d81ae1f518f23a96e11c5dc75b9322dc6ed83678
[linux-2.6-microblaze.git] / fs / btrfs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "btrfs_inode.h"
23 #include "print-tree.h"
24 #include "tree-log.h"
25 #include "locking.h"
26 #include "volumes.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30 #include "reflink.h"
31
32 static struct kmem_cache *btrfs_inode_defrag_cachep;
33 /*
34  * when auto defrag is enabled we
35  * queue up these defrag structs to remember which
36  * inodes need defragging passes
37  */
38 struct inode_defrag {
39         struct rb_node rb_node;
40         /* objectid */
41         u64 ino;
42         /*
43          * transid where the defrag was added, we search for
44          * extents newer than this
45          */
46         u64 transid;
47
48         /* root objectid */
49         u64 root;
50
51         /* last offset we were able to defrag */
52         u64 last_offset;
53
54         /* if we've wrapped around back to zero once already */
55         int cycled;
56 };
57
58 static int __compare_inode_defrag(struct inode_defrag *defrag1,
59                                   struct inode_defrag *defrag2)
60 {
61         if (defrag1->root > defrag2->root)
62                 return 1;
63         else if (defrag1->root < defrag2->root)
64                 return -1;
65         else if (defrag1->ino > defrag2->ino)
66                 return 1;
67         else if (defrag1->ino < defrag2->ino)
68                 return -1;
69         else
70                 return 0;
71 }
72
73 /* pop a record for an inode into the defrag tree.  The lock
74  * must be held already
75  *
76  * If you're inserting a record for an older transid than an
77  * existing record, the transid already in the tree is lowered
78  *
79  * If an existing record is found the defrag item you
80  * pass in is freed
81  */
82 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
83                                     struct inode_defrag *defrag)
84 {
85         struct btrfs_fs_info *fs_info = inode->root->fs_info;
86         struct inode_defrag *entry;
87         struct rb_node **p;
88         struct rb_node *parent = NULL;
89         int ret;
90
91         p = &fs_info->defrag_inodes.rb_node;
92         while (*p) {
93                 parent = *p;
94                 entry = rb_entry(parent, struct inode_defrag, rb_node);
95
96                 ret = __compare_inode_defrag(defrag, entry);
97                 if (ret < 0)
98                         p = &parent->rb_left;
99                 else if (ret > 0)
100                         p = &parent->rb_right;
101                 else {
102                         /* if we're reinserting an entry for
103                          * an old defrag run, make sure to
104                          * lower the transid of our existing record
105                          */
106                         if (defrag->transid < entry->transid)
107                                 entry->transid = defrag->transid;
108                         if (defrag->last_offset > entry->last_offset)
109                                 entry->last_offset = defrag->last_offset;
110                         return -EEXIST;
111                 }
112         }
113         set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
114         rb_link_node(&defrag->rb_node, parent, p);
115         rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
116         return 0;
117 }
118
119 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
120 {
121         if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
122                 return 0;
123
124         if (btrfs_fs_closing(fs_info))
125                 return 0;
126
127         return 1;
128 }
129
130 /*
131  * insert a defrag record for this inode if auto defrag is
132  * enabled
133  */
134 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
135                            struct btrfs_inode *inode)
136 {
137         struct btrfs_root *root = inode->root;
138         struct btrfs_fs_info *fs_info = root->fs_info;
139         struct inode_defrag *defrag;
140         u64 transid;
141         int ret;
142
143         if (!__need_auto_defrag(fs_info))
144                 return 0;
145
146         if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
147                 return 0;
148
149         if (trans)
150                 transid = trans->transid;
151         else
152                 transid = inode->root->last_trans;
153
154         defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
155         if (!defrag)
156                 return -ENOMEM;
157
158         defrag->ino = btrfs_ino(inode);
159         defrag->transid = transid;
160         defrag->root = root->root_key.objectid;
161
162         spin_lock(&fs_info->defrag_inodes_lock);
163         if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
164                 /*
165                  * If we set IN_DEFRAG flag and evict the inode from memory,
166                  * and then re-read this inode, this new inode doesn't have
167                  * IN_DEFRAG flag. At the case, we may find the existed defrag.
168                  */
169                 ret = __btrfs_add_inode_defrag(inode, defrag);
170                 if (ret)
171                         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
172         } else {
173                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
174         }
175         spin_unlock(&fs_info->defrag_inodes_lock);
176         return 0;
177 }
178
179 /*
180  * Requeue the defrag object. If there is a defrag object that points to
181  * the same inode in the tree, we will merge them together (by
182  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
183  */
184 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
185                                        struct inode_defrag *defrag)
186 {
187         struct btrfs_fs_info *fs_info = inode->root->fs_info;
188         int ret;
189
190         if (!__need_auto_defrag(fs_info))
191                 goto out;
192
193         /*
194          * Here we don't check the IN_DEFRAG flag, because we need merge
195          * them together.
196          */
197         spin_lock(&fs_info->defrag_inodes_lock);
198         ret = __btrfs_add_inode_defrag(inode, defrag);
199         spin_unlock(&fs_info->defrag_inodes_lock);
200         if (ret)
201                 goto out;
202         return;
203 out:
204         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
205 }
206
207 /*
208  * pick the defragable inode that we want, if it doesn't exist, we will get
209  * the next one.
210  */
211 static struct inode_defrag *
212 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
213 {
214         struct inode_defrag *entry = NULL;
215         struct inode_defrag tmp;
216         struct rb_node *p;
217         struct rb_node *parent = NULL;
218         int ret;
219
220         tmp.ino = ino;
221         tmp.root = root;
222
223         spin_lock(&fs_info->defrag_inodes_lock);
224         p = fs_info->defrag_inodes.rb_node;
225         while (p) {
226                 parent = p;
227                 entry = rb_entry(parent, struct inode_defrag, rb_node);
228
229                 ret = __compare_inode_defrag(&tmp, entry);
230                 if (ret < 0)
231                         p = parent->rb_left;
232                 else if (ret > 0)
233                         p = parent->rb_right;
234                 else
235                         goto out;
236         }
237
238         if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
239                 parent = rb_next(parent);
240                 if (parent)
241                         entry = rb_entry(parent, struct inode_defrag, rb_node);
242                 else
243                         entry = NULL;
244         }
245 out:
246         if (entry)
247                 rb_erase(parent, &fs_info->defrag_inodes);
248         spin_unlock(&fs_info->defrag_inodes_lock);
249         return entry;
250 }
251
252 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
253 {
254         struct inode_defrag *defrag;
255         struct rb_node *node;
256
257         spin_lock(&fs_info->defrag_inodes_lock);
258         node = rb_first(&fs_info->defrag_inodes);
259         while (node) {
260                 rb_erase(node, &fs_info->defrag_inodes);
261                 defrag = rb_entry(node, struct inode_defrag, rb_node);
262                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
263
264                 cond_resched_lock(&fs_info->defrag_inodes_lock);
265
266                 node = rb_first(&fs_info->defrag_inodes);
267         }
268         spin_unlock(&fs_info->defrag_inodes_lock);
269 }
270
271 #define BTRFS_DEFRAG_BATCH      1024
272
273 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
274                                     struct inode_defrag *defrag)
275 {
276         struct btrfs_root *inode_root;
277         struct inode *inode;
278         struct btrfs_ioctl_defrag_range_args range;
279         int num_defrag;
280         int ret;
281
282         /* get the inode */
283         inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
284         if (IS_ERR(inode_root)) {
285                 ret = PTR_ERR(inode_root);
286                 goto cleanup;
287         }
288
289         inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
290         btrfs_put_root(inode_root);
291         if (IS_ERR(inode)) {
292                 ret = PTR_ERR(inode);
293                 goto cleanup;
294         }
295
296         /* do a chunk of defrag */
297         clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
298         memset(&range, 0, sizeof(range));
299         range.len = (u64)-1;
300         range.start = defrag->last_offset;
301
302         sb_start_write(fs_info->sb);
303         num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
304                                        BTRFS_DEFRAG_BATCH);
305         sb_end_write(fs_info->sb);
306         /*
307          * if we filled the whole defrag batch, there
308          * must be more work to do.  Queue this defrag
309          * again
310          */
311         if (num_defrag == BTRFS_DEFRAG_BATCH) {
312                 defrag->last_offset = range.start;
313                 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
314         } else if (defrag->last_offset && !defrag->cycled) {
315                 /*
316                  * we didn't fill our defrag batch, but
317                  * we didn't start at zero.  Make sure we loop
318                  * around to the start of the file.
319                  */
320                 defrag->last_offset = 0;
321                 defrag->cycled = 1;
322                 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
323         } else {
324                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
325         }
326
327         iput(inode);
328         return 0;
329 cleanup:
330         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
331         return ret;
332 }
333
334 /*
335  * run through the list of inodes in the FS that need
336  * defragging
337  */
338 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
339 {
340         struct inode_defrag *defrag;
341         u64 first_ino = 0;
342         u64 root_objectid = 0;
343
344         atomic_inc(&fs_info->defrag_running);
345         while (1) {
346                 /* Pause the auto defragger. */
347                 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
348                              &fs_info->fs_state))
349                         break;
350
351                 if (!__need_auto_defrag(fs_info))
352                         break;
353
354                 /* find an inode to defrag */
355                 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
356                                                  first_ino);
357                 if (!defrag) {
358                         if (root_objectid || first_ino) {
359                                 root_objectid = 0;
360                                 first_ino = 0;
361                                 continue;
362                         } else {
363                                 break;
364                         }
365                 }
366
367                 first_ino = defrag->ino + 1;
368                 root_objectid = defrag->root;
369
370                 __btrfs_run_defrag_inode(fs_info, defrag);
371         }
372         atomic_dec(&fs_info->defrag_running);
373
374         /*
375          * during unmount, we use the transaction_wait queue to
376          * wait for the defragger to stop
377          */
378         wake_up(&fs_info->transaction_wait);
379         return 0;
380 }
381
382 /* simple helper to fault in pages and copy.  This should go away
383  * and be replaced with calls into generic code.
384  */
385 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
386                                          struct page **prepared_pages,
387                                          struct iov_iter *i)
388 {
389         size_t copied = 0;
390         size_t total_copied = 0;
391         int pg = 0;
392         int offset = offset_in_page(pos);
393
394         while (write_bytes > 0) {
395                 size_t count = min_t(size_t,
396                                      PAGE_SIZE - offset, write_bytes);
397                 struct page *page = prepared_pages[pg];
398                 /*
399                  * Copy data from userspace to the current page
400                  */
401                 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
402
403                 /* Flush processor's dcache for this page */
404                 flush_dcache_page(page);
405
406                 /*
407                  * if we get a partial write, we can end up with
408                  * partially up to date pages.  These add
409                  * a lot of complexity, so make sure they don't
410                  * happen by forcing this copy to be retried.
411                  *
412                  * The rest of the btrfs_file_write code will fall
413                  * back to page at a time copies after we return 0.
414                  */
415                 if (!PageUptodate(page) && copied < count)
416                         copied = 0;
417
418                 iov_iter_advance(i, copied);
419                 write_bytes -= copied;
420                 total_copied += copied;
421
422                 /* Return to btrfs_file_write_iter to fault page */
423                 if (unlikely(copied == 0))
424                         break;
425
426                 if (copied < PAGE_SIZE - offset) {
427                         offset += copied;
428                 } else {
429                         pg++;
430                         offset = 0;
431                 }
432         }
433         return total_copied;
434 }
435
436 /*
437  * unlocks pages after btrfs_file_write is done with them
438  */
439 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
440 {
441         size_t i;
442         for (i = 0; i < num_pages; i++) {
443                 /* page checked is some magic around finding pages that
444                  * have been modified without going through btrfs_set_page_dirty
445                  * clear it here. There should be no need to mark the pages
446                  * accessed as prepare_pages should have marked them accessed
447                  * in prepare_pages via find_or_create_page()
448                  */
449                 ClearPageChecked(pages[i]);
450                 unlock_page(pages[i]);
451                 put_page(pages[i]);
452         }
453 }
454
455 /*
456  * After btrfs_copy_from_user(), update the following things for delalloc:
457  * - Mark newly dirtied pages as DELALLOC in the io tree.
458  *   Used to advise which range is to be written back.
459  * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
460  * - Update inode size for past EOF write
461  */
462 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
463                       size_t num_pages, loff_t pos, size_t write_bytes,
464                       struct extent_state **cached, bool noreserve)
465 {
466         struct btrfs_fs_info *fs_info = inode->root->fs_info;
467         int err = 0;
468         int i;
469         u64 num_bytes;
470         u64 start_pos;
471         u64 end_of_last_block;
472         u64 end_pos = pos + write_bytes;
473         loff_t isize = i_size_read(&inode->vfs_inode);
474         unsigned int extra_bits = 0;
475
476         if (write_bytes == 0)
477                 return 0;
478
479         if (noreserve)
480                 extra_bits |= EXTENT_NORESERVE;
481
482         start_pos = round_down(pos, fs_info->sectorsize);
483         num_bytes = round_up(write_bytes + pos - start_pos,
484                              fs_info->sectorsize);
485
486         end_of_last_block = start_pos + num_bytes - 1;
487
488         /*
489          * The pages may have already been dirty, clear out old accounting so
490          * we can set things up properly
491          */
492         clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
493                          EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
494                          0, 0, cached);
495
496         err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
497                                         extra_bits, cached);
498         if (err)
499                 return err;
500
501         for (i = 0; i < num_pages; i++) {
502                 struct page *p = pages[i];
503                 SetPageUptodate(p);
504                 ClearPageChecked(p);
505                 set_page_dirty(p);
506         }
507
508         /*
509          * we've only changed i_size in ram, and we haven't updated
510          * the disk i_size.  There is no need to log the inode
511          * at this time.
512          */
513         if (end_pos > isize)
514                 i_size_write(&inode->vfs_inode, end_pos);
515         return 0;
516 }
517
518 /*
519  * this drops all the extents in the cache that intersect the range
520  * [start, end].  Existing extents are split as required.
521  */
522 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
523                              int skip_pinned)
524 {
525         struct extent_map *em;
526         struct extent_map *split = NULL;
527         struct extent_map *split2 = NULL;
528         struct extent_map_tree *em_tree = &inode->extent_tree;
529         u64 len = end - start + 1;
530         u64 gen;
531         int ret;
532         int testend = 1;
533         unsigned long flags;
534         int compressed = 0;
535         bool modified;
536
537         WARN_ON(end < start);
538         if (end == (u64)-1) {
539                 len = (u64)-1;
540                 testend = 0;
541         }
542         while (1) {
543                 int no_splits = 0;
544
545                 modified = false;
546                 if (!split)
547                         split = alloc_extent_map();
548                 if (!split2)
549                         split2 = alloc_extent_map();
550                 if (!split || !split2)
551                         no_splits = 1;
552
553                 write_lock(&em_tree->lock);
554                 em = lookup_extent_mapping(em_tree, start, len);
555                 if (!em) {
556                         write_unlock(&em_tree->lock);
557                         break;
558                 }
559                 flags = em->flags;
560                 gen = em->generation;
561                 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
562                         if (testend && em->start + em->len >= start + len) {
563                                 free_extent_map(em);
564                                 write_unlock(&em_tree->lock);
565                                 break;
566                         }
567                         start = em->start + em->len;
568                         if (testend)
569                                 len = start + len - (em->start + em->len);
570                         free_extent_map(em);
571                         write_unlock(&em_tree->lock);
572                         continue;
573                 }
574                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
575                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
576                 clear_bit(EXTENT_FLAG_LOGGING, &flags);
577                 modified = !list_empty(&em->list);
578                 if (no_splits)
579                         goto next;
580
581                 if (em->start < start) {
582                         split->start = em->start;
583                         split->len = start - em->start;
584
585                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
586                                 split->orig_start = em->orig_start;
587                                 split->block_start = em->block_start;
588
589                                 if (compressed)
590                                         split->block_len = em->block_len;
591                                 else
592                                         split->block_len = split->len;
593                                 split->orig_block_len = max(split->block_len,
594                                                 em->orig_block_len);
595                                 split->ram_bytes = em->ram_bytes;
596                         } else {
597                                 split->orig_start = split->start;
598                                 split->block_len = 0;
599                                 split->block_start = em->block_start;
600                                 split->orig_block_len = 0;
601                                 split->ram_bytes = split->len;
602                         }
603
604                         split->generation = gen;
605                         split->flags = flags;
606                         split->compress_type = em->compress_type;
607                         replace_extent_mapping(em_tree, em, split, modified);
608                         free_extent_map(split);
609                         split = split2;
610                         split2 = NULL;
611                 }
612                 if (testend && em->start + em->len > start + len) {
613                         u64 diff = start + len - em->start;
614
615                         split->start = start + len;
616                         split->len = em->start + em->len - (start + len);
617                         split->flags = flags;
618                         split->compress_type = em->compress_type;
619                         split->generation = gen;
620
621                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
622                                 split->orig_block_len = max(em->block_len,
623                                                     em->orig_block_len);
624
625                                 split->ram_bytes = em->ram_bytes;
626                                 if (compressed) {
627                                         split->block_len = em->block_len;
628                                         split->block_start = em->block_start;
629                                         split->orig_start = em->orig_start;
630                                 } else {
631                                         split->block_len = split->len;
632                                         split->block_start = em->block_start
633                                                 + diff;
634                                         split->orig_start = em->orig_start;
635                                 }
636                         } else {
637                                 split->ram_bytes = split->len;
638                                 split->orig_start = split->start;
639                                 split->block_len = 0;
640                                 split->block_start = em->block_start;
641                                 split->orig_block_len = 0;
642                         }
643
644                         if (extent_map_in_tree(em)) {
645                                 replace_extent_mapping(em_tree, em, split,
646                                                        modified);
647                         } else {
648                                 ret = add_extent_mapping(em_tree, split,
649                                                          modified);
650                                 ASSERT(ret == 0); /* Logic error */
651                         }
652                         free_extent_map(split);
653                         split = NULL;
654                 }
655 next:
656                 if (extent_map_in_tree(em))
657                         remove_extent_mapping(em_tree, em);
658                 write_unlock(&em_tree->lock);
659
660                 /* once for us */
661                 free_extent_map(em);
662                 /* once for the tree*/
663                 free_extent_map(em);
664         }
665         if (split)
666                 free_extent_map(split);
667         if (split2)
668                 free_extent_map(split2);
669 }
670
671 /*
672  * this is very complex, but the basic idea is to drop all extents
673  * in the range start - end.  hint_block is filled in with a block number
674  * that would be a good hint to the block allocator for this file.
675  *
676  * If an extent intersects the range but is not entirely inside the range
677  * it is either truncated or split.  Anything entirely inside the range
678  * is deleted from the tree.
679  *
680  * Note: the VFS' inode number of bytes is not updated, it's up to the caller
681  * to deal with that. We set the field 'bytes_found' of the arguments structure
682  * with the number of allocated bytes found in the target range, so that the
683  * caller can update the inode's number of bytes in an atomic way when
684  * replacing extents in a range to avoid races with stat(2).
685  */
686 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
687                        struct btrfs_root *root, struct btrfs_inode *inode,
688                        struct btrfs_drop_extents_args *args)
689 {
690         struct btrfs_fs_info *fs_info = root->fs_info;
691         struct extent_buffer *leaf;
692         struct btrfs_file_extent_item *fi;
693         struct btrfs_ref ref = { 0 };
694         struct btrfs_key key;
695         struct btrfs_key new_key;
696         u64 ino = btrfs_ino(inode);
697         u64 search_start = args->start;
698         u64 disk_bytenr = 0;
699         u64 num_bytes = 0;
700         u64 extent_offset = 0;
701         u64 extent_end = 0;
702         u64 last_end = args->start;
703         int del_nr = 0;
704         int del_slot = 0;
705         int extent_type;
706         int recow;
707         int ret;
708         int modify_tree = -1;
709         int update_refs;
710         int found = 0;
711         int leafs_visited = 0;
712         struct btrfs_path *path = args->path;
713
714         args->bytes_found = 0;
715         args->extent_inserted = false;
716
717         /* Must always have a path if ->replace_extent is true */
718         ASSERT(!(args->replace_extent && !args->path));
719
720         if (!path) {
721                 path = btrfs_alloc_path();
722                 if (!path) {
723                         ret = -ENOMEM;
724                         goto out;
725                 }
726         }
727
728         if (args->drop_cache)
729                 btrfs_drop_extent_cache(inode, args->start, args->end - 1, 0);
730
731         if (args->start >= inode->disk_i_size && !args->replace_extent)
732                 modify_tree = 0;
733
734         update_refs = (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
735                        root == fs_info->tree_root);
736         while (1) {
737                 recow = 0;
738                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
739                                                search_start, modify_tree);
740                 if (ret < 0)
741                         break;
742                 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
743                         leaf = path->nodes[0];
744                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
745                         if (key.objectid == ino &&
746                             key.type == BTRFS_EXTENT_DATA_KEY)
747                                 path->slots[0]--;
748                 }
749                 ret = 0;
750                 leafs_visited++;
751 next_slot:
752                 leaf = path->nodes[0];
753                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
754                         BUG_ON(del_nr > 0);
755                         ret = btrfs_next_leaf(root, path);
756                         if (ret < 0)
757                                 break;
758                         if (ret > 0) {
759                                 ret = 0;
760                                 break;
761                         }
762                         leafs_visited++;
763                         leaf = path->nodes[0];
764                         recow = 1;
765                 }
766
767                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
768
769                 if (key.objectid > ino)
770                         break;
771                 if (WARN_ON_ONCE(key.objectid < ino) ||
772                     key.type < BTRFS_EXTENT_DATA_KEY) {
773                         ASSERT(del_nr == 0);
774                         path->slots[0]++;
775                         goto next_slot;
776                 }
777                 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
778                         break;
779
780                 fi = btrfs_item_ptr(leaf, path->slots[0],
781                                     struct btrfs_file_extent_item);
782                 extent_type = btrfs_file_extent_type(leaf, fi);
783
784                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
785                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
786                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
787                         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
788                         extent_offset = btrfs_file_extent_offset(leaf, fi);
789                         extent_end = key.offset +
790                                 btrfs_file_extent_num_bytes(leaf, fi);
791                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
792                         extent_end = key.offset +
793                                 btrfs_file_extent_ram_bytes(leaf, fi);
794                 } else {
795                         /* can't happen */
796                         BUG();
797                 }
798
799                 /*
800                  * Don't skip extent items representing 0 byte lengths. They
801                  * used to be created (bug) if while punching holes we hit
802                  * -ENOSPC condition. So if we find one here, just ensure we
803                  * delete it, otherwise we would insert a new file extent item
804                  * with the same key (offset) as that 0 bytes length file
805                  * extent item in the call to setup_items_for_insert() later
806                  * in this function.
807                  */
808                 if (extent_end == key.offset && extent_end >= search_start) {
809                         last_end = extent_end;
810                         goto delete_extent_item;
811                 }
812
813                 if (extent_end <= search_start) {
814                         path->slots[0]++;
815                         goto next_slot;
816                 }
817
818                 found = 1;
819                 search_start = max(key.offset, args->start);
820                 if (recow || !modify_tree) {
821                         modify_tree = -1;
822                         btrfs_release_path(path);
823                         continue;
824                 }
825
826                 /*
827                  *     | - range to drop - |
828                  *  | -------- extent -------- |
829                  */
830                 if (args->start > key.offset && args->end < extent_end) {
831                         BUG_ON(del_nr > 0);
832                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
833                                 ret = -EOPNOTSUPP;
834                                 break;
835                         }
836
837                         memcpy(&new_key, &key, sizeof(new_key));
838                         new_key.offset = args->start;
839                         ret = btrfs_duplicate_item(trans, root, path,
840                                                    &new_key);
841                         if (ret == -EAGAIN) {
842                                 btrfs_release_path(path);
843                                 continue;
844                         }
845                         if (ret < 0)
846                                 break;
847
848                         leaf = path->nodes[0];
849                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
850                                             struct btrfs_file_extent_item);
851                         btrfs_set_file_extent_num_bytes(leaf, fi,
852                                                         args->start - key.offset);
853
854                         fi = btrfs_item_ptr(leaf, path->slots[0],
855                                             struct btrfs_file_extent_item);
856
857                         extent_offset += args->start - key.offset;
858                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
859                         btrfs_set_file_extent_num_bytes(leaf, fi,
860                                                         extent_end - args->start);
861                         btrfs_mark_buffer_dirty(leaf);
862
863                         if (update_refs && disk_bytenr > 0) {
864                                 btrfs_init_generic_ref(&ref,
865                                                 BTRFS_ADD_DELAYED_REF,
866                                                 disk_bytenr, num_bytes, 0);
867                                 btrfs_init_data_ref(&ref,
868                                                 root->root_key.objectid,
869                                                 new_key.objectid,
870                                                 args->start - extent_offset);
871                                 ret = btrfs_inc_extent_ref(trans, &ref);
872                                 BUG_ON(ret); /* -ENOMEM */
873                         }
874                         key.offset = args->start;
875                 }
876                 /*
877                  * From here on out we will have actually dropped something, so
878                  * last_end can be updated.
879                  */
880                 last_end = extent_end;
881
882                 /*
883                  *  | ---- range to drop ----- |
884                  *      | -------- extent -------- |
885                  */
886                 if (args->start <= key.offset && args->end < extent_end) {
887                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
888                                 ret = -EOPNOTSUPP;
889                                 break;
890                         }
891
892                         memcpy(&new_key, &key, sizeof(new_key));
893                         new_key.offset = args->end;
894                         btrfs_set_item_key_safe(fs_info, path, &new_key);
895
896                         extent_offset += args->end - key.offset;
897                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
898                         btrfs_set_file_extent_num_bytes(leaf, fi,
899                                                         extent_end - args->end);
900                         btrfs_mark_buffer_dirty(leaf);
901                         if (update_refs && disk_bytenr > 0)
902                                 args->bytes_found += args->end - key.offset;
903                         break;
904                 }
905
906                 search_start = extent_end;
907                 /*
908                  *       | ---- range to drop ----- |
909                  *  | -------- extent -------- |
910                  */
911                 if (args->start > key.offset && args->end >= extent_end) {
912                         BUG_ON(del_nr > 0);
913                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
914                                 ret = -EOPNOTSUPP;
915                                 break;
916                         }
917
918                         btrfs_set_file_extent_num_bytes(leaf, fi,
919                                                         args->start - key.offset);
920                         btrfs_mark_buffer_dirty(leaf);
921                         if (update_refs && disk_bytenr > 0)
922                                 args->bytes_found += extent_end - args->start;
923                         if (args->end == extent_end)
924                                 break;
925
926                         path->slots[0]++;
927                         goto next_slot;
928                 }
929
930                 /*
931                  *  | ---- range to drop ----- |
932                  *    | ------ extent ------ |
933                  */
934                 if (args->start <= key.offset && args->end >= extent_end) {
935 delete_extent_item:
936                         if (del_nr == 0) {
937                                 del_slot = path->slots[0];
938                                 del_nr = 1;
939                         } else {
940                                 BUG_ON(del_slot + del_nr != path->slots[0]);
941                                 del_nr++;
942                         }
943
944                         if (update_refs &&
945                             extent_type == BTRFS_FILE_EXTENT_INLINE) {
946                                 args->bytes_found += extent_end - key.offset;
947                                 extent_end = ALIGN(extent_end,
948                                                    fs_info->sectorsize);
949                         } else if (update_refs && disk_bytenr > 0) {
950                                 btrfs_init_generic_ref(&ref,
951                                                 BTRFS_DROP_DELAYED_REF,
952                                                 disk_bytenr, num_bytes, 0);
953                                 btrfs_init_data_ref(&ref,
954                                                 root->root_key.objectid,
955                                                 key.objectid,
956                                                 key.offset - extent_offset);
957                                 ret = btrfs_free_extent(trans, &ref);
958                                 BUG_ON(ret); /* -ENOMEM */
959                                 args->bytes_found += extent_end - key.offset;
960                         }
961
962                         if (args->end == extent_end)
963                                 break;
964
965                         if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
966                                 path->slots[0]++;
967                                 goto next_slot;
968                         }
969
970                         ret = btrfs_del_items(trans, root, path, del_slot,
971                                               del_nr);
972                         if (ret) {
973                                 btrfs_abort_transaction(trans, ret);
974                                 break;
975                         }
976
977                         del_nr = 0;
978                         del_slot = 0;
979
980                         btrfs_release_path(path);
981                         continue;
982                 }
983
984                 BUG();
985         }
986
987         if (!ret && del_nr > 0) {
988                 /*
989                  * Set path->slots[0] to first slot, so that after the delete
990                  * if items are move off from our leaf to its immediate left or
991                  * right neighbor leafs, we end up with a correct and adjusted
992                  * path->slots[0] for our insertion (if args->replace_extent).
993                  */
994                 path->slots[0] = del_slot;
995                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
996                 if (ret)
997                         btrfs_abort_transaction(trans, ret);
998         }
999
1000         leaf = path->nodes[0];
1001         /*
1002          * If btrfs_del_items() was called, it might have deleted a leaf, in
1003          * which case it unlocked our path, so check path->locks[0] matches a
1004          * write lock.
1005          */
1006         if (!ret && args->replace_extent && leafs_visited == 1 &&
1007             path->locks[0] == BTRFS_WRITE_LOCK &&
1008             btrfs_leaf_free_space(leaf) >=
1009             sizeof(struct btrfs_item) + args->extent_item_size) {
1010
1011                 key.objectid = ino;
1012                 key.type = BTRFS_EXTENT_DATA_KEY;
1013                 key.offset = args->start;
1014                 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1015                         struct btrfs_key slot_key;
1016
1017                         btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1018                         if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1019                                 path->slots[0]++;
1020                 }
1021                 setup_items_for_insert(root, path, &key,
1022                                        &args->extent_item_size, 1);
1023                 args->extent_inserted = true;
1024         }
1025
1026         if (!args->path)
1027                 btrfs_free_path(path);
1028         else if (!args->extent_inserted)
1029                 btrfs_release_path(path);
1030 out:
1031         args->drop_end = found ? min(args->end, last_end) : args->end;
1032
1033         return ret;
1034 }
1035
1036 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1037                             u64 objectid, u64 bytenr, u64 orig_offset,
1038                             u64 *start, u64 *end)
1039 {
1040         struct btrfs_file_extent_item *fi;
1041         struct btrfs_key key;
1042         u64 extent_end;
1043
1044         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1045                 return 0;
1046
1047         btrfs_item_key_to_cpu(leaf, &key, slot);
1048         if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1049                 return 0;
1050
1051         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1052         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1053             btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1054             btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1055             btrfs_file_extent_compression(leaf, fi) ||
1056             btrfs_file_extent_encryption(leaf, fi) ||
1057             btrfs_file_extent_other_encoding(leaf, fi))
1058                 return 0;
1059
1060         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1061         if ((*start && *start != key.offset) || (*end && *end != extent_end))
1062                 return 0;
1063
1064         *start = key.offset;
1065         *end = extent_end;
1066         return 1;
1067 }
1068
1069 /*
1070  * Mark extent in the range start - end as written.
1071  *
1072  * This changes extent type from 'pre-allocated' to 'regular'. If only
1073  * part of extent is marked as written, the extent will be split into
1074  * two or three.
1075  */
1076 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1077                               struct btrfs_inode *inode, u64 start, u64 end)
1078 {
1079         struct btrfs_fs_info *fs_info = trans->fs_info;
1080         struct btrfs_root *root = inode->root;
1081         struct extent_buffer *leaf;
1082         struct btrfs_path *path;
1083         struct btrfs_file_extent_item *fi;
1084         struct btrfs_ref ref = { 0 };
1085         struct btrfs_key key;
1086         struct btrfs_key new_key;
1087         u64 bytenr;
1088         u64 num_bytes;
1089         u64 extent_end;
1090         u64 orig_offset;
1091         u64 other_start;
1092         u64 other_end;
1093         u64 split;
1094         int del_nr = 0;
1095         int del_slot = 0;
1096         int recow;
1097         int ret;
1098         u64 ino = btrfs_ino(inode);
1099
1100         path = btrfs_alloc_path();
1101         if (!path)
1102                 return -ENOMEM;
1103 again:
1104         recow = 0;
1105         split = start;
1106         key.objectid = ino;
1107         key.type = BTRFS_EXTENT_DATA_KEY;
1108         key.offset = split;
1109
1110         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1111         if (ret < 0)
1112                 goto out;
1113         if (ret > 0 && path->slots[0] > 0)
1114                 path->slots[0]--;
1115
1116         leaf = path->nodes[0];
1117         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1118         if (key.objectid != ino ||
1119             key.type != BTRFS_EXTENT_DATA_KEY) {
1120                 ret = -EINVAL;
1121                 btrfs_abort_transaction(trans, ret);
1122                 goto out;
1123         }
1124         fi = btrfs_item_ptr(leaf, path->slots[0],
1125                             struct btrfs_file_extent_item);
1126         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1127                 ret = -EINVAL;
1128                 btrfs_abort_transaction(trans, ret);
1129                 goto out;
1130         }
1131         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1132         if (key.offset > start || extent_end < end) {
1133                 ret = -EINVAL;
1134                 btrfs_abort_transaction(trans, ret);
1135                 goto out;
1136         }
1137
1138         bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1139         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1140         orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1141         memcpy(&new_key, &key, sizeof(new_key));
1142
1143         if (start == key.offset && end < extent_end) {
1144                 other_start = 0;
1145                 other_end = start;
1146                 if (extent_mergeable(leaf, path->slots[0] - 1,
1147                                      ino, bytenr, orig_offset,
1148                                      &other_start, &other_end)) {
1149                         new_key.offset = end;
1150                         btrfs_set_item_key_safe(fs_info, path, &new_key);
1151                         fi = btrfs_item_ptr(leaf, path->slots[0],
1152                                             struct btrfs_file_extent_item);
1153                         btrfs_set_file_extent_generation(leaf, fi,
1154                                                          trans->transid);
1155                         btrfs_set_file_extent_num_bytes(leaf, fi,
1156                                                         extent_end - end);
1157                         btrfs_set_file_extent_offset(leaf, fi,
1158                                                      end - orig_offset);
1159                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1160                                             struct btrfs_file_extent_item);
1161                         btrfs_set_file_extent_generation(leaf, fi,
1162                                                          trans->transid);
1163                         btrfs_set_file_extent_num_bytes(leaf, fi,
1164                                                         end - other_start);
1165                         btrfs_mark_buffer_dirty(leaf);
1166                         goto out;
1167                 }
1168         }
1169
1170         if (start > key.offset && end == extent_end) {
1171                 other_start = end;
1172                 other_end = 0;
1173                 if (extent_mergeable(leaf, path->slots[0] + 1,
1174                                      ino, bytenr, orig_offset,
1175                                      &other_start, &other_end)) {
1176                         fi = btrfs_item_ptr(leaf, path->slots[0],
1177                                             struct btrfs_file_extent_item);
1178                         btrfs_set_file_extent_num_bytes(leaf, fi,
1179                                                         start - key.offset);
1180                         btrfs_set_file_extent_generation(leaf, fi,
1181                                                          trans->transid);
1182                         path->slots[0]++;
1183                         new_key.offset = start;
1184                         btrfs_set_item_key_safe(fs_info, path, &new_key);
1185
1186                         fi = btrfs_item_ptr(leaf, path->slots[0],
1187                                             struct btrfs_file_extent_item);
1188                         btrfs_set_file_extent_generation(leaf, fi,
1189                                                          trans->transid);
1190                         btrfs_set_file_extent_num_bytes(leaf, fi,
1191                                                         other_end - start);
1192                         btrfs_set_file_extent_offset(leaf, fi,
1193                                                      start - orig_offset);
1194                         btrfs_mark_buffer_dirty(leaf);
1195                         goto out;
1196                 }
1197         }
1198
1199         while (start > key.offset || end < extent_end) {
1200                 if (key.offset == start)
1201                         split = end;
1202
1203                 new_key.offset = split;
1204                 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1205                 if (ret == -EAGAIN) {
1206                         btrfs_release_path(path);
1207                         goto again;
1208                 }
1209                 if (ret < 0) {
1210                         btrfs_abort_transaction(trans, ret);
1211                         goto out;
1212                 }
1213
1214                 leaf = path->nodes[0];
1215                 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1216                                     struct btrfs_file_extent_item);
1217                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1218                 btrfs_set_file_extent_num_bytes(leaf, fi,
1219                                                 split - key.offset);
1220
1221                 fi = btrfs_item_ptr(leaf, path->slots[0],
1222                                     struct btrfs_file_extent_item);
1223
1224                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1225                 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1226                 btrfs_set_file_extent_num_bytes(leaf, fi,
1227                                                 extent_end - split);
1228                 btrfs_mark_buffer_dirty(leaf);
1229
1230                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1231                                        num_bytes, 0);
1232                 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1233                                     orig_offset);
1234                 ret = btrfs_inc_extent_ref(trans, &ref);
1235                 if (ret) {
1236                         btrfs_abort_transaction(trans, ret);
1237                         goto out;
1238                 }
1239
1240                 if (split == start) {
1241                         key.offset = start;
1242                 } else {
1243                         if (start != key.offset) {
1244                                 ret = -EINVAL;
1245                                 btrfs_abort_transaction(trans, ret);
1246                                 goto out;
1247                         }
1248                         path->slots[0]--;
1249                         extent_end = end;
1250                 }
1251                 recow = 1;
1252         }
1253
1254         other_start = end;
1255         other_end = 0;
1256         btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1257                                num_bytes, 0);
1258         btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1259         if (extent_mergeable(leaf, path->slots[0] + 1,
1260                              ino, bytenr, orig_offset,
1261                              &other_start, &other_end)) {
1262                 if (recow) {
1263                         btrfs_release_path(path);
1264                         goto again;
1265                 }
1266                 extent_end = other_end;
1267                 del_slot = path->slots[0] + 1;
1268                 del_nr++;
1269                 ret = btrfs_free_extent(trans, &ref);
1270                 if (ret) {
1271                         btrfs_abort_transaction(trans, ret);
1272                         goto out;
1273                 }
1274         }
1275         other_start = 0;
1276         other_end = start;
1277         if (extent_mergeable(leaf, path->slots[0] - 1,
1278                              ino, bytenr, orig_offset,
1279                              &other_start, &other_end)) {
1280                 if (recow) {
1281                         btrfs_release_path(path);
1282                         goto again;
1283                 }
1284                 key.offset = other_start;
1285                 del_slot = path->slots[0];
1286                 del_nr++;
1287                 ret = btrfs_free_extent(trans, &ref);
1288                 if (ret) {
1289                         btrfs_abort_transaction(trans, ret);
1290                         goto out;
1291                 }
1292         }
1293         if (del_nr == 0) {
1294                 fi = btrfs_item_ptr(leaf, path->slots[0],
1295                            struct btrfs_file_extent_item);
1296                 btrfs_set_file_extent_type(leaf, fi,
1297                                            BTRFS_FILE_EXTENT_REG);
1298                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1299                 btrfs_mark_buffer_dirty(leaf);
1300         } else {
1301                 fi = btrfs_item_ptr(leaf, del_slot - 1,
1302                            struct btrfs_file_extent_item);
1303                 btrfs_set_file_extent_type(leaf, fi,
1304                                            BTRFS_FILE_EXTENT_REG);
1305                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1306                 btrfs_set_file_extent_num_bytes(leaf, fi,
1307                                                 extent_end - key.offset);
1308                 btrfs_mark_buffer_dirty(leaf);
1309
1310                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1311                 if (ret < 0) {
1312                         btrfs_abort_transaction(trans, ret);
1313                         goto out;
1314                 }
1315         }
1316 out:
1317         btrfs_free_path(path);
1318         return 0;
1319 }
1320
1321 /*
1322  * on error we return an unlocked page and the error value
1323  * on success we return a locked page and 0
1324  */
1325 static int prepare_uptodate_page(struct inode *inode,
1326                                  struct page *page, u64 pos,
1327                                  bool force_uptodate)
1328 {
1329         int ret = 0;
1330
1331         if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1332             !PageUptodate(page)) {
1333                 ret = btrfs_readpage(NULL, page);
1334                 if (ret)
1335                         return ret;
1336                 lock_page(page);
1337                 if (!PageUptodate(page)) {
1338                         unlock_page(page);
1339                         return -EIO;
1340                 }
1341                 if (page->mapping != inode->i_mapping) {
1342                         unlock_page(page);
1343                         return -EAGAIN;
1344                 }
1345         }
1346         return 0;
1347 }
1348
1349 /*
1350  * this just gets pages into the page cache and locks them down.
1351  */
1352 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1353                                   size_t num_pages, loff_t pos,
1354                                   size_t write_bytes, bool force_uptodate)
1355 {
1356         int i;
1357         unsigned long index = pos >> PAGE_SHIFT;
1358         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1359         int err = 0;
1360         int faili;
1361
1362         for (i = 0; i < num_pages; i++) {
1363 again:
1364                 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1365                                                mask | __GFP_WRITE);
1366                 if (!pages[i]) {
1367                         faili = i - 1;
1368                         err = -ENOMEM;
1369                         goto fail;
1370                 }
1371
1372                 if (i == 0)
1373                         err = prepare_uptodate_page(inode, pages[i], pos,
1374                                                     force_uptodate);
1375                 if (!err && i == num_pages - 1)
1376                         err = prepare_uptodate_page(inode, pages[i],
1377                                                     pos + write_bytes, false);
1378                 if (err) {
1379                         put_page(pages[i]);
1380                         if (err == -EAGAIN) {
1381                                 err = 0;
1382                                 goto again;
1383                         }
1384                         faili = i - 1;
1385                         goto fail;
1386                 }
1387                 wait_on_page_writeback(pages[i]);
1388         }
1389
1390         return 0;
1391 fail:
1392         while (faili >= 0) {
1393                 unlock_page(pages[faili]);
1394                 put_page(pages[faili]);
1395                 faili--;
1396         }
1397         return err;
1398
1399 }
1400
1401 /*
1402  * This function locks the extent and properly waits for data=ordered extents
1403  * to finish before allowing the pages to be modified if need.
1404  *
1405  * The return value:
1406  * 1 - the extent is locked
1407  * 0 - the extent is not locked, and everything is OK
1408  * -EAGAIN - need re-prepare the pages
1409  * the other < 0 number - Something wrong happens
1410  */
1411 static noinline int
1412 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1413                                 size_t num_pages, loff_t pos,
1414                                 size_t write_bytes,
1415                                 u64 *lockstart, u64 *lockend,
1416                                 struct extent_state **cached_state)
1417 {
1418         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1419         u64 start_pos;
1420         u64 last_pos;
1421         int i;
1422         int ret = 0;
1423
1424         start_pos = round_down(pos, fs_info->sectorsize);
1425         last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1426
1427         if (start_pos < inode->vfs_inode.i_size) {
1428                 struct btrfs_ordered_extent *ordered;
1429
1430                 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1431                                 cached_state);
1432                 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1433                                                      last_pos - start_pos + 1);
1434                 if (ordered &&
1435                     ordered->file_offset + ordered->num_bytes > start_pos &&
1436                     ordered->file_offset <= last_pos) {
1437                         unlock_extent_cached(&inode->io_tree, start_pos,
1438                                         last_pos, cached_state);
1439                         for (i = 0; i < num_pages; i++) {
1440                                 unlock_page(pages[i]);
1441                                 put_page(pages[i]);
1442                         }
1443                         btrfs_start_ordered_extent(ordered, 1);
1444                         btrfs_put_ordered_extent(ordered);
1445                         return -EAGAIN;
1446                 }
1447                 if (ordered)
1448                         btrfs_put_ordered_extent(ordered);
1449
1450                 *lockstart = start_pos;
1451                 *lockend = last_pos;
1452                 ret = 1;
1453         }
1454
1455         /*
1456          * It's possible the pages are dirty right now, but we don't want
1457          * to clean them yet because copy_from_user may catch a page fault
1458          * and we might have to fall back to one page at a time.  If that
1459          * happens, we'll unlock these pages and we'd have a window where
1460          * reclaim could sneak in and drop the once-dirty page on the floor
1461          * without writing it.
1462          *
1463          * We have the pages locked and the extent range locked, so there's
1464          * no way someone can start IO on any dirty pages in this range.
1465          *
1466          * We'll call btrfs_dirty_pages() later on, and that will flip around
1467          * delalloc bits and dirty the pages as required.
1468          */
1469         for (i = 0; i < num_pages; i++) {
1470                 set_page_extent_mapped(pages[i]);
1471                 WARN_ON(!PageLocked(pages[i]));
1472         }
1473
1474         return ret;
1475 }
1476
1477 static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1478                            size_t *write_bytes, bool nowait)
1479 {
1480         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1481         struct btrfs_root *root = inode->root;
1482         u64 lockstart, lockend;
1483         u64 num_bytes;
1484         int ret;
1485
1486         if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1487                 return 0;
1488
1489         if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
1490                 return -EAGAIN;
1491
1492         lockstart = round_down(pos, fs_info->sectorsize);
1493         lockend = round_up(pos + *write_bytes,
1494                            fs_info->sectorsize) - 1;
1495         num_bytes = lockend - lockstart + 1;
1496
1497         if (nowait) {
1498                 struct btrfs_ordered_extent *ordered;
1499
1500                 if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1501                         return -EAGAIN;
1502
1503                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1504                                                      num_bytes);
1505                 if (ordered) {
1506                         btrfs_put_ordered_extent(ordered);
1507                         ret = -EAGAIN;
1508                         goto out_unlock;
1509                 }
1510         } else {
1511                 btrfs_lock_and_flush_ordered_range(inode, lockstart,
1512                                                    lockend, NULL);
1513         }
1514
1515         ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1516                         NULL, NULL, NULL, false);
1517         if (ret <= 0) {
1518                 ret = 0;
1519                 if (!nowait)
1520                         btrfs_drew_write_unlock(&root->snapshot_lock);
1521         } else {
1522                 *write_bytes = min_t(size_t, *write_bytes ,
1523                                      num_bytes - pos + lockstart);
1524         }
1525 out_unlock:
1526         unlock_extent(&inode->io_tree, lockstart, lockend);
1527
1528         return ret;
1529 }
1530
1531 static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1532                               size_t *write_bytes)
1533 {
1534         return check_can_nocow(inode, pos, write_bytes, true);
1535 }
1536
1537 /*
1538  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1539  *
1540  * @pos:         File offset
1541  * @write_bytes: The length to write, will be updated to the nocow writeable
1542  *               range
1543  *
1544  * This function will flush ordered extents in the range to ensure proper
1545  * nocow checks.
1546  *
1547  * Return:
1548  * >0           and update @write_bytes if we can do nocow write
1549  *  0           if we can't do nocow write
1550  * -EAGAIN      if we can't get the needed lock or there are ordered extents
1551  *              for * (nowait == true) case
1552  * <0           if other error happened
1553  *
1554  * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1555  */
1556 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1557                            size_t *write_bytes)
1558 {
1559         return check_can_nocow(inode, pos, write_bytes, false);
1560 }
1561
1562 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1563 {
1564         btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1565 }
1566
1567 static void update_time_for_write(struct inode *inode)
1568 {
1569         struct timespec64 now;
1570
1571         if (IS_NOCMTIME(inode))
1572                 return;
1573
1574         now = current_time(inode);
1575         if (!timespec64_equal(&inode->i_mtime, &now))
1576                 inode->i_mtime = now;
1577
1578         if (!timespec64_equal(&inode->i_ctime, &now))
1579                 inode->i_ctime = now;
1580
1581         if (IS_I_VERSION(inode))
1582                 inode_inc_iversion(inode);
1583 }
1584
1585 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1586                              size_t count)
1587 {
1588         struct file *file = iocb->ki_filp;
1589         struct inode *inode = file_inode(file);
1590         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1591         loff_t pos = iocb->ki_pos;
1592         int ret;
1593         loff_t oldsize;
1594         loff_t start_pos;
1595
1596         if (iocb->ki_flags & IOCB_NOWAIT) {
1597                 size_t nocow_bytes = count;
1598
1599                 /* We will allocate space in case nodatacow is not set, so bail */
1600                 if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes) <= 0)
1601                         return -EAGAIN;
1602                 /*
1603                  * There are holes in the range or parts of the range that must
1604                  * be COWed (shared extents, RO block groups, etc), so just bail
1605                  * out.
1606                  */
1607                 if (nocow_bytes < count)
1608                         return -EAGAIN;
1609         }
1610
1611         current->backing_dev_info = inode_to_bdi(inode);
1612         ret = file_remove_privs(file);
1613         if (ret)
1614                 return ret;
1615
1616         /*
1617          * We reserve space for updating the inode when we reserve space for the
1618          * extent we are going to write, so we will enospc out there.  We don't
1619          * need to start yet another transaction to update the inode as we will
1620          * update the inode when we finish writing whatever data we write.
1621          */
1622         update_time_for_write(inode);
1623
1624         start_pos = round_down(pos, fs_info->sectorsize);
1625         oldsize = i_size_read(inode);
1626         if (start_pos > oldsize) {
1627                 /* Expand hole size to cover write data, preventing empty gap */
1628                 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1629
1630                 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1631                 if (ret) {
1632                         current->backing_dev_info = NULL;
1633                         return ret;
1634                 }
1635         }
1636
1637         return 0;
1638 }
1639
1640 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1641                                                struct iov_iter *i)
1642 {
1643         struct file *file = iocb->ki_filp;
1644         loff_t pos;
1645         struct inode *inode = file_inode(file);
1646         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1647         struct page **pages = NULL;
1648         struct extent_changeset *data_reserved = NULL;
1649         u64 release_bytes = 0;
1650         u64 lockstart;
1651         u64 lockend;
1652         size_t num_written = 0;
1653         int nrptrs;
1654         ssize_t ret;
1655         bool only_release_metadata = false;
1656         bool force_page_uptodate = false;
1657         loff_t old_isize = i_size_read(inode);
1658         unsigned int ilock_flags = 0;
1659
1660         if (iocb->ki_flags & IOCB_NOWAIT)
1661                 ilock_flags |= BTRFS_ILOCK_TRY;
1662
1663         ret = btrfs_inode_lock(inode, ilock_flags);
1664         if (ret < 0)
1665                 return ret;
1666
1667         ret = generic_write_checks(iocb, i);
1668         if (ret <= 0)
1669                 goto out;
1670
1671         ret = btrfs_write_check(iocb, i, ret);
1672         if (ret < 0)
1673                 goto out;
1674
1675         pos = iocb->ki_pos;
1676         nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1677                         PAGE_SIZE / (sizeof(struct page *)));
1678         nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1679         nrptrs = max(nrptrs, 8);
1680         pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1681         if (!pages) {
1682                 ret = -ENOMEM;
1683                 goto out;
1684         }
1685
1686         while (iov_iter_count(i) > 0) {
1687                 struct extent_state *cached_state = NULL;
1688                 size_t offset = offset_in_page(pos);
1689                 size_t sector_offset;
1690                 size_t write_bytes = min(iov_iter_count(i),
1691                                          nrptrs * (size_t)PAGE_SIZE -
1692                                          offset);
1693                 size_t num_pages;
1694                 size_t reserve_bytes;
1695                 size_t dirty_pages;
1696                 size_t copied;
1697                 size_t dirty_sectors;
1698                 size_t num_sectors;
1699                 int extents_locked;
1700
1701                 /*
1702                  * Fault pages before locking them in prepare_pages
1703                  * to avoid recursive lock
1704                  */
1705                 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1706                         ret = -EFAULT;
1707                         break;
1708                 }
1709
1710                 only_release_metadata = false;
1711                 sector_offset = pos & (fs_info->sectorsize - 1);
1712
1713                 extent_changeset_release(data_reserved);
1714                 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1715                                                   &data_reserved, pos,
1716                                                   write_bytes);
1717                 if (ret < 0) {
1718                         /*
1719                          * If we don't have to COW at the offset, reserve
1720                          * metadata only. write_bytes may get smaller than
1721                          * requested here.
1722                          */
1723                         if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1724                                                    &write_bytes) > 0)
1725                                 only_release_metadata = true;
1726                         else
1727                                 break;
1728                 }
1729
1730                 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1731                 WARN_ON(num_pages > nrptrs);
1732                 reserve_bytes = round_up(write_bytes + sector_offset,
1733                                          fs_info->sectorsize);
1734                 WARN_ON(reserve_bytes == 0);
1735                 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1736                                 reserve_bytes);
1737                 if (ret) {
1738                         if (!only_release_metadata)
1739                                 btrfs_free_reserved_data_space(BTRFS_I(inode),
1740                                                 data_reserved, pos,
1741                                                 write_bytes);
1742                         else
1743                                 btrfs_check_nocow_unlock(BTRFS_I(inode));
1744                         break;
1745                 }
1746
1747                 release_bytes = reserve_bytes;
1748 again:
1749                 /*
1750                  * This is going to setup the pages array with the number of
1751                  * pages we want, so we don't really need to worry about the
1752                  * contents of pages from loop to loop
1753                  */
1754                 ret = prepare_pages(inode, pages, num_pages,
1755                                     pos, write_bytes,
1756                                     force_page_uptodate);
1757                 if (ret) {
1758                         btrfs_delalloc_release_extents(BTRFS_I(inode),
1759                                                        reserve_bytes);
1760                         break;
1761                 }
1762
1763                 extents_locked = lock_and_cleanup_extent_if_need(
1764                                 BTRFS_I(inode), pages,
1765                                 num_pages, pos, write_bytes, &lockstart,
1766                                 &lockend, &cached_state);
1767                 if (extents_locked < 0) {
1768                         if (extents_locked == -EAGAIN)
1769                                 goto again;
1770                         btrfs_delalloc_release_extents(BTRFS_I(inode),
1771                                                        reserve_bytes);
1772                         ret = extents_locked;
1773                         break;
1774                 }
1775
1776                 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1777
1778                 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1779                 dirty_sectors = round_up(copied + sector_offset,
1780                                         fs_info->sectorsize);
1781                 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1782
1783                 /*
1784                  * if we have trouble faulting in the pages, fall
1785                  * back to one page at a time
1786                  */
1787                 if (copied < write_bytes)
1788                         nrptrs = 1;
1789
1790                 if (copied == 0) {
1791                         force_page_uptodate = true;
1792                         dirty_sectors = 0;
1793                         dirty_pages = 0;
1794                 } else {
1795                         force_page_uptodate = false;
1796                         dirty_pages = DIV_ROUND_UP(copied + offset,
1797                                                    PAGE_SIZE);
1798                 }
1799
1800                 if (num_sectors > dirty_sectors) {
1801                         /* release everything except the sectors we dirtied */
1802                         release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1803                         if (only_release_metadata) {
1804                                 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1805                                                         release_bytes, true);
1806                         } else {
1807                                 u64 __pos;
1808
1809                                 __pos = round_down(pos,
1810                                                    fs_info->sectorsize) +
1811                                         (dirty_pages << PAGE_SHIFT);
1812                                 btrfs_delalloc_release_space(BTRFS_I(inode),
1813                                                 data_reserved, __pos,
1814                                                 release_bytes, true);
1815                         }
1816                 }
1817
1818                 release_bytes = round_up(copied + sector_offset,
1819                                         fs_info->sectorsize);
1820
1821                 ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1822                                         dirty_pages, pos, copied,
1823                                         &cached_state, only_release_metadata);
1824
1825                 /*
1826                  * If we have not locked the extent range, because the range's
1827                  * start offset is >= i_size, we might still have a non-NULL
1828                  * cached extent state, acquired while marking the extent range
1829                  * as delalloc through btrfs_dirty_pages(). Therefore free any
1830                  * possible cached extent state to avoid a memory leak.
1831                  */
1832                 if (extents_locked)
1833                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1834                                              lockstart, lockend, &cached_state);
1835                 else
1836                         free_extent_state(cached_state);
1837
1838                 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1839                 if (ret) {
1840                         btrfs_drop_pages(pages, num_pages);
1841                         break;
1842                 }
1843
1844                 release_bytes = 0;
1845                 if (only_release_metadata)
1846                         btrfs_check_nocow_unlock(BTRFS_I(inode));
1847
1848                 btrfs_drop_pages(pages, num_pages);
1849
1850                 cond_resched();
1851
1852                 balance_dirty_pages_ratelimited(inode->i_mapping);
1853
1854                 pos += copied;
1855                 num_written += copied;
1856         }
1857
1858         kfree(pages);
1859
1860         if (release_bytes) {
1861                 if (only_release_metadata) {
1862                         btrfs_check_nocow_unlock(BTRFS_I(inode));
1863                         btrfs_delalloc_release_metadata(BTRFS_I(inode),
1864                                         release_bytes, true);
1865                 } else {
1866                         btrfs_delalloc_release_space(BTRFS_I(inode),
1867                                         data_reserved,
1868                                         round_down(pos, fs_info->sectorsize),
1869                                         release_bytes, true);
1870                 }
1871         }
1872
1873         extent_changeset_free(data_reserved);
1874         if (num_written > 0) {
1875                 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1876                 iocb->ki_pos += num_written;
1877         }
1878 out:
1879         btrfs_inode_unlock(inode, ilock_flags);
1880         return num_written ? num_written : ret;
1881 }
1882
1883 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1884                                const struct iov_iter *iter, loff_t offset)
1885 {
1886         const u32 blocksize_mask = fs_info->sectorsize - 1;
1887
1888         if (offset & blocksize_mask)
1889                 return -EINVAL;
1890
1891         if (iov_iter_alignment(iter) & blocksize_mask)
1892                 return -EINVAL;
1893
1894         return 0;
1895 }
1896
1897 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1898 {
1899         struct file *file = iocb->ki_filp;
1900         struct inode *inode = file_inode(file);
1901         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1902         loff_t pos;
1903         ssize_t written = 0;
1904         ssize_t written_buffered;
1905         loff_t endbyte;
1906         ssize_t err;
1907         unsigned int ilock_flags = 0;
1908         struct iomap_dio *dio = NULL;
1909
1910         if (iocb->ki_flags & IOCB_NOWAIT)
1911                 ilock_flags |= BTRFS_ILOCK_TRY;
1912
1913         /* If the write DIO is within EOF, use a shared lock */
1914         if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1915                 ilock_flags |= BTRFS_ILOCK_SHARED;
1916
1917 relock:
1918         err = btrfs_inode_lock(inode, ilock_flags);
1919         if (err < 0)
1920                 return err;
1921
1922         err = generic_write_checks(iocb, from);
1923         if (err <= 0) {
1924                 btrfs_inode_unlock(inode, ilock_flags);
1925                 return err;
1926         }
1927
1928         err = btrfs_write_check(iocb, from, err);
1929         if (err < 0) {
1930                 btrfs_inode_unlock(inode, ilock_flags);
1931                 goto out;
1932         }
1933
1934         pos = iocb->ki_pos;
1935         /*
1936          * Re-check since file size may have changed just before taking the
1937          * lock or pos may have changed because of O_APPEND in generic_write_check()
1938          */
1939         if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1940             pos + iov_iter_count(from) > i_size_read(inode)) {
1941                 btrfs_inode_unlock(inode, ilock_flags);
1942                 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1943                 goto relock;
1944         }
1945
1946         if (check_direct_IO(fs_info, from, pos)) {
1947                 btrfs_inode_unlock(inode, ilock_flags);
1948                 goto buffered;
1949         }
1950
1951         dio = __iomap_dio_rw(iocb, from, &btrfs_dio_iomap_ops,
1952                              &btrfs_dio_ops, is_sync_kiocb(iocb));
1953
1954         btrfs_inode_unlock(inode, ilock_flags);
1955
1956         if (IS_ERR_OR_NULL(dio)) {
1957                 err = PTR_ERR_OR_ZERO(dio);
1958                 if (err < 0 && err != -ENOTBLK)
1959                         goto out;
1960         } else {
1961                 written = iomap_dio_complete(dio);
1962         }
1963
1964         if (written < 0 || !iov_iter_count(from)) {
1965                 err = written;
1966                 goto out;
1967         }
1968
1969 buffered:
1970         pos = iocb->ki_pos;
1971         written_buffered = btrfs_buffered_write(iocb, from);
1972         if (written_buffered < 0) {
1973                 err = written_buffered;
1974                 goto out;
1975         }
1976         /*
1977          * Ensure all data is persisted. We want the next direct IO read to be
1978          * able to read what was just written.
1979          */
1980         endbyte = pos + written_buffered - 1;
1981         err = btrfs_fdatawrite_range(inode, pos, endbyte);
1982         if (err)
1983                 goto out;
1984         err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1985         if (err)
1986                 goto out;
1987         written += written_buffered;
1988         iocb->ki_pos = pos + written_buffered;
1989         invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1990                                  endbyte >> PAGE_SHIFT);
1991 out:
1992         return written ? written : err;
1993 }
1994
1995 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1996                                     struct iov_iter *from)
1997 {
1998         struct file *file = iocb->ki_filp;
1999         struct btrfs_inode *inode = BTRFS_I(file_inode(file));
2000         ssize_t num_written = 0;
2001         const bool sync = iocb->ki_flags & IOCB_DSYNC;
2002
2003         /*
2004          * If the fs flips readonly due to some impossible error, although we
2005          * have opened a file as writable, we have to stop this write operation
2006          * to ensure consistency.
2007          */
2008         if (test_bit(BTRFS_FS_STATE_ERROR, &inode->root->fs_info->fs_state))
2009                 return -EROFS;
2010
2011         if (!(iocb->ki_flags & IOCB_DIRECT) &&
2012             (iocb->ki_flags & IOCB_NOWAIT))
2013                 return -EOPNOTSUPP;
2014
2015         if (sync)
2016                 atomic_inc(&inode->sync_writers);
2017
2018         if (iocb->ki_flags & IOCB_DIRECT)
2019                 num_written = btrfs_direct_write(iocb, from);
2020         else
2021                 num_written = btrfs_buffered_write(iocb, from);
2022
2023         /*
2024          * We also have to set last_sub_trans to the current log transid,
2025          * otherwise subsequent syncs to a file that's been synced in this
2026          * transaction will appear to have already occurred.
2027          */
2028         spin_lock(&inode->lock);
2029         inode->last_sub_trans = inode->root->log_transid;
2030         spin_unlock(&inode->lock);
2031         if (num_written > 0)
2032                 num_written = generic_write_sync(iocb, num_written);
2033
2034         if (sync)
2035                 atomic_dec(&inode->sync_writers);
2036
2037         current->backing_dev_info = NULL;
2038         return num_written;
2039 }
2040
2041 int btrfs_release_file(struct inode *inode, struct file *filp)
2042 {
2043         struct btrfs_file_private *private = filp->private_data;
2044
2045         if (private && private->filldir_buf)
2046                 kfree(private->filldir_buf);
2047         kfree(private);
2048         filp->private_data = NULL;
2049
2050         /*
2051          * Set by setattr when we are about to truncate a file from a non-zero
2052          * size to a zero size.  This tries to flush down new bytes that may
2053          * have been written if the application were using truncate to replace
2054          * a file in place.
2055          */
2056         if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
2057                                &BTRFS_I(inode)->runtime_flags))
2058                         filemap_flush(inode->i_mapping);
2059         return 0;
2060 }
2061
2062 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2063 {
2064         int ret;
2065         struct blk_plug plug;
2066
2067         /*
2068          * This is only called in fsync, which would do synchronous writes, so
2069          * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2070          * multiple disks using raid profile, a large IO can be split to
2071          * several segments of stripe length (currently 64K).
2072          */
2073         blk_start_plug(&plug);
2074         atomic_inc(&BTRFS_I(inode)->sync_writers);
2075         ret = btrfs_fdatawrite_range(inode, start, end);
2076         atomic_dec(&BTRFS_I(inode)->sync_writers);
2077         blk_finish_plug(&plug);
2078
2079         return ret;
2080 }
2081
2082 /*
2083  * fsync call for both files and directories.  This logs the inode into
2084  * the tree log instead of forcing full commits whenever possible.
2085  *
2086  * It needs to call filemap_fdatawait so that all ordered extent updates are
2087  * in the metadata btree are up to date for copying to the log.
2088  *
2089  * It drops the inode mutex before doing the tree log commit.  This is an
2090  * important optimization for directories because holding the mutex prevents
2091  * new operations on the dir while we write to disk.
2092  */
2093 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2094 {
2095         struct dentry *dentry = file_dentry(file);
2096         struct inode *inode = d_inode(dentry);
2097         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2098         struct btrfs_root *root = BTRFS_I(inode)->root;
2099         struct btrfs_trans_handle *trans;
2100         struct btrfs_log_ctx ctx;
2101         int ret = 0, err;
2102         u64 len;
2103         bool full_sync;
2104
2105         trace_btrfs_sync_file(file, datasync);
2106
2107         btrfs_init_log_ctx(&ctx, inode);
2108
2109         /*
2110          * Always set the range to a full range, otherwise we can get into
2111          * several problems, from missing file extent items to represent holes
2112          * when not using the NO_HOLES feature, to log tree corruption due to
2113          * races between hole detection during logging and completion of ordered
2114          * extents outside the range, to missing checksums due to ordered extents
2115          * for which we flushed only a subset of their pages.
2116          */
2117         start = 0;
2118         end = LLONG_MAX;
2119         len = (u64)LLONG_MAX + 1;
2120
2121         /*
2122          * We write the dirty pages in the range and wait until they complete
2123          * out of the ->i_mutex. If so, we can flush the dirty pages by
2124          * multi-task, and make the performance up.  See
2125          * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2126          */
2127         ret = start_ordered_ops(inode, start, end);
2128         if (ret)
2129                 goto out;
2130
2131         inode_lock(inode);
2132
2133         atomic_inc(&root->log_batch);
2134
2135         /*
2136          * Always check for the full sync flag while holding the inode's lock,
2137          * to avoid races with other tasks. The flag must be either set all the
2138          * time during logging or always off all the time while logging.
2139          */
2140         full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2141                              &BTRFS_I(inode)->runtime_flags);
2142
2143         /*
2144          * Before we acquired the inode's lock, someone may have dirtied more
2145          * pages in the target range. We need to make sure that writeback for
2146          * any such pages does not start while we are logging the inode, because
2147          * if it does, any of the following might happen when we are not doing a
2148          * full inode sync:
2149          *
2150          * 1) We log an extent after its writeback finishes but before its
2151          *    checksums are added to the csum tree, leading to -EIO errors
2152          *    when attempting to read the extent after a log replay.
2153          *
2154          * 2) We can end up logging an extent before its writeback finishes.
2155          *    Therefore after the log replay we will have a file extent item
2156          *    pointing to an unwritten extent (and no data checksums as well).
2157          *
2158          * So trigger writeback for any eventual new dirty pages and then we
2159          * wait for all ordered extents to complete below.
2160          */
2161         ret = start_ordered_ops(inode, start, end);
2162         if (ret) {
2163                 inode_unlock(inode);
2164                 goto out;
2165         }
2166
2167         /*
2168          * We have to do this here to avoid the priority inversion of waiting on
2169          * IO of a lower priority task while holding a transaction open.
2170          *
2171          * For a full fsync we wait for the ordered extents to complete while
2172          * for a fast fsync we wait just for writeback to complete, and then
2173          * attach the ordered extents to the transaction so that a transaction
2174          * commit waits for their completion, to avoid data loss if we fsync,
2175          * the current transaction commits before the ordered extents complete
2176          * and a power failure happens right after that.
2177          */
2178         if (full_sync) {
2179                 ret = btrfs_wait_ordered_range(inode, start, len);
2180         } else {
2181                 /*
2182                  * Get our ordered extents as soon as possible to avoid doing
2183                  * checksum lookups in the csum tree, and use instead the
2184                  * checksums attached to the ordered extents.
2185                  */
2186                 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2187                                                       &ctx.ordered_extents);
2188                 ret = filemap_fdatawait_range(inode->i_mapping, start, end);
2189         }
2190
2191         if (ret)
2192                 goto out_release_extents;
2193
2194         atomic_inc(&root->log_batch);
2195
2196         /*
2197          * If we are doing a fast fsync we can not bail out if the inode's
2198          * last_trans is <= then the last committed transaction, because we only
2199          * update the last_trans of the inode during ordered extent completion,
2200          * and for a fast fsync we don't wait for that, we only wait for the
2201          * writeback to complete.
2202          */
2203         smp_mb();
2204         if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2205             (BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed &&
2206              (full_sync || list_empty(&ctx.ordered_extents)))) {
2207                 /*
2208                  * We've had everything committed since the last time we were
2209                  * modified so clear this flag in case it was set for whatever
2210                  * reason, it's no longer relevant.
2211                  */
2212                 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2213                           &BTRFS_I(inode)->runtime_flags);
2214                 /*
2215                  * An ordered extent might have started before and completed
2216                  * already with io errors, in which case the inode was not
2217                  * updated and we end up here. So check the inode's mapping
2218                  * for any errors that might have happened since we last
2219                  * checked called fsync.
2220                  */
2221                 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2222                 goto out_release_extents;
2223         }
2224
2225         /*
2226          * We use start here because we will need to wait on the IO to complete
2227          * in btrfs_sync_log, which could require joining a transaction (for
2228          * example checking cross references in the nocow path).  If we use join
2229          * here we could get into a situation where we're waiting on IO to
2230          * happen that is blocked on a transaction trying to commit.  With start
2231          * we inc the extwriter counter, so we wait for all extwriters to exit
2232          * before we start blocking joiners.  This comment is to keep somebody
2233          * from thinking they are super smart and changing this to
2234          * btrfs_join_transaction *cough*Josef*cough*.
2235          */
2236         trans = btrfs_start_transaction(root, 0);
2237         if (IS_ERR(trans)) {
2238                 ret = PTR_ERR(trans);
2239                 goto out_release_extents;
2240         }
2241
2242         ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2243         btrfs_release_log_ctx_extents(&ctx);
2244         if (ret < 0) {
2245                 /* Fallthrough and commit/free transaction. */
2246                 ret = 1;
2247         }
2248
2249         /* we've logged all the items and now have a consistent
2250          * version of the file in the log.  It is possible that
2251          * someone will come in and modify the file, but that's
2252          * fine because the log is consistent on disk, and we
2253          * have references to all of the file's extents
2254          *
2255          * It is possible that someone will come in and log the
2256          * file again, but that will end up using the synchronization
2257          * inside btrfs_sync_log to keep things safe.
2258          */
2259         inode_unlock(inode);
2260
2261         if (ret != BTRFS_NO_LOG_SYNC) {
2262                 if (!ret) {
2263                         ret = btrfs_sync_log(trans, root, &ctx);
2264                         if (!ret) {
2265                                 ret = btrfs_end_transaction(trans);
2266                                 goto out;
2267                         }
2268                 }
2269                 if (!full_sync) {
2270                         ret = btrfs_wait_ordered_range(inode, start, len);
2271                         if (ret) {
2272                                 btrfs_end_transaction(trans);
2273                                 goto out;
2274                         }
2275                 }
2276                 ret = btrfs_commit_transaction(trans);
2277         } else {
2278                 ret = btrfs_end_transaction(trans);
2279         }
2280 out:
2281         ASSERT(list_empty(&ctx.list));
2282         err = file_check_and_advance_wb_err(file);
2283         if (!ret)
2284                 ret = err;
2285         return ret > 0 ? -EIO : ret;
2286
2287 out_release_extents:
2288         btrfs_release_log_ctx_extents(&ctx);
2289         inode_unlock(inode);
2290         goto out;
2291 }
2292
2293 static const struct vm_operations_struct btrfs_file_vm_ops = {
2294         .fault          = filemap_fault,
2295         .map_pages      = filemap_map_pages,
2296         .page_mkwrite   = btrfs_page_mkwrite,
2297 };
2298
2299 static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
2300 {
2301         struct address_space *mapping = filp->f_mapping;
2302
2303         if (!mapping->a_ops->readpage)
2304                 return -ENOEXEC;
2305
2306         file_accessed(filp);
2307         vma->vm_ops = &btrfs_file_vm_ops;
2308
2309         return 0;
2310 }
2311
2312 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2313                           int slot, u64 start, u64 end)
2314 {
2315         struct btrfs_file_extent_item *fi;
2316         struct btrfs_key key;
2317
2318         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2319                 return 0;
2320
2321         btrfs_item_key_to_cpu(leaf, &key, slot);
2322         if (key.objectid != btrfs_ino(inode) ||
2323             key.type != BTRFS_EXTENT_DATA_KEY)
2324                 return 0;
2325
2326         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2327
2328         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2329                 return 0;
2330
2331         if (btrfs_file_extent_disk_bytenr(leaf, fi))
2332                 return 0;
2333
2334         if (key.offset == end)
2335                 return 1;
2336         if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2337                 return 1;
2338         return 0;
2339 }
2340
2341 static int fill_holes(struct btrfs_trans_handle *trans,
2342                 struct btrfs_inode *inode,
2343                 struct btrfs_path *path, u64 offset, u64 end)
2344 {
2345         struct btrfs_fs_info *fs_info = trans->fs_info;
2346         struct btrfs_root *root = inode->root;
2347         struct extent_buffer *leaf;
2348         struct btrfs_file_extent_item *fi;
2349         struct extent_map *hole_em;
2350         struct extent_map_tree *em_tree = &inode->extent_tree;
2351         struct btrfs_key key;
2352         int ret;
2353
2354         if (btrfs_fs_incompat(fs_info, NO_HOLES))
2355                 goto out;
2356
2357         key.objectid = btrfs_ino(inode);
2358         key.type = BTRFS_EXTENT_DATA_KEY;
2359         key.offset = offset;
2360
2361         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2362         if (ret <= 0) {
2363                 /*
2364                  * We should have dropped this offset, so if we find it then
2365                  * something has gone horribly wrong.
2366                  */
2367                 if (ret == 0)
2368                         ret = -EINVAL;
2369                 return ret;
2370         }
2371
2372         leaf = path->nodes[0];
2373         if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2374                 u64 num_bytes;
2375
2376                 path->slots[0]--;
2377                 fi = btrfs_item_ptr(leaf, path->slots[0],
2378                                     struct btrfs_file_extent_item);
2379                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2380                         end - offset;
2381                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2382                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2383                 btrfs_set_file_extent_offset(leaf, fi, 0);
2384                 btrfs_mark_buffer_dirty(leaf);
2385                 goto out;
2386         }
2387
2388         if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2389                 u64 num_bytes;
2390
2391                 key.offset = offset;
2392                 btrfs_set_item_key_safe(fs_info, path, &key);
2393                 fi = btrfs_item_ptr(leaf, path->slots[0],
2394                                     struct btrfs_file_extent_item);
2395                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2396                         offset;
2397                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2398                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2399                 btrfs_set_file_extent_offset(leaf, fi, 0);
2400                 btrfs_mark_buffer_dirty(leaf);
2401                 goto out;
2402         }
2403         btrfs_release_path(path);
2404
2405         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2406                         offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2407         if (ret)
2408                 return ret;
2409
2410 out:
2411         btrfs_release_path(path);
2412
2413         hole_em = alloc_extent_map();
2414         if (!hole_em) {
2415                 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2416                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2417         } else {
2418                 hole_em->start = offset;
2419                 hole_em->len = end - offset;
2420                 hole_em->ram_bytes = hole_em->len;
2421                 hole_em->orig_start = offset;
2422
2423                 hole_em->block_start = EXTENT_MAP_HOLE;
2424                 hole_em->block_len = 0;
2425                 hole_em->orig_block_len = 0;
2426                 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2427                 hole_em->generation = trans->transid;
2428
2429                 do {
2430                         btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2431                         write_lock(&em_tree->lock);
2432                         ret = add_extent_mapping(em_tree, hole_em, 1);
2433                         write_unlock(&em_tree->lock);
2434                 } while (ret == -EEXIST);
2435                 free_extent_map(hole_em);
2436                 if (ret)
2437                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2438                                         &inode->runtime_flags);
2439         }
2440
2441         return 0;
2442 }
2443
2444 /*
2445  * Find a hole extent on given inode and change start/len to the end of hole
2446  * extent.(hole/vacuum extent whose em->start <= start &&
2447  *         em->start + em->len > start)
2448  * When a hole extent is found, return 1 and modify start/len.
2449  */
2450 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2451 {
2452         struct btrfs_fs_info *fs_info = inode->root->fs_info;
2453         struct extent_map *em;
2454         int ret = 0;
2455
2456         em = btrfs_get_extent(inode, NULL, 0,
2457                               round_down(*start, fs_info->sectorsize),
2458                               round_up(*len, fs_info->sectorsize));
2459         if (IS_ERR(em))
2460                 return PTR_ERR(em);
2461
2462         /* Hole or vacuum extent(only exists in no-hole mode) */
2463         if (em->block_start == EXTENT_MAP_HOLE) {
2464                 ret = 1;
2465                 *len = em->start + em->len > *start + *len ?
2466                        0 : *start + *len - em->start - em->len;
2467                 *start = em->start + em->len;
2468         }
2469         free_extent_map(em);
2470         return ret;
2471 }
2472
2473 static int btrfs_punch_hole_lock_range(struct inode *inode,
2474                                        const u64 lockstart,
2475                                        const u64 lockend,
2476                                        struct extent_state **cached_state)
2477 {
2478         while (1) {
2479                 struct btrfs_ordered_extent *ordered;
2480                 int ret;
2481
2482                 truncate_pagecache_range(inode, lockstart, lockend);
2483
2484                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2485                                  cached_state);
2486                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
2487                                                             lockend);
2488
2489                 /*
2490                  * We need to make sure we have no ordered extents in this range
2491                  * and nobody raced in and read a page in this range, if we did
2492                  * we need to try again.
2493                  */
2494                 if ((!ordered ||
2495                     (ordered->file_offset + ordered->num_bytes <= lockstart ||
2496                      ordered->file_offset > lockend)) &&
2497                      !filemap_range_has_page(inode->i_mapping,
2498                                              lockstart, lockend)) {
2499                         if (ordered)
2500                                 btrfs_put_ordered_extent(ordered);
2501                         break;
2502                 }
2503                 if (ordered)
2504                         btrfs_put_ordered_extent(ordered);
2505                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2506                                      lockend, cached_state);
2507                 ret = btrfs_wait_ordered_range(inode, lockstart,
2508                                                lockend - lockstart + 1);
2509                 if (ret)
2510                         return ret;
2511         }
2512         return 0;
2513 }
2514
2515 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2516                                      struct btrfs_inode *inode,
2517                                      struct btrfs_path *path,
2518                                      struct btrfs_replace_extent_info *extent_info,
2519                                      const u64 replace_len,
2520                                      const u64 bytes_to_drop)
2521 {
2522         struct btrfs_fs_info *fs_info = trans->fs_info;
2523         struct btrfs_root *root = inode->root;
2524         struct btrfs_file_extent_item *extent;
2525         struct extent_buffer *leaf;
2526         struct btrfs_key key;
2527         int slot;
2528         struct btrfs_ref ref = { 0 };
2529         int ret;
2530
2531         if (replace_len == 0)
2532                 return 0;
2533
2534         if (extent_info->disk_offset == 0 &&
2535             btrfs_fs_incompat(fs_info, NO_HOLES)) {
2536                 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2537                 return 0;
2538         }
2539
2540         key.objectid = btrfs_ino(inode);
2541         key.type = BTRFS_EXTENT_DATA_KEY;
2542         key.offset = extent_info->file_offset;
2543         ret = btrfs_insert_empty_item(trans, root, path, &key,
2544                                       sizeof(struct btrfs_file_extent_item));
2545         if (ret)
2546                 return ret;
2547         leaf = path->nodes[0];
2548         slot = path->slots[0];
2549         write_extent_buffer(leaf, extent_info->extent_buf,
2550                             btrfs_item_ptr_offset(leaf, slot),
2551                             sizeof(struct btrfs_file_extent_item));
2552         extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2553         ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2554         btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2555         btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2556         if (extent_info->is_new_extent)
2557                 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2558         btrfs_mark_buffer_dirty(leaf);
2559         btrfs_release_path(path);
2560
2561         ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2562                                                 replace_len);
2563         if (ret)
2564                 return ret;
2565
2566         /* If it's a hole, nothing more needs to be done. */
2567         if (extent_info->disk_offset == 0) {
2568                 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2569                 return 0;
2570         }
2571
2572         btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2573
2574         if (extent_info->is_new_extent && extent_info->insertions == 0) {
2575                 key.objectid = extent_info->disk_offset;
2576                 key.type = BTRFS_EXTENT_ITEM_KEY;
2577                 key.offset = extent_info->disk_len;
2578                 ret = btrfs_alloc_reserved_file_extent(trans, root,
2579                                                        btrfs_ino(inode),
2580                                                        extent_info->file_offset,
2581                                                        extent_info->qgroup_reserved,
2582                                                        &key);
2583         } else {
2584                 u64 ref_offset;
2585
2586                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2587                                        extent_info->disk_offset,
2588                                        extent_info->disk_len, 0);
2589                 ref_offset = extent_info->file_offset - extent_info->data_offset;
2590                 btrfs_init_data_ref(&ref, root->root_key.objectid,
2591                                     btrfs_ino(inode), ref_offset);
2592                 ret = btrfs_inc_extent_ref(trans, &ref);
2593         }
2594
2595         extent_info->insertions++;
2596
2597         return ret;
2598 }
2599
2600 /*
2601  * The respective range must have been previously locked, as well as the inode.
2602  * The end offset is inclusive (last byte of the range).
2603  * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2604  * the file range with an extent.
2605  * When not punching a hole, we don't want to end up in a state where we dropped
2606  * extents without inserting a new one, so we must abort the transaction to avoid
2607  * a corruption.
2608  */
2609 int btrfs_replace_file_extents(struct inode *inode, struct btrfs_path *path,
2610                            const u64 start, const u64 end,
2611                            struct btrfs_replace_extent_info *extent_info,
2612                            struct btrfs_trans_handle **trans_out)
2613 {
2614         struct btrfs_drop_extents_args drop_args = { 0 };
2615         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2616         u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2617         u64 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2618         struct btrfs_root *root = BTRFS_I(inode)->root;
2619         struct btrfs_trans_handle *trans = NULL;
2620         struct btrfs_block_rsv *rsv;
2621         unsigned int rsv_count;
2622         u64 cur_offset;
2623         u64 len = end - start;
2624         int ret = 0;
2625
2626         if (end <= start)
2627                 return -EINVAL;
2628
2629         rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2630         if (!rsv) {
2631                 ret = -ENOMEM;
2632                 goto out;
2633         }
2634         rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2635         rsv->failfast = 1;
2636
2637         /*
2638          * 1 - update the inode
2639          * 1 - removing the extents in the range
2640          * 1 - adding the hole extent if no_holes isn't set or if we are
2641          *     replacing the range with a new extent
2642          */
2643         if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2644                 rsv_count = 3;
2645         else
2646                 rsv_count = 2;
2647
2648         trans = btrfs_start_transaction(root, rsv_count);
2649         if (IS_ERR(trans)) {
2650                 ret = PTR_ERR(trans);
2651                 trans = NULL;
2652                 goto out_free;
2653         }
2654
2655         ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2656                                       min_size, false);
2657         BUG_ON(ret);
2658         trans->block_rsv = rsv;
2659
2660         cur_offset = start;
2661         drop_args.path = path;
2662         drop_args.end = end + 1;
2663         drop_args.drop_cache = true;
2664         while (cur_offset < end) {
2665                 drop_args.start = cur_offset;
2666                 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
2667                 /* If we are punching a hole decrement the inode's byte count */
2668                 if (!extent_info)
2669                         btrfs_update_inode_bytes(BTRFS_I(inode), 0,
2670                                                  drop_args.bytes_found);
2671                 if (ret != -ENOSPC) {
2672                         /*
2673                          * When cloning we want to avoid transaction aborts when
2674                          * nothing was done and we are attempting to clone parts
2675                          * of inline extents, in such cases -EOPNOTSUPP is
2676                          * returned by __btrfs_drop_extents() without having
2677                          * changed anything in the file.
2678                          */
2679                         if (extent_info && !extent_info->is_new_extent &&
2680                             ret && ret != -EOPNOTSUPP)
2681                                 btrfs_abort_transaction(trans, ret);
2682                         break;
2683                 }
2684
2685                 trans->block_rsv = &fs_info->trans_block_rsv;
2686
2687                 if (!extent_info && cur_offset < drop_args.drop_end &&
2688                     cur_offset < ino_size) {
2689                         ret = fill_holes(trans, BTRFS_I(inode), path,
2690                                          cur_offset, drop_args.drop_end);
2691                         if (ret) {
2692                                 /*
2693                                  * If we failed then we didn't insert our hole
2694                                  * entries for the area we dropped, so now the
2695                                  * fs is corrupted, so we must abort the
2696                                  * transaction.
2697                                  */
2698                                 btrfs_abort_transaction(trans, ret);
2699                                 break;
2700                         }
2701                 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2702                         /*
2703                          * We are past the i_size here, but since we didn't
2704                          * insert holes we need to clear the mapped area so we
2705                          * know to not set disk_i_size in this area until a new
2706                          * file extent is inserted here.
2707                          */
2708                         ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2709                                         cur_offset,
2710                                         drop_args.drop_end - cur_offset);
2711                         if (ret) {
2712                                 /*
2713                                  * We couldn't clear our area, so we could
2714                                  * presumably adjust up and corrupt the fs, so
2715                                  * we need to abort.
2716                                  */
2717                                 btrfs_abort_transaction(trans, ret);
2718                                 break;
2719                         }
2720                 }
2721
2722                 if (extent_info &&
2723                     drop_args.drop_end > extent_info->file_offset) {
2724                         u64 replace_len = drop_args.drop_end -
2725                                           extent_info->file_offset;
2726
2727                         ret = btrfs_insert_replace_extent(trans, BTRFS_I(inode),
2728                                         path, extent_info, replace_len,
2729                                         drop_args.bytes_found);
2730                         if (ret) {
2731                                 btrfs_abort_transaction(trans, ret);
2732                                 break;
2733                         }
2734                         extent_info->data_len -= replace_len;
2735                         extent_info->data_offset += replace_len;
2736                         extent_info->file_offset += replace_len;
2737                 }
2738
2739                 cur_offset = drop_args.drop_end;
2740
2741                 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2742                 if (ret)
2743                         break;
2744
2745                 btrfs_end_transaction(trans);
2746                 btrfs_btree_balance_dirty(fs_info);
2747
2748                 trans = btrfs_start_transaction(root, rsv_count);
2749                 if (IS_ERR(trans)) {
2750                         ret = PTR_ERR(trans);
2751                         trans = NULL;
2752                         break;
2753                 }
2754
2755                 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2756                                               rsv, min_size, false);
2757                 BUG_ON(ret);    /* shouldn't happen */
2758                 trans->block_rsv = rsv;
2759
2760                 if (!extent_info) {
2761                         ret = find_first_non_hole(BTRFS_I(inode), &cur_offset,
2762                                                   &len);
2763                         if (unlikely(ret < 0))
2764                                 break;
2765                         if (ret && !len) {
2766                                 ret = 0;
2767                                 break;
2768                         }
2769                 }
2770         }
2771
2772         /*
2773          * If we were cloning, force the next fsync to be a full one since we
2774          * we replaced (or just dropped in the case of cloning holes when
2775          * NO_HOLES is enabled) extents and extent maps.
2776          * This is for the sake of simplicity, and cloning into files larger
2777          * than 16Mb would force the full fsync any way (when
2778          * try_release_extent_mapping() is invoked during page cache truncation.
2779          */
2780         if (extent_info && !extent_info->is_new_extent)
2781                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2782                         &BTRFS_I(inode)->runtime_flags);
2783
2784         if (ret)
2785                 goto out_trans;
2786
2787         trans->block_rsv = &fs_info->trans_block_rsv;
2788         /*
2789          * If we are using the NO_HOLES feature we might have had already an
2790          * hole that overlaps a part of the region [lockstart, lockend] and
2791          * ends at (or beyond) lockend. Since we have no file extent items to
2792          * represent holes, drop_end can be less than lockend and so we must
2793          * make sure we have an extent map representing the existing hole (the
2794          * call to __btrfs_drop_extents() might have dropped the existing extent
2795          * map representing the existing hole), otherwise the fast fsync path
2796          * will not record the existence of the hole region
2797          * [existing_hole_start, lockend].
2798          */
2799         if (drop_args.drop_end <= end)
2800                 drop_args.drop_end = end + 1;
2801         /*
2802          * Don't insert file hole extent item if it's for a range beyond eof
2803          * (because it's useless) or if it represents a 0 bytes range (when
2804          * cur_offset == drop_end).
2805          */
2806         if (!extent_info && cur_offset < ino_size &&
2807             cur_offset < drop_args.drop_end) {
2808                 ret = fill_holes(trans, BTRFS_I(inode), path,
2809                                  cur_offset, drop_args.drop_end);
2810                 if (ret) {
2811                         /* Same comment as above. */
2812                         btrfs_abort_transaction(trans, ret);
2813                         goto out_trans;
2814                 }
2815         } else if (!extent_info && cur_offset < drop_args.drop_end) {
2816                 /* See the comment in the loop above for the reasoning here. */
2817                 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2818                                 cur_offset, drop_args.drop_end - cur_offset);
2819                 if (ret) {
2820                         btrfs_abort_transaction(trans, ret);
2821                         goto out_trans;
2822                 }
2823
2824         }
2825         if (extent_info) {
2826                 ret = btrfs_insert_replace_extent(trans, BTRFS_I(inode), path,
2827                                 extent_info, extent_info->data_len,
2828                                 drop_args.bytes_found);
2829                 if (ret) {
2830                         btrfs_abort_transaction(trans, ret);
2831                         goto out_trans;
2832                 }
2833         }
2834
2835 out_trans:
2836         if (!trans)
2837                 goto out_free;
2838
2839         trans->block_rsv = &fs_info->trans_block_rsv;
2840         if (ret)
2841                 btrfs_end_transaction(trans);
2842         else
2843                 *trans_out = trans;
2844 out_free:
2845         btrfs_free_block_rsv(fs_info, rsv);
2846 out:
2847         return ret;
2848 }
2849
2850 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2851 {
2852         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2853         struct btrfs_root *root = BTRFS_I(inode)->root;
2854         struct extent_state *cached_state = NULL;
2855         struct btrfs_path *path;
2856         struct btrfs_trans_handle *trans = NULL;
2857         u64 lockstart;
2858         u64 lockend;
2859         u64 tail_start;
2860         u64 tail_len;
2861         u64 orig_start = offset;
2862         int ret = 0;
2863         bool same_block;
2864         u64 ino_size;
2865         bool truncated_block = false;
2866         bool updated_inode = false;
2867
2868         ret = btrfs_wait_ordered_range(inode, offset, len);
2869         if (ret)
2870                 return ret;
2871
2872         inode_lock(inode);
2873         ino_size = round_up(inode->i_size, fs_info->sectorsize);
2874         ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2875         if (ret < 0)
2876                 goto out_only_mutex;
2877         if (ret && !len) {
2878                 /* Already in a large hole */
2879                 ret = 0;
2880                 goto out_only_mutex;
2881         }
2882
2883         lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode)));
2884         lockend = round_down(offset + len,
2885                              btrfs_inode_sectorsize(BTRFS_I(inode))) - 1;
2886         same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2887                 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2888         /*
2889          * We needn't truncate any block which is beyond the end of the file
2890          * because we are sure there is no data there.
2891          */
2892         /*
2893          * Only do this if we are in the same block and we aren't doing the
2894          * entire block.
2895          */
2896         if (same_block && len < fs_info->sectorsize) {
2897                 if (offset < ino_size) {
2898                         truncated_block = true;
2899                         ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2900                                                    0);
2901                 } else {
2902                         ret = 0;
2903                 }
2904                 goto out_only_mutex;
2905         }
2906
2907         /* zero back part of the first block */
2908         if (offset < ino_size) {
2909                 truncated_block = true;
2910                 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2911                 if (ret) {
2912                         inode_unlock(inode);
2913                         return ret;
2914                 }
2915         }
2916
2917         /* Check the aligned pages after the first unaligned page,
2918          * if offset != orig_start, which means the first unaligned page
2919          * including several following pages are already in holes,
2920          * the extra check can be skipped */
2921         if (offset == orig_start) {
2922                 /* after truncate page, check hole again */
2923                 len = offset + len - lockstart;
2924                 offset = lockstart;
2925                 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2926                 if (ret < 0)
2927                         goto out_only_mutex;
2928                 if (ret && !len) {
2929                         ret = 0;
2930                         goto out_only_mutex;
2931                 }
2932                 lockstart = offset;
2933         }
2934
2935         /* Check the tail unaligned part is in a hole */
2936         tail_start = lockend + 1;
2937         tail_len = offset + len - tail_start;
2938         if (tail_len) {
2939                 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2940                 if (unlikely(ret < 0))
2941                         goto out_only_mutex;
2942                 if (!ret) {
2943                         /* zero the front end of the last page */
2944                         if (tail_start + tail_len < ino_size) {
2945                                 truncated_block = true;
2946                                 ret = btrfs_truncate_block(BTRFS_I(inode),
2947                                                         tail_start + tail_len,
2948                                                         0, 1);
2949                                 if (ret)
2950                                         goto out_only_mutex;
2951                         }
2952                 }
2953         }
2954
2955         if (lockend < lockstart) {
2956                 ret = 0;
2957                 goto out_only_mutex;
2958         }
2959
2960         ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2961                                           &cached_state);
2962         if (ret)
2963                 goto out_only_mutex;
2964
2965         path = btrfs_alloc_path();
2966         if (!path) {
2967                 ret = -ENOMEM;
2968                 goto out;
2969         }
2970
2971         ret = btrfs_replace_file_extents(inode, path, lockstart, lockend, NULL,
2972                                      &trans);
2973         btrfs_free_path(path);
2974         if (ret)
2975                 goto out;
2976
2977         ASSERT(trans != NULL);
2978         inode_inc_iversion(inode);
2979         inode->i_mtime = inode->i_ctime = current_time(inode);
2980         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2981         updated_inode = true;
2982         btrfs_end_transaction(trans);
2983         btrfs_btree_balance_dirty(fs_info);
2984 out:
2985         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2986                              &cached_state);
2987 out_only_mutex:
2988         if (!updated_inode && truncated_block && !ret) {
2989                 /*
2990                  * If we only end up zeroing part of a page, we still need to
2991                  * update the inode item, so that all the time fields are
2992                  * updated as well as the necessary btrfs inode in memory fields
2993                  * for detecting, at fsync time, if the inode isn't yet in the
2994                  * log tree or it's there but not up to date.
2995                  */
2996                 struct timespec64 now = current_time(inode);
2997
2998                 inode_inc_iversion(inode);
2999                 inode->i_mtime = now;
3000                 inode->i_ctime = now;
3001                 trans = btrfs_start_transaction(root, 1);
3002                 if (IS_ERR(trans)) {
3003                         ret = PTR_ERR(trans);
3004                 } else {
3005                         int ret2;
3006
3007                         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3008                         ret2 = btrfs_end_transaction(trans);
3009                         if (!ret)
3010                                 ret = ret2;
3011                 }
3012         }
3013         inode_unlock(inode);
3014         return ret;
3015 }
3016
3017 /* Helper structure to record which range is already reserved */
3018 struct falloc_range {
3019         struct list_head list;
3020         u64 start;
3021         u64 len;
3022 };
3023
3024 /*
3025  * Helper function to add falloc range
3026  *
3027  * Caller should have locked the larger range of extent containing
3028  * [start, len)
3029  */
3030 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3031 {
3032         struct falloc_range *prev = NULL;
3033         struct falloc_range *range = NULL;
3034
3035         if (list_empty(head))
3036                 goto insert;
3037
3038         /*
3039          * As fallocate iterate by bytenr order, we only need to check
3040          * the last range.
3041          */
3042         prev = list_entry(head->prev, struct falloc_range, list);
3043         if (prev->start + prev->len == start) {
3044                 prev->len += len;
3045                 return 0;
3046         }
3047 insert:
3048         range = kmalloc(sizeof(*range), GFP_KERNEL);
3049         if (!range)
3050                 return -ENOMEM;
3051         range->start = start;
3052         range->len = len;
3053         list_add_tail(&range->list, head);
3054         return 0;
3055 }
3056
3057 static int btrfs_fallocate_update_isize(struct inode *inode,
3058                                         const u64 end,
3059                                         const int mode)
3060 {
3061         struct btrfs_trans_handle *trans;
3062         struct btrfs_root *root = BTRFS_I(inode)->root;
3063         int ret;
3064         int ret2;
3065
3066         if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3067                 return 0;
3068
3069         trans = btrfs_start_transaction(root, 1);
3070         if (IS_ERR(trans))
3071                 return PTR_ERR(trans);
3072
3073         inode->i_ctime = current_time(inode);
3074         i_size_write(inode, end);
3075         btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
3076         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3077         ret2 = btrfs_end_transaction(trans);
3078
3079         return ret ? ret : ret2;
3080 }
3081
3082 enum {
3083         RANGE_BOUNDARY_WRITTEN_EXTENT,
3084         RANGE_BOUNDARY_PREALLOC_EXTENT,
3085         RANGE_BOUNDARY_HOLE,
3086 };
3087
3088 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3089                                                  u64 offset)
3090 {
3091         const u64 sectorsize = btrfs_inode_sectorsize(inode);
3092         struct extent_map *em;
3093         int ret;
3094
3095         offset = round_down(offset, sectorsize);
3096         em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
3097         if (IS_ERR(em))
3098                 return PTR_ERR(em);
3099
3100         if (em->block_start == EXTENT_MAP_HOLE)
3101                 ret = RANGE_BOUNDARY_HOLE;
3102         else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3103                 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3104         else
3105                 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3106
3107         free_extent_map(em);
3108         return ret;
3109 }
3110
3111 static int btrfs_zero_range(struct inode *inode,
3112                             loff_t offset,
3113                             loff_t len,
3114                             const int mode)
3115 {
3116         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3117         struct extent_map *em;
3118         struct extent_changeset *data_reserved = NULL;
3119         int ret;
3120         u64 alloc_hint = 0;
3121         const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode));
3122         u64 alloc_start = round_down(offset, sectorsize);
3123         u64 alloc_end = round_up(offset + len, sectorsize);
3124         u64 bytes_to_reserve = 0;
3125         bool space_reserved = false;
3126
3127         inode_dio_wait(inode);
3128
3129         em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3130                               alloc_end - alloc_start);
3131         if (IS_ERR(em)) {
3132                 ret = PTR_ERR(em);
3133                 goto out;
3134         }
3135
3136         /*
3137          * Avoid hole punching and extent allocation for some cases. More cases
3138          * could be considered, but these are unlikely common and we keep things
3139          * as simple as possible for now. Also, intentionally, if the target
3140          * range contains one or more prealloc extents together with regular
3141          * extents and holes, we drop all the existing extents and allocate a
3142          * new prealloc extent, so that we get a larger contiguous disk extent.
3143          */
3144         if (em->start <= alloc_start &&
3145             test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3146                 const u64 em_end = em->start + em->len;
3147
3148                 if (em_end >= offset + len) {
3149                         /*
3150                          * The whole range is already a prealloc extent,
3151                          * do nothing except updating the inode's i_size if
3152                          * needed.
3153                          */
3154                         free_extent_map(em);
3155                         ret = btrfs_fallocate_update_isize(inode, offset + len,
3156                                                            mode);
3157                         goto out;
3158                 }
3159                 /*
3160                  * Part of the range is already a prealloc extent, so operate
3161                  * only on the remaining part of the range.
3162                  */
3163                 alloc_start = em_end;
3164                 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3165                 len = offset + len - alloc_start;
3166                 offset = alloc_start;
3167                 alloc_hint = em->block_start + em->len;
3168         }
3169         free_extent_map(em);
3170
3171         if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3172             BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3173                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3174                                       sectorsize);
3175                 if (IS_ERR(em)) {
3176                         ret = PTR_ERR(em);
3177                         goto out;
3178                 }
3179
3180                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3181                         free_extent_map(em);
3182                         ret = btrfs_fallocate_update_isize(inode, offset + len,
3183                                                            mode);
3184                         goto out;
3185                 }
3186                 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3187                         free_extent_map(em);
3188                         ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3189                                                    0);
3190                         if (!ret)
3191                                 ret = btrfs_fallocate_update_isize(inode,
3192                                                                    offset + len,
3193                                                                    mode);
3194                         return ret;
3195                 }
3196                 free_extent_map(em);
3197                 alloc_start = round_down(offset, sectorsize);
3198                 alloc_end = alloc_start + sectorsize;
3199                 goto reserve_space;
3200         }
3201
3202         alloc_start = round_up(offset, sectorsize);
3203         alloc_end = round_down(offset + len, sectorsize);
3204
3205         /*
3206          * For unaligned ranges, check the pages at the boundaries, they might
3207          * map to an extent, in which case we need to partially zero them, or
3208          * they might map to a hole, in which case we need our allocation range
3209          * to cover them.
3210          */
3211         if (!IS_ALIGNED(offset, sectorsize)) {
3212                 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3213                                                             offset);
3214                 if (ret < 0)
3215                         goto out;
3216                 if (ret == RANGE_BOUNDARY_HOLE) {
3217                         alloc_start = round_down(offset, sectorsize);
3218                         ret = 0;
3219                 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3220                         ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
3221                         if (ret)
3222                                 goto out;
3223                 } else {
3224                         ret = 0;
3225                 }
3226         }
3227
3228         if (!IS_ALIGNED(offset + len, sectorsize)) {
3229                 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3230                                                             offset + len);
3231                 if (ret < 0)
3232                         goto out;
3233                 if (ret == RANGE_BOUNDARY_HOLE) {
3234                         alloc_end = round_up(offset + len, sectorsize);
3235                         ret = 0;
3236                 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3237                         ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
3238                                                    0, 1);
3239                         if (ret)
3240                                 goto out;
3241                 } else {
3242                         ret = 0;
3243                 }
3244         }
3245
3246 reserve_space:
3247         if (alloc_start < alloc_end) {
3248                 struct extent_state *cached_state = NULL;
3249                 const u64 lockstart = alloc_start;
3250                 const u64 lockend = alloc_end - 1;
3251
3252                 bytes_to_reserve = alloc_end - alloc_start;
3253                 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3254                                                       bytes_to_reserve);
3255                 if (ret < 0)
3256                         goto out;
3257                 space_reserved = true;
3258                 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3259                                                   &cached_state);
3260                 if (ret)
3261                         goto out;
3262                 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3263                                                 alloc_start, bytes_to_reserve);
3264                 if (ret)
3265                         goto out;
3266                 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3267                                                 alloc_end - alloc_start,
3268                                                 i_blocksize(inode),
3269                                                 offset + len, &alloc_hint);
3270                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3271                                      lockend, &cached_state);
3272                 /* btrfs_prealloc_file_range releases reserved space on error */
3273                 if (ret) {
3274                         space_reserved = false;
3275                         goto out;
3276                 }
3277         }
3278         ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3279  out:
3280         if (ret && space_reserved)
3281                 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3282                                                alloc_start, bytes_to_reserve);
3283         extent_changeset_free(data_reserved);
3284
3285         return ret;
3286 }
3287
3288 static long btrfs_fallocate(struct file *file, int mode,
3289                             loff_t offset, loff_t len)
3290 {
3291         struct inode *inode = file_inode(file);
3292         struct extent_state *cached_state = NULL;
3293         struct extent_changeset *data_reserved = NULL;
3294         struct falloc_range *range;
3295         struct falloc_range *tmp;
3296         struct list_head reserve_list;
3297         u64 cur_offset;
3298         u64 last_byte;
3299         u64 alloc_start;
3300         u64 alloc_end;
3301         u64 alloc_hint = 0;
3302         u64 locked_end;
3303         u64 actual_end = 0;
3304         struct extent_map *em;
3305         int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode));
3306         int ret;
3307
3308         /* Do not allow fallocate in ZONED mode */
3309         if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3310                 return -EOPNOTSUPP;
3311
3312         alloc_start = round_down(offset, blocksize);
3313         alloc_end = round_up(offset + len, blocksize);
3314         cur_offset = alloc_start;
3315
3316         /* Make sure we aren't being give some crap mode */
3317         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3318                      FALLOC_FL_ZERO_RANGE))
3319                 return -EOPNOTSUPP;
3320
3321         if (mode & FALLOC_FL_PUNCH_HOLE)
3322                 return btrfs_punch_hole(inode, offset, len);
3323
3324         /*
3325          * Only trigger disk allocation, don't trigger qgroup reserve
3326          *
3327          * For qgroup space, it will be checked later.
3328          */
3329         if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3330                 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3331                                                       alloc_end - alloc_start);
3332                 if (ret < 0)
3333                         return ret;
3334         }
3335
3336         btrfs_inode_lock(inode, 0);
3337
3338         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3339                 ret = inode_newsize_ok(inode, offset + len);
3340                 if (ret)
3341                         goto out;
3342         }
3343
3344         /*
3345          * TODO: Move these two operations after we have checked
3346          * accurate reserved space, or fallocate can still fail but
3347          * with page truncated or size expanded.
3348          *
3349          * But that's a minor problem and won't do much harm BTW.
3350          */
3351         if (alloc_start > inode->i_size) {
3352                 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3353                                         alloc_start);
3354                 if (ret)
3355                         goto out;
3356         } else if (offset + len > inode->i_size) {
3357                 /*
3358                  * If we are fallocating from the end of the file onward we
3359                  * need to zero out the end of the block if i_size lands in the
3360                  * middle of a block.
3361                  */
3362                 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3363                 if (ret)
3364                         goto out;
3365         }
3366
3367         /*
3368          * wait for ordered IO before we have any locks.  We'll loop again
3369          * below with the locks held.
3370          */
3371         ret = btrfs_wait_ordered_range(inode, alloc_start,
3372                                        alloc_end - alloc_start);
3373         if (ret)
3374                 goto out;
3375
3376         if (mode & FALLOC_FL_ZERO_RANGE) {
3377                 ret = btrfs_zero_range(inode, offset, len, mode);
3378                 inode_unlock(inode);
3379                 return ret;
3380         }
3381
3382         locked_end = alloc_end - 1;
3383         while (1) {
3384                 struct btrfs_ordered_extent *ordered;
3385
3386                 /* the extent lock is ordered inside the running
3387                  * transaction
3388                  */
3389                 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3390                                  locked_end, &cached_state);
3391                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
3392                                                             locked_end);
3393
3394                 if (ordered &&
3395                     ordered->file_offset + ordered->num_bytes > alloc_start &&
3396                     ordered->file_offset < alloc_end) {
3397                         btrfs_put_ordered_extent(ordered);
3398                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3399                                              alloc_start, locked_end,
3400                                              &cached_state);
3401                         /*
3402                          * we can't wait on the range with the transaction
3403                          * running or with the extent lock held
3404                          */
3405                         ret = btrfs_wait_ordered_range(inode, alloc_start,
3406                                                        alloc_end - alloc_start);
3407                         if (ret)
3408                                 goto out;
3409                 } else {
3410                         if (ordered)
3411                                 btrfs_put_ordered_extent(ordered);
3412                         break;
3413                 }
3414         }
3415
3416         /* First, check if we exceed the qgroup limit */
3417         INIT_LIST_HEAD(&reserve_list);
3418         while (cur_offset < alloc_end) {
3419                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3420                                       alloc_end - cur_offset);
3421                 if (IS_ERR(em)) {
3422                         ret = PTR_ERR(em);
3423                         break;
3424                 }
3425                 last_byte = min(extent_map_end(em), alloc_end);
3426                 actual_end = min_t(u64, extent_map_end(em), offset + len);
3427                 last_byte = ALIGN(last_byte, blocksize);
3428                 if (em->block_start == EXTENT_MAP_HOLE ||
3429                     (cur_offset >= inode->i_size &&
3430                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3431                         ret = add_falloc_range(&reserve_list, cur_offset,
3432                                                last_byte - cur_offset);
3433                         if (ret < 0) {
3434                                 free_extent_map(em);
3435                                 break;
3436                         }
3437                         ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3438                                         &data_reserved, cur_offset,
3439                                         last_byte - cur_offset);
3440                         if (ret < 0) {
3441                                 cur_offset = last_byte;
3442                                 free_extent_map(em);
3443                                 break;
3444                         }
3445                 } else {
3446                         /*
3447                          * Do not need to reserve unwritten extent for this
3448                          * range, free reserved data space first, otherwise
3449                          * it'll result in false ENOSPC error.
3450                          */
3451                         btrfs_free_reserved_data_space(BTRFS_I(inode),
3452                                 data_reserved, cur_offset,
3453                                 last_byte - cur_offset);
3454                 }
3455                 free_extent_map(em);
3456                 cur_offset = last_byte;
3457         }
3458
3459         /*
3460          * If ret is still 0, means we're OK to fallocate.
3461          * Or just cleanup the list and exit.
3462          */
3463         list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3464                 if (!ret)
3465                         ret = btrfs_prealloc_file_range(inode, mode,
3466                                         range->start,
3467                                         range->len, i_blocksize(inode),
3468                                         offset + len, &alloc_hint);
3469                 else
3470                         btrfs_free_reserved_data_space(BTRFS_I(inode),
3471                                         data_reserved, range->start,
3472                                         range->len);
3473                 list_del(&range->list);
3474                 kfree(range);
3475         }
3476         if (ret < 0)
3477                 goto out_unlock;
3478
3479         /*
3480          * We didn't need to allocate any more space, but we still extended the
3481          * size of the file so we need to update i_size and the inode item.
3482          */
3483         ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3484 out_unlock:
3485         unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3486                              &cached_state);
3487 out:
3488         inode_unlock(inode);
3489         /* Let go of our reservation. */
3490         if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3491                 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3492                                 cur_offset, alloc_end - cur_offset);
3493         extent_changeset_free(data_reserved);
3494         return ret;
3495 }
3496
3497 static loff_t find_desired_extent(struct inode *inode, loff_t offset,
3498                                   int whence)
3499 {
3500         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3501         struct extent_map *em = NULL;
3502         struct extent_state *cached_state = NULL;
3503         loff_t i_size = inode->i_size;
3504         u64 lockstart;
3505         u64 lockend;
3506         u64 start;
3507         u64 len;
3508         int ret = 0;
3509
3510         if (i_size == 0 || offset >= i_size)
3511                 return -ENXIO;
3512
3513         /*
3514          * offset can be negative, in this case we start finding DATA/HOLE from
3515          * the very start of the file.
3516          */
3517         start = max_t(loff_t, 0, offset);
3518
3519         lockstart = round_down(start, fs_info->sectorsize);
3520         lockend = round_up(i_size, fs_info->sectorsize);
3521         if (lockend <= lockstart)
3522                 lockend = lockstart + fs_info->sectorsize;
3523         lockend--;
3524         len = lockend - lockstart + 1;
3525
3526         lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3527                          &cached_state);
3528
3529         while (start < i_size) {
3530                 em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
3531                 if (IS_ERR(em)) {
3532                         ret = PTR_ERR(em);
3533                         em = NULL;
3534                         break;
3535                 }
3536
3537                 if (whence == SEEK_HOLE &&
3538                     (em->block_start == EXTENT_MAP_HOLE ||
3539                      test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3540                         break;
3541                 else if (whence == SEEK_DATA &&
3542                            (em->block_start != EXTENT_MAP_HOLE &&
3543                             !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3544                         break;
3545
3546                 start = em->start + em->len;
3547                 free_extent_map(em);
3548                 em = NULL;
3549                 cond_resched();
3550         }
3551         free_extent_map(em);
3552         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3553                              &cached_state);
3554         if (ret) {
3555                 offset = ret;
3556         } else {
3557                 if (whence == SEEK_DATA && start >= i_size)
3558                         offset = -ENXIO;
3559                 else
3560                         offset = min_t(loff_t, start, i_size);
3561         }
3562
3563         return offset;
3564 }
3565
3566 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3567 {
3568         struct inode *inode = file->f_mapping->host;
3569
3570         switch (whence) {
3571         default:
3572                 return generic_file_llseek(file, offset, whence);
3573         case SEEK_DATA:
3574         case SEEK_HOLE:
3575                 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3576                 offset = find_desired_extent(inode, offset, whence);
3577                 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3578                 break;
3579         }
3580
3581         if (offset < 0)
3582                 return offset;
3583
3584         return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3585 }
3586
3587 static int btrfs_file_open(struct inode *inode, struct file *filp)
3588 {
3589         filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
3590         return generic_file_open(inode, filp);
3591 }
3592
3593 static int check_direct_read(struct btrfs_fs_info *fs_info,
3594                              const struct iov_iter *iter, loff_t offset)
3595 {
3596         int ret;
3597         int i, seg;
3598
3599         ret = check_direct_IO(fs_info, iter, offset);
3600         if (ret < 0)
3601                 return ret;
3602
3603         if (!iter_is_iovec(iter))
3604                 return 0;
3605
3606         for (seg = 0; seg < iter->nr_segs; seg++)
3607                 for (i = seg + 1; i < iter->nr_segs; i++)
3608                         if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
3609                                 return -EINVAL;
3610         return 0;
3611 }
3612
3613 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3614 {
3615         struct inode *inode = file_inode(iocb->ki_filp);
3616         ssize_t ret;
3617
3618         if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3619                 return 0;
3620
3621         btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3622         ret = iomap_dio_rw(iocb, to, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
3623                            is_sync_kiocb(iocb));
3624         btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3625         return ret;
3626 }
3627
3628 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3629 {
3630         ssize_t ret = 0;
3631
3632         if (iocb->ki_flags & IOCB_DIRECT) {
3633                 ret = btrfs_direct_read(iocb, to);
3634                 if (ret < 0 || !iov_iter_count(to) ||
3635                     iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3636                         return ret;
3637         }
3638
3639         return generic_file_buffered_read(iocb, to, ret);
3640 }
3641
3642 const struct file_operations btrfs_file_operations = {
3643         .llseek         = btrfs_file_llseek,
3644         .read_iter      = btrfs_file_read_iter,
3645         .splice_read    = generic_file_splice_read,
3646         .write_iter     = btrfs_file_write_iter,
3647         .splice_write   = iter_file_splice_write,
3648         .mmap           = btrfs_file_mmap,
3649         .open           = btrfs_file_open,
3650         .release        = btrfs_release_file,
3651         .fsync          = btrfs_sync_file,
3652         .fallocate      = btrfs_fallocate,
3653         .unlocked_ioctl = btrfs_ioctl,
3654 #ifdef CONFIG_COMPAT
3655         .compat_ioctl   = btrfs_compat_ioctl,
3656 #endif
3657         .remap_file_range = btrfs_remap_file_range,
3658 };
3659
3660 void __cold btrfs_auto_defrag_exit(void)
3661 {
3662         kmem_cache_destroy(btrfs_inode_defrag_cachep);
3663 }
3664
3665 int __init btrfs_auto_defrag_init(void)
3666 {
3667         btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3668                                         sizeof(struct inode_defrag), 0,
3669                                         SLAB_MEM_SPREAD,
3670                                         NULL);
3671         if (!btrfs_inode_defrag_cachep)
3672                 return -ENOMEM;
3673
3674         return 0;
3675 }
3676
3677 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3678 {
3679         int ret;
3680
3681         /*
3682          * So with compression we will find and lock a dirty page and clear the
3683          * first one as dirty, setup an async extent, and immediately return
3684          * with the entire range locked but with nobody actually marked with
3685          * writeback.  So we can't just filemap_write_and_wait_range() and
3686          * expect it to work since it will just kick off a thread to do the
3687          * actual work.  So we need to call filemap_fdatawrite_range _again_
3688          * since it will wait on the page lock, which won't be unlocked until
3689          * after the pages have been marked as writeback and so we're good to go
3690          * from there.  We have to do this otherwise we'll miss the ordered
3691          * extents and that results in badness.  Please Josef, do not think you
3692          * know better and pull this out at some point in the future, it is
3693          * right and you are wrong.
3694          */
3695         ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3696         if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3697                              &BTRFS_I(inode)->runtime_flags))
3698                 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3699
3700         return ret;
3701 }