                 goto out;
3216                 } else {
3217                         ret = 0;
3218                 }
3219         }
3220
3221 reserve_space:
3222         if (alloc_start < alloc_end) {
3223                 struct extent_state *cached_state = NULL;
3224                 const u64 lockstart = alloc_start;
3225                 const u64 lockend = alloc_end - 1;
3226
3227                 bytes_to_reserve = alloc_end - alloc_start;
3228                 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3229                                                       bytes_to_reserve);
3230                 if (ret < 0)
3231                         goto out;
3232                 space_reserved = true;
3233                 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3234                                                   &cached_state);
3235                 if (ret)
3236                         goto out;
3237                 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3238                                                 alloc_start, bytes_to_reserve);
3239                 if (ret)
3240                         goto out;
3241                 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3242                                                 alloc_end - alloc_start,
3243                                                 i_blocksize(inode),
3244                                                 offset + len, &alloc_hint);
3245                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3246                                      lockend, &cached_state);
3247                 /* btrfs_prealloc_file_range releases reserved space on error */
3248                 if (ret) {
3249                         space_reserved = false;
3250                         goto out;
3251                 }
3252         }
3253         ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3254  out:
3255         if (ret && space_reserved)
3256                 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3257                                                alloc_start, bytes_to_reserve);
3258         extent_changeset_free(data_reserved);
3259
3260         return ret;
3261 }
3262
3263 static long btrfs_fallocate(struct file *file, int mode,
3264                             loff_t offset, loff_t len)
3265 {
3266         struct inode *inode = file_inode(file);
3267         struct extent_state *cached_state = NULL;
3268         struct extent_changeset *data_reserved = NULL;
3269         struct falloc_range *range;
3270         struct falloc_range *tmp;
3271         struct list_head reserve_list;
3272         u64 cur_offset;
3273         u64 last_byte;
3274         u64 alloc_start;
3275         u64 alloc_end;
3276         u64 alloc_hint = 0;
3277         u64 locked_end;
3278         u64 actual_end = 0;
3279         struct extent_map *em;
3280         int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode));
3281         int ret;
3282
3283         alloc_start = round_down(offset, blocksize);
3284         alloc_end = round_up(offset + len, blocksize);
3285         cur_offset = alloc_start;
3286
3287         /* Make sure we aren't being give some crap mode */
3288         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3289                      FALLOC_FL_ZERO_RANGE))
3290                 return -EOPNOTSUPP;
3291
3292         if (mode & FALLOC_FL_PUNCH_HOLE)
3293                 return btrfs_punch_hole(inode, offset, len);
3294
3295         /*
3296          * Only trigger disk allocation, don't trigger qgroup reserve
3297          *
3298          * For qgroup space, it will be checked later.
3299          */
3300         if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3301                 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3302                                                       alloc_end - alloc_start);
3303                 if (ret < 0)
3304                         return ret;
3305         }
3306
3307         inode_lock(inode);
3308
3309         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3310                 ret = inode_newsize_ok(inode, offset + len);
3311                 if (ret)
3312                         goto out;
3313         }
3314
3315         /*
3316          * TODO: Move these two operations after we have checked
3317          * accurate reserved space, or fallocate can still fail but
3318          * with page truncated or size expanded.
3319          *
3320          * But that's a minor problem and won't do much harm BTW.
3321          */
3322         if (alloc_start > inode->i_size) {
3323                 ret = btrfs_cont_expand(inode, i_size_read(inode),
3324                                         alloc_start);
3325                 if (ret)
3326                         goto out;
3327         } else if (offset + len > inode->i_size) {
3328                 /*
3329                  * If we are fallocating from the end of the file onward we
3330                  * need to zero out the end of the block if i_size lands in the
3331                  * middle of a block.
3332                  */
3333                 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3334                 if (ret)
3335                         goto out;
3336         }
3337
3338         /*
3339          * wait for ordered IO before we have any locks.  We'll loop again
3340          * below with the locks held.
3341          */
3342         ret = btrfs_wait_ordered_range(inode, alloc_start,
3343                                        alloc_end - alloc_start);
3344         if (ret)
3345                 goto out;
3346
3347         if (mode & FALLOC_FL_ZERO_RANGE) {
3348                 ret = btrfs_zero_range(inode, offset, len, mode);
3349                 inode_unlock(inode);
3350                 return ret;
3351         }
3352
3353         locked_end = alloc_end - 1;
3354         while (1) {
3355                 struct btrfs_ordered_extent *ordered;
3356
3357                 /* the extent lock is ordered inside the running
3358                  * transaction
3359                  */
3360                 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3361                                  locked_end, &cached_state);
3362                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
3363                                                             locked_end);
3364
3365                 if (ordered &&
3366                     ordered->file_offset + ordered->num_bytes > alloc_start &&
3367                     ordered->file_offset < alloc_end) {
3368                         btrfs_put_ordered_extent(ordered);
3369                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3370                                              alloc_start, locked_end,
3371                                              &cached_state);
3372                         /*
3373                          * we can't wait on the range with the transaction
3374                          * running or with the extent lock held
3375                          */
3376                         ret = btrfs_wait_ordered_range(inode, alloc_start,
3377                                                        alloc_end - alloc_start);
3378                         if (ret)
3379                                 goto out;
3380                 } else {
3381                         if (ordered)
3382                                 btrfs_put_ordered_extent(ordered);
3383                         break;
3384                 }
3385         }
3386
3387         /* First, check if we exceed the qgroup limit */
3388         INIT_LIST_HEAD(&reserve_list);
3389         while (cur_offset < alloc_end) {
3390                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3391                                       alloc_end - cur_offset);
3392                 if (IS_ERR(em)) {
3393                         ret = PTR_ERR(em);
3394                         break;
3395                 }
3396                 last_byte = min(extent_map_end(em), alloc_end);
3397                 actual_end = min_t(u64, extent_map_end(em), offset + len);
3398                 last_byte = ALIGN(last_byte, blocksize);
3399                 if (em->block_start == EXTENT_MAP_HOLE ||
3400                     (cur_offset >= inode->i_size &&
3401                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3402                         ret = add_falloc_range(&reserve_list, cur_offset,
3403                                                last_byte - cur_offset);
3404                         if (ret < 0) {
3405                                 free_extent_map(em);
3406                                 break;
3407                         }
3408                         ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3409                                         &data_reserved, cur_offset,
3410                                         last_byte - cur_offset);
3411                         if (ret < 0) {
3412                                 cur_offset = last_byte;
3413                                 free_extent_map(em);
3414                                 break;
3415                         }
3416                 } else {
3417                         /*
3418                          * Do not need to reserve unwritten extent for this
3419                          * range, free reserved data space first, otherwise
3420                          * it'll result in false ENOSPC error.
3421                          */
3422                         btrfs_free_reserved_data_space(BTRFS_I(inode),
3423                                 data_reserved, cur_offset,
3424                                 last_byte - cur_offset);
3425                 }
3426                 free_extent_map(em);
3427                 cur_offset = last_byte;
3428         }
3429
3430         /*
3431          * If ret is still 0, means we're OK to fallocate.
3432          * Or just cleanup the list and exit.
3433          */
3434         list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3435                 if (!ret)
3436                         ret = btrfs_prealloc_file_range(inode, mode,
3437                                         range->start,
3438                                         range->len, i_blocksize(inode),
3439                                         offset + len, &alloc_hint);
3440                 else
3441                         btrfs_free_reserved_data_space(BTRFS_I(inode),
3442                                         data_reserved, range->start,
3443                                         range->len);
3444                 list_del(&range->list);
3445                 kfree(range);
3446         }
3447         if (ret < 0)
3448                 goto out_unlock;
3449
3450         /*
3451          * We didn't need to allocate any more space, but we still extended the
3452          * size of the file so we need to update i_size and the inode item.
3453          */
3454         ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3455 out_unlock:
3456         unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3457                              &cached_state);
3458 out:
3459         inode_unlock(inode);
3460         /* Let go of our reservation. */
3461         if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3462                 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3463                                 cur_offset, alloc_end - cur_offset);
3464         extent_changeset_free(data_reserved);
3465         return ret;
3466 }
3467
3468 static loff_t find_desired_extent(struct inode *inode, loff_t offset,
3469                                   int whence)
3470 {
3471         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3472         struct extent_map *em = NULL;
3473         struct extent_state *cached_state = NULL;
3474         loff_t i_size = inode->i_size;
3475         u64 lockstart;
3476         u64 lockend;
3477         u64 start;
3478         u64 len;
3479         int ret = 0;
3480
3481         if (i_size == 0 || offset >= i_size)
3482                 return -ENXIO;
3483
3484         /*
3485          * offset can be negative, in this case we start finding DATA/HOLE from
3486          * the very start of the file.
3487          */
3488         start = max_t(loff_t, 0, offset);
3489
3490         lockstart = round_down(start, fs_info->sectorsize);
3491         lockend = round_up(i_size, fs_info->sectorsize);
3492         if (lockend <= lockstart)
3493                 lockend = lockstart + fs_info->sectorsize;
3494         lockend--;
3495         len = lockend - lockstart + 1;
3496
3497         lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3498                          &cached_state);
3499
3500         while (start < i_size) {
3501                 em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
3502                 if (IS_ERR(em)) {
3503                         ret = PTR_ERR(em);
3504                         em = NULL;
3505                         break;
3506                 }
3507
3508                 if (whence == SEEK_HOLE &&
3509                     (em->block_start == EXTENT_MAP_HOLE ||
3510                      test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3511                         break;
3512                 else if (whence == SEEK_DATA &&
3513                            (em->block_start != EXTENT_MAP_HOLE &&
3514                             !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3515                         break;
3516
3517                 start = em->start + em->len;
3518                 free_extent_map(em);
3519                 em = NULL;
3520                 cond_resched();
3521         }
3522         free_extent_map(em);
3523         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3524                              &cached_state);
3525         if (ret) {
3526                 offset = ret;
3527         } else {
3528                 if (whence == SEEK_DATA && start >= i_size)
3529                         offset = -ENXIO;
3530                 else
3531                         offset = min_t(loff_t, start, i_size);
3532         }
3533
3534         return offset;
3535 }
3536
3537 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3538 {
3539         struct inode *inode = file->f_mapping->host;
3540
3541         switch (whence) {
3542         default:
3543                 return generic_file_llseek(file, offset, whence);
3544         case SEEK_DATA:
3545         case SEEK_HOLE:
3546                 inode_lock_shared(inode);
3547                 offset = find_desired_extent(inode, offset, whence);
3548                 inode_unlock_shared(inode);
3549                 break;
3550         }
3551
3552         if (offset < 0)
3553                 return offset;
3554
3555         return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3556 }
3557
3558 static int btrfs_file_open(struct inode *inode, struct file *filp)
3559 {
3560         filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
3561         return generic_file_open(inode, filp);
3562 }
3563
3564 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3565 {
3566         ssize_t ret = 0;
3567
3568         if (iocb->ki_flags & IOCB_DIRECT) {
3569                 struct inode *inode = file_inode(iocb->ki_filp);
3570
3571                 inode_lock_shared(inode);
3572                 ret = btrfs_direct_IO(iocb, to);
3573                 inode_unlock_shared(inode);
3574                 if (ret < 0 || !iov_iter_count(to) ||
3575                     iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3576                         return ret;
3577         }
3578
3579         return generic_file_buffered_read(iocb, to, ret);
3580 }
3581
3582 const struct file_operations btrfs_file_operations = {
3583         .llseek         = btrfs_file_llseek,
3584         .read_iter      = btrfs_file_read_iter,
3585         .splice_read    = generic_file_splice_read,
3586         .write_iter     = btrfs_file_write_iter,
3587         .splice_write   = iter_file_splice_write,
3588         .mmap           = btrfs_file_mmap,
3589         .open           = btrfs_file_open,
3590         .release        = btrfs_release_file,
3591         .fsync          = btrfs_sync_file,
3592         .fallocate      = btrfs_fallocate,
3593         .unlocked_ioctl = btrfs_ioctl,
3594 #ifdef CONFIG_COMPAT
3595         .compat_ioctl   = btrfs_compat_ioctl,
3596 #endif
3597         .remap_file_range = btrfs_remap_file_range,
3598 };
3599
3600 void __cold btrfs_auto_defrag_exit(void)
3601 {
3602         kmem_cache_destroy(btrfs_inode_defrag_cachep);
3603 }
3604
3605 int __init btrfs_auto_defrag_init(void)
3606 {
3607         btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3608                                         sizeof(struct inode_defrag), 0,
3609                                         SLAB_MEM_SPREAD,
3610                                         NULL);
3611         if (!btrfs_inode_defrag_cachep)
3612                 return -ENOMEM;
3613
3614         return 0;
3615 }
3616
3617 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3618 {
3619         int ret;
3620
3621         /*
3622          * So with compression we will find and lock a dirty page and clear the
3623          * first one as dirty, setup an async extent, and immediately return
3624          * with the entire range locked but with nobody actually marked with
3625          * writeback.  So we can't just filemap_write_and_wait_range() and
3626          * expect it to work since it will just kick off a thread to do the
3627          * actual work.  So we need to call filemap_fdatawrite_range _again_
3628          * since it will wait on the page lock, which won't be unlocked until
3629          * after the pages have been marked as writeback and so we're good to go
3630          * from there.  We have to do this otherwise we'll miss the ordered
3631          * extents and that results in badness.  Please Josef, do not think you
3632          * know better and pull this out at some point in the future, it is
3633          * right and you are wrong.
3634          */
3635         ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3636         if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3637                              &BTRFS_I(inode)->runtime_flags))
3638                 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3639
3640         return ret;
3641 }