Merge tag 'for-5.16/bdev-size-2021-11-09' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / fs / btrfs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "btrfs_inode.h"
24 #include "print-tree.h"
25 #include "tree-log.h"
26 #include "locking.h"
27 #include "volumes.h"
28 #include "qgroup.h"
29 #include "compression.h"
30 #include "delalloc-space.h"
31 #include "reflink.h"
32 #include "subpage.h"
33
34 static struct kmem_cache *btrfs_inode_defrag_cachep;
35 /*
36  * when auto defrag is enabled we
37  * queue up these defrag structs to remember which
38  * inodes need defragging passes
39  */
40 struct inode_defrag {
41         struct rb_node rb_node;
42         /* objectid */
43         u64 ino;
44         /*
45          * transid where the defrag was added, we search for
46          * extents newer than this
47          */
48         u64 transid;
49
50         /* root objectid */
51         u64 root;
52
53         /* last offset we were able to defrag */
54         u64 last_offset;
55
56         /* if we've wrapped around back to zero once already */
57         int cycled;
58 };
59
60 static int __compare_inode_defrag(struct inode_defrag *defrag1,
61                                   struct inode_defrag *defrag2)
62 {
63         if (defrag1->root > defrag2->root)
64                 return 1;
65         else if (defrag1->root < defrag2->root)
66                 return -1;
67         else if (defrag1->ino > defrag2->ino)
68                 return 1;
69         else if (defrag1->ino < defrag2->ino)
70                 return -1;
71         else
72                 return 0;
73 }
74
75 /* pop a record for an inode into the defrag tree.  The lock
76  * must be held already
77  *
78  * If you're inserting a record for an older transid than an
79  * existing record, the transid already in the tree is lowered
80  *
81  * If an existing record is found the defrag item you
82  * pass in is freed
83  */
84 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
85                                     struct inode_defrag *defrag)
86 {
87         struct btrfs_fs_info *fs_info = inode->root->fs_info;
88         struct inode_defrag *entry;
89         struct rb_node **p;
90         struct rb_node *parent = NULL;
91         int ret;
92
93         p = &fs_info->defrag_inodes.rb_node;
94         while (*p) {
95                 parent = *p;
96                 entry = rb_entry(parent, struct inode_defrag, rb_node);
97
98                 ret = __compare_inode_defrag(defrag, entry);
99                 if (ret < 0)
100                         p = &parent->rb_left;
101                 else if (ret > 0)
102                         p = &parent->rb_right;
103                 else {
104                         /* if we're reinserting an entry for
105                          * an old defrag run, make sure to
106                          * lower the transid of our existing record
107                          */
108                         if (defrag->transid < entry->transid)
109                                 entry->transid = defrag->transid;
110                         if (defrag->last_offset > entry->last_offset)
111                                 entry->last_offset = defrag->last_offset;
112                         return -EEXIST;
113                 }
114         }
115         set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
116         rb_link_node(&defrag->rb_node, parent, p);
117         rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
118         return 0;
119 }
120
121 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
122 {
123         if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
124                 return 0;
125
126         if (btrfs_fs_closing(fs_info))
127                 return 0;
128
129         return 1;
130 }
131
132 /*
133  * insert a defrag record for this inode if auto defrag is
134  * enabled
135  */
136 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
137                            struct btrfs_inode *inode)
138 {
139         struct btrfs_root *root = inode->root;
140         struct btrfs_fs_info *fs_info = root->fs_info;
141         struct inode_defrag *defrag;
142         u64 transid;
143         int ret;
144
145         if (!__need_auto_defrag(fs_info))
146                 return 0;
147
148         if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
149                 return 0;
150
151         if (trans)
152                 transid = trans->transid;
153         else
154                 transid = inode->root->last_trans;
155
156         defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
157         if (!defrag)
158                 return -ENOMEM;
159
160         defrag->ino = btrfs_ino(inode);
161         defrag->transid = transid;
162         defrag->root = root->root_key.objectid;
163
164         spin_lock(&fs_info->defrag_inodes_lock);
165         if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
166                 /*
167                  * If we set IN_DEFRAG flag and evict the inode from memory,
168                  * and then re-read this inode, this new inode doesn't have
169                  * IN_DEFRAG flag. At the case, we may find the existed defrag.
170                  */
171                 ret = __btrfs_add_inode_defrag(inode, defrag);
172                 if (ret)
173                         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
174         } else {
175                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
176         }
177         spin_unlock(&fs_info->defrag_inodes_lock);
178         return 0;
179 }
180
181 /*
182  * Requeue the defrag object. If there is a defrag object that points to
183  * the same inode in the tree, we will merge them together (by
184  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
185  */
186 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
187                                        struct inode_defrag *defrag)
188 {
189         struct btrfs_fs_info *fs_info = inode->root->fs_info;
190         int ret;
191
192         if (!__need_auto_defrag(fs_info))
193                 goto out;
194
195         /*
196          * Here we don't check the IN_DEFRAG flag, because we need merge
197          * them together.
198          */
199         spin_lock(&fs_info->defrag_inodes_lock);
200         ret = __btrfs_add_inode_defrag(inode, defrag);
201         spin_unlock(&fs_info->defrag_inodes_lock);
202         if (ret)
203                 goto out;
204         return;
205 out:
206         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
207 }
208
209 /*
210  * pick the defragable inode that we want, if it doesn't exist, we will get
211  * the next one.
212  */
213 static struct inode_defrag *
214 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
215 {
216         struct inode_defrag *entry = NULL;
217         struct inode_defrag tmp;
218         struct rb_node *p;
219         struct rb_node *parent = NULL;
220         int ret;
221
222         tmp.ino = ino;
223         tmp.root = root;
224
225         spin_lock(&fs_info->defrag_inodes_lock);
226         p = fs_info->defrag_inodes.rb_node;
227         while (p) {
228                 parent = p;
229                 entry = rb_entry(parent, struct inode_defrag, rb_node);
230
231                 ret = __compare_inode_defrag(&tmp, entry);
232                 if (ret < 0)
233                         p = parent->rb_left;
234                 else if (ret > 0)
235                         p = parent->rb_right;
236                 else
237                         goto out;
238         }
239
240         if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
241                 parent = rb_next(parent);
242                 if (parent)
243                         entry = rb_entry(parent, struct inode_defrag, rb_node);
244                 else
245                         entry = NULL;
246         }
247 out:
248         if (entry)
249                 rb_erase(parent, &fs_info->defrag_inodes);
250         spin_unlock(&fs_info->defrag_inodes_lock);
251         return entry;
252 }
253
254 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
255 {
256         struct inode_defrag *defrag;
257         struct rb_node *node;
258
259         spin_lock(&fs_info->defrag_inodes_lock);
260         node = rb_first(&fs_info->defrag_inodes);
261         while (node) {
262                 rb_erase(node, &fs_info->defrag_inodes);
263                 defrag = rb_entry(node, struct inode_defrag, rb_node);
264                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
265
266                 cond_resched_lock(&fs_info->defrag_inodes_lock);
267
268                 node = rb_first(&fs_info->defrag_inodes);
269         }
270         spin_unlock(&fs_info->defrag_inodes_lock);
271 }
272
273 #define BTRFS_DEFRAG_BATCH      1024
274
275 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
276                                     struct inode_defrag *defrag)
277 {
278         struct btrfs_root *inode_root;
279         struct inode *inode;
280         struct btrfs_ioctl_defrag_range_args range;
281         int num_defrag;
282         int ret;
283
284         /* get the inode */
285         inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
286         if (IS_ERR(inode_root)) {
287                 ret = PTR_ERR(inode_root);
288                 goto cleanup;
289         }
290
291         inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
292         btrfs_put_root(inode_root);
293         if (IS_ERR(inode)) {
294                 ret = PTR_ERR(inode);
295                 goto cleanup;
296         }
297
298         /* do a chunk of defrag */
299         clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
300         memset(&range, 0, sizeof(range));
301         range.len = (u64)-1;
302         range.start = defrag->last_offset;
303
304         sb_start_write(fs_info->sb);
305         num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
306                                        BTRFS_DEFRAG_BATCH);
307         sb_end_write(fs_info->sb);
308         /*
309          * if we filled the whole defrag batch, there
310          * must be more work to do.  Queue this defrag
311          * again
312          */
313         if (num_defrag == BTRFS_DEFRAG_BATCH) {
314                 defrag->last_offset = range.start;
315                 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
316         } else if (defrag->last_offset && !defrag->cycled) {
317                 /*
318                  * we didn't fill our defrag batch, but
319                  * we didn't start at zero.  Make sure we loop
320                  * around to the start of the file.
321                  */
322                 defrag->last_offset = 0;
323                 defrag->cycled = 1;
324                 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
325         } else {
326                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
327         }
328
329         iput(inode);
330         return 0;
331 cleanup:
332         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
333         return ret;
334 }
335
336 /*
337  * run through the list of inodes in the FS that need
338  * defragging
339  */
340 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
341 {
342         struct inode_defrag *defrag;
343         u64 first_ino = 0;
344         u64 root_objectid = 0;
345
346         atomic_inc(&fs_info->defrag_running);
347         while (1) {
348                 /* Pause the auto defragger. */
349                 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
350                              &fs_info->fs_state))
351                         break;
352
353                 if (!__need_auto_defrag(fs_info))
354                         break;
355
356                 /* find an inode to defrag */
357                 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
358                                                  first_ino);
359                 if (!defrag) {
360                         if (root_objectid || first_ino) {
361                                 root_objectid = 0;
362                                 first_ino = 0;
363                                 continue;
364                         } else {
365                                 break;
366                         }
367                 }
368
369                 first_ino = defrag->ino + 1;
370                 root_objectid = defrag->root;
371
372                 __btrfs_run_defrag_inode(fs_info, defrag);
373         }
374         atomic_dec(&fs_info->defrag_running);
375
376         /*
377          * during unmount, we use the transaction_wait queue to
378          * wait for the defragger to stop
379          */
380         wake_up(&fs_info->transaction_wait);
381         return 0;
382 }
383
384 /* simple helper to fault in pages and copy.  This should go away
385  * and be replaced with calls into generic code.
386  */
387 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
388                                          struct page **prepared_pages,
389                                          struct iov_iter *i)
390 {
391         size_t copied = 0;
392         size_t total_copied = 0;
393         int pg = 0;
394         int offset = offset_in_page(pos);
395
396         while (write_bytes > 0) {
397                 size_t count = min_t(size_t,
398                                      PAGE_SIZE - offset, write_bytes);
399                 struct page *page = prepared_pages[pg];
400                 /*
401                  * Copy data from userspace to the current page
402                  */
403                 copied = copy_page_from_iter_atomic(page, offset, count, i);
404
405                 /* Flush processor's dcache for this page */
406                 flush_dcache_page(page);
407
408                 /*
409                  * if we get a partial write, we can end up with
410                  * partially up to date pages.  These add
411                  * a lot of complexity, so make sure they don't
412                  * happen by forcing this copy to be retried.
413                  *
414                  * The rest of the btrfs_file_write code will fall
415                  * back to page at a time copies after we return 0.
416                  */
417                 if (unlikely(copied < count)) {
418                         if (!PageUptodate(page)) {
419                                 iov_iter_revert(i, copied);
420                                 copied = 0;
421                         }
422                         if (!copied)
423                                 break;
424                 }
425
426                 write_bytes -= copied;
427                 total_copied += copied;
428                 offset += copied;
429                 if (offset == PAGE_SIZE) {
430                         pg++;
431                         offset = 0;
432                 }
433         }
434         return total_copied;
435 }
436
437 /*
438  * unlocks pages after btrfs_file_write is done with them
439  */
440 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
441                              struct page **pages, size_t num_pages,
442                              u64 pos, u64 copied)
443 {
444         size_t i;
445         u64 block_start = round_down(pos, fs_info->sectorsize);
446         u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
447
448         ASSERT(block_len <= U32_MAX);
449         for (i = 0; i < num_pages; i++) {
450                 /* page checked is some magic around finding pages that
451                  * have been modified without going through btrfs_set_page_dirty
452                  * clear it here. There should be no need to mark the pages
453                  * accessed as prepare_pages should have marked them accessed
454                  * in prepare_pages via find_or_create_page()
455                  */
456                 btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start,
457                                                block_len);
458                 unlock_page(pages[i]);
459                 put_page(pages[i]);
460         }
461 }
462
463 /*
464  * After btrfs_copy_from_user(), update the following things for delalloc:
465  * - Mark newly dirtied pages as DELALLOC in the io tree.
466  *   Used to advise which range is to be written back.
467  * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
468  * - Update inode size for past EOF write
469  */
470 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
471                       size_t num_pages, loff_t pos, size_t write_bytes,
472                       struct extent_state **cached, bool noreserve)
473 {
474         struct btrfs_fs_info *fs_info = inode->root->fs_info;
475         int err = 0;
476         int i;
477         u64 num_bytes;
478         u64 start_pos;
479         u64 end_of_last_block;
480         u64 end_pos = pos + write_bytes;
481         loff_t isize = i_size_read(&inode->vfs_inode);
482         unsigned int extra_bits = 0;
483
484         if (write_bytes == 0)
485                 return 0;
486
487         if (noreserve)
488                 extra_bits |= EXTENT_NORESERVE;
489
490         start_pos = round_down(pos, fs_info->sectorsize);
491         num_bytes = round_up(write_bytes + pos - start_pos,
492                              fs_info->sectorsize);
493         ASSERT(num_bytes <= U32_MAX);
494
495         end_of_last_block = start_pos + num_bytes - 1;
496
497         /*
498          * The pages may have already been dirty, clear out old accounting so
499          * we can set things up properly
500          */
501         clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
502                          EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
503                          0, 0, cached);
504
505         err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
506                                         extra_bits, cached);
507         if (err)
508                 return err;
509
510         for (i = 0; i < num_pages; i++) {
511                 struct page *p = pages[i];
512
513                 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
514                 btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes);
515                 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
516         }
517
518         /*
519          * we've only changed i_size in ram, and we haven't updated
520          * the disk i_size.  There is no need to log the inode
521          * at this time.
522          */
523         if (end_pos > isize)
524                 i_size_write(&inode->vfs_inode, end_pos);
525         return 0;
526 }
527
528 /*
529  * this drops all the extents in the cache that intersect the range
530  * [start, end].  Existing extents are split as required.
531  */
532 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
533                              int skip_pinned)
534 {
535         struct extent_map *em;
536         struct extent_map *split = NULL;
537         struct extent_map *split2 = NULL;
538         struct extent_map_tree *em_tree = &inode->extent_tree;
539         u64 len = end - start + 1;
540         u64 gen;
541         int ret;
542         int testend = 1;
543         unsigned long flags;
544         int compressed = 0;
545         bool modified;
546
547         WARN_ON(end < start);
548         if (end == (u64)-1) {
549                 len = (u64)-1;
550                 testend = 0;
551         }
552         while (1) {
553                 int no_splits = 0;
554
555                 modified = false;
556                 if (!split)
557                         split = alloc_extent_map();
558                 if (!split2)
559                         split2 = alloc_extent_map();
560                 if (!split || !split2)
561                         no_splits = 1;
562
563                 write_lock(&em_tree->lock);
564                 em = lookup_extent_mapping(em_tree, start, len);
565                 if (!em) {
566                         write_unlock(&em_tree->lock);
567                         break;
568                 }
569                 flags = em->flags;
570                 gen = em->generation;
571                 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
572                         if (testend && em->start + em->len >= start + len) {
573                                 free_extent_map(em);
574                                 write_unlock(&em_tree->lock);
575                                 break;
576                         }
577                         start = em->start + em->len;
578                         if (testend)
579                                 len = start + len - (em->start + em->len);
580                         free_extent_map(em);
581                         write_unlock(&em_tree->lock);
582                         continue;
583                 }
584                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
585                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
586                 clear_bit(EXTENT_FLAG_LOGGING, &flags);
587                 modified = !list_empty(&em->list);
588                 if (no_splits)
589                         goto next;
590
591                 if (em->start < start) {
592                         split->start = em->start;
593                         split->len = start - em->start;
594
595                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
596                                 split->orig_start = em->orig_start;
597                                 split->block_start = em->block_start;
598
599                                 if (compressed)
600                                         split->block_len = em->block_len;
601                                 else
602                                         split->block_len = split->len;
603                                 split->orig_block_len = max(split->block_len,
604                                                 em->orig_block_len);
605                                 split->ram_bytes = em->ram_bytes;
606                         } else {
607                                 split->orig_start = split->start;
608                                 split->block_len = 0;
609                                 split->block_start = em->block_start;
610                                 split->orig_block_len = 0;
611                                 split->ram_bytes = split->len;
612                         }
613
614                         split->generation = gen;
615                         split->flags = flags;
616                         split->compress_type = em->compress_type;
617                         replace_extent_mapping(em_tree, em, split, modified);
618                         free_extent_map(split);
619                         split = split2;
620                         split2 = NULL;
621                 }
622                 if (testend && em->start + em->len > start + len) {
623                         u64 diff = start + len - em->start;
624
625                         split->start = start + len;
626                         split->len = em->start + em->len - (start + len);
627                         split->flags = flags;
628                         split->compress_type = em->compress_type;
629                         split->generation = gen;
630
631                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
632                                 split->orig_block_len = max(em->block_len,
633                                                     em->orig_block_len);
634
635                                 split->ram_bytes = em->ram_bytes;
636                                 if (compressed) {
637                                         split->block_len = em->block_len;
638                                         split->block_start = em->block_start;
639                                         split->orig_start = em->orig_start;
640                                 } else {
641                                         split->block_len = split->len;
642                                         split->block_start = em->block_start
643                                                 + diff;
644                                         split->orig_start = em->orig_start;
645                                 }
646                         } else {
647                                 split->ram_bytes = split->len;
648                                 split->orig_start = split->start;
649                                 split->block_len = 0;
650                                 split->block_start = em->block_start;
651                                 split->orig_block_len = 0;
652                         }
653
654                         if (extent_map_in_tree(em)) {
655                                 replace_extent_mapping(em_tree, em, split,
656                                                        modified);
657                         } else {
658                                 ret = add_extent_mapping(em_tree, split,
659                                                          modified);
660                                 ASSERT(ret == 0); /* Logic error */
661                         }
662                         free_extent_map(split);
663                         split = NULL;
664                 }
665 next:
666                 if (extent_map_in_tree(em))
667                         remove_extent_mapping(em_tree, em);
668                 write_unlock(&em_tree->lock);
669
670                 /* once for us */
671                 free_extent_map(em);
672                 /* once for the tree*/
673                 free_extent_map(em);
674         }
675         if (split)
676                 free_extent_map(split);
677         if (split2)
678                 free_extent_map(split2);
679 }
680
681 /*
682  * this is very complex, but the basic idea is to drop all extents
683  * in the range start - end.  hint_block is filled in with a block number
684  * that would be a good hint to the block allocator for this file.
685  *
686  * If an extent intersects the range but is not entirely inside the range
687  * it is either truncated or split.  Anything entirely inside the range
688  * is deleted from the tree.
689  *
690  * Note: the VFS' inode number of bytes is not updated, it's up to the caller
691  * to deal with that. We set the field 'bytes_found' of the arguments structure
692  * with the number of allocated bytes found in the target range, so that the
693  * caller can update the inode's number of bytes in an atomic way when
694  * replacing extents in a range to avoid races with stat(2).
695  */
696 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
697                        struct btrfs_root *root, struct btrfs_inode *inode,
698                        struct btrfs_drop_extents_args *args)
699 {
700         struct btrfs_fs_info *fs_info = root->fs_info;
701         struct extent_buffer *leaf;
702         struct btrfs_file_extent_item *fi;
703         struct btrfs_ref ref = { 0 };
704         struct btrfs_key key;
705         struct btrfs_key new_key;
706         u64 ino = btrfs_ino(inode);
707         u64 search_start = args->start;
708         u64 disk_bytenr = 0;
709         u64 num_bytes = 0;
710         u64 extent_offset = 0;
711         u64 extent_end = 0;
712         u64 last_end = args->start;
713         int del_nr = 0;
714         int del_slot = 0;
715         int extent_type;
716         int recow;
717         int ret;
718         int modify_tree = -1;
719         int update_refs;
720         int found = 0;
721         int leafs_visited = 0;
722         struct btrfs_path *path = args->path;
723
724         args->bytes_found = 0;
725         args->extent_inserted = false;
726
727         /* Must always have a path if ->replace_extent is true */
728         ASSERT(!(args->replace_extent && !args->path));
729
730         if (!path) {
731                 path = btrfs_alloc_path();
732                 if (!path) {
733                         ret = -ENOMEM;
734                         goto out;
735                 }
736         }
737
738         if (args->drop_cache)
739                 btrfs_drop_extent_cache(inode, args->start, args->end - 1, 0);
740
741         if (args->start >= inode->disk_i_size && !args->replace_extent)
742                 modify_tree = 0;
743
744         update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
745         while (1) {
746                 recow = 0;
747                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
748                                                search_start, modify_tree);
749                 if (ret < 0)
750                         break;
751                 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
752                         leaf = path->nodes[0];
753                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
754                         if (key.objectid == ino &&
755                             key.type == BTRFS_EXTENT_DATA_KEY)
756                                 path->slots[0]--;
757                 }
758                 ret = 0;
759                 leafs_visited++;
760 next_slot:
761                 leaf = path->nodes[0];
762                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
763                         BUG_ON(del_nr > 0);
764                         ret = btrfs_next_leaf(root, path);
765                         if (ret < 0)
766                                 break;
767                         if (ret > 0) {
768                                 ret = 0;
769                                 break;
770                         }
771                         leafs_visited++;
772                         leaf = path->nodes[0];
773                         recow = 1;
774                 }
775
776                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
777
778                 if (key.objectid > ino)
779                         break;
780                 if (WARN_ON_ONCE(key.objectid < ino) ||
781                     key.type < BTRFS_EXTENT_DATA_KEY) {
782                         ASSERT(del_nr == 0);
783                         path->slots[0]++;
784                         goto next_slot;
785                 }
786                 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
787                         break;
788
789                 fi = btrfs_item_ptr(leaf, path->slots[0],
790                                     struct btrfs_file_extent_item);
791                 extent_type = btrfs_file_extent_type(leaf, fi);
792
793                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
794                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
795                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
796                         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
797                         extent_offset = btrfs_file_extent_offset(leaf, fi);
798                         extent_end = key.offset +
799                                 btrfs_file_extent_num_bytes(leaf, fi);
800                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
801                         extent_end = key.offset +
802                                 btrfs_file_extent_ram_bytes(leaf, fi);
803                 } else {
804                         /* can't happen */
805                         BUG();
806                 }
807
808                 /*
809                  * Don't skip extent items representing 0 byte lengths. They
810                  * used to be created (bug) if while punching holes we hit
811                  * -ENOSPC condition. So if we find one here, just ensure we
812                  * delete it, otherwise we would insert a new file extent item
813                  * with the same key (offset) as that 0 bytes length file
814                  * extent item in the call to setup_items_for_insert() later
815                  * in this function.
816                  */
817                 if (extent_end == key.offset && extent_end >= search_start) {
818                         last_end = extent_end;
819                         goto delete_extent_item;
820                 }
821
822                 if (extent_end <= search_start) {
823                         path->slots[0]++;
824                         goto next_slot;
825                 }
826
827                 found = 1;
828                 search_start = max(key.offset, args->start);
829                 if (recow || !modify_tree) {
830                         modify_tree = -1;
831                         btrfs_release_path(path);
832                         continue;
833                 }
834
835                 /*
836                  *     | - range to drop - |
837                  *  | -------- extent -------- |
838                  */
839                 if (args->start > key.offset && args->end < extent_end) {
840                         BUG_ON(del_nr > 0);
841                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
842                                 ret = -EOPNOTSUPP;
843                                 break;
844                         }
845
846                         memcpy(&new_key, &key, sizeof(new_key));
847                         new_key.offset = args->start;
848                         ret = btrfs_duplicate_item(trans, root, path,
849                                                    &new_key);
850                         if (ret == -EAGAIN) {
851                                 btrfs_release_path(path);
852                                 continue;
853                         }
854                         if (ret < 0)
855                                 break;
856
857                         leaf = path->nodes[0];
858                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
859                                             struct btrfs_file_extent_item);
860                         btrfs_set_file_extent_num_bytes(leaf, fi,
861                                                         args->start - key.offset);
862
863                         fi = btrfs_item_ptr(leaf, path->slots[0],
864                                             struct btrfs_file_extent_item);
865
866                         extent_offset += args->start - key.offset;
867                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
868                         btrfs_set_file_extent_num_bytes(leaf, fi,
869                                                         extent_end - args->start);
870                         btrfs_mark_buffer_dirty(leaf);
871
872                         if (update_refs && disk_bytenr > 0) {
873                                 btrfs_init_generic_ref(&ref,
874                                                 BTRFS_ADD_DELAYED_REF,
875                                                 disk_bytenr, num_bytes, 0);
876                                 btrfs_init_data_ref(&ref,
877                                                 root->root_key.objectid,
878                                                 new_key.objectid,
879                                                 args->start - extent_offset,
880                                                 0, false);
881                                 ret = btrfs_inc_extent_ref(trans, &ref);
882                                 BUG_ON(ret); /* -ENOMEM */
883                         }
884                         key.offset = args->start;
885                 }
886                 /*
887                  * From here on out we will have actually dropped something, so
888                  * last_end can be updated.
889                  */
890                 last_end = extent_end;
891
892                 /*
893                  *  | ---- range to drop ----- |
894                  *      | -------- extent -------- |
895                  */
896                 if (args->start <= key.offset && args->end < extent_end) {
897                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
898                                 ret = -EOPNOTSUPP;
899                                 break;
900                         }
901
902                         memcpy(&new_key, &key, sizeof(new_key));
903                         new_key.offset = args->end;
904                         btrfs_set_item_key_safe(fs_info, path, &new_key);
905
906                         extent_offset += args->end - key.offset;
907                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
908                         btrfs_set_file_extent_num_bytes(leaf, fi,
909                                                         extent_end - args->end);
910                         btrfs_mark_buffer_dirty(leaf);
911                         if (update_refs && disk_bytenr > 0)
912                                 args->bytes_found += args->end - key.offset;
913                         break;
914                 }
915
916                 search_start = extent_end;
917                 /*
918                  *       | ---- range to drop ----- |
919                  *  | -------- extent -------- |
920                  */
921                 if (args->start > key.offset && args->end >= extent_end) {
922                         BUG_ON(del_nr > 0);
923                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
924                                 ret = -EOPNOTSUPP;
925                                 break;
926                         }
927
928                         btrfs_set_file_extent_num_bytes(leaf, fi,
929                                                         args->start - key.offset);
930                         btrfs_mark_buffer_dirty(leaf);
931                         if (update_refs && disk_bytenr > 0)
932                                 args->bytes_found += extent_end - args->start;
933                         if (args->end == extent_end)
934                                 break;
935
936                         path->slots[0]++;
937                         goto next_slot;
938                 }
939
940                 /*
941                  *  | ---- range to drop ----- |
942                  *    | ------ extent ------ |
943                  */
944                 if (args->start <= key.offset && args->end >= extent_end) {
945 delete_extent_item:
946                         if (del_nr == 0) {
947                                 del_slot = path->slots[0];
948                                 del_nr = 1;
949                         } else {
950                                 BUG_ON(del_slot + del_nr != path->slots[0]);
951                                 del_nr++;
952                         }
953
954                         if (update_refs &&
955                             extent_type == BTRFS_FILE_EXTENT_INLINE) {
956                                 args->bytes_found += extent_end - key.offset;
957                                 extent_end = ALIGN(extent_end,
958                                                    fs_info->sectorsize);
959                         } else if (update_refs && disk_bytenr > 0) {
960                                 btrfs_init_generic_ref(&ref,
961                                                 BTRFS_DROP_DELAYED_REF,
962                                                 disk_bytenr, num_bytes, 0);
963                                 btrfs_init_data_ref(&ref,
964                                                 root->root_key.objectid,
965                                                 key.objectid,
966                                                 key.offset - extent_offset, 0,
967                                                 false);
968                                 ret = btrfs_free_extent(trans, &ref);
969                                 BUG_ON(ret); /* -ENOMEM */
970                                 args->bytes_found += extent_end - key.offset;
971                         }
972
973                         if (args->end == extent_end)
974                                 break;
975
976                         if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
977                                 path->slots[0]++;
978                                 goto next_slot;
979                         }
980
981                         ret = btrfs_del_items(trans, root, path, del_slot,
982                                               del_nr);
983                         if (ret) {
984                                 btrfs_abort_transaction(trans, ret);
985                                 break;
986                         }
987
988                         del_nr = 0;
989                         del_slot = 0;
990
991                         btrfs_release_path(path);
992                         continue;
993                 }
994
995                 BUG();
996         }
997
998         if (!ret && del_nr > 0) {
999                 /*
1000                  * Set path->slots[0] to first slot, so that after the delete
1001                  * if items are move off from our leaf to its immediate left or
1002                  * right neighbor leafs, we end up with a correct and adjusted
1003                  * path->slots[0] for our insertion (if args->replace_extent).
1004                  */
1005                 path->slots[0] = del_slot;
1006                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1007                 if (ret)
1008                         btrfs_abort_transaction(trans, ret);
1009         }
1010
1011         leaf = path->nodes[0];
1012         /*
1013          * If btrfs_del_items() was called, it might have deleted a leaf, in
1014          * which case it unlocked our path, so check path->locks[0] matches a
1015          * write lock.
1016          */
1017         if (!ret && args->replace_extent && leafs_visited == 1 &&
1018             path->locks[0] == BTRFS_WRITE_LOCK &&
1019             btrfs_leaf_free_space(leaf) >=
1020             sizeof(struct btrfs_item) + args->extent_item_size) {
1021
1022                 key.objectid = ino;
1023                 key.type = BTRFS_EXTENT_DATA_KEY;
1024                 key.offset = args->start;
1025                 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1026                         struct btrfs_key slot_key;
1027
1028                         btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1029                         if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1030                                 path->slots[0]++;
1031                 }
1032                 btrfs_setup_item_for_insert(root, path, &key, args->extent_item_size);
1033                 args->extent_inserted = true;
1034         }
1035
1036         if (!args->path)
1037                 btrfs_free_path(path);
1038         else if (!args->extent_inserted)
1039                 btrfs_release_path(path);
1040 out:
1041         args->drop_end = found ? min(args->end, last_end) : args->end;
1042
1043         return ret;
1044 }
1045
1046 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1047                             u64 objectid, u64 bytenr, u64 orig_offset,
1048                             u64 *start, u64 *end)
1049 {
1050         struct btrfs_file_extent_item *fi;
1051         struct btrfs_key key;
1052         u64 extent_end;
1053
1054         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1055                 return 0;
1056
1057         btrfs_item_key_to_cpu(leaf, &key, slot);
1058         if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1059                 return 0;
1060
1061         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1062         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1063             btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1064             btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1065             btrfs_file_extent_compression(leaf, fi) ||
1066             btrfs_file_extent_encryption(leaf, fi) ||
1067             btrfs_file_extent_other_encoding(leaf, fi))
1068                 return 0;
1069
1070         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1071         if ((*start && *start != key.offset) || (*end && *end != extent_end))
1072                 return 0;
1073
1074         *start = key.offset;
1075         *end = extent_end;
1076         return 1;
1077 }
1078
1079 /*
1080  * Mark extent in the range start - end as written.
1081  *
1082  * This changes extent type from 'pre-allocated' to 'regular'. If only
1083  * part of extent is marked as written, the extent will be split into
1084  * two or three.
1085  */
1086 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1087                               struct btrfs_inode *inode, u64 start, u64 end)
1088 {
1089         struct btrfs_fs_info *fs_info = trans->fs_info;
1090         struct btrfs_root *root = inode->root;
1091         struct extent_buffer *leaf;
1092         struct btrfs_path *path;
1093         struct btrfs_file_extent_item *fi;
1094         struct btrfs_ref ref = { 0 };
1095         struct btrfs_key key;
1096         struct btrfs_key new_key;
1097         u64 bytenr;
1098         u64 num_bytes;
1099         u64 extent_end;
1100         u64 orig_offset;
1101         u64 other_start;
1102         u64 other_end;
1103         u64 split;
1104         int del_nr = 0;
1105         int del_slot = 0;
1106         int recow;
1107         int ret = 0;
1108         u64 ino = btrfs_ino(inode);
1109
1110         path = btrfs_alloc_path();
1111         if (!path)
1112                 return -ENOMEM;
1113 again:
1114         recow = 0;
1115         split = start;
1116         key.objectid = ino;
1117         key.type = BTRFS_EXTENT_DATA_KEY;
1118         key.offset = split;
1119
1120         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1121         if (ret < 0)
1122                 goto out;
1123         if (ret > 0 && path->slots[0] > 0)
1124                 path->slots[0]--;
1125
1126         leaf = path->nodes[0];
1127         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1128         if (key.objectid != ino ||
1129             key.type != BTRFS_EXTENT_DATA_KEY) {
1130                 ret = -EINVAL;
1131                 btrfs_abort_transaction(trans, ret);
1132                 goto out;
1133         }
1134         fi = btrfs_item_ptr(leaf, path->slots[0],
1135                             struct btrfs_file_extent_item);
1136         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1137                 ret = -EINVAL;
1138                 btrfs_abort_transaction(trans, ret);
1139                 goto out;
1140         }
1141         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1142         if (key.offset > start || extent_end < end) {
1143                 ret = -EINVAL;
1144                 btrfs_abort_transaction(trans, ret);
1145                 goto out;
1146         }
1147
1148         bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1149         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1150         orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1151         memcpy(&new_key, &key, sizeof(new_key));
1152
1153         if (start == key.offset && end < extent_end) {
1154                 other_start = 0;
1155                 other_end = start;
1156                 if (extent_mergeable(leaf, path->slots[0] - 1,
1157                                      ino, bytenr, orig_offset,
1158                                      &other_start, &other_end)) {
1159                         new_key.offset = end;
1160                         btrfs_set_item_key_safe(fs_info, path, &new_key);
1161                         fi = btrfs_item_ptr(leaf, path->slots[0],
1162                                             struct btrfs_file_extent_item);
1163                         btrfs_set_file_extent_generation(leaf, fi,
1164                                                          trans->transid);
1165                         btrfs_set_file_extent_num_bytes(leaf, fi,
1166                                                         extent_end - end);
1167                         btrfs_set_file_extent_offset(leaf, fi,
1168                                                      end - orig_offset);
1169                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1170                                             struct btrfs_file_extent_item);
1171                         btrfs_set_file_extent_generation(leaf, fi,
1172                                                          trans->transid);
1173                         btrfs_set_file_extent_num_bytes(leaf, fi,
1174                                                         end - other_start);
1175                         btrfs_mark_buffer_dirty(leaf);
1176                         goto out;
1177                 }
1178         }
1179
1180         if (start > key.offset && end == extent_end) {
1181                 other_start = end;
1182                 other_end = 0;
1183                 if (extent_mergeable(leaf, path->slots[0] + 1,
1184                                      ino, bytenr, orig_offset,
1185                                      &other_start, &other_end)) {
1186                         fi = btrfs_item_ptr(leaf, path->slots[0],
1187                                             struct btrfs_file_extent_item);
1188                         btrfs_set_file_extent_num_bytes(leaf, fi,
1189                                                         start - key.offset);
1190                         btrfs_set_file_extent_generation(leaf, fi,
1191                                                          trans->transid);
1192                         path->slots[0]++;
1193                         new_key.offset = start;
1194                         btrfs_set_item_key_safe(fs_info, path, &new_key);
1195
1196                         fi = btrfs_item_ptr(leaf, path->slots[0],
1197                                             struct btrfs_file_extent_item);
1198                         btrfs_set_file_extent_generation(leaf, fi,
1199                                                          trans->transid);
1200                         btrfs_set_file_extent_num_bytes(leaf, fi,
1201                                                         other_end - start);
1202                         btrfs_set_file_extent_offset(leaf, fi,
1203                                                      start - orig_offset);
1204                         btrfs_mark_buffer_dirty(leaf);
1205                         goto out;
1206                 }
1207         }
1208
1209         while (start > key.offset || end < extent_end) {
1210                 if (key.offset == start)
1211                         split = end;
1212
1213                 new_key.offset = split;
1214                 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1215                 if (ret == -EAGAIN) {
1216                         btrfs_release_path(path);
1217                         goto again;
1218                 }
1219                 if (ret < 0) {
1220                         btrfs_abort_transaction(trans, ret);
1221                         goto out;
1222                 }
1223
1224                 leaf = path->nodes[0];
1225                 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1226                                     struct btrfs_file_extent_item);
1227                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1228                 btrfs_set_file_extent_num_bytes(leaf, fi,
1229                                                 split - key.offset);
1230
1231                 fi = btrfs_item_ptr(leaf, path->slots[0],
1232                                     struct btrfs_file_extent_item);
1233
1234                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1235                 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1236                 btrfs_set_file_extent_num_bytes(leaf, fi,
1237                                                 extent_end - split);
1238                 btrfs_mark_buffer_dirty(leaf);
1239
1240                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1241                                        num_bytes, 0);
1242                 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1243                                     orig_offset, 0, false);
1244                 ret = btrfs_inc_extent_ref(trans, &ref);
1245                 if (ret) {
1246                         btrfs_abort_transaction(trans, ret);
1247                         goto out;
1248                 }
1249
1250                 if (split == start) {
1251                         key.offset = start;
1252                 } else {
1253                         if (start != key.offset) {
1254                                 ret = -EINVAL;
1255                                 btrfs_abort_transaction(trans, ret);
1256                                 goto out;
1257                         }
1258                         path->slots[0]--;
1259                         extent_end = end;
1260                 }
1261                 recow = 1;
1262         }
1263
1264         other_start = end;
1265         other_end = 0;
1266         btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1267                                num_bytes, 0);
1268         btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset,
1269                             0, false);
1270         if (extent_mergeable(leaf, path->slots[0] + 1,
1271                              ino, bytenr, orig_offset,
1272                              &other_start, &other_end)) {
1273                 if (recow) {
1274                         btrfs_release_path(path);
1275                         goto again;
1276                 }
1277                 extent_end = other_end;
1278                 del_slot = path->slots[0] + 1;
1279                 del_nr++;
1280                 ret = btrfs_free_extent(trans, &ref);
1281                 if (ret) {
1282                         btrfs_abort_transaction(trans, ret);
1283                         goto out;
1284                 }
1285         }
1286         other_start = 0;
1287         other_end = start;
1288         if (extent_mergeable(leaf, path->slots[0] - 1,
1289                              ino, bytenr, orig_offset,
1290                              &other_start, &other_end)) {
1291                 if (recow) {
1292                         btrfs_release_path(path);
1293                         goto again;
1294                 }
1295                 key.offset = other_start;
1296                 del_slot = path->slots[0];
1297                 del_nr++;
1298                 ret = btrfs_free_extent(trans, &ref);
1299                 if (ret) {
1300                         btrfs_abort_transaction(trans, ret);
1301                         goto out;
1302                 }
1303         }
1304         if (del_nr == 0) {
1305                 fi = btrfs_item_ptr(leaf, path->slots[0],
1306                            struct btrfs_file_extent_item);
1307                 btrfs_set_file_extent_type(leaf, fi,
1308                                            BTRFS_FILE_EXTENT_REG);
1309                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1310                 btrfs_mark_buffer_dirty(leaf);
1311         } else {
1312                 fi = btrfs_item_ptr(leaf, del_slot - 1,
1313                            struct btrfs_file_extent_item);
1314                 btrfs_set_file_extent_type(leaf, fi,
1315                                            BTRFS_FILE_EXTENT_REG);
1316                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1317                 btrfs_set_file_extent_num_bytes(leaf, fi,
1318                                                 extent_end - key.offset);
1319                 btrfs_mark_buffer_dirty(leaf);
1320
1321                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1322                 if (ret < 0) {
1323                         btrfs_abort_transaction(trans, ret);
1324                         goto out;
1325                 }
1326         }
1327 out:
1328         btrfs_free_path(path);
1329         return ret;
1330 }
1331
1332 /*
1333  * on error we return an unlocked page and the error value
1334  * on success we return a locked page and 0
1335  */
1336 static int prepare_uptodate_page(struct inode *inode,
1337                                  struct page *page, u64 pos,
1338                                  bool force_uptodate)
1339 {
1340         int ret = 0;
1341
1342         if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1343             !PageUptodate(page)) {
1344                 ret = btrfs_readpage(NULL, page);
1345                 if (ret)
1346                         return ret;
1347                 lock_page(page);
1348                 if (!PageUptodate(page)) {
1349                         unlock_page(page);
1350                         return -EIO;
1351                 }
1352
1353                 /*
1354                  * Since btrfs_readpage() will unlock the page before it
1355                  * returns, there is a window where btrfs_releasepage() can be
1356                  * called to release the page.  Here we check both inode
1357                  * mapping and PagePrivate() to make sure the page was not
1358                  * released.
1359                  *
1360                  * The private flag check is essential for subpage as we need
1361                  * to store extra bitmap using page->private.
1362                  */
1363                 if (page->mapping != inode->i_mapping || !PagePrivate(page)) {
1364                         unlock_page(page);
1365                         return -EAGAIN;
1366                 }
1367         }
1368         return 0;
1369 }
1370
1371 /*
1372  * this just gets pages into the page cache and locks them down.
1373  */
1374 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1375                                   size_t num_pages, loff_t pos,
1376                                   size_t write_bytes, bool force_uptodate)
1377 {
1378         int i;
1379         unsigned long index = pos >> PAGE_SHIFT;
1380         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1381         int err = 0;
1382         int faili;
1383
1384         for (i = 0; i < num_pages; i++) {
1385 again:
1386                 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1387                                                mask | __GFP_WRITE);
1388                 if (!pages[i]) {
1389                         faili = i - 1;
1390                         err = -ENOMEM;
1391                         goto fail;
1392                 }
1393
1394                 err = set_page_extent_mapped(pages[i]);
1395                 if (err < 0) {
1396                         faili = i;
1397                         goto fail;
1398                 }
1399
1400                 if (i == 0)
1401                         err = prepare_uptodate_page(inode, pages[i], pos,
1402                                                     force_uptodate);
1403                 if (!err && i == num_pages - 1)
1404                         err = prepare_uptodate_page(inode, pages[i],
1405                                                     pos + write_bytes, false);
1406                 if (err) {
1407                         put_page(pages[i]);
1408                         if (err == -EAGAIN) {
1409                                 err = 0;
1410                                 goto again;
1411                         }
1412                         faili = i - 1;
1413                         goto fail;
1414                 }
1415                 wait_on_page_writeback(pages[i]);
1416         }
1417
1418         return 0;
1419 fail:
1420         while (faili >= 0) {
1421                 unlock_page(pages[faili]);
1422                 put_page(pages[faili]);
1423                 faili--;
1424         }
1425         return err;
1426
1427 }
1428
1429 /*
1430  * This function locks the extent and properly waits for data=ordered extents
1431  * to finish before allowing the pages to be modified if need.
1432  *
1433  * The return value:
1434  * 1 - the extent is locked
1435  * 0 - the extent is not locked, and everything is OK
1436  * -EAGAIN - need re-prepare the pages
1437  * the other < 0 number - Something wrong happens
1438  */
1439 static noinline int
1440 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1441                                 size_t num_pages, loff_t pos,
1442                                 size_t write_bytes,
1443                                 u64 *lockstart, u64 *lockend,
1444                                 struct extent_state **cached_state)
1445 {
1446         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1447         u64 start_pos;
1448         u64 last_pos;
1449         int i;
1450         int ret = 0;
1451
1452         start_pos = round_down(pos, fs_info->sectorsize);
1453         last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1454
1455         if (start_pos < inode->vfs_inode.i_size) {
1456                 struct btrfs_ordered_extent *ordered;
1457
1458                 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1459                                 cached_state);
1460                 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1461                                                      last_pos - start_pos + 1);
1462                 if (ordered &&
1463                     ordered->file_offset + ordered->num_bytes > start_pos &&
1464                     ordered->file_offset <= last_pos) {
1465                         unlock_extent_cached(&inode->io_tree, start_pos,
1466                                         last_pos, cached_state);
1467                         for (i = 0; i < num_pages; i++) {
1468                                 unlock_page(pages[i]);
1469                                 put_page(pages[i]);
1470                         }
1471                         btrfs_start_ordered_extent(ordered, 1);
1472                         btrfs_put_ordered_extent(ordered);
1473                         return -EAGAIN;
1474                 }
1475                 if (ordered)
1476                         btrfs_put_ordered_extent(ordered);
1477
1478                 *lockstart = start_pos;
1479                 *lockend = last_pos;
1480                 ret = 1;
1481         }
1482
1483         /*
1484          * We should be called after prepare_pages() which should have locked
1485          * all pages in the range.
1486          */
1487         for (i = 0; i < num_pages; i++)
1488                 WARN_ON(!PageLocked(pages[i]));
1489
1490         return ret;
1491 }
1492
1493 static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1494                            size_t *write_bytes, bool nowait)
1495 {
1496         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1497         struct btrfs_root *root = inode->root;
1498         u64 lockstart, lockend;
1499         u64 num_bytes;
1500         int ret;
1501
1502         if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1503                 return 0;
1504
1505         if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
1506                 return -EAGAIN;
1507
1508         lockstart = round_down(pos, fs_info->sectorsize);
1509         lockend = round_up(pos + *write_bytes,
1510                            fs_info->sectorsize) - 1;
1511         num_bytes = lockend - lockstart + 1;
1512
1513         if (nowait) {
1514                 struct btrfs_ordered_extent *ordered;
1515
1516                 if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1517                         return -EAGAIN;
1518
1519                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1520                                                      num_bytes);
1521                 if (ordered) {
1522                         btrfs_put_ordered_extent(ordered);
1523                         ret = -EAGAIN;
1524                         goto out_unlock;
1525                 }
1526         } else {
1527                 btrfs_lock_and_flush_ordered_range(inode, lockstart,
1528                                                    lockend, NULL);
1529         }
1530
1531         ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1532                         NULL, NULL, NULL, false);
1533         if (ret <= 0) {
1534                 ret = 0;
1535                 if (!nowait)
1536                         btrfs_drew_write_unlock(&root->snapshot_lock);
1537         } else {
1538                 *write_bytes = min_t(size_t, *write_bytes ,
1539                                      num_bytes - pos + lockstart);
1540         }
1541 out_unlock:
1542         unlock_extent(&inode->io_tree, lockstart, lockend);
1543
1544         return ret;
1545 }
1546
1547 static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1548                               size_t *write_bytes)
1549 {
1550         return check_can_nocow(inode, pos, write_bytes, true);
1551 }
1552
1553 /*
1554  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1555  *
1556  * @pos:         File offset
1557  * @write_bytes: The length to write, will be updated to the nocow writeable
1558  *               range
1559  *
1560  * This function will flush ordered extents in the range to ensure proper
1561  * nocow checks.
1562  *
1563  * Return:
1564  * >0           and update @write_bytes if we can do nocow write
1565  *  0           if we can't do nocow write
1566  * -EAGAIN      if we can't get the needed lock or there are ordered extents
1567  *              for * (nowait == true) case
1568  * <0           if other error happened
1569  *
1570  * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1571  */
1572 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1573                            size_t *write_bytes)
1574 {
1575         return check_can_nocow(inode, pos, write_bytes, false);
1576 }
1577
1578 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1579 {
1580         btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1581 }
1582
1583 static void update_time_for_write(struct inode *inode)
1584 {
1585         struct timespec64 now;
1586
1587         if (IS_NOCMTIME(inode))
1588                 return;
1589
1590         now = current_time(inode);
1591         if (!timespec64_equal(&inode->i_mtime, &now))
1592                 inode->i_mtime = now;
1593
1594         if (!timespec64_equal(&inode->i_ctime, &now))
1595                 inode->i_ctime = now;
1596
1597         if (IS_I_VERSION(inode))
1598                 inode_inc_iversion(inode);
1599 }
1600
1601 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1602                              size_t count)
1603 {
1604         struct file *file = iocb->ki_filp;
1605         struct inode *inode = file_inode(file);
1606         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1607         loff_t pos = iocb->ki_pos;
1608         int ret;
1609         loff_t oldsize;
1610         loff_t start_pos;
1611
1612         if (iocb->ki_flags & IOCB_NOWAIT) {
1613                 size_t nocow_bytes = count;
1614
1615                 /* We will allocate space in case nodatacow is not set, so bail */
1616                 if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes) <= 0)
1617                         return -EAGAIN;
1618                 /*
1619                  * There are holes in the range or parts of the range that must
1620                  * be COWed (shared extents, RO block groups, etc), so just bail
1621                  * out.
1622                  */
1623                 if (nocow_bytes < count)
1624                         return -EAGAIN;
1625         }
1626
1627         current->backing_dev_info = inode_to_bdi(inode);
1628         ret = file_remove_privs(file);
1629         if (ret)
1630                 return ret;
1631
1632         /*
1633          * We reserve space for updating the inode when we reserve space for the
1634          * extent we are going to write, so we will enospc out there.  We don't
1635          * need to start yet another transaction to update the inode as we will
1636          * update the inode when we finish writing whatever data we write.
1637          */
1638         update_time_for_write(inode);
1639
1640         start_pos = round_down(pos, fs_info->sectorsize);
1641         oldsize = i_size_read(inode);
1642         if (start_pos > oldsize) {
1643                 /* Expand hole size to cover write data, preventing empty gap */
1644                 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1645
1646                 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1647                 if (ret) {
1648                         current->backing_dev_info = NULL;
1649                         return ret;
1650                 }
1651         }
1652
1653         return 0;
1654 }
1655
1656 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1657                                                struct iov_iter *i)
1658 {
1659         struct file *file = iocb->ki_filp;
1660         loff_t pos;
1661         struct inode *inode = file_inode(file);
1662         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1663         struct page **pages = NULL;
1664         struct extent_changeset *data_reserved = NULL;
1665         u64 release_bytes = 0;
1666         u64 lockstart;
1667         u64 lockend;
1668         size_t num_written = 0;
1669         int nrptrs;
1670         ssize_t ret;
1671         bool only_release_metadata = false;
1672         bool force_page_uptodate = false;
1673         loff_t old_isize = i_size_read(inode);
1674         unsigned int ilock_flags = 0;
1675
1676         if (iocb->ki_flags & IOCB_NOWAIT)
1677                 ilock_flags |= BTRFS_ILOCK_TRY;
1678
1679         ret = btrfs_inode_lock(inode, ilock_flags);
1680         if (ret < 0)
1681                 return ret;
1682
1683         ret = generic_write_checks(iocb, i);
1684         if (ret <= 0)
1685                 goto out;
1686
1687         ret = btrfs_write_check(iocb, i, ret);
1688         if (ret < 0)
1689                 goto out;
1690
1691         pos = iocb->ki_pos;
1692         nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1693                         PAGE_SIZE / (sizeof(struct page *)));
1694         nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1695         nrptrs = max(nrptrs, 8);
1696         pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1697         if (!pages) {
1698                 ret = -ENOMEM;
1699                 goto out;
1700         }
1701
1702         while (iov_iter_count(i) > 0) {
1703                 struct extent_state *cached_state = NULL;
1704                 size_t offset = offset_in_page(pos);
1705                 size_t sector_offset;
1706                 size_t write_bytes = min(iov_iter_count(i),
1707                                          nrptrs * (size_t)PAGE_SIZE -
1708                                          offset);
1709                 size_t num_pages;
1710                 size_t reserve_bytes;
1711                 size_t dirty_pages;
1712                 size_t copied;
1713                 size_t dirty_sectors;
1714                 size_t num_sectors;
1715                 int extents_locked;
1716
1717                 /*
1718                  * Fault pages before locking them in prepare_pages
1719                  * to avoid recursive lock
1720                  */
1721                 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1722                         ret = -EFAULT;
1723                         break;
1724                 }
1725
1726                 only_release_metadata = false;
1727                 sector_offset = pos & (fs_info->sectorsize - 1);
1728
1729                 extent_changeset_release(data_reserved);
1730                 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1731                                                   &data_reserved, pos,
1732                                                   write_bytes);
1733                 if (ret < 0) {
1734                         /*
1735                          * If we don't have to COW at the offset, reserve
1736                          * metadata only. write_bytes may get smaller than
1737                          * requested here.
1738                          */
1739                         if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1740                                                    &write_bytes) > 0)
1741                                 only_release_metadata = true;
1742                         else
1743                                 break;
1744                 }
1745
1746                 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1747                 WARN_ON(num_pages > nrptrs);
1748                 reserve_bytes = round_up(write_bytes + sector_offset,
1749                                          fs_info->sectorsize);
1750                 WARN_ON(reserve_bytes == 0);
1751                 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1752                                 reserve_bytes);
1753                 if (ret) {
1754                         if (!only_release_metadata)
1755                                 btrfs_free_reserved_data_space(BTRFS_I(inode),
1756                                                 data_reserved, pos,
1757                                                 write_bytes);
1758                         else
1759                                 btrfs_check_nocow_unlock(BTRFS_I(inode));
1760                         break;
1761                 }
1762
1763                 release_bytes = reserve_bytes;
1764 again:
1765                 /*
1766                  * This is going to setup the pages array with the number of
1767                  * pages we want, so we don't really need to worry about the
1768                  * contents of pages from loop to loop
1769                  */
1770                 ret = prepare_pages(inode, pages, num_pages,
1771                                     pos, write_bytes,
1772                                     force_page_uptodate);
1773                 if (ret) {
1774                         btrfs_delalloc_release_extents(BTRFS_I(inode),
1775                                                        reserve_bytes);
1776                         break;
1777                 }
1778
1779                 extents_locked = lock_and_cleanup_extent_if_need(
1780                                 BTRFS_I(inode), pages,
1781                                 num_pages, pos, write_bytes, &lockstart,
1782                                 &lockend, &cached_state);
1783                 if (extents_locked < 0) {
1784                         if (extents_locked == -EAGAIN)
1785                                 goto again;
1786                         btrfs_delalloc_release_extents(BTRFS_I(inode),
1787                                                        reserve_bytes);
1788                         ret = extents_locked;
1789                         break;
1790                 }
1791
1792                 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1793
1794                 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1795                 dirty_sectors = round_up(copied + sector_offset,
1796                                         fs_info->sectorsize);
1797                 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1798
1799                 /*
1800                  * if we have trouble faulting in the pages, fall
1801                  * back to one page at a time
1802                  */
1803                 if (copied < write_bytes)
1804                         nrptrs = 1;
1805
1806                 if (copied == 0) {
1807                         force_page_uptodate = true;
1808                         dirty_sectors = 0;
1809                         dirty_pages = 0;
1810                 } else {
1811                         force_page_uptodate = false;
1812                         dirty_pages = DIV_ROUND_UP(copied + offset,
1813                                                    PAGE_SIZE);
1814                 }
1815
1816                 if (num_sectors > dirty_sectors) {
1817                         /* release everything except the sectors we dirtied */
1818                         release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1819                         if (only_release_metadata) {
1820                                 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1821                                                         release_bytes, true);
1822                         } else {
1823                                 u64 __pos;
1824
1825                                 __pos = round_down(pos,
1826                                                    fs_info->sectorsize) +
1827                                         (dirty_pages << PAGE_SHIFT);
1828                                 btrfs_delalloc_release_space(BTRFS_I(inode),
1829                                                 data_reserved, __pos,
1830                                                 release_bytes, true);
1831                         }
1832                 }
1833
1834                 release_bytes = round_up(copied + sector_offset,
1835                                         fs_info->sectorsize);
1836
1837                 ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1838                                         dirty_pages, pos, copied,
1839                                         &cached_state, only_release_metadata);
1840
1841                 /*
1842                  * If we have not locked the extent range, because the range's
1843                  * start offset is >= i_size, we might still have a non-NULL
1844                  * cached extent state, acquired while marking the extent range
1845                  * as delalloc through btrfs_dirty_pages(). Therefore free any
1846                  * possible cached extent state to avoid a memory leak.
1847                  */
1848                 if (extents_locked)
1849                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1850                                              lockstart, lockend, &cached_state);
1851                 else
1852                         free_extent_state(cached_state);
1853
1854                 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1855                 if (ret) {
1856                         btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1857                         break;
1858                 }
1859
1860                 release_bytes = 0;
1861                 if (only_release_metadata)
1862                         btrfs_check_nocow_unlock(BTRFS_I(inode));
1863
1864                 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1865
1866                 cond_resched();
1867
1868                 balance_dirty_pages_ratelimited(inode->i_mapping);
1869
1870                 pos += copied;
1871                 num_written += copied;
1872         }
1873
1874         kfree(pages);
1875
1876         if (release_bytes) {
1877                 if (only_release_metadata) {
1878                         btrfs_check_nocow_unlock(BTRFS_I(inode));
1879                         btrfs_delalloc_release_metadata(BTRFS_I(inode),
1880                                         release_bytes, true);
1881                 } else {
1882                         btrfs_delalloc_release_space(BTRFS_I(inode),
1883                                         data_reserved,
1884                                         round_down(pos, fs_info->sectorsize),
1885                                         release_bytes, true);
1886                 }
1887         }
1888
1889         extent_changeset_free(data_reserved);
1890         if (num_written > 0) {
1891                 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1892                 iocb->ki_pos += num_written;
1893         }
1894 out:
1895         btrfs_inode_unlock(inode, ilock_flags);
1896         return num_written ? num_written : ret;
1897 }
1898
1899 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1900                                const struct iov_iter *iter, loff_t offset)
1901 {
1902         const u32 blocksize_mask = fs_info->sectorsize - 1;
1903
1904         if (offset & blocksize_mask)
1905                 return -EINVAL;
1906
1907         if (iov_iter_alignment(iter) & blocksize_mask)
1908                 return -EINVAL;
1909
1910         return 0;
1911 }
1912
1913 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1914 {
1915         struct file *file = iocb->ki_filp;
1916         struct inode *inode = file_inode(file);
1917         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1918         loff_t pos;
1919         ssize_t written = 0;
1920         ssize_t written_buffered;
1921         loff_t endbyte;
1922         ssize_t err;
1923         unsigned int ilock_flags = 0;
1924         struct iomap_dio *dio = NULL;
1925
1926         if (iocb->ki_flags & IOCB_NOWAIT)
1927                 ilock_flags |= BTRFS_ILOCK_TRY;
1928
1929         /* If the write DIO is within EOF, use a shared lock */
1930         if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1931                 ilock_flags |= BTRFS_ILOCK_SHARED;
1932
1933 relock:
1934         err = btrfs_inode_lock(inode, ilock_flags);
1935         if (err < 0)
1936                 return err;
1937
1938         err = generic_write_checks(iocb, from);
1939         if (err <= 0) {
1940                 btrfs_inode_unlock(inode, ilock_flags);
1941                 return err;
1942         }
1943
1944         err = btrfs_write_check(iocb, from, err);
1945         if (err < 0) {
1946                 btrfs_inode_unlock(inode, ilock_flags);
1947                 goto out;
1948         }
1949
1950         pos = iocb->ki_pos;
1951         /*
1952          * Re-check since file size may have changed just before taking the
1953          * lock or pos may have changed because of O_APPEND in generic_write_check()
1954          */
1955         if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1956             pos + iov_iter_count(from) > i_size_read(inode)) {
1957                 btrfs_inode_unlock(inode, ilock_flags);
1958                 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1959                 goto relock;
1960         }
1961
1962         if (check_direct_IO(fs_info, from, pos)) {
1963                 btrfs_inode_unlock(inode, ilock_flags);
1964                 goto buffered;
1965         }
1966
1967         dio = __iomap_dio_rw(iocb, from, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
1968                              0, 0);
1969
1970         btrfs_inode_unlock(inode, ilock_flags);
1971
1972         if (IS_ERR_OR_NULL(dio)) {
1973                 err = PTR_ERR_OR_ZERO(dio);
1974                 if (err < 0 && err != -ENOTBLK)
1975                         goto out;
1976         } else {
1977                 written = iomap_dio_complete(dio);
1978         }
1979
1980         if (written < 0 || !iov_iter_count(from)) {
1981                 err = written;
1982                 goto out;
1983         }
1984
1985 buffered:
1986         pos = iocb->ki_pos;
1987         written_buffered = btrfs_buffered_write(iocb, from);
1988         if (written_buffered < 0) {
1989                 err = written_buffered;
1990                 goto out;
1991         }
1992         /*
1993          * Ensure all data is persisted. We want the next direct IO read to be
1994          * able to read what was just written.
1995          */
1996         endbyte = pos + written_buffered - 1;
1997         err = btrfs_fdatawrite_range(inode, pos, endbyte);
1998         if (err)
1999                 goto out;
2000         err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
2001         if (err)
2002                 goto out;
2003         written += written_buffered;
2004         iocb->ki_pos = pos + written_buffered;
2005         invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
2006                                  endbyte >> PAGE_SHIFT);
2007 out:
2008         return written ? written : err;
2009 }
2010
2011 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
2012                                     struct iov_iter *from)
2013 {
2014         struct file *file = iocb->ki_filp;
2015         struct btrfs_inode *inode = BTRFS_I(file_inode(file));
2016         ssize_t num_written = 0;
2017         const bool sync = iocb->ki_flags & IOCB_DSYNC;
2018
2019         /*
2020          * If the fs flips readonly due to some impossible error, although we
2021          * have opened a file as writable, we have to stop this write operation
2022          * to ensure consistency.
2023          */
2024         if (BTRFS_FS_ERROR(inode->root->fs_info))
2025                 return -EROFS;
2026
2027         if (!(iocb->ki_flags & IOCB_DIRECT) &&
2028             (iocb->ki_flags & IOCB_NOWAIT))
2029                 return -EOPNOTSUPP;
2030
2031         if (sync)
2032                 atomic_inc(&inode->sync_writers);
2033
2034         if (iocb->ki_flags & IOCB_DIRECT)
2035                 num_written = btrfs_direct_write(iocb, from);
2036         else
2037                 num_written = btrfs_buffered_write(iocb, from);
2038
2039         btrfs_set_inode_last_sub_trans(inode);
2040
2041         if (num_written > 0)
2042                 num_written = generic_write_sync(iocb, num_written);
2043
2044         if (sync)
2045                 atomic_dec(&inode->sync_writers);
2046
2047         current->backing_dev_info = NULL;
2048         return num_written;
2049 }
2050
2051 int btrfs_release_file(struct inode *inode, struct file *filp)
2052 {
2053         struct btrfs_file_private *private = filp->private_data;
2054
2055         if (private && private->filldir_buf)
2056                 kfree(private->filldir_buf);
2057         kfree(private);
2058         filp->private_data = NULL;
2059
2060         /*
2061          * Set by setattr when we are about to truncate a file from a non-zero
2062          * size to a zero size.  This tries to flush down new bytes that may
2063          * have been written if the application were using truncate to replace
2064          * a file in place.
2065          */
2066         if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
2067                                &BTRFS_I(inode)->runtime_flags))
2068                         filemap_flush(inode->i_mapping);
2069         return 0;
2070 }
2071
2072 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2073 {
2074         int ret;
2075         struct blk_plug plug;
2076
2077         /*
2078          * This is only called in fsync, which would do synchronous writes, so
2079          * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2080          * multiple disks using raid profile, a large IO can be split to
2081          * several segments of stripe length (currently 64K).
2082          */
2083         blk_start_plug(&plug);
2084         atomic_inc(&BTRFS_I(inode)->sync_writers);
2085         ret = btrfs_fdatawrite_range(inode, start, end);
2086         atomic_dec(&BTRFS_I(inode)->sync_writers);
2087         blk_finish_plug(&plug);
2088
2089         return ret;
2090 }
2091
2092 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
2093 {
2094         struct btrfs_inode *inode = BTRFS_I(ctx->inode);
2095         struct btrfs_fs_info *fs_info = inode->root->fs_info;
2096
2097         if (btrfs_inode_in_log(inode, fs_info->generation) &&
2098             list_empty(&ctx->ordered_extents))
2099                 return true;
2100
2101         /*
2102          * If we are doing a fast fsync we can not bail out if the inode's
2103          * last_trans is <= then the last committed transaction, because we only
2104          * update the last_trans of the inode during ordered extent completion,
2105          * and for a fast fsync we don't wait for that, we only wait for the
2106          * writeback to complete.
2107          */
2108         if (inode->last_trans <= fs_info->last_trans_committed &&
2109             (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
2110              list_empty(&ctx->ordered_extents)))
2111                 return true;
2112
2113         return false;
2114 }
2115
2116 /*
2117  * fsync call for both files and directories.  This logs the inode into
2118  * the tree log instead of forcing full commits whenever possible.
2119  *
2120  * It needs to call filemap_fdatawait so that all ordered extent updates are
2121  * in the metadata btree are up to date for copying to the log.
2122  *
2123  * It drops the inode mutex before doing the tree log commit.  This is an
2124  * important optimization for directories because holding the mutex prevents
2125  * new operations on the dir while we write to disk.
2126  */
2127 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2128 {
2129         struct dentry *dentry = file_dentry(file);
2130         struct inode *inode = d_inode(dentry);
2131         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2132         struct btrfs_root *root = BTRFS_I(inode)->root;
2133         struct btrfs_trans_handle *trans;
2134         struct btrfs_log_ctx ctx;
2135         int ret = 0, err;
2136         u64 len;
2137         bool full_sync;
2138
2139         trace_btrfs_sync_file(file, datasync);
2140
2141         btrfs_init_log_ctx(&ctx, inode);
2142
2143         /*
2144          * Always set the range to a full range, otherwise we can get into
2145          * several problems, from missing file extent items to represent holes
2146          * when not using the NO_HOLES feature, to log tree corruption due to
2147          * races between hole detection during logging and completion of ordered
2148          * extents outside the range, to missing checksums due to ordered extents
2149          * for which we flushed only a subset of their pages.
2150          */
2151         start = 0;
2152         end = LLONG_MAX;
2153         len = (u64)LLONG_MAX + 1;
2154
2155         /*
2156          * We write the dirty pages in the range and wait until they complete
2157          * out of the ->i_mutex. If so, we can flush the dirty pages by
2158          * multi-task, and make the performance up.  See
2159          * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2160          */
2161         ret = start_ordered_ops(inode, start, end);
2162         if (ret)
2163                 goto out;
2164
2165         btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2166
2167         atomic_inc(&root->log_batch);
2168
2169         /*
2170          * Always check for the full sync flag while holding the inode's lock,
2171          * to avoid races with other tasks. The flag must be either set all the
2172          * time during logging or always off all the time while logging.
2173          */
2174         full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2175                              &BTRFS_I(inode)->runtime_flags);
2176
2177         /*
2178          * Before we acquired the inode's lock and the mmap lock, someone may
2179          * have dirtied more pages in the target range. We need to make sure
2180          * that writeback for any such pages does not start while we are logging
2181          * the inode, because if it does, any of the following might happen when
2182          * we are not doing a full inode sync:
2183          *
2184          * 1) We log an extent after its writeback finishes but before its
2185          *    checksums are added to the csum tree, leading to -EIO errors
2186          *    when attempting to read the extent after a log replay.
2187          *
2188          * 2) We can end up logging an extent before its writeback finishes.
2189          *    Therefore after the log replay we will have a file extent item
2190          *    pointing to an unwritten extent (and no data checksums as well).
2191          *
2192          * So trigger writeback for any eventual new dirty pages and then we
2193          * wait for all ordered extents to complete below.
2194          */
2195         ret = start_ordered_ops(inode, start, end);
2196         if (ret) {
2197                 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2198                 goto out;
2199         }
2200
2201         /*
2202          * We have to do this here to avoid the priority inversion of waiting on
2203          * IO of a lower priority task while holding a transaction open.
2204          *
2205          * For a full fsync we wait for the ordered extents to complete while
2206          * for a fast fsync we wait just for writeback to complete, and then
2207          * attach the ordered extents to the transaction so that a transaction
2208          * commit waits for their completion, to avoid data loss if we fsync,
2209          * the current transaction commits before the ordered extents complete
2210          * and a power failure happens right after that.
2211          *
2212          * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
2213          * logical address recorded in the ordered extent may change. We need
2214          * to wait for the IO to stabilize the logical address.
2215          */
2216         if (full_sync || btrfs_is_zoned(fs_info)) {
2217                 ret = btrfs_wait_ordered_range(inode, start, len);
2218         } else {
2219                 /*
2220                  * Get our ordered extents as soon as possible to avoid doing
2221                  * checksum lookups in the csum tree, and use instead the
2222                  * checksums attached to the ordered extents.
2223                  */
2224                 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2225                                                       &ctx.ordered_extents);
2226                 ret = filemap_fdatawait_range(inode->i_mapping, start, end);
2227         }
2228
2229         if (ret)
2230                 goto out_release_extents;
2231
2232         atomic_inc(&root->log_batch);
2233
2234         smp_mb();
2235         if (skip_inode_logging(&ctx)) {
2236                 /*
2237                  * We've had everything committed since the last time we were
2238                  * modified so clear this flag in case it was set for whatever
2239                  * reason, it's no longer relevant.
2240                  */
2241                 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2242                           &BTRFS_I(inode)->runtime_flags);
2243                 /*
2244                  * An ordered extent might have started before and completed
2245                  * already with io errors, in which case the inode was not
2246                  * updated and we end up here. So check the inode's mapping
2247                  * for any errors that might have happened since we last
2248                  * checked called fsync.
2249                  */
2250                 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2251                 goto out_release_extents;
2252         }
2253
2254         /*
2255          * We use start here because we will need to wait on the IO to complete
2256          * in btrfs_sync_log, which could require joining a transaction (for
2257          * example checking cross references in the nocow path).  If we use join
2258          * here we could get into a situation where we're waiting on IO to
2259          * happen that is blocked on a transaction trying to commit.  With start
2260          * we inc the extwriter counter, so we wait for all extwriters to exit
2261          * before we start blocking joiners.  This comment is to keep somebody
2262          * from thinking they are super smart and changing this to
2263          * btrfs_join_transaction *cough*Josef*cough*.
2264          */
2265         trans = btrfs_start_transaction(root, 0);
2266         if (IS_ERR(trans)) {
2267                 ret = PTR_ERR(trans);
2268                 goto out_release_extents;
2269         }
2270         trans->in_fsync = true;
2271
2272         ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2273         btrfs_release_log_ctx_extents(&ctx);
2274         if (ret < 0) {
2275                 /* Fallthrough and commit/free transaction. */
2276                 ret = 1;
2277         }
2278
2279         /* we've logged all the items and now have a consistent
2280          * version of the file in the log.  It is possible that
2281          * someone will come in and modify the file, but that's
2282          * fine because the log is consistent on disk, and we
2283          * have references to all of the file's extents
2284          *
2285          * It is possible that someone will come in and log the
2286          * file again, but that will end up using the synchronization
2287          * inside btrfs_sync_log to keep things safe.
2288          */
2289         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2290
2291         if (ret != BTRFS_NO_LOG_SYNC) {
2292                 if (!ret) {
2293                         ret = btrfs_sync_log(trans, root, &ctx);
2294                         if (!ret) {
2295                                 ret = btrfs_end_transaction(trans);
2296                                 goto out;
2297                         }
2298                 }
2299                 if (!full_sync) {
2300                         ret = btrfs_wait_ordered_range(inode, start, len);
2301                         if (ret) {
2302                                 btrfs_end_transaction(trans);
2303                                 goto out;
2304                         }
2305                 }
2306                 ret = btrfs_commit_transaction(trans);
2307         } else {
2308                 ret = btrfs_end_transaction(trans);
2309         }
2310 out:
2311         ASSERT(list_empty(&ctx.list));
2312         err = file_check_and_advance_wb_err(file);
2313         if (!ret)
2314                 ret = err;
2315         return ret > 0 ? -EIO : ret;
2316
2317 out_release_extents:
2318         btrfs_release_log_ctx_extents(&ctx);
2319         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2320         goto out;
2321 }
2322
2323 static const struct vm_operations_struct btrfs_file_vm_ops = {
2324         .fault          = filemap_fault,
2325         .map_pages      = filemap_map_pages,
2326         .page_mkwrite   = btrfs_page_mkwrite,
2327 };
2328
2329 static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
2330 {
2331         struct address_space *mapping = filp->f_mapping;
2332
2333         if (!mapping->a_ops->readpage)
2334                 return -ENOEXEC;
2335
2336         file_accessed(filp);
2337         vma->vm_ops = &btrfs_file_vm_ops;
2338
2339         return 0;
2340 }
2341
2342 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2343                           int slot, u64 start, u64 end)
2344 {
2345         struct btrfs_file_extent_item *fi;
2346         struct btrfs_key key;
2347
2348         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2349                 return 0;
2350
2351         btrfs_item_key_to_cpu(leaf, &key, slot);
2352         if (key.objectid != btrfs_ino(inode) ||
2353             key.type != BTRFS_EXTENT_DATA_KEY)
2354                 return 0;
2355
2356         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2357
2358         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2359                 return 0;
2360
2361         if (btrfs_file_extent_disk_bytenr(leaf, fi))
2362                 return 0;
2363
2364         if (key.offset == end)
2365                 return 1;
2366         if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2367                 return 1;
2368         return 0;
2369 }
2370
2371 static int fill_holes(struct btrfs_trans_handle *trans,
2372                 struct btrfs_inode *inode,
2373                 struct btrfs_path *path, u64 offset, u64 end)
2374 {
2375         struct btrfs_fs_info *fs_info = trans->fs_info;
2376         struct btrfs_root *root = inode->root;
2377         struct extent_buffer *leaf;
2378         struct btrfs_file_extent_item *fi;
2379         struct extent_map *hole_em;
2380         struct extent_map_tree *em_tree = &inode->extent_tree;
2381         struct btrfs_key key;
2382         int ret;
2383
2384         if (btrfs_fs_incompat(fs_info, NO_HOLES))
2385                 goto out;
2386
2387         key.objectid = btrfs_ino(inode);
2388         key.type = BTRFS_EXTENT_DATA_KEY;
2389         key.offset = offset;
2390
2391         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2392         if (ret <= 0) {
2393                 /*
2394                  * We should have dropped this offset, so if we find it then
2395                  * something has gone horribly wrong.
2396                  */
2397                 if (ret == 0)
2398                         ret = -EINVAL;
2399                 return ret;
2400         }
2401
2402         leaf = path->nodes[0];
2403         if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2404                 u64 num_bytes;
2405
2406                 path->slots[0]--;
2407                 fi = btrfs_item_ptr(leaf, path->slots[0],
2408                                     struct btrfs_file_extent_item);
2409                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2410                         end - offset;
2411                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2412                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2413                 btrfs_set_file_extent_offset(leaf, fi, 0);
2414                 btrfs_mark_buffer_dirty(leaf);
2415                 goto out;
2416         }
2417
2418         if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2419                 u64 num_bytes;
2420
2421                 key.offset = offset;
2422                 btrfs_set_item_key_safe(fs_info, path, &key);
2423                 fi = btrfs_item_ptr(leaf, path->slots[0],
2424                                     struct btrfs_file_extent_item);
2425                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2426                         offset;
2427                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2428                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2429                 btrfs_set_file_extent_offset(leaf, fi, 0);
2430                 btrfs_mark_buffer_dirty(leaf);
2431                 goto out;
2432         }
2433         btrfs_release_path(path);
2434
2435         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2436                         offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2437         if (ret)
2438                 return ret;
2439
2440 out:
2441         btrfs_release_path(path);
2442
2443         hole_em = alloc_extent_map();
2444         if (!hole_em) {
2445                 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2446                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2447         } else {
2448                 hole_em->start = offset;
2449                 hole_em->len = end - offset;
2450                 hole_em->ram_bytes = hole_em->len;
2451                 hole_em->orig_start = offset;
2452
2453                 hole_em->block_start = EXTENT_MAP_HOLE;
2454                 hole_em->block_len = 0;
2455                 hole_em->orig_block_len = 0;
2456                 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2457                 hole_em->generation = trans->transid;
2458
2459                 do {
2460                         btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2461                         write_lock(&em_tree->lock);
2462                         ret = add_extent_mapping(em_tree, hole_em, 1);
2463                         write_unlock(&em_tree->lock);
2464                 } while (ret == -EEXIST);
2465                 free_extent_map(hole_em);
2466                 if (ret)
2467                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2468                                         &inode->runtime_flags);
2469         }
2470
2471         return 0;
2472 }
2473
2474 /*
2475  * Find a hole extent on given inode and change start/len to the end of hole
2476  * extent.(hole/vacuum extent whose em->start <= start &&
2477  *         em->start + em->len > start)
2478  * When a hole extent is found, return 1 and modify start/len.
2479  */
2480 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2481 {
2482         struct btrfs_fs_info *fs_info = inode->root->fs_info;
2483         struct extent_map *em;
2484         int ret = 0;
2485
2486         em = btrfs_get_extent(inode, NULL, 0,
2487                               round_down(*start, fs_info->sectorsize),
2488                               round_up(*len, fs_info->sectorsize));
2489         if (IS_ERR(em))
2490                 return PTR_ERR(em);
2491
2492         /* Hole or vacuum extent(only exists in no-hole mode) */
2493         if (em->block_start == EXTENT_MAP_HOLE) {
2494                 ret = 1;
2495                 *len = em->start + em->len > *start + *len ?
2496                        0 : *start + *len - em->start - em->len;
2497                 *start = em->start + em->len;
2498         }
2499         free_extent_map(em);
2500         return ret;
2501 }
2502
2503 static int btrfs_punch_hole_lock_range(struct inode *inode,
2504                                        const u64 lockstart,
2505                                        const u64 lockend,
2506                                        struct extent_state **cached_state)
2507 {
2508         /*
2509          * For subpage case, if the range is not at page boundary, we could
2510          * have pages at the leading/tailing part of the range.
2511          * This could lead to dead loop since filemap_range_has_page()
2512          * will always return true.
2513          * So here we need to do extra page alignment for
2514          * filemap_range_has_page().
2515          */
2516         const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2517         const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2518
2519         while (1) {
2520                 struct btrfs_ordered_extent *ordered;
2521                 int ret;
2522
2523                 truncate_pagecache_range(inode, lockstart, lockend);
2524
2525                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2526                                  cached_state);
2527                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
2528                                                             lockend);
2529
2530                 /*
2531                  * We need to make sure we have no ordered extents in this range
2532                  * and nobody raced in and read a page in this range, if we did
2533                  * we need to try again.
2534                  */
2535                 if ((!ordered ||
2536                     (ordered->file_offset + ordered->num_bytes <= lockstart ||
2537                      ordered->file_offset > lockend)) &&
2538                      !filemap_range_has_page(inode->i_mapping,
2539                                              page_lockstart, page_lockend)) {
2540                         if (ordered)
2541                                 btrfs_put_ordered_extent(ordered);
2542                         break;
2543                 }
2544                 if (ordered)
2545                         btrfs_put_ordered_extent(ordered);
2546                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2547                                      lockend, cached_state);
2548                 ret = btrfs_wait_ordered_range(inode, lockstart,
2549                                                lockend - lockstart + 1);
2550                 if (ret)
2551                         return ret;
2552         }
2553         return 0;
2554 }
2555
2556 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2557                                      struct btrfs_inode *inode,
2558                                      struct btrfs_path *path,
2559                                      struct btrfs_replace_extent_info *extent_info,
2560                                      const u64 replace_len,
2561                                      const u64 bytes_to_drop)
2562 {
2563         struct btrfs_fs_info *fs_info = trans->fs_info;
2564         struct btrfs_root *root = inode->root;
2565         struct btrfs_file_extent_item *extent;
2566         struct extent_buffer *leaf;
2567         struct btrfs_key key;
2568         int slot;
2569         struct btrfs_ref ref = { 0 };
2570         int ret;
2571
2572         if (replace_len == 0)
2573                 return 0;
2574
2575         if (extent_info->disk_offset == 0 &&
2576             btrfs_fs_incompat(fs_info, NO_HOLES)) {
2577                 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2578                 return 0;
2579         }
2580
2581         key.objectid = btrfs_ino(inode);
2582         key.type = BTRFS_EXTENT_DATA_KEY;
2583         key.offset = extent_info->file_offset;
2584         ret = btrfs_insert_empty_item(trans, root, path, &key,
2585                                       sizeof(struct btrfs_file_extent_item));
2586         if (ret)
2587                 return ret;
2588         leaf = path->nodes[0];
2589         slot = path->slots[0];
2590         write_extent_buffer(leaf, extent_info->extent_buf,
2591                             btrfs_item_ptr_offset(leaf, slot),
2592                             sizeof(struct btrfs_file_extent_item));
2593         extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2594         ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2595         btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2596         btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2597         if (extent_info->is_new_extent)
2598                 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2599         btrfs_mark_buffer_dirty(leaf);
2600         btrfs_release_path(path);
2601
2602         ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2603                                                 replace_len);
2604         if (ret)
2605                 return ret;
2606
2607         /* If it's a hole, nothing more needs to be done. */
2608         if (extent_info->disk_offset == 0) {
2609                 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2610                 return 0;
2611         }
2612
2613         btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2614
2615         if (extent_info->is_new_extent && extent_info->insertions == 0) {
2616                 key.objectid = extent_info->disk_offset;
2617                 key.type = BTRFS_EXTENT_ITEM_KEY;
2618                 key.offset = extent_info->disk_len;
2619                 ret = btrfs_alloc_reserved_file_extent(trans, root,
2620                                                        btrfs_ino(inode),
2621                                                        extent_info->file_offset,
2622                                                        extent_info->qgroup_reserved,
2623                                                        &key);
2624         } else {
2625                 u64 ref_offset;
2626
2627                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2628                                        extent_info->disk_offset,
2629                                        extent_info->disk_len, 0);
2630                 ref_offset = extent_info->file_offset - extent_info->data_offset;
2631                 btrfs_init_data_ref(&ref, root->root_key.objectid,
2632                                     btrfs_ino(inode), ref_offset, 0, false);
2633                 ret = btrfs_inc_extent_ref(trans, &ref);
2634         }
2635
2636         extent_info->insertions++;
2637
2638         return ret;
2639 }
2640
2641 /*
2642  * The respective range must have been previously locked, as well as the inode.
2643  * The end offset is inclusive (last byte of the range).
2644  * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2645  * the file range with an extent.
2646  * When not punching a hole, we don't want to end up in a state where we dropped
2647  * extents without inserting a new one, so we must abort the transaction to avoid
2648  * a corruption.
2649  */
2650 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2651                                struct btrfs_path *path, const u64 start,
2652                                const u64 end,
2653                                struct btrfs_replace_extent_info *extent_info,
2654                                struct btrfs_trans_handle **trans_out)
2655 {
2656         struct btrfs_drop_extents_args drop_args = { 0 };
2657         struct btrfs_root *root = inode->root;
2658         struct btrfs_fs_info *fs_info = root->fs_info;
2659         u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2660         u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2661         struct btrfs_trans_handle *trans = NULL;
2662         struct btrfs_block_rsv *rsv;
2663         unsigned int rsv_count;
2664         u64 cur_offset;
2665         u64 len = end - start;
2666         int ret = 0;
2667
2668         if (end <= start)
2669                 return -EINVAL;
2670
2671         rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2672         if (!rsv) {
2673                 ret = -ENOMEM;
2674                 goto out;
2675         }
2676         rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2677         rsv->failfast = 1;
2678
2679         /*
2680          * 1 - update the inode
2681          * 1 - removing the extents in the range
2682          * 1 - adding the hole extent if no_holes isn't set or if we are
2683          *     replacing the range with a new extent
2684          */
2685         if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2686                 rsv_count = 3;
2687         else
2688                 rsv_count = 2;
2689
2690         trans = btrfs_start_transaction(root, rsv_count);
2691         if (IS_ERR(trans)) {
2692                 ret = PTR_ERR(trans);
2693                 trans = NULL;
2694                 goto out_free;
2695         }
2696
2697         ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2698                                       min_size, false);
2699         BUG_ON(ret);
2700         trans->block_rsv = rsv;
2701
2702         cur_offset = start;
2703         drop_args.path = path;
2704         drop_args.end = end + 1;
2705         drop_args.drop_cache = true;
2706         while (cur_offset < end) {
2707                 drop_args.start = cur_offset;
2708                 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2709                 /* If we are punching a hole decrement the inode's byte count */
2710                 if (!extent_info)
2711                         btrfs_update_inode_bytes(inode, 0,
2712                                                  drop_args.bytes_found);
2713                 if (ret != -ENOSPC) {
2714                         /*
2715                          * The only time we don't want to abort is if we are
2716                          * attempting to clone a partial inline extent, in which
2717                          * case we'll get EOPNOTSUPP.  However if we aren't
2718                          * clone we need to abort no matter what, because if we
2719                          * got EOPNOTSUPP via prealloc then we messed up and
2720                          * need to abort.
2721                          */
2722                         if (ret &&
2723                             (ret != -EOPNOTSUPP ||
2724                              (extent_info && extent_info->is_new_extent)))
2725                                 btrfs_abort_transaction(trans, ret);
2726                         break;
2727                 }
2728
2729                 trans->block_rsv = &fs_info->trans_block_rsv;
2730
2731                 if (!extent_info && cur_offset < drop_args.drop_end &&
2732                     cur_offset < ino_size) {
2733                         ret = fill_holes(trans, inode, path, cur_offset,
2734                                          drop_args.drop_end);
2735                         if (ret) {
2736                                 /*
2737                                  * If we failed then we didn't insert our hole
2738                                  * entries for the area we dropped, so now the
2739                                  * fs is corrupted, so we must abort the
2740                                  * transaction.
2741                                  */
2742                                 btrfs_abort_transaction(trans, ret);
2743                                 break;
2744                         }
2745                 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2746                         /*
2747                          * We are past the i_size here, but since we didn't
2748                          * insert holes we need to clear the mapped area so we
2749                          * know to not set disk_i_size in this area until a new
2750                          * file extent is inserted here.
2751                          */
2752                         ret = btrfs_inode_clear_file_extent_range(inode,
2753                                         cur_offset,
2754                                         drop_args.drop_end - cur_offset);
2755                         if (ret) {
2756                                 /*
2757                                  * We couldn't clear our area, so we could
2758                                  * presumably adjust up and corrupt the fs, so
2759                                  * we need to abort.
2760                                  */
2761                                 btrfs_abort_transaction(trans, ret);
2762                                 break;
2763                         }
2764                 }
2765
2766                 if (extent_info &&
2767                     drop_args.drop_end > extent_info->file_offset) {
2768                         u64 replace_len = drop_args.drop_end -
2769                                           extent_info->file_offset;
2770
2771                         ret = btrfs_insert_replace_extent(trans, inode, path,
2772                                         extent_info, replace_len,
2773                                         drop_args.bytes_found);
2774                         if (ret) {
2775                                 btrfs_abort_transaction(trans, ret);
2776                                 break;
2777                         }
2778                         extent_info->data_len -= replace_len;
2779                         extent_info->data_offset += replace_len;
2780                         extent_info->file_offset += replace_len;
2781                 }
2782
2783                 ret = btrfs_update_inode(trans, root, inode);
2784                 if (ret)
2785                         break;
2786
2787                 btrfs_end_transaction(trans);
2788                 btrfs_btree_balance_dirty(fs_info);
2789
2790                 trans = btrfs_start_transaction(root, rsv_count);
2791                 if (IS_ERR(trans)) {
2792                         ret = PTR_ERR(trans);
2793                         trans = NULL;
2794                         break;
2795                 }
2796
2797                 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2798                                               rsv, min_size, false);
2799                 BUG_ON(ret);    /* shouldn't happen */
2800                 trans->block_rsv = rsv;
2801
2802                 cur_offset = drop_args.drop_end;
2803                 len = end - cur_offset;
2804                 if (!extent_info && len) {
2805                         ret = find_first_non_hole(inode, &cur_offset, &len);
2806                         if (unlikely(ret < 0))
2807                                 break;
2808                         if (ret && !len) {
2809                                 ret = 0;
2810                                 break;
2811                         }
2812                 }
2813         }
2814
2815         /*
2816          * If we were cloning, force the next fsync to be a full one since we
2817          * we replaced (or just dropped in the case of cloning holes when
2818          * NO_HOLES is enabled) file extent items and did not setup new extent
2819          * maps for the replacement extents (or holes).
2820          */
2821         if (extent_info && !extent_info->is_new_extent)
2822                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2823
2824         if (ret)
2825                 goto out_trans;
2826
2827         trans->block_rsv = &fs_info->trans_block_rsv;
2828         /*
2829          * If we are using the NO_HOLES feature we might have had already an
2830          * hole that overlaps a part of the region [lockstart, lockend] and
2831          * ends at (or beyond) lockend. Since we have no file extent items to
2832          * represent holes, drop_end can be less than lockend and so we must
2833          * make sure we have an extent map representing the existing hole (the
2834          * call to __btrfs_drop_extents() might have dropped the existing extent
2835          * map representing the existing hole), otherwise the fast fsync path
2836          * will not record the existence of the hole region
2837          * [existing_hole_start, lockend].
2838          */
2839         if (drop_args.drop_end <= end)
2840                 drop_args.drop_end = end + 1;
2841         /*
2842          * Don't insert file hole extent item if it's for a range beyond eof
2843          * (because it's useless) or if it represents a 0 bytes range (when
2844          * cur_offset == drop_end).
2845          */
2846         if (!extent_info && cur_offset < ino_size &&
2847             cur_offset < drop_args.drop_end) {
2848                 ret = fill_holes(trans, inode, path, cur_offset,
2849                                  drop_args.drop_end);
2850                 if (ret) {
2851                         /* Same comment as above. */
2852                         btrfs_abort_transaction(trans, ret);
2853                         goto out_trans;
2854                 }
2855         } else if (!extent_info && cur_offset < drop_args.drop_end) {
2856                 /* See the comment in the loop above for the reasoning here. */
2857                 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2858                                         drop_args.drop_end - cur_offset);
2859                 if (ret) {
2860                         btrfs_abort_transaction(trans, ret);
2861                         goto out_trans;
2862                 }
2863
2864         }
2865         if (extent_info) {
2866                 ret = btrfs_insert_replace_extent(trans, inode, path,
2867                                 extent_info, extent_info->data_len,
2868                                 drop_args.bytes_found);
2869                 if (ret) {
2870                         btrfs_abort_transaction(trans, ret);
2871                         goto out_trans;
2872                 }
2873         }
2874
2875 out_trans:
2876         if (!trans)
2877                 goto out_free;
2878
2879         trans->block_rsv = &fs_info->trans_block_rsv;
2880         if (ret)
2881                 btrfs_end_transaction(trans);
2882         else
2883                 *trans_out = trans;
2884 out_free:
2885         btrfs_free_block_rsv(fs_info, rsv);
2886 out:
2887         return ret;
2888 }
2889
2890 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2891 {
2892         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2893         struct btrfs_root *root = BTRFS_I(inode)->root;
2894         struct extent_state *cached_state = NULL;
2895         struct btrfs_path *path;
2896         struct btrfs_trans_handle *trans = NULL;
2897         u64 lockstart;
2898         u64 lockend;
2899         u64 tail_start;
2900         u64 tail_len;
2901         u64 orig_start = offset;
2902         int ret = 0;
2903         bool same_block;
2904         u64 ino_size;
2905         bool truncated_block = false;
2906         bool updated_inode = false;
2907
2908         ret = btrfs_wait_ordered_range(inode, offset, len);
2909         if (ret)
2910                 return ret;
2911
2912         btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2913         ino_size = round_up(inode->i_size, fs_info->sectorsize);
2914         ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2915         if (ret < 0)
2916                 goto out_only_mutex;
2917         if (ret && !len) {
2918                 /* Already in a large hole */
2919                 ret = 0;
2920                 goto out_only_mutex;
2921         }
2922
2923         lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode)));
2924         lockend = round_down(offset + len,
2925                              btrfs_inode_sectorsize(BTRFS_I(inode))) - 1;
2926         same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2927                 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2928         /*
2929          * We needn't truncate any block which is beyond the end of the file
2930          * because we are sure there is no data there.
2931          */
2932         /*
2933          * Only do this if we are in the same block and we aren't doing the
2934          * entire block.
2935          */
2936         if (same_block && len < fs_info->sectorsize) {
2937                 if (offset < ino_size) {
2938                         truncated_block = true;
2939                         ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2940                                                    0);
2941                 } else {
2942                         ret = 0;
2943                 }
2944                 goto out_only_mutex;
2945         }
2946
2947         /* zero back part of the first block */
2948         if (offset < ino_size) {
2949                 truncated_block = true;
2950                 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2951                 if (ret) {
2952                         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2953                         return ret;
2954                 }
2955         }
2956
2957         /* Check the aligned pages after the first unaligned page,
2958          * if offset != orig_start, which means the first unaligned page
2959          * including several following pages are already in holes,
2960          * the extra check can be skipped */
2961         if (offset == orig_start) {
2962                 /* after truncate page, check hole again */
2963                 len = offset + len - lockstart;
2964                 offset = lockstart;
2965                 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2966                 if (ret < 0)
2967                         goto out_only_mutex;
2968                 if (ret && !len) {
2969                         ret = 0;
2970                         goto out_only_mutex;
2971                 }
2972                 lockstart = offset;
2973         }
2974
2975         /* Check the tail unaligned part is in a hole */
2976         tail_start = lockend + 1;
2977         tail_len = offset + len - tail_start;
2978         if (tail_len) {
2979                 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2980                 if (unlikely(ret < 0))
2981                         goto out_only_mutex;
2982                 if (!ret) {
2983                         /* zero the front end of the last page */
2984                         if (tail_start + tail_len < ino_size) {
2985                                 truncated_block = true;
2986                                 ret = btrfs_truncate_block(BTRFS_I(inode),
2987                                                         tail_start + tail_len,
2988                                                         0, 1);
2989                                 if (ret)
2990                                         goto out_only_mutex;
2991                         }
2992                 }
2993         }
2994
2995         if (lockend < lockstart) {
2996                 ret = 0;
2997                 goto out_only_mutex;
2998         }
2999
3000         ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3001                                           &cached_state);
3002         if (ret)
3003                 goto out_only_mutex;
3004
3005         path = btrfs_alloc_path();
3006         if (!path) {
3007                 ret = -ENOMEM;
3008                 goto out;
3009         }
3010
3011         ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
3012                                          lockend, NULL, &trans);
3013         btrfs_free_path(path);
3014         if (ret)
3015                 goto out;
3016
3017         ASSERT(trans != NULL);
3018         inode_inc_iversion(inode);
3019         inode->i_mtime = inode->i_ctime = current_time(inode);
3020         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3021         updated_inode = true;
3022         btrfs_end_transaction(trans);
3023         btrfs_btree_balance_dirty(fs_info);
3024 out:
3025         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3026                              &cached_state);
3027 out_only_mutex:
3028         if (!updated_inode && truncated_block && !ret) {
3029                 /*
3030                  * If we only end up zeroing part of a page, we still need to
3031                  * update the inode item, so that all the time fields are
3032                  * updated as well as the necessary btrfs inode in memory fields
3033                  * for detecting, at fsync time, if the inode isn't yet in the
3034                  * log tree or it's there but not up to date.
3035                  */
3036                 struct timespec64 now = current_time(inode);
3037
3038                 inode_inc_iversion(inode);
3039                 inode->i_mtime = now;
3040                 inode->i_ctime = now;
3041                 trans = btrfs_start_transaction(root, 1);
3042                 if (IS_ERR(trans)) {
3043                         ret = PTR_ERR(trans);
3044                 } else {
3045                         int ret2;
3046
3047                         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3048                         ret2 = btrfs_end_transaction(trans);
3049                         if (!ret)
3050                                 ret = ret2;
3051                 }
3052         }
3053         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3054         return ret;
3055 }
3056
3057 /* Helper structure to record which range is already reserved */
3058 struct falloc_range {
3059         struct list_head list;
3060         u64 start;
3061         u64 len;
3062 };
3063
3064 /*
3065  * Helper function to add falloc range
3066  *
3067  * Caller should have locked the larger range of extent containing
3068  * [start, len)
3069  */
3070 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3071 {
3072         struct falloc_range *range = NULL;
3073
3074         if (!list_empty(head)) {
3075                 /*
3076                  * As fallocate iterates by bytenr order, we only need to check
3077                  * the last range.
3078                  */
3079                 range = list_last_entry(head, struct falloc_range, list);
3080                 if (range->start + range->len == start) {
3081                         range->len += len;
3082                         return 0;
3083                 }
3084         }
3085
3086         range = kmalloc(sizeof(*range), GFP_KERNEL);
3087         if (!range)
3088                 return -ENOMEM;
3089         range->start = start;
3090         range->len = len;
3091         list_add_tail(&range->list, head);
3092         return 0;
3093 }
3094
3095 static int btrfs_fallocate_update_isize(struct inode *inode,
3096                                         const u64 end,
3097                                         const int mode)
3098 {
3099         struct btrfs_trans_handle *trans;
3100         struct btrfs_root *root = BTRFS_I(inode)->root;
3101         int ret;
3102         int ret2;
3103
3104         if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3105                 return 0;
3106
3107         trans = btrfs_start_transaction(root, 1);
3108         if (IS_ERR(trans))
3109                 return PTR_ERR(trans);
3110
3111         inode->i_ctime = current_time(inode);
3112         i_size_write(inode, end);
3113         btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
3114         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3115         ret2 = btrfs_end_transaction(trans);
3116
3117         return ret ? ret : ret2;
3118 }
3119
3120 enum {
3121         RANGE_BOUNDARY_WRITTEN_EXTENT,
3122         RANGE_BOUNDARY_PREALLOC_EXTENT,
3123         RANGE_BOUNDARY_HOLE,
3124 };
3125
3126 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3127                                                  u64 offset)
3128 {
3129         const u64 sectorsize = btrfs_inode_sectorsize(inode);
3130         struct extent_map *em;
3131         int ret;
3132
3133         offset = round_down(offset, sectorsize);
3134         em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
3135         if (IS_ERR(em))
3136                 return PTR_ERR(em);
3137
3138         if (em->block_start == EXTENT_MAP_HOLE)
3139                 ret = RANGE_BOUNDARY_HOLE;
3140         else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3141                 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3142         else
3143                 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3144
3145         free_extent_map(em);
3146         return ret;
3147 }
3148
3149 static int btrfs_zero_range(struct inode *inode,
3150                             loff_t offset,
3151                             loff_t len,
3152                             const int mode)
3153 {
3154         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3155         struct extent_map *em;
3156         struct extent_changeset *data_reserved = NULL;
3157         int ret;
3158         u64 alloc_hint = 0;
3159         const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode));
3160         u64 alloc_start = round_down(offset, sectorsize);
3161         u64 alloc_end = round_up(offset + len, sectorsize);
3162         u64 bytes_to_reserve = 0;
3163         bool space_reserved = false;
3164
3165         inode_dio_wait(inode);
3166
3167         em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3168                               alloc_end - alloc_start);
3169         if (IS_ERR(em)) {
3170                 ret = PTR_ERR(em);
3171                 goto out;
3172         }
3173
3174         /*
3175          * Avoid hole punching and extent allocation for some cases. More cases
3176          * could be considered, but these are unlikely common and we keep things
3177          * as simple as possible for now. Also, intentionally, if the target
3178          * range contains one or more prealloc extents together with regular
3179          * extents and holes, we drop all the existing extents and allocate a
3180          * new prealloc extent, so that we get a larger contiguous disk extent.
3181          */
3182         if (em->start <= alloc_start &&
3183             test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3184                 const u64 em_end = em->start + em->len;
3185
3186                 if (em_end >= offset + len) {
3187                         /*
3188                          * The whole range is already a prealloc extent,
3189                          * do nothing except updating the inode's i_size if
3190                          * needed.
3191                          */
3192                         free_extent_map(em);
3193                         ret = btrfs_fallocate_update_isize(inode, offset + len,
3194                                                            mode);
3195                         goto out;
3196                 }
3197                 /*
3198                  * Part of the range is already a prealloc extent, so operate
3199                  * only on the remaining part of the range.
3200                  */
3201                 alloc_start = em_end;
3202                 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3203                 len = offset + len - alloc_start;
3204                 offset = alloc_start;
3205                 alloc_hint = em->block_start + em->len;
3206         }
3207         free_extent_map(em);
3208
3209         if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3210             BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3211                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3212                                       sectorsize);
3213                 if (IS_ERR(em)) {
3214                         ret = PTR_ERR(em);
3215                         goto out;
3216                 }
3217
3218                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3219                         free_extent_map(em);
3220                         ret = btrfs_fallocate_update_isize(inode, offset + len,
3221                                                            mode);
3222                         goto out;
3223                 }
3224                 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3225                         free_extent_map(em);
3226                         ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3227                                                    0);
3228                         if (!ret)
3229                                 ret = btrfs_fallocate_update_isize(inode,
3230                                                                    offset + len,
3231                                                                    mode);
3232                         return ret;
3233                 }
3234                 free_extent_map(em);
3235                 alloc_start = round_down(offset, sectorsize);
3236                 alloc_end = alloc_start + sectorsize;
3237                 goto reserve_space;
3238         }
3239
3240         alloc_start = round_up(offset, sectorsize);
3241         alloc_end = round_down(offset + len, sectorsize);
3242
3243         /*
3244          * For unaligned ranges, check the pages at the boundaries, they might
3245          * map to an extent, in which case we need to partially zero them, or
3246          * they might map to a hole, in which case we need our allocation range
3247          * to cover them.
3248          */
3249         if (!IS_ALIGNED(offset, sectorsize)) {
3250                 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3251                                                             offset);
3252                 if (ret < 0)
3253                         goto out;
3254                 if (ret == RANGE_BOUNDARY_HOLE) {
3255                         alloc_start = round_down(offset, sectorsize);
3256                         ret = 0;
3257                 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3258                         ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
3259                         if (ret)
3260                                 goto out;
3261                 } else {
3262                         ret = 0;
3263                 }
3264         }
3265
3266         if (!IS_ALIGNED(offset + len, sectorsize)) {
3267                 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3268                                                             offset + len);
3269                 if (ret < 0)
3270                         goto out;
3271                 if (ret == RANGE_BOUNDARY_HOLE) {
3272                         alloc_end = round_up(offset + len, sectorsize);
3273                         ret = 0;
3274                 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3275                         ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
3276                                                    0, 1);
3277                         if (ret)
3278                                 goto out;
3279                 } else {
3280                         ret = 0;
3281                 }
3282         }
3283
3284 reserve_space:
3285         if (alloc_start < alloc_end) {
3286                 struct extent_state *cached_state = NULL;
3287                 const u64 lockstart = alloc_start;
3288                 const u64 lockend = alloc_end - 1;
3289
3290                 bytes_to_reserve = alloc_end - alloc_start;
3291                 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3292                                                       bytes_to_reserve);
3293                 if (ret < 0)
3294                         goto out;
3295                 space_reserved = true;
3296                 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3297                                                   &cached_state);
3298                 if (ret)
3299                         goto out;
3300                 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3301                                                 alloc_start, bytes_to_reserve);
3302                 if (ret) {
3303                         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3304                                              lockend, &cached_state);
3305                         goto out;
3306                 }
3307                 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3308                                                 alloc_end - alloc_start,
3309                                                 i_blocksize(inode),
3310                                                 offset + len, &alloc_hint);
3311                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3312                                      lockend, &cached_state);
3313                 /* btrfs_prealloc_file_range releases reserved space on error */
3314                 if (ret) {
3315                         space_reserved = false;
3316                         goto out;
3317                 }
3318         }
3319         ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3320  out:
3321         if (ret && space_reserved)
3322                 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3323                                                alloc_start, bytes_to_reserve);
3324         extent_changeset_free(data_reserved);
3325
3326         return ret;
3327 }
3328
3329 static long btrfs_fallocate(struct file *file, int mode,
3330                             loff_t offset, loff_t len)
3331 {
3332         struct inode *inode = file_inode(file);
3333         struct extent_state *cached_state = NULL;
3334         struct extent_changeset *data_reserved = NULL;
3335         struct falloc_range *range;
3336         struct falloc_range *tmp;
3337         struct list_head reserve_list;
3338         u64 cur_offset;
3339         u64 last_byte;
3340         u64 alloc_start;
3341         u64 alloc_end;
3342         u64 alloc_hint = 0;
3343         u64 locked_end;
3344         u64 actual_end = 0;
3345         struct extent_map *em;
3346         int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode));
3347         int ret;
3348
3349         /* Do not allow fallocate in ZONED mode */
3350         if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3351                 return -EOPNOTSUPP;
3352
3353         alloc_start = round_down(offset, blocksize);
3354         alloc_end = round_up(offset + len, blocksize);
3355         cur_offset = alloc_start;
3356
3357         /* Make sure we aren't being give some crap mode */
3358         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3359                      FALLOC_FL_ZERO_RANGE))
3360                 return -EOPNOTSUPP;
3361
3362         if (mode & FALLOC_FL_PUNCH_HOLE)
3363                 return btrfs_punch_hole(inode, offset, len);
3364
3365         /*
3366          * Only trigger disk allocation, don't trigger qgroup reserve
3367          *
3368          * For qgroup space, it will be checked later.
3369          */
3370         if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3371                 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3372                                                       alloc_end - alloc_start);
3373                 if (ret < 0)
3374                         return ret;
3375         }
3376
3377         btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
3378
3379         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3380                 ret = inode_newsize_ok(inode, offset + len);
3381                 if (ret)
3382                         goto out;
3383         }
3384
3385         /*
3386          * TODO: Move these two operations after we have checked
3387          * accurate reserved space, or fallocate can still fail but
3388          * with page truncated or size expanded.
3389          *
3390          * But that's a minor problem and won't do much harm BTW.
3391          */
3392         if (alloc_start > inode->i_size) {
3393                 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3394                                         alloc_start);
3395                 if (ret)
3396                         goto out;
3397         } else if (offset + len > inode->i_size) {
3398                 /*
3399                  * If we are fallocating from the end of the file onward we
3400                  * need to zero out the end of the block if i_size lands in the
3401                  * middle of a block.
3402                  */
3403                 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3404                 if (ret)
3405                         goto out;
3406         }
3407
3408         /*
3409          * wait for ordered IO before we have any locks.  We'll loop again
3410          * below with the locks held.
3411          */
3412         ret = btrfs_wait_ordered_range(inode, alloc_start,
3413                                        alloc_end - alloc_start);
3414         if (ret)
3415                 goto out;
3416
3417         if (mode & FALLOC_FL_ZERO_RANGE) {
3418                 ret = btrfs_zero_range(inode, offset, len, mode);
3419                 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3420                 return ret;
3421         }
3422
3423         locked_end = alloc_end - 1;
3424         while (1) {
3425                 struct btrfs_ordered_extent *ordered;
3426
3427                 /* the extent lock is ordered inside the running
3428                  * transaction
3429                  */
3430                 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3431                                  locked_end, &cached_state);
3432                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
3433                                                             locked_end);
3434
3435                 if (ordered &&
3436                     ordered->file_offset + ordered->num_bytes > alloc_start &&
3437                     ordered->file_offset < alloc_end) {
3438                         btrfs_put_ordered_extent(ordered);
3439                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3440                                              alloc_start, locked_end,
3441                                              &cached_state);
3442                         /*
3443                          * we can't wait on the range with the transaction
3444                          * running or with the extent lock held
3445                          */
3446                         ret = btrfs_wait_ordered_range(inode, alloc_start,
3447                                                        alloc_end - alloc_start);
3448                         if (ret)
3449                                 goto out;
3450                 } else {
3451                         if (ordered)
3452                                 btrfs_put_ordered_extent(ordered);
3453                         break;
3454                 }
3455         }
3456
3457         /* First, check if we exceed the qgroup limit */
3458         INIT_LIST_HEAD(&reserve_list);
3459         while (cur_offset < alloc_end) {
3460                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3461                                       alloc_end - cur_offset);
3462                 if (IS_ERR(em)) {
3463                         ret = PTR_ERR(em);
3464                         break;
3465                 }
3466                 last_byte = min(extent_map_end(em), alloc_end);
3467                 actual_end = min_t(u64, extent_map_end(em), offset + len);
3468                 last_byte = ALIGN(last_byte, blocksize);
3469                 if (em->block_start == EXTENT_MAP_HOLE ||
3470                     (cur_offset >= inode->i_size &&
3471                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3472                         ret = add_falloc_range(&reserve_list, cur_offset,
3473                                                last_byte - cur_offset);
3474                         if (ret < 0) {
3475                                 free_extent_map(em);
3476                                 break;
3477                         }
3478                         ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3479                                         &data_reserved, cur_offset,
3480                                         last_byte - cur_offset);
3481                         if (ret < 0) {
3482                                 cur_offset = last_byte;
3483                                 free_extent_map(em);
3484                                 break;
3485                         }
3486                 } else {
3487                         /*
3488                          * Do not need to reserve unwritten extent for this
3489                          * range, free reserved data space first, otherwise
3490                          * it'll result in false ENOSPC error.
3491                          */
3492                         btrfs_free_reserved_data_space(BTRFS_I(inode),
3493                                 data_reserved, cur_offset,
3494                                 last_byte - cur_offset);
3495                 }
3496                 free_extent_map(em);
3497                 cur_offset = last_byte;
3498         }
3499
3500         /*
3501          * If ret is still 0, means we're OK to fallocate.
3502          * Or just cleanup the list and exit.
3503          */
3504         list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3505                 if (!ret)
3506                         ret = btrfs_prealloc_file_range(inode, mode,
3507                                         range->start,
3508                                         range->len, i_blocksize(inode),
3509                                         offset + len, &alloc_hint);
3510                 else
3511                         btrfs_free_reserved_data_space(BTRFS_I(inode),
3512                                         data_reserved, range->start,
3513                                         range->len);
3514                 list_del(&range->list);
3515                 kfree(range);
3516         }
3517         if (ret < 0)
3518                 goto out_unlock;
3519
3520         /*
3521          * We didn't need to allocate any more space, but we still extended the
3522          * size of the file so we need to update i_size and the inode item.
3523          */
3524         ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3525 out_unlock:
3526         unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3527                              &cached_state);
3528 out:
3529         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3530         /* Let go of our reservation. */
3531         if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3532                 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3533                                 cur_offset, alloc_end - cur_offset);
3534         extent_changeset_free(data_reserved);
3535         return ret;
3536 }
3537
3538 static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset,
3539                                   int whence)
3540 {
3541         struct btrfs_fs_info *fs_info = inode->root->fs_info;
3542         struct extent_map *em = NULL;
3543         struct extent_state *cached_state = NULL;
3544         loff_t i_size = inode->vfs_inode.i_size;
3545         u64 lockstart;
3546         u64 lockend;
3547         u64 start;
3548         u64 len;
3549         int ret = 0;
3550
3551         if (i_size == 0 || offset >= i_size)
3552                 return -ENXIO;
3553
3554         /*
3555          * offset can be negative, in this case we start finding DATA/HOLE from
3556          * the very start of the file.
3557          */
3558         start = max_t(loff_t, 0, offset);
3559
3560         lockstart = round_down(start, fs_info->sectorsize);
3561         lockend = round_up(i_size, fs_info->sectorsize);
3562         if (lockend <= lockstart)
3563                 lockend = lockstart + fs_info->sectorsize;
3564         lockend--;
3565         len = lockend - lockstart + 1;
3566
3567         lock_extent_bits(&inode->io_tree, lockstart, lockend, &cached_state);
3568
3569         while (start < i_size) {
3570                 em = btrfs_get_extent_fiemap(inode, start, len);
3571                 if (IS_ERR(em)) {
3572                         ret = PTR_ERR(em);
3573                         em = NULL;
3574                         break;
3575                 }
3576
3577                 if (whence == SEEK_HOLE &&
3578                     (em->block_start == EXTENT_MAP_HOLE ||
3579                      test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3580                         break;
3581                 else if (whence == SEEK_DATA &&
3582                            (em->block_start != EXTENT_MAP_HOLE &&
3583                             !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3584                         break;
3585
3586                 start = em->start + em->len;
3587                 free_extent_map(em);
3588                 em = NULL;
3589                 cond_resched();
3590         }
3591         free_extent_map(em);
3592         unlock_extent_cached(&inode->io_tree, lockstart, lockend,
3593                              &cached_state);
3594         if (ret) {
3595                 offset = ret;
3596         } else {
3597                 if (whence == SEEK_DATA && start >= i_size)
3598                         offset = -ENXIO;
3599                 else
3600                         offset = min_t(loff_t, start, i_size);
3601         }
3602
3603         return offset;
3604 }
3605
3606 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3607 {
3608         struct inode *inode = file->f_mapping->host;
3609
3610         switch (whence) {
3611         default:
3612                 return generic_file_llseek(file, offset, whence);
3613         case SEEK_DATA:
3614         case SEEK_HOLE:
3615                 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3616                 offset = find_desired_extent(BTRFS_I(inode), offset, whence);
3617                 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3618                 break;
3619         }
3620
3621         if (offset < 0)
3622                 return offset;
3623
3624         return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3625 }
3626
3627 static int btrfs_file_open(struct inode *inode, struct file *filp)
3628 {
3629         int ret;
3630
3631         filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
3632
3633         ret = fsverity_file_open(inode, filp);
3634         if (ret)
3635                 return ret;
3636         return generic_file_open(inode, filp);
3637 }
3638
3639 static int check_direct_read(struct btrfs_fs_info *fs_info,
3640                              const struct iov_iter *iter, loff_t offset)
3641 {
3642         int ret;
3643         int i, seg;
3644
3645         ret = check_direct_IO(fs_info, iter, offset);
3646         if (ret < 0)
3647                 return ret;
3648
3649         if (!iter_is_iovec(iter))
3650                 return 0;
3651
3652         for (seg = 0; seg < iter->nr_segs; seg++)
3653                 for (i = seg + 1; i < iter->nr_segs; i++)
3654                         if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
3655                                 return -EINVAL;
3656         return 0;
3657 }
3658
3659 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3660 {
3661         struct inode *inode = file_inode(iocb->ki_filp);
3662         ssize_t ret;
3663
3664         if (fsverity_active(inode))
3665                 return 0;
3666
3667         if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3668                 return 0;
3669
3670         btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3671         ret = iomap_dio_rw(iocb, to, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
3672                            0, 0);
3673         btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3674         return ret;
3675 }
3676
3677 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3678 {
3679         ssize_t ret = 0;
3680
3681         if (iocb->ki_flags & IOCB_DIRECT) {
3682                 ret = btrfs_direct_read(iocb, to);
3683                 if (ret < 0 || !iov_iter_count(to) ||
3684                     iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3685                         return ret;
3686         }
3687
3688         return filemap_read(iocb, to, ret);
3689 }
3690
3691 const struct file_operations btrfs_file_operations = {
3692         .llseek         = btrfs_file_llseek,
3693         .read_iter      = btrfs_file_read_iter,
3694         .splice_read    = generic_file_splice_read,
3695         .write_iter     = btrfs_file_write_iter,
3696         .splice_write   = iter_file_splice_write,
3697         .mmap           = btrfs_file_mmap,
3698         .open           = btrfs_file_open,
3699         .release        = btrfs_release_file,
3700         .fsync          = btrfs_sync_file,
3701         .fallocate      = btrfs_fallocate,
3702         .unlocked_ioctl = btrfs_ioctl,
3703 #ifdef CONFIG_COMPAT
3704         .compat_ioctl   = btrfs_compat_ioctl,
3705 #endif
3706         .remap_file_range = btrfs_remap_file_range,
3707 };
3708
3709 void __cold btrfs_auto_defrag_exit(void)
3710 {
3711         kmem_cache_destroy(btrfs_inode_defrag_cachep);
3712 }
3713
3714 int __init btrfs_auto_defrag_init(void)
3715 {
3716         btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3717                                         sizeof(struct inode_defrag), 0,
3718                                         SLAB_MEM_SPREAD,
3719                                         NULL);
3720         if (!btrfs_inode_defrag_cachep)
3721                 return -ENOMEM;
3722
3723         return 0;
3724 }
3725
3726 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3727 {
3728         int ret;
3729
3730         /*
3731          * So with compression we will find and lock a dirty page and clear the
3732          * first one as dirty, setup an async extent, and immediately return
3733          * with the entire range locked but with nobody actually marked with
3734          * writeback.  So we can't just filemap_write_and_wait_range() and
3735          * expect it to work since it will just kick off a thread to do the
3736          * actual work.  So we need to call filemap_fdatawrite_range _again_
3737          * since it will wait on the page lock, which won't be unlocked until
3738          * after the pages have been marked as writeback and so we're good to go
3739          * from there.  We have to do this otherwise we'll miss the ordered
3740          * extents and that results in badness.  Please Josef, do not think you
3741          * know better and pull this out at some point in the future, it is
3742          * right and you are wrong.
3743          */
3744         ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3745         if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3746                              &BTRFS_I(inode)->runtime_flags))
3747                 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3748
3749         return ret;
3750 }