Merge tag 'block-5.14-2021-08-07' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / fs / btrfs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "btrfs_inode.h"
23 #include "print-tree.h"
24 #include "tree-log.h"
25 #include "locking.h"
26 #include "volumes.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30 #include "reflink.h"
31 #include "subpage.h"
32
33 static struct kmem_cache *btrfs_inode_defrag_cachep;
34 /*
35  * when auto defrag is enabled we
36  * queue up these defrag structs to remember which
37  * inodes need defragging passes
38  */
39 struct inode_defrag {
40         struct rb_node rb_node;
41         /* objectid */
42         u64 ino;
43         /*
44          * transid where the defrag was added, we search for
45          * extents newer than this
46          */
47         u64 transid;
48
49         /* root objectid */
50         u64 root;
51
52         /* last offset we were able to defrag */
53         u64 last_offset;
54
55         /* if we've wrapped around back to zero once already */
56         int cycled;
57 };
58
59 static int __compare_inode_defrag(struct inode_defrag *defrag1,
60                                   struct inode_defrag *defrag2)
61 {
62         if (defrag1->root > defrag2->root)
63                 return 1;
64         else if (defrag1->root < defrag2->root)
65                 return -1;
66         else if (defrag1->ino > defrag2->ino)
67                 return 1;
68         else if (defrag1->ino < defrag2->ino)
69                 return -1;
70         else
71                 return 0;
72 }
73
74 /* pop a record for an inode into the defrag tree.  The lock
75  * must be held already
76  *
77  * If you're inserting a record for an older transid than an
78  * existing record, the transid already in the tree is lowered
79  *
80  * If an existing record is found the defrag item you
81  * pass in is freed
82  */
83 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
84                                     struct inode_defrag *defrag)
85 {
86         struct btrfs_fs_info *fs_info = inode->root->fs_info;
87         struct inode_defrag *entry;
88         struct rb_node **p;
89         struct rb_node *parent = NULL;
90         int ret;
91
92         p = &fs_info->defrag_inodes.rb_node;
93         while (*p) {
94                 parent = *p;
95                 entry = rb_entry(parent, struct inode_defrag, rb_node);
96
97                 ret = __compare_inode_defrag(defrag, entry);
98                 if (ret < 0)
99                         p = &parent->rb_left;
100                 else if (ret > 0)
101                         p = &parent->rb_right;
102                 else {
103                         /* if we're reinserting an entry for
104                          * an old defrag run, make sure to
105                          * lower the transid of our existing record
106                          */
107                         if (defrag->transid < entry->transid)
108                                 entry->transid = defrag->transid;
109                         if (defrag->last_offset > entry->last_offset)
110                                 entry->last_offset = defrag->last_offset;
111                         return -EEXIST;
112                 }
113         }
114         set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
115         rb_link_node(&defrag->rb_node, parent, p);
116         rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
117         return 0;
118 }
119
120 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
121 {
122         if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
123                 return 0;
124
125         if (btrfs_fs_closing(fs_info))
126                 return 0;
127
128         return 1;
129 }
130
131 /*
132  * insert a defrag record for this inode if auto defrag is
133  * enabled
134  */
135 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
136                            struct btrfs_inode *inode)
137 {
138         struct btrfs_root *root = inode->root;
139         struct btrfs_fs_info *fs_info = root->fs_info;
140         struct inode_defrag *defrag;
141         u64 transid;
142         int ret;
143
144         if (!__need_auto_defrag(fs_info))
145                 return 0;
146
147         if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
148                 return 0;
149
150         if (trans)
151                 transid = trans->transid;
152         else
153                 transid = inode->root->last_trans;
154
155         defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
156         if (!defrag)
157                 return -ENOMEM;
158
159         defrag->ino = btrfs_ino(inode);
160         defrag->transid = transid;
161         defrag->root = root->root_key.objectid;
162
163         spin_lock(&fs_info->defrag_inodes_lock);
164         if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
165                 /*
166                  * If we set IN_DEFRAG flag and evict the inode from memory,
167                  * and then re-read this inode, this new inode doesn't have
168                  * IN_DEFRAG flag. At the case, we may find the existed defrag.
169                  */
170                 ret = __btrfs_add_inode_defrag(inode, defrag);
171                 if (ret)
172                         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
173         } else {
174                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
175         }
176         spin_unlock(&fs_info->defrag_inodes_lock);
177         return 0;
178 }
179
180 /*
181  * Requeue the defrag object. If there is a defrag object that points to
182  * the same inode in the tree, we will merge them together (by
183  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
184  */
185 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
186                                        struct inode_defrag *defrag)
187 {
188         struct btrfs_fs_info *fs_info = inode->root->fs_info;
189         int ret;
190
191         if (!__need_auto_defrag(fs_info))
192                 goto out;
193
194         /*
195          * Here we don't check the IN_DEFRAG flag, because we need merge
196          * them together.
197          */
198         spin_lock(&fs_info->defrag_inodes_lock);
199         ret = __btrfs_add_inode_defrag(inode, defrag);
200         spin_unlock(&fs_info->defrag_inodes_lock);
201         if (ret)
202                 goto out;
203         return;
204 out:
205         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
206 }
207
208 /*
209  * pick the defragable inode that we want, if it doesn't exist, we will get
210  * the next one.
211  */
212 static struct inode_defrag *
213 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
214 {
215         struct inode_defrag *entry = NULL;
216         struct inode_defrag tmp;
217         struct rb_node *p;
218         struct rb_node *parent = NULL;
219         int ret;
220
221         tmp.ino = ino;
222         tmp.root = root;
223
224         spin_lock(&fs_info->defrag_inodes_lock);
225         p = fs_info->defrag_inodes.rb_node;
226         while (p) {
227                 parent = p;
228                 entry = rb_entry(parent, struct inode_defrag, rb_node);
229
230                 ret = __compare_inode_defrag(&tmp, entry);
231                 if (ret < 0)
232                         p = parent->rb_left;
233                 else if (ret > 0)
234                         p = parent->rb_right;
235                 else
236                         goto out;
237         }
238
239         if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
240                 parent = rb_next(parent);
241                 if (parent)
242                         entry = rb_entry(parent, struct inode_defrag, rb_node);
243                 else
244                         entry = NULL;
245         }
246 out:
247         if (entry)
248                 rb_erase(parent, &fs_info->defrag_inodes);
249         spin_unlock(&fs_info->defrag_inodes_lock);
250         return entry;
251 }
252
253 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
254 {
255         struct inode_defrag *defrag;
256         struct rb_node *node;
257
258         spin_lock(&fs_info->defrag_inodes_lock);
259         node = rb_first(&fs_info->defrag_inodes);
260         while (node) {
261                 rb_erase(node, &fs_info->defrag_inodes);
262                 defrag = rb_entry(node, struct inode_defrag, rb_node);
263                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
264
265                 cond_resched_lock(&fs_info->defrag_inodes_lock);
266
267                 node = rb_first(&fs_info->defrag_inodes);
268         }
269         spin_unlock(&fs_info->defrag_inodes_lock);
270 }
271
272 #define BTRFS_DEFRAG_BATCH      1024
273
274 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
275                                     struct inode_defrag *defrag)
276 {
277         struct btrfs_root *inode_root;
278         struct inode *inode;
279         struct btrfs_ioctl_defrag_range_args range;
280         int num_defrag;
281         int ret;
282
283         /* get the inode */
284         inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
285         if (IS_ERR(inode_root)) {
286                 ret = PTR_ERR(inode_root);
287                 goto cleanup;
288         }
289
290         inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
291         btrfs_put_root(inode_root);
292         if (IS_ERR(inode)) {
293                 ret = PTR_ERR(inode);
294                 goto cleanup;
295         }
296
297         /* do a chunk of defrag */
298         clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
299         memset(&range, 0, sizeof(range));
300         range.len = (u64)-1;
301         range.start = defrag->last_offset;
302
303         sb_start_write(fs_info->sb);
304         num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
305                                        BTRFS_DEFRAG_BATCH);
306         sb_end_write(fs_info->sb);
307         /*
308          * if we filled the whole defrag batch, there
309          * must be more work to do.  Queue this defrag
310          * again
311          */
312         if (num_defrag == BTRFS_DEFRAG_BATCH) {
313                 defrag->last_offset = range.start;
314                 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
315         } else if (defrag->last_offset && !defrag->cycled) {
316                 /*
317                  * we didn't fill our defrag batch, but
318                  * we didn't start at zero.  Make sure we loop
319                  * around to the start of the file.
320                  */
321                 defrag->last_offset = 0;
322                 defrag->cycled = 1;
323                 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
324         } else {
325                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
326         }
327
328         iput(inode);
329         return 0;
330 cleanup:
331         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
332         return ret;
333 }
334
335 /*
336  * run through the list of inodes in the FS that need
337  * defragging
338  */
339 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
340 {
341         struct inode_defrag *defrag;
342         u64 first_ino = 0;
343         u64 root_objectid = 0;
344
345         atomic_inc(&fs_info->defrag_running);
346         while (1) {
347                 /* Pause the auto defragger. */
348                 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
349                              &fs_info->fs_state))
350                         break;
351
352                 if (!__need_auto_defrag(fs_info))
353                         break;
354
355                 /* find an inode to defrag */
356                 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
357                                                  first_ino);
358                 if (!defrag) {
359                         if (root_objectid || first_ino) {
360                                 root_objectid = 0;
361                                 first_ino = 0;
362                                 continue;
363                         } else {
364                                 break;
365                         }
366                 }
367
368                 first_ino = defrag->ino + 1;
369                 root_objectid = defrag->root;
370
371                 __btrfs_run_defrag_inode(fs_info, defrag);
372         }
373         atomic_dec(&fs_info->defrag_running);
374
375         /*
376          * during unmount, we use the transaction_wait queue to
377          * wait for the defragger to stop
378          */
379         wake_up(&fs_info->transaction_wait);
380         return 0;
381 }
382
383 /* simple helper to fault in pages and copy.  This should go away
384  * and be replaced with calls into generic code.
385  */
386 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
387                                          struct page **prepared_pages,
388                                          struct iov_iter *i)
389 {
390         size_t copied = 0;
391         size_t total_copied = 0;
392         int pg = 0;
393         int offset = offset_in_page(pos);
394
395         while (write_bytes > 0) {
396                 size_t count = min_t(size_t,
397                                      PAGE_SIZE - offset, write_bytes);
398                 struct page *page = prepared_pages[pg];
399                 /*
400                  * Copy data from userspace to the current page
401                  */
402                 copied = copy_page_from_iter_atomic(page, offset, count, i);
403
404                 /* Flush processor's dcache for this page */
405                 flush_dcache_page(page);
406
407                 /*
408                  * if we get a partial write, we can end up with
409                  * partially up to date pages.  These add
410                  * a lot of complexity, so make sure they don't
411                  * happen by forcing this copy to be retried.
412                  *
413                  * The rest of the btrfs_file_write code will fall
414                  * back to page at a time copies after we return 0.
415                  */
416                 if (unlikely(copied < count)) {
417                         if (!PageUptodate(page)) {
418                                 iov_iter_revert(i, copied);
419                                 copied = 0;
420                         }
421                         if (!copied)
422                                 break;
423                 }
424
425                 write_bytes -= copied;
426                 total_copied += copied;
427                 offset += copied;
428                 if (offset == PAGE_SIZE) {
429                         pg++;
430                         offset = 0;
431                 }
432         }
433         return total_copied;
434 }
435
436 /*
437  * unlocks pages after btrfs_file_write is done with them
438  */
439 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
440 {
441         size_t i;
442         for (i = 0; i < num_pages; i++) {
443                 /* page checked is some magic around finding pages that
444                  * have been modified without going through btrfs_set_page_dirty
445                  * clear it here. There should be no need to mark the pages
446                  * accessed as prepare_pages should have marked them accessed
447                  * in prepare_pages via find_or_create_page()
448                  */
449                 ClearPageChecked(pages[i]);
450                 unlock_page(pages[i]);
451                 put_page(pages[i]);
452         }
453 }
454
455 /*
456  * After btrfs_copy_from_user(), update the following things for delalloc:
457  * - Mark newly dirtied pages as DELALLOC in the io tree.
458  *   Used to advise which range is to be written back.
459  * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
460  * - Update inode size for past EOF write
461  */
462 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
463                       size_t num_pages, loff_t pos, size_t write_bytes,
464                       struct extent_state **cached, bool noreserve)
465 {
466         struct btrfs_fs_info *fs_info = inode->root->fs_info;
467         int err = 0;
468         int i;
469         u64 num_bytes;
470         u64 start_pos;
471         u64 end_of_last_block;
472         u64 end_pos = pos + write_bytes;
473         loff_t isize = i_size_read(&inode->vfs_inode);
474         unsigned int extra_bits = 0;
475
476         if (write_bytes == 0)
477                 return 0;
478
479         if (noreserve)
480                 extra_bits |= EXTENT_NORESERVE;
481
482         start_pos = round_down(pos, fs_info->sectorsize);
483         num_bytes = round_up(write_bytes + pos - start_pos,
484                              fs_info->sectorsize);
485         ASSERT(num_bytes <= U32_MAX);
486
487         end_of_last_block = start_pos + num_bytes - 1;
488
489         /*
490          * The pages may have already been dirty, clear out old accounting so
491          * we can set things up properly
492          */
493         clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
494                          EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
495                          0, 0, cached);
496
497         err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
498                                         extra_bits, cached);
499         if (err)
500                 return err;
501
502         for (i = 0; i < num_pages; i++) {
503                 struct page *p = pages[i];
504
505                 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
506                 ClearPageChecked(p);
507                 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
508         }
509
510         /*
511          * we've only changed i_size in ram, and we haven't updated
512          * the disk i_size.  There is no need to log the inode
513          * at this time.
514          */
515         if (end_pos > isize)
516                 i_size_write(&inode->vfs_inode, end_pos);
517         return 0;
518 }
519
520 /*
521  * this drops all the extents in the cache that intersect the range
522  * [start, end].  Existing extents are split as required.
523  */
524 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
525                              int skip_pinned)
526 {
527         struct extent_map *em;
528         struct extent_map *split = NULL;
529         struct extent_map *split2 = NULL;
530         struct extent_map_tree *em_tree = &inode->extent_tree;
531         u64 len = end - start + 1;
532         u64 gen;
533         int ret;
534         int testend = 1;
535         unsigned long flags;
536         int compressed = 0;
537         bool modified;
538
539         WARN_ON(end < start);
540         if (end == (u64)-1) {
541                 len = (u64)-1;
542                 testend = 0;
543         }
544         while (1) {
545                 int no_splits = 0;
546
547                 modified = false;
548                 if (!split)
549                         split = alloc_extent_map();
550                 if (!split2)
551                         split2 = alloc_extent_map();
552                 if (!split || !split2)
553                         no_splits = 1;
554
555                 write_lock(&em_tree->lock);
556                 em = lookup_extent_mapping(em_tree, start, len);
557                 if (!em) {
558                         write_unlock(&em_tree->lock);
559                         break;
560                 }
561                 flags = em->flags;
562                 gen = em->generation;
563                 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
564                         if (testend && em->start + em->len >= start + len) {
565                                 free_extent_map(em);
566                                 write_unlock(&em_tree->lock);
567                                 break;
568                         }
569                         start = em->start + em->len;
570                         if (testend)
571                                 len = start + len - (em->start + em->len);
572                         free_extent_map(em);
573                         write_unlock(&em_tree->lock);
574                         continue;
575                 }
576                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
577                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
578                 clear_bit(EXTENT_FLAG_LOGGING, &flags);
579                 modified = !list_empty(&em->list);
580                 if (no_splits)
581                         goto next;
582
583                 if (em->start < start) {
584                         split->start = em->start;
585                         split->len = start - em->start;
586
587                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
588                                 split->orig_start = em->orig_start;
589                                 split->block_start = em->block_start;
590
591                                 if (compressed)
592                                         split->block_len = em->block_len;
593                                 else
594                                         split->block_len = split->len;
595                                 split->orig_block_len = max(split->block_len,
596                                                 em->orig_block_len);
597                                 split->ram_bytes = em->ram_bytes;
598                         } else {
599                                 split->orig_start = split->start;
600                                 split->block_len = 0;
601                                 split->block_start = em->block_start;
602                                 split->orig_block_len = 0;
603                                 split->ram_bytes = split->len;
604                         }
605
606                         split->generation = gen;
607                         split->flags = flags;
608                         split->compress_type = em->compress_type;
609                         replace_extent_mapping(em_tree, em, split, modified);
610                         free_extent_map(split);
611                         split = split2;
612                         split2 = NULL;
613                 }
614                 if (testend && em->start + em->len > start + len) {
615                         u64 diff = start + len - em->start;
616
617                         split->start = start + len;
618                         split->len = em->start + em->len - (start + len);
619                         split->flags = flags;
620                         split->compress_type = em->compress_type;
621                         split->generation = gen;
622
623                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
624                                 split->orig_block_len = max(em->block_len,
625                                                     em->orig_block_len);
626
627                                 split->ram_bytes = em->ram_bytes;
628                                 if (compressed) {
629                                         split->block_len = em->block_len;
630                                         split->block_start = em->block_start;
631                                         split->orig_start = em->orig_start;
632                                 } else {
633                                         split->block_len = split->len;
634                                         split->block_start = em->block_start
635                                                 + diff;
636                                         split->orig_start = em->orig_start;
637                                 }
638                         } else {
639                                 split->ram_bytes = split->len;
640                                 split->orig_start = split->start;
641                                 split->block_len = 0;
642                                 split->block_start = em->block_start;
643                                 split->orig_block_len = 0;
644                         }
645
646                         if (extent_map_in_tree(em)) {
647                                 replace_extent_mapping(em_tree, em, split,
648                                                        modified);
649                         } else {
650                                 ret = add_extent_mapping(em_tree, split,
651                                                          modified);
652                                 ASSERT(ret == 0); /* Logic error */
653                         }
654                         free_extent_map(split);
655                         split = NULL;
656                 }
657 next:
658                 if (extent_map_in_tree(em))
659                         remove_extent_mapping(em_tree, em);
660                 write_unlock(&em_tree->lock);
661
662                 /* once for us */
663                 free_extent_map(em);
664                 /* once for the tree*/
665                 free_extent_map(em);
666         }
667         if (split)
668                 free_extent_map(split);
669         if (split2)
670                 free_extent_map(split2);
671 }
672
673 /*
674  * this is very complex, but the basic idea is to drop all extents
675  * in the range start - end.  hint_block is filled in with a block number
676  * that would be a good hint to the block allocator for this file.
677  *
678  * If an extent intersects the range but is not entirely inside the range
679  * it is either truncated or split.  Anything entirely inside the range
680  * is deleted from the tree.
681  *
682  * Note: the VFS' inode number of bytes is not updated, it's up to the caller
683  * to deal with that. We set the field 'bytes_found' of the arguments structure
684  * with the number of allocated bytes found in the target range, so that the
685  * caller can update the inode's number of bytes in an atomic way when
686  * replacing extents in a range to avoid races with stat(2).
687  */
688 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
689                        struct btrfs_root *root, struct btrfs_inode *inode,
690                        struct btrfs_drop_extents_args *args)
691 {
692         struct btrfs_fs_info *fs_info = root->fs_info;
693         struct extent_buffer *leaf;
694         struct btrfs_file_extent_item *fi;
695         struct btrfs_ref ref = { 0 };
696         struct btrfs_key key;
697         struct btrfs_key new_key;
698         u64 ino = btrfs_ino(inode);
699         u64 search_start = args->start;
700         u64 disk_bytenr = 0;
701         u64 num_bytes = 0;
702         u64 extent_offset = 0;
703         u64 extent_end = 0;
704         u64 last_end = args->start;
705         int del_nr = 0;
706         int del_slot = 0;
707         int extent_type;
708         int recow;
709         int ret;
710         int modify_tree = -1;
711         int update_refs;
712         int found = 0;
713         int leafs_visited = 0;
714         struct btrfs_path *path = args->path;
715
716         args->bytes_found = 0;
717         args->extent_inserted = false;
718
719         /* Must always have a path if ->replace_extent is true */
720         ASSERT(!(args->replace_extent && !args->path));
721
722         if (!path) {
723                 path = btrfs_alloc_path();
724                 if (!path) {
725                         ret = -ENOMEM;
726                         goto out;
727                 }
728         }
729
730         if (args->drop_cache)
731                 btrfs_drop_extent_cache(inode, args->start, args->end - 1, 0);
732
733         if (args->start >= inode->disk_i_size && !args->replace_extent)
734                 modify_tree = 0;
735
736         update_refs = (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
737                        root == fs_info->tree_root);
738         while (1) {
739                 recow = 0;
740                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
741                                                search_start, modify_tree);
742                 if (ret < 0)
743                         break;
744                 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
745                         leaf = path->nodes[0];
746                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
747                         if (key.objectid == ino &&
748                             key.type == BTRFS_EXTENT_DATA_KEY)
749                                 path->slots[0]--;
750                 }
751                 ret = 0;
752                 leafs_visited++;
753 next_slot:
754                 leaf = path->nodes[0];
755                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
756                         BUG_ON(del_nr > 0);
757                         ret = btrfs_next_leaf(root, path);
758                         if (ret < 0)
759                                 break;
760                         if (ret > 0) {
761                                 ret = 0;
762                                 break;
763                         }
764                         leafs_visited++;
765                         leaf = path->nodes[0];
766                         recow = 1;
767                 }
768
769                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
770
771                 if (key.objectid > ino)
772                         break;
773                 if (WARN_ON_ONCE(key.objectid < ino) ||
774                     key.type < BTRFS_EXTENT_DATA_KEY) {
775                         ASSERT(del_nr == 0);
776                         path->slots[0]++;
777                         goto next_slot;
778                 }
779                 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
780                         break;
781
782                 fi = btrfs_item_ptr(leaf, path->slots[0],
783                                     struct btrfs_file_extent_item);
784                 extent_type = btrfs_file_extent_type(leaf, fi);
785
786                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
787                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
788                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
789                         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
790                         extent_offset = btrfs_file_extent_offset(leaf, fi);
791                         extent_end = key.offset +
792                                 btrfs_file_extent_num_bytes(leaf, fi);
793                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
794                         extent_end = key.offset +
795                                 btrfs_file_extent_ram_bytes(leaf, fi);
796                 } else {
797                         /* can't happen */
798                         BUG();
799                 }
800
801                 /*
802                  * Don't skip extent items representing 0 byte lengths. They
803                  * used to be created (bug) if while punching holes we hit
804                  * -ENOSPC condition. So if we find one here, just ensure we
805                  * delete it, otherwise we would insert a new file extent item
806                  * with the same key (offset) as that 0 bytes length file
807                  * extent item in the call to setup_items_for_insert() later
808                  * in this function.
809                  */
810                 if (extent_end == key.offset && extent_end >= search_start) {
811                         last_end = extent_end;
812                         goto delete_extent_item;
813                 }
814
815                 if (extent_end <= search_start) {
816                         path->slots[0]++;
817                         goto next_slot;
818                 }
819
820                 found = 1;
821                 search_start = max(key.offset, args->start);
822                 if (recow || !modify_tree) {
823                         modify_tree = -1;
824                         btrfs_release_path(path);
825                         continue;
826                 }
827
828                 /*
829                  *     | - range to drop - |
830                  *  | -------- extent -------- |
831                  */
832                 if (args->start > key.offset && args->end < extent_end) {
833                         BUG_ON(del_nr > 0);
834                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
835                                 ret = -EOPNOTSUPP;
836                                 break;
837                         }
838
839                         memcpy(&new_key, &key, sizeof(new_key));
840                         new_key.offset = args->start;
841                         ret = btrfs_duplicate_item(trans, root, path,
842                                                    &new_key);
843                         if (ret == -EAGAIN) {
844                                 btrfs_release_path(path);
845                                 continue;
846                         }
847                         if (ret < 0)
848                                 break;
849
850                         leaf = path->nodes[0];
851                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
852                                             struct btrfs_file_extent_item);
853                         btrfs_set_file_extent_num_bytes(leaf, fi,
854                                                         args->start - key.offset);
855
856                         fi = btrfs_item_ptr(leaf, path->slots[0],
857                                             struct btrfs_file_extent_item);
858
859                         extent_offset += args->start - key.offset;
860                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
861                         btrfs_set_file_extent_num_bytes(leaf, fi,
862                                                         extent_end - args->start);
863                         btrfs_mark_buffer_dirty(leaf);
864
865                         if (update_refs && disk_bytenr > 0) {
866                                 btrfs_init_generic_ref(&ref,
867                                                 BTRFS_ADD_DELAYED_REF,
868                                                 disk_bytenr, num_bytes, 0);
869                                 btrfs_init_data_ref(&ref,
870                                                 root->root_key.objectid,
871                                                 new_key.objectid,
872                                                 args->start - extent_offset);
873                                 ret = btrfs_inc_extent_ref(trans, &ref);
874                                 BUG_ON(ret); /* -ENOMEM */
875                         }
876                         key.offset = args->start;
877                 }
878                 /*
879                  * From here on out we will have actually dropped something, so
880                  * last_end can be updated.
881                  */
882                 last_end = extent_end;
883
884                 /*
885                  *  | ---- range to drop ----- |
886                  *      | -------- extent -------- |
887                  */
888                 if (args->start <= key.offset && args->end < extent_end) {
889                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
890                                 ret = -EOPNOTSUPP;
891                                 break;
892                         }
893
894                         memcpy(&new_key, &key, sizeof(new_key));
895                         new_key.offset = args->end;
896                         btrfs_set_item_key_safe(fs_info, path, &new_key);
897
898                         extent_offset += args->end - key.offset;
899                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
900                         btrfs_set_file_extent_num_bytes(leaf, fi,
901                                                         extent_end - args->end);
902                         btrfs_mark_buffer_dirty(leaf);
903                         if (update_refs && disk_bytenr > 0)
904                                 args->bytes_found += args->end - key.offset;
905                         break;
906                 }
907
908                 search_start = extent_end;
909                 /*
910                  *       | ---- range to drop ----- |
911                  *  | -------- extent -------- |
912                  */
913                 if (args->start > key.offset && args->end >= extent_end) {
914                         BUG_ON(del_nr > 0);
915                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
916                                 ret = -EOPNOTSUPP;
917                                 break;
918                         }
919
920                         btrfs_set_file_extent_num_bytes(leaf, fi,
921                                                         args->start - key.offset);
922                         btrfs_mark_buffer_dirty(leaf);
923                         if (update_refs && disk_bytenr > 0)
924                                 args->bytes_found += extent_end - args->start;
925                         if (args->end == extent_end)
926                                 break;
927
928                         path->slots[0]++;
929                         goto next_slot;
930                 }
931
932                 /*
933                  *  | ---- range to drop ----- |
934                  *    | ------ extent ------ |
935                  */
936                 if (args->start <= key.offset && args->end >= extent_end) {
937 delete_extent_item:
938                         if (del_nr == 0) {
939                                 del_slot = path->slots[0];
940                                 del_nr = 1;
941                         } else {
942                                 BUG_ON(del_slot + del_nr != path->slots[0]);
943                                 del_nr++;
944                         }
945
946                         if (update_refs &&
947                             extent_type == BTRFS_FILE_EXTENT_INLINE) {
948                                 args->bytes_found += extent_end - key.offset;
949                                 extent_end = ALIGN(extent_end,
950                                                    fs_info->sectorsize);
951                         } else if (update_refs && disk_bytenr > 0) {
952                                 btrfs_init_generic_ref(&ref,
953                                                 BTRFS_DROP_DELAYED_REF,
954                                                 disk_bytenr, num_bytes, 0);
955                                 btrfs_init_data_ref(&ref,
956                                                 root->root_key.objectid,
957                                                 key.objectid,
958                                                 key.offset - extent_offset);
959                                 ret = btrfs_free_extent(trans, &ref);
960                                 BUG_ON(ret); /* -ENOMEM */
961                                 args->bytes_found += extent_end - key.offset;
962                         }
963
964                         if (args->end == extent_end)
965                                 break;
966
967                         if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
968                                 path->slots[0]++;
969                                 goto next_slot;
970                         }
971
972                         ret = btrfs_del_items(trans, root, path, del_slot,
973                                               del_nr);
974                         if (ret) {
975                                 btrfs_abort_transaction(trans, ret);
976                                 break;
977                         }
978
979                         del_nr = 0;
980                         del_slot = 0;
981
982                         btrfs_release_path(path);
983                         continue;
984                 }
985
986                 BUG();
987         }
988
989         if (!ret && del_nr > 0) {
990                 /*
991                  * Set path->slots[0] to first slot, so that after the delete
992                  * if items are move off from our leaf to its immediate left or
993                  * right neighbor leafs, we end up with a correct and adjusted
994                  * path->slots[0] for our insertion (if args->replace_extent).
995                  */
996                 path->slots[0] = del_slot;
997                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
998                 if (ret)
999                         btrfs_abort_transaction(trans, ret);
1000         }
1001
1002         leaf = path->nodes[0];
1003         /*
1004          * If btrfs_del_items() was called, it might have deleted a leaf, in
1005          * which case it unlocked our path, so check path->locks[0] matches a
1006          * write lock.
1007          */
1008         if (!ret && args->replace_extent && leafs_visited == 1 &&
1009             path->locks[0] == BTRFS_WRITE_LOCK &&
1010             btrfs_leaf_free_space(leaf) >=
1011             sizeof(struct btrfs_item) + args->extent_item_size) {
1012
1013                 key.objectid = ino;
1014                 key.type = BTRFS_EXTENT_DATA_KEY;
1015                 key.offset = args->start;
1016                 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1017                         struct btrfs_key slot_key;
1018
1019                         btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1020                         if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1021                                 path->slots[0]++;
1022                 }
1023                 setup_items_for_insert(root, path, &key,
1024                                        &args->extent_item_size, 1);
1025                 args->extent_inserted = true;
1026         }
1027
1028         if (!args->path)
1029                 btrfs_free_path(path);
1030         else if (!args->extent_inserted)
1031                 btrfs_release_path(path);
1032 out:
1033         args->drop_end = found ? min(args->end, last_end) : args->end;
1034
1035         return ret;
1036 }
1037
1038 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1039                             u64 objectid, u64 bytenr, u64 orig_offset,
1040                             u64 *start, u64 *end)
1041 {
1042         struct btrfs_file_extent_item *fi;
1043         struct btrfs_key key;
1044         u64 extent_end;
1045
1046         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1047                 return 0;
1048
1049         btrfs_item_key_to_cpu(leaf, &key, slot);
1050         if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1051                 return 0;
1052
1053         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1054         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1055             btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1056             btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1057             btrfs_file_extent_compression(leaf, fi) ||
1058             btrfs_file_extent_encryption(leaf, fi) ||
1059             btrfs_file_extent_other_encoding(leaf, fi))
1060                 return 0;
1061
1062         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1063         if ((*start && *start != key.offset) || (*end && *end != extent_end))
1064                 return 0;
1065
1066         *start = key.offset;
1067         *end = extent_end;
1068         return 1;
1069 }
1070
1071 /*
1072  * Mark extent in the range start - end as written.
1073  *
1074  * This changes extent type from 'pre-allocated' to 'regular'. If only
1075  * part of extent is marked as written, the extent will be split into
1076  * two or three.
1077  */
1078 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1079                               struct btrfs_inode *inode, u64 start, u64 end)
1080 {
1081         struct btrfs_fs_info *fs_info = trans->fs_info;
1082         struct btrfs_root *root = inode->root;
1083         struct extent_buffer *leaf;
1084         struct btrfs_path *path;
1085         struct btrfs_file_extent_item *fi;
1086         struct btrfs_ref ref = { 0 };
1087         struct btrfs_key key;
1088         struct btrfs_key new_key;
1089         u64 bytenr;
1090         u64 num_bytes;
1091         u64 extent_end;
1092         u64 orig_offset;
1093         u64 other_start;
1094         u64 other_end;
1095         u64 split;
1096         int del_nr = 0;
1097         int del_slot = 0;
1098         int recow;
1099         int ret = 0;
1100         u64 ino = btrfs_ino(inode);
1101
1102         path = btrfs_alloc_path();
1103         if (!path)
1104                 return -ENOMEM;
1105 again:
1106         recow = 0;
1107         split = start;
1108         key.objectid = ino;
1109         key.type = BTRFS_EXTENT_DATA_KEY;
1110         key.offset = split;
1111
1112         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1113         if (ret < 0)
1114                 goto out;
1115         if (ret > 0 && path->slots[0] > 0)
1116                 path->slots[0]--;
1117
1118         leaf = path->nodes[0];
1119         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1120         if (key.objectid != ino ||
1121             key.type != BTRFS_EXTENT_DATA_KEY) {
1122                 ret = -EINVAL;
1123                 btrfs_abort_transaction(trans, ret);
1124                 goto out;
1125         }
1126         fi = btrfs_item_ptr(leaf, path->slots[0],
1127                             struct btrfs_file_extent_item);
1128         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1129                 ret = -EINVAL;
1130                 btrfs_abort_transaction(trans, ret);
1131                 goto out;
1132         }
1133         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1134         if (key.offset > start || extent_end < end) {
1135                 ret = -EINVAL;
1136                 btrfs_abort_transaction(trans, ret);
1137                 goto out;
1138         }
1139
1140         bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1141         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1142         orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1143         memcpy(&new_key, &key, sizeof(new_key));
1144
1145         if (start == key.offset && end < extent_end) {
1146                 other_start = 0;
1147                 other_end = start;
1148                 if (extent_mergeable(leaf, path->slots[0] - 1,
1149                                      ino, bytenr, orig_offset,
1150                                      &other_start, &other_end)) {
1151                         new_key.offset = end;
1152                         btrfs_set_item_key_safe(fs_info, path, &new_key);
1153                         fi = btrfs_item_ptr(leaf, path->slots[0],
1154                                             struct btrfs_file_extent_item);
1155                         btrfs_set_file_extent_generation(leaf, fi,
1156                                                          trans->transid);
1157                         btrfs_set_file_extent_num_bytes(leaf, fi,
1158                                                         extent_end - end);
1159                         btrfs_set_file_extent_offset(leaf, fi,
1160                                                      end - orig_offset);
1161                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1162                                             struct btrfs_file_extent_item);
1163                         btrfs_set_file_extent_generation(leaf, fi,
1164                                                          trans->transid);
1165                         btrfs_set_file_extent_num_bytes(leaf, fi,
1166                                                         end - other_start);
1167                         btrfs_mark_buffer_dirty(leaf);
1168                         goto out;
1169                 }
1170         }
1171
1172         if (start > key.offset && end == extent_end) {
1173                 other_start = end;
1174                 other_end = 0;
1175                 if (extent_mergeable(leaf, path->slots[0] + 1,
1176                                      ino, bytenr, orig_offset,
1177                                      &other_start, &other_end)) {
1178                         fi = btrfs_item_ptr(leaf, path->slots[0],
1179                                             struct btrfs_file_extent_item);
1180                         btrfs_set_file_extent_num_bytes(leaf, fi,
1181                                                         start - key.offset);
1182                         btrfs_set_file_extent_generation(leaf, fi,
1183                                                          trans->transid);
1184                         path->slots[0]++;
1185                         new_key.offset = start;
1186                         btrfs_set_item_key_safe(fs_info, path, &new_key);
1187
1188                         fi = btrfs_item_ptr(leaf, path->slots[0],
1189                                             struct btrfs_file_extent_item);
1190                         btrfs_set_file_extent_generation(leaf, fi,
1191                                                          trans->transid);
1192                         btrfs_set_file_extent_num_bytes(leaf, fi,
1193                                                         other_end - start);
1194                         btrfs_set_file_extent_offset(leaf, fi,
1195                                                      start - orig_offset);
1196                         btrfs_mark_buffer_dirty(leaf);
1197                         goto out;
1198                 }
1199         }
1200
1201         while (start > key.offset || end < extent_end) {
1202                 if (key.offset == start)
1203                         split = end;
1204
1205                 new_key.offset = split;
1206                 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1207                 if (ret == -EAGAIN) {
1208                         btrfs_release_path(path);
1209                         goto again;
1210                 }
1211                 if (ret < 0) {
1212                         btrfs_abort_transaction(trans, ret);
1213                         goto out;
1214                 }
1215
1216                 leaf = path->nodes[0];
1217                 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1218                                     struct btrfs_file_extent_item);
1219                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1220                 btrfs_set_file_extent_num_bytes(leaf, fi,
1221                                                 split - key.offset);
1222
1223                 fi = btrfs_item_ptr(leaf, path->slots[0],
1224                                     struct btrfs_file_extent_item);
1225
1226                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1227                 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1228                 btrfs_set_file_extent_num_bytes(leaf, fi,
1229                                                 extent_end - split);
1230                 btrfs_mark_buffer_dirty(leaf);
1231
1232                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1233                                        num_bytes, 0);
1234                 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1235                                     orig_offset);
1236                 ret = btrfs_inc_extent_ref(trans, &ref);
1237                 if (ret) {
1238                         btrfs_abort_transaction(trans, ret);
1239                         goto out;
1240                 }
1241
1242                 if (split == start) {
1243                         key.offset = start;
1244                 } else {
1245                         if (start != key.offset) {
1246                                 ret = -EINVAL;
1247                                 btrfs_abort_transaction(trans, ret);
1248                                 goto out;
1249                         }
1250                         path->slots[0]--;
1251                         extent_end = end;
1252                 }
1253                 recow = 1;
1254         }
1255
1256         other_start = end;
1257         other_end = 0;
1258         btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1259                                num_bytes, 0);
1260         btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1261         if (extent_mergeable(leaf, path->slots[0] + 1,
1262                              ino, bytenr, orig_offset,
1263                              &other_start, &other_end)) {
1264                 if (recow) {
1265                         btrfs_release_path(path);
1266                         goto again;
1267                 }
1268                 extent_end = other_end;
1269                 del_slot = path->slots[0] + 1;
1270                 del_nr++;
1271                 ret = btrfs_free_extent(trans, &ref);
1272                 if (ret) {
1273                         btrfs_abort_transaction(trans, ret);
1274                         goto out;
1275                 }
1276         }
1277         other_start = 0;
1278         other_end = start;
1279         if (extent_mergeable(leaf, path->slots[0] - 1,
1280                              ino, bytenr, orig_offset,
1281                              &other_start, &other_end)) {
1282                 if (recow) {
1283                         btrfs_release_path(path);
1284                         goto again;
1285                 }
1286                 key.offset = other_start;
1287                 del_slot = path->slots[0];
1288                 del_nr++;
1289                 ret = btrfs_free_extent(trans, &ref);
1290                 if (ret) {
1291                         btrfs_abort_transaction(trans, ret);
1292                         goto out;
1293                 }
1294         }
1295         if (del_nr == 0) {
1296                 fi = btrfs_item_ptr(leaf, path->slots[0],
1297                            struct btrfs_file_extent_item);
1298                 btrfs_set_file_extent_type(leaf, fi,
1299                                            BTRFS_FILE_EXTENT_REG);
1300                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1301                 btrfs_mark_buffer_dirty(leaf);
1302         } else {
1303                 fi = btrfs_item_ptr(leaf, del_slot - 1,
1304                            struct btrfs_file_extent_item);
1305                 btrfs_set_file_extent_type(leaf, fi,
1306                                            BTRFS_FILE_EXTENT_REG);
1307                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1308                 btrfs_set_file_extent_num_bytes(leaf, fi,
1309                                                 extent_end - key.offset);
1310                 btrfs_mark_buffer_dirty(leaf);
1311
1312                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1313                 if (ret < 0) {
1314                         btrfs_abort_transaction(trans, ret);
1315                         goto out;
1316                 }
1317         }
1318 out:
1319         btrfs_free_path(path);
1320         return ret;
1321 }
1322
1323 /*
1324  * on error we return an unlocked page and the error value
1325  * on success we return a locked page and 0
1326  */
1327 static int prepare_uptodate_page(struct inode *inode,
1328                                  struct page *page, u64 pos,
1329                                  bool force_uptodate)
1330 {
1331         int ret = 0;
1332
1333         if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1334             !PageUptodate(page)) {
1335                 ret = btrfs_readpage(NULL, page);
1336                 if (ret)
1337                         return ret;
1338                 lock_page(page);
1339                 if (!PageUptodate(page)) {
1340                         unlock_page(page);
1341                         return -EIO;
1342                 }
1343                 if (page->mapping != inode->i_mapping) {
1344                         unlock_page(page);
1345                         return -EAGAIN;
1346                 }
1347         }
1348         return 0;
1349 }
1350
1351 /*
1352  * this just gets pages into the page cache and locks them down.
1353  */
1354 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1355                                   size_t num_pages, loff_t pos,
1356                                   size_t write_bytes, bool force_uptodate)
1357 {
1358         int i;
1359         unsigned long index = pos >> PAGE_SHIFT;
1360         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1361         int err = 0;
1362         int faili;
1363
1364         for (i = 0; i < num_pages; i++) {
1365 again:
1366                 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1367                                                mask | __GFP_WRITE);
1368                 if (!pages[i]) {
1369                         faili = i - 1;
1370                         err = -ENOMEM;
1371                         goto fail;
1372                 }
1373
1374                 err = set_page_extent_mapped(pages[i]);
1375                 if (err < 0) {
1376                         faili = i;
1377                         goto fail;
1378                 }
1379
1380                 if (i == 0)
1381                         err = prepare_uptodate_page(inode, pages[i], pos,
1382                                                     force_uptodate);
1383                 if (!err && i == num_pages - 1)
1384                         err = prepare_uptodate_page(inode, pages[i],
1385                                                     pos + write_bytes, false);
1386                 if (err) {
1387                         put_page(pages[i]);
1388                         if (err == -EAGAIN) {
1389                                 err = 0;
1390                                 goto again;
1391                         }
1392                         faili = i - 1;
1393                         goto fail;
1394                 }
1395                 wait_on_page_writeback(pages[i]);
1396         }
1397
1398         return 0;
1399 fail:
1400         while (faili >= 0) {
1401                 unlock_page(pages[faili]);
1402                 put_page(pages[faili]);
1403                 faili--;
1404         }
1405         return err;
1406
1407 }
1408
1409 /*
1410  * This function locks the extent and properly waits for data=ordered extents
1411  * to finish before allowing the pages to be modified if need.
1412  *
1413  * The return value:
1414  * 1 - the extent is locked
1415  * 0 - the extent is not locked, and everything is OK
1416  * -EAGAIN - need re-prepare the pages
1417  * the other < 0 number - Something wrong happens
1418  */
1419 static noinline int
1420 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1421                                 size_t num_pages, loff_t pos,
1422                                 size_t write_bytes,
1423                                 u64 *lockstart, u64 *lockend,
1424                                 struct extent_state **cached_state)
1425 {
1426         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1427         u64 start_pos;
1428         u64 last_pos;
1429         int i;
1430         int ret = 0;
1431
1432         start_pos = round_down(pos, fs_info->sectorsize);
1433         last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1434
1435         if (start_pos < inode->vfs_inode.i_size) {
1436                 struct btrfs_ordered_extent *ordered;
1437
1438                 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1439                                 cached_state);
1440                 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1441                                                      last_pos - start_pos + 1);
1442                 if (ordered &&
1443                     ordered->file_offset + ordered->num_bytes > start_pos &&
1444                     ordered->file_offset <= last_pos) {
1445                         unlock_extent_cached(&inode->io_tree, start_pos,
1446                                         last_pos, cached_state);
1447                         for (i = 0; i < num_pages; i++) {
1448                                 unlock_page(pages[i]);
1449                                 put_page(pages[i]);
1450                         }
1451                         btrfs_start_ordered_extent(ordered, 1);
1452                         btrfs_put_ordered_extent(ordered);
1453                         return -EAGAIN;
1454                 }
1455                 if (ordered)
1456                         btrfs_put_ordered_extent(ordered);
1457
1458                 *lockstart = start_pos;
1459                 *lockend = last_pos;
1460                 ret = 1;
1461         }
1462
1463         /*
1464          * We should be called after prepare_pages() which should have locked
1465          * all pages in the range.
1466          */
1467         for (i = 0; i < num_pages; i++)
1468                 WARN_ON(!PageLocked(pages[i]));
1469
1470         return ret;
1471 }
1472
1473 static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1474                            size_t *write_bytes, bool nowait)
1475 {
1476         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1477         struct btrfs_root *root = inode->root;
1478         u64 lockstart, lockend;
1479         u64 num_bytes;
1480         int ret;
1481
1482         if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1483                 return 0;
1484
1485         if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
1486                 return -EAGAIN;
1487
1488         lockstart = round_down(pos, fs_info->sectorsize);
1489         lockend = round_up(pos + *write_bytes,
1490                            fs_info->sectorsize) - 1;
1491         num_bytes = lockend - lockstart + 1;
1492
1493         if (nowait) {
1494                 struct btrfs_ordered_extent *ordered;
1495
1496                 if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1497                         return -EAGAIN;
1498
1499                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1500                                                      num_bytes);
1501                 if (ordered) {
1502                         btrfs_put_ordered_extent(ordered);
1503                         ret = -EAGAIN;
1504                         goto out_unlock;
1505                 }
1506         } else {
1507                 btrfs_lock_and_flush_ordered_range(inode, lockstart,
1508                                                    lockend, NULL);
1509         }
1510
1511         ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1512                         NULL, NULL, NULL, false);
1513         if (ret <= 0) {
1514                 ret = 0;
1515                 if (!nowait)
1516                         btrfs_drew_write_unlock(&root->snapshot_lock);
1517         } else {
1518                 *write_bytes = min_t(size_t, *write_bytes ,
1519                                      num_bytes - pos + lockstart);
1520         }
1521 out_unlock:
1522         unlock_extent(&inode->io_tree, lockstart, lockend);
1523
1524         return ret;
1525 }
1526
1527 static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1528                               size_t *write_bytes)
1529 {
1530         return check_can_nocow(inode, pos, write_bytes, true);
1531 }
1532
1533 /*
1534  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1535  *
1536  * @pos:         File offset
1537  * @write_bytes: The length to write, will be updated to the nocow writeable
1538  *               range
1539  *
1540  * This function will flush ordered extents in the range to ensure proper
1541  * nocow checks.
1542  *
1543  * Return:
1544  * >0           and update @write_bytes if we can do nocow write
1545  *  0           if we can't do nocow write
1546  * -EAGAIN      if we can't get the needed lock or there are ordered extents
1547  *              for * (nowait == true) case
1548  * <0           if other error happened
1549  *
1550  * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1551  */
1552 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1553                            size_t *write_bytes)
1554 {
1555         return check_can_nocow(inode, pos, write_bytes, false);
1556 }
1557
1558 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1559 {
1560         btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1561 }
1562
1563 static void update_time_for_write(struct inode *inode)
1564 {
1565         struct timespec64 now;
1566
1567         if (IS_NOCMTIME(inode))
1568                 return;
1569
1570         now = current_time(inode);
1571         if (!timespec64_equal(&inode->i_mtime, &now))
1572                 inode->i_mtime = now;
1573
1574         if (!timespec64_equal(&inode->i_ctime, &now))
1575                 inode->i_ctime = now;
1576
1577         if (IS_I_VERSION(inode))
1578                 inode_inc_iversion(inode);
1579 }
1580
1581 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1582                              size_t count)
1583 {
1584         struct file *file = iocb->ki_filp;
1585         struct inode *inode = file_inode(file);
1586         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1587         loff_t pos = iocb->ki_pos;
1588         int ret;
1589         loff_t oldsize;
1590         loff_t start_pos;
1591
1592         if (iocb->ki_flags & IOCB_NOWAIT) {
1593                 size_t nocow_bytes = count;
1594
1595                 /* We will allocate space in case nodatacow is not set, so bail */
1596                 if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes) <= 0)
1597                         return -EAGAIN;
1598                 /*
1599                  * There are holes in the range or parts of the range that must
1600                  * be COWed (shared extents, RO block groups, etc), so just bail
1601                  * out.
1602                  */
1603                 if (nocow_bytes < count)
1604                         return -EAGAIN;
1605         }
1606
1607         current->backing_dev_info = inode_to_bdi(inode);
1608         ret = file_remove_privs(file);
1609         if (ret)
1610                 return ret;
1611
1612         /*
1613          * We reserve space for updating the inode when we reserve space for the
1614          * extent we are going to write, so we will enospc out there.  We don't
1615          * need to start yet another transaction to update the inode as we will
1616          * update the inode when we finish writing whatever data we write.
1617          */
1618         update_time_for_write(inode);
1619
1620         start_pos = round_down(pos, fs_info->sectorsize);
1621         oldsize = i_size_read(inode);
1622         if (start_pos > oldsize) {
1623                 /* Expand hole size to cover write data, preventing empty gap */
1624                 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1625
1626                 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1627                 if (ret) {
1628                         current->backing_dev_info = NULL;
1629                         return ret;
1630                 }
1631         }
1632
1633         return 0;
1634 }
1635
1636 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1637                                                struct iov_iter *i)
1638 {
1639         struct file *file = iocb->ki_filp;
1640         loff_t pos;
1641         struct inode *inode = file_inode(file);
1642         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1643         struct page **pages = NULL;
1644         struct extent_changeset *data_reserved = NULL;
1645         u64 release_bytes = 0;
1646         u64 lockstart;
1647         u64 lockend;
1648         size_t num_written = 0;
1649         int nrptrs;
1650         ssize_t ret;
1651         bool only_release_metadata = false;
1652         bool force_page_uptodate = false;
1653         loff_t old_isize = i_size_read(inode);
1654         unsigned int ilock_flags = 0;
1655
1656         if (iocb->ki_flags & IOCB_NOWAIT)
1657                 ilock_flags |= BTRFS_ILOCK_TRY;
1658
1659         ret = btrfs_inode_lock(inode, ilock_flags);
1660         if (ret < 0)
1661                 return ret;
1662
1663         ret = generic_write_checks(iocb, i);
1664         if (ret <= 0)
1665                 goto out;
1666
1667         ret = btrfs_write_check(iocb, i, ret);
1668         if (ret < 0)
1669                 goto out;
1670
1671         pos = iocb->ki_pos;
1672         nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1673                         PAGE_SIZE / (sizeof(struct page *)));
1674         nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1675         nrptrs = max(nrptrs, 8);
1676         pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1677         if (!pages) {
1678                 ret = -ENOMEM;
1679                 goto out;
1680         }
1681
1682         while (iov_iter_count(i) > 0) {
1683                 struct extent_state *cached_state = NULL;
1684                 size_t offset = offset_in_page(pos);
1685                 size_t sector_offset;
1686                 size_t write_bytes = min(iov_iter_count(i),
1687                                          nrptrs * (size_t)PAGE_SIZE -
1688                                          offset);
1689                 size_t num_pages;
1690                 size_t reserve_bytes;
1691                 size_t dirty_pages;
1692                 size_t copied;
1693                 size_t dirty_sectors;
1694                 size_t num_sectors;
1695                 int extents_locked;
1696
1697                 /*
1698                  * Fault pages before locking them in prepare_pages
1699                  * to avoid recursive lock
1700                  */
1701                 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1702                         ret = -EFAULT;
1703                         break;
1704                 }
1705
1706                 only_release_metadata = false;
1707                 sector_offset = pos & (fs_info->sectorsize - 1);
1708
1709                 extent_changeset_release(data_reserved);
1710                 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1711                                                   &data_reserved, pos,
1712                                                   write_bytes);
1713                 if (ret < 0) {
1714                         /*
1715                          * If we don't have to COW at the offset, reserve
1716                          * metadata only. write_bytes may get smaller than
1717                          * requested here.
1718                          */
1719                         if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1720                                                    &write_bytes) > 0)
1721                                 only_release_metadata = true;
1722                         else
1723                                 break;
1724                 }
1725
1726                 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1727                 WARN_ON(num_pages > nrptrs);
1728                 reserve_bytes = round_up(write_bytes + sector_offset,
1729                                          fs_info->sectorsize);
1730                 WARN_ON(reserve_bytes == 0);
1731                 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1732                                 reserve_bytes);
1733                 if (ret) {
1734                         if (!only_release_metadata)
1735                                 btrfs_free_reserved_data_space(BTRFS_I(inode),
1736                                                 data_reserved, pos,
1737                                                 write_bytes);
1738                         else
1739                                 btrfs_check_nocow_unlock(BTRFS_I(inode));
1740                         break;
1741                 }
1742
1743                 release_bytes = reserve_bytes;
1744 again:
1745                 /*
1746                  * This is going to setup the pages array with the number of
1747                  * pages we want, so we don't really need to worry about the
1748                  * contents of pages from loop to loop
1749                  */
1750                 ret = prepare_pages(inode, pages, num_pages,
1751                                     pos, write_bytes,
1752                                     force_page_uptodate);
1753                 if (ret) {
1754                         btrfs_delalloc_release_extents(BTRFS_I(inode),
1755                                                        reserve_bytes);
1756                         break;
1757                 }
1758
1759                 extents_locked = lock_and_cleanup_extent_if_need(
1760                                 BTRFS_I(inode), pages,
1761                                 num_pages, pos, write_bytes, &lockstart,
1762                                 &lockend, &cached_state);
1763                 if (extents_locked < 0) {
1764                         if (extents_locked == -EAGAIN)
1765                                 goto again;
1766                         btrfs_delalloc_release_extents(BTRFS_I(inode),
1767                                                        reserve_bytes);
1768                         ret = extents_locked;
1769                         break;
1770                 }
1771
1772                 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1773
1774                 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1775                 dirty_sectors = round_up(copied + sector_offset,
1776                                         fs_info->sectorsize);
1777                 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1778
1779                 /*
1780                  * if we have trouble faulting in the pages, fall
1781                  * back to one page at a time
1782                  */
1783                 if (copied < write_bytes)
1784                         nrptrs = 1;
1785
1786                 if (copied == 0) {
1787                         force_page_uptodate = true;
1788                         dirty_sectors = 0;
1789                         dirty_pages = 0;
1790                 } else {
1791                         force_page_uptodate = false;
1792                         dirty_pages = DIV_ROUND_UP(copied + offset,
1793                                                    PAGE_SIZE);
1794                 }
1795
1796                 if (num_sectors > dirty_sectors) {
1797                         /* release everything except the sectors we dirtied */
1798                         release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1799                         if (only_release_metadata) {
1800                                 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1801                                                         release_bytes, true);
1802                         } else {
1803                                 u64 __pos;
1804
1805                                 __pos = round_down(pos,
1806                                                    fs_info->sectorsize) +
1807                                         (dirty_pages << PAGE_SHIFT);
1808                                 btrfs_delalloc_release_space(BTRFS_I(inode),
1809                                                 data_reserved, __pos,
1810                                                 release_bytes, true);
1811                         }
1812                 }
1813
1814                 release_bytes = round_up(copied + sector_offset,
1815                                         fs_info->sectorsize);
1816
1817                 ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1818                                         dirty_pages, pos, copied,
1819                                         &cached_state, only_release_metadata);
1820
1821                 /*
1822                  * If we have not locked the extent range, because the range's
1823                  * start offset is >= i_size, we might still have a non-NULL
1824                  * cached extent state, acquired while marking the extent range
1825                  * as delalloc through btrfs_dirty_pages(). Therefore free any
1826                  * possible cached extent state to avoid a memory leak.
1827                  */
1828                 if (extents_locked)
1829                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1830                                              lockstart, lockend, &cached_state);
1831                 else
1832                         free_extent_state(cached_state);
1833
1834                 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1835                 if (ret) {
1836                         btrfs_drop_pages(pages, num_pages);
1837                         break;
1838                 }
1839
1840                 release_bytes = 0;
1841                 if (only_release_metadata)
1842                         btrfs_check_nocow_unlock(BTRFS_I(inode));
1843
1844                 btrfs_drop_pages(pages, num_pages);
1845
1846                 cond_resched();
1847
1848                 balance_dirty_pages_ratelimited(inode->i_mapping);
1849
1850                 pos += copied;
1851                 num_written += copied;
1852         }
1853
1854         kfree(pages);
1855
1856         if (release_bytes) {
1857                 if (only_release_metadata) {
1858                         btrfs_check_nocow_unlock(BTRFS_I(inode));
1859                         btrfs_delalloc_release_metadata(BTRFS_I(inode),
1860                                         release_bytes, true);
1861                 } else {
1862                         btrfs_delalloc_release_space(BTRFS_I(inode),
1863                                         data_reserved,
1864                                         round_down(pos, fs_info->sectorsize),
1865                                         release_bytes, true);
1866                 }
1867         }
1868
1869         extent_changeset_free(data_reserved);
1870         if (num_written > 0) {
1871                 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1872                 iocb->ki_pos += num_written;
1873         }
1874 out:
1875         btrfs_inode_unlock(inode, ilock_flags);
1876         return num_written ? num_written : ret;
1877 }
1878
1879 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1880                                const struct iov_iter *iter, loff_t offset)
1881 {
1882         const u32 blocksize_mask = fs_info->sectorsize - 1;
1883
1884         if (offset & blocksize_mask)
1885                 return -EINVAL;
1886
1887         if (iov_iter_alignment(iter) & blocksize_mask)
1888                 return -EINVAL;
1889
1890         return 0;
1891 }
1892
1893 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1894 {
1895         struct file *file = iocb->ki_filp;
1896         struct inode *inode = file_inode(file);
1897         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1898         loff_t pos;
1899         ssize_t written = 0;
1900         ssize_t written_buffered;
1901         loff_t endbyte;
1902         ssize_t err;
1903         unsigned int ilock_flags = 0;
1904         struct iomap_dio *dio = NULL;
1905
1906         if (iocb->ki_flags & IOCB_NOWAIT)
1907                 ilock_flags |= BTRFS_ILOCK_TRY;
1908
1909         /* If the write DIO is within EOF, use a shared lock */
1910         if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1911                 ilock_flags |= BTRFS_ILOCK_SHARED;
1912
1913 relock:
1914         err = btrfs_inode_lock(inode, ilock_flags);
1915         if (err < 0)
1916                 return err;
1917
1918         err = generic_write_checks(iocb, from);
1919         if (err <= 0) {
1920                 btrfs_inode_unlock(inode, ilock_flags);
1921                 return err;
1922         }
1923
1924         err = btrfs_write_check(iocb, from, err);
1925         if (err < 0) {
1926                 btrfs_inode_unlock(inode, ilock_flags);
1927                 goto out;
1928         }
1929
1930         pos = iocb->ki_pos;
1931         /*
1932          * Re-check since file size may have changed just before taking the
1933          * lock or pos may have changed because of O_APPEND in generic_write_check()
1934          */
1935         if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1936             pos + iov_iter_count(from) > i_size_read(inode)) {
1937                 btrfs_inode_unlock(inode, ilock_flags);
1938                 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1939                 goto relock;
1940         }
1941
1942         if (check_direct_IO(fs_info, from, pos)) {
1943                 btrfs_inode_unlock(inode, ilock_flags);
1944                 goto buffered;
1945         }
1946
1947         dio = __iomap_dio_rw(iocb, from, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
1948                              0);
1949
1950         btrfs_inode_unlock(inode, ilock_flags);
1951
1952         if (IS_ERR_OR_NULL(dio)) {
1953                 err = PTR_ERR_OR_ZERO(dio);
1954                 if (err < 0 && err != -ENOTBLK)
1955                         goto out;
1956         } else {
1957                 written = iomap_dio_complete(dio);
1958         }
1959
1960         if (written < 0 || !iov_iter_count(from)) {
1961                 err = written;
1962                 goto out;
1963         }
1964
1965 buffered:
1966         pos = iocb->ki_pos;
1967         written_buffered = btrfs_buffered_write(iocb, from);
1968         if (written_buffered < 0) {
1969                 err = written_buffered;
1970                 goto out;
1971         }
1972         /*
1973          * Ensure all data is persisted. We want the next direct IO read to be
1974          * able to read what was just written.
1975          */
1976         endbyte = pos + written_buffered - 1;
1977         err = btrfs_fdatawrite_range(inode, pos, endbyte);
1978         if (err)
1979                 goto out;
1980         err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1981         if (err)
1982                 goto out;
1983         written += written_buffered;
1984         iocb->ki_pos = pos + written_buffered;
1985         invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1986                                  endbyte >> PAGE_SHIFT);
1987 out:
1988         return written ? written : err;
1989 }
1990
1991 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1992                                     struct iov_iter *from)
1993 {
1994         struct file *file = iocb->ki_filp;
1995         struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1996         ssize_t num_written = 0;
1997         const bool sync = iocb->ki_flags & IOCB_DSYNC;
1998
1999         /*
2000          * If the fs flips readonly due to some impossible error, although we
2001          * have opened a file as writable, we have to stop this write operation
2002          * to ensure consistency.
2003          */
2004         if (test_bit(BTRFS_FS_STATE_ERROR, &inode->root->fs_info->fs_state))
2005                 return -EROFS;
2006
2007         if (!(iocb->ki_flags & IOCB_DIRECT) &&
2008             (iocb->ki_flags & IOCB_NOWAIT))
2009                 return -EOPNOTSUPP;
2010
2011         if (sync)
2012                 atomic_inc(&inode->sync_writers);
2013
2014         if (iocb->ki_flags & IOCB_DIRECT)
2015                 num_written = btrfs_direct_write(iocb, from);
2016         else
2017                 num_written = btrfs_buffered_write(iocb, from);
2018
2019         btrfs_set_inode_last_sub_trans(inode);
2020
2021         if (num_written > 0)
2022                 num_written = generic_write_sync(iocb, num_written);
2023
2024         if (sync)
2025                 atomic_dec(&inode->sync_writers);
2026
2027         current->backing_dev_info = NULL;
2028         return num_written;
2029 }
2030
2031 int btrfs_release_file(struct inode *inode, struct file *filp)
2032 {
2033         struct btrfs_file_private *private = filp->private_data;
2034
2035         if (private && private->filldir_buf)
2036                 kfree(private->filldir_buf);
2037         kfree(private);
2038         filp->private_data = NULL;
2039
2040         /*
2041          * Set by setattr when we are about to truncate a file from a non-zero
2042          * size to a zero size.  This tries to flush down new bytes that may
2043          * have been written if the application were using truncate to replace
2044          * a file in place.
2045          */
2046         if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
2047                                &BTRFS_I(inode)->runtime_flags))
2048                         filemap_flush(inode->i_mapping);
2049         return 0;
2050 }
2051
2052 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2053 {
2054         int ret;
2055         struct blk_plug plug;
2056
2057         /*
2058          * This is only called in fsync, which would do synchronous writes, so
2059          * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2060          * multiple disks using raid profile, a large IO can be split to
2061          * several segments of stripe length (currently 64K).
2062          */
2063         blk_start_plug(&plug);
2064         atomic_inc(&BTRFS_I(inode)->sync_writers);
2065         ret = btrfs_fdatawrite_range(inode, start, end);
2066         atomic_dec(&BTRFS_I(inode)->sync_writers);
2067         blk_finish_plug(&plug);
2068
2069         return ret;
2070 }
2071
2072 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
2073 {
2074         struct btrfs_inode *inode = BTRFS_I(ctx->inode);
2075         struct btrfs_fs_info *fs_info = inode->root->fs_info;
2076
2077         if (btrfs_inode_in_log(inode, fs_info->generation) &&
2078             list_empty(&ctx->ordered_extents))
2079                 return true;
2080
2081         /*
2082          * If we are doing a fast fsync we can not bail out if the inode's
2083          * last_trans is <= then the last committed transaction, because we only
2084          * update the last_trans of the inode during ordered extent completion,
2085          * and for a fast fsync we don't wait for that, we only wait for the
2086          * writeback to complete.
2087          */
2088         if (inode->last_trans <= fs_info->last_trans_committed &&
2089             (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
2090              list_empty(&ctx->ordered_extents)))
2091                 return true;
2092
2093         return false;
2094 }
2095
2096 /*
2097  * fsync call for both files and directories.  This logs the inode into
2098  * the tree log instead of forcing full commits whenever possible.
2099  *
2100  * It needs to call filemap_fdatawait so that all ordered extent updates are
2101  * in the metadata btree are up to date for copying to the log.
2102  *
2103  * It drops the inode mutex before doing the tree log commit.  This is an
2104  * important optimization for directories because holding the mutex prevents
2105  * new operations on the dir while we write to disk.
2106  */
2107 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2108 {
2109         struct dentry *dentry = file_dentry(file);
2110         struct inode *inode = d_inode(dentry);
2111         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2112         struct btrfs_root *root = BTRFS_I(inode)->root;
2113         struct btrfs_trans_handle *trans;
2114         struct btrfs_log_ctx ctx;
2115         int ret = 0, err;
2116         u64 len;
2117         bool full_sync;
2118
2119         trace_btrfs_sync_file(file, datasync);
2120
2121         btrfs_init_log_ctx(&ctx, inode);
2122
2123         /*
2124          * Always set the range to a full range, otherwise we can get into
2125          * several problems, from missing file extent items to represent holes
2126          * when not using the NO_HOLES feature, to log tree corruption due to
2127          * races between hole detection during logging and completion of ordered
2128          * extents outside the range, to missing checksums due to ordered extents
2129          * for which we flushed only a subset of their pages.
2130          */
2131         start = 0;
2132         end = LLONG_MAX;
2133         len = (u64)LLONG_MAX + 1;
2134
2135         /*
2136          * We write the dirty pages in the range and wait until they complete
2137          * out of the ->i_mutex. If so, we can flush the dirty pages by
2138          * multi-task, and make the performance up.  See
2139          * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2140          */
2141         ret = start_ordered_ops(inode, start, end);
2142         if (ret)
2143                 goto out;
2144
2145         btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2146
2147         atomic_inc(&root->log_batch);
2148
2149         /*
2150          * Always check for the full sync flag while holding the inode's lock,
2151          * to avoid races with other tasks. The flag must be either set all the
2152          * time during logging or always off all the time while logging.
2153          */
2154         full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2155                              &BTRFS_I(inode)->runtime_flags);
2156
2157         /*
2158          * Before we acquired the inode's lock and the mmap lock, someone may
2159          * have dirtied more pages in the target range. We need to make sure
2160          * that writeback for any such pages does not start while we are logging
2161          * the inode, because if it does, any of the following might happen when
2162          * we are not doing a full inode sync:
2163          *
2164          * 1) We log an extent after its writeback finishes but before its
2165          *    checksums are added to the csum tree, leading to -EIO errors
2166          *    when attempting to read the extent after a log replay.
2167          *
2168          * 2) We can end up logging an extent before its writeback finishes.
2169          *    Therefore after the log replay we will have a file extent item
2170          *    pointing to an unwritten extent (and no data checksums as well).
2171          *
2172          * So trigger writeback for any eventual new dirty pages and then we
2173          * wait for all ordered extents to complete below.
2174          */
2175         ret = start_ordered_ops(inode, start, end);
2176         if (ret) {
2177                 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2178                 goto out;
2179         }
2180
2181         /*
2182          * We have to do this here to avoid the priority inversion of waiting on
2183          * IO of a lower priority task while holding a transaction open.
2184          *
2185          * For a full fsync we wait for the ordered extents to complete while
2186          * for a fast fsync we wait just for writeback to complete, and then
2187          * attach the ordered extents to the transaction so that a transaction
2188          * commit waits for their completion, to avoid data loss if we fsync,
2189          * the current transaction commits before the ordered extents complete
2190          * and a power failure happens right after that.
2191          *
2192          * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
2193          * logical address recorded in the ordered extent may change. We need
2194          * to wait for the IO to stabilize the logical address.
2195          */
2196         if (full_sync || btrfs_is_zoned(fs_info)) {
2197                 ret = btrfs_wait_ordered_range(inode, start, len);
2198         } else {
2199                 /*
2200                  * Get our ordered extents as soon as possible to avoid doing
2201                  * checksum lookups in the csum tree, and use instead the
2202                  * checksums attached to the ordered extents.
2203                  */
2204                 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2205                                                       &ctx.ordered_extents);
2206                 ret = filemap_fdatawait_range(inode->i_mapping, start, end);
2207         }
2208
2209         if (ret)
2210                 goto out_release_extents;
2211
2212         atomic_inc(&root->log_batch);
2213
2214         smp_mb();
2215         if (skip_inode_logging(&ctx)) {
2216                 /*
2217                  * We've had everything committed since the last time we were
2218                  * modified so clear this flag in case it was set for whatever
2219                  * reason, it's no longer relevant.
2220                  */
2221                 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2222                           &BTRFS_I(inode)->runtime_flags);
2223                 /*
2224                  * An ordered extent might have started before and completed
2225                  * already with io errors, in which case the inode was not
2226                  * updated and we end up here. So check the inode's mapping
2227                  * for any errors that might have happened since we last
2228                  * checked called fsync.
2229                  */
2230                 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2231                 goto out_release_extents;
2232         }
2233
2234         /*
2235          * We use start here because we will need to wait on the IO to complete
2236          * in btrfs_sync_log, which could require joining a transaction (for
2237          * example checking cross references in the nocow path).  If we use join
2238          * here we could get into a situation where we're waiting on IO to
2239          * happen that is blocked on a transaction trying to commit.  With start
2240          * we inc the extwriter counter, so we wait for all extwriters to exit
2241          * before we start blocking joiners.  This comment is to keep somebody
2242          * from thinking they are super smart and changing this to
2243          * btrfs_join_transaction *cough*Josef*cough*.
2244          */
2245         trans = btrfs_start_transaction(root, 0);
2246         if (IS_ERR(trans)) {
2247                 ret = PTR_ERR(trans);
2248                 goto out_release_extents;
2249         }
2250         trans->in_fsync = true;
2251
2252         ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2253         btrfs_release_log_ctx_extents(&ctx);
2254         if (ret < 0) {
2255                 /* Fallthrough and commit/free transaction. */
2256                 ret = 1;
2257         }
2258
2259         /* we've logged all the items and now have a consistent
2260          * version of the file in the log.  It is possible that
2261          * someone will come in and modify the file, but that's
2262          * fine because the log is consistent on disk, and we
2263          * have references to all of the file's extents
2264          *
2265          * It is possible that someone will come in and log the
2266          * file again, but that will end up using the synchronization
2267          * inside btrfs_sync_log to keep things safe.
2268          */
2269         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2270
2271         if (ret != BTRFS_NO_LOG_SYNC) {
2272                 if (!ret) {
2273                         ret = btrfs_sync_log(trans, root, &ctx);
2274                         if (!ret) {
2275                                 ret = btrfs_end_transaction(trans);
2276                                 goto out;
2277                         }
2278                 }
2279                 if (!full_sync) {
2280                         ret = btrfs_wait_ordered_range(inode, start, len);
2281                         if (ret) {
2282                                 btrfs_end_transaction(trans);
2283                                 goto out;
2284                         }
2285                 }
2286                 ret = btrfs_commit_transaction(trans);
2287         } else {
2288                 ret = btrfs_end_transaction(trans);
2289         }
2290 out:
2291         ASSERT(list_empty(&ctx.list));
2292         err = file_check_and_advance_wb_err(file);
2293         if (!ret)
2294                 ret = err;
2295         return ret > 0 ? -EIO : ret;
2296
2297 out_release_extents:
2298         btrfs_release_log_ctx_extents(&ctx);
2299         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2300         goto out;
2301 }
2302
2303 static const struct vm_operations_struct btrfs_file_vm_ops = {
2304         .fault          = filemap_fault,
2305         .map_pages      = filemap_map_pages,
2306         .page_mkwrite   = btrfs_page_mkwrite,
2307 };
2308
2309 static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
2310 {
2311         struct address_space *mapping = filp->f_mapping;
2312
2313         if (!mapping->a_ops->readpage)
2314                 return -ENOEXEC;
2315
2316         file_accessed(filp);
2317         vma->vm_ops = &btrfs_file_vm_ops;
2318
2319         return 0;
2320 }
2321
2322 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2323                           int slot, u64 start, u64 end)
2324 {
2325         struct btrfs_file_extent_item *fi;
2326         struct btrfs_key key;
2327
2328         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2329                 return 0;
2330
2331         btrfs_item_key_to_cpu(leaf, &key, slot);
2332         if (key.objectid != btrfs_ino(inode) ||
2333             key.type != BTRFS_EXTENT_DATA_KEY)
2334                 return 0;
2335
2336         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2337
2338         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2339                 return 0;
2340
2341         if (btrfs_file_extent_disk_bytenr(leaf, fi))
2342                 return 0;
2343
2344         if (key.offset == end)
2345                 return 1;
2346         if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2347                 return 1;
2348         return 0;
2349 }
2350
2351 static int fill_holes(struct btrfs_trans_handle *trans,
2352                 struct btrfs_inode *inode,
2353                 struct btrfs_path *path, u64 offset, u64 end)
2354 {
2355         struct btrfs_fs_info *fs_info = trans->fs_info;
2356         struct btrfs_root *root = inode->root;
2357         struct extent_buffer *leaf;
2358         struct btrfs_file_extent_item *fi;
2359         struct extent_map *hole_em;
2360         struct extent_map_tree *em_tree = &inode->extent_tree;
2361         struct btrfs_key key;
2362         int ret;
2363
2364         if (btrfs_fs_incompat(fs_info, NO_HOLES))
2365                 goto out;
2366
2367         key.objectid = btrfs_ino(inode);
2368         key.type = BTRFS_EXTENT_DATA_KEY;
2369         key.offset = offset;
2370
2371         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2372         if (ret <= 0) {
2373                 /*
2374                  * We should have dropped this offset, so if we find it then
2375                  * something has gone horribly wrong.
2376                  */
2377                 if (ret == 0)
2378                         ret = -EINVAL;
2379                 return ret;
2380         }
2381
2382         leaf = path->nodes[0];
2383         if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2384                 u64 num_bytes;
2385
2386                 path->slots[0]--;
2387                 fi = btrfs_item_ptr(leaf, path->slots[0],
2388                                     struct btrfs_file_extent_item);
2389                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2390                         end - offset;
2391                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2392                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2393                 btrfs_set_file_extent_offset(leaf, fi, 0);
2394                 btrfs_mark_buffer_dirty(leaf);
2395                 goto out;
2396         }
2397
2398         if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2399                 u64 num_bytes;
2400
2401                 key.offset = offset;
2402                 btrfs_set_item_key_safe(fs_info, path, &key);
2403                 fi = btrfs_item_ptr(leaf, path->slots[0],
2404                                     struct btrfs_file_extent_item);
2405                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2406                         offset;
2407                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2408                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2409                 btrfs_set_file_extent_offset(leaf, fi, 0);
2410                 btrfs_mark_buffer_dirty(leaf);
2411                 goto out;
2412         }
2413         btrfs_release_path(path);
2414
2415         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2416                         offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2417         if (ret)
2418                 return ret;
2419
2420 out:
2421         btrfs_release_path(path);
2422
2423         hole_em = alloc_extent_map();
2424         if (!hole_em) {
2425                 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2426                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2427         } else {
2428                 hole_em->start = offset;
2429                 hole_em->len = end - offset;
2430                 hole_em->ram_bytes = hole_em->len;
2431                 hole_em->orig_start = offset;
2432
2433                 hole_em->block_start = EXTENT_MAP_HOLE;
2434                 hole_em->block_len = 0;
2435                 hole_em->orig_block_len = 0;
2436                 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2437                 hole_em->generation = trans->transid;
2438
2439                 do {
2440                         btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2441                         write_lock(&em_tree->lock);
2442                         ret = add_extent_mapping(em_tree, hole_em, 1);
2443                         write_unlock(&em_tree->lock);
2444                 } while (ret == -EEXIST);
2445                 free_extent_map(hole_em);
2446                 if (ret)
2447                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2448                                         &inode->runtime_flags);
2449         }
2450
2451         return 0;
2452 }
2453
2454 /*
2455  * Find a hole extent on given inode and change start/len to the end of hole
2456  * extent.(hole/vacuum extent whose em->start <= start &&
2457  *         em->start + em->len > start)
2458  * When a hole extent is found, return 1 and modify start/len.
2459  */
2460 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2461 {
2462         struct btrfs_fs_info *fs_info = inode->root->fs_info;
2463         struct extent_map *em;
2464         int ret = 0;
2465
2466         em = btrfs_get_extent(inode, NULL, 0,
2467                               round_down(*start, fs_info->sectorsize),
2468                               round_up(*len, fs_info->sectorsize));
2469         if (IS_ERR(em))
2470                 return PTR_ERR(em);
2471
2472         /* Hole or vacuum extent(only exists in no-hole mode) */
2473         if (em->block_start == EXTENT_MAP_HOLE) {
2474                 ret = 1;
2475                 *len = em->start + em->len > *start + *len ?
2476                        0 : *start + *len - em->start - em->len;
2477                 *start = em->start + em->len;
2478         }
2479         free_extent_map(em);
2480         return ret;
2481 }
2482
2483 static int btrfs_punch_hole_lock_range(struct inode *inode,
2484                                        const u64 lockstart,
2485                                        const u64 lockend,
2486                                        struct extent_state **cached_state)
2487 {
2488         /*
2489          * For subpage case, if the range is not at page boundary, we could
2490          * have pages at the leading/tailing part of the range.
2491          * This could lead to dead loop since filemap_range_has_page()
2492          * will always return true.
2493          * So here we need to do extra page alignment for
2494          * filemap_range_has_page().
2495          */
2496         const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2497         const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2498
2499         while (1) {
2500                 struct btrfs_ordered_extent *ordered;
2501                 int ret;
2502
2503                 truncate_pagecache_range(inode, lockstart, lockend);
2504
2505                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2506                                  cached_state);
2507                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
2508                                                             lockend);
2509
2510                 /*
2511                  * We need to make sure we have no ordered extents in this range
2512                  * and nobody raced in and read a page in this range, if we did
2513                  * we need to try again.
2514                  */
2515                 if ((!ordered ||
2516                     (ordered->file_offset + ordered->num_bytes <= lockstart ||
2517                      ordered->file_offset > lockend)) &&
2518                      !filemap_range_has_page(inode->i_mapping,
2519                                              page_lockstart, page_lockend)) {
2520                         if (ordered)
2521                                 btrfs_put_ordered_extent(ordered);
2522                         break;
2523                 }
2524                 if (ordered)
2525                         btrfs_put_ordered_extent(ordered);
2526                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2527                                      lockend, cached_state);
2528                 ret = btrfs_wait_ordered_range(inode, lockstart,
2529                                                lockend - lockstart + 1);
2530                 if (ret)
2531                         return ret;
2532         }
2533         return 0;
2534 }
2535
2536 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2537                                      struct btrfs_inode *inode,
2538                                      struct btrfs_path *path,
2539                                      struct btrfs_replace_extent_info *extent_info,
2540                                      const u64 replace_len,
2541                                      const u64 bytes_to_drop)
2542 {
2543         struct btrfs_fs_info *fs_info = trans->fs_info;
2544         struct btrfs_root *root = inode->root;
2545         struct btrfs_file_extent_item *extent;
2546         struct extent_buffer *leaf;
2547         struct btrfs_key key;
2548         int slot;
2549         struct btrfs_ref ref = { 0 };
2550         int ret;
2551
2552         if (replace_len == 0)
2553                 return 0;
2554
2555         if (extent_info->disk_offset == 0 &&
2556             btrfs_fs_incompat(fs_info, NO_HOLES)) {
2557                 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2558                 return 0;
2559         }
2560
2561         key.objectid = btrfs_ino(inode);
2562         key.type = BTRFS_EXTENT_DATA_KEY;
2563         key.offset = extent_info->file_offset;
2564         ret = btrfs_insert_empty_item(trans, root, path, &key,
2565                                       sizeof(struct btrfs_file_extent_item));
2566         if (ret)
2567                 return ret;
2568         leaf = path->nodes[0];
2569         slot = path->slots[0];
2570         write_extent_buffer(leaf, extent_info->extent_buf,
2571                             btrfs_item_ptr_offset(leaf, slot),
2572                             sizeof(struct btrfs_file_extent_item));
2573         extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2574         ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2575         btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2576         btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2577         if (extent_info->is_new_extent)
2578                 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2579         btrfs_mark_buffer_dirty(leaf);
2580         btrfs_release_path(path);
2581
2582         ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2583                                                 replace_len);
2584         if (ret)
2585                 return ret;
2586
2587         /* If it's a hole, nothing more needs to be done. */
2588         if (extent_info->disk_offset == 0) {
2589                 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2590                 return 0;
2591         }
2592
2593         btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2594
2595         if (extent_info->is_new_extent && extent_info->insertions == 0) {
2596                 key.objectid = extent_info->disk_offset;
2597                 key.type = BTRFS_EXTENT_ITEM_KEY;
2598                 key.offset = extent_info->disk_len;
2599                 ret = btrfs_alloc_reserved_file_extent(trans, root,
2600                                                        btrfs_ino(inode),
2601                                                        extent_info->file_offset,
2602                                                        extent_info->qgroup_reserved,
2603                                                        &key);
2604         } else {
2605                 u64 ref_offset;
2606
2607                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2608                                        extent_info->disk_offset,
2609                                        extent_info->disk_len, 0);
2610                 ref_offset = extent_info->file_offset - extent_info->data_offset;
2611                 btrfs_init_data_ref(&ref, root->root_key.objectid,
2612                                     btrfs_ino(inode), ref_offset);
2613                 ret = btrfs_inc_extent_ref(trans, &ref);
2614         }
2615
2616         extent_info->insertions++;
2617
2618         return ret;
2619 }
2620
2621 /*
2622  * The respective range must have been previously locked, as well as the inode.
2623  * The end offset is inclusive (last byte of the range).
2624  * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2625  * the file range with an extent.
2626  * When not punching a hole, we don't want to end up in a state where we dropped
2627  * extents without inserting a new one, so we must abort the transaction to avoid
2628  * a corruption.
2629  */
2630 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2631                                struct btrfs_path *path, const u64 start,
2632                                const u64 end,
2633                                struct btrfs_replace_extent_info *extent_info,
2634                                struct btrfs_trans_handle **trans_out)
2635 {
2636         struct btrfs_drop_extents_args drop_args = { 0 };
2637         struct btrfs_root *root = inode->root;
2638         struct btrfs_fs_info *fs_info = root->fs_info;
2639         u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2640         u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2641         struct btrfs_trans_handle *trans = NULL;
2642         struct btrfs_block_rsv *rsv;
2643         unsigned int rsv_count;
2644         u64 cur_offset;
2645         u64 len = end - start;
2646         int ret = 0;
2647
2648         if (end <= start)
2649                 return -EINVAL;
2650
2651         rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2652         if (!rsv) {
2653                 ret = -ENOMEM;
2654                 goto out;
2655         }
2656         rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2657         rsv->failfast = 1;
2658
2659         /*
2660          * 1 - update the inode
2661          * 1 - removing the extents in the range
2662          * 1 - adding the hole extent if no_holes isn't set or if we are
2663          *     replacing the range with a new extent
2664          */
2665         if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2666                 rsv_count = 3;
2667         else
2668                 rsv_count = 2;
2669
2670         trans = btrfs_start_transaction(root, rsv_count);
2671         if (IS_ERR(trans)) {
2672                 ret = PTR_ERR(trans);
2673                 trans = NULL;
2674                 goto out_free;
2675         }
2676
2677         ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2678                                       min_size, false);
2679         BUG_ON(ret);
2680         trans->block_rsv = rsv;
2681
2682         cur_offset = start;
2683         drop_args.path = path;
2684         drop_args.end = end + 1;
2685         drop_args.drop_cache = true;
2686         while (cur_offset < end) {
2687                 drop_args.start = cur_offset;
2688                 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2689                 /* If we are punching a hole decrement the inode's byte count */
2690                 if (!extent_info)
2691                         btrfs_update_inode_bytes(inode, 0,
2692                                                  drop_args.bytes_found);
2693                 if (ret != -ENOSPC) {
2694                         /*
2695                          * When cloning we want to avoid transaction aborts when
2696                          * nothing was done and we are attempting to clone parts
2697                          * of inline extents, in such cases -EOPNOTSUPP is
2698                          * returned by __btrfs_drop_extents() without having
2699                          * changed anything in the file.
2700                          */
2701                         if (extent_info && !extent_info->is_new_extent &&
2702                             ret && ret != -EOPNOTSUPP)
2703                                 btrfs_abort_transaction(trans, ret);
2704                         break;
2705                 }
2706
2707                 trans->block_rsv = &fs_info->trans_block_rsv;
2708
2709                 if (!extent_info && cur_offset < drop_args.drop_end &&
2710                     cur_offset < ino_size) {
2711                         ret = fill_holes(trans, inode, path, cur_offset,
2712                                          drop_args.drop_end);
2713                         if (ret) {
2714                                 /*
2715                                  * If we failed then we didn't insert our hole
2716                                  * entries for the area we dropped, so now the
2717                                  * fs is corrupted, so we must abort the
2718                                  * transaction.
2719                                  */
2720                                 btrfs_abort_transaction(trans, ret);
2721                                 break;
2722                         }
2723                 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2724                         /*
2725                          * We are past the i_size here, but since we didn't
2726                          * insert holes we need to clear the mapped area so we
2727                          * know to not set disk_i_size in this area until a new
2728                          * file extent is inserted here.
2729                          */
2730                         ret = btrfs_inode_clear_file_extent_range(inode,
2731                                         cur_offset,
2732                                         drop_args.drop_end - cur_offset);
2733                         if (ret) {
2734                                 /*
2735                                  * We couldn't clear our area, so we could
2736                                  * presumably adjust up and corrupt the fs, so
2737                                  * we need to abort.
2738                                  */
2739                                 btrfs_abort_transaction(trans, ret);
2740                                 break;
2741                         }
2742                 }
2743
2744                 if (extent_info &&
2745                     drop_args.drop_end > extent_info->file_offset) {
2746                         u64 replace_len = drop_args.drop_end -
2747                                           extent_info->file_offset;
2748
2749                         ret = btrfs_insert_replace_extent(trans, inode, path,
2750                                         extent_info, replace_len,
2751                                         drop_args.bytes_found);
2752                         if (ret) {
2753                                 btrfs_abort_transaction(trans, ret);
2754                                 break;
2755                         }
2756                         extent_info->data_len -= replace_len;
2757                         extent_info->data_offset += replace_len;
2758                         extent_info->file_offset += replace_len;
2759                 }
2760
2761                 ret = btrfs_update_inode(trans, root, inode);
2762                 if (ret)
2763                         break;
2764
2765                 btrfs_end_transaction(trans);
2766                 btrfs_btree_balance_dirty(fs_info);
2767
2768                 trans = btrfs_start_transaction(root, rsv_count);
2769                 if (IS_ERR(trans)) {
2770                         ret = PTR_ERR(trans);
2771                         trans = NULL;
2772                         break;
2773                 }
2774
2775                 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2776                                               rsv, min_size, false);
2777                 BUG_ON(ret);    /* shouldn't happen */
2778                 trans->block_rsv = rsv;
2779
2780                 cur_offset = drop_args.drop_end;
2781                 len = end - cur_offset;
2782                 if (!extent_info && len) {
2783                         ret = find_first_non_hole(inode, &cur_offset, &len);
2784                         if (unlikely(ret < 0))
2785                                 break;
2786                         if (ret && !len) {
2787                                 ret = 0;
2788                                 break;
2789                         }
2790                 }
2791         }
2792
2793         /*
2794          * If we were cloning, force the next fsync to be a full one since we
2795          * we replaced (or just dropped in the case of cloning holes when
2796          * NO_HOLES is enabled) file extent items and did not setup new extent
2797          * maps for the replacement extents (or holes).
2798          */
2799         if (extent_info && !extent_info->is_new_extent)
2800                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2801
2802         if (ret)
2803                 goto out_trans;
2804
2805         trans->block_rsv = &fs_info->trans_block_rsv;
2806         /*
2807          * If we are using the NO_HOLES feature we might have had already an
2808          * hole that overlaps a part of the region [lockstart, lockend] and
2809          * ends at (or beyond) lockend. Since we have no file extent items to
2810          * represent holes, drop_end can be less than lockend and so we must
2811          * make sure we have an extent map representing the existing hole (the
2812          * call to __btrfs_drop_extents() might have dropped the existing extent
2813          * map representing the existing hole), otherwise the fast fsync path
2814          * will not record the existence of the hole region
2815          * [existing_hole_start, lockend].
2816          */
2817         if (drop_args.drop_end <= end)
2818                 drop_args.drop_end = end + 1;
2819         /*
2820          * Don't insert file hole extent item if it's for a range beyond eof
2821          * (because it's useless) or if it represents a 0 bytes range (when
2822          * cur_offset == drop_end).
2823          */
2824         if (!extent_info && cur_offset < ino_size &&
2825             cur_offset < drop_args.drop_end) {
2826                 ret = fill_holes(trans, inode, path, cur_offset,
2827                                  drop_args.drop_end);
2828                 if (ret) {
2829                         /* Same comment as above. */
2830                         btrfs_abort_transaction(trans, ret);
2831                         goto out_trans;
2832                 }
2833         } else if (!extent_info && cur_offset < drop_args.drop_end) {
2834                 /* See the comment in the loop above for the reasoning here. */
2835                 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2836                                         drop_args.drop_end - cur_offset);
2837                 if (ret) {
2838                         btrfs_abort_transaction(trans, ret);
2839                         goto out_trans;
2840                 }
2841
2842         }
2843         if (extent_info) {
2844                 ret = btrfs_insert_replace_extent(trans, inode, path,
2845                                 extent_info, extent_info->data_len,
2846                                 drop_args.bytes_found);
2847                 if (ret) {
2848                         btrfs_abort_transaction(trans, ret);
2849                         goto out_trans;
2850                 }
2851         }
2852
2853 out_trans:
2854         if (!trans)
2855                 goto out_free;
2856
2857         trans->block_rsv = &fs_info->trans_block_rsv;
2858         if (ret)
2859                 btrfs_end_transaction(trans);
2860         else
2861                 *trans_out = trans;
2862 out_free:
2863         btrfs_free_block_rsv(fs_info, rsv);
2864 out:
2865         return ret;
2866 }
2867
2868 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2869 {
2870         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2871         struct btrfs_root *root = BTRFS_I(inode)->root;
2872         struct extent_state *cached_state = NULL;
2873         struct btrfs_path *path;
2874         struct btrfs_trans_handle *trans = NULL;
2875         u64 lockstart;
2876         u64 lockend;
2877         u64 tail_start;
2878         u64 tail_len;
2879         u64 orig_start = offset;
2880         int ret = 0;
2881         bool same_block;
2882         u64 ino_size;
2883         bool truncated_block = false;
2884         bool updated_inode = false;
2885
2886         ret = btrfs_wait_ordered_range(inode, offset, len);
2887         if (ret)
2888                 return ret;
2889
2890         btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2891         ino_size = round_up(inode->i_size, fs_info->sectorsize);
2892         ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2893         if (ret < 0)
2894                 goto out_only_mutex;
2895         if (ret && !len) {
2896                 /* Already in a large hole */
2897                 ret = 0;
2898                 goto out_only_mutex;
2899         }
2900
2901         lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode)));
2902         lockend = round_down(offset + len,
2903                              btrfs_inode_sectorsize(BTRFS_I(inode))) - 1;
2904         same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2905                 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2906         /*
2907          * We needn't truncate any block which is beyond the end of the file
2908          * because we are sure there is no data there.
2909          */
2910         /*
2911          * Only do this if we are in the same block and we aren't doing the
2912          * entire block.
2913          */
2914         if (same_block && len < fs_info->sectorsize) {
2915                 if (offset < ino_size) {
2916                         truncated_block = true;
2917                         ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2918                                                    0);
2919                 } else {
2920                         ret = 0;
2921                 }
2922                 goto out_only_mutex;
2923         }
2924
2925         /* zero back part of the first block */
2926         if (offset < ino_size) {
2927                 truncated_block = true;
2928                 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2929                 if (ret) {
2930                         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2931                         return ret;
2932                 }
2933         }
2934
2935         /* Check the aligned pages after the first unaligned page,
2936          * if offset != orig_start, which means the first unaligned page
2937          * including several following pages are already in holes,
2938          * the extra check can be skipped */
2939         if (offset == orig_start) {
2940                 /* after truncate page, check hole again */
2941                 len = offset + len - lockstart;
2942                 offset = lockstart;
2943                 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2944                 if (ret < 0)
2945                         goto out_only_mutex;
2946                 if (ret && !len) {
2947                         ret = 0;
2948                         goto out_only_mutex;
2949                 }
2950                 lockstart = offset;
2951         }
2952
2953         /* Check the tail unaligned part is in a hole */
2954         tail_start = lockend + 1;
2955         tail_len = offset + len - tail_start;
2956         if (tail_len) {
2957                 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2958                 if (unlikely(ret < 0))
2959                         goto out_only_mutex;
2960                 if (!ret) {
2961                         /* zero the front end of the last page */
2962                         if (tail_start + tail_len < ino_size) {
2963                                 truncated_block = true;
2964                                 ret = btrfs_truncate_block(BTRFS_I(inode),
2965                                                         tail_start + tail_len,
2966                                                         0, 1);
2967                                 if (ret)
2968                                         goto out_only_mutex;
2969                         }
2970                 }
2971         }
2972
2973         if (lockend < lockstart) {
2974                 ret = 0;
2975                 goto out_only_mutex;
2976         }
2977
2978         ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2979                                           &cached_state);
2980         if (ret)
2981                 goto out_only_mutex;
2982
2983         path = btrfs_alloc_path();
2984         if (!path) {
2985                 ret = -ENOMEM;
2986                 goto out;
2987         }
2988
2989         ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2990                                          lockend, NULL, &trans);
2991         btrfs_free_path(path);
2992         if (ret)
2993                 goto out;
2994
2995         ASSERT(trans != NULL);
2996         inode_inc_iversion(inode);
2997         inode->i_mtime = inode->i_ctime = current_time(inode);
2998         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2999         updated_inode = true;
3000         btrfs_end_transaction(trans);
3001         btrfs_btree_balance_dirty(fs_info);
3002 out:
3003         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3004                              &cached_state);
3005 out_only_mutex:
3006         if (!updated_inode && truncated_block && !ret) {
3007                 /*
3008                  * If we only end up zeroing part of a page, we still need to
3009                  * update the inode item, so that all the time fields are
3010                  * updated as well as the necessary btrfs inode in memory fields
3011                  * for detecting, at fsync time, if the inode isn't yet in the
3012                  * log tree or it's there but not up to date.
3013                  */
3014                 struct timespec64 now = current_time(inode);
3015
3016                 inode_inc_iversion(inode);
3017                 inode->i_mtime = now;
3018                 inode->i_ctime = now;
3019                 trans = btrfs_start_transaction(root, 1);
3020                 if (IS_ERR(trans)) {
3021                         ret = PTR_ERR(trans);
3022                 } else {
3023                         int ret2;
3024
3025                         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3026                         ret2 = btrfs_end_transaction(trans);
3027                         if (!ret)
3028                                 ret = ret2;
3029                 }
3030         }
3031         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3032         return ret;
3033 }
3034
3035 /* Helper structure to record which range is already reserved */
3036 struct falloc_range {
3037         struct list_head list;
3038         u64 start;
3039         u64 len;
3040 };
3041
3042 /*
3043  * Helper function to add falloc range
3044  *
3045  * Caller should have locked the larger range of extent containing
3046  * [start, len)
3047  */
3048 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3049 {
3050         struct falloc_range *range = NULL;
3051
3052         if (!list_empty(head)) {
3053                 /*
3054                  * As fallocate iterates by bytenr order, we only need to check
3055                  * the last range.
3056                  */
3057                 range = list_last_entry(head, struct falloc_range, list);
3058                 if (range->start + range->len == start) {
3059                         range->len += len;
3060                         return 0;
3061                 }
3062         }
3063
3064         range = kmalloc(sizeof(*range), GFP_KERNEL);
3065         if (!range)
3066                 return -ENOMEM;
3067         range->start = start;
3068         range->len = len;
3069         list_add_tail(&range->list, head);
3070         return 0;
3071 }
3072
3073 static int btrfs_fallocate_update_isize(struct inode *inode,
3074                                         const u64 end,
3075                                         const int mode)
3076 {
3077         struct btrfs_trans_handle *trans;
3078         struct btrfs_root *root = BTRFS_I(inode)->root;
3079         int ret;
3080         int ret2;
3081
3082         if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3083                 return 0;
3084
3085         trans = btrfs_start_transaction(root, 1);
3086         if (IS_ERR(trans))
3087                 return PTR_ERR(trans);
3088
3089         inode->i_ctime = current_time(inode);
3090         i_size_write(inode, end);
3091         btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
3092         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3093         ret2 = btrfs_end_transaction(trans);
3094
3095         return ret ? ret : ret2;
3096 }
3097
3098 enum {
3099         RANGE_BOUNDARY_WRITTEN_EXTENT,
3100         RANGE_BOUNDARY_PREALLOC_EXTENT,
3101         RANGE_BOUNDARY_HOLE,
3102 };
3103
3104 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3105                                                  u64 offset)
3106 {
3107         const u64 sectorsize = btrfs_inode_sectorsize(inode);
3108         struct extent_map *em;
3109         int ret;
3110
3111         offset = round_down(offset, sectorsize);
3112         em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
3113         if (IS_ERR(em))
3114                 return PTR_ERR(em);
3115
3116         if (em->block_start == EXTENT_MAP_HOLE)
3117                 ret = RANGE_BOUNDARY_HOLE;
3118         else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3119                 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3120         else
3121                 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3122
3123         free_extent_map(em);
3124         return ret;
3125 }
3126
3127 static int btrfs_zero_range(struct inode *inode,
3128                             loff_t offset,
3129                             loff_t len,
3130                             const int mode)
3131 {
3132         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3133         struct extent_map *em;
3134         struct extent_changeset *data_reserved = NULL;
3135         int ret;
3136         u64 alloc_hint = 0;
3137         const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode));
3138         u64 alloc_start = round_down(offset, sectorsize);
3139         u64 alloc_end = round_up(offset + len, sectorsize);
3140         u64 bytes_to_reserve = 0;
3141         bool space_reserved = false;
3142
3143         inode_dio_wait(inode);
3144
3145         em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3146                               alloc_end - alloc_start);
3147         if (IS_ERR(em)) {
3148                 ret = PTR_ERR(em);
3149                 goto out;
3150         }
3151
3152         /*
3153          * Avoid hole punching and extent allocation for some cases. More cases
3154          * could be considered, but these are unlikely common and we keep things
3155          * as simple as possible for now. Also, intentionally, if the target
3156          * range contains one or more prealloc extents together with regular
3157          * extents and holes, we drop all the existing extents and allocate a
3158          * new prealloc extent, so that we get a larger contiguous disk extent.
3159          */
3160         if (em->start <= alloc_start &&
3161             test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3162                 const u64 em_end = em->start + em->len;
3163
3164                 if (em_end >= offset + len) {
3165                         /*
3166                          * The whole range is already a prealloc extent,
3167                          * do nothing except updating the inode's i_size if
3168                          * needed.
3169                          */
3170                         free_extent_map(em);
3171                         ret = btrfs_fallocate_update_isize(inode, offset + len,
3172                                                            mode);
3173                         goto out;
3174                 }
3175                 /*
3176                  * Part of the range is already a prealloc extent, so operate
3177                  * only on the remaining part of the range.
3178                  */
3179                 alloc_start = em_end;
3180                 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3181                 len = offset + len - alloc_start;
3182                 offset = alloc_start;
3183                 alloc_hint = em->block_start + em->len;
3184         }
3185         free_extent_map(em);
3186
3187         if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3188             BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3189                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3190                                       sectorsize);
3191                 if (IS_ERR(em)) {
3192                         ret = PTR_ERR(em);
3193                         goto out;
3194                 }
3195
3196                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3197                         free_extent_map(em);
3198                         ret = btrfs_fallocate_update_isize(inode, offset + len,
3199                                                            mode);
3200                         goto out;
3201                 }
3202                 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3203                         free_extent_map(em);
3204                         ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3205                                                    0);
3206                         if (!ret)
3207                                 ret = btrfs_fallocate_update_isize(inode,
3208                                                                    offset + len,
3209                                                                    mode);
3210                         return ret;
3211                 }
3212                 free_extent_map(em);
3213                 alloc_start = round_down(offset, sectorsize);
3214                 alloc_end = alloc_start + sectorsize;
3215                 goto reserve_space;
3216         }
3217
3218         alloc_start = round_up(offset, sectorsize);
3219         alloc_end = round_down(offset + len, sectorsize);
3220
3221         /*
3222          * For unaligned ranges, check the pages at the boundaries, they might
3223          * map to an extent, in which case we need to partially zero them, or
3224          * they might map to a hole, in which case we need our allocation range
3225          * to cover them.
3226          */
3227         if (!IS_ALIGNED(offset, sectorsize)) {
3228                 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3229                                                             offset);
3230                 if (ret < 0)
3231                         goto out;
3232                 if (ret == RANGE_BOUNDARY_HOLE) {
3233                         alloc_start = round_down(offset, sectorsize);
3234                         ret = 0;
3235                 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3236                         ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
3237                         if (ret)
3238                                 goto out;
3239                 } else {
3240                         ret = 0;
3241                 }
3242         }
3243
3244         if (!IS_ALIGNED(offset + len, sectorsize)) {
3245                 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3246                                                             offset + len);
3247                 if (ret < 0)
3248                         goto out;
3249                 if (ret == RANGE_BOUNDARY_HOLE) {
3250                         alloc_end = round_up(offset + len, sectorsize);
3251                         ret = 0;
3252                 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3253                         ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
3254                                                    0, 1);
3255                         if (ret)
3256                                 goto out;
3257                 } else {
3258                         ret = 0;
3259                 }
3260         }
3261
3262 reserve_space:
3263         if (alloc_start < alloc_end) {
3264                 struct extent_state *cached_state = NULL;
3265                 const u64 lockstart = alloc_start;
3266                 const u64 lockend = alloc_end - 1;
3267
3268                 bytes_to_reserve = alloc_end - alloc_start;
3269                 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3270                                                       bytes_to_reserve);
3271                 if (ret < 0)
3272                         goto out;
3273                 space_reserved = true;
3274                 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3275                                                   &cached_state);
3276                 if (ret)
3277                         goto out;
3278                 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3279                                                 alloc_start, bytes_to_reserve);
3280                 if (ret) {
3281                         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3282                                              lockend, &cached_state);
3283                         goto out;
3284                 }
3285                 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3286                                                 alloc_end - alloc_start,
3287                                                 i_blocksize(inode),
3288                                                 offset + len, &alloc_hint);
3289                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3290                                      lockend, &cached_state);
3291                 /* btrfs_prealloc_file_range releases reserved space on error */
3292                 if (ret) {
3293                         space_reserved = false;
3294                         goto out;
3295                 }
3296         }
3297         ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3298  out:
3299         if (ret && space_reserved)
3300                 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3301                                                alloc_start, bytes_to_reserve);
3302         extent_changeset_free(data_reserved);
3303
3304         return ret;
3305 }
3306
3307 static long btrfs_fallocate(struct file *file, int mode,
3308                             loff_t offset, loff_t len)
3309 {
3310         struct inode *inode = file_inode(file);
3311         struct extent_state *cached_state = NULL;
3312         struct extent_changeset *data_reserved = NULL;
3313         struct falloc_range *range;
3314         struct falloc_range *tmp;
3315         struct list_head reserve_list;
3316         u64 cur_offset;
3317         u64 last_byte;
3318         u64 alloc_start;
3319         u64 alloc_end;
3320         u64 alloc_hint = 0;
3321         u64 locked_end;
3322         u64 actual_end = 0;
3323         struct extent_map *em;
3324         int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode));
3325         int ret;
3326
3327         /* Do not allow fallocate in ZONED mode */
3328         if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3329                 return -EOPNOTSUPP;
3330
3331         alloc_start = round_down(offset, blocksize);
3332         alloc_end = round_up(offset + len, blocksize);
3333         cur_offset = alloc_start;
3334
3335         /* Make sure we aren't being give some crap mode */
3336         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3337                      FALLOC_FL_ZERO_RANGE))
3338                 return -EOPNOTSUPP;
3339
3340         if (mode & FALLOC_FL_PUNCH_HOLE)
3341                 return btrfs_punch_hole(inode, offset, len);
3342
3343         /*
3344          * Only trigger disk allocation, don't trigger qgroup reserve
3345          *
3346          * For qgroup space, it will be checked later.
3347          */
3348         if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3349                 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3350                                                       alloc_end - alloc_start);
3351                 if (ret < 0)
3352                         return ret;
3353         }
3354
3355         btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
3356
3357         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3358                 ret = inode_newsize_ok(inode, offset + len);
3359                 if (ret)
3360                         goto out;
3361         }
3362
3363         /*
3364          * TODO: Move these two operations after we have checked
3365          * accurate reserved space, or fallocate can still fail but
3366          * with page truncated or size expanded.
3367          *
3368          * But that's a minor problem and won't do much harm BTW.
3369          */
3370         if (alloc_start > inode->i_size) {
3371                 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3372                                         alloc_start);
3373                 if (ret)
3374                         goto out;
3375         } else if (offset + len > inode->i_size) {
3376                 /*
3377                  * If we are fallocating from the end of the file onward we
3378                  * need to zero out the end of the block if i_size lands in the
3379                  * middle of a block.
3380                  */
3381                 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3382                 if (ret)
3383                         goto out;
3384         }
3385
3386         /*
3387          * wait for ordered IO before we have any locks.  We'll loop again
3388          * below with the locks held.
3389          */
3390         ret = btrfs_wait_ordered_range(inode, alloc_start,
3391                                        alloc_end - alloc_start);
3392         if (ret)
3393                 goto out;
3394
3395         if (mode & FALLOC_FL_ZERO_RANGE) {
3396                 ret = btrfs_zero_range(inode, offset, len, mode);
3397                 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3398                 return ret;
3399         }
3400
3401         locked_end = alloc_end - 1;
3402         while (1) {
3403                 struct btrfs_ordered_extent *ordered;
3404
3405                 /* the extent lock is ordered inside the running
3406                  * transaction
3407                  */
3408                 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3409                                  locked_end, &cached_state);
3410                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
3411                                                             locked_end);
3412
3413                 if (ordered &&
3414                     ordered->file_offset + ordered->num_bytes > alloc_start &&
3415                     ordered->file_offset < alloc_end) {
3416                         btrfs_put_ordered_extent(ordered);
3417                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3418                                              alloc_start, locked_end,
3419                                              &cached_state);
3420                         /*
3421                          * we can't wait on the range with the transaction
3422                          * running or with the extent lock held
3423                          */
3424                         ret = btrfs_wait_ordered_range(inode, alloc_start,
3425                                                        alloc_end - alloc_start);
3426                         if (ret)
3427                                 goto out;
3428                 } else {
3429                         if (ordered)
3430                                 btrfs_put_ordered_extent(ordered);
3431                         break;
3432                 }
3433         }
3434
3435         /* First, check if we exceed the qgroup limit */
3436         INIT_LIST_HEAD(&reserve_list);
3437         while (cur_offset < alloc_end) {
3438                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3439                                       alloc_end - cur_offset);
3440                 if (IS_ERR(em)) {
3441                         ret = PTR_ERR(em);
3442                         break;
3443                 }
3444                 last_byte = min(extent_map_end(em), alloc_end);
3445                 actual_end = min_t(u64, extent_map_end(em), offset + len);
3446                 last_byte = ALIGN(last_byte, blocksize);
3447                 if (em->block_start == EXTENT_MAP_HOLE ||
3448                     (cur_offset >= inode->i_size &&
3449                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3450                         ret = add_falloc_range(&reserve_list, cur_offset,
3451                                                last_byte - cur_offset);
3452                         if (ret < 0) {
3453                                 free_extent_map(em);
3454                                 break;
3455                         }
3456                         ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3457                                         &data_reserved, cur_offset,
3458                                         last_byte - cur_offset);
3459                         if (ret < 0) {
3460                                 cur_offset = last_byte;
3461                                 free_extent_map(em);
3462                                 break;
3463                         }
3464                 } else {
3465                         /*
3466                          * Do not need to reserve unwritten extent for this
3467                          * range, free reserved data space first, otherwise
3468                          * it'll result in false ENOSPC error.
3469                          */
3470                         btrfs_free_reserved_data_space(BTRFS_I(inode),
3471                                 data_reserved, cur_offset,
3472                                 last_byte - cur_offset);
3473                 }
3474                 free_extent_map(em);
3475                 cur_offset = last_byte;
3476         }
3477
3478         /*
3479          * If ret is still 0, means we're OK to fallocate.
3480          * Or just cleanup the list and exit.
3481          */
3482         list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3483                 if (!ret)
3484                         ret = btrfs_prealloc_file_range(inode, mode,
3485                                         range->start,
3486                                         range->len, i_blocksize(inode),
3487                                         offset + len, &alloc_hint);
3488                 else
3489                         btrfs_free_reserved_data_space(BTRFS_I(inode),
3490                                         data_reserved, range->start,
3491                                         range->len);
3492                 list_del(&range->list);
3493                 kfree(range);
3494         }
3495         if (ret < 0)
3496                 goto out_unlock;
3497
3498         /*
3499          * We didn't need to allocate any more space, but we still extended the
3500          * size of the file so we need to update i_size and the inode item.
3501          */
3502         ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3503 out_unlock:
3504         unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3505                              &cached_state);
3506 out:
3507         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3508         /* Let go of our reservation. */
3509         if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3510                 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3511                                 cur_offset, alloc_end - cur_offset);
3512         extent_changeset_free(data_reserved);
3513         return ret;
3514 }
3515
3516 static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset,
3517                                   int whence)
3518 {
3519         struct btrfs_fs_info *fs_info = inode->root->fs_info;
3520         struct extent_map *em = NULL;
3521         struct extent_state *cached_state = NULL;
3522         loff_t i_size = inode->vfs_inode.i_size;
3523         u64 lockstart;
3524         u64 lockend;
3525         u64 start;
3526         u64 len;
3527         int ret = 0;
3528
3529         if (i_size == 0 || offset >= i_size)
3530                 return -ENXIO;
3531
3532         /*
3533          * offset can be negative, in this case we start finding DATA/HOLE from
3534          * the very start of the file.
3535          */
3536         start = max_t(loff_t, 0, offset);
3537
3538         lockstart = round_down(start, fs_info->sectorsize);
3539         lockend = round_up(i_size, fs_info->sectorsize);
3540         if (lockend <= lockstart)
3541                 lockend = lockstart + fs_info->sectorsize;
3542         lockend--;
3543         len = lockend - lockstart + 1;
3544
3545         lock_extent_bits(&inode->io_tree, lockstart, lockend, &cached_state);
3546
3547         while (start < i_size) {
3548                 em = btrfs_get_extent_fiemap(inode, start, len);
3549                 if (IS_ERR(em)) {
3550                         ret = PTR_ERR(em);
3551                         em = NULL;
3552                         break;
3553                 }
3554
3555                 if (whence == SEEK_HOLE &&
3556                     (em->block_start == EXTENT_MAP_HOLE ||
3557                      test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3558                         break;
3559                 else if (whence == SEEK_DATA &&
3560                            (em->block_start != EXTENT_MAP_HOLE &&
3561                             !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3562                         break;
3563
3564                 start = em->start + em->len;
3565                 free_extent_map(em);
3566                 em = NULL;
3567                 cond_resched();
3568         }
3569         free_extent_map(em);
3570         unlock_extent_cached(&inode->io_tree, lockstart, lockend,
3571                              &cached_state);
3572         if (ret) {
3573                 offset = ret;
3574         } else {
3575                 if (whence == SEEK_DATA && start >= i_size)
3576                         offset = -ENXIO;
3577                 else
3578                         offset = min_t(loff_t, start, i_size);
3579         }
3580
3581         return offset;
3582 }
3583
3584 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3585 {
3586         struct inode *inode = file->f_mapping->host;
3587
3588         switch (whence) {
3589         default:
3590                 return generic_file_llseek(file, offset, whence);
3591         case SEEK_DATA:
3592         case SEEK_HOLE:
3593                 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3594                 offset = find_desired_extent(BTRFS_I(inode), offset, whence);
3595                 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3596                 break;
3597         }
3598
3599         if (offset < 0)
3600                 return offset;
3601
3602         return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3603 }
3604
3605 static int btrfs_file_open(struct inode *inode, struct file *filp)
3606 {
3607         filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
3608         return generic_file_open(inode, filp);
3609 }
3610
3611 static int check_direct_read(struct btrfs_fs_info *fs_info,
3612                              const struct iov_iter *iter, loff_t offset)
3613 {
3614         int ret;
3615         int i, seg;
3616
3617         ret = check_direct_IO(fs_info, iter, offset);
3618         if (ret < 0)
3619                 return ret;
3620
3621         if (!iter_is_iovec(iter))
3622                 return 0;
3623
3624         for (seg = 0; seg < iter->nr_segs; seg++)
3625                 for (i = seg + 1; i < iter->nr_segs; i++)
3626                         if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
3627                                 return -EINVAL;
3628         return 0;
3629 }
3630
3631 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3632 {
3633         struct inode *inode = file_inode(iocb->ki_filp);
3634         ssize_t ret;
3635
3636         if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3637                 return 0;
3638
3639         btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3640         ret = iomap_dio_rw(iocb, to, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 0);
3641         btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3642         return ret;
3643 }
3644
3645 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3646 {
3647         ssize_t ret = 0;
3648
3649         if (iocb->ki_flags & IOCB_DIRECT) {
3650                 ret = btrfs_direct_read(iocb, to);
3651                 if (ret < 0 || !iov_iter_count(to) ||
3652                     iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3653                         return ret;
3654         }
3655
3656         return filemap_read(iocb, to, ret);
3657 }
3658
3659 const struct file_operations btrfs_file_operations = {
3660         .llseek         = btrfs_file_llseek,
3661         .read_iter      = btrfs_file_read_iter,
3662         .splice_read    = generic_file_splice_read,
3663         .write_iter     = btrfs_file_write_iter,
3664         .splice_write   = iter_file_splice_write,
3665         .mmap           = btrfs_file_mmap,
3666         .open           = btrfs_file_open,
3667         .release        = btrfs_release_file,
3668         .fsync          = btrfs_sync_file,
3669         .fallocate      = btrfs_fallocate,
3670         .unlocked_ioctl = btrfs_ioctl,
3671 #ifdef CONFIG_COMPAT
3672         .compat_ioctl   = btrfs_compat_ioctl,
3673 #endif
3674         .remap_file_range = btrfs_remap_file_range,
3675 };
3676
3677 void __cold btrfs_auto_defrag_exit(void)
3678 {
3679         kmem_cache_destroy(btrfs_inode_defrag_cachep);
3680 }
3681
3682 int __init btrfs_auto_defrag_init(void)
3683 {
3684         btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3685                                         sizeof(struct inode_defrag), 0,
3686                                         SLAB_MEM_SPREAD,
3687                                         NULL);
3688         if (!btrfs_inode_defrag_cachep)
3689                 return -ENOMEM;
3690
3691         return 0;
3692 }
3693
3694 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3695 {
3696         int ret;
3697
3698         /*
3699          * So with compression we will find and lock a dirty page and clear the
3700          * first one as dirty, setup an async extent, and immediately return
3701          * with the entire range locked but with nobody actually marked with
3702          * writeback.  So we can't just filemap_write_and_wait_range() and
3703          * expect it to work since it will just kick off a thread to do the
3704          * actual work.  So we need to call filemap_fdatawrite_range _again_
3705          * since it will wait on the page lock, which won't be unlocked until
3706          * after the pages have been marked as writeback and so we're good to go
3707          * from there.  We have to do this otherwise we'll miss the ordered
3708          * extents and that results in badness.  Please Josef, do not think you
3709          * know better and pull this out at some point in the future, it is
3710          * right and you are wrong.
3711          */
3712         ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3713         if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3714                              &BTRFS_I(inode)->runtime_flags))
3715                 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3716
3717         return ret;
3718 }