btrfs: fix rw device counting in __btrfs_free_extra_devids
[linux-2.6-microblaze.git] / fs / btrfs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "btrfs_inode.h"
23 #include "print-tree.h"
24 #include "tree-log.h"
25 #include "locking.h"
26 #include "volumes.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30 #include "reflink.h"
31 #include "subpage.h"
32
33 static struct kmem_cache *btrfs_inode_defrag_cachep;
34 /*
35  * when auto defrag is enabled we
36  * queue up these defrag structs to remember which
37  * inodes need defragging passes
38  */
39 struct inode_defrag {
40         struct rb_node rb_node;
41         /* objectid */
42         u64 ino;
43         /*
44          * transid where the defrag was added, we search for
45          * extents newer than this
46          */
47         u64 transid;
48
49         /* root objectid */
50         u64 root;
51
52         /* last offset we were able to defrag */
53         u64 last_offset;
54
55         /* if we've wrapped around back to zero once already */
56         int cycled;
57 };
58
59 static int __compare_inode_defrag(struct inode_defrag *defrag1,
60                                   struct inode_defrag *defrag2)
61 {
62         if (defrag1->root > defrag2->root)
63                 return 1;
64         else if (defrag1->root < defrag2->root)
65                 return -1;
66         else if (defrag1->ino > defrag2->ino)
67                 return 1;
68         else if (defrag1->ino < defrag2->ino)
69                 return -1;
70         else
71                 return 0;
72 }
73
74 /* pop a record for an inode into the defrag tree.  The lock
75  * must be held already
76  *
77  * If you're inserting a record for an older transid than an
78  * existing record, the transid already in the tree is lowered
79  *
80  * If an existing record is found the defrag item you
81  * pass in is freed
82  */
83 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
84                                     struct inode_defrag *defrag)
85 {
86         struct btrfs_fs_info *fs_info = inode->root->fs_info;
87         struct inode_defrag *entry;
88         struct rb_node **p;
89         struct rb_node *parent = NULL;
90         int ret;
91
92         p = &fs_info->defrag_inodes.rb_node;
93         while (*p) {
94                 parent = *p;
95                 entry = rb_entry(parent, struct inode_defrag, rb_node);
96
97                 ret = __compare_inode_defrag(defrag, entry);
98                 if (ret < 0)
99                         p = &parent->rb_left;
100                 else if (ret > 0)
101                         p = &parent->rb_right;
102                 else {
103                         /* if we're reinserting an entry for
104                          * an old defrag run, make sure to
105                          * lower the transid of our existing record
106                          */
107                         if (defrag->transid < entry->transid)
108                                 entry->transid = defrag->transid;
109                         if (defrag->last_offset > entry->last_offset)
110                                 entry->last_offset = defrag->last_offset;
111                         return -EEXIST;
112                 }
113         }
114         set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
115         rb_link_node(&defrag->rb_node, parent, p);
116         rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
117         return 0;
118 }
119
120 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
121 {
122         if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
123                 return 0;
124
125         if (btrfs_fs_closing(fs_info))
126                 return 0;
127
128         return 1;
129 }
130
131 /*
132  * insert a defrag record for this inode if auto defrag is
133  * enabled
134  */
135 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
136                            struct btrfs_inode *inode)
137 {
138         struct btrfs_root *root = inode->root;
139         struct btrfs_fs_info *fs_info = root->fs_info;
140         struct inode_defrag *defrag;
141         u64 transid;
142         int ret;
143
144         if (!__need_auto_defrag(fs_info))
145                 return 0;
146
147         if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
148                 return 0;
149
150         if (trans)
151                 transid = trans->transid;
152         else
153                 transid = inode->root->last_trans;
154
155         defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
156         if (!defrag)
157                 return -ENOMEM;
158
159         defrag->ino = btrfs_ino(inode);
160         defrag->transid = transid;
161         defrag->root = root->root_key.objectid;
162
163         spin_lock(&fs_info->defrag_inodes_lock);
164         if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
165                 /*
166                  * If we set IN_DEFRAG flag and evict the inode from memory,
167                  * and then re-read this inode, this new inode doesn't have
168                  * IN_DEFRAG flag. At the case, we may find the existed defrag.
169                  */
170                 ret = __btrfs_add_inode_defrag(inode, defrag);
171                 if (ret)
172                         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
173         } else {
174                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
175         }
176         spin_unlock(&fs_info->defrag_inodes_lock);
177         return 0;
178 }
179
180 /*
181  * Requeue the defrag object. If there is a defrag object that points to
182  * the same inode in the tree, we will merge them together (by
183  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
184  */
185 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
186                                        struct inode_defrag *defrag)
187 {
188         struct btrfs_fs_info *fs_info = inode->root->fs_info;
189         int ret;
190
191         if (!__need_auto_defrag(fs_info))
192                 goto out;
193
194         /*
195          * Here we don't check the IN_DEFRAG flag, because we need merge
196          * them together.
197          */
198         spin_lock(&fs_info->defrag_inodes_lock);
199         ret = __btrfs_add_inode_defrag(inode, defrag);
200         spin_unlock(&fs_info->defrag_inodes_lock);
201         if (ret)
202                 goto out;
203         return;
204 out:
205         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
206 }
207
208 /*
209  * pick the defragable inode that we want, if it doesn't exist, we will get
210  * the next one.
211  */
212 static struct inode_defrag *
213 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
214 {
215         struct inode_defrag *entry = NULL;
216         struct inode_defrag tmp;
217         struct rb_node *p;
218         struct rb_node *parent = NULL;
219         int ret;
220
221         tmp.ino = ino;
222         tmp.root = root;
223
224         spin_lock(&fs_info->defrag_inodes_lock);
225         p = fs_info->defrag_inodes.rb_node;
226         while (p) {
227                 parent = p;
228                 entry = rb_entry(parent, struct inode_defrag, rb_node);
229
230                 ret = __compare_inode_defrag(&tmp, entry);
231                 if (ret < 0)
232                         p = parent->rb_left;
233                 else if (ret > 0)
234                         p = parent->rb_right;
235                 else
236                         goto out;
237         }
238
239         if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
240                 parent = rb_next(parent);
241                 if (parent)
242                         entry = rb_entry(parent, struct inode_defrag, rb_node);
243                 else
244                         entry = NULL;
245         }
246 out:
247         if (entry)
248                 rb_erase(parent, &fs_info->defrag_inodes);
249         spin_unlock(&fs_info->defrag_inodes_lock);
250         return entry;
251 }
252
253 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
254 {
255         struct inode_defrag *defrag;
256         struct rb_node *node;
257
258         spin_lock(&fs_info->defrag_inodes_lock);
259         node = rb_first(&fs_info->defrag_inodes);
260         while (node) {
261                 rb_erase(node, &fs_info->defrag_inodes);
262                 defrag = rb_entry(node, struct inode_defrag, rb_node);
263                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
264
265                 cond_resched_lock(&fs_info->defrag_inodes_lock);
266
267                 node = rb_first(&fs_info->defrag_inodes);
268         }
269         spin_unlock(&fs_info->defrag_inodes_lock);
270 }
271
272 #define BTRFS_DEFRAG_BATCH      1024
273
274 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
275                                     struct inode_defrag *defrag)
276 {
277         struct btrfs_root *inode_root;
278         struct inode *inode;
279         struct btrfs_ioctl_defrag_range_args range;
280         int num_defrag;
281         int ret;
282
283         /* get the inode */
284         inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
285         if (IS_ERR(inode_root)) {
286                 ret = PTR_ERR(inode_root);
287                 goto cleanup;
288         }
289
290         inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
291         btrfs_put_root(inode_root);
292         if (IS_ERR(inode)) {
293                 ret = PTR_ERR(inode);
294                 goto cleanup;
295         }
296
297         /* do a chunk of defrag */
298         clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
299         memset(&range, 0, sizeof(range));
300         range.len = (u64)-1;
301         range.start = defrag->last_offset;
302
303         sb_start_write(fs_info->sb);
304         num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
305                                        BTRFS_DEFRAG_BATCH);
306         sb_end_write(fs_info->sb);
307         /*
308          * if we filled the whole defrag batch, there
309          * must be more work to do.  Queue this defrag
310          * again
311          */
312         if (num_defrag == BTRFS_DEFRAG_BATCH) {
313                 defrag->last_offset = range.start;
314                 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
315         } else if (defrag->last_offset && !defrag->cycled) {
316                 /*
317                  * we didn't fill our defrag batch, but
318                  * we didn't start at zero.  Make sure we loop
319                  * around to the start of the file.
320                  */
321                 defrag->last_offset = 0;
322                 defrag->cycled = 1;
323                 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
324         } else {
325                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
326         }
327
328         iput(inode);
329         return 0;
330 cleanup:
331         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
332         return ret;
333 }
334
335 /*
336  * run through the list of inodes in the FS that need
337  * defragging
338  */
339 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
340 {
341         struct inode_defrag *defrag;
342         u64 first_ino = 0;
343         u64 root_objectid = 0;
344
345         atomic_inc(&fs_info->defrag_running);
346         while (1) {
347                 /* Pause the auto defragger. */
348                 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
349                              &fs_info->fs_state))
350                         break;
351
352                 if (!__need_auto_defrag(fs_info))
353                         break;
354
355                 /* find an inode to defrag */
356                 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
357                                                  first_ino);
358                 if (!defrag) {
359                         if (root_objectid || first_ino) {
360                                 root_objectid = 0;
361                                 first_ino = 0;
362                                 continue;
363                         } else {
364                                 break;
365                         }
366                 }
367
368                 first_ino = defrag->ino + 1;
369                 root_objectid = defrag->root;
370
371                 __btrfs_run_defrag_inode(fs_info, defrag);
372         }
373         atomic_dec(&fs_info->defrag_running);
374
375         /*
376          * during unmount, we use the transaction_wait queue to
377          * wait for the defragger to stop
378          */
379         wake_up(&fs_info->transaction_wait);
380         return 0;
381 }
382
383 /* simple helper to fault in pages and copy.  This should go away
384  * and be replaced with calls into generic code.
385  */
386 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
387                                          struct page **prepared_pages,
388                                          struct iov_iter *i)
389 {
390         size_t copied = 0;
391         size_t total_copied = 0;
392         int pg = 0;
393         int offset = offset_in_page(pos);
394
395         while (write_bytes > 0) {
396                 size_t count = min_t(size_t,
397                                      PAGE_SIZE - offset, write_bytes);
398                 struct page *page = prepared_pages[pg];
399                 /*
400                  * Copy data from userspace to the current page
401                  */
402                 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
403
404                 /* Flush processor's dcache for this page */
405                 flush_dcache_page(page);
406
407                 /*
408                  * if we get a partial write, we can end up with
409                  * partially up to date pages.  These add
410                  * a lot of complexity, so make sure they don't
411                  * happen by forcing this copy to be retried.
412                  *
413                  * The rest of the btrfs_file_write code will fall
414                  * back to page at a time copies after we return 0.
415                  */
416                 if (!PageUptodate(page) && copied < count)
417                         copied = 0;
418
419                 iov_iter_advance(i, copied);
420                 write_bytes -= copied;
421                 total_copied += copied;
422
423                 /* Return to btrfs_file_write_iter to fault page */
424                 if (unlikely(copied == 0))
425                         break;
426
427                 if (copied < PAGE_SIZE - offset) {
428                         offset += copied;
429                 } else {
430                         pg++;
431                         offset = 0;
432                 }
433         }
434         return total_copied;
435 }
436
437 /*
438  * unlocks pages after btrfs_file_write is done with them
439  */
440 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
441 {
442         size_t i;
443         for (i = 0; i < num_pages; i++) {
444                 /* page checked is some magic around finding pages that
445                  * have been modified without going through btrfs_set_page_dirty
446                  * clear it here. There should be no need to mark the pages
447                  * accessed as prepare_pages should have marked them accessed
448                  * in prepare_pages via find_or_create_page()
449                  */
450                 ClearPageChecked(pages[i]);
451                 unlock_page(pages[i]);
452                 put_page(pages[i]);
453         }
454 }
455
456 /*
457  * After btrfs_copy_from_user(), update the following things for delalloc:
458  * - Mark newly dirtied pages as DELALLOC in the io tree.
459  *   Used to advise which range is to be written back.
460  * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
461  * - Update inode size for past EOF write
462  */
463 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
464                       size_t num_pages, loff_t pos, size_t write_bytes,
465                       struct extent_state **cached, bool noreserve)
466 {
467         struct btrfs_fs_info *fs_info = inode->root->fs_info;
468         int err = 0;
469         int i;
470         u64 num_bytes;
471         u64 start_pos;
472         u64 end_of_last_block;
473         u64 end_pos = pos + write_bytes;
474         loff_t isize = i_size_read(&inode->vfs_inode);
475         unsigned int extra_bits = 0;
476
477         if (write_bytes == 0)
478                 return 0;
479
480         if (noreserve)
481                 extra_bits |= EXTENT_NORESERVE;
482
483         start_pos = round_down(pos, fs_info->sectorsize);
484         num_bytes = round_up(write_bytes + pos - start_pos,
485                              fs_info->sectorsize);
486         ASSERT(num_bytes <= U32_MAX);
487
488         end_of_last_block = start_pos + num_bytes - 1;
489
490         /*
491          * The pages may have already been dirty, clear out old accounting so
492          * we can set things up properly
493          */
494         clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
495                          EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
496                          0, 0, cached);
497
498         err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
499                                         extra_bits, cached);
500         if (err)
501                 return err;
502
503         for (i = 0; i < num_pages; i++) {
504                 struct page *p = pages[i];
505
506                 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
507                 ClearPageChecked(p);
508                 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
509         }
510
511         /*
512          * we've only changed i_size in ram, and we haven't updated
513          * the disk i_size.  There is no need to log the inode
514          * at this time.
515          */
516         if (end_pos > isize)
517                 i_size_write(&inode->vfs_inode, end_pos);
518         return 0;
519 }
520
521 /*
522  * this drops all the extents in the cache that intersect the range
523  * [start, end].  Existing extents are split as required.
524  */
525 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
526                              int skip_pinned)
527 {
528         struct extent_map *em;
529         struct extent_map *split = NULL;
530         struct extent_map *split2 = NULL;
531         struct extent_map_tree *em_tree = &inode->extent_tree;
532         u64 len = end - start + 1;
533         u64 gen;
534         int ret;
535         int testend = 1;
536         unsigned long flags;
537         int compressed = 0;
538         bool modified;
539
540         WARN_ON(end < start);
541         if (end == (u64)-1) {
542                 len = (u64)-1;
543                 testend = 0;
544         }
545         while (1) {
546                 int no_splits = 0;
547
548                 modified = false;
549                 if (!split)
550                         split = alloc_extent_map();
551                 if (!split2)
552                         split2 = alloc_extent_map();
553                 if (!split || !split2)
554                         no_splits = 1;
555
556                 write_lock(&em_tree->lock);
557                 em = lookup_extent_mapping(em_tree, start, len);
558                 if (!em) {
559                         write_unlock(&em_tree->lock);
560                         break;
561                 }
562                 flags = em->flags;
563                 gen = em->generation;
564                 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
565                         if (testend && em->start + em->len >= start + len) {
566                                 free_extent_map(em);
567                                 write_unlock(&em_tree->lock);
568                                 break;
569                         }
570                         start = em->start + em->len;
571                         if (testend)
572                                 len = start + len - (em->start + em->len);
573                         free_extent_map(em);
574                         write_unlock(&em_tree->lock);
575                         continue;
576                 }
577                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
578                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
579                 clear_bit(EXTENT_FLAG_LOGGING, &flags);
580                 modified = !list_empty(&em->list);
581                 if (no_splits)
582                         goto next;
583
584                 if (em->start < start) {
585                         split->start = em->start;
586                         split->len = start - em->start;
587
588                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
589                                 split->orig_start = em->orig_start;
590                                 split->block_start = em->block_start;
591
592                                 if (compressed)
593                                         split->block_len = em->block_len;
594                                 else
595                                         split->block_len = split->len;
596                                 split->orig_block_len = max(split->block_len,
597                                                 em->orig_block_len);
598                                 split->ram_bytes = em->ram_bytes;
599                         } else {
600                                 split->orig_start = split->start;
601                                 split->block_len = 0;
602                                 split->block_start = em->block_start;
603                                 split->orig_block_len = 0;
604                                 split->ram_bytes = split->len;
605                         }
606
607                         split->generation = gen;
608                         split->flags = flags;
609                         split->compress_type = em->compress_type;
610                         replace_extent_mapping(em_tree, em, split, modified);
611                         free_extent_map(split);
612                         split = split2;
613                         split2 = NULL;
614                 }
615                 if (testend && em->start + em->len > start + len) {
616                         u64 diff = start + len - em->start;
617
618                         split->start = start + len;
619                         split->len = em->start + em->len - (start + len);
620                         split->flags = flags;
621                         split->compress_type = em->compress_type;
622                         split->generation = gen;
623
624                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
625                                 split->orig_block_len = max(em->block_len,
626                                                     em->orig_block_len);
627
628                                 split->ram_bytes = em->ram_bytes;
629                                 if (compressed) {
630                                         split->block_len = em->block_len;
631                                         split->block_start = em->block_start;
632                                         split->orig_start = em->orig_start;
633                                 } else {
634                                         split->block_len = split->len;
635                                         split->block_start = em->block_start
636                                                 + diff;
637                                         split->orig_start = em->orig_start;
638                                 }
639                         } else {
640                                 split->ram_bytes = split->len;
641                                 split->orig_start = split->start;
642                                 split->block_len = 0;
643                                 split->block_start = em->block_start;
644                                 split->orig_block_len = 0;
645                         }
646
647                         if (extent_map_in_tree(em)) {
648                                 replace_extent_mapping(em_tree, em, split,
649                                                        modified);
650                         } else {
651                                 ret = add_extent_mapping(em_tree, split,
652                                                          modified);
653                                 ASSERT(ret == 0); /* Logic error */
654                         }
655                         free_extent_map(split);
656                         split = NULL;
657                 }
658 next:
659                 if (extent_map_in_tree(em))
660                         remove_extent_mapping(em_tree, em);
661                 write_unlock(&em_tree->lock);
662
663                 /* once for us */
664                 free_extent_map(em);
665                 /* once for the tree*/
666                 free_extent_map(em);
667         }
668         if (split)
669                 free_extent_map(split);
670         if (split2)
671                 free_extent_map(split2);
672 }
673
674 /*
675  * this is very complex, but the basic idea is to drop all extents
676  * in the range start - end.  hint_block is filled in with a block number
677  * that would be a good hint to the block allocator for this file.
678  *
679  * If an extent intersects the range but is not entirely inside the range
680  * it is either truncated or split.  Anything entirely inside the range
681  * is deleted from the tree.
682  *
683  * Note: the VFS' inode number of bytes is not updated, it's up to the caller
684  * to deal with that. We set the field 'bytes_found' of the arguments structure
685  * with the number of allocated bytes found in the target range, so that the
686  * caller can update the inode's number of bytes in an atomic way when
687  * replacing extents in a range to avoid races with stat(2).
688  */
689 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
690                        struct btrfs_root *root, struct btrfs_inode *inode,
691                        struct btrfs_drop_extents_args *args)
692 {
693         struct btrfs_fs_info *fs_info = root->fs_info;
694         struct extent_buffer *leaf;
695         struct btrfs_file_extent_item *fi;
696         struct btrfs_ref ref = { 0 };
697         struct btrfs_key key;
698         struct btrfs_key new_key;
699         u64 ino = btrfs_ino(inode);
700         u64 search_start = args->start;
701         u64 disk_bytenr = 0;
702         u64 num_bytes = 0;
703         u64 extent_offset = 0;
704         u64 extent_end = 0;
705         u64 last_end = args->start;
706         int del_nr = 0;
707         int del_slot = 0;
708         int extent_type;
709         int recow;
710         int ret;
711         int modify_tree = -1;
712         int update_refs;
713         int found = 0;
714         int leafs_visited = 0;
715         struct btrfs_path *path = args->path;
716
717         args->bytes_found = 0;
718         args->extent_inserted = false;
719
720         /* Must always have a path if ->replace_extent is true */
721         ASSERT(!(args->replace_extent && !args->path));
722
723         if (!path) {
724                 path = btrfs_alloc_path();
725                 if (!path) {
726                         ret = -ENOMEM;
727                         goto out;
728                 }
729         }
730
731         if (args->drop_cache)
732                 btrfs_drop_extent_cache(inode, args->start, args->end - 1, 0);
733
734         if (args->start >= inode->disk_i_size && !args->replace_extent)
735                 modify_tree = 0;
736
737         update_refs = (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
738                        root == fs_info->tree_root);
739         while (1) {
740                 recow = 0;
741                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
742                                                search_start, modify_tree);
743                 if (ret < 0)
744                         break;
745                 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
746                         leaf = path->nodes[0];
747                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
748                         if (key.objectid == ino &&
749                             key.type == BTRFS_EXTENT_DATA_KEY)
750                                 path->slots[0]--;
751                 }
752                 ret = 0;
753                 leafs_visited++;
754 next_slot:
755                 leaf = path->nodes[0];
756                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
757                         BUG_ON(del_nr > 0);
758                         ret = btrfs_next_leaf(root, path);
759                         if (ret < 0)
760                                 break;
761                         if (ret > 0) {
762                                 ret = 0;
763                                 break;
764                         }
765                         leafs_visited++;
766                         leaf = path->nodes[0];
767                         recow = 1;
768                 }
769
770                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
771
772                 if (key.objectid > ino)
773                         break;
774                 if (WARN_ON_ONCE(key.objectid < ino) ||
775                     key.type < BTRFS_EXTENT_DATA_KEY) {
776                         ASSERT(del_nr == 0);
777                         path->slots[0]++;
778                         goto next_slot;
779                 }
780                 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
781                         break;
782
783                 fi = btrfs_item_ptr(leaf, path->slots[0],
784                                     struct btrfs_file_extent_item);
785                 extent_type = btrfs_file_extent_type(leaf, fi);
786
787                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
788                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
789                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
790                         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
791                         extent_offset = btrfs_file_extent_offset(leaf, fi);
792                         extent_end = key.offset +
793                                 btrfs_file_extent_num_bytes(leaf, fi);
794                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
795                         extent_end = key.offset +
796                                 btrfs_file_extent_ram_bytes(leaf, fi);
797                 } else {
798                         /* can't happen */
799                         BUG();
800                 }
801
802                 /*
803                  * Don't skip extent items representing 0 byte lengths. They
804                  * used to be created (bug) if while punching holes we hit
805                  * -ENOSPC condition. So if we find one here, just ensure we
806                  * delete it, otherwise we would insert a new file extent item
807                  * with the same key (offset) as that 0 bytes length file
808                  * extent item in the call to setup_items_for_insert() later
809                  * in this function.
810                  */
811                 if (extent_end == key.offset && extent_end >= search_start) {
812                         last_end = extent_end;
813                         goto delete_extent_item;
814                 }
815
816                 if (extent_end <= search_start) {
817                         path->slots[0]++;
818                         goto next_slot;
819                 }
820
821                 found = 1;
822                 search_start = max(key.offset, args->start);
823                 if (recow || !modify_tree) {
824                         modify_tree = -1;
825                         btrfs_release_path(path);
826                         continue;
827                 }
828
829                 /*
830                  *     | - range to drop - |
831                  *  | -------- extent -------- |
832                  */
833                 if (args->start > key.offset && args->end < extent_end) {
834                         BUG_ON(del_nr > 0);
835                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
836                                 ret = -EOPNOTSUPP;
837                                 break;
838                         }
839
840                         memcpy(&new_key, &key, sizeof(new_key));
841                         new_key.offset = args->start;
842                         ret = btrfs_duplicate_item(trans, root, path,
843                                                    &new_key);
844                         if (ret == -EAGAIN) {
845                                 btrfs_release_path(path);
846                                 continue;
847                         }
848                         if (ret < 0)
849                                 break;
850
851                         leaf = path->nodes[0];
852                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
853                                             struct btrfs_file_extent_item);
854                         btrfs_set_file_extent_num_bytes(leaf, fi,
855                                                         args->start - key.offset);
856
857                         fi = btrfs_item_ptr(leaf, path->slots[0],
858                                             struct btrfs_file_extent_item);
859
860                         extent_offset += args->start - key.offset;
861                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
862                         btrfs_set_file_extent_num_bytes(leaf, fi,
863                                                         extent_end - args->start);
864                         btrfs_mark_buffer_dirty(leaf);
865
866                         if (update_refs && disk_bytenr > 0) {
867                                 btrfs_init_generic_ref(&ref,
868                                                 BTRFS_ADD_DELAYED_REF,
869                                                 disk_bytenr, num_bytes, 0);
870                                 btrfs_init_data_ref(&ref,
871                                                 root->root_key.objectid,
872                                                 new_key.objectid,
873                                                 args->start - extent_offset);
874                                 ret = btrfs_inc_extent_ref(trans, &ref);
875                                 BUG_ON(ret); /* -ENOMEM */
876                         }
877                         key.offset = args->start;
878                 }
879                 /*
880                  * From here on out we will have actually dropped something, so
881                  * last_end can be updated.
882                  */
883                 last_end = extent_end;
884
885                 /*
886                  *  | ---- range to drop ----- |
887                  *      | -------- extent -------- |
888                  */
889                 if (args->start <= key.offset && args->end < extent_end) {
890                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
891                                 ret = -EOPNOTSUPP;
892                                 break;
893                         }
894
895                         memcpy(&new_key, &key, sizeof(new_key));
896                         new_key.offset = args->end;
897                         btrfs_set_item_key_safe(fs_info, path, &new_key);
898
899                         extent_offset += args->end - key.offset;
900                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
901                         btrfs_set_file_extent_num_bytes(leaf, fi,
902                                                         extent_end - args->end);
903                         btrfs_mark_buffer_dirty(leaf);
904                         if (update_refs && disk_bytenr > 0)
905                                 args->bytes_found += args->end - key.offset;
906                         break;
907                 }
908
909                 search_start = extent_end;
910                 /*
911                  *       | ---- range to drop ----- |
912                  *  | -------- extent -------- |
913                  */
914                 if (args->start > key.offset && args->end >= extent_end) {
915                         BUG_ON(del_nr > 0);
916                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
917                                 ret = -EOPNOTSUPP;
918                                 break;
919                         }
920
921                         btrfs_set_file_extent_num_bytes(leaf, fi,
922                                                         args->start - key.offset);
923                         btrfs_mark_buffer_dirty(leaf);
924                         if (update_refs && disk_bytenr > 0)
925                                 args->bytes_found += extent_end - args->start;
926                         if (args->end == extent_end)
927                                 break;
928
929                         path->slots[0]++;
930                         goto next_slot;
931                 }
932
933                 /*
934                  *  | ---- range to drop ----- |
935                  *    | ------ extent ------ |
936                  */
937                 if (args->start <= key.offset && args->end >= extent_end) {
938 delete_extent_item:
939                         if (del_nr == 0) {
940                                 del_slot = path->slots[0];
941                                 del_nr = 1;
942                         } else {
943                                 BUG_ON(del_slot + del_nr != path->slots[0]);
944                                 del_nr++;
945                         }
946
947                         if (update_refs &&
948                             extent_type == BTRFS_FILE_EXTENT_INLINE) {
949                                 args->bytes_found += extent_end - key.offset;
950                                 extent_end = ALIGN(extent_end,
951                                                    fs_info->sectorsize);
952                         } else if (update_refs && disk_bytenr > 0) {
953                                 btrfs_init_generic_ref(&ref,
954                                                 BTRFS_DROP_DELAYED_REF,
955                                                 disk_bytenr, num_bytes, 0);
956                                 btrfs_init_data_ref(&ref,
957                                                 root->root_key.objectid,
958                                                 key.objectid,
959                                                 key.offset - extent_offset);
960                                 ret = btrfs_free_extent(trans, &ref);
961                                 BUG_ON(ret); /* -ENOMEM */
962                                 args->bytes_found += extent_end - key.offset;
963                         }
964
965                         if (args->end == extent_end)
966                                 break;
967
968                         if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
969                                 path->slots[0]++;
970                                 goto next_slot;
971                         }
972
973                         ret = btrfs_del_items(trans, root, path, del_slot,
974                                               del_nr);
975                         if (ret) {
976                                 btrfs_abort_transaction(trans, ret);
977                                 break;
978                         }
979
980                         del_nr = 0;
981                         del_slot = 0;
982
983                         btrfs_release_path(path);
984                         continue;
985                 }
986
987                 BUG();
988         }
989
990         if (!ret && del_nr > 0) {
991                 /*
992                  * Set path->slots[0] to first slot, so that after the delete
993                  * if items are move off from our leaf to its immediate left or
994                  * right neighbor leafs, we end up with a correct and adjusted
995                  * path->slots[0] for our insertion (if args->replace_extent).
996                  */
997                 path->slots[0] = del_slot;
998                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
999                 if (ret)
1000                         btrfs_abort_transaction(trans, ret);
1001         }
1002
1003         leaf = path->nodes[0];
1004         /*
1005          * If btrfs_del_items() was called, it might have deleted a leaf, in
1006          * which case it unlocked our path, so check path->locks[0] matches a
1007          * write lock.
1008          */
1009         if (!ret && args->replace_extent && leafs_visited == 1 &&
1010             path->locks[0] == BTRFS_WRITE_LOCK &&
1011             btrfs_leaf_free_space(leaf) >=
1012             sizeof(struct btrfs_item) + args->extent_item_size) {
1013
1014                 key.objectid = ino;
1015                 key.type = BTRFS_EXTENT_DATA_KEY;
1016                 key.offset = args->start;
1017                 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1018                         struct btrfs_key slot_key;
1019
1020                         btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1021                         if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1022                                 path->slots[0]++;
1023                 }
1024                 setup_items_for_insert(root, path, &key,
1025                                        &args->extent_item_size, 1);
1026                 args->extent_inserted = true;
1027         }
1028
1029         if (!args->path)
1030                 btrfs_free_path(path);
1031         else if (!args->extent_inserted)
1032                 btrfs_release_path(path);
1033 out:
1034         args->drop_end = found ? min(args->end, last_end) : args->end;
1035
1036         return ret;
1037 }
1038
1039 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1040                             u64 objectid, u64 bytenr, u64 orig_offset,
1041                             u64 *start, u64 *end)
1042 {
1043         struct btrfs_file_extent_item *fi;
1044         struct btrfs_key key;
1045         u64 extent_end;
1046
1047         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1048                 return 0;
1049
1050         btrfs_item_key_to_cpu(leaf, &key, slot);
1051         if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1052                 return 0;
1053
1054         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1055         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1056             btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1057             btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1058             btrfs_file_extent_compression(leaf, fi) ||
1059             btrfs_file_extent_encryption(leaf, fi) ||
1060             btrfs_file_extent_other_encoding(leaf, fi))
1061                 return 0;
1062
1063         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1064         if ((*start && *start != key.offset) || (*end && *end != extent_end))
1065                 return 0;
1066
1067         *start = key.offset;
1068         *end = extent_end;
1069         return 1;
1070 }
1071
1072 /*
1073  * Mark extent in the range start - end as written.
1074  *
1075  * This changes extent type from 'pre-allocated' to 'regular'. If only
1076  * part of extent is marked as written, the extent will be split into
1077  * two or three.
1078  */
1079 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1080                               struct btrfs_inode *inode, u64 start, u64 end)
1081 {
1082         struct btrfs_fs_info *fs_info = trans->fs_info;
1083         struct btrfs_root *root = inode->root;
1084         struct extent_buffer *leaf;
1085         struct btrfs_path *path;
1086         struct btrfs_file_extent_item *fi;
1087         struct btrfs_ref ref = { 0 };
1088         struct btrfs_key key;
1089         struct btrfs_key new_key;
1090         u64 bytenr;
1091         u64 num_bytes;
1092         u64 extent_end;
1093         u64 orig_offset;
1094         u64 other_start;
1095         u64 other_end;
1096         u64 split;
1097         int del_nr = 0;
1098         int del_slot = 0;
1099         int recow;
1100         int ret = 0;
1101         u64 ino = btrfs_ino(inode);
1102
1103         path = btrfs_alloc_path();
1104         if (!path)
1105                 return -ENOMEM;
1106 again:
1107         recow = 0;
1108         split = start;
1109         key.objectid = ino;
1110         key.type = BTRFS_EXTENT_DATA_KEY;
1111         key.offset = split;
1112
1113         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1114         if (ret < 0)
1115                 goto out;
1116         if (ret > 0 && path->slots[0] > 0)
1117                 path->slots[0]--;
1118
1119         leaf = path->nodes[0];
1120         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1121         if (key.objectid != ino ||
1122             key.type != BTRFS_EXTENT_DATA_KEY) {
1123                 ret = -EINVAL;
1124                 btrfs_abort_transaction(trans, ret);
1125                 goto out;
1126         }
1127         fi = btrfs_item_ptr(leaf, path->slots[0],
1128                             struct btrfs_file_extent_item);
1129         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1130                 ret = -EINVAL;
1131                 btrfs_abort_transaction(trans, ret);
1132                 goto out;
1133         }
1134         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1135         if (key.offset > start || extent_end < end) {
1136                 ret = -EINVAL;
1137                 btrfs_abort_transaction(trans, ret);
1138                 goto out;
1139         }
1140
1141         bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1142         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1143         orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1144         memcpy(&new_key, &key, sizeof(new_key));
1145
1146         if (start == key.offset && end < extent_end) {
1147                 other_start = 0;
1148                 other_end = start;
1149                 if (extent_mergeable(leaf, path->slots[0] - 1,
1150                                      ino, bytenr, orig_offset,
1151                                      &other_start, &other_end)) {
1152                         new_key.offset = end;
1153                         btrfs_set_item_key_safe(fs_info, path, &new_key);
1154                         fi = btrfs_item_ptr(leaf, path->slots[0],
1155                                             struct btrfs_file_extent_item);
1156                         btrfs_set_file_extent_generation(leaf, fi,
1157                                                          trans->transid);
1158                         btrfs_set_file_extent_num_bytes(leaf, fi,
1159                                                         extent_end - end);
1160                         btrfs_set_file_extent_offset(leaf, fi,
1161                                                      end - orig_offset);
1162                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1163                                             struct btrfs_file_extent_item);
1164                         btrfs_set_file_extent_generation(leaf, fi,
1165                                                          trans->transid);
1166                         btrfs_set_file_extent_num_bytes(leaf, fi,
1167                                                         end - other_start);
1168                         btrfs_mark_buffer_dirty(leaf);
1169                         goto out;
1170                 }
1171         }
1172
1173         if (start > key.offset && end == extent_end) {
1174                 other_start = end;
1175                 other_end = 0;
1176                 if (extent_mergeable(leaf, path->slots[0] + 1,
1177                                      ino, bytenr, orig_offset,
1178                                      &other_start, &other_end)) {
1179                         fi = btrfs_item_ptr(leaf, path->slots[0],
1180                                             struct btrfs_file_extent_item);
1181                         btrfs_set_file_extent_num_bytes(leaf, fi,
1182                                                         start - key.offset);
1183                         btrfs_set_file_extent_generation(leaf, fi,
1184                                                          trans->transid);
1185                         path->slots[0]++;
1186                         new_key.offset = start;
1187                         btrfs_set_item_key_safe(fs_info, path, &new_key);
1188
1189                         fi = btrfs_item_ptr(leaf, path->slots[0],
1190                                             struct btrfs_file_extent_item);
1191                         btrfs_set_file_extent_generation(leaf, fi,
1192                                                          trans->transid);
1193                         btrfs_set_file_extent_num_bytes(leaf, fi,
1194                                                         other_end - start);
1195                         btrfs_set_file_extent_offset(leaf, fi,
1196                                                      start - orig_offset);
1197                         btrfs_mark_buffer_dirty(leaf);
1198                         goto out;
1199                 }
1200         }
1201
1202         while (start > key.offset || end < extent_end) {
1203                 if (key.offset == start)
1204                         split = end;
1205
1206                 new_key.offset = split;
1207                 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1208                 if (ret == -EAGAIN) {
1209                         btrfs_release_path(path);
1210                         goto again;
1211                 }
1212                 if (ret < 0) {
1213                         btrfs_abort_transaction(trans, ret);
1214                         goto out;
1215                 }
1216
1217                 leaf = path->nodes[0];
1218                 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1219                                     struct btrfs_file_extent_item);
1220                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1221                 btrfs_set_file_extent_num_bytes(leaf, fi,
1222                                                 split - key.offset);
1223
1224                 fi = btrfs_item_ptr(leaf, path->slots[0],
1225                                     struct btrfs_file_extent_item);
1226
1227                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1228                 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1229                 btrfs_set_file_extent_num_bytes(leaf, fi,
1230                                                 extent_end - split);
1231                 btrfs_mark_buffer_dirty(leaf);
1232
1233                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1234                                        num_bytes, 0);
1235                 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1236                                     orig_offset);
1237                 ret = btrfs_inc_extent_ref(trans, &ref);
1238                 if (ret) {
1239                         btrfs_abort_transaction(trans, ret);
1240                         goto out;
1241                 }
1242
1243                 if (split == start) {
1244                         key.offset = start;
1245                 } else {
1246                         if (start != key.offset) {
1247                                 ret = -EINVAL;
1248                                 btrfs_abort_transaction(trans, ret);
1249                                 goto out;
1250                         }
1251                         path->slots[0]--;
1252                         extent_end = end;
1253                 }
1254                 recow = 1;
1255         }
1256
1257         other_start = end;
1258         other_end = 0;
1259         btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1260                                num_bytes, 0);
1261         btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1262         if (extent_mergeable(leaf, path->slots[0] + 1,
1263                              ino, bytenr, orig_offset,
1264                              &other_start, &other_end)) {
1265                 if (recow) {
1266                         btrfs_release_path(path);
1267                         goto again;
1268                 }
1269                 extent_end = other_end;
1270                 del_slot = path->slots[0] + 1;
1271                 del_nr++;
1272                 ret = btrfs_free_extent(trans, &ref);
1273                 if (ret) {
1274                         btrfs_abort_transaction(trans, ret);
1275                         goto out;
1276                 }
1277         }
1278         other_start = 0;
1279         other_end = start;
1280         if (extent_mergeable(leaf, path->slots[0] - 1,
1281                              ino, bytenr, orig_offset,
1282                              &other_start, &other_end)) {
1283                 if (recow) {
1284                         btrfs_release_path(path);
1285                         goto again;
1286                 }
1287                 key.offset = other_start;
1288                 del_slot = path->slots[0];
1289                 del_nr++;
1290                 ret = btrfs_free_extent(trans, &ref);
1291                 if (ret) {
1292                         btrfs_abort_transaction(trans, ret);
1293                         goto out;
1294                 }
1295         }
1296         if (del_nr == 0) {
1297                 fi = btrfs_item_ptr(leaf, path->slots[0],
1298                            struct btrfs_file_extent_item);
1299                 btrfs_set_file_extent_type(leaf, fi,
1300                                            BTRFS_FILE_EXTENT_REG);
1301                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1302                 btrfs_mark_buffer_dirty(leaf);
1303         } else {
1304                 fi = btrfs_item_ptr(leaf, del_slot - 1,
1305                            struct btrfs_file_extent_item);
1306                 btrfs_set_file_extent_type(leaf, fi,
1307                                            BTRFS_FILE_EXTENT_REG);
1308                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1309                 btrfs_set_file_extent_num_bytes(leaf, fi,
1310                                                 extent_end - key.offset);
1311                 btrfs_mark_buffer_dirty(leaf);
1312
1313                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1314                 if (ret < 0) {
1315                         btrfs_abort_transaction(trans, ret);
1316                         goto out;
1317                 }
1318         }
1319 out:
1320         btrfs_free_path(path);
1321         return ret;
1322 }
1323
1324 /*
1325  * on error we return an unlocked page and the error value
1326  * on success we return a locked page and 0
1327  */
1328 static int prepare_uptodate_page(struct inode *inode,
1329                                  struct page *page, u64 pos,
1330                                  bool force_uptodate)
1331 {
1332         int ret = 0;
1333
1334         if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1335             !PageUptodate(page)) {
1336                 ret = btrfs_readpage(NULL, page);
1337                 if (ret)
1338                         return ret;
1339                 lock_page(page);
1340                 if (!PageUptodate(page)) {
1341                         unlock_page(page);
1342                         return -EIO;
1343                 }
1344                 if (page->mapping != inode->i_mapping) {
1345                         unlock_page(page);
1346                         return -EAGAIN;
1347                 }
1348         }
1349         return 0;
1350 }
1351
1352 /*
1353  * this just gets pages into the page cache and locks them down.
1354  */
1355 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1356                                   size_t num_pages, loff_t pos,
1357                                   size_t write_bytes, bool force_uptodate)
1358 {
1359         int i;
1360         unsigned long index = pos >> PAGE_SHIFT;
1361         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1362         int err = 0;
1363         int faili;
1364
1365         for (i = 0; i < num_pages; i++) {
1366 again:
1367                 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1368                                                mask | __GFP_WRITE);
1369                 if (!pages[i]) {
1370                         faili = i - 1;
1371                         err = -ENOMEM;
1372                         goto fail;
1373                 }
1374
1375                 err = set_page_extent_mapped(pages[i]);
1376                 if (err < 0) {
1377                         faili = i;
1378                         goto fail;
1379                 }
1380
1381                 if (i == 0)
1382                         err = prepare_uptodate_page(inode, pages[i], pos,
1383                                                     force_uptodate);
1384                 if (!err && i == num_pages - 1)
1385                         err = prepare_uptodate_page(inode, pages[i],
1386                                                     pos + write_bytes, false);
1387                 if (err) {
1388                         put_page(pages[i]);
1389                         if (err == -EAGAIN) {
1390                                 err = 0;
1391                                 goto again;
1392                         }
1393                         faili = i - 1;
1394                         goto fail;
1395                 }
1396                 wait_on_page_writeback(pages[i]);
1397         }
1398
1399         return 0;
1400 fail:
1401         while (faili >= 0) {
1402                 unlock_page(pages[faili]);
1403                 put_page(pages[faili]);
1404                 faili--;
1405         }
1406         return err;
1407
1408 }
1409
1410 /*
1411  * This function locks the extent and properly waits for data=ordered extents
1412  * to finish before allowing the pages to be modified if need.
1413  *
1414  * The return value:
1415  * 1 - the extent is locked
1416  * 0 - the extent is not locked, and everything is OK
1417  * -EAGAIN - need re-prepare the pages
1418  * the other < 0 number - Something wrong happens
1419  */
1420 static noinline int
1421 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1422                                 size_t num_pages, loff_t pos,
1423                                 size_t write_bytes,
1424                                 u64 *lockstart, u64 *lockend,
1425                                 struct extent_state **cached_state)
1426 {
1427         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1428         u64 start_pos;
1429         u64 last_pos;
1430         int i;
1431         int ret = 0;
1432
1433         start_pos = round_down(pos, fs_info->sectorsize);
1434         last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1435
1436         if (start_pos < inode->vfs_inode.i_size) {
1437                 struct btrfs_ordered_extent *ordered;
1438
1439                 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1440                                 cached_state);
1441                 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1442                                                      last_pos - start_pos + 1);
1443                 if (ordered &&
1444                     ordered->file_offset + ordered->num_bytes > start_pos &&
1445                     ordered->file_offset <= last_pos) {
1446                         unlock_extent_cached(&inode->io_tree, start_pos,
1447                                         last_pos, cached_state);
1448                         for (i = 0; i < num_pages; i++) {
1449                                 unlock_page(pages[i]);
1450                                 put_page(pages[i]);
1451                         }
1452                         btrfs_start_ordered_extent(ordered, 1);
1453                         btrfs_put_ordered_extent(ordered);
1454                         return -EAGAIN;
1455                 }
1456                 if (ordered)
1457                         btrfs_put_ordered_extent(ordered);
1458
1459                 *lockstart = start_pos;
1460                 *lockend = last_pos;
1461                 ret = 1;
1462         }
1463
1464         /*
1465          * We should be called after prepare_pages() which should have locked
1466          * all pages in the range.
1467          */
1468         for (i = 0; i < num_pages; i++)
1469                 WARN_ON(!PageLocked(pages[i]));
1470
1471         return ret;
1472 }
1473
1474 static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1475                            size_t *write_bytes, bool nowait)
1476 {
1477         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1478         struct btrfs_root *root = inode->root;
1479         u64 lockstart, lockend;
1480         u64 num_bytes;
1481         int ret;
1482
1483         if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1484                 return 0;
1485
1486         if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
1487                 return -EAGAIN;
1488
1489         lockstart = round_down(pos, fs_info->sectorsize);
1490         lockend = round_up(pos + *write_bytes,
1491                            fs_info->sectorsize) - 1;
1492         num_bytes = lockend - lockstart + 1;
1493
1494         if (nowait) {
1495                 struct btrfs_ordered_extent *ordered;
1496
1497                 if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1498                         return -EAGAIN;
1499
1500                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1501                                                      num_bytes);
1502                 if (ordered) {
1503                         btrfs_put_ordered_extent(ordered);
1504                         ret = -EAGAIN;
1505                         goto out_unlock;
1506                 }
1507         } else {
1508                 btrfs_lock_and_flush_ordered_range(inode, lockstart,
1509                                                    lockend, NULL);
1510         }
1511
1512         ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1513                         NULL, NULL, NULL, false);
1514         if (ret <= 0) {
1515                 ret = 0;
1516                 if (!nowait)
1517                         btrfs_drew_write_unlock(&root->snapshot_lock);
1518         } else {
1519                 *write_bytes = min_t(size_t, *write_bytes ,
1520                                      num_bytes - pos + lockstart);
1521         }
1522 out_unlock:
1523         unlock_extent(&inode->io_tree, lockstart, lockend);
1524
1525         return ret;
1526 }
1527
1528 static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1529                               size_t *write_bytes)
1530 {
1531         return check_can_nocow(inode, pos, write_bytes, true);
1532 }
1533
1534 /*
1535  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1536  *
1537  * @pos:         File offset
1538  * @write_bytes: The length to write, will be updated to the nocow writeable
1539  *               range
1540  *
1541  * This function will flush ordered extents in the range to ensure proper
1542  * nocow checks.
1543  *
1544  * Return:
1545  * >0           and update @write_bytes if we can do nocow write
1546  *  0           if we can't do nocow write
1547  * -EAGAIN      if we can't get the needed lock or there are ordered extents
1548  *              for * (nowait == true) case
1549  * <0           if other error happened
1550  *
1551  * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1552  */
1553 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1554                            size_t *write_bytes)
1555 {
1556         return check_can_nocow(inode, pos, write_bytes, false);
1557 }
1558
1559 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1560 {
1561         btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1562 }
1563
1564 static void update_time_for_write(struct inode *inode)
1565 {
1566         struct timespec64 now;
1567
1568         if (IS_NOCMTIME(inode))
1569                 return;
1570
1571         now = current_time(inode);
1572         if (!timespec64_equal(&inode->i_mtime, &now))
1573                 inode->i_mtime = now;
1574
1575         if (!timespec64_equal(&inode->i_ctime, &now))
1576                 inode->i_ctime = now;
1577
1578         if (IS_I_VERSION(inode))
1579                 inode_inc_iversion(inode);
1580 }
1581
1582 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1583                              size_t count)
1584 {
1585         struct file *file = iocb->ki_filp;
1586         struct inode *inode = file_inode(file);
1587         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1588         loff_t pos = iocb->ki_pos;
1589         int ret;
1590         loff_t oldsize;
1591         loff_t start_pos;
1592
1593         if (iocb->ki_flags & IOCB_NOWAIT) {
1594                 size_t nocow_bytes = count;
1595
1596                 /* We will allocate space in case nodatacow is not set, so bail */
1597                 if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes) <= 0)
1598                         return -EAGAIN;
1599                 /*
1600                  * There are holes in the range or parts of the range that must
1601                  * be COWed (shared extents, RO block groups, etc), so just bail
1602                  * out.
1603                  */
1604                 if (nocow_bytes < count)
1605                         return -EAGAIN;
1606         }
1607
1608         current->backing_dev_info = inode_to_bdi(inode);
1609         ret = file_remove_privs(file);
1610         if (ret)
1611                 return ret;
1612
1613         /*
1614          * We reserve space for updating the inode when we reserve space for the
1615          * extent we are going to write, so we will enospc out there.  We don't
1616          * need to start yet another transaction to update the inode as we will
1617          * update the inode when we finish writing whatever data we write.
1618          */
1619         update_time_for_write(inode);
1620
1621         start_pos = round_down(pos, fs_info->sectorsize);
1622         oldsize = i_size_read(inode);
1623         if (start_pos > oldsize) {
1624                 /* Expand hole size to cover write data, preventing empty gap */
1625                 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1626
1627                 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1628                 if (ret) {
1629                         current->backing_dev_info = NULL;
1630                         return ret;
1631                 }
1632         }
1633
1634         return 0;
1635 }
1636
1637 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1638                                                struct iov_iter *i)
1639 {
1640         struct file *file = iocb->ki_filp;
1641         loff_t pos;
1642         struct inode *inode = file_inode(file);
1643         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1644         struct page **pages = NULL;
1645         struct extent_changeset *data_reserved = NULL;
1646         u64 release_bytes = 0;
1647         u64 lockstart;
1648         u64 lockend;
1649         size_t num_written = 0;
1650         int nrptrs;
1651         ssize_t ret;
1652         bool only_release_metadata = false;
1653         bool force_page_uptodate = false;
1654         loff_t old_isize = i_size_read(inode);
1655         unsigned int ilock_flags = 0;
1656
1657         if (iocb->ki_flags & IOCB_NOWAIT)
1658                 ilock_flags |= BTRFS_ILOCK_TRY;
1659
1660         ret = btrfs_inode_lock(inode, ilock_flags);
1661         if (ret < 0)
1662                 return ret;
1663
1664         ret = generic_write_checks(iocb, i);
1665         if (ret <= 0)
1666                 goto out;
1667
1668         ret = btrfs_write_check(iocb, i, ret);
1669         if (ret < 0)
1670                 goto out;
1671
1672         pos = iocb->ki_pos;
1673         nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1674                         PAGE_SIZE / (sizeof(struct page *)));
1675         nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1676         nrptrs = max(nrptrs, 8);
1677         pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1678         if (!pages) {
1679                 ret = -ENOMEM;
1680                 goto out;
1681         }
1682
1683         while (iov_iter_count(i) > 0) {
1684                 struct extent_state *cached_state = NULL;
1685                 size_t offset = offset_in_page(pos);
1686                 size_t sector_offset;
1687                 size_t write_bytes = min(iov_iter_count(i),
1688                                          nrptrs * (size_t)PAGE_SIZE -
1689                                          offset);
1690                 size_t num_pages;
1691                 size_t reserve_bytes;
1692                 size_t dirty_pages;
1693                 size_t copied;
1694                 size_t dirty_sectors;
1695                 size_t num_sectors;
1696                 int extents_locked;
1697
1698                 /*
1699                  * Fault pages before locking them in prepare_pages
1700                  * to avoid recursive lock
1701                  */
1702                 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1703                         ret = -EFAULT;
1704                         break;
1705                 }
1706
1707                 only_release_metadata = false;
1708                 sector_offset = pos & (fs_info->sectorsize - 1);
1709
1710                 extent_changeset_release(data_reserved);
1711                 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1712                                                   &data_reserved, pos,
1713                                                   write_bytes);
1714                 if (ret < 0) {
1715                         /*
1716                          * If we don't have to COW at the offset, reserve
1717                          * metadata only. write_bytes may get smaller than
1718                          * requested here.
1719                          */
1720                         if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1721                                                    &write_bytes) > 0)
1722                                 only_release_metadata = true;
1723                         else
1724                                 break;
1725                 }
1726
1727                 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1728                 WARN_ON(num_pages > nrptrs);
1729                 reserve_bytes = round_up(write_bytes + sector_offset,
1730                                          fs_info->sectorsize);
1731                 WARN_ON(reserve_bytes == 0);
1732                 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1733                                 reserve_bytes);
1734                 if (ret) {
1735                         if (!only_release_metadata)
1736                                 btrfs_free_reserved_data_space(BTRFS_I(inode),
1737                                                 data_reserved, pos,
1738                                                 write_bytes);
1739                         else
1740                                 btrfs_check_nocow_unlock(BTRFS_I(inode));
1741                         break;
1742                 }
1743
1744                 release_bytes = reserve_bytes;
1745 again:
1746                 /*
1747                  * This is going to setup the pages array with the number of
1748                  * pages we want, so we don't really need to worry about the
1749                  * contents of pages from loop to loop
1750                  */
1751                 ret = prepare_pages(inode, pages, num_pages,
1752                                     pos, write_bytes,
1753                                     force_page_uptodate);
1754                 if (ret) {
1755                         btrfs_delalloc_release_extents(BTRFS_I(inode),
1756                                                        reserve_bytes);
1757                         break;
1758                 }
1759
1760                 extents_locked = lock_and_cleanup_extent_if_need(
1761                                 BTRFS_I(inode), pages,
1762                                 num_pages, pos, write_bytes, &lockstart,
1763                                 &lockend, &cached_state);
1764                 if (extents_locked < 0) {
1765                         if (extents_locked == -EAGAIN)
1766                                 goto again;
1767                         btrfs_delalloc_release_extents(BTRFS_I(inode),
1768                                                        reserve_bytes);
1769                         ret = extents_locked;
1770                         break;
1771                 }
1772
1773                 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1774
1775                 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1776                 dirty_sectors = round_up(copied + sector_offset,
1777                                         fs_info->sectorsize);
1778                 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1779
1780                 /*
1781                  * if we have trouble faulting in the pages, fall
1782                  * back to one page at a time
1783                  */
1784                 if (copied < write_bytes)
1785                         nrptrs = 1;
1786
1787                 if (copied == 0) {
1788                         force_page_uptodate = true;
1789                         dirty_sectors = 0;
1790                         dirty_pages = 0;
1791                 } else {
1792                         force_page_uptodate = false;
1793                         dirty_pages = DIV_ROUND_UP(copied + offset,
1794                                                    PAGE_SIZE);
1795                 }
1796
1797                 if (num_sectors > dirty_sectors) {
1798                         /* release everything except the sectors we dirtied */
1799                         release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1800                         if (only_release_metadata) {
1801                                 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1802                                                         release_bytes, true);
1803                         } else {
1804                                 u64 __pos;
1805
1806                                 __pos = round_down(pos,
1807                                                    fs_info->sectorsize) +
1808                                         (dirty_pages << PAGE_SHIFT);
1809                                 btrfs_delalloc_release_space(BTRFS_I(inode),
1810                                                 data_reserved, __pos,
1811                                                 release_bytes, true);
1812                         }
1813                 }
1814
1815                 release_bytes = round_up(copied + sector_offset,
1816                                         fs_info->sectorsize);
1817
1818                 ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1819                                         dirty_pages, pos, copied,
1820                                         &cached_state, only_release_metadata);
1821
1822                 /*
1823                  * If we have not locked the extent range, because the range's
1824                  * start offset is >= i_size, we might still have a non-NULL
1825                  * cached extent state, acquired while marking the extent range
1826                  * as delalloc through btrfs_dirty_pages(). Therefore free any
1827                  * possible cached extent state to avoid a memory leak.
1828                  */
1829                 if (extents_locked)
1830                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1831                                              lockstart, lockend, &cached_state);
1832                 else
1833                         free_extent_state(cached_state);
1834
1835                 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1836                 if (ret) {
1837                         btrfs_drop_pages(pages, num_pages);
1838                         break;
1839                 }
1840
1841                 release_bytes = 0;
1842                 if (only_release_metadata)
1843                         btrfs_check_nocow_unlock(BTRFS_I(inode));
1844
1845                 btrfs_drop_pages(pages, num_pages);
1846
1847                 cond_resched();
1848
1849                 balance_dirty_pages_ratelimited(inode->i_mapping);
1850
1851                 pos += copied;
1852                 num_written += copied;
1853         }
1854
1855         kfree(pages);
1856
1857         if (release_bytes) {
1858                 if (only_release_metadata) {
1859                         btrfs_check_nocow_unlock(BTRFS_I(inode));
1860                         btrfs_delalloc_release_metadata(BTRFS_I(inode),
1861                                         release_bytes, true);
1862                 } else {
1863                         btrfs_delalloc_release_space(BTRFS_I(inode),
1864                                         data_reserved,
1865                                         round_down(pos, fs_info->sectorsize),
1866                                         release_bytes, true);
1867                 }
1868         }
1869
1870         extent_changeset_free(data_reserved);
1871         if (num_written > 0) {
1872                 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1873                 iocb->ki_pos += num_written;
1874         }
1875 out:
1876         btrfs_inode_unlock(inode, ilock_flags);
1877         return num_written ? num_written : ret;
1878 }
1879
1880 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1881                                const struct iov_iter *iter, loff_t offset)
1882 {
1883         const u32 blocksize_mask = fs_info->sectorsize - 1;
1884
1885         if (offset & blocksize_mask)
1886                 return -EINVAL;
1887
1888         if (iov_iter_alignment(iter) & blocksize_mask)
1889                 return -EINVAL;
1890
1891         return 0;
1892 }
1893
1894 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1895 {
1896         struct file *file = iocb->ki_filp;
1897         struct inode *inode = file_inode(file);
1898         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1899         loff_t pos;
1900         ssize_t written = 0;
1901         ssize_t written_buffered;
1902         loff_t endbyte;
1903         ssize_t err;
1904         unsigned int ilock_flags = 0;
1905         struct iomap_dio *dio = NULL;
1906
1907         if (iocb->ki_flags & IOCB_NOWAIT)
1908                 ilock_flags |= BTRFS_ILOCK_TRY;
1909
1910         /* If the write DIO is within EOF, use a shared lock */
1911         if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1912                 ilock_flags |= BTRFS_ILOCK_SHARED;
1913
1914 relock:
1915         err = btrfs_inode_lock(inode, ilock_flags);
1916         if (err < 0)
1917                 return err;
1918
1919         err = generic_write_checks(iocb, from);
1920         if (err <= 0) {
1921                 btrfs_inode_unlock(inode, ilock_flags);
1922                 return err;
1923         }
1924
1925         err = btrfs_write_check(iocb, from, err);
1926         if (err < 0) {
1927                 btrfs_inode_unlock(inode, ilock_flags);
1928                 goto out;
1929         }
1930
1931         pos = iocb->ki_pos;
1932         /*
1933          * Re-check since file size may have changed just before taking the
1934          * lock or pos may have changed because of O_APPEND in generic_write_check()
1935          */
1936         if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1937             pos + iov_iter_count(from) > i_size_read(inode)) {
1938                 btrfs_inode_unlock(inode, ilock_flags);
1939                 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1940                 goto relock;
1941         }
1942
1943         if (check_direct_IO(fs_info, from, pos)) {
1944                 btrfs_inode_unlock(inode, ilock_flags);
1945                 goto buffered;
1946         }
1947
1948         dio = __iomap_dio_rw(iocb, from, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
1949                              0);
1950
1951         btrfs_inode_unlock(inode, ilock_flags);
1952
1953         if (IS_ERR_OR_NULL(dio)) {
1954                 err = PTR_ERR_OR_ZERO(dio);
1955                 if (err < 0 && err != -ENOTBLK)
1956                         goto out;
1957         } else {
1958                 written = iomap_dio_complete(dio);
1959         }
1960
1961         if (written < 0 || !iov_iter_count(from)) {
1962                 err = written;
1963                 goto out;
1964         }
1965
1966 buffered:
1967         pos = iocb->ki_pos;
1968         written_buffered = btrfs_buffered_write(iocb, from);
1969         if (written_buffered < 0) {
1970                 err = written_buffered;
1971                 goto out;
1972         }
1973         /*
1974          * Ensure all data is persisted. We want the next direct IO read to be
1975          * able to read what was just written.
1976          */
1977         endbyte = pos + written_buffered - 1;
1978         err = btrfs_fdatawrite_range(inode, pos, endbyte);
1979         if (err)
1980                 goto out;
1981         err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1982         if (err)
1983                 goto out;
1984         written += written_buffered;
1985         iocb->ki_pos = pos + written_buffered;
1986         invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1987                                  endbyte >> PAGE_SHIFT);
1988 out:
1989         return written ? written : err;
1990 }
1991
1992 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1993                                     struct iov_iter *from)
1994 {
1995         struct file *file = iocb->ki_filp;
1996         struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1997         ssize_t num_written = 0;
1998         const bool sync = iocb->ki_flags & IOCB_DSYNC;
1999
2000         /*
2001          * If the fs flips readonly due to some impossible error, although we
2002          * have opened a file as writable, we have to stop this write operation
2003          * to ensure consistency.
2004          */
2005         if (test_bit(BTRFS_FS_STATE_ERROR, &inode->root->fs_info->fs_state))
2006                 return -EROFS;
2007
2008         if (!(iocb->ki_flags & IOCB_DIRECT) &&
2009             (iocb->ki_flags & IOCB_NOWAIT))
2010                 return -EOPNOTSUPP;
2011
2012         if (sync)
2013                 atomic_inc(&inode->sync_writers);
2014
2015         if (iocb->ki_flags & IOCB_DIRECT)
2016                 num_written = btrfs_direct_write(iocb, from);
2017         else
2018                 num_written = btrfs_buffered_write(iocb, from);
2019
2020         btrfs_set_inode_last_sub_trans(inode);
2021
2022         if (num_written > 0)
2023                 num_written = generic_write_sync(iocb, num_written);
2024
2025         if (sync)
2026                 atomic_dec(&inode->sync_writers);
2027
2028         current->backing_dev_info = NULL;
2029         return num_written;
2030 }
2031
2032 int btrfs_release_file(struct inode *inode, struct file *filp)
2033 {
2034         struct btrfs_file_private *private = filp->private_data;
2035
2036         if (private && private->filldir_buf)
2037                 kfree(private->filldir_buf);
2038         kfree(private);
2039         filp->private_data = NULL;
2040
2041         /*
2042          * Set by setattr when we are about to truncate a file from a non-zero
2043          * size to a zero size.  This tries to flush down new bytes that may
2044          * have been written if the application were using truncate to replace
2045          * a file in place.
2046          */
2047         if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
2048                                &BTRFS_I(inode)->runtime_flags))
2049                         filemap_flush(inode->i_mapping);
2050         return 0;
2051 }
2052
2053 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2054 {
2055         int ret;
2056         struct blk_plug plug;
2057
2058         /*
2059          * This is only called in fsync, which would do synchronous writes, so
2060          * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2061          * multiple disks using raid profile, a large IO can be split to
2062          * several segments of stripe length (currently 64K).
2063          */
2064         blk_start_plug(&plug);
2065         atomic_inc(&BTRFS_I(inode)->sync_writers);
2066         ret = btrfs_fdatawrite_range(inode, start, end);
2067         atomic_dec(&BTRFS_I(inode)->sync_writers);
2068         blk_finish_plug(&plug);
2069
2070         return ret;
2071 }
2072
2073 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
2074 {
2075         struct btrfs_inode *inode = BTRFS_I(ctx->inode);
2076         struct btrfs_fs_info *fs_info = inode->root->fs_info;
2077
2078         if (btrfs_inode_in_log(inode, fs_info->generation) &&
2079             list_empty(&ctx->ordered_extents))
2080                 return true;
2081
2082         /*
2083          * If we are doing a fast fsync we can not bail out if the inode's
2084          * last_trans is <= then the last committed transaction, because we only
2085          * update the last_trans of the inode during ordered extent completion,
2086          * and for a fast fsync we don't wait for that, we only wait for the
2087          * writeback to complete.
2088          */
2089         if (inode->last_trans <= fs_info->last_trans_committed &&
2090             (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
2091              list_empty(&ctx->ordered_extents)))
2092                 return true;
2093
2094         return false;
2095 }
2096
2097 /*
2098  * fsync call for both files and directories.  This logs the inode into
2099  * the tree log instead of forcing full commits whenever possible.
2100  *
2101  * It needs to call filemap_fdatawait so that all ordered extent updates are
2102  * in the metadata btree are up to date for copying to the log.
2103  *
2104  * It drops the inode mutex before doing the tree log commit.  This is an
2105  * important optimization for directories because holding the mutex prevents
2106  * new operations on the dir while we write to disk.
2107  */
2108 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2109 {
2110         struct dentry *dentry = file_dentry(file);
2111         struct inode *inode = d_inode(dentry);
2112         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2113         struct btrfs_root *root = BTRFS_I(inode)->root;
2114         struct btrfs_trans_handle *trans;
2115         struct btrfs_log_ctx ctx;
2116         int ret = 0, err;
2117         u64 len;
2118         bool full_sync;
2119
2120         trace_btrfs_sync_file(file, datasync);
2121
2122         btrfs_init_log_ctx(&ctx, inode);
2123
2124         /*
2125          * Always set the range to a full range, otherwise we can get into
2126          * several problems, from missing file extent items to represent holes
2127          * when not using the NO_HOLES feature, to log tree corruption due to
2128          * races between hole detection during logging and completion of ordered
2129          * extents outside the range, to missing checksums due to ordered extents
2130          * for which we flushed only a subset of their pages.
2131          */
2132         start = 0;
2133         end = LLONG_MAX;
2134         len = (u64)LLONG_MAX + 1;
2135
2136         /*
2137          * We write the dirty pages in the range and wait until they complete
2138          * out of the ->i_mutex. If so, we can flush the dirty pages by
2139          * multi-task, and make the performance up.  See
2140          * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2141          */
2142         ret = start_ordered_ops(inode, start, end);
2143         if (ret)
2144                 goto out;
2145
2146         btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2147
2148         atomic_inc(&root->log_batch);
2149
2150         /*
2151          * Always check for the full sync flag while holding the inode's lock,
2152          * to avoid races with other tasks. The flag must be either set all the
2153          * time during logging or always off all the time while logging.
2154          */
2155         full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2156                              &BTRFS_I(inode)->runtime_flags);
2157
2158         /*
2159          * Before we acquired the inode's lock and the mmap lock, someone may
2160          * have dirtied more pages in the target range. We need to make sure
2161          * that writeback for any such pages does not start while we are logging
2162          * the inode, because if it does, any of the following might happen when
2163          * we are not doing a full inode sync:
2164          *
2165          * 1) We log an extent after its writeback finishes but before its
2166          *    checksums are added to the csum tree, leading to -EIO errors
2167          *    when attempting to read the extent after a log replay.
2168          *
2169          * 2) We can end up logging an extent before its writeback finishes.
2170          *    Therefore after the log replay we will have a file extent item
2171          *    pointing to an unwritten extent (and no data checksums as well).
2172          *
2173          * So trigger writeback for any eventual new dirty pages and then we
2174          * wait for all ordered extents to complete below.
2175          */
2176         ret = start_ordered_ops(inode, start, end);
2177         if (ret) {
2178                 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2179                 goto out;
2180         }
2181
2182         /*
2183          * We have to do this here to avoid the priority inversion of waiting on
2184          * IO of a lower priority task while holding a transaction open.
2185          *
2186          * For a full fsync we wait for the ordered extents to complete while
2187          * for a fast fsync we wait just for writeback to complete, and then
2188          * attach the ordered extents to the transaction so that a transaction
2189          * commit waits for their completion, to avoid data loss if we fsync,
2190          * the current transaction commits before the ordered extents complete
2191          * and a power failure happens right after that.
2192          *
2193          * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
2194          * logical address recorded in the ordered extent may change. We need
2195          * to wait for the IO to stabilize the logical address.
2196          */
2197         if (full_sync || btrfs_is_zoned(fs_info)) {
2198                 ret = btrfs_wait_ordered_range(inode, start, len);
2199         } else {
2200                 /*
2201                  * Get our ordered extents as soon as possible to avoid doing
2202                  * checksum lookups in the csum tree, and use instead the
2203                  * checksums attached to the ordered extents.
2204                  */
2205                 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2206                                                       &ctx.ordered_extents);
2207                 ret = filemap_fdatawait_range(inode->i_mapping, start, end);
2208         }
2209
2210         if (ret)
2211                 goto out_release_extents;
2212
2213         atomic_inc(&root->log_batch);
2214
2215         smp_mb();
2216         if (skip_inode_logging(&ctx)) {
2217                 /*
2218                  * We've had everything committed since the last time we were
2219                  * modified so clear this flag in case it was set for whatever
2220                  * reason, it's no longer relevant.
2221                  */
2222                 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2223                           &BTRFS_I(inode)->runtime_flags);
2224                 /*
2225                  * An ordered extent might have started before and completed
2226                  * already with io errors, in which case the inode was not
2227                  * updated and we end up here. So check the inode's mapping
2228                  * for any errors that might have happened since we last
2229                  * checked called fsync.
2230                  */
2231                 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2232                 goto out_release_extents;
2233         }
2234
2235         /*
2236          * We use start here because we will need to wait on the IO to complete
2237          * in btrfs_sync_log, which could require joining a transaction (for
2238          * example checking cross references in the nocow path).  If we use join
2239          * here we could get into a situation where we're waiting on IO to
2240          * happen that is blocked on a transaction trying to commit.  With start
2241          * we inc the extwriter counter, so we wait for all extwriters to exit
2242          * before we start blocking joiners.  This comment is to keep somebody
2243          * from thinking they are super smart and changing this to
2244          * btrfs_join_transaction *cough*Josef*cough*.
2245          */
2246         trans = btrfs_start_transaction(root, 0);
2247         if (IS_ERR(trans)) {
2248                 ret = PTR_ERR(trans);
2249                 goto out_release_extents;
2250         }
2251         trans->in_fsync = true;
2252
2253         ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2254         btrfs_release_log_ctx_extents(&ctx);
2255         if (ret < 0) {
2256                 /* Fallthrough and commit/free transaction. */
2257                 ret = 1;
2258         }
2259
2260         /* we've logged all the items and now have a consistent
2261          * version of the file in the log.  It is possible that
2262          * someone will come in and modify the file, but that's
2263          * fine because the log is consistent on disk, and we
2264          * have references to all of the file's extents
2265          *
2266          * It is possible that someone will come in and log the
2267          * file again, but that will end up using the synchronization
2268          * inside btrfs_sync_log to keep things safe.
2269          */
2270         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2271
2272         if (ret != BTRFS_NO_LOG_SYNC) {
2273                 if (!ret) {
2274                         ret = btrfs_sync_log(trans, root, &ctx);
2275                         if (!ret) {
2276                                 ret = btrfs_end_transaction(trans);
2277                                 goto out;
2278                         }
2279                 }
2280                 if (!full_sync) {
2281                         ret = btrfs_wait_ordered_range(inode, start, len);
2282                         if (ret) {
2283                                 btrfs_end_transaction(trans);
2284                                 goto out;
2285                         }
2286                 }
2287                 ret = btrfs_commit_transaction(trans);
2288         } else {
2289                 ret = btrfs_end_transaction(trans);
2290         }
2291 out:
2292         ASSERT(list_empty(&ctx.list));
2293         err = file_check_and_advance_wb_err(file);
2294         if (!ret)
2295                 ret = err;
2296         return ret > 0 ? -EIO : ret;
2297
2298 out_release_extents:
2299         btrfs_release_log_ctx_extents(&ctx);
2300         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2301         goto out;
2302 }
2303
2304 static const struct vm_operations_struct btrfs_file_vm_ops = {
2305         .fault          = filemap_fault,
2306         .map_pages      = filemap_map_pages,
2307         .page_mkwrite   = btrfs_page_mkwrite,
2308 };
2309
2310 static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
2311 {
2312         struct address_space *mapping = filp->f_mapping;
2313
2314         if (!mapping->a_ops->readpage)
2315                 return -ENOEXEC;
2316
2317         file_accessed(filp);
2318         vma->vm_ops = &btrfs_file_vm_ops;
2319
2320         return 0;
2321 }
2322
2323 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2324                           int slot, u64 start, u64 end)
2325 {
2326         struct btrfs_file_extent_item *fi;
2327         struct btrfs_key key;
2328
2329         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2330                 return 0;
2331
2332         btrfs_item_key_to_cpu(leaf, &key, slot);
2333         if (key.objectid != btrfs_ino(inode) ||
2334             key.type != BTRFS_EXTENT_DATA_KEY)
2335                 return 0;
2336
2337         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2338
2339         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2340                 return 0;
2341
2342         if (btrfs_file_extent_disk_bytenr(leaf, fi))
2343                 return 0;
2344
2345         if (key.offset == end)
2346                 return 1;
2347         if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2348                 return 1;
2349         return 0;
2350 }
2351
2352 static int fill_holes(struct btrfs_trans_handle *trans,
2353                 struct btrfs_inode *inode,
2354                 struct btrfs_path *path, u64 offset, u64 end)
2355 {
2356         struct btrfs_fs_info *fs_info = trans->fs_info;
2357         struct btrfs_root *root = inode->root;
2358         struct extent_buffer *leaf;
2359         struct btrfs_file_extent_item *fi;
2360         struct extent_map *hole_em;
2361         struct extent_map_tree *em_tree = &inode->extent_tree;
2362         struct btrfs_key key;
2363         int ret;
2364
2365         if (btrfs_fs_incompat(fs_info, NO_HOLES))
2366                 goto out;
2367
2368         key.objectid = btrfs_ino(inode);
2369         key.type = BTRFS_EXTENT_DATA_KEY;
2370         key.offset = offset;
2371
2372         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2373         if (ret <= 0) {
2374                 /*
2375                  * We should have dropped this offset, so if we find it then
2376                  * something has gone horribly wrong.
2377                  */
2378                 if (ret == 0)
2379                         ret = -EINVAL;
2380                 return ret;
2381         }
2382
2383         leaf = path->nodes[0];
2384         if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2385                 u64 num_bytes;
2386
2387                 path->slots[0]--;
2388                 fi = btrfs_item_ptr(leaf, path->slots[0],
2389                                     struct btrfs_file_extent_item);
2390                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2391                         end - offset;
2392                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2393                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2394                 btrfs_set_file_extent_offset(leaf, fi, 0);
2395                 btrfs_mark_buffer_dirty(leaf);
2396                 goto out;
2397         }
2398
2399         if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2400                 u64 num_bytes;
2401
2402                 key.offset = offset;
2403                 btrfs_set_item_key_safe(fs_info, path, &key);
2404                 fi = btrfs_item_ptr(leaf, path->slots[0],
2405                                     struct btrfs_file_extent_item);
2406                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2407                         offset;
2408                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2409                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2410                 btrfs_set_file_extent_offset(leaf, fi, 0);
2411                 btrfs_mark_buffer_dirty(leaf);
2412                 goto out;
2413         }
2414         btrfs_release_path(path);
2415
2416         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2417                         offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2418         if (ret)
2419                 return ret;
2420
2421 out:
2422         btrfs_release_path(path);
2423
2424         hole_em = alloc_extent_map();
2425         if (!hole_em) {
2426                 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2427                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2428         } else {
2429                 hole_em->start = offset;
2430                 hole_em->len = end - offset;
2431                 hole_em->ram_bytes = hole_em->len;
2432                 hole_em->orig_start = offset;
2433
2434                 hole_em->block_start = EXTENT_MAP_HOLE;
2435                 hole_em->block_len = 0;
2436                 hole_em->orig_block_len = 0;
2437                 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2438                 hole_em->generation = trans->transid;
2439
2440                 do {
2441                         btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2442                         write_lock(&em_tree->lock);
2443                         ret = add_extent_mapping(em_tree, hole_em, 1);
2444                         write_unlock(&em_tree->lock);
2445                 } while (ret == -EEXIST);
2446                 free_extent_map(hole_em);
2447                 if (ret)
2448                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2449                                         &inode->runtime_flags);
2450         }
2451
2452         return 0;
2453 }
2454
2455 /*
2456  * Find a hole extent on given inode and change start/len to the end of hole
2457  * extent.(hole/vacuum extent whose em->start <= start &&
2458  *         em->start + em->len > start)
2459  * When a hole extent is found, return 1 and modify start/len.
2460  */
2461 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2462 {
2463         struct btrfs_fs_info *fs_info = inode->root->fs_info;
2464         struct extent_map *em;
2465         int ret = 0;
2466
2467         em = btrfs_get_extent(inode, NULL, 0,
2468                               round_down(*start, fs_info->sectorsize),
2469                               round_up(*len, fs_info->sectorsize));
2470         if (IS_ERR(em))
2471                 return PTR_ERR(em);
2472
2473         /* Hole or vacuum extent(only exists in no-hole mode) */
2474         if (em->block_start == EXTENT_MAP_HOLE) {
2475                 ret = 1;
2476                 *len = em->start + em->len > *start + *len ?
2477                        0 : *start + *len - em->start - em->len;
2478                 *start = em->start + em->len;
2479         }
2480         free_extent_map(em);
2481         return ret;
2482 }
2483
2484 static int btrfs_punch_hole_lock_range(struct inode *inode,
2485                                        const u64 lockstart,
2486                                        const u64 lockend,
2487                                        struct extent_state **cached_state)
2488 {
2489         /*
2490          * For subpage case, if the range is not at page boundary, we could
2491          * have pages at the leading/tailing part of the range.
2492          * This could lead to dead loop since filemap_range_has_page()
2493          * will always return true.
2494          * So here we need to do extra page alignment for
2495          * filemap_range_has_page().
2496          */
2497         const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2498         const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2499
2500         while (1) {
2501                 struct btrfs_ordered_extent *ordered;
2502                 int ret;
2503
2504                 truncate_pagecache_range(inode, lockstart, lockend);
2505
2506                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2507                                  cached_state);
2508                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
2509                                                             lockend);
2510
2511                 /*
2512                  * We need to make sure we have no ordered extents in this range
2513                  * and nobody raced in and read a page in this range, if we did
2514                  * we need to try again.
2515                  */
2516                 if ((!ordered ||
2517                     (ordered->file_offset + ordered->num_bytes <= lockstart ||
2518                      ordered->file_offset > lockend)) &&
2519                      !filemap_range_has_page(inode->i_mapping,
2520                                              page_lockstart, page_lockend)) {
2521                         if (ordered)
2522                                 btrfs_put_ordered_extent(ordered);
2523                         break;
2524                 }
2525                 if (ordered)
2526                         btrfs_put_ordered_extent(ordered);
2527                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2528                                      lockend, cached_state);
2529                 ret = btrfs_wait_ordered_range(inode, lockstart,
2530                                                lockend - lockstart + 1);
2531                 if (ret)
2532                         return ret;
2533         }
2534         return 0;
2535 }
2536
2537 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2538                                      struct btrfs_inode *inode,
2539                                      struct btrfs_path *path,
2540                                      struct btrfs_replace_extent_info *extent_info,
2541                                      const u64 replace_len,
2542                                      const u64 bytes_to_drop)
2543 {
2544         struct btrfs_fs_info *fs_info = trans->fs_info;
2545         struct btrfs_root *root = inode->root;
2546         struct btrfs_file_extent_item *extent;
2547         struct extent_buffer *leaf;
2548         struct btrfs_key key;
2549         int slot;
2550         struct btrfs_ref ref = { 0 };
2551         int ret;
2552
2553         if (replace_len == 0)
2554                 return 0;
2555
2556         if (extent_info->disk_offset == 0 &&
2557             btrfs_fs_incompat(fs_info, NO_HOLES)) {
2558                 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2559                 return 0;
2560         }
2561
2562         key.objectid = btrfs_ino(inode);
2563         key.type = BTRFS_EXTENT_DATA_KEY;
2564         key.offset = extent_info->file_offset;
2565         ret = btrfs_insert_empty_item(trans, root, path, &key,
2566                                       sizeof(struct btrfs_file_extent_item));
2567         if (ret)
2568                 return ret;
2569         leaf = path->nodes[0];
2570         slot = path->slots[0];
2571         write_extent_buffer(leaf, extent_info->extent_buf,
2572                             btrfs_item_ptr_offset(leaf, slot),
2573                             sizeof(struct btrfs_file_extent_item));
2574         extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2575         ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2576         btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2577         btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2578         if (extent_info->is_new_extent)
2579                 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2580         btrfs_mark_buffer_dirty(leaf);
2581         btrfs_release_path(path);
2582
2583         ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2584                                                 replace_len);
2585         if (ret)
2586                 return ret;
2587
2588         /* If it's a hole, nothing more needs to be done. */
2589         if (extent_info->disk_offset == 0) {
2590                 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2591                 return 0;
2592         }
2593
2594         btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2595
2596         if (extent_info->is_new_extent && extent_info->insertions == 0) {
2597                 key.objectid = extent_info->disk_offset;
2598                 key.type = BTRFS_EXTENT_ITEM_KEY;
2599                 key.offset = extent_info->disk_len;
2600                 ret = btrfs_alloc_reserved_file_extent(trans, root,
2601                                                        btrfs_ino(inode),
2602                                                        extent_info->file_offset,
2603                                                        extent_info->qgroup_reserved,
2604                                                        &key);
2605         } else {
2606                 u64 ref_offset;
2607
2608                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2609                                        extent_info->disk_offset,
2610                                        extent_info->disk_len, 0);
2611                 ref_offset = extent_info->file_offset - extent_info->data_offset;
2612                 btrfs_init_data_ref(&ref, root->root_key.objectid,
2613                                     btrfs_ino(inode), ref_offset);
2614                 ret = btrfs_inc_extent_ref(trans, &ref);
2615         }
2616
2617         extent_info->insertions++;
2618
2619         return ret;
2620 }
2621
2622 /*
2623  * The respective range must have been previously locked, as well as the inode.
2624  * The end offset is inclusive (last byte of the range).
2625  * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2626  * the file range with an extent.
2627  * When not punching a hole, we don't want to end up in a state where we dropped
2628  * extents without inserting a new one, so we must abort the transaction to avoid
2629  * a corruption.
2630  */
2631 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2632                                struct btrfs_path *path, const u64 start,
2633                                const u64 end,
2634                                struct btrfs_replace_extent_info *extent_info,
2635                                struct btrfs_trans_handle **trans_out)
2636 {
2637         struct btrfs_drop_extents_args drop_args = { 0 };
2638         struct btrfs_root *root = inode->root;
2639         struct btrfs_fs_info *fs_info = root->fs_info;
2640         u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2641         u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2642         struct btrfs_trans_handle *trans = NULL;
2643         struct btrfs_block_rsv *rsv;
2644         unsigned int rsv_count;
2645         u64 cur_offset;
2646         u64 len = end - start;
2647         int ret = 0;
2648
2649         if (end <= start)
2650                 return -EINVAL;
2651
2652         rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2653         if (!rsv) {
2654                 ret = -ENOMEM;
2655                 goto out;
2656         }
2657         rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2658         rsv->failfast = 1;
2659
2660         /*
2661          * 1 - update the inode
2662          * 1 - removing the extents in the range
2663          * 1 - adding the hole extent if no_holes isn't set or if we are
2664          *     replacing the range with a new extent
2665          */
2666         if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2667                 rsv_count = 3;
2668         else
2669                 rsv_count = 2;
2670
2671         trans = btrfs_start_transaction(root, rsv_count);
2672         if (IS_ERR(trans)) {
2673                 ret = PTR_ERR(trans);
2674                 trans = NULL;
2675                 goto out_free;
2676         }
2677
2678         ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2679                                       min_size, false);
2680         BUG_ON(ret);
2681         trans->block_rsv = rsv;
2682
2683         cur_offset = start;
2684         drop_args.path = path;
2685         drop_args.end = end + 1;
2686         drop_args.drop_cache = true;
2687         while (cur_offset < end) {
2688                 drop_args.start = cur_offset;
2689                 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2690                 /* If we are punching a hole decrement the inode's byte count */
2691                 if (!extent_info)
2692                         btrfs_update_inode_bytes(inode, 0,
2693                                                  drop_args.bytes_found);
2694                 if (ret != -ENOSPC) {
2695                         /*
2696                          * When cloning we want to avoid transaction aborts when
2697                          * nothing was done and we are attempting to clone parts
2698                          * of inline extents, in such cases -EOPNOTSUPP is
2699                          * returned by __btrfs_drop_extents() without having
2700                          * changed anything in the file.
2701                          */
2702                         if (extent_info && !extent_info->is_new_extent &&
2703                             ret && ret != -EOPNOTSUPP)
2704                                 btrfs_abort_transaction(trans, ret);
2705                         break;
2706                 }
2707
2708                 trans->block_rsv = &fs_info->trans_block_rsv;
2709
2710                 if (!extent_info && cur_offset < drop_args.drop_end &&
2711                     cur_offset < ino_size) {
2712                         ret = fill_holes(trans, inode, path, cur_offset,
2713                                          drop_args.drop_end);
2714                         if (ret) {
2715                                 /*
2716                                  * If we failed then we didn't insert our hole
2717                                  * entries for the area we dropped, so now the
2718                                  * fs is corrupted, so we must abort the
2719                                  * transaction.
2720                                  */
2721                                 btrfs_abort_transaction(trans, ret);
2722                                 break;
2723                         }
2724                 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2725                         /*
2726                          * We are past the i_size here, but since we didn't
2727                          * insert holes we need to clear the mapped area so we
2728                          * know to not set disk_i_size in this area until a new
2729                          * file extent is inserted here.
2730                          */
2731                         ret = btrfs_inode_clear_file_extent_range(inode,
2732                                         cur_offset,
2733                                         drop_args.drop_end - cur_offset);
2734                         if (ret) {
2735                                 /*
2736                                  * We couldn't clear our area, so we could
2737                                  * presumably adjust up and corrupt the fs, so
2738                                  * we need to abort.
2739                                  */
2740                                 btrfs_abort_transaction(trans, ret);
2741                                 break;
2742                         }
2743                 }
2744
2745                 if (extent_info &&
2746                     drop_args.drop_end > extent_info->file_offset) {
2747                         u64 replace_len = drop_args.drop_end -
2748                                           extent_info->file_offset;
2749
2750                         ret = btrfs_insert_replace_extent(trans, inode, path,
2751                                         extent_info, replace_len,
2752                                         drop_args.bytes_found);
2753                         if (ret) {
2754                                 btrfs_abort_transaction(trans, ret);
2755                                 break;
2756                         }
2757                         extent_info->data_len -= replace_len;
2758                         extent_info->data_offset += replace_len;
2759                         extent_info->file_offset += replace_len;
2760                 }
2761
2762                 ret = btrfs_update_inode(trans, root, inode);
2763                 if (ret)
2764                         break;
2765
2766                 btrfs_end_transaction(trans);
2767                 btrfs_btree_balance_dirty(fs_info);
2768
2769                 trans = btrfs_start_transaction(root, rsv_count);
2770                 if (IS_ERR(trans)) {
2771                         ret = PTR_ERR(trans);
2772                         trans = NULL;
2773                         break;
2774                 }
2775
2776                 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2777                                               rsv, min_size, false);
2778                 BUG_ON(ret);    /* shouldn't happen */
2779                 trans->block_rsv = rsv;
2780
2781                 cur_offset = drop_args.drop_end;
2782                 len = end - cur_offset;
2783                 if (!extent_info && len) {
2784                         ret = find_first_non_hole(inode, &cur_offset, &len);
2785                         if (unlikely(ret < 0))
2786                                 break;
2787                         if (ret && !len) {
2788                                 ret = 0;
2789                                 break;
2790                         }
2791                 }
2792         }
2793
2794         /*
2795          * If we were cloning, force the next fsync to be a full one since we
2796          * we replaced (or just dropped in the case of cloning holes when
2797          * NO_HOLES is enabled) file extent items and did not setup new extent
2798          * maps for the replacement extents (or holes).
2799          */
2800         if (extent_info && !extent_info->is_new_extent)
2801                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2802
2803         if (ret)
2804                 goto out_trans;
2805
2806         trans->block_rsv = &fs_info->trans_block_rsv;
2807         /*
2808          * If we are using the NO_HOLES feature we might have had already an
2809          * hole that overlaps a part of the region [lockstart, lockend] and
2810          * ends at (or beyond) lockend. Since we have no file extent items to
2811          * represent holes, drop_end can be less than lockend and so we must
2812          * make sure we have an extent map representing the existing hole (the
2813          * call to __btrfs_drop_extents() might have dropped the existing extent
2814          * map representing the existing hole), otherwise the fast fsync path
2815          * will not record the existence of the hole region
2816          * [existing_hole_start, lockend].
2817          */
2818         if (drop_args.drop_end <= end)
2819                 drop_args.drop_end = end + 1;
2820         /*
2821          * Don't insert file hole extent item if it's for a range beyond eof
2822          * (because it's useless) or if it represents a 0 bytes range (when
2823          * cur_offset == drop_end).
2824          */
2825         if (!extent_info && cur_offset < ino_size &&
2826             cur_offset < drop_args.drop_end) {
2827                 ret = fill_holes(trans, inode, path, cur_offset,
2828                                  drop_args.drop_end);
2829                 if (ret) {
2830                         /* Same comment as above. */
2831                         btrfs_abort_transaction(trans, ret);
2832                         goto out_trans;
2833                 }
2834         } else if (!extent_info && cur_offset < drop_args.drop_end) {
2835                 /* See the comment in the loop above for the reasoning here. */
2836                 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2837                                         drop_args.drop_end - cur_offset);
2838                 if (ret) {
2839                         btrfs_abort_transaction(trans, ret);
2840                         goto out_trans;
2841                 }
2842
2843         }
2844         if (extent_info) {
2845                 ret = btrfs_insert_replace_extent(trans, inode, path,
2846                                 extent_info, extent_info->data_len,
2847                                 drop_args.bytes_found);
2848                 if (ret) {
2849                         btrfs_abort_transaction(trans, ret);
2850                         goto out_trans;
2851                 }
2852         }
2853
2854 out_trans:
2855         if (!trans)
2856                 goto out_free;
2857
2858         trans->block_rsv = &fs_info->trans_block_rsv;
2859         if (ret)
2860                 btrfs_end_transaction(trans);
2861         else
2862                 *trans_out = trans;
2863 out_free:
2864         btrfs_free_block_rsv(fs_info, rsv);
2865 out:
2866         return ret;
2867 }
2868
2869 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2870 {
2871         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2872         struct btrfs_root *root = BTRFS_I(inode)->root;
2873         struct extent_state *cached_state = NULL;
2874         struct btrfs_path *path;
2875         struct btrfs_trans_handle *trans = NULL;
2876         u64 lockstart;
2877         u64 lockend;
2878         u64 tail_start;
2879         u64 tail_len;
2880         u64 orig_start = offset;
2881         int ret = 0;
2882         bool same_block;
2883         u64 ino_size;
2884         bool truncated_block = false;
2885         bool updated_inode = false;
2886
2887         ret = btrfs_wait_ordered_range(inode, offset, len);
2888         if (ret)
2889                 return ret;
2890
2891         btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2892         ino_size = round_up(inode->i_size, fs_info->sectorsize);
2893         ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2894         if (ret < 0)
2895                 goto out_only_mutex;
2896         if (ret && !len) {
2897                 /* Already in a large hole */
2898                 ret = 0;
2899                 goto out_only_mutex;
2900         }
2901
2902         lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode)));
2903         lockend = round_down(offset + len,
2904                              btrfs_inode_sectorsize(BTRFS_I(inode))) - 1;
2905         same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2906                 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2907         /*
2908          * We needn't truncate any block which is beyond the end of the file
2909          * because we are sure there is no data there.
2910          */
2911         /*
2912          * Only do this if we are in the same block and we aren't doing the
2913          * entire block.
2914          */
2915         if (same_block && len < fs_info->sectorsize) {
2916                 if (offset < ino_size) {
2917                         truncated_block = true;
2918                         ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2919                                                    0);
2920                 } else {
2921                         ret = 0;
2922                 }
2923                 goto out_only_mutex;
2924         }
2925
2926         /* zero back part of the first block */
2927         if (offset < ino_size) {
2928                 truncated_block = true;
2929                 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2930                 if (ret) {
2931                         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2932                         return ret;
2933                 }
2934         }
2935
2936         /* Check the aligned pages after the first unaligned page,
2937          * if offset != orig_start, which means the first unaligned page
2938          * including several following pages are already in holes,
2939          * the extra check can be skipped */
2940         if (offset == orig_start) {
2941                 /* after truncate page, check hole again */
2942                 len = offset + len - lockstart;
2943                 offset = lockstart;
2944                 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2945                 if (ret < 0)
2946                         goto out_only_mutex;
2947                 if (ret && !len) {
2948                         ret = 0;
2949                         goto out_only_mutex;
2950                 }
2951                 lockstart = offset;
2952         }
2953
2954         /* Check the tail unaligned part is in a hole */
2955         tail_start = lockend + 1;
2956         tail_len = offset + len - tail_start;
2957         if (tail_len) {
2958                 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2959                 if (unlikely(ret < 0))
2960                         goto out_only_mutex;
2961                 if (!ret) {
2962                         /* zero the front end of the last page */
2963                         if (tail_start + tail_len < ino_size) {
2964                                 truncated_block = true;
2965                                 ret = btrfs_truncate_block(BTRFS_I(inode),
2966                                                         tail_start + tail_len,
2967                                                         0, 1);
2968                                 if (ret)
2969                                         goto out_only_mutex;
2970                         }
2971                 }
2972         }
2973
2974         if (lockend < lockstart) {
2975                 ret = 0;
2976                 goto out_only_mutex;
2977         }
2978
2979         ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2980                                           &cached_state);
2981         if (ret)
2982                 goto out_only_mutex;
2983
2984         path = btrfs_alloc_path();
2985         if (!path) {
2986                 ret = -ENOMEM;
2987                 goto out;
2988         }
2989
2990         ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2991                                          lockend, NULL, &trans);
2992         btrfs_free_path(path);
2993         if (ret)
2994                 goto out;
2995
2996         ASSERT(trans != NULL);
2997         inode_inc_iversion(inode);
2998         inode->i_mtime = inode->i_ctime = current_time(inode);
2999         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3000         updated_inode = true;
3001         btrfs_end_transaction(trans);
3002         btrfs_btree_balance_dirty(fs_info);
3003 out:
3004         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3005                              &cached_state);
3006 out_only_mutex:
3007         if (!updated_inode && truncated_block && !ret) {
3008                 /*
3009                  * If we only end up zeroing part of a page, we still need to
3010                  * update the inode item, so that all the time fields are
3011                  * updated as well as the necessary btrfs inode in memory fields
3012                  * for detecting, at fsync time, if the inode isn't yet in the
3013                  * log tree or it's there but not up to date.
3014                  */
3015                 struct timespec64 now = current_time(inode);
3016
3017                 inode_inc_iversion(inode);
3018                 inode->i_mtime = now;
3019                 inode->i_ctime = now;
3020                 trans = btrfs_start_transaction(root, 1);
3021                 if (IS_ERR(trans)) {
3022                         ret = PTR_ERR(trans);
3023                 } else {
3024                         int ret2;
3025
3026                         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3027                         ret2 = btrfs_end_transaction(trans);
3028                         if (!ret)
3029                                 ret = ret2;
3030                 }
3031         }
3032         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3033         return ret;
3034 }
3035
3036 /* Helper structure to record which range is already reserved */
3037 struct falloc_range {
3038         struct list_head list;
3039         u64 start;
3040         u64 len;
3041 };
3042
3043 /*
3044  * Helper function to add falloc range
3045  *
3046  * Caller should have locked the larger range of extent containing
3047  * [start, len)
3048  */
3049 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3050 {
3051         struct falloc_range *range = NULL;
3052
3053         if (!list_empty(head)) {
3054                 /*
3055                  * As fallocate iterates by bytenr order, we only need to check
3056                  * the last range.
3057                  */
3058                 range = list_last_entry(head, struct falloc_range, list);
3059                 if (range->start + range->len == start) {
3060                         range->len += len;
3061                         return 0;
3062                 }
3063         }
3064
3065         range = kmalloc(sizeof(*range), GFP_KERNEL);
3066         if (!range)
3067                 return -ENOMEM;
3068         range->start = start;
3069         range->len = len;
3070         list_add_tail(&range->list, head);
3071         return 0;
3072 }
3073
3074 static int btrfs_fallocate_update_isize(struct inode *inode,
3075                                         const u64 end,
3076                                         const int mode)
3077 {
3078         struct btrfs_trans_handle *trans;
3079         struct btrfs_root *root = BTRFS_I(inode)->root;
3080         int ret;
3081         int ret2;
3082
3083         if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3084                 return 0;
3085
3086         trans = btrfs_start_transaction(root, 1);
3087         if (IS_ERR(trans))
3088                 return PTR_ERR(trans);
3089
3090         inode->i_ctime = current_time(inode);
3091         i_size_write(inode, end);
3092         btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
3093         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3094         ret2 = btrfs_end_transaction(trans);
3095
3096         return ret ? ret : ret2;
3097 }
3098
3099 enum {
3100         RANGE_BOUNDARY_WRITTEN_EXTENT,
3101         RANGE_BOUNDARY_PREALLOC_EXTENT,
3102         RANGE_BOUNDARY_HOLE,
3103 };
3104
3105 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3106                                                  u64 offset)
3107 {
3108         const u64 sectorsize = btrfs_inode_sectorsize(inode);
3109         struct extent_map *em;
3110         int ret;
3111
3112         offset = round_down(offset, sectorsize);
3113         em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
3114         if (IS_ERR(em))
3115                 return PTR_ERR(em);
3116
3117         if (em->block_start == EXTENT_MAP_HOLE)
3118                 ret = RANGE_BOUNDARY_HOLE;
3119         else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3120                 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3121         else
3122                 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3123
3124         free_extent_map(em);
3125         return ret;
3126 }
3127
3128 static int btrfs_zero_range(struct inode *inode,
3129                             loff_t offset,
3130                             loff_t len,
3131                             const int mode)
3132 {
3133         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3134         struct extent_map *em;
3135         struct extent_changeset *data_reserved = NULL;
3136         int ret;
3137         u64 alloc_hint = 0;
3138         const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode));
3139         u64 alloc_start = round_down(offset, sectorsize);
3140         u64 alloc_end = round_up(offset + len, sectorsize);
3141         u64 bytes_to_reserve = 0;
3142         bool space_reserved = false;
3143
3144         inode_dio_wait(inode);
3145
3146         em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3147                               alloc_end - alloc_start);
3148         if (IS_ERR(em)) {
3149                 ret = PTR_ERR(em);
3150                 goto out;
3151         }
3152
3153         /*
3154          * Avoid hole punching and extent allocation for some cases. More cases
3155          * could be considered, but these are unlikely common and we keep things
3156          * as simple as possible for now. Also, intentionally, if the target
3157          * range contains one or more prealloc extents together with regular
3158          * extents and holes, we drop all the existing extents and allocate a
3159          * new prealloc extent, so that we get a larger contiguous disk extent.
3160          */
3161         if (em->start <= alloc_start &&
3162             test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3163                 const u64 em_end = em->start + em->len;
3164
3165                 if (em_end >= offset + len) {
3166                         /*
3167                          * The whole range is already a prealloc extent,
3168                          * do nothing except updating the inode's i_size if
3169                          * needed.
3170                          */
3171                         free_extent_map(em);
3172                         ret = btrfs_fallocate_update_isize(inode, offset + len,
3173                                                            mode);
3174                         goto out;
3175                 }
3176                 /*
3177                  * Part of the range is already a prealloc extent, so operate
3178                  * only on the remaining part of the range.
3179                  */
3180                 alloc_start = em_end;
3181                 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3182                 len = offset + len - alloc_start;
3183                 offset = alloc_start;
3184                 alloc_hint = em->block_start + em->len;
3185         }
3186         free_extent_map(em);
3187
3188         if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3189             BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3190                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3191                                       sectorsize);
3192                 if (IS_ERR(em)) {
3193                         ret = PTR_ERR(em);
3194                         goto out;
3195                 }
3196
3197                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3198                         free_extent_map(em);
3199                         ret = btrfs_fallocate_update_isize(inode, offset + len,
3200                                                            mode);
3201                         goto out;
3202                 }
3203                 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3204                         free_extent_map(em);
3205                         ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3206                                                    0);
3207                         if (!ret)
3208                                 ret = btrfs_fallocate_update_isize(inode,
3209                                                                    offset + len,
3210                                                                    mode);
3211                         return ret;
3212                 }
3213                 free_extent_map(em);
3214                 alloc_start = round_down(offset, sectorsize);
3215                 alloc_end = alloc_start + sectorsize;
3216                 goto reserve_space;
3217         }
3218
3219         alloc_start = round_up(offset, sectorsize);
3220         alloc_end = round_down(offset + len, sectorsize);
3221
3222         /*
3223          * For unaligned ranges, check the pages at the boundaries, they might
3224          * map to an extent, in which case we need to partially zero them, or
3225          * they might map to a hole, in which case we need our allocation range
3226          * to cover them.
3227          */
3228         if (!IS_ALIGNED(offset, sectorsize)) {
3229                 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3230                                                             offset);
3231                 if (ret < 0)
3232                         goto out;
3233                 if (ret == RANGE_BOUNDARY_HOLE) {
3234                         alloc_start = round_down(offset, sectorsize);
3235                         ret = 0;
3236                 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3237                         ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
3238                         if (ret)
3239                                 goto out;
3240                 } else {
3241                         ret = 0;
3242                 }
3243         }
3244
3245         if (!IS_ALIGNED(offset + len, sectorsize)) {
3246                 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3247                                                             offset + len);
3248                 if (ret < 0)
3249                         goto out;
3250                 if (ret == RANGE_BOUNDARY_HOLE) {
3251                         alloc_end = round_up(offset + len, sectorsize);
3252                         ret = 0;
3253                 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3254                         ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
3255                                                    0, 1);
3256                         if (ret)
3257                                 goto out;
3258                 } else {
3259                         ret = 0;
3260                 }
3261         }
3262
3263 reserve_space:
3264         if (alloc_start < alloc_end) {
3265                 struct extent_state *cached_state = NULL;
3266                 const u64 lockstart = alloc_start;
3267                 const u64 lockend = alloc_end - 1;
3268
3269                 bytes_to_reserve = alloc_end - alloc_start;
3270                 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3271                                                       bytes_to_reserve);
3272                 if (ret < 0)
3273                         goto out;
3274                 space_reserved = true;
3275                 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3276                                                   &cached_state);
3277                 if (ret)
3278                         goto out;
3279                 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3280                                                 alloc_start, bytes_to_reserve);
3281                 if (ret) {
3282                         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3283                                              lockend, &cached_state);
3284                         goto out;
3285                 }
3286                 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3287                                                 alloc_end - alloc_start,
3288                                                 i_blocksize(inode),
3289                                                 offset + len, &alloc_hint);
3290                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3291                                      lockend, &cached_state);
3292                 /* btrfs_prealloc_file_range releases reserved space on error */
3293                 if (ret) {
3294                         space_reserved = false;
3295                         goto out;
3296                 }
3297         }
3298         ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3299  out:
3300         if (ret && space_reserved)
3301                 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3302                                                alloc_start, bytes_to_reserve);
3303         extent_changeset_free(data_reserved);
3304
3305         return ret;
3306 }
3307
3308 static long btrfs_fallocate(struct file *file, int mode,
3309                             loff_t offset, loff_t len)
3310 {
3311         struct inode *inode = file_inode(file);
3312         struct extent_state *cached_state = NULL;
3313         struct extent_changeset *data_reserved = NULL;
3314         struct falloc_range *range;
3315         struct falloc_range *tmp;
3316         struct list_head reserve_list;
3317         u64 cur_offset;
3318         u64 last_byte;
3319         u64 alloc_start;
3320         u64 alloc_end;
3321         u64 alloc_hint = 0;
3322         u64 locked_end;
3323         u64 actual_end = 0;
3324         struct extent_map *em;
3325         int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode));
3326         int ret;
3327
3328         /* Do not allow fallocate in ZONED mode */
3329         if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3330                 return -EOPNOTSUPP;
3331
3332         alloc_start = round_down(offset, blocksize);
3333         alloc_end = round_up(offset + len, blocksize);
3334         cur_offset = alloc_start;
3335
3336         /* Make sure we aren't being give some crap mode */
3337         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3338                      FALLOC_FL_ZERO_RANGE))
3339                 return -EOPNOTSUPP;
3340
3341         if (mode & FALLOC_FL_PUNCH_HOLE)
3342                 return btrfs_punch_hole(inode, offset, len);
3343
3344         /*
3345          * Only trigger disk allocation, don't trigger qgroup reserve
3346          *
3347          * For qgroup space, it will be checked later.
3348          */
3349         if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3350                 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3351                                                       alloc_end - alloc_start);
3352                 if (ret < 0)
3353                         return ret;
3354         }
3355
3356         btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
3357
3358         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3359                 ret = inode_newsize_ok(inode, offset + len);
3360                 if (ret)
3361                         goto out;
3362         }
3363
3364         /*
3365          * TODO: Move these two operations after we have checked
3366          * accurate reserved space, or fallocate can still fail but
3367          * with page truncated or size expanded.
3368          *
3369          * But that's a minor problem and won't do much harm BTW.
3370          */
3371         if (alloc_start > inode->i_size) {
3372                 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3373                                         alloc_start);
3374                 if (ret)
3375                         goto out;
3376         } else if (offset + len > inode->i_size) {
3377                 /*
3378                  * If we are fallocating from the end of the file onward we
3379                  * need to zero out the end of the block if i_size lands in the
3380                  * middle of a block.
3381                  */
3382                 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3383                 if (ret)
3384                         goto out;
3385         }
3386
3387         /*
3388          * wait for ordered IO before we have any locks.  We'll loop again
3389          * below with the locks held.
3390          */
3391         ret = btrfs_wait_ordered_range(inode, alloc_start,
3392                                        alloc_end - alloc_start);
3393         if (ret)
3394                 goto out;
3395
3396         if (mode & FALLOC_FL_ZERO_RANGE) {
3397                 ret = btrfs_zero_range(inode, offset, len, mode);
3398                 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3399                 return ret;
3400         }
3401
3402         locked_end = alloc_end - 1;
3403         while (1) {
3404                 struct btrfs_ordered_extent *ordered;
3405
3406                 /* the extent lock is ordered inside the running
3407                  * transaction
3408                  */
3409                 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3410                                  locked_end, &cached_state);
3411                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
3412                                                             locked_end);
3413
3414                 if (ordered &&
3415                     ordered->file_offset + ordered->num_bytes > alloc_start &&
3416                     ordered->file_offset < alloc_end) {
3417                         btrfs_put_ordered_extent(ordered);
3418                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3419                                              alloc_start, locked_end,
3420                                              &cached_state);
3421                         /*
3422                          * we can't wait on the range with the transaction
3423                          * running or with the extent lock held
3424                          */
3425                         ret = btrfs_wait_ordered_range(inode, alloc_start,
3426                                                        alloc_end - alloc_start);
3427                         if (ret)
3428                                 goto out;
3429                 } else {
3430                         if (ordered)
3431                                 btrfs_put_ordered_extent(ordered);
3432                         break;
3433                 }
3434         }
3435
3436         /* First, check if we exceed the qgroup limit */
3437         INIT_LIST_HEAD(&reserve_list);
3438         while (cur_offset < alloc_end) {
3439                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3440                                       alloc_end - cur_offset);
3441                 if (IS_ERR(em)) {
3442                         ret = PTR_ERR(em);
3443                         break;
3444                 }
3445                 last_byte = min(extent_map_end(em), alloc_end);
3446                 actual_end = min_t(u64, extent_map_end(em), offset + len);
3447                 last_byte = ALIGN(last_byte, blocksize);
3448                 if (em->block_start == EXTENT_MAP_HOLE ||
3449                     (cur_offset >= inode->i_size &&
3450                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3451                         ret = add_falloc_range(&reserve_list, cur_offset,
3452                                                last_byte - cur_offset);
3453                         if (ret < 0) {
3454                                 free_extent_map(em);
3455                                 break;
3456                         }
3457                         ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3458                                         &data_reserved, cur_offset,
3459                                         last_byte - cur_offset);
3460                         if (ret < 0) {
3461                                 cur_offset = last_byte;
3462                                 free_extent_map(em);
3463                                 break;
3464                         }
3465                 } else {
3466                         /*
3467                          * Do not need to reserve unwritten extent for this
3468                          * range, free reserved data space first, otherwise
3469                          * it'll result in false ENOSPC error.
3470                          */
3471                         btrfs_free_reserved_data_space(BTRFS_I(inode),
3472                                 data_reserved, cur_offset,
3473                                 last_byte - cur_offset);
3474                 }
3475                 free_extent_map(em);
3476                 cur_offset = last_byte;
3477         }
3478
3479         /*
3480          * If ret is still 0, means we're OK to fallocate.
3481          * Or just cleanup the list and exit.
3482          */
3483         list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3484                 if (!ret)
3485                         ret = btrfs_prealloc_file_range(inode, mode,
3486                                         range->start,
3487                                         range->len, i_blocksize(inode),
3488                                         offset + len, &alloc_hint);
3489                 else
3490                         btrfs_free_reserved_data_space(BTRFS_I(inode),
3491                                         data_reserved, range->start,
3492                                         range->len);
3493                 list_del(&range->list);
3494                 kfree(range);
3495         }
3496         if (ret < 0)
3497                 goto out_unlock;
3498
3499         /*
3500          * We didn't need to allocate any more space, but we still extended the
3501          * size of the file so we need to update i_size and the inode item.
3502          */
3503         ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3504 out_unlock:
3505         unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3506                              &cached_state);
3507 out:
3508         btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3509         /* Let go of our reservation. */
3510         if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3511                 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3512                                 cur_offset, alloc_end - cur_offset);
3513         extent_changeset_free(data_reserved);
3514         return ret;
3515 }
3516
3517 static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset,
3518                                   int whence)
3519 {
3520         struct btrfs_fs_info *fs_info = inode->root->fs_info;
3521         struct extent_map *em = NULL;
3522         struct extent_state *cached_state = NULL;
3523         loff_t i_size = inode->vfs_inode.i_size;
3524         u64 lockstart;
3525         u64 lockend;
3526         u64 start;
3527         u64 len;
3528         int ret = 0;
3529
3530         if (i_size == 0 || offset >= i_size)
3531                 return -ENXIO;
3532
3533         /*
3534          * offset can be negative, in this case we start finding DATA/HOLE from
3535          * the very start of the file.
3536          */
3537         start = max_t(loff_t, 0, offset);
3538
3539         lockstart = round_down(start, fs_info->sectorsize);
3540         lockend = round_up(i_size, fs_info->sectorsize);
3541         if (lockend <= lockstart)
3542                 lockend = lockstart + fs_info->sectorsize;
3543         lockend--;
3544         len = lockend - lockstart + 1;
3545
3546         lock_extent_bits(&inode->io_tree, lockstart, lockend, &cached_state);
3547
3548         while (start < i_size) {
3549                 em = btrfs_get_extent_fiemap(inode, start, len);
3550                 if (IS_ERR(em)) {
3551                         ret = PTR_ERR(em);
3552                         em = NULL;
3553                         break;
3554                 }
3555
3556                 if (whence == SEEK_HOLE &&
3557                     (em->block_start == EXTENT_MAP_HOLE ||
3558                      test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3559                         break;
3560                 else if (whence == SEEK_DATA &&
3561                            (em->block_start != EXTENT_MAP_HOLE &&
3562                             !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3563                         break;
3564
3565                 start = em->start + em->len;
3566                 free_extent_map(em);
3567                 em = NULL;
3568                 cond_resched();
3569         }
3570         free_extent_map(em);
3571         unlock_extent_cached(&inode->io_tree, lockstart, lockend,
3572                              &cached_state);
3573         if (ret) {
3574                 offset = ret;
3575         } else {
3576                 if (whence == SEEK_DATA && start >= i_size)
3577                         offset = -ENXIO;
3578                 else
3579                         offset = min_t(loff_t, start, i_size);
3580         }
3581
3582         return offset;
3583 }
3584
3585 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3586 {
3587         struct inode *inode = file->f_mapping->host;
3588
3589         switch (whence) {
3590         default:
3591                 return generic_file_llseek(file, offset, whence);
3592         case SEEK_DATA:
3593         case SEEK_HOLE:
3594                 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3595                 offset = find_desired_extent(BTRFS_I(inode), offset, whence);
3596                 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3597                 break;
3598         }
3599
3600         if (offset < 0)
3601                 return offset;
3602
3603         return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3604 }
3605
3606 static int btrfs_file_open(struct inode *inode, struct file *filp)
3607 {
3608         filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
3609         return generic_file_open(inode, filp);
3610 }
3611
3612 static int check_direct_read(struct btrfs_fs_info *fs_info,
3613                              const struct iov_iter *iter, loff_t offset)
3614 {
3615         int ret;
3616         int i, seg;
3617
3618         ret = check_direct_IO(fs_info, iter, offset);
3619         if (ret < 0)
3620                 return ret;
3621
3622         if (!iter_is_iovec(iter))
3623                 return 0;
3624
3625         for (seg = 0; seg < iter->nr_segs; seg++)
3626                 for (i = seg + 1; i < iter->nr_segs; i++)
3627                         if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
3628                                 return -EINVAL;
3629         return 0;
3630 }
3631
3632 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3633 {
3634         struct inode *inode = file_inode(iocb->ki_filp);
3635         ssize_t ret;
3636
3637         if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3638                 return 0;
3639
3640         btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3641         ret = iomap_dio_rw(iocb, to, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 0);
3642         btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3643         return ret;
3644 }
3645
3646 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3647 {
3648         ssize_t ret = 0;
3649
3650         if (iocb->ki_flags & IOCB_DIRECT) {
3651                 ret = btrfs_direct_read(iocb, to);
3652                 if (ret < 0 || !iov_iter_count(to) ||
3653                     iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3654                         return ret;
3655         }
3656
3657         return filemap_read(iocb, to, ret);
3658 }
3659
3660 const struct file_operations btrfs_file_operations = {
3661         .llseek         = btrfs_file_llseek,
3662         .read_iter      = btrfs_file_read_iter,
3663         .splice_read    = generic_file_splice_read,
3664         .write_iter     = btrfs_file_write_iter,
3665         .splice_write   = iter_file_splice_write,
3666         .mmap           = btrfs_file_mmap,
3667         .open           = btrfs_file_open,
3668         .release        = btrfs_release_file,
3669         .fsync          = btrfs_sync_file,
3670         .fallocate      = btrfs_fallocate,
3671         .unlocked_ioctl = btrfs_ioctl,
3672 #ifdef CONFIG_COMPAT
3673         .compat_ioctl   = btrfs_compat_ioctl,
3674 #endif
3675         .remap_file_range = btrfs_remap_file_range,
3676 };
3677
3678 void __cold btrfs_auto_defrag_exit(void)
3679 {
3680         kmem_cache_destroy(btrfs_inode_defrag_cachep);
3681 }
3682
3683 int __init btrfs_auto_defrag_init(void)
3684 {
3685         btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3686                                         sizeof(struct inode_defrag), 0,
3687                                         SLAB_MEM_SPREAD,
3688                                         NULL);
3689         if (!btrfs_inode_defrag_cachep)
3690                 return -ENOMEM;
3691
3692         return 0;
3693 }
3694
3695 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3696 {
3697         int ret;
3698
3699         /*
3700          * So with compression we will find and lock a dirty page and clear the
3701          * first one as dirty, setup an async extent, and immediately return
3702          * with the entire range locked but with nobody actually marked with
3703          * writeback.  So we can't just filemap_write_and_wait_range() and
3704          * expect it to work since it will just kick off a thread to do the
3705          * actual work.  So we need to call filemap_fdatawrite_range _again_
3706          * since it will wait on the page lock, which won't be unlocked until
3707          * after the pages have been marked as writeback and so we're good to go
3708          * from there.  We have to do this otherwise we'll miss the ordered
3709          * extents and that results in badness.  Please Josef, do not think you
3710          * know better and pull this out at some point in the future, it is
3711          * right and you are wrong.
3712          */
3713         ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3714         if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3715                              &BTRFS_I(inode)->runtime_flags))
3716                 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3717
3718         return ret;
3719 }