Merge tag 'clk-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux
[linux-2.6-microblaze.git] / fs / btrfs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "btrfs_inode.h"
23 #include "print-tree.h"
24 #include "tree-log.h"
25 #include "locking.h"
26 #include "volumes.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30 #include "reflink.h"
31
32 static struct kmem_cache *btrfs_inode_defrag_cachep;
33 /*
34  * when auto defrag is enabled we
35  * queue up these defrag structs to remember which
36  * inodes need defragging passes
37  */
38 struct inode_defrag {
39         struct rb_node rb_node;
40         /* objectid */
41         u64 ino;
42         /*
43          * transid where the defrag was added, we search for
44          * extents newer than this
45          */
46         u64 transid;
47
48         /* root objectid */
49         u64 root;
50
51         /* last offset we were able to defrag */
52         u64 last_offset;
53
54         /* if we've wrapped around back to zero once already */
55         int cycled;
56 };
57
58 static int __compare_inode_defrag(struct inode_defrag *defrag1,
59                                   struct inode_defrag *defrag2)
60 {
61         if (defrag1->root > defrag2->root)
62                 return 1;
63         else if (defrag1->root < defrag2->root)
64                 return -1;
65         else if (defrag1->ino > defrag2->ino)
66                 return 1;
67         else if (defrag1->ino < defrag2->ino)
68                 return -1;
69         else
70                 return 0;
71 }
72
73 /* pop a record for an inode into the defrag tree.  The lock
74  * must be held already
75  *
76  * If you're inserting a record for an older transid than an
77  * existing record, the transid already in the tree is lowered
78  *
79  * If an existing record is found the defrag item you
80  * pass in is freed
81  */
82 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
83                                     struct inode_defrag *defrag)
84 {
85         struct btrfs_fs_info *fs_info = inode->root->fs_info;
86         struct inode_defrag *entry;
87         struct rb_node **p;
88         struct rb_node *parent = NULL;
89         int ret;
90
91         p = &fs_info->defrag_inodes.rb_node;
92         while (*p) {
93                 parent = *p;
94                 entry = rb_entry(parent, struct inode_defrag, rb_node);
95
96                 ret = __compare_inode_defrag(defrag, entry);
97                 if (ret < 0)
98                         p = &parent->rb_left;
99                 else if (ret > 0)
100                         p = &parent->rb_right;
101                 else {
102                         /* if we're reinserting an entry for
103                          * an old defrag run, make sure to
104                          * lower the transid of our existing record
105                          */
106                         if (defrag->transid < entry->transid)
107                                 entry->transid = defrag->transid;
108                         if (defrag->last_offset > entry->last_offset)
109                                 entry->last_offset = defrag->last_offset;
110                         return -EEXIST;
111                 }
112         }
113         set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
114         rb_link_node(&defrag->rb_node, parent, p);
115         rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
116         return 0;
117 }
118
119 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
120 {
121         if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
122                 return 0;
123
124         if (btrfs_fs_closing(fs_info))
125                 return 0;
126
127         return 1;
128 }
129
130 /*
131  * insert a defrag record for this inode if auto defrag is
132  * enabled
133  */
134 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
135                            struct btrfs_inode *inode)
136 {
137         struct btrfs_root *root = inode->root;
138         struct btrfs_fs_info *fs_info = root->fs_info;
139         struct inode_defrag *defrag;
140         u64 transid;
141         int ret;
142
143         if (!__need_auto_defrag(fs_info))
144                 return 0;
145
146         if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
147                 return 0;
148
149         if (trans)
150                 transid = trans->transid;
151         else
152                 transid = inode->root->last_trans;
153
154         defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
155         if (!defrag)
156                 return -ENOMEM;
157
158         defrag->ino = btrfs_ino(inode);
159         defrag->transid = transid;
160         defrag->root = root->root_key.objectid;
161
162         spin_lock(&fs_info->defrag_inodes_lock);
163         if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
164                 /*
165                  * If we set IN_DEFRAG flag and evict the inode from memory,
166                  * and then re-read this inode, this new inode doesn't have
167                  * IN_DEFRAG flag. At the case, we may find the existed defrag.
168                  */
169                 ret = __btrfs_add_inode_defrag(inode, defrag);
170                 if (ret)
171                         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
172         } else {
173                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
174         }
175         spin_unlock(&fs_info->defrag_inodes_lock);
176         return 0;
177 }
178
179 /*
180  * Requeue the defrag object. If there is a defrag object that points to
181  * the same inode in the tree, we will merge them together (by
182  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
183  */
184 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
185                                        struct inode_defrag *defrag)
186 {
187         struct btrfs_fs_info *fs_info = inode->root->fs_info;
188         int ret;
189
190         if (!__need_auto_defrag(fs_info))
191                 goto out;
192
193         /*
194          * Here we don't check the IN_DEFRAG flag, because we need merge
195          * them together.
196          */
197         spin_lock(&fs_info->defrag_inodes_lock);
198         ret = __btrfs_add_inode_defrag(inode, defrag);
199         spin_unlock(&fs_info->defrag_inodes_lock);
200         if (ret)
201                 goto out;
202         return;
203 out:
204         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
205 }
206
207 /*
208  * pick the defragable inode that we want, if it doesn't exist, we will get
209  * the next one.
210  */
211 static struct inode_defrag *
212 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
213 {
214         struct inode_defrag *entry = NULL;
215         struct inode_defrag tmp;
216         struct rb_node *p;
217         struct rb_node *parent = NULL;
218         int ret;
219
220         tmp.ino = ino;
221         tmp.root = root;
222
223         spin_lock(&fs_info->defrag_inodes_lock);
224         p = fs_info->defrag_inodes.rb_node;
225         while (p) {
226                 parent = p;
227                 entry = rb_entry(parent, struct inode_defrag, rb_node);
228
229                 ret = __compare_inode_defrag(&tmp, entry);
230                 if (ret < 0)
231                         p = parent->rb_left;
232                 else if (ret > 0)
233                         p = parent->rb_right;
234                 else
235                         goto out;
236         }
237
238         if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
239                 parent = rb_next(parent);
240                 if (parent)
241                         entry = rb_entry(parent, struct inode_defrag, rb_node);
242                 else
243                         entry = NULL;
244         }
245 out:
246         if (entry)
247                 rb_erase(parent, &fs_info->defrag_inodes);
248         spin_unlock(&fs_info->defrag_inodes_lock);
249         return entry;
250 }
251
252 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
253 {
254         struct inode_defrag *defrag;
255         struct rb_node *node;
256
257         spin_lock(&fs_info->defrag_inodes_lock);
258         node = rb_first(&fs_info->defrag_inodes);
259         while (node) {
260                 rb_erase(node, &fs_info->defrag_inodes);
261                 defrag = rb_entry(node, struct inode_defrag, rb_node);
262                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
263
264                 cond_resched_lock(&fs_info->defrag_inodes_lock);
265
266                 node = rb_first(&fs_info->defrag_inodes);
267         }
268         spin_unlock(&fs_info->defrag_inodes_lock);
269 }
270
271 #define BTRFS_DEFRAG_BATCH      1024
272
273 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
274                                     struct inode_defrag *defrag)
275 {
276         struct btrfs_root *inode_root;
277         struct inode *inode;
278         struct btrfs_ioctl_defrag_range_args range;
279         int num_defrag;
280         int ret;
281
282         /* get the inode */
283         inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
284         if (IS_ERR(inode_root)) {
285                 ret = PTR_ERR(inode_root);
286                 goto cleanup;
287         }
288
289         inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
290         btrfs_put_root(inode_root);
291         if (IS_ERR(inode)) {
292                 ret = PTR_ERR(inode);
293                 goto cleanup;
294         }
295
296         /* do a chunk of defrag */
297         clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
298         memset(&range, 0, sizeof(range));
299         range.len = (u64)-1;
300         range.start = defrag->last_offset;
301
302         sb_start_write(fs_info->sb);
303         num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
304                                        BTRFS_DEFRAG_BATCH);
305         sb_end_write(fs_info->sb);
306         /*
307          * if we filled the whole defrag batch, there
308          * must be more work to do.  Queue this defrag
309          * again
310          */
311         if (num_defrag == BTRFS_DEFRAG_BATCH) {
312                 defrag->last_offset = range.start;
313                 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
314         } else if (defrag->last_offset && !defrag->cycled) {
315                 /*
316                  * we didn't fill our defrag batch, but
317                  * we didn't start at zero.  Make sure we loop
318                  * around to the start of the file.
319                  */
320                 defrag->last_offset = 0;
321                 defrag->cycled = 1;
322                 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
323         } else {
324                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
325         }
326
327         iput(inode);
328         return 0;
329 cleanup:
330         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
331         return ret;
332 }
333
334 /*
335  * run through the list of inodes in the FS that need
336  * defragging
337  */
338 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
339 {
340         struct inode_defrag *defrag;
341         u64 first_ino = 0;
342         u64 root_objectid = 0;
343
344         atomic_inc(&fs_info->defrag_running);
345         while (1) {
346                 /* Pause the auto defragger. */
347                 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
348                              &fs_info->fs_state))
349                         break;
350
351                 if (!__need_auto_defrag(fs_info))
352                         break;
353
354                 /* find an inode to defrag */
355                 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
356                                                  first_ino);
357                 if (!defrag) {
358                         if (root_objectid || first_ino) {
359                                 root_objectid = 0;
360                                 first_ino = 0;
361                                 continue;
362                         } else {
363                                 break;
364                         }
365                 }
366
367                 first_ino = defrag->ino + 1;
368                 root_objectid = defrag->root;
369
370                 __btrfs_run_defrag_inode(fs_info, defrag);
371         }
372         atomic_dec(&fs_info->defrag_running);
373
374         /*
375          * during unmount, we use the transaction_wait queue to
376          * wait for the defragger to stop
377          */
378         wake_up(&fs_info->transaction_wait);
379         return 0;
380 }
381
382 /* simple helper to fault in pages and copy.  This should go away
383  * and be replaced with calls into generic code.
384  */
385 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
386                                          struct page **prepared_pages,
387                                          struct iov_iter *i)
388 {
389         size_t copied = 0;
390         size_t total_copied = 0;
391         int pg = 0;
392         int offset = offset_in_page(pos);
393
394         while (write_bytes > 0) {
395                 size_t count = min_t(size_t,
396                                      PAGE_SIZE - offset, write_bytes);
397                 struct page *page = prepared_pages[pg];
398                 /*
399                  * Copy data from userspace to the current page
400                  */
401                 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
402
403                 /* Flush processor's dcache for this page */
404                 flush_dcache_page(page);
405
406                 /*
407                  * if we get a partial write, we can end up with
408                  * partially up to date pages.  These add
409                  * a lot of complexity, so make sure they don't
410                  * happen by forcing this copy to be retried.
411                  *
412                  * The rest of the btrfs_file_write code will fall
413                  * back to page at a time copies after we return 0.
414                  */
415                 if (!PageUptodate(page) && copied < count)
416                         copied = 0;
417
418                 iov_iter_advance(i, copied);
419                 write_bytes -= copied;
420                 total_copied += copied;
421
422                 /* Return to btrfs_file_write_iter to fault page */
423                 if (unlikely(copied == 0))
424                         break;
425
426                 if (copied < PAGE_SIZE - offset) {
427                         offset += copied;
428                 } else {
429                         pg++;
430                         offset = 0;
431                 }
432         }
433         return total_copied;
434 }
435
436 /*
437  * unlocks pages after btrfs_file_write is done with them
438  */
439 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
440 {
441         size_t i;
442         for (i = 0; i < num_pages; i++) {
443                 /* page checked is some magic around finding pages that
444                  * have been modified without going through btrfs_set_page_dirty
445                  * clear it here. There should be no need to mark the pages
446                  * accessed as prepare_pages should have marked them accessed
447                  * in prepare_pages via find_or_create_page()
448                  */
449                 ClearPageChecked(pages[i]);
450                 unlock_page(pages[i]);
451                 put_page(pages[i]);
452         }
453 }
454
455 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
456                                          const u64 start,
457                                          const u64 len,
458                                          struct extent_state **cached_state)
459 {
460         u64 search_start = start;
461         const u64 end = start + len - 1;
462
463         while (search_start < end) {
464                 const u64 search_len = end - search_start + 1;
465                 struct extent_map *em;
466                 u64 em_len;
467                 int ret = 0;
468
469                 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
470                 if (IS_ERR(em))
471                         return PTR_ERR(em);
472
473                 if (em->block_start != EXTENT_MAP_HOLE)
474                         goto next;
475
476                 em_len = em->len;
477                 if (em->start < search_start)
478                         em_len -= search_start - em->start;
479                 if (em_len > search_len)
480                         em_len = search_len;
481
482                 ret = set_extent_bit(&inode->io_tree, search_start,
483                                      search_start + em_len - 1,
484                                      EXTENT_DELALLOC_NEW,
485                                      NULL, cached_state, GFP_NOFS);
486 next:
487                 search_start = extent_map_end(em);
488                 free_extent_map(em);
489                 if (ret)
490                         return ret;
491         }
492         return 0;
493 }
494
495 /*
496  * after copy_from_user, pages need to be dirtied and we need to make
497  * sure holes are created between the current EOF and the start of
498  * any next extents (if required).
499  *
500  * this also makes the decision about creating an inline extent vs
501  * doing real data extents, marking pages dirty and delalloc as required.
502  */
503 int btrfs_dirty_pages(struct inode *inode, struct page **pages,
504                       size_t num_pages, loff_t pos, size_t write_bytes,
505                       struct extent_state **cached)
506 {
507         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
508         int err = 0;
509         int i;
510         u64 num_bytes;
511         u64 start_pos;
512         u64 end_of_last_block;
513         u64 end_pos = pos + write_bytes;
514         loff_t isize = i_size_read(inode);
515         unsigned int extra_bits = 0;
516
517         start_pos = pos & ~((u64) fs_info->sectorsize - 1);
518         num_bytes = round_up(write_bytes + pos - start_pos,
519                              fs_info->sectorsize);
520
521         end_of_last_block = start_pos + num_bytes - 1;
522
523         /*
524          * The pages may have already been dirty, clear out old accounting so
525          * we can set things up properly
526          */
527         clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block,
528                          EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
529                          0, 0, cached);
530
531         if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
532                 if (start_pos >= isize &&
533                     !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
534                         /*
535                          * There can't be any extents following eof in this case
536                          * so just set the delalloc new bit for the range
537                          * directly.
538                          */
539                         extra_bits |= EXTENT_DELALLOC_NEW;
540                 } else {
541                         err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
542                                                             start_pos,
543                                                             num_bytes, cached);
544                         if (err)
545                                 return err;
546                 }
547         }
548
549         err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
550                                         extra_bits, cached);
551         if (err)
552                 return err;
553
554         for (i = 0; i < num_pages; i++) {
555                 struct page *p = pages[i];
556                 SetPageUptodate(p);
557                 ClearPageChecked(p);
558                 set_page_dirty(p);
559         }
560
561         /*
562          * we've only changed i_size in ram, and we haven't updated
563          * the disk i_size.  There is no need to log the inode
564          * at this time.
565          */
566         if (end_pos > isize)
567                 i_size_write(inode, end_pos);
568         return 0;
569 }
570
571 /*
572  * this drops all the extents in the cache that intersect the range
573  * [start, end].  Existing extents are split as required.
574  */
575 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
576                              int skip_pinned)
577 {
578         struct extent_map *em;
579         struct extent_map *split = NULL;
580         struct extent_map *split2 = NULL;
581         struct extent_map_tree *em_tree = &inode->extent_tree;
582         u64 len = end - start + 1;
583         u64 gen;
584         int ret;
585         int testend = 1;
586         unsigned long flags;
587         int compressed = 0;
588         bool modified;
589
590         WARN_ON(end < start);
591         if (end == (u64)-1) {
592                 len = (u64)-1;
593                 testend = 0;
594         }
595         while (1) {
596                 int no_splits = 0;
597
598                 modified = false;
599                 if (!split)
600                         split = alloc_extent_map();
601                 if (!split2)
602                         split2 = alloc_extent_map();
603                 if (!split || !split2)
604                         no_splits = 1;
605
606                 write_lock(&em_tree->lock);
607                 em = lookup_extent_mapping(em_tree, start, len);
608                 if (!em) {
609                         write_unlock(&em_tree->lock);
610                         break;
611                 }
612                 flags = em->flags;
613                 gen = em->generation;
614                 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
615                         if (testend && em->start + em->len >= start + len) {
616                                 free_extent_map(em);
617                                 write_unlock(&em_tree->lock);
618                                 break;
619                         }
620                         start = em->start + em->len;
621                         if (testend)
622                                 len = start + len - (em->start + em->len);
623                         free_extent_map(em);
624                         write_unlock(&em_tree->lock);
625                         continue;
626                 }
627                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
628                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
629                 clear_bit(EXTENT_FLAG_LOGGING, &flags);
630                 modified = !list_empty(&em->list);
631                 if (no_splits)
632                         goto next;
633
634                 if (em->start < start) {
635                         split->start = em->start;
636                         split->len = start - em->start;
637
638                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
639                                 split->orig_start = em->orig_start;
640                                 split->block_start = em->block_start;
641
642                                 if (compressed)
643                                         split->block_len = em->block_len;
644                                 else
645                                         split->block_len = split->len;
646                                 split->orig_block_len = max(split->block_len,
647                                                 em->orig_block_len);
648                                 split->ram_bytes = em->ram_bytes;
649                         } else {
650                                 split->orig_start = split->start;
651                                 split->block_len = 0;
652                                 split->block_start = em->block_start;
653                                 split->orig_block_len = 0;
654                                 split->ram_bytes = split->len;
655                         }
656
657                         split->generation = gen;
658                         split->flags = flags;
659                         split->compress_type = em->compress_type;
660                         replace_extent_mapping(em_tree, em, split, modified);
661                         free_extent_map(split);
662                         split = split2;
663                         split2 = NULL;
664                 }
665                 if (testend && em->start + em->len > start + len) {
666                         u64 diff = start + len - em->start;
667
668                         split->start = start + len;
669                         split->len = em->start + em->len - (start + len);
670                         split->flags = flags;
671                         split->compress_type = em->compress_type;
672                         split->generation = gen;
673
674                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
675                                 split->orig_block_len = max(em->block_len,
676                                                     em->orig_block_len);
677
678                                 split->ram_bytes = em->ram_bytes;
679                                 if (compressed) {
680                                         split->block_len = em->block_len;
681                                         split->block_start = em->block_start;
682                                         split->orig_start = em->orig_start;
683                                 } else {
684                                         split->block_len = split->len;
685                                         split->block_start = em->block_start
686                                                 + diff;
687                                         split->orig_start = em->orig_start;
688                                 }
689                         } else {
690                                 split->ram_bytes = split->len;
691                                 split->orig_start = split->start;
692                                 split->block_len = 0;
693                                 split->block_start = em->block_start;
694                                 split->orig_block_len = 0;
695                         }
696
697                         if (extent_map_in_tree(em)) {
698                                 replace_extent_mapping(em_tree, em, split,
699                                                        modified);
700                         } else {
701                                 ret = add_extent_mapping(em_tree, split,
702                                                          modified);
703                                 ASSERT(ret == 0); /* Logic error */
704                         }
705                         free_extent_map(split);
706                         split = NULL;
707                 }
708 next:
709                 if (extent_map_in_tree(em))
710                         remove_extent_mapping(em_tree, em);
711                 write_unlock(&em_tree->lock);
712
713                 /* once for us */
714                 free_extent_map(em);
715                 /* once for the tree*/
716                 free_extent_map(em);
717         }
718         if (split)
719                 free_extent_map(split);
720         if (split2)
721                 free_extent_map(split2);
722 }
723
724 /*
725  * this is very complex, but the basic idea is to drop all extents
726  * in the range start - end.  hint_block is filled in with a block number
727  * that would be a good hint to the block allocator for this file.
728  *
729  * If an extent intersects the range but is not entirely inside the range
730  * it is either truncated or split.  Anything entirely inside the range
731  * is deleted from the tree.
732  */
733 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
734                          struct btrfs_root *root, struct inode *inode,
735                          struct btrfs_path *path, u64 start, u64 end,
736                          u64 *drop_end, int drop_cache,
737                          int replace_extent,
738                          u32 extent_item_size,
739                          int *key_inserted)
740 {
741         struct btrfs_fs_info *fs_info = root->fs_info;
742         struct extent_buffer *leaf;
743         struct btrfs_file_extent_item *fi;
744         struct btrfs_ref ref = { 0 };
745         struct btrfs_key key;
746         struct btrfs_key new_key;
747         u64 ino = btrfs_ino(BTRFS_I(inode));
748         u64 search_start = start;
749         u64 disk_bytenr = 0;
750         u64 num_bytes = 0;
751         u64 extent_offset = 0;
752         u64 extent_end = 0;
753         u64 last_end = start;
754         int del_nr = 0;
755         int del_slot = 0;
756         int extent_type;
757         int recow;
758         int ret;
759         int modify_tree = -1;
760         int update_refs;
761         int found = 0;
762         int leafs_visited = 0;
763
764         if (drop_cache)
765                 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
766
767         if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
768                 modify_tree = 0;
769
770         update_refs = (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
771                        root == fs_info->tree_root);
772         while (1) {
773                 recow = 0;
774                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
775                                                search_start, modify_tree);
776                 if (ret < 0)
777                         break;
778                 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
779                         leaf = path->nodes[0];
780                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
781                         if (key.objectid == ino &&
782                             key.type == BTRFS_EXTENT_DATA_KEY)
783                                 path->slots[0]--;
784                 }
785                 ret = 0;
786                 leafs_visited++;
787 next_slot:
788                 leaf = path->nodes[0];
789                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
790                         BUG_ON(del_nr > 0);
791                         ret = btrfs_next_leaf(root, path);
792                         if (ret < 0)
793                                 break;
794                         if (ret > 0) {
795                                 ret = 0;
796                                 break;
797                         }
798                         leafs_visited++;
799                         leaf = path->nodes[0];
800                         recow = 1;
801                 }
802
803                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
804
805                 if (key.objectid > ino)
806                         break;
807                 if (WARN_ON_ONCE(key.objectid < ino) ||
808                     key.type < BTRFS_EXTENT_DATA_KEY) {
809                         ASSERT(del_nr == 0);
810                         path->slots[0]++;
811                         goto next_slot;
812                 }
813                 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
814                         break;
815
816                 fi = btrfs_item_ptr(leaf, path->slots[0],
817                                     struct btrfs_file_extent_item);
818                 extent_type = btrfs_file_extent_type(leaf, fi);
819
820                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
821                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
822                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
823                         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
824                         extent_offset = btrfs_file_extent_offset(leaf, fi);
825                         extent_end = key.offset +
826                                 btrfs_file_extent_num_bytes(leaf, fi);
827                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
828                         extent_end = key.offset +
829                                 btrfs_file_extent_ram_bytes(leaf, fi);
830                 } else {
831                         /* can't happen */
832                         BUG();
833                 }
834
835                 /*
836                  * Don't skip extent items representing 0 byte lengths. They
837                  * used to be created (bug) if while punching holes we hit
838                  * -ENOSPC condition. So if we find one here, just ensure we
839                  * delete it, otherwise we would insert a new file extent item
840                  * with the same key (offset) as that 0 bytes length file
841                  * extent item in the call to setup_items_for_insert() later
842                  * in this function.
843                  */
844                 if (extent_end == key.offset && extent_end >= search_start) {
845                         last_end = extent_end;
846                         goto delete_extent_item;
847                 }
848
849                 if (extent_end <= search_start) {
850                         path->slots[0]++;
851                         goto next_slot;
852                 }
853
854                 found = 1;
855                 search_start = max(key.offset, start);
856                 if (recow || !modify_tree) {
857                         modify_tree = -1;
858                         btrfs_release_path(path);
859                         continue;
860                 }
861
862                 /*
863                  *     | - range to drop - |
864                  *  | -------- extent -------- |
865                  */
866                 if (start > key.offset && end < extent_end) {
867                         BUG_ON(del_nr > 0);
868                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
869                                 ret = -EOPNOTSUPP;
870                                 break;
871                         }
872
873                         memcpy(&new_key, &key, sizeof(new_key));
874                         new_key.offset = start;
875                         ret = btrfs_duplicate_item(trans, root, path,
876                                                    &new_key);
877                         if (ret == -EAGAIN) {
878                                 btrfs_release_path(path);
879                                 continue;
880                         }
881                         if (ret < 0)
882                                 break;
883
884                         leaf = path->nodes[0];
885                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
886                                             struct btrfs_file_extent_item);
887                         btrfs_set_file_extent_num_bytes(leaf, fi,
888                                                         start - key.offset);
889
890                         fi = btrfs_item_ptr(leaf, path->slots[0],
891                                             struct btrfs_file_extent_item);
892
893                         extent_offset += start - key.offset;
894                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
895                         btrfs_set_file_extent_num_bytes(leaf, fi,
896                                                         extent_end - start);
897                         btrfs_mark_buffer_dirty(leaf);
898
899                         if (update_refs && disk_bytenr > 0) {
900                                 btrfs_init_generic_ref(&ref,
901                                                 BTRFS_ADD_DELAYED_REF,
902                                                 disk_bytenr, num_bytes, 0);
903                                 btrfs_init_data_ref(&ref,
904                                                 root->root_key.objectid,
905                                                 new_key.objectid,
906                                                 start - extent_offset);
907                                 ret = btrfs_inc_extent_ref(trans, &ref);
908                                 BUG_ON(ret); /* -ENOMEM */
909                         }
910                         key.offset = start;
911                 }
912                 /*
913                  * From here on out we will have actually dropped something, so
914                  * last_end can be updated.
915                  */
916                 last_end = extent_end;
917
918                 /*
919                  *  | ---- range to drop ----- |
920                  *      | -------- extent -------- |
921                  */
922                 if (start <= key.offset && end < extent_end) {
923                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
924                                 ret = -EOPNOTSUPP;
925                                 break;
926                         }
927
928                         memcpy(&new_key, &key, sizeof(new_key));
929                         new_key.offset = end;
930                         btrfs_set_item_key_safe(fs_info, path, &new_key);
931
932                         extent_offset += end - key.offset;
933                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
934                         btrfs_set_file_extent_num_bytes(leaf, fi,
935                                                         extent_end - end);
936                         btrfs_mark_buffer_dirty(leaf);
937                         if (update_refs && disk_bytenr > 0)
938                                 inode_sub_bytes(inode, end - key.offset);
939                         break;
940                 }
941
942                 search_start = extent_end;
943                 /*
944                  *       | ---- range to drop ----- |
945                  *  | -------- extent -------- |
946                  */
947                 if (start > key.offset && end >= extent_end) {
948                         BUG_ON(del_nr > 0);
949                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
950                                 ret = -EOPNOTSUPP;
951                                 break;
952                         }
953
954                         btrfs_set_file_extent_num_bytes(leaf, fi,
955                                                         start - key.offset);
956                         btrfs_mark_buffer_dirty(leaf);
957                         if (update_refs && disk_bytenr > 0)
958                                 inode_sub_bytes(inode, extent_end - start);
959                         if (end == extent_end)
960                                 break;
961
962                         path->slots[0]++;
963                         goto next_slot;
964                 }
965
966                 /*
967                  *  | ---- range to drop ----- |
968                  *    | ------ extent ------ |
969                  */
970                 if (start <= key.offset && end >= extent_end) {
971 delete_extent_item:
972                         if (del_nr == 0) {
973                                 del_slot = path->slots[0];
974                                 del_nr = 1;
975                         } else {
976                                 BUG_ON(del_slot + del_nr != path->slots[0]);
977                                 del_nr++;
978                         }
979
980                         if (update_refs &&
981                             extent_type == BTRFS_FILE_EXTENT_INLINE) {
982                                 inode_sub_bytes(inode,
983                                                 extent_end - key.offset);
984                                 extent_end = ALIGN(extent_end,
985                                                    fs_info->sectorsize);
986                         } else if (update_refs && disk_bytenr > 0) {
987                                 btrfs_init_generic_ref(&ref,
988                                                 BTRFS_DROP_DELAYED_REF,
989                                                 disk_bytenr, num_bytes, 0);
990                                 btrfs_init_data_ref(&ref,
991                                                 root->root_key.objectid,
992                                                 key.objectid,
993                                                 key.offset - extent_offset);
994                                 ret = btrfs_free_extent(trans, &ref);
995                                 BUG_ON(ret); /* -ENOMEM */
996                                 inode_sub_bytes(inode,
997                                                 extent_end - key.offset);
998                         }
999
1000                         if (end == extent_end)
1001                                 break;
1002
1003                         if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1004                                 path->slots[0]++;
1005                                 goto next_slot;
1006                         }
1007
1008                         ret = btrfs_del_items(trans, root, path, del_slot,
1009                                               del_nr);
1010                         if (ret) {
1011                                 btrfs_abort_transaction(trans, ret);
1012                                 break;
1013                         }
1014
1015                         del_nr = 0;
1016                         del_slot = 0;
1017
1018                         btrfs_release_path(path);
1019                         continue;
1020                 }
1021
1022                 BUG();
1023         }
1024
1025         if (!ret && del_nr > 0) {
1026                 /*
1027                  * Set path->slots[0] to first slot, so that after the delete
1028                  * if items are move off from our leaf to its immediate left or
1029                  * right neighbor leafs, we end up with a correct and adjusted
1030                  * path->slots[0] for our insertion (if replace_extent != 0).
1031                  */
1032                 path->slots[0] = del_slot;
1033                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1034                 if (ret)
1035                         btrfs_abort_transaction(trans, ret);
1036         }
1037
1038         leaf = path->nodes[0];
1039         /*
1040          * If btrfs_del_items() was called, it might have deleted a leaf, in
1041          * which case it unlocked our path, so check path->locks[0] matches a
1042          * write lock.
1043          */
1044         if (!ret && replace_extent && leafs_visited == 1 &&
1045             (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1046              path->locks[0] == BTRFS_WRITE_LOCK) &&
1047             btrfs_leaf_free_space(leaf) >=
1048             sizeof(struct btrfs_item) + extent_item_size) {
1049
1050                 key.objectid = ino;
1051                 key.type = BTRFS_EXTENT_DATA_KEY;
1052                 key.offset = start;
1053                 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1054                         struct btrfs_key slot_key;
1055
1056                         btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1057                         if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1058                                 path->slots[0]++;
1059                 }
1060                 setup_items_for_insert(root, path, &key,
1061                                        &extent_item_size,
1062                                        extent_item_size,
1063                                        sizeof(struct btrfs_item) +
1064                                        extent_item_size, 1);
1065                 *key_inserted = 1;
1066         }
1067
1068         if (!replace_extent || !(*key_inserted))
1069                 btrfs_release_path(path);
1070         if (drop_end)
1071                 *drop_end = found ? min(end, last_end) : end;
1072         return ret;
1073 }
1074
1075 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1076                        struct btrfs_root *root, struct inode *inode, u64 start,
1077                        u64 end, int drop_cache)
1078 {
1079         struct btrfs_path *path;
1080         int ret;
1081
1082         path = btrfs_alloc_path();
1083         if (!path)
1084                 return -ENOMEM;
1085         ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1086                                    drop_cache, 0, 0, NULL);
1087         btrfs_free_path(path);
1088         return ret;
1089 }
1090
1091 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1092                             u64 objectid, u64 bytenr, u64 orig_offset,
1093                             u64 *start, u64 *end)
1094 {
1095         struct btrfs_file_extent_item *fi;
1096         struct btrfs_key key;
1097         u64 extent_end;
1098
1099         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1100                 return 0;
1101
1102         btrfs_item_key_to_cpu(leaf, &key, slot);
1103         if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1104                 return 0;
1105
1106         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1107         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1108             btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1109             btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1110             btrfs_file_extent_compression(leaf, fi) ||
1111             btrfs_file_extent_encryption(leaf, fi) ||
1112             btrfs_file_extent_other_encoding(leaf, fi))
1113                 return 0;
1114
1115         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1116         if ((*start && *start != key.offset) || (*end && *end != extent_end))
1117                 return 0;
1118
1119         *start = key.offset;
1120         *end = extent_end;
1121         return 1;
1122 }
1123
1124 /*
1125  * Mark extent in the range start - end as written.
1126  *
1127  * This changes extent type from 'pre-allocated' to 'regular'. If only
1128  * part of extent is marked as written, the extent will be split into
1129  * two or three.
1130  */
1131 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1132                               struct btrfs_inode *inode, u64 start, u64 end)
1133 {
1134         struct btrfs_fs_info *fs_info = trans->fs_info;
1135         struct btrfs_root *root = inode->root;
1136         struct extent_buffer *leaf;
1137         struct btrfs_path *path;
1138         struct btrfs_file_extent_item *fi;
1139         struct btrfs_ref ref = { 0 };
1140         struct btrfs_key key;
1141         struct btrfs_key new_key;
1142         u64 bytenr;
1143         u64 num_bytes;
1144         u64 extent_end;
1145         u64 orig_offset;
1146         u64 other_start;
1147         u64 other_end;
1148         u64 split;
1149         int del_nr = 0;
1150         int del_slot = 0;
1151         int recow;
1152         int ret;
1153         u64 ino = btrfs_ino(inode);
1154
1155         path = btrfs_alloc_path();
1156         if (!path)
1157                 return -ENOMEM;
1158 again:
1159         recow = 0;
1160         split = start;
1161         key.objectid = ino;
1162         key.type = BTRFS_EXTENT_DATA_KEY;
1163         key.offset = split;
1164
1165         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1166         if (ret < 0)
1167                 goto out;
1168         if (ret > 0 && path->slots[0] > 0)
1169                 path->slots[0]--;
1170
1171         leaf = path->nodes[0];
1172         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1173         if (key.objectid != ino ||
1174             key.type != BTRFS_EXTENT_DATA_KEY) {
1175                 ret = -EINVAL;
1176                 btrfs_abort_transaction(trans, ret);
1177                 goto out;
1178         }
1179         fi = btrfs_item_ptr(leaf, path->slots[0],
1180                             struct btrfs_file_extent_item);
1181         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1182                 ret = -EINVAL;
1183                 btrfs_abort_transaction(trans, ret);
1184                 goto out;
1185         }
1186         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1187         if (key.offset > start || extent_end < end) {
1188                 ret = -EINVAL;
1189                 btrfs_abort_transaction(trans, ret);
1190                 goto out;
1191         }
1192
1193         bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1194         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1195         orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1196         memcpy(&new_key, &key, sizeof(new_key));
1197
1198         if (start == key.offset && end < extent_end) {
1199                 other_start = 0;
1200                 other_end = start;
1201                 if (extent_mergeable(leaf, path->slots[0] - 1,
1202                                      ino, bytenr, orig_offset,
1203                                      &other_start, &other_end)) {
1204                         new_key.offset = end;
1205                         btrfs_set_item_key_safe(fs_info, path, &new_key);
1206                         fi = btrfs_item_ptr(leaf, path->slots[0],
1207                                             struct btrfs_file_extent_item);
1208                         btrfs_set_file_extent_generation(leaf, fi,
1209                                                          trans->transid);
1210                         btrfs_set_file_extent_num_bytes(leaf, fi,
1211                                                         extent_end - end);
1212                         btrfs_set_file_extent_offset(leaf, fi,
1213                                                      end - orig_offset);
1214                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1215                                             struct btrfs_file_extent_item);
1216                         btrfs_set_file_extent_generation(leaf, fi,
1217                                                          trans->transid);
1218                         btrfs_set_file_extent_num_bytes(leaf, fi,
1219                                                         end - other_start);
1220                         btrfs_mark_buffer_dirty(leaf);
1221                         goto out;
1222                 }
1223         }
1224
1225         if (start > key.offset && end == extent_end) {
1226                 other_start = end;
1227                 other_end = 0;
1228                 if (extent_mergeable(leaf, path->slots[0] + 1,
1229                                      ino, bytenr, orig_offset,
1230                                      &other_start, &other_end)) {
1231                         fi = btrfs_item_ptr(leaf, path->slots[0],
1232                                             struct btrfs_file_extent_item);
1233                         btrfs_set_file_extent_num_bytes(leaf, fi,
1234                                                         start - key.offset);
1235                         btrfs_set_file_extent_generation(leaf, fi,
1236                                                          trans->transid);
1237                         path->slots[0]++;
1238                         new_key.offset = start;
1239                         btrfs_set_item_key_safe(fs_info, path, &new_key);
1240
1241                         fi = btrfs_item_ptr(leaf, path->slots[0],
1242                                             struct btrfs_file_extent_item);
1243                         btrfs_set_file_extent_generation(leaf, fi,
1244                                                          trans->transid);
1245                         btrfs_set_file_extent_num_bytes(leaf, fi,
1246                                                         other_end - start);
1247                         btrfs_set_file_extent_offset(leaf, fi,
1248                                                      start - orig_offset);
1249                         btrfs_mark_buffer_dirty(leaf);
1250                         goto out;
1251                 }
1252         }
1253
1254         while (start > key.offset || end < extent_end) {
1255                 if (key.offset == start)
1256                         split = end;
1257
1258                 new_key.offset = split;
1259                 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1260                 if (ret == -EAGAIN) {
1261                         btrfs_release_path(path);
1262                         goto again;
1263                 }
1264                 if (ret < 0) {
1265                         btrfs_abort_transaction(trans, ret);
1266                         goto out;
1267                 }
1268
1269                 leaf = path->nodes[0];
1270                 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1271                                     struct btrfs_file_extent_item);
1272                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1273                 btrfs_set_file_extent_num_bytes(leaf, fi,
1274                                                 split - key.offset);
1275
1276                 fi = btrfs_item_ptr(leaf, path->slots[0],
1277                                     struct btrfs_file_extent_item);
1278
1279                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1280                 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1281                 btrfs_set_file_extent_num_bytes(leaf, fi,
1282                                                 extent_end - split);
1283                 btrfs_mark_buffer_dirty(leaf);
1284
1285                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1286                                        num_bytes, 0);
1287                 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1288                                     orig_offset);
1289                 ret = btrfs_inc_extent_ref(trans, &ref);
1290                 if (ret) {
1291                         btrfs_abort_transaction(trans, ret);
1292                         goto out;
1293                 }
1294
1295                 if (split == start) {
1296                         key.offset = start;
1297                 } else {
1298                         if (start != key.offset) {
1299                                 ret = -EINVAL;
1300                                 btrfs_abort_transaction(trans, ret);
1301                                 goto out;
1302                         }
1303                         path->slots[0]--;
1304                         extent_end = end;
1305                 }
1306                 recow = 1;
1307         }
1308
1309         other_start = end;
1310         other_end = 0;
1311         btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1312                                num_bytes, 0);
1313         btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1314         if (extent_mergeable(leaf, path->slots[0] + 1,
1315                              ino, bytenr, orig_offset,
1316                              &other_start, &other_end)) {
1317                 if (recow) {
1318                         btrfs_release_path(path);
1319                         goto again;
1320                 }
1321                 extent_end = other_end;
1322                 del_slot = path->slots[0] + 1;
1323                 del_nr++;
1324                 ret = btrfs_free_extent(trans, &ref);
1325                 if (ret) {
1326                         btrfs_abort_transaction(trans, ret);
1327                         goto out;
1328                 }
1329         }
1330         other_start = 0;
1331         other_end = start;
1332         if (extent_mergeable(leaf, path->slots[0] - 1,
1333                              ino, bytenr, orig_offset,
1334                              &other_start, &other_end)) {
1335                 if (recow) {
1336                         btrfs_release_path(path);
1337                         goto again;
1338                 }
1339                 key.offset = other_start;
1340                 del_slot = path->slots[0];
1341                 del_nr++;
1342                 ret = btrfs_free_extent(trans, &ref);
1343                 if (ret) {
1344                         btrfs_abort_transaction(trans, ret);
1345                         goto out;
1346                 }
1347         }
1348         if (del_nr == 0) {
1349                 fi = btrfs_item_ptr(leaf, path->slots[0],
1350                            struct btrfs_file_extent_item);
1351                 btrfs_set_file_extent_type(leaf, fi,
1352                                            BTRFS_FILE_EXTENT_REG);
1353                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1354                 btrfs_mark_buffer_dirty(leaf);
1355         } else {
1356                 fi = btrfs_item_ptr(leaf, del_slot - 1,
1357                            struct btrfs_file_extent_item);
1358                 btrfs_set_file_extent_type(leaf, fi,
1359                                            BTRFS_FILE_EXTENT_REG);
1360                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1361                 btrfs_set_file_extent_num_bytes(leaf, fi,
1362                                                 extent_end - key.offset);
1363                 btrfs_mark_buffer_dirty(leaf);
1364
1365                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1366                 if (ret < 0) {
1367                         btrfs_abort_transaction(trans, ret);
1368                         goto out;
1369                 }
1370         }
1371 out:
1372         btrfs_free_path(path);
1373         return 0;
1374 }
1375
1376 /*
1377  * on error we return an unlocked page and the error value
1378  * on success we return a locked page and 0
1379  */
1380 static int prepare_uptodate_page(struct inode *inode,
1381                                  struct page *page, u64 pos,
1382                                  bool force_uptodate)
1383 {
1384         int ret = 0;
1385
1386         if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1387             !PageUptodate(page)) {
1388                 ret = btrfs_readpage(NULL, page);
1389                 if (ret)
1390                         return ret;
1391                 lock_page(page);
1392                 if (!PageUptodate(page)) {
1393                         unlock_page(page);
1394                         return -EIO;
1395                 }
1396                 if (page->mapping != inode->i_mapping) {
1397                         unlock_page(page);
1398                         return -EAGAIN;
1399                 }
1400         }
1401         return 0;
1402 }
1403
1404 /*
1405  * this just gets pages into the page cache and locks them down.
1406  */
1407 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1408                                   size_t num_pages, loff_t pos,
1409                                   size_t write_bytes, bool force_uptodate)
1410 {
1411         int i;
1412         unsigned long index = pos >> PAGE_SHIFT;
1413         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1414         int err = 0;
1415         int faili;
1416
1417         for (i = 0; i < num_pages; i++) {
1418 again:
1419                 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1420                                                mask | __GFP_WRITE);
1421                 if (!pages[i]) {
1422                         faili = i - 1;
1423                         err = -ENOMEM;
1424                         goto fail;
1425                 }
1426
1427                 if (i == 0)
1428                         err = prepare_uptodate_page(inode, pages[i], pos,
1429                                                     force_uptodate);
1430                 if (!err && i == num_pages - 1)
1431                         err = prepare_uptodate_page(inode, pages[i],
1432                                                     pos + write_bytes, false);
1433                 if (err) {
1434                         put_page(pages[i]);
1435                         if (err == -EAGAIN) {
1436                                 err = 0;
1437                                 goto again;
1438                         }
1439                         faili = i - 1;
1440                         goto fail;
1441                 }
1442                 wait_on_page_writeback(pages[i]);
1443         }
1444
1445         return 0;
1446 fail:
1447         while (faili >= 0) {
1448                 unlock_page(pages[faili]);
1449                 put_page(pages[faili]);
1450                 faili--;
1451         }
1452         return err;
1453
1454 }
1455
1456 /*
1457  * This function locks the extent and properly waits for data=ordered extents
1458  * to finish before allowing the pages to be modified if need.
1459  *
1460  * The return value:
1461  * 1 - the extent is locked
1462  * 0 - the extent is not locked, and everything is OK
1463  * -EAGAIN - need re-prepare the pages
1464  * the other < 0 number - Something wrong happens
1465  */
1466 static noinline int
1467 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1468                                 size_t num_pages, loff_t pos,
1469                                 size_t write_bytes,
1470                                 u64 *lockstart, u64 *lockend,
1471                                 struct extent_state **cached_state)
1472 {
1473         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1474         u64 start_pos;
1475         u64 last_pos;
1476         int i;
1477         int ret = 0;
1478
1479         start_pos = round_down(pos, fs_info->sectorsize);
1480         last_pos = start_pos
1481                 + round_up(pos + write_bytes - start_pos,
1482                            fs_info->sectorsize) - 1;
1483
1484         if (start_pos < inode->vfs_inode.i_size) {
1485                 struct btrfs_ordered_extent *ordered;
1486
1487                 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1488                                 cached_state);
1489                 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1490                                                      last_pos - start_pos + 1);
1491                 if (ordered &&
1492                     ordered->file_offset + ordered->num_bytes > start_pos &&
1493                     ordered->file_offset <= last_pos) {
1494                         unlock_extent_cached(&inode->io_tree, start_pos,
1495                                         last_pos, cached_state);
1496                         for (i = 0; i < num_pages; i++) {
1497                                 unlock_page(pages[i]);
1498                                 put_page(pages[i]);
1499                         }
1500                         btrfs_start_ordered_extent(&inode->vfs_inode,
1501                                         ordered, 1);
1502                         btrfs_put_ordered_extent(ordered);
1503                         return -EAGAIN;
1504                 }
1505                 if (ordered)
1506                         btrfs_put_ordered_extent(ordered);
1507
1508                 *lockstart = start_pos;
1509                 *lockend = last_pos;
1510                 ret = 1;
1511         }
1512
1513         /*
1514          * It's possible the pages are dirty right now, but we don't want
1515          * to clean them yet because copy_from_user may catch a page fault
1516          * and we might have to fall back to one page at a time.  If that
1517          * happens, we'll unlock these pages and we'd have a window where
1518          * reclaim could sneak in and drop the once-dirty page on the floor
1519          * without writing it.
1520          *
1521          * We have the pages locked and the extent range locked, so there's
1522          * no way someone can start IO on any dirty pages in this range.
1523          *
1524          * We'll call btrfs_dirty_pages() later on, and that will flip around
1525          * delalloc bits and dirty the pages as required.
1526          */
1527         for (i = 0; i < num_pages; i++) {
1528                 set_page_extent_mapped(pages[i]);
1529                 WARN_ON(!PageLocked(pages[i]));
1530         }
1531
1532         return ret;
1533 }
1534
1535 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1536                                     size_t *write_bytes)
1537 {
1538         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1539         struct btrfs_root *root = inode->root;
1540         u64 lockstart, lockend;
1541         u64 num_bytes;
1542         int ret;
1543
1544         if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1545                 return -EAGAIN;
1546
1547         lockstart = round_down(pos, fs_info->sectorsize);
1548         lockend = round_up(pos + *write_bytes,
1549                            fs_info->sectorsize) - 1;
1550
1551         btrfs_lock_and_flush_ordered_range(inode, lockstart,
1552                                            lockend, NULL);
1553
1554         num_bytes = lockend - lockstart + 1;
1555         ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1556                         NULL, NULL, NULL);
1557         if (ret <= 0) {
1558                 ret = 0;
1559                 btrfs_drew_write_unlock(&root->snapshot_lock);
1560         } else {
1561                 *write_bytes = min_t(size_t, *write_bytes ,
1562                                      num_bytes - pos + lockstart);
1563         }
1564
1565         unlock_extent(&inode->io_tree, lockstart, lockend);
1566
1567         return ret;
1568 }
1569
1570 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1571                                                struct iov_iter *i)
1572 {
1573         struct file *file = iocb->ki_filp;
1574         loff_t pos = iocb->ki_pos;
1575         struct inode *inode = file_inode(file);
1576         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1577         struct btrfs_root *root = BTRFS_I(inode)->root;
1578         struct page **pages = NULL;
1579         struct extent_changeset *data_reserved = NULL;
1580         u64 release_bytes = 0;
1581         u64 lockstart;
1582         u64 lockend;
1583         size_t num_written = 0;
1584         int nrptrs;
1585         int ret = 0;
1586         bool only_release_metadata = false;
1587         bool force_page_uptodate = false;
1588
1589         nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1590                         PAGE_SIZE / (sizeof(struct page *)));
1591         nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1592         nrptrs = max(nrptrs, 8);
1593         pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1594         if (!pages)
1595                 return -ENOMEM;
1596
1597         while (iov_iter_count(i) > 0) {
1598                 struct extent_state *cached_state = NULL;
1599                 size_t offset = offset_in_page(pos);
1600                 size_t sector_offset;
1601                 size_t write_bytes = min(iov_iter_count(i),
1602                                          nrptrs * (size_t)PAGE_SIZE -
1603                                          offset);
1604                 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1605                                                 PAGE_SIZE);
1606                 size_t reserve_bytes;
1607                 size_t dirty_pages;
1608                 size_t copied;
1609                 size_t dirty_sectors;
1610                 size_t num_sectors;
1611                 int extents_locked;
1612
1613                 WARN_ON(num_pages > nrptrs);
1614
1615                 /*
1616                  * Fault pages before locking them in prepare_pages
1617                  * to avoid recursive lock
1618                  */
1619                 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1620                         ret = -EFAULT;
1621                         break;
1622                 }
1623
1624                 only_release_metadata = false;
1625                 sector_offset = pos & (fs_info->sectorsize - 1);
1626                 reserve_bytes = round_up(write_bytes + sector_offset,
1627                                 fs_info->sectorsize);
1628
1629                 extent_changeset_release(data_reserved);
1630                 ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1631                                                   write_bytes);
1632                 if (ret < 0) {
1633                         if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1634                                                       BTRFS_INODE_PREALLOC)) &&
1635                             check_can_nocow(BTRFS_I(inode), pos,
1636                                         &write_bytes) > 0) {
1637                                 /*
1638                                  * For nodata cow case, no need to reserve
1639                                  * data space.
1640                                  */
1641                                 only_release_metadata = true;
1642                                 /*
1643                                  * our prealloc extent may be smaller than
1644                                  * write_bytes, so scale down.
1645                                  */
1646                                 num_pages = DIV_ROUND_UP(write_bytes + offset,
1647                                                          PAGE_SIZE);
1648                                 reserve_bytes = round_up(write_bytes +
1649                                                          sector_offset,
1650                                                          fs_info->sectorsize);
1651                         } else {
1652                                 break;
1653                         }
1654                 }
1655
1656                 WARN_ON(reserve_bytes == 0);
1657                 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1658                                 reserve_bytes);
1659                 if (ret) {
1660                         if (!only_release_metadata)
1661                                 btrfs_free_reserved_data_space(inode,
1662                                                 data_reserved, pos,
1663                                                 write_bytes);
1664                         else
1665                                 btrfs_drew_write_unlock(&root->snapshot_lock);
1666                         break;
1667                 }
1668
1669                 release_bytes = reserve_bytes;
1670 again:
1671                 /*
1672                  * This is going to setup the pages array with the number of
1673                  * pages we want, so we don't really need to worry about the
1674                  * contents of pages from loop to loop
1675                  */
1676                 ret = prepare_pages(inode, pages, num_pages,
1677                                     pos, write_bytes,
1678                                     force_page_uptodate);
1679                 if (ret) {
1680                         btrfs_delalloc_release_extents(BTRFS_I(inode),
1681                                                        reserve_bytes);
1682                         break;
1683                 }
1684
1685                 extents_locked = lock_and_cleanup_extent_if_need(
1686                                 BTRFS_I(inode), pages,
1687                                 num_pages, pos, write_bytes, &lockstart,
1688                                 &lockend, &cached_state);
1689                 if (extents_locked < 0) {
1690                         if (extents_locked == -EAGAIN)
1691                                 goto again;
1692                         btrfs_delalloc_release_extents(BTRFS_I(inode),
1693                                                        reserve_bytes);
1694                         ret = extents_locked;
1695                         break;
1696                 }
1697
1698                 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1699
1700                 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1701                 dirty_sectors = round_up(copied + sector_offset,
1702                                         fs_info->sectorsize);
1703                 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1704
1705                 /*
1706                  * if we have trouble faulting in the pages, fall
1707                  * back to one page at a time
1708                  */
1709                 if (copied < write_bytes)
1710                         nrptrs = 1;
1711
1712                 if (copied == 0) {
1713                         force_page_uptodate = true;
1714                         dirty_sectors = 0;
1715                         dirty_pages = 0;
1716                 } else {
1717                         force_page_uptodate = false;
1718                         dirty_pages = DIV_ROUND_UP(copied + offset,
1719                                                    PAGE_SIZE);
1720                 }
1721
1722                 if (num_sectors > dirty_sectors) {
1723                         /* release everything except the sectors we dirtied */
1724                         release_bytes -= dirty_sectors <<
1725                                                 fs_info->sb->s_blocksize_bits;
1726                         if (only_release_metadata) {
1727                                 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1728                                                         release_bytes, true);
1729                         } else {
1730                                 u64 __pos;
1731
1732                                 __pos = round_down(pos,
1733                                                    fs_info->sectorsize) +
1734                                         (dirty_pages << PAGE_SHIFT);
1735                                 btrfs_delalloc_release_space(inode,
1736                                                 data_reserved, __pos,
1737                                                 release_bytes, true);
1738                         }
1739                 }
1740
1741                 release_bytes = round_up(copied + sector_offset,
1742                                         fs_info->sectorsize);
1743
1744                 if (copied > 0)
1745                         ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1746                                                 pos, copied, &cached_state);
1747
1748                 /*
1749                  * If we have not locked the extent range, because the range's
1750                  * start offset is >= i_size, we might still have a non-NULL
1751                  * cached extent state, acquired while marking the extent range
1752                  * as delalloc through btrfs_dirty_pages(). Therefore free any
1753                  * possible cached extent state to avoid a memory leak.
1754                  */
1755                 if (extents_locked)
1756                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1757                                              lockstart, lockend, &cached_state);
1758                 else
1759                         free_extent_state(cached_state);
1760
1761                 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1762                 if (ret) {
1763                         btrfs_drop_pages(pages, num_pages);
1764                         break;
1765                 }
1766
1767                 release_bytes = 0;
1768                 if (only_release_metadata)
1769                         btrfs_drew_write_unlock(&root->snapshot_lock);
1770
1771                 if (only_release_metadata && copied > 0) {
1772                         lockstart = round_down(pos,
1773                                                fs_info->sectorsize);
1774                         lockend = round_up(pos + copied,
1775                                            fs_info->sectorsize) - 1;
1776
1777                         set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1778                                        lockend, EXTENT_NORESERVE, NULL,
1779                                        NULL, GFP_NOFS);
1780                 }
1781
1782                 btrfs_drop_pages(pages, num_pages);
1783
1784                 cond_resched();
1785
1786                 balance_dirty_pages_ratelimited(inode->i_mapping);
1787                 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1788                         btrfs_btree_balance_dirty(fs_info);
1789
1790                 pos += copied;
1791                 num_written += copied;
1792         }
1793
1794         kfree(pages);
1795
1796         if (release_bytes) {
1797                 if (only_release_metadata) {
1798                         btrfs_drew_write_unlock(&root->snapshot_lock);
1799                         btrfs_delalloc_release_metadata(BTRFS_I(inode),
1800                                         release_bytes, true);
1801                 } else {
1802                         btrfs_delalloc_release_space(inode, data_reserved,
1803                                         round_down(pos, fs_info->sectorsize),
1804                                         release_bytes, true);
1805                 }
1806         }
1807
1808         extent_changeset_free(data_reserved);
1809         return num_written ? num_written : ret;
1810 }
1811
1812 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1813                                const struct iov_iter *iter, loff_t offset)
1814 {
1815         const unsigned int blocksize_mask = fs_info->sectorsize - 1;
1816
1817         if (offset & blocksize_mask)
1818                 return -EINVAL;
1819
1820         if (iov_iter_alignment(iter) & blocksize_mask)
1821                 return -EINVAL;
1822
1823         return 0;
1824 }
1825
1826 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1827 {
1828         struct file *file = iocb->ki_filp;
1829         struct inode *inode = file_inode(file);
1830         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1831         loff_t pos = iocb->ki_pos;
1832         ssize_t written = 0;
1833         ssize_t written_buffered;
1834         loff_t endbyte;
1835         int err;
1836         size_t count = 0;
1837         bool relock = false;
1838
1839         if (check_direct_IO(fs_info, from, pos))
1840                 goto buffered;
1841
1842         count = iov_iter_count(from);
1843         /*
1844          * If the write DIO is beyond the EOF, we need update the isize, but it
1845          * is protected by i_mutex. So we can not unlock the i_mutex at this
1846          * case.
1847          */
1848         if (pos + count <= inode->i_size) {
1849                 inode_unlock(inode);
1850                 relock = true;
1851         } else if (iocb->ki_flags & IOCB_NOWAIT) {
1852                 return -EAGAIN;
1853         }
1854
1855         down_read(&BTRFS_I(inode)->dio_sem);
1856         written = iomap_dio_rw(iocb, from, &btrfs_dio_iomap_ops, &btrfs_dops,
1857                                is_sync_kiocb(iocb));
1858         up_read(&BTRFS_I(inode)->dio_sem);
1859
1860         if (relock)
1861                 inode_lock(inode);
1862
1863         if (written < 0 || !iov_iter_count(from))
1864                 return written;
1865
1866 buffered:
1867         pos = iocb->ki_pos;
1868         written_buffered = btrfs_buffered_write(iocb, from);
1869         if (written_buffered < 0) {
1870                 err = written_buffered;
1871                 goto out;
1872         }
1873         /*
1874          * Ensure all data is persisted. We want the next direct IO read to be
1875          * able to read what was just written.
1876          */
1877         endbyte = pos + written_buffered - 1;
1878         err = btrfs_fdatawrite_range(inode, pos, endbyte);
1879         if (err)
1880                 goto out;
1881         err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1882         if (err)
1883                 goto out;
1884         written += written_buffered;
1885         iocb->ki_pos = pos + written_buffered;
1886         invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1887                                  endbyte >> PAGE_SHIFT);
1888 out:
1889         return written ? written : err;
1890 }
1891
1892 static void update_time_for_write(struct inode *inode)
1893 {
1894         struct timespec64 now;
1895
1896         if (IS_NOCMTIME(inode))
1897                 return;
1898
1899         now = current_time(inode);
1900         if (!timespec64_equal(&inode->i_mtime, &now))
1901                 inode->i_mtime = now;
1902
1903         if (!timespec64_equal(&inode->i_ctime, &now))
1904                 inode->i_ctime = now;
1905
1906         if (IS_I_VERSION(inode))
1907                 inode_inc_iversion(inode);
1908 }
1909
1910 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1911                                     struct iov_iter *from)
1912 {
1913         struct file *file = iocb->ki_filp;
1914         struct inode *inode = file_inode(file);
1915         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1916         struct btrfs_root *root = BTRFS_I(inode)->root;
1917         u64 start_pos;
1918         u64 end_pos;
1919         ssize_t num_written = 0;
1920         const bool sync = iocb->ki_flags & IOCB_DSYNC;
1921         ssize_t err;
1922         loff_t pos;
1923         size_t count;
1924         loff_t oldsize;
1925         int clean_page = 0;
1926
1927         if (!(iocb->ki_flags & IOCB_DIRECT) &&
1928             (iocb->ki_flags & IOCB_NOWAIT))
1929                 return -EOPNOTSUPP;
1930
1931         if (iocb->ki_flags & IOCB_NOWAIT) {
1932                 if (!inode_trylock(inode))
1933                         return -EAGAIN;
1934         } else {
1935                 inode_lock(inode);
1936         }
1937
1938         err = generic_write_checks(iocb, from);
1939         if (err <= 0) {
1940                 inode_unlock(inode);
1941                 return err;
1942         }
1943
1944         pos = iocb->ki_pos;
1945         count = iov_iter_count(from);
1946         if (iocb->ki_flags & IOCB_NOWAIT) {
1947                 /*
1948                  * We will allocate space in case nodatacow is not set,
1949                  * so bail
1950                  */
1951                 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1952                                               BTRFS_INODE_PREALLOC)) ||
1953                     check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1954                         inode_unlock(inode);
1955                         return -EAGAIN;
1956                 }
1957         }
1958
1959         current->backing_dev_info = inode_to_bdi(inode);
1960         err = file_remove_privs(file);
1961         if (err) {
1962                 inode_unlock(inode);
1963                 goto out;
1964         }
1965
1966         /*
1967          * If BTRFS flips readonly due to some impossible error
1968          * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1969          * although we have opened a file as writable, we have
1970          * to stop this write operation to ensure FS consistency.
1971          */
1972         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1973                 inode_unlock(inode);
1974                 err = -EROFS;
1975                 goto out;
1976         }
1977
1978         /*
1979          * We reserve space for updating the inode when we reserve space for the
1980          * extent we are going to write, so we will enospc out there.  We don't
1981          * need to start yet another transaction to update the inode as we will
1982          * update the inode when we finish writing whatever data we write.
1983          */
1984         update_time_for_write(inode);
1985
1986         start_pos = round_down(pos, fs_info->sectorsize);
1987         oldsize = i_size_read(inode);
1988         if (start_pos > oldsize) {
1989                 /* Expand hole size to cover write data, preventing empty gap */
1990                 end_pos = round_up(pos + count,
1991                                    fs_info->sectorsize);
1992                 err = btrfs_cont_expand(inode, oldsize, end_pos);
1993                 if (err) {
1994                         inode_unlock(inode);
1995                         goto out;
1996                 }
1997                 if (start_pos > round_up(oldsize, fs_info->sectorsize))
1998                         clean_page = 1;
1999         }
2000
2001         if (sync)
2002                 atomic_inc(&BTRFS_I(inode)->sync_writers);
2003
2004         if (iocb->ki_flags & IOCB_DIRECT) {
2005                 num_written = btrfs_direct_write(iocb, from);
2006         } else {
2007                 num_written = btrfs_buffered_write(iocb, from);
2008                 if (num_written > 0)
2009                         iocb->ki_pos = pos + num_written;
2010                 if (clean_page)
2011                         pagecache_isize_extended(inode, oldsize,
2012                                                 i_size_read(inode));
2013         }
2014
2015         inode_unlock(inode);
2016
2017         /*
2018          * We also have to set last_sub_trans to the current log transid,
2019          * otherwise subsequent syncs to a file that's been synced in this
2020          * transaction will appear to have already occurred.
2021          */
2022         spin_lock(&BTRFS_I(inode)->lock);
2023         BTRFS_I(inode)->last_sub_trans = root->log_transid;
2024         spin_unlock(&BTRFS_I(inode)->lock);
2025         if (num_written > 0)
2026                 num_written = generic_write_sync(iocb, num_written);
2027
2028         if (sync)
2029                 atomic_dec(&BTRFS_I(inode)->sync_writers);
2030 out:
2031         current->backing_dev_info = NULL;
2032         return num_written ? num_written : err;
2033 }
2034
2035 int btrfs_release_file(struct inode *inode, struct file *filp)
2036 {
2037         struct btrfs_file_private *private = filp->private_data;
2038
2039         if (private && private->filldir_buf)
2040                 kfree(private->filldir_buf);
2041         kfree(private);
2042         filp->private_data = NULL;
2043
2044         /*
2045          * ordered_data_close is set by setattr when we are about to truncate
2046          * a file from a non-zero size to a zero size.  This tries to
2047          * flush down new bytes that may have been written if the
2048          * application were using truncate to replace a file in place.
2049          */
2050         if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2051                                &BTRFS_I(inode)->runtime_flags))
2052                         filemap_flush(inode->i_mapping);
2053         return 0;
2054 }
2055
2056 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2057 {
2058         int ret;
2059         struct blk_plug plug;
2060
2061         /*
2062          * This is only called in fsync, which would do synchronous writes, so
2063          * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2064          * multiple disks using raid profile, a large IO can be split to
2065          * several segments of stripe length (currently 64K).
2066          */
2067         blk_start_plug(&plug);
2068         atomic_inc(&BTRFS_I(inode)->sync_writers);
2069         ret = btrfs_fdatawrite_range(inode, start, end);
2070         atomic_dec(&BTRFS_I(inode)->sync_writers);
2071         blk_finish_plug(&plug);
2072
2073         return ret;
2074 }
2075
2076 /*
2077  * fsync call for both files and directories.  This logs the inode into
2078  * the tree log instead of forcing full commits whenever possible.
2079  *
2080  * It needs to call filemap_fdatawait so that all ordered extent updates are
2081  * in the metadata btree are up to date for copying to the log.
2082  *
2083  * It drops the inode mutex before doing the tree log commit.  This is an
2084  * important optimization for directories because holding the mutex prevents
2085  * new operations on the dir while we write to disk.
2086  */
2087 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2088 {
2089         struct dentry *dentry = file_dentry(file);
2090         struct inode *inode = d_inode(dentry);
2091         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2092         struct btrfs_root *root = BTRFS_I(inode)->root;
2093         struct btrfs_trans_handle *trans;
2094         struct btrfs_log_ctx ctx;
2095         int ret = 0, err;
2096
2097         trace_btrfs_sync_file(file, datasync);
2098
2099         btrfs_init_log_ctx(&ctx, inode);
2100
2101         /*
2102          * Set the range to full if the NO_HOLES feature is not enabled.
2103          * This is to avoid missing file extent items representing holes after
2104          * replaying the log.
2105          */
2106         if (!btrfs_fs_incompat(fs_info, NO_HOLES)) {
2107                 start = 0;
2108                 end = LLONG_MAX;
2109         }
2110
2111         /*
2112          * We write the dirty pages in the range and wait until they complete
2113          * out of the ->i_mutex. If so, we can flush the dirty pages by
2114          * multi-task, and make the performance up.  See
2115          * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2116          */
2117         ret = start_ordered_ops(inode, start, end);
2118         if (ret)
2119                 goto out;
2120
2121         inode_lock(inode);
2122
2123         /*
2124          * We take the dio_sem here because the tree log stuff can race with
2125          * lockless dio writes and get an extent map logged for an extent we
2126          * never waited on.  We need it this high up for lockdep reasons.
2127          */
2128         down_write(&BTRFS_I(inode)->dio_sem);
2129
2130         atomic_inc(&root->log_batch);
2131
2132         /*
2133          * If the inode needs a full sync, make sure we use a full range to
2134          * avoid log tree corruption, due to hole detection racing with ordered
2135          * extent completion for adjacent ranges and races between logging and
2136          * completion of ordered extents for adjancent ranges - both races
2137          * could lead to file extent items in the log with overlapping ranges.
2138          * Do this while holding the inode lock, to avoid races with other
2139          * tasks.
2140          */
2141         if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2142                      &BTRFS_I(inode)->runtime_flags)) {
2143                 start = 0;
2144                 end = LLONG_MAX;
2145         }
2146
2147         /*
2148          * Before we acquired the inode's lock, someone may have dirtied more
2149          * pages in the target range. We need to make sure that writeback for
2150          * any such pages does not start while we are logging the inode, because
2151          * if it does, any of the following might happen when we are not doing a
2152          * full inode sync:
2153          *
2154          * 1) We log an extent after its writeback finishes but before its
2155          *    checksums are added to the csum tree, leading to -EIO errors
2156          *    when attempting to read the extent after a log replay.
2157          *
2158          * 2) We can end up logging an extent before its writeback finishes.
2159          *    Therefore after the log replay we will have a file extent item
2160          *    pointing to an unwritten extent (and no data checksums as well).
2161          *
2162          * So trigger writeback for any eventual new dirty pages and then we
2163          * wait for all ordered extents to complete below.
2164          */
2165         ret = start_ordered_ops(inode, start, end);
2166         if (ret) {
2167                 up_write(&BTRFS_I(inode)->dio_sem);
2168                 inode_unlock(inode);
2169                 goto out;
2170         }
2171
2172         /*
2173          * We have to do this here to avoid the priority inversion of waiting on
2174          * IO of a lower priority task while holding a transaction open.
2175          *
2176          * Also, the range length can be represented by u64, we have to do the
2177          * typecasts to avoid signed overflow if it's [0, LLONG_MAX].
2178          */
2179         ret = btrfs_wait_ordered_range(inode, start, (u64)end - (u64)start + 1);
2180         if (ret) {
2181                 up_write(&BTRFS_I(inode)->dio_sem);
2182                 inode_unlock(inode);
2183                 goto out;
2184         }
2185         atomic_inc(&root->log_batch);
2186
2187         smp_mb();
2188         if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2189             BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) {
2190                 /*
2191                  * We've had everything committed since the last time we were
2192                  * modified so clear this flag in case it was set for whatever
2193                  * reason, it's no longer relevant.
2194                  */
2195                 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2196                           &BTRFS_I(inode)->runtime_flags);
2197                 /*
2198                  * An ordered extent might have started before and completed
2199                  * already with io errors, in which case the inode was not
2200                  * updated and we end up here. So check the inode's mapping
2201                  * for any errors that might have happened since we last
2202                  * checked called fsync.
2203                  */
2204                 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2205                 up_write(&BTRFS_I(inode)->dio_sem);
2206                 inode_unlock(inode);
2207                 goto out;
2208         }
2209
2210         /*
2211          * We use start here because we will need to wait on the IO to complete
2212          * in btrfs_sync_log, which could require joining a transaction (for
2213          * example checking cross references in the nocow path).  If we use join
2214          * here we could get into a situation where we're waiting on IO to
2215          * happen that is blocked on a transaction trying to commit.  With start
2216          * we inc the extwriter counter, so we wait for all extwriters to exit
2217          * before we start blocking joiners.  This comment is to keep somebody
2218          * from thinking they are super smart and changing this to
2219          * btrfs_join_transaction *cough*Josef*cough*.
2220          */
2221         trans = btrfs_start_transaction(root, 0);
2222         if (IS_ERR(trans)) {
2223                 ret = PTR_ERR(trans);
2224                 up_write(&BTRFS_I(inode)->dio_sem);
2225                 inode_unlock(inode);
2226                 goto out;
2227         }
2228
2229         ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
2230         if (ret < 0) {
2231                 /* Fallthrough and commit/free transaction. */
2232                 ret = 1;
2233         }
2234
2235         /* we've logged all the items and now have a consistent
2236          * version of the file in the log.  It is possible that
2237          * someone will come in and modify the file, but that's
2238          * fine because the log is consistent on disk, and we
2239          * have references to all of the file's extents
2240          *
2241          * It is possible that someone will come in and log the
2242          * file again, but that will end up using the synchronization
2243          * inside btrfs_sync_log to keep things safe.
2244          */
2245         up_write(&BTRFS_I(inode)->dio_sem);
2246         inode_unlock(inode);
2247
2248         if (ret != BTRFS_NO_LOG_SYNC) {
2249                 if (!ret) {
2250                         ret = btrfs_sync_log(trans, root, &ctx);
2251                         if (!ret) {
2252                                 ret = btrfs_end_transaction(trans);
2253                                 goto out;
2254                         }
2255                 }
2256                 ret = btrfs_commit_transaction(trans);
2257         } else {
2258                 ret = btrfs_end_transaction(trans);
2259         }
2260 out:
2261         ASSERT(list_empty(&ctx.list));
2262         err = file_check_and_advance_wb_err(file);
2263         if (!ret)
2264                 ret = err;
2265         return ret > 0 ? -EIO : ret;
2266 }
2267
2268 static const struct vm_operations_struct btrfs_file_vm_ops = {
2269         .fault          = filemap_fault,
2270         .map_pages      = filemap_map_pages,
2271         .page_mkwrite   = btrfs_page_mkwrite,
2272 };
2273
2274 static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
2275 {
2276         struct address_space *mapping = filp->f_mapping;
2277
2278         if (!mapping->a_ops->readpage)
2279                 return -ENOEXEC;
2280
2281         file_accessed(filp);
2282         vma->vm_ops = &btrfs_file_vm_ops;
2283
2284         return 0;
2285 }
2286
2287 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2288                           int slot, u64 start, u64 end)
2289 {
2290         struct btrfs_file_extent_item *fi;
2291         struct btrfs_key key;
2292
2293         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2294                 return 0;
2295
2296         btrfs_item_key_to_cpu(leaf, &key, slot);
2297         if (key.objectid != btrfs_ino(inode) ||
2298             key.type != BTRFS_EXTENT_DATA_KEY)
2299                 return 0;
2300
2301         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2302
2303         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2304                 return 0;
2305
2306         if (btrfs_file_extent_disk_bytenr(leaf, fi))
2307                 return 0;
2308
2309         if (key.offset == end)
2310                 return 1;
2311         if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2312                 return 1;
2313         return 0;
2314 }
2315
2316 static int fill_holes(struct btrfs_trans_handle *trans,
2317                 struct btrfs_inode *inode,
2318                 struct btrfs_path *path, u64 offset, u64 end)
2319 {
2320         struct btrfs_fs_info *fs_info = trans->fs_info;
2321         struct btrfs_root *root = inode->root;
2322         struct extent_buffer *leaf;
2323         struct btrfs_file_extent_item *fi;
2324         struct extent_map *hole_em;
2325         struct extent_map_tree *em_tree = &inode->extent_tree;
2326         struct btrfs_key key;
2327         int ret;
2328
2329         if (btrfs_fs_incompat(fs_info, NO_HOLES))
2330                 goto out;
2331
2332         key.objectid = btrfs_ino(inode);
2333         key.type = BTRFS_EXTENT_DATA_KEY;
2334         key.offset = offset;
2335
2336         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2337         if (ret <= 0) {
2338                 /*
2339                  * We should have dropped this offset, so if we find it then
2340                  * something has gone horribly wrong.
2341                  */
2342                 if (ret == 0)
2343                         ret = -EINVAL;
2344                 return ret;
2345         }
2346
2347         leaf = path->nodes[0];
2348         if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2349                 u64 num_bytes;
2350
2351                 path->slots[0]--;
2352                 fi = btrfs_item_ptr(leaf, path->slots[0],
2353                                     struct btrfs_file_extent_item);
2354                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2355                         end - offset;
2356                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2357                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2358                 btrfs_set_file_extent_offset(leaf, fi, 0);
2359                 btrfs_mark_buffer_dirty(leaf);
2360                 goto out;
2361         }
2362
2363         if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2364                 u64 num_bytes;
2365
2366                 key.offset = offset;
2367                 btrfs_set_item_key_safe(fs_info, path, &key);
2368                 fi = btrfs_item_ptr(leaf, path->slots[0],
2369                                     struct btrfs_file_extent_item);
2370                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2371                         offset;
2372                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2373                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2374                 btrfs_set_file_extent_offset(leaf, fi, 0);
2375                 btrfs_mark_buffer_dirty(leaf);
2376                 goto out;
2377         }
2378         btrfs_release_path(path);
2379
2380         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2381                         offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2382         if (ret)
2383                 return ret;
2384
2385 out:
2386         btrfs_release_path(path);
2387
2388         hole_em = alloc_extent_map();
2389         if (!hole_em) {
2390                 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2391                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2392         } else {
2393                 hole_em->start = offset;
2394                 hole_em->len = end - offset;
2395                 hole_em->ram_bytes = hole_em->len;
2396                 hole_em->orig_start = offset;
2397
2398                 hole_em->block_start = EXTENT_MAP_HOLE;
2399                 hole_em->block_len = 0;
2400                 hole_em->orig_block_len = 0;
2401                 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2402                 hole_em->generation = trans->transid;
2403
2404                 do {
2405                         btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2406                         write_lock(&em_tree->lock);
2407                         ret = add_extent_mapping(em_tree, hole_em, 1);
2408                         write_unlock(&em_tree->lock);
2409                 } while (ret == -EEXIST);
2410                 free_extent_map(hole_em);
2411                 if (ret)
2412                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2413                                         &inode->runtime_flags);
2414         }
2415
2416         return 0;
2417 }
2418
2419 /*
2420  * Find a hole extent on given inode and change start/len to the end of hole
2421  * extent.(hole/vacuum extent whose em->start <= start &&
2422  *         em->start + em->len > start)
2423  * When a hole extent is found, return 1 and modify start/len.
2424  */
2425 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2426 {
2427         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2428         struct extent_map *em;
2429         int ret = 0;
2430
2431         em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2432                               round_down(*start, fs_info->sectorsize),
2433                               round_up(*len, fs_info->sectorsize));
2434         if (IS_ERR(em))
2435                 return PTR_ERR(em);
2436
2437         /* Hole or vacuum extent(only exists in no-hole mode) */
2438         if (em->block_start == EXTENT_MAP_HOLE) {
2439                 ret = 1;
2440                 *len = em->start + em->len > *start + *len ?
2441                        0 : *start + *len - em->start - em->len;
2442                 *start = em->start + em->len;
2443         }
2444         free_extent_map(em);
2445         return ret;
2446 }
2447
2448 static int btrfs_punch_hole_lock_range(struct inode *inode,
2449                                        const u64 lockstart,
2450                                        const u64 lockend,
2451                                        struct extent_state **cached_state)
2452 {
2453         while (1) {
2454                 struct btrfs_ordered_extent *ordered;
2455                 int ret;
2456
2457                 truncate_pagecache_range(inode, lockstart, lockend);
2458
2459                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2460                                  cached_state);
2461                 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2462
2463                 /*
2464                  * We need to make sure we have no ordered extents in this range
2465                  * and nobody raced in and read a page in this range, if we did
2466                  * we need to try again.
2467                  */
2468                 if ((!ordered ||
2469                     (ordered->file_offset + ordered->num_bytes <= lockstart ||
2470                      ordered->file_offset > lockend)) &&
2471                      !filemap_range_has_page(inode->i_mapping,
2472                                              lockstart, lockend)) {
2473                         if (ordered)
2474                                 btrfs_put_ordered_extent(ordered);
2475                         break;
2476                 }
2477                 if (ordered)
2478                         btrfs_put_ordered_extent(ordered);
2479                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2480                                      lockend, cached_state);
2481                 ret = btrfs_wait_ordered_range(inode, lockstart,
2482                                                lockend - lockstart + 1);
2483                 if (ret)
2484                         return ret;
2485         }
2486         return 0;
2487 }
2488
2489 static int btrfs_insert_clone_extent(struct btrfs_trans_handle *trans,
2490                                      struct inode *inode,
2491                                      struct btrfs_path *path,
2492                                      struct btrfs_clone_extent_info *clone_info,
2493                                      const u64 clone_len)
2494 {
2495         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2496         struct btrfs_root *root = BTRFS_I(inode)->root;
2497         struct btrfs_file_extent_item *extent;
2498         struct extent_buffer *leaf;
2499         struct btrfs_key key;
2500         int slot;
2501         struct btrfs_ref ref = { 0 };
2502         u64 ref_offset;
2503         int ret;
2504
2505         if (clone_len == 0)
2506                 return 0;
2507
2508         if (clone_info->disk_offset == 0 &&
2509             btrfs_fs_incompat(fs_info, NO_HOLES))
2510                 return 0;
2511
2512         key.objectid = btrfs_ino(BTRFS_I(inode));
2513         key.type = BTRFS_EXTENT_DATA_KEY;
2514         key.offset = clone_info->file_offset;
2515         ret = btrfs_insert_empty_item(trans, root, path, &key,
2516                                       clone_info->item_size);
2517         if (ret)
2518                 return ret;
2519         leaf = path->nodes[0];
2520         slot = path->slots[0];
2521         write_extent_buffer(leaf, clone_info->extent_buf,
2522                             btrfs_item_ptr_offset(leaf, slot),
2523                             clone_info->item_size);
2524         extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2525         btrfs_set_file_extent_offset(leaf, extent, clone_info->data_offset);
2526         btrfs_set_file_extent_num_bytes(leaf, extent, clone_len);
2527         btrfs_mark_buffer_dirty(leaf);
2528         btrfs_release_path(path);
2529
2530         ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
2531                         clone_info->file_offset, clone_len);
2532         if (ret)
2533                 return ret;
2534
2535         /* If it's a hole, nothing more needs to be done. */
2536         if (clone_info->disk_offset == 0)
2537                 return 0;
2538
2539         inode_add_bytes(inode, clone_len);
2540         btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2541                                clone_info->disk_offset,
2542                                clone_info->disk_len, 0);
2543         ref_offset = clone_info->file_offset - clone_info->data_offset;
2544         btrfs_init_data_ref(&ref, root->root_key.objectid,
2545                             btrfs_ino(BTRFS_I(inode)), ref_offset);
2546         ret = btrfs_inc_extent_ref(trans, &ref);
2547
2548         return ret;
2549 }
2550
2551 /*
2552  * The respective range must have been previously locked, as well as the inode.
2553  * The end offset is inclusive (last byte of the range).
2554  * @clone_info is NULL for fallocate's hole punching and non-NULL for extent
2555  * cloning.
2556  * When cloning, we don't want to end up in a state where we dropped extents
2557  * without inserting a new one, so we must abort the transaction to avoid a
2558  * corruption.
2559  */
2560 int btrfs_punch_hole_range(struct inode *inode, struct btrfs_path *path,
2561                            const u64 start, const u64 end,
2562                            struct btrfs_clone_extent_info *clone_info,
2563                            struct btrfs_trans_handle **trans_out)
2564 {
2565         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2566         u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2567         u64 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2568         struct btrfs_root *root = BTRFS_I(inode)->root;
2569         struct btrfs_trans_handle *trans = NULL;
2570         struct btrfs_block_rsv *rsv;
2571         unsigned int rsv_count;
2572         u64 cur_offset;
2573         u64 drop_end;
2574         u64 len = end - start;
2575         int ret = 0;
2576
2577         if (end <= start)
2578                 return -EINVAL;
2579
2580         rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2581         if (!rsv) {
2582                 ret = -ENOMEM;
2583                 goto out;
2584         }
2585         rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2586         rsv->failfast = 1;
2587
2588         /*
2589          * 1 - update the inode
2590          * 1 - removing the extents in the range
2591          * 1 - adding the hole extent if no_holes isn't set or if we are cloning
2592          *     an extent
2593          */
2594         if (!btrfs_fs_incompat(fs_info, NO_HOLES) || clone_info)
2595                 rsv_count = 3;
2596         else
2597                 rsv_count = 2;
2598
2599         trans = btrfs_start_transaction(root, rsv_count);
2600         if (IS_ERR(trans)) {
2601                 ret = PTR_ERR(trans);
2602                 trans = NULL;
2603                 goto out_free;
2604         }
2605
2606         ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2607                                       min_size, false);
2608         BUG_ON(ret);
2609         trans->block_rsv = rsv;
2610
2611         cur_offset = start;
2612         while (cur_offset < end) {
2613                 ret = __btrfs_drop_extents(trans, root, inode, path,
2614                                            cur_offset, end + 1, &drop_end,
2615                                            1, 0, 0, NULL);
2616                 if (ret != -ENOSPC) {
2617                         /*
2618                          * When cloning we want to avoid transaction aborts when
2619                          * nothing was done and we are attempting to clone parts
2620                          * of inline extents, in such cases -EOPNOTSUPP is
2621                          * returned by __btrfs_drop_extents() without having
2622                          * changed anything in the file.
2623                          */
2624                         if (clone_info && ret && ret != -EOPNOTSUPP)
2625                                 btrfs_abort_transaction(trans, ret);
2626                         break;
2627                 }
2628
2629                 trans->block_rsv = &fs_info->trans_block_rsv;
2630
2631                 if (!clone_info && cur_offset < drop_end &&
2632                     cur_offset < ino_size) {
2633                         ret = fill_holes(trans, BTRFS_I(inode), path,
2634                                         cur_offset, drop_end);
2635                         if (ret) {
2636                                 /*
2637                                  * If we failed then we didn't insert our hole
2638                                  * entries for the area we dropped, so now the
2639                                  * fs is corrupted, so we must abort the
2640                                  * transaction.
2641                                  */
2642                                 btrfs_abort_transaction(trans, ret);
2643                                 break;
2644                         }
2645                 } else if (!clone_info && cur_offset < drop_end) {
2646                         /*
2647                          * We are past the i_size here, but since we didn't
2648                          * insert holes we need to clear the mapped area so we
2649                          * know to not set disk_i_size in this area until a new
2650                          * file extent is inserted here.
2651                          */
2652                         ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2653                                         cur_offset, drop_end - cur_offset);
2654                         if (ret) {
2655                                 /*
2656                                  * We couldn't clear our area, so we could
2657                                  * presumably adjust up and corrupt the fs, so
2658                                  * we need to abort.
2659                                  */
2660                                 btrfs_abort_transaction(trans, ret);
2661                                 break;
2662                         }
2663                 }
2664
2665                 if (clone_info && drop_end > clone_info->file_offset) {
2666                         u64 clone_len = drop_end - clone_info->file_offset;
2667
2668                         ret = btrfs_insert_clone_extent(trans, inode, path,
2669                                                         clone_info, clone_len);
2670                         if (ret) {
2671                                 btrfs_abort_transaction(trans, ret);
2672                                 break;
2673                         }
2674                         clone_info->data_len -= clone_len;
2675                         clone_info->data_offset += clone_len;
2676                         clone_info->file_offset += clone_len;
2677                 }
2678
2679                 cur_offset = drop_end;
2680
2681                 ret = btrfs_update_inode(trans, root, inode);
2682                 if (ret)
2683                         break;
2684
2685                 btrfs_end_transaction(trans);
2686                 btrfs_btree_balance_dirty(fs_info);
2687
2688                 trans = btrfs_start_transaction(root, rsv_count);
2689                 if (IS_ERR(trans)) {
2690                         ret = PTR_ERR(trans);
2691                         trans = NULL;
2692                         break;
2693                 }
2694
2695                 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2696                                               rsv, min_size, false);
2697                 BUG_ON(ret);    /* shouldn't happen */
2698                 trans->block_rsv = rsv;
2699
2700                 if (!clone_info) {
2701                         ret = find_first_non_hole(inode, &cur_offset, &len);
2702                         if (unlikely(ret < 0))
2703                                 break;
2704                         if (ret && !len) {
2705                                 ret = 0;
2706                                 break;
2707                         }
2708                 }
2709         }
2710
2711         /*
2712          * If we were cloning, force the next fsync to be a full one since we
2713          * we replaced (or just dropped in the case of cloning holes when
2714          * NO_HOLES is enabled) extents and extent maps.
2715          * This is for the sake of simplicity, and cloning into files larger
2716          * than 16Mb would force the full fsync any way (when
2717          * try_release_extent_mapping() is invoked during page cache truncation.
2718          */
2719         if (clone_info)
2720                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2721                         &BTRFS_I(inode)->runtime_flags);
2722
2723         if (ret)
2724                 goto out_trans;
2725
2726         trans->block_rsv = &fs_info->trans_block_rsv;
2727         /*
2728          * If we are using the NO_HOLES feature we might have had already an
2729          * hole that overlaps a part of the region [lockstart, lockend] and
2730          * ends at (or beyond) lockend. Since we have no file extent items to
2731          * represent holes, drop_end can be less than lockend and so we must
2732          * make sure we have an extent map representing the existing hole (the
2733          * call to __btrfs_drop_extents() might have dropped the existing extent
2734          * map representing the existing hole), otherwise the fast fsync path
2735          * will not record the existence of the hole region
2736          * [existing_hole_start, lockend].
2737          */
2738         if (drop_end <= end)
2739                 drop_end = end + 1;
2740         /*
2741          * Don't insert file hole extent item if it's for a range beyond eof
2742          * (because it's useless) or if it represents a 0 bytes range (when
2743          * cur_offset == drop_end).
2744          */
2745         if (!clone_info && cur_offset < ino_size && cur_offset < drop_end) {
2746                 ret = fill_holes(trans, BTRFS_I(inode), path,
2747                                 cur_offset, drop_end);
2748                 if (ret) {
2749                         /* Same comment as above. */
2750                         btrfs_abort_transaction(trans, ret);
2751                         goto out_trans;
2752                 }
2753         } else if (!clone_info && cur_offset < drop_end) {
2754                 /* See the comment in the loop above for the reasoning here. */
2755                 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2756                                         cur_offset, drop_end - cur_offset);
2757                 if (ret) {
2758                         btrfs_abort_transaction(trans, ret);
2759                         goto out_trans;
2760                 }
2761
2762         }
2763         if (clone_info) {
2764                 ret = btrfs_insert_clone_extent(trans, inode, path, clone_info,
2765                                                 clone_info->data_len);
2766                 if (ret) {
2767                         btrfs_abort_transaction(trans, ret);
2768                         goto out_trans;
2769                 }
2770         }
2771
2772 out_trans:
2773         if (!trans)
2774                 goto out_free;
2775
2776         trans->block_rsv = &fs_info->trans_block_rsv;
2777         if (ret)
2778                 btrfs_end_transaction(trans);
2779         else
2780                 *trans_out = trans;
2781 out_free:
2782         btrfs_free_block_rsv(fs_info, rsv);
2783 out:
2784         return ret;
2785 }
2786
2787 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2788 {
2789         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2790         struct btrfs_root *root = BTRFS_I(inode)->root;
2791         struct extent_state *cached_state = NULL;
2792         struct btrfs_path *path;
2793         struct btrfs_trans_handle *trans = NULL;
2794         u64 lockstart;
2795         u64 lockend;
2796         u64 tail_start;
2797         u64 tail_len;
2798         u64 orig_start = offset;
2799         int ret = 0;
2800         bool same_block;
2801         u64 ino_size;
2802         bool truncated_block = false;
2803         bool updated_inode = false;
2804
2805         ret = btrfs_wait_ordered_range(inode, offset, len);
2806         if (ret)
2807                 return ret;
2808
2809         inode_lock(inode);
2810         ino_size = round_up(inode->i_size, fs_info->sectorsize);
2811         ret = find_first_non_hole(inode, &offset, &len);
2812         if (ret < 0)
2813                 goto out_only_mutex;
2814         if (ret && !len) {
2815                 /* Already in a large hole */
2816                 ret = 0;
2817                 goto out_only_mutex;
2818         }
2819
2820         lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2821         lockend = round_down(offset + len,
2822                              btrfs_inode_sectorsize(inode)) - 1;
2823         same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2824                 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2825         /*
2826          * We needn't truncate any block which is beyond the end of the file
2827          * because we are sure there is no data there.
2828          */
2829         /*
2830          * Only do this if we are in the same block and we aren't doing the
2831          * entire block.
2832          */
2833         if (same_block && len < fs_info->sectorsize) {
2834                 if (offset < ino_size) {
2835                         truncated_block = true;
2836                         ret = btrfs_truncate_block(inode, offset, len, 0);
2837                 } else {
2838                         ret = 0;
2839                 }
2840                 goto out_only_mutex;
2841         }
2842
2843         /* zero back part of the first block */
2844         if (offset < ino_size) {
2845                 truncated_block = true;
2846                 ret = btrfs_truncate_block(inode, offset, 0, 0);
2847                 if (ret) {
2848                         inode_unlock(inode);
2849                         return ret;
2850                 }
2851         }
2852
2853         /* Check the aligned pages after the first unaligned page,
2854          * if offset != orig_start, which means the first unaligned page
2855          * including several following pages are already in holes,
2856          * the extra check can be skipped */
2857         if (offset == orig_start) {
2858                 /* after truncate page, check hole again */
2859                 len = offset + len - lockstart;
2860                 offset = lockstart;
2861                 ret = find_first_non_hole(inode, &offset, &len);
2862                 if (ret < 0)
2863                         goto out_only_mutex;
2864                 if (ret && !len) {
2865                         ret = 0;
2866                         goto out_only_mutex;
2867                 }
2868                 lockstart = offset;
2869         }
2870
2871         /* Check the tail unaligned part is in a hole */
2872         tail_start = lockend + 1;
2873         tail_len = offset + len - tail_start;
2874         if (tail_len) {
2875                 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2876                 if (unlikely(ret < 0))
2877                         goto out_only_mutex;
2878                 if (!ret) {
2879                         /* zero the front end of the last page */
2880                         if (tail_start + tail_len < ino_size) {
2881                                 truncated_block = true;
2882                                 ret = btrfs_truncate_block(inode,
2883                                                         tail_start + tail_len,
2884                                                         0, 1);
2885                                 if (ret)
2886                                         goto out_only_mutex;
2887                         }
2888                 }
2889         }
2890
2891         if (lockend < lockstart) {
2892                 ret = 0;
2893                 goto out_only_mutex;
2894         }
2895
2896         ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2897                                           &cached_state);
2898         if (ret)
2899                 goto out_only_mutex;
2900
2901         path = btrfs_alloc_path();
2902         if (!path) {
2903                 ret = -ENOMEM;
2904                 goto out;
2905         }
2906
2907         ret = btrfs_punch_hole_range(inode, path, lockstart, lockend, NULL,
2908                                      &trans);
2909         btrfs_free_path(path);
2910         if (ret)
2911                 goto out;
2912
2913         ASSERT(trans != NULL);
2914         inode_inc_iversion(inode);
2915         inode->i_mtime = inode->i_ctime = current_time(inode);
2916         ret = btrfs_update_inode(trans, root, inode);
2917         updated_inode = true;
2918         btrfs_end_transaction(trans);
2919         btrfs_btree_balance_dirty(fs_info);
2920 out:
2921         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2922                              &cached_state);
2923 out_only_mutex:
2924         if (!updated_inode && truncated_block && !ret) {
2925                 /*
2926                  * If we only end up zeroing part of a page, we still need to
2927                  * update the inode item, so that all the time fields are
2928                  * updated as well as the necessary btrfs inode in memory fields
2929                  * for detecting, at fsync time, if the inode isn't yet in the
2930                  * log tree or it's there but not up to date.
2931                  */
2932                 struct timespec64 now = current_time(inode);
2933
2934                 inode_inc_iversion(inode);
2935                 inode->i_mtime = now;
2936                 inode->i_ctime = now;
2937                 trans = btrfs_start_transaction(root, 1);
2938                 if (IS_ERR(trans)) {
2939                         ret = PTR_ERR(trans);
2940                 } else {
2941                         int ret2;
2942
2943                         ret = btrfs_update_inode(trans, root, inode);
2944                         ret2 = btrfs_end_transaction(trans);
2945                         if (!ret)
2946                                 ret = ret2;
2947                 }
2948         }
2949         inode_unlock(inode);
2950         return ret;
2951 }
2952
2953 /* Helper structure to record which range is already reserved */
2954 struct falloc_range {
2955         struct list_head list;
2956         u64 start;
2957         u64 len;
2958 };
2959
2960 /*
2961  * Helper function to add falloc range
2962  *
2963  * Caller should have locked the larger range of extent containing
2964  * [start, len)
2965  */
2966 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2967 {
2968         struct falloc_range *prev = NULL;
2969         struct falloc_range *range = NULL;
2970
2971         if (list_empty(head))
2972                 goto insert;
2973
2974         /*
2975          * As fallocate iterate by bytenr order, we only need to check
2976          * the last range.
2977          */
2978         prev = list_entry(head->prev, struct falloc_range, list);
2979         if (prev->start + prev->len == start) {
2980                 prev->len += len;
2981                 return 0;
2982         }
2983 insert:
2984         range = kmalloc(sizeof(*range), GFP_KERNEL);
2985         if (!range)
2986                 return -ENOMEM;
2987         range->start = start;
2988         range->len = len;
2989         list_add_tail(&range->list, head);
2990         return 0;
2991 }
2992
2993 static int btrfs_fallocate_update_isize(struct inode *inode,
2994                                         const u64 end,
2995                                         const int mode)
2996 {
2997         struct btrfs_trans_handle *trans;
2998         struct btrfs_root *root = BTRFS_I(inode)->root;
2999         int ret;
3000         int ret2;
3001
3002         if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3003                 return 0;
3004
3005         trans = btrfs_start_transaction(root, 1);
3006         if (IS_ERR(trans))
3007                 return PTR_ERR(trans);
3008
3009         inode->i_ctime = current_time(inode);
3010         i_size_write(inode, end);
3011         btrfs_inode_safe_disk_i_size_write(inode, 0);
3012         ret = btrfs_update_inode(trans, root, inode);
3013         ret2 = btrfs_end_transaction(trans);
3014
3015         return ret ? ret : ret2;
3016 }
3017
3018 enum {
3019         RANGE_BOUNDARY_WRITTEN_EXTENT,
3020         RANGE_BOUNDARY_PREALLOC_EXTENT,
3021         RANGE_BOUNDARY_HOLE,
3022 };
3023
3024 static int btrfs_zero_range_check_range_boundary(struct inode *inode,
3025                                                  u64 offset)
3026 {
3027         const u64 sectorsize = btrfs_inode_sectorsize(inode);
3028         struct extent_map *em;
3029         int ret;
3030
3031         offset = round_down(offset, sectorsize);
3032         em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize);
3033         if (IS_ERR(em))
3034                 return PTR_ERR(em);
3035
3036         if (em->block_start == EXTENT_MAP_HOLE)
3037                 ret = RANGE_BOUNDARY_HOLE;
3038         else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3039                 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3040         else
3041                 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3042
3043         free_extent_map(em);
3044         return ret;
3045 }
3046
3047 static int btrfs_zero_range(struct inode *inode,
3048                             loff_t offset,
3049                             loff_t len,
3050                             const int mode)
3051 {
3052         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3053         struct extent_map *em;
3054         struct extent_changeset *data_reserved = NULL;
3055         int ret;
3056         u64 alloc_hint = 0;
3057         const u64 sectorsize = btrfs_inode_sectorsize(inode);
3058         u64 alloc_start = round_down(offset, sectorsize);
3059         u64 alloc_end = round_up(offset + len, sectorsize);
3060         u64 bytes_to_reserve = 0;
3061         bool space_reserved = false;
3062
3063         inode_dio_wait(inode);
3064
3065         em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3066                               alloc_end - alloc_start);
3067         if (IS_ERR(em)) {
3068                 ret = PTR_ERR(em);
3069                 goto out;
3070         }
3071
3072         /*
3073          * Avoid hole punching and extent allocation for some cases. More cases
3074          * could be considered, but these are unlikely common and we keep things
3075          * as simple as possible for now. Also, intentionally, if the target
3076          * range contains one or more prealloc extents together with regular
3077          * extents and holes, we drop all the existing extents and allocate a
3078          * new prealloc extent, so that we get a larger contiguous disk extent.
3079          */
3080         if (em->start <= alloc_start &&
3081             test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3082                 const u64 em_end = em->start + em->len;
3083
3084                 if (em_end >= offset + len) {
3085                         /*
3086                          * The whole range is already a prealloc extent,
3087                          * do nothing except updating the inode's i_size if
3088                          * needed.
3089                          */
3090                         free_extent_map(em);
3091                         ret = btrfs_fallocate_update_isize(inode, offset + len,
3092                                                            mode);
3093                         goto out;
3094                 }
3095                 /*
3096                  * Part of the range is already a prealloc extent, so operate
3097                  * only on the remaining part of the range.
3098                  */
3099                 alloc_start = em_end;
3100                 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3101                 len = offset + len - alloc_start;
3102                 offset = alloc_start;
3103                 alloc_hint = em->block_start + em->len;
3104         }
3105         free_extent_map(em);
3106
3107         if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3108             BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3109                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3110                                       sectorsize);
3111                 if (IS_ERR(em)) {
3112                         ret = PTR_ERR(em);
3113                         goto out;
3114                 }
3115
3116                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3117                         free_extent_map(em);
3118                         ret = btrfs_fallocate_update_isize(inode, offset + len,
3119                                                            mode);
3120                         goto out;
3121                 }
3122                 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3123                         free_extent_map(em);
3124                         ret = btrfs_truncate_block(inode, offset, len, 0);
3125                         if (!ret)
3126                                 ret = btrfs_fallocate_update_isize(inode,
3127                                                                    offset + len,
3128                                                                    mode);
3129                         return ret;
3130                 }
3131                 free_extent_map(em);
3132                 alloc_start = round_down(offset, sectorsize);
3133                 alloc_end = alloc_start + sectorsize;
3134                 goto reserve_space;
3135         }
3136
3137         alloc_start = round_up(offset, sectorsize);
3138         alloc_end = round_down(offset + len, sectorsize);
3139
3140         /*
3141          * For unaligned ranges, check the pages at the boundaries, they might
3142          * map to an extent, in which case we need to partially zero them, or
3143          * they might map to a hole, in which case we need our allocation range
3144          * to cover them.
3145          */
3146         if (!IS_ALIGNED(offset, sectorsize)) {
3147                 ret = btrfs_zero_range_check_range_boundary(inode, offset);
3148                 if (ret < 0)
3149                         goto out;
3150                 if (ret == RANGE_BOUNDARY_HOLE) {
3151                         alloc_start = round_down(offset, sectorsize);
3152                         ret = 0;
3153                 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3154                         ret = btrfs_truncate_block(inode, offset, 0, 0);
3155                         if (ret)
3156                                 goto out;
3157                 } else {
3158                         ret = 0;
3159                 }
3160         }
3161
3162         if (!IS_ALIGNED(offset + len, sectorsize)) {
3163                 ret = btrfs_zero_range_check_range_boundary(inode,
3164                                                             offset + len);
3165                 if (ret < 0)
3166                         goto out;
3167                 if (ret == RANGE_BOUNDARY_HOLE) {
3168                         alloc_end = round_up(offset + len, sectorsize);
3169                         ret = 0;
3170                 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3171                         ret = btrfs_truncate_block(inode, offset + len, 0, 1);
3172                         if (ret)
3173                                 goto out;
3174                 } else {
3175                         ret = 0;
3176                 }
3177         }
3178
3179 reserve_space:
3180         if (alloc_start < alloc_end) {
3181                 struct extent_state *cached_state = NULL;
3182                 const u64 lockstart = alloc_start;
3183                 const u64 lockend = alloc_end - 1;
3184
3185                 bytes_to_reserve = alloc_end - alloc_start;
3186                 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3187                                                       bytes_to_reserve);
3188                 if (ret < 0)
3189                         goto out;
3190                 space_reserved = true;
3191                 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3192                                                 alloc_start, bytes_to_reserve);
3193                 if (ret)
3194                         goto out;
3195                 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3196                                                   &cached_state);
3197                 if (ret)
3198                         goto out;
3199                 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3200                                                 alloc_end - alloc_start,
3201                                                 i_blocksize(inode),
3202                                                 offset + len, &alloc_hint);
3203                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3204                                      lockend, &cached_state);
3205                 /* btrfs_prealloc_file_range releases reserved space on error */
3206                 if (ret) {
3207                         space_reserved = false;
3208                         goto out;
3209                 }
3210         }
3211         ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3212  out:
3213         if (ret && space_reserved)
3214                 btrfs_free_reserved_data_space(inode, data_reserved,
3215                                                alloc_start, bytes_to_reserve);
3216         extent_changeset_free(data_reserved);
3217
3218         return ret;
3219 }
3220
3221 static long btrfs_fallocate(struct file *file, int mode,
3222                             loff_t offset, loff_t len)
3223 {
3224         struct inode *inode = file_inode(file);
3225         struct extent_state *cached_state = NULL;
3226         struct extent_changeset *data_reserved = NULL;
3227         struct falloc_range *range;
3228         struct falloc_range *tmp;
3229         struct list_head reserve_list;
3230         u64 cur_offset;
3231         u64 last_byte;
3232         u64 alloc_start;
3233         u64 alloc_end;
3234         u64 alloc_hint = 0;
3235         u64 locked_end;
3236         u64 actual_end = 0;
3237         struct extent_map *em;
3238         int blocksize = btrfs_inode_sectorsize(inode);
3239         int ret;
3240
3241         alloc_start = round_down(offset, blocksize);
3242         alloc_end = round_up(offset + len, blocksize);
3243         cur_offset = alloc_start;
3244
3245         /* Make sure we aren't being give some crap mode */
3246         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3247                      FALLOC_FL_ZERO_RANGE))
3248                 return -EOPNOTSUPP;
3249
3250         if (mode & FALLOC_FL_PUNCH_HOLE)
3251                 return btrfs_punch_hole(inode, offset, len);
3252
3253         /*
3254          * Only trigger disk allocation, don't trigger qgroup reserve
3255          *
3256          * For qgroup space, it will be checked later.
3257          */
3258         if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3259                 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3260                                                       alloc_end - alloc_start);
3261                 if (ret < 0)
3262                         return ret;
3263         }
3264
3265         inode_lock(inode);
3266
3267         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3268                 ret = inode_newsize_ok(inode, offset + len);
3269                 if (ret)
3270                         goto out;
3271         }
3272
3273         /*
3274          * TODO: Move these two operations after we have checked
3275          * accurate reserved space, or fallocate can still fail but
3276          * with page truncated or size expanded.
3277          *
3278          * But that's a minor problem and won't do much harm BTW.
3279          */
3280         if (alloc_start > inode->i_size) {
3281                 ret = btrfs_cont_expand(inode, i_size_read(inode),
3282                                         alloc_start);
3283                 if (ret)
3284                         goto out;
3285         } else if (offset + len > inode->i_size) {
3286                 /*
3287                  * If we are fallocating from the end of the file onward we
3288                  * need to zero out the end of the block if i_size lands in the
3289                  * middle of a block.
3290                  */
3291                 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3292                 if (ret)
3293                         goto out;
3294         }
3295
3296         /*
3297          * wait for ordered IO before we have any locks.  We'll loop again
3298          * below with the locks held.
3299          */
3300         ret = btrfs_wait_ordered_range(inode, alloc_start,
3301                                        alloc_end - alloc_start);
3302         if (ret)
3303                 goto out;
3304
3305         if (mode & FALLOC_FL_ZERO_RANGE) {
3306                 ret = btrfs_zero_range(inode, offset, len, mode);
3307                 inode_unlock(inode);
3308                 return ret;
3309         }
3310
3311         locked_end = alloc_end - 1;
3312         while (1) {
3313                 struct btrfs_ordered_extent *ordered;
3314
3315                 /* the extent lock is ordered inside the running
3316                  * transaction
3317                  */
3318                 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3319                                  locked_end, &cached_state);
3320                 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
3321
3322                 if (ordered &&
3323                     ordered->file_offset + ordered->num_bytes > alloc_start &&
3324                     ordered->file_offset < alloc_end) {
3325                         btrfs_put_ordered_extent(ordered);
3326                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3327                                              alloc_start, locked_end,
3328                                              &cached_state);
3329                         /*
3330                          * we can't wait on the range with the transaction
3331                          * running or with the extent lock held
3332                          */
3333                         ret = btrfs_wait_ordered_range(inode, alloc_start,
3334                                                        alloc_end - alloc_start);
3335                         if (ret)
3336                                 goto out;
3337                 } else {
3338                         if (ordered)
3339                                 btrfs_put_ordered_extent(ordered);
3340                         break;
3341                 }
3342         }
3343
3344         /* First, check if we exceed the qgroup limit */
3345         INIT_LIST_HEAD(&reserve_list);
3346         while (cur_offset < alloc_end) {
3347                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3348                                       alloc_end - cur_offset);
3349                 if (IS_ERR(em)) {
3350                         ret = PTR_ERR(em);
3351                         break;
3352                 }
3353                 last_byte = min(extent_map_end(em), alloc_end);
3354                 actual_end = min_t(u64, extent_map_end(em), offset + len);
3355                 last_byte = ALIGN(last_byte, blocksize);
3356                 if (em->block_start == EXTENT_MAP_HOLE ||
3357                     (cur_offset >= inode->i_size &&
3358                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3359                         ret = add_falloc_range(&reserve_list, cur_offset,
3360                                                last_byte - cur_offset);
3361                         if (ret < 0) {
3362                                 free_extent_map(em);
3363                                 break;
3364                         }
3365                         ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3366                                         cur_offset, last_byte - cur_offset);
3367                         if (ret < 0) {
3368                                 cur_offset = last_byte;
3369                                 free_extent_map(em);
3370                                 break;
3371                         }
3372                 } else {
3373                         /*
3374                          * Do not need to reserve unwritten extent for this
3375                          * range, free reserved data space first, otherwise
3376                          * it'll result in false ENOSPC error.
3377                          */
3378                         btrfs_free_reserved_data_space(inode, data_reserved,
3379                                         cur_offset, last_byte - cur_offset);
3380                 }
3381                 free_extent_map(em);
3382                 cur_offset = last_byte;
3383         }
3384
3385         /*
3386          * If ret is still 0, means we're OK to fallocate.
3387          * Or just cleanup the list and exit.
3388          */
3389         list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3390                 if (!ret)
3391                         ret = btrfs_prealloc_file_range(inode, mode,
3392                                         range->start,
3393                                         range->len, i_blocksize(inode),
3394                                         offset + len, &alloc_hint);
3395                 else
3396                         btrfs_free_reserved_data_space(inode,
3397                                         data_reserved, range->start,
3398                                         range->len);
3399                 list_del(&range->list);
3400                 kfree(range);
3401         }
3402         if (ret < 0)
3403                 goto out_unlock;
3404
3405         /*
3406          * We didn't need to allocate any more space, but we still extended the
3407          * size of the file so we need to update i_size and the inode item.
3408          */
3409         ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3410 out_unlock:
3411         unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3412                              &cached_state);
3413 out:
3414         inode_unlock(inode);
3415         /* Let go of our reservation. */
3416         if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3417                 btrfs_free_reserved_data_space(inode, data_reserved,
3418                                 cur_offset, alloc_end - cur_offset);
3419         extent_changeset_free(data_reserved);
3420         return ret;
3421 }
3422
3423 static loff_t find_desired_extent(struct inode *inode, loff_t offset,
3424                                   int whence)
3425 {
3426         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3427         struct extent_map *em = NULL;
3428         struct extent_state *cached_state = NULL;
3429         loff_t i_size = inode->i_size;
3430         u64 lockstart;
3431         u64 lockend;
3432         u64 start;
3433         u64 len;
3434         int ret = 0;
3435
3436         if (i_size == 0 || offset >= i_size)
3437                 return -ENXIO;
3438
3439         /*
3440          * offset can be negative, in this case we start finding DATA/HOLE from
3441          * the very start of the file.
3442          */
3443         start = max_t(loff_t, 0, offset);
3444
3445         lockstart = round_down(start, fs_info->sectorsize);
3446         lockend = round_up(i_size, fs_info->sectorsize);
3447         if (lockend <= lockstart)
3448                 lockend = lockstart + fs_info->sectorsize;
3449         lockend--;
3450         len = lockend - lockstart + 1;
3451
3452         lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3453                          &cached_state);
3454
3455         while (start < i_size) {
3456                 em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
3457                 if (IS_ERR(em)) {
3458                         ret = PTR_ERR(em);
3459                         em = NULL;
3460                         break;
3461                 }
3462
3463                 if (whence == SEEK_HOLE &&
3464                     (em->block_start == EXTENT_MAP_HOLE ||
3465                      test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3466                         break;
3467                 else if (whence == SEEK_DATA &&
3468                            (em->block_start != EXTENT_MAP_HOLE &&
3469                             !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3470                         break;
3471
3472                 start = em->start + em->len;
3473                 free_extent_map(em);
3474                 em = NULL;
3475                 cond_resched();
3476         }
3477         free_extent_map(em);
3478         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3479                              &cached_state);
3480         if (ret) {
3481                 offset = ret;
3482         } else {
3483                 if (whence == SEEK_DATA && start >= i_size)
3484                         offset = -ENXIO;
3485                 else
3486                         offset = min_t(loff_t, start, i_size);
3487         }
3488
3489         return offset;
3490 }
3491
3492 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3493 {
3494         struct inode *inode = file->f_mapping->host;
3495
3496         switch (whence) {
3497         default:
3498                 return generic_file_llseek(file, offset, whence);
3499         case SEEK_DATA:
3500         case SEEK_HOLE:
3501                 inode_lock_shared(inode);
3502                 offset = find_desired_extent(inode, offset, whence);
3503                 inode_unlock_shared(inode);
3504                 break;
3505         }
3506
3507         if (offset < 0)
3508                 return offset;
3509
3510         return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3511 }
3512
3513 static int btrfs_file_open(struct inode *inode, struct file *filp)
3514 {
3515         filp->f_mode |= FMODE_NOWAIT;
3516         return generic_file_open(inode, filp);
3517 }
3518
3519 static int check_direct_read(struct btrfs_fs_info *fs_info,
3520                                const struct iov_iter *iter, loff_t offset)
3521 {
3522         int ret;
3523         int i, seg;
3524
3525         ret = check_direct_IO(fs_info, iter, offset);
3526         if (ret < 0)
3527                 return ret;
3528
3529         for (seg = 0; seg < iter->nr_segs; seg++)
3530                 for (i = seg + 1; i < iter->nr_segs; i++)
3531                         if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
3532                                 return -EINVAL;
3533         return 0;
3534 }
3535
3536 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3537 {
3538         struct inode *inode = file_inode(iocb->ki_filp);
3539         ssize_t ret;
3540
3541         if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3542                 return 0;
3543
3544         inode_lock_shared(inode);
3545         ret = iomap_dio_rw(iocb, to, &btrfs_dio_iomap_ops, &btrfs_dops,
3546                            is_sync_kiocb(iocb));
3547         inode_unlock_shared(inode);
3548         return ret;
3549 }
3550
3551 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3552 {
3553         ssize_t ret = 0;
3554
3555         if (iocb->ki_flags & IOCB_DIRECT) {
3556                 ret = btrfs_direct_read(iocb, to);
3557                 if (ret < 0)
3558                         return ret;
3559         }
3560
3561         return generic_file_buffered_read(iocb, to, ret);
3562 }
3563
3564 const struct file_operations btrfs_file_operations = {
3565         .llseek         = btrfs_file_llseek,
3566         .read_iter      = btrfs_file_read_iter,
3567         .splice_read    = generic_file_splice_read,
3568         .write_iter     = btrfs_file_write_iter,
3569         .mmap           = btrfs_file_mmap,
3570         .open           = btrfs_file_open,
3571         .release        = btrfs_release_file,
3572         .fsync          = btrfs_sync_file,
3573         .fallocate      = btrfs_fallocate,
3574         .unlocked_ioctl = btrfs_ioctl,
3575 #ifdef CONFIG_COMPAT
3576         .compat_ioctl   = btrfs_compat_ioctl,
3577 #endif
3578         .remap_file_range = btrfs_remap_file_range,
3579 };
3580
3581 void __cold btrfs_auto_defrag_exit(void)
3582 {
3583         kmem_cache_destroy(btrfs_inode_defrag_cachep);
3584 }
3585
3586 int __init btrfs_auto_defrag_init(void)
3587 {
3588         btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3589                                         sizeof(struct inode_defrag), 0,
3590                                         SLAB_MEM_SPREAD,
3591                                         NULL);
3592         if (!btrfs_inode_defrag_cachep)
3593                 return -ENOMEM;
3594
3595         return 0;
3596 }
3597
3598 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3599 {
3600         int ret;
3601
3602         /*
3603          * So with compression we will find and lock a dirty page and clear the
3604          * first one as dirty, setup an async extent, and immediately return
3605          * with the entire range locked but with nobody actually marked with
3606          * writeback.  So we can't just filemap_write_and_wait_range() and
3607          * expect it to work since it will just kick off a thread to do the
3608          * actual work.  So we need to call filemap_fdatawrite_range _again_
3609          * since it will wait on the page lock, which won't be unlocked until
3610          * after the pages have been marked as writeback and so we're good to go
3611          * from there.  We have to do this otherwise we'll miss the ordered
3612          * extents and that results in badness.  Please Josef, do not think you
3613          * know better and pull this out at some point in the future, it is
3614          * right and you are wrong.
3615          */
3616         ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3617         if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3618                              &BTRFS_I(inode)->runtime_flags))
3619                 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3620
3621         return ret;
3622 }