Merge tag 'drm-msm-fixes-2022-04-30' of https://gitlab.freedesktop.org/drm/msm into...
[linux-2.6-microblaze.git] / fs / btrfs / file-item.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/bio.h>
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/highmem.h>
10 #include <linux/sched/mm.h>
11 #include <crypto/hash.h>
12 #include "misc.h"
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "print-tree.h"
18 #include "compression.h"
19
20 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
21                                    sizeof(struct btrfs_item) * 2) / \
22                                   size) - 1))
23
24 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
25                                        PAGE_SIZE))
26
27 /**
28  * Set inode's size according to filesystem options
29  *
30  * @inode:      inode we want to update the disk_i_size for
31  * @new_i_size: i_size we want to set to, 0 if we use i_size
32  *
33  * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
34  * returns as it is perfectly fine with a file that has holes without hole file
35  * extent items.
36  *
37  * However without NO_HOLES we need to only return the area that is contiguous
38  * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
39  * to an extent that has a gap in between.
40  *
41  * Finally new_i_size should only be set in the case of truncate where we're not
42  * ready to use i_size_read() as the limiter yet.
43  */
44 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
45 {
46         struct btrfs_fs_info *fs_info = inode->root->fs_info;
47         u64 start, end, i_size;
48         int ret;
49
50         i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
51         if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
52                 inode->disk_i_size = i_size;
53                 return;
54         }
55
56         spin_lock(&inode->lock);
57         ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start,
58                                          &end, EXTENT_DIRTY);
59         if (!ret && start == 0)
60                 i_size = min(i_size, end + 1);
61         else
62                 i_size = 0;
63         inode->disk_i_size = i_size;
64         spin_unlock(&inode->lock);
65 }
66
67 /**
68  * Mark range within a file as having a new extent inserted
69  *
70  * @inode: inode being modified
71  * @start: start file offset of the file extent we've inserted
72  * @len:   logical length of the file extent item
73  *
74  * Call when we are inserting a new file extent where there was none before.
75  * Does not need to call this in the case where we're replacing an existing file
76  * extent, however if not sure it's fine to call this multiple times.
77  *
78  * The start and len must match the file extent item, so thus must be sectorsize
79  * aligned.
80  */
81 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
82                                       u64 len)
83 {
84         if (len == 0)
85                 return 0;
86
87         ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
88
89         if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
90                 return 0;
91         return set_extent_bits(&inode->file_extent_tree, start, start + len - 1,
92                                EXTENT_DIRTY);
93 }
94
95 /**
96  * Marks an inode range as not having a backing extent
97  *
98  * @inode: inode being modified
99  * @start: start file offset of the file extent we've inserted
100  * @len:   logical length of the file extent item
101  *
102  * Called when we drop a file extent, for example when we truncate.  Doesn't
103  * need to be called for cases where we're replacing a file extent, like when
104  * we've COWed a file extent.
105  *
106  * The start and len must match the file extent item, so thus must be sectorsize
107  * aligned.
108  */
109 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
110                                         u64 len)
111 {
112         if (len == 0)
113                 return 0;
114
115         ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
116                len == (u64)-1);
117
118         if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
119                 return 0;
120         return clear_extent_bit(&inode->file_extent_tree, start,
121                                 start + len - 1, EXTENT_DIRTY, 0, 0, NULL);
122 }
123
124 static inline u32 max_ordered_sum_bytes(struct btrfs_fs_info *fs_info,
125                                         u16 csum_size)
126 {
127         u32 ncsums = (PAGE_SIZE - sizeof(struct btrfs_ordered_sum)) / csum_size;
128
129         return ncsums * fs_info->sectorsize;
130 }
131
132 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
133                              struct btrfs_root *root,
134                              u64 objectid, u64 pos,
135                              u64 disk_offset, u64 disk_num_bytes,
136                              u64 num_bytes, u64 offset, u64 ram_bytes,
137                              u8 compression, u8 encryption, u16 other_encoding)
138 {
139         int ret = 0;
140         struct btrfs_file_extent_item *item;
141         struct btrfs_key file_key;
142         struct btrfs_path *path;
143         struct extent_buffer *leaf;
144
145         path = btrfs_alloc_path();
146         if (!path)
147                 return -ENOMEM;
148         file_key.objectid = objectid;
149         file_key.offset = pos;
150         file_key.type = BTRFS_EXTENT_DATA_KEY;
151
152         ret = btrfs_insert_empty_item(trans, root, path, &file_key,
153                                       sizeof(*item));
154         if (ret < 0)
155                 goto out;
156         BUG_ON(ret); /* Can't happen */
157         leaf = path->nodes[0];
158         item = btrfs_item_ptr(leaf, path->slots[0],
159                               struct btrfs_file_extent_item);
160         btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset);
161         btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes);
162         btrfs_set_file_extent_offset(leaf, item, offset);
163         btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
164         btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes);
165         btrfs_set_file_extent_generation(leaf, item, trans->transid);
166         btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
167         btrfs_set_file_extent_compression(leaf, item, compression);
168         btrfs_set_file_extent_encryption(leaf, item, encryption);
169         btrfs_set_file_extent_other_encoding(leaf, item, other_encoding);
170
171         btrfs_mark_buffer_dirty(leaf);
172 out:
173         btrfs_free_path(path);
174         return ret;
175 }
176
177 static struct btrfs_csum_item *
178 btrfs_lookup_csum(struct btrfs_trans_handle *trans,
179                   struct btrfs_root *root,
180                   struct btrfs_path *path,
181                   u64 bytenr, int cow)
182 {
183         struct btrfs_fs_info *fs_info = root->fs_info;
184         int ret;
185         struct btrfs_key file_key;
186         struct btrfs_key found_key;
187         struct btrfs_csum_item *item;
188         struct extent_buffer *leaf;
189         u64 csum_offset = 0;
190         const u32 csum_size = fs_info->csum_size;
191         int csums_in_item;
192
193         file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
194         file_key.offset = bytenr;
195         file_key.type = BTRFS_EXTENT_CSUM_KEY;
196         ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
197         if (ret < 0)
198                 goto fail;
199         leaf = path->nodes[0];
200         if (ret > 0) {
201                 ret = 1;
202                 if (path->slots[0] == 0)
203                         goto fail;
204                 path->slots[0]--;
205                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
206                 if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
207                         goto fail;
208
209                 csum_offset = (bytenr - found_key.offset) >>
210                                 fs_info->sectorsize_bits;
211                 csums_in_item = btrfs_item_size(leaf, path->slots[0]);
212                 csums_in_item /= csum_size;
213
214                 if (csum_offset == csums_in_item) {
215                         ret = -EFBIG;
216                         goto fail;
217                 } else if (csum_offset > csums_in_item) {
218                         goto fail;
219                 }
220         }
221         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
222         item = (struct btrfs_csum_item *)((unsigned char *)item +
223                                           csum_offset * csum_size);
224         return item;
225 fail:
226         if (ret > 0)
227                 ret = -ENOENT;
228         return ERR_PTR(ret);
229 }
230
231 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
232                              struct btrfs_root *root,
233                              struct btrfs_path *path, u64 objectid,
234                              u64 offset, int mod)
235 {
236         struct btrfs_key file_key;
237         int ins_len = mod < 0 ? -1 : 0;
238         int cow = mod != 0;
239
240         file_key.objectid = objectid;
241         file_key.offset = offset;
242         file_key.type = BTRFS_EXTENT_DATA_KEY;
243
244         return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
245 }
246
247 /*
248  * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
249  * estore the result to @dst.
250  *
251  * Return >0 for the number of sectors we found.
252  * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
253  * for it. Caller may want to try next sector until one range is hit.
254  * Return <0 for fatal error.
255  */
256 static int search_csum_tree(struct btrfs_fs_info *fs_info,
257                             struct btrfs_path *path, u64 disk_bytenr,
258                             u64 len, u8 *dst)
259 {
260         struct btrfs_root *csum_root;
261         struct btrfs_csum_item *item = NULL;
262         struct btrfs_key key;
263         const u32 sectorsize = fs_info->sectorsize;
264         const u32 csum_size = fs_info->csum_size;
265         u32 itemsize;
266         int ret;
267         u64 csum_start;
268         u64 csum_len;
269
270         ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
271                IS_ALIGNED(len, sectorsize));
272
273         /* Check if the current csum item covers disk_bytenr */
274         if (path->nodes[0]) {
275                 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
276                                       struct btrfs_csum_item);
277                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
278                 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
279
280                 csum_start = key.offset;
281                 csum_len = (itemsize / csum_size) * sectorsize;
282
283                 if (in_range(disk_bytenr, csum_start, csum_len))
284                         goto found;
285         }
286
287         /* Current item doesn't contain the desired range, search again */
288         btrfs_release_path(path);
289         csum_root = btrfs_csum_root(fs_info, disk_bytenr);
290         item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
291         if (IS_ERR(item)) {
292                 ret = PTR_ERR(item);
293                 goto out;
294         }
295         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
296         itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
297
298         csum_start = key.offset;
299         csum_len = (itemsize / csum_size) * sectorsize;
300         ASSERT(in_range(disk_bytenr, csum_start, csum_len));
301
302 found:
303         ret = (min(csum_start + csum_len, disk_bytenr + len) -
304                    disk_bytenr) >> fs_info->sectorsize_bits;
305         read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
306                         ret * csum_size);
307 out:
308         if (ret == -ENOENT || ret == -EFBIG)
309                 ret = 0;
310         return ret;
311 }
312
313 /*
314  * Locate the file_offset of @cur_disk_bytenr of a @bio.
315  *
316  * Bio of btrfs represents read range of
317  * [bi_sector << 9, bi_sector << 9 + bi_size).
318  * Knowing this, we can iterate through each bvec to locate the page belong to
319  * @cur_disk_bytenr and get the file offset.
320  *
321  * @inode is used to determine if the bvec page really belongs to @inode.
322  *
323  * Return 0 if we can't find the file offset
324  * Return >0 if we find the file offset and restore it to @file_offset_ret
325  */
326 static int search_file_offset_in_bio(struct bio *bio, struct inode *inode,
327                                      u64 disk_bytenr, u64 *file_offset_ret)
328 {
329         struct bvec_iter iter;
330         struct bio_vec bvec;
331         u64 cur = bio->bi_iter.bi_sector << SECTOR_SHIFT;
332         int ret = 0;
333
334         bio_for_each_segment(bvec, bio, iter) {
335                 struct page *page = bvec.bv_page;
336
337                 if (cur > disk_bytenr)
338                         break;
339                 if (cur + bvec.bv_len <= disk_bytenr) {
340                         cur += bvec.bv_len;
341                         continue;
342                 }
343                 ASSERT(in_range(disk_bytenr, cur, bvec.bv_len));
344                 if (page->mapping && page->mapping->host &&
345                     page->mapping->host == inode) {
346                         ret = 1;
347                         *file_offset_ret = page_offset(page) + bvec.bv_offset +
348                                            disk_bytenr - cur;
349                         break;
350                 }
351         }
352         return ret;
353 }
354
355 /**
356  * Lookup the checksum for the read bio in csum tree.
357  *
358  * @inode: inode that the bio is for.
359  * @bio: bio to look up.
360  * @dst: Buffer of size nblocks * btrfs_super_csum_size() used to return
361  *       checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If
362  *       NULL, the checksum buffer is allocated and returned in
363  *       btrfs_bio(bio)->csum instead.
364  *
365  * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
366  */
367 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst)
368 {
369         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
370         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
371         struct btrfs_bio *bbio = NULL;
372         struct btrfs_path *path;
373         const u32 sectorsize = fs_info->sectorsize;
374         const u32 csum_size = fs_info->csum_size;
375         u32 orig_len = bio->bi_iter.bi_size;
376         u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
377         u64 cur_disk_bytenr;
378         u8 *csum;
379         const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
380         int count = 0;
381         blk_status_t ret = BLK_STS_OK;
382
383         if ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) ||
384             test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
385                 return BLK_STS_OK;
386
387         /*
388          * This function is only called for read bio.
389          *
390          * This means two things:
391          * - All our csums should only be in csum tree
392          *   No ordered extents csums, as ordered extents are only for write
393          *   path.
394          * - No need to bother any other info from bvec
395          *   Since we're looking up csums, the only important info is the
396          *   disk_bytenr and the length, which can be extracted from bi_iter
397          *   directly.
398          */
399         ASSERT(bio_op(bio) == REQ_OP_READ);
400         path = btrfs_alloc_path();
401         if (!path)
402                 return BLK_STS_RESOURCE;
403
404         if (!dst) {
405                 bbio = btrfs_bio(bio);
406
407                 if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
408                         bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
409                         if (!bbio->csum) {
410                                 btrfs_free_path(path);
411                                 return BLK_STS_RESOURCE;
412                         }
413                 } else {
414                         bbio->csum = bbio->csum_inline;
415                 }
416                 csum = bbio->csum;
417         } else {
418                 csum = dst;
419         }
420
421         /*
422          * If requested number of sectors is larger than one leaf can contain,
423          * kick the readahead for csum tree.
424          */
425         if (nblocks > fs_info->csums_per_leaf)
426                 path->reada = READA_FORWARD;
427
428         /*
429          * the free space stuff is only read when it hasn't been
430          * updated in the current transaction.  So, we can safely
431          * read from the commit root and sidestep a nasty deadlock
432          * between reading the free space cache and updating the csum tree.
433          */
434         if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
435                 path->search_commit_root = 1;
436                 path->skip_locking = 1;
437         }
438
439         for (cur_disk_bytenr = orig_disk_bytenr;
440              cur_disk_bytenr < orig_disk_bytenr + orig_len;
441              cur_disk_bytenr += (count * sectorsize)) {
442                 u64 search_len = orig_disk_bytenr + orig_len - cur_disk_bytenr;
443                 unsigned int sector_offset;
444                 u8 *csum_dst;
445
446                 /*
447                  * Although both cur_disk_bytenr and orig_disk_bytenr is u64,
448                  * we're calculating the offset to the bio start.
449                  *
450                  * Bio size is limited to UINT_MAX, thus unsigned int is large
451                  * enough to contain the raw result, not to mention the right
452                  * shifted result.
453                  */
454                 ASSERT(cur_disk_bytenr - orig_disk_bytenr < UINT_MAX);
455                 sector_offset = (cur_disk_bytenr - orig_disk_bytenr) >>
456                                 fs_info->sectorsize_bits;
457                 csum_dst = csum + sector_offset * csum_size;
458
459                 count = search_csum_tree(fs_info, path, cur_disk_bytenr,
460                                          search_len, csum_dst);
461                 if (count < 0) {
462                         ret = errno_to_blk_status(count);
463                         if (bbio)
464                                 btrfs_bio_free_csum(bbio);
465                         break;
466                 }
467
468                 /*
469                  * We didn't find a csum for this range.  We need to make sure
470                  * we complain loudly about this, because we are not NODATASUM.
471                  *
472                  * However for the DATA_RELOC inode we could potentially be
473                  * relocating data extents for a NODATASUM inode, so the inode
474                  * itself won't be marked with NODATASUM, but the extent we're
475                  * copying is in fact NODATASUM.  If we don't find a csum we
476                  * assume this is the case.
477                  */
478                 if (count == 0) {
479                         memset(csum_dst, 0, csum_size);
480                         count = 1;
481
482                         if (BTRFS_I(inode)->root->root_key.objectid ==
483                             BTRFS_DATA_RELOC_TREE_OBJECTID) {
484                                 u64 file_offset;
485                                 int ret;
486
487                                 ret = search_file_offset_in_bio(bio, inode,
488                                                 cur_disk_bytenr, &file_offset);
489                                 if (ret)
490                                         set_extent_bits(io_tree, file_offset,
491                                                 file_offset + sectorsize - 1,
492                                                 EXTENT_NODATASUM);
493                         } else {
494                                 btrfs_warn_rl(fs_info,
495                         "csum hole found for disk bytenr range [%llu, %llu)",
496                                 cur_disk_bytenr, cur_disk_bytenr + sectorsize);
497                         }
498                 }
499         }
500
501         btrfs_free_path(path);
502         return ret;
503 }
504
505 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
506                              struct list_head *list, int search_commit)
507 {
508         struct btrfs_fs_info *fs_info = root->fs_info;
509         struct btrfs_key key;
510         struct btrfs_path *path;
511         struct extent_buffer *leaf;
512         struct btrfs_ordered_sum *sums;
513         struct btrfs_csum_item *item;
514         LIST_HEAD(tmplist);
515         unsigned long offset;
516         int ret;
517         size_t size;
518         u64 csum_end;
519         const u32 csum_size = fs_info->csum_size;
520
521         ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
522                IS_ALIGNED(end + 1, fs_info->sectorsize));
523
524         path = btrfs_alloc_path();
525         if (!path)
526                 return -ENOMEM;
527
528         if (search_commit) {
529                 path->skip_locking = 1;
530                 path->reada = READA_FORWARD;
531                 path->search_commit_root = 1;
532         }
533
534         key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
535         key.offset = start;
536         key.type = BTRFS_EXTENT_CSUM_KEY;
537
538         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
539         if (ret < 0)
540                 goto fail;
541         if (ret > 0 && path->slots[0] > 0) {
542                 leaf = path->nodes[0];
543                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
544                 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
545                     key.type == BTRFS_EXTENT_CSUM_KEY) {
546                         offset = (start - key.offset) >> fs_info->sectorsize_bits;
547                         if (offset * csum_size <
548                             btrfs_item_size(leaf, path->slots[0] - 1))
549                                 path->slots[0]--;
550                 }
551         }
552
553         while (start <= end) {
554                 leaf = path->nodes[0];
555                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
556                         ret = btrfs_next_leaf(root, path);
557                         if (ret < 0)
558                                 goto fail;
559                         if (ret > 0)
560                                 break;
561                         leaf = path->nodes[0];
562                 }
563
564                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
565                 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
566                     key.type != BTRFS_EXTENT_CSUM_KEY ||
567                     key.offset > end)
568                         break;
569
570                 if (key.offset > start)
571                         start = key.offset;
572
573                 size = btrfs_item_size(leaf, path->slots[0]);
574                 csum_end = key.offset + (size / csum_size) * fs_info->sectorsize;
575                 if (csum_end <= start) {
576                         path->slots[0]++;
577                         continue;
578                 }
579
580                 csum_end = min(csum_end, end + 1);
581                 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
582                                       struct btrfs_csum_item);
583                 while (start < csum_end) {
584                         size = min_t(size_t, csum_end - start,
585                                      max_ordered_sum_bytes(fs_info, csum_size));
586                         sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
587                                        GFP_NOFS);
588                         if (!sums) {
589                                 ret = -ENOMEM;
590                                 goto fail;
591                         }
592
593                         sums->bytenr = start;
594                         sums->len = (int)size;
595
596                         offset = (start - key.offset) >> fs_info->sectorsize_bits;
597                         offset *= csum_size;
598                         size >>= fs_info->sectorsize_bits;
599
600                         read_extent_buffer(path->nodes[0],
601                                            sums->sums,
602                                            ((unsigned long)item) + offset,
603                                            csum_size * size);
604
605                         start += fs_info->sectorsize * size;
606                         list_add_tail(&sums->list, &tmplist);
607                 }
608                 path->slots[0]++;
609         }
610         ret = 0;
611 fail:
612         while (ret < 0 && !list_empty(&tmplist)) {
613                 sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
614                 list_del(&sums->list);
615                 kfree(sums);
616         }
617         list_splice_tail(&tmplist, list);
618
619         btrfs_free_path(path);
620         return ret;
621 }
622
623 /**
624  * Calculate checksums of the data contained inside a bio
625  *
626  * @inode:       Owner of the data inside the bio
627  * @bio:         Contains the data to be checksummed
628  * @offset:      If (u64)-1, @bio may contain discontiguous bio vecs, so the
629  *               file offsets are determined from the page offsets in the bio.
630  *               Otherwise, this is the starting file offset of the bio vecs in
631  *               @bio, which must be contiguous.
632  * @one_ordered: If true, @bio only refers to one ordered extent.
633  */
634 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
635                                 u64 offset, bool one_ordered)
636 {
637         struct btrfs_fs_info *fs_info = inode->root->fs_info;
638         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
639         struct btrfs_ordered_sum *sums;
640         struct btrfs_ordered_extent *ordered = NULL;
641         const bool use_page_offsets = (offset == (u64)-1);
642         char *data;
643         struct bvec_iter iter;
644         struct bio_vec bvec;
645         int index;
646         unsigned int blockcount;
647         unsigned long total_bytes = 0;
648         unsigned long this_sum_bytes = 0;
649         int i;
650         unsigned nofs_flag;
651
652         nofs_flag = memalloc_nofs_save();
653         sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
654                        GFP_KERNEL);
655         memalloc_nofs_restore(nofs_flag);
656
657         if (!sums)
658                 return BLK_STS_RESOURCE;
659
660         sums->len = bio->bi_iter.bi_size;
661         INIT_LIST_HEAD(&sums->list);
662
663         sums->bytenr = bio->bi_iter.bi_sector << 9;
664         index = 0;
665
666         shash->tfm = fs_info->csum_shash;
667
668         bio_for_each_segment(bvec, bio, iter) {
669                 if (use_page_offsets)
670                         offset = page_offset(bvec.bv_page) + bvec.bv_offset;
671
672                 if (!ordered) {
673                         ordered = btrfs_lookup_ordered_extent(inode, offset);
674                         /*
675                          * The bio range is not covered by any ordered extent,
676                          * must be a code logic error.
677                          */
678                         if (unlikely(!ordered)) {
679                                 WARN(1, KERN_WARNING
680                         "no ordered extent for root %llu ino %llu offset %llu\n",
681                                      inode->root->root_key.objectid,
682                                      btrfs_ino(inode), offset);
683                                 kvfree(sums);
684                                 return BLK_STS_IOERR;
685                         }
686                 }
687
688                 blockcount = BTRFS_BYTES_TO_BLKS(fs_info,
689                                                  bvec.bv_len + fs_info->sectorsize
690                                                  - 1);
691
692                 for (i = 0; i < blockcount; i++) {
693                         if (!one_ordered &&
694                             !in_range(offset, ordered->file_offset,
695                                       ordered->num_bytes)) {
696                                 unsigned long bytes_left;
697
698                                 sums->len = this_sum_bytes;
699                                 this_sum_bytes = 0;
700                                 btrfs_add_ordered_sum(ordered, sums);
701                                 btrfs_put_ordered_extent(ordered);
702
703                                 bytes_left = bio->bi_iter.bi_size - total_bytes;
704
705                                 nofs_flag = memalloc_nofs_save();
706                                 sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
707                                                       bytes_left), GFP_KERNEL);
708                                 memalloc_nofs_restore(nofs_flag);
709                                 BUG_ON(!sums); /* -ENOMEM */
710                                 sums->len = bytes_left;
711                                 ordered = btrfs_lookup_ordered_extent(inode,
712                                                                 offset);
713                                 ASSERT(ordered); /* Logic error */
714                                 sums->bytenr = (bio->bi_iter.bi_sector << 9)
715                                         + total_bytes;
716                                 index = 0;
717                         }
718
719                         data = bvec_kmap_local(&bvec);
720                         crypto_shash_digest(shash,
721                                             data + (i * fs_info->sectorsize),
722                                             fs_info->sectorsize,
723                                             sums->sums + index);
724                         kunmap_local(data);
725                         index += fs_info->csum_size;
726                         offset += fs_info->sectorsize;
727                         this_sum_bytes += fs_info->sectorsize;
728                         total_bytes += fs_info->sectorsize;
729                 }
730
731         }
732         this_sum_bytes = 0;
733         btrfs_add_ordered_sum(ordered, sums);
734         btrfs_put_ordered_extent(ordered);
735         return 0;
736 }
737
738 /*
739  * helper function for csum removal, this expects the
740  * key to describe the csum pointed to by the path, and it expects
741  * the csum to overlap the range [bytenr, len]
742  *
743  * The csum should not be entirely contained in the range and the
744  * range should not be entirely contained in the csum.
745  *
746  * This calls btrfs_truncate_item with the correct args based on the
747  * overlap, and fixes up the key as required.
748  */
749 static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
750                                        struct btrfs_path *path,
751                                        struct btrfs_key *key,
752                                        u64 bytenr, u64 len)
753 {
754         struct extent_buffer *leaf;
755         const u32 csum_size = fs_info->csum_size;
756         u64 csum_end;
757         u64 end_byte = bytenr + len;
758         u32 blocksize_bits = fs_info->sectorsize_bits;
759
760         leaf = path->nodes[0];
761         csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
762         csum_end <<= blocksize_bits;
763         csum_end += key->offset;
764
765         if (key->offset < bytenr && csum_end <= end_byte) {
766                 /*
767                  *         [ bytenr - len ]
768                  *         [   ]
769                  *   [csum     ]
770                  *   A simple truncate off the end of the item
771                  */
772                 u32 new_size = (bytenr - key->offset) >> blocksize_bits;
773                 new_size *= csum_size;
774                 btrfs_truncate_item(path, new_size, 1);
775         } else if (key->offset >= bytenr && csum_end > end_byte &&
776                    end_byte > key->offset) {
777                 /*
778                  *         [ bytenr - len ]
779                  *                 [ ]
780                  *                 [csum     ]
781                  * we need to truncate from the beginning of the csum
782                  */
783                 u32 new_size = (csum_end - end_byte) >> blocksize_bits;
784                 new_size *= csum_size;
785
786                 btrfs_truncate_item(path, new_size, 0);
787
788                 key->offset = end_byte;
789                 btrfs_set_item_key_safe(fs_info, path, key);
790         } else {
791                 BUG();
792         }
793 }
794
795 /*
796  * deletes the csum items from the csum tree for a given
797  * range of bytes.
798  */
799 int btrfs_del_csums(struct btrfs_trans_handle *trans,
800                     struct btrfs_root *root, u64 bytenr, u64 len)
801 {
802         struct btrfs_fs_info *fs_info = trans->fs_info;
803         struct btrfs_path *path;
804         struct btrfs_key key;
805         u64 end_byte = bytenr + len;
806         u64 csum_end;
807         struct extent_buffer *leaf;
808         int ret = 0;
809         const u32 csum_size = fs_info->csum_size;
810         u32 blocksize_bits = fs_info->sectorsize_bits;
811
812         ASSERT(root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
813                root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
814
815         path = btrfs_alloc_path();
816         if (!path)
817                 return -ENOMEM;
818
819         while (1) {
820                 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
821                 key.offset = end_byte - 1;
822                 key.type = BTRFS_EXTENT_CSUM_KEY;
823
824                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
825                 if (ret > 0) {
826                         ret = 0;
827                         if (path->slots[0] == 0)
828                                 break;
829                         path->slots[0]--;
830                 } else if (ret < 0) {
831                         break;
832                 }
833
834                 leaf = path->nodes[0];
835                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
836
837                 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
838                     key.type != BTRFS_EXTENT_CSUM_KEY) {
839                         break;
840                 }
841
842                 if (key.offset >= end_byte)
843                         break;
844
845                 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
846                 csum_end <<= blocksize_bits;
847                 csum_end += key.offset;
848
849                 /* this csum ends before we start, we're done */
850                 if (csum_end <= bytenr)
851                         break;
852
853                 /* delete the entire item, it is inside our range */
854                 if (key.offset >= bytenr && csum_end <= end_byte) {
855                         int del_nr = 1;
856
857                         /*
858                          * Check how many csum items preceding this one in this
859                          * leaf correspond to our range and then delete them all
860                          * at once.
861                          */
862                         if (key.offset > bytenr && path->slots[0] > 0) {
863                                 int slot = path->slots[0] - 1;
864
865                                 while (slot >= 0) {
866                                         struct btrfs_key pk;
867
868                                         btrfs_item_key_to_cpu(leaf, &pk, slot);
869                                         if (pk.offset < bytenr ||
870                                             pk.type != BTRFS_EXTENT_CSUM_KEY ||
871                                             pk.objectid !=
872                                             BTRFS_EXTENT_CSUM_OBJECTID)
873                                                 break;
874                                         path->slots[0] = slot;
875                                         del_nr++;
876                                         key.offset = pk.offset;
877                                         slot--;
878                                 }
879                         }
880                         ret = btrfs_del_items(trans, root, path,
881                                               path->slots[0], del_nr);
882                         if (ret)
883                                 break;
884                         if (key.offset == bytenr)
885                                 break;
886                 } else if (key.offset < bytenr && csum_end > end_byte) {
887                         unsigned long offset;
888                         unsigned long shift_len;
889                         unsigned long item_offset;
890                         /*
891                          *        [ bytenr - len ]
892                          *     [csum                ]
893                          *
894                          * Our bytes are in the middle of the csum,
895                          * we need to split this item and insert a new one.
896                          *
897                          * But we can't drop the path because the
898                          * csum could change, get removed, extended etc.
899                          *
900                          * The trick here is the max size of a csum item leaves
901                          * enough room in the tree block for a single
902                          * item header.  So, we split the item in place,
903                          * adding a new header pointing to the existing
904                          * bytes.  Then we loop around again and we have
905                          * a nicely formed csum item that we can neatly
906                          * truncate.
907                          */
908                         offset = (bytenr - key.offset) >> blocksize_bits;
909                         offset *= csum_size;
910
911                         shift_len = (len >> blocksize_bits) * csum_size;
912
913                         item_offset = btrfs_item_ptr_offset(leaf,
914                                                             path->slots[0]);
915
916                         memzero_extent_buffer(leaf, item_offset + offset,
917                                              shift_len);
918                         key.offset = bytenr;
919
920                         /*
921                          * btrfs_split_item returns -EAGAIN when the
922                          * item changed size or key
923                          */
924                         ret = btrfs_split_item(trans, root, path, &key, offset);
925                         if (ret && ret != -EAGAIN) {
926                                 btrfs_abort_transaction(trans, ret);
927                                 break;
928                         }
929                         ret = 0;
930
931                         key.offset = end_byte - 1;
932                 } else {
933                         truncate_one_csum(fs_info, path, &key, bytenr, len);
934                         if (key.offset < bytenr)
935                                 break;
936                 }
937                 btrfs_release_path(path);
938         }
939         btrfs_free_path(path);
940         return ret;
941 }
942
943 static int find_next_csum_offset(struct btrfs_root *root,
944                                  struct btrfs_path *path,
945                                  u64 *next_offset)
946 {
947         const u32 nritems = btrfs_header_nritems(path->nodes[0]);
948         struct btrfs_key found_key;
949         int slot = path->slots[0] + 1;
950         int ret;
951
952         if (nritems == 0 || slot >= nritems) {
953                 ret = btrfs_next_leaf(root, path);
954                 if (ret < 0) {
955                         return ret;
956                 } else if (ret > 0) {
957                         *next_offset = (u64)-1;
958                         return 0;
959                 }
960                 slot = path->slots[0];
961         }
962
963         btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
964
965         if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
966             found_key.type != BTRFS_EXTENT_CSUM_KEY)
967                 *next_offset = (u64)-1;
968         else
969                 *next_offset = found_key.offset;
970
971         return 0;
972 }
973
974 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
975                            struct btrfs_root *root,
976                            struct btrfs_ordered_sum *sums)
977 {
978         struct btrfs_fs_info *fs_info = root->fs_info;
979         struct btrfs_key file_key;
980         struct btrfs_key found_key;
981         struct btrfs_path *path;
982         struct btrfs_csum_item *item;
983         struct btrfs_csum_item *item_end;
984         struct extent_buffer *leaf = NULL;
985         u64 next_offset;
986         u64 total_bytes = 0;
987         u64 csum_offset;
988         u64 bytenr;
989         u32 ins_size;
990         int index = 0;
991         int found_next;
992         int ret;
993         const u32 csum_size = fs_info->csum_size;
994
995         path = btrfs_alloc_path();
996         if (!path)
997                 return -ENOMEM;
998 again:
999         next_offset = (u64)-1;
1000         found_next = 0;
1001         bytenr = sums->bytenr + total_bytes;
1002         file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1003         file_key.offset = bytenr;
1004         file_key.type = BTRFS_EXTENT_CSUM_KEY;
1005
1006         item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1007         if (!IS_ERR(item)) {
1008                 ret = 0;
1009                 leaf = path->nodes[0];
1010                 item_end = btrfs_item_ptr(leaf, path->slots[0],
1011                                           struct btrfs_csum_item);
1012                 item_end = (struct btrfs_csum_item *)((char *)item_end +
1013                            btrfs_item_size(leaf, path->slots[0]));
1014                 goto found;
1015         }
1016         ret = PTR_ERR(item);
1017         if (ret != -EFBIG && ret != -ENOENT)
1018                 goto out;
1019
1020         if (ret == -EFBIG) {
1021                 u32 item_size;
1022                 /* we found one, but it isn't big enough yet */
1023                 leaf = path->nodes[0];
1024                 item_size = btrfs_item_size(leaf, path->slots[0]);
1025                 if ((item_size / csum_size) >=
1026                     MAX_CSUM_ITEMS(fs_info, csum_size)) {
1027                         /* already at max size, make a new one */
1028                         goto insert;
1029                 }
1030         } else {
1031                 /* We didn't find a csum item, insert one. */
1032                 ret = find_next_csum_offset(root, path, &next_offset);
1033                 if (ret < 0)
1034                         goto out;
1035                 found_next = 1;
1036                 goto insert;
1037         }
1038
1039         /*
1040          * At this point, we know the tree has a checksum item that ends at an
1041          * offset matching the start of the checksum range we want to insert.
1042          * We try to extend that item as much as possible and then add as many
1043          * checksums to it as they fit.
1044          *
1045          * First check if the leaf has enough free space for at least one
1046          * checksum. If it has go directly to the item extension code, otherwise
1047          * release the path and do a search for insertion before the extension.
1048          */
1049         if (btrfs_leaf_free_space(leaf) >= csum_size) {
1050                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1051                 csum_offset = (bytenr - found_key.offset) >>
1052                         fs_info->sectorsize_bits;
1053                 goto extend_csum;
1054         }
1055
1056         btrfs_release_path(path);
1057         path->search_for_extension = 1;
1058         ret = btrfs_search_slot(trans, root, &file_key, path,
1059                                 csum_size, 1);
1060         path->search_for_extension = 0;
1061         if (ret < 0)
1062                 goto out;
1063
1064         if (ret > 0) {
1065                 if (path->slots[0] == 0)
1066                         goto insert;
1067                 path->slots[0]--;
1068         }
1069
1070         leaf = path->nodes[0];
1071         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1072         csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1073
1074         if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1075             found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1076             csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1077                 goto insert;
1078         }
1079
1080 extend_csum:
1081         if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
1082             csum_size) {
1083                 int extend_nr;
1084                 u64 tmp;
1085                 u32 diff;
1086
1087                 tmp = sums->len - total_bytes;
1088                 tmp >>= fs_info->sectorsize_bits;
1089                 WARN_ON(tmp < 1);
1090                 extend_nr = max_t(int, 1, tmp);
1091
1092                 /*
1093                  * A log tree can already have checksum items with a subset of
1094                  * the checksums we are trying to log. This can happen after
1095                  * doing a sequence of partial writes into prealloc extents and
1096                  * fsyncs in between, with a full fsync logging a larger subrange
1097                  * of an extent for which a previous fast fsync logged a smaller
1098                  * subrange. And this happens in particular due to merging file
1099                  * extent items when we complete an ordered extent for a range
1100                  * covered by a prealloc extent - this is done at
1101                  * btrfs_mark_extent_written().
1102                  *
1103                  * So if we try to extend the previous checksum item, which has
1104                  * a range that ends at the start of the range we want to insert,
1105                  * make sure we don't extend beyond the start offset of the next
1106                  * checksum item. If we are at the last item in the leaf, then
1107                  * forget the optimization of extending and add a new checksum
1108                  * item - it is not worth the complexity of releasing the path,
1109                  * getting the first key for the next leaf, repeat the btree
1110                  * search, etc, because log trees are temporary anyway and it
1111                  * would only save a few bytes of leaf space.
1112                  */
1113                 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1114                         if (path->slots[0] + 1 >=
1115                             btrfs_header_nritems(path->nodes[0])) {
1116                                 ret = find_next_csum_offset(root, path, &next_offset);
1117                                 if (ret < 0)
1118                                         goto out;
1119                                 found_next = 1;
1120                                 goto insert;
1121                         }
1122
1123                         ret = find_next_csum_offset(root, path, &next_offset);
1124                         if (ret < 0)
1125                                 goto out;
1126
1127                         tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1128                         if (tmp <= INT_MAX)
1129                                 extend_nr = min_t(int, extend_nr, tmp);
1130                 }
1131
1132                 diff = (csum_offset + extend_nr) * csum_size;
1133                 diff = min(diff,
1134                            MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1135
1136                 diff = diff - btrfs_item_size(leaf, path->slots[0]);
1137                 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1138                 diff /= csum_size;
1139                 diff *= csum_size;
1140
1141                 btrfs_extend_item(path, diff);
1142                 ret = 0;
1143                 goto csum;
1144         }
1145
1146 insert:
1147         btrfs_release_path(path);
1148         csum_offset = 0;
1149         if (found_next) {
1150                 u64 tmp;
1151
1152                 tmp = sums->len - total_bytes;
1153                 tmp >>= fs_info->sectorsize_bits;
1154                 tmp = min(tmp, (next_offset - file_key.offset) >>
1155                                          fs_info->sectorsize_bits);
1156
1157                 tmp = max_t(u64, 1, tmp);
1158                 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1159                 ins_size = csum_size * tmp;
1160         } else {
1161                 ins_size = csum_size;
1162         }
1163         ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1164                                       ins_size);
1165         if (ret < 0)
1166                 goto out;
1167         if (WARN_ON(ret != 0))
1168                 goto out;
1169         leaf = path->nodes[0];
1170 csum:
1171         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1172         item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1173                                       btrfs_item_size(leaf, path->slots[0]));
1174         item = (struct btrfs_csum_item *)((unsigned char *)item +
1175                                           csum_offset * csum_size);
1176 found:
1177         ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1178         ins_size *= csum_size;
1179         ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1180                               ins_size);
1181         write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1182                             ins_size);
1183
1184         index += ins_size;
1185         ins_size /= csum_size;
1186         total_bytes += ins_size * fs_info->sectorsize;
1187
1188         btrfs_mark_buffer_dirty(path->nodes[0]);
1189         if (total_bytes < sums->len) {
1190                 btrfs_release_path(path);
1191                 cond_resched();
1192                 goto again;
1193         }
1194 out:
1195         btrfs_free_path(path);
1196         return ret;
1197 }
1198
1199 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1200                                      const struct btrfs_path *path,
1201                                      struct btrfs_file_extent_item *fi,
1202                                      const bool new_inline,
1203                                      struct extent_map *em)
1204 {
1205         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1206         struct btrfs_root *root = inode->root;
1207         struct extent_buffer *leaf = path->nodes[0];
1208         const int slot = path->slots[0];
1209         struct btrfs_key key;
1210         u64 extent_start, extent_end;
1211         u64 bytenr;
1212         u8 type = btrfs_file_extent_type(leaf, fi);
1213         int compress_type = btrfs_file_extent_compression(leaf, fi);
1214
1215         btrfs_item_key_to_cpu(leaf, &key, slot);
1216         extent_start = key.offset;
1217         extent_end = btrfs_file_extent_end(path);
1218         em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1219         em->generation = btrfs_file_extent_generation(leaf, fi);
1220         if (type == BTRFS_FILE_EXTENT_REG ||
1221             type == BTRFS_FILE_EXTENT_PREALLOC) {
1222                 em->start = extent_start;
1223                 em->len = extent_end - extent_start;
1224                 em->orig_start = extent_start -
1225                         btrfs_file_extent_offset(leaf, fi);
1226                 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1227                 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1228                 if (bytenr == 0) {
1229                         em->block_start = EXTENT_MAP_HOLE;
1230                         return;
1231                 }
1232                 if (compress_type != BTRFS_COMPRESS_NONE) {
1233                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1234                         em->compress_type = compress_type;
1235                         em->block_start = bytenr;
1236                         em->block_len = em->orig_block_len;
1237                 } else {
1238                         bytenr += btrfs_file_extent_offset(leaf, fi);
1239                         em->block_start = bytenr;
1240                         em->block_len = em->len;
1241                         if (type == BTRFS_FILE_EXTENT_PREALLOC)
1242                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1243                 }
1244         } else if (type == BTRFS_FILE_EXTENT_INLINE) {
1245                 em->block_start = EXTENT_MAP_INLINE;
1246                 em->start = extent_start;
1247                 em->len = extent_end - extent_start;
1248                 /*
1249                  * Initialize orig_start and block_len with the same values
1250                  * as in inode.c:btrfs_get_extent().
1251                  */
1252                 em->orig_start = EXTENT_MAP_HOLE;
1253                 em->block_len = (u64)-1;
1254                 if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) {
1255                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1256                         em->compress_type = compress_type;
1257                 }
1258         } else {
1259                 btrfs_err(fs_info,
1260                           "unknown file extent item type %d, inode %llu, offset %llu, "
1261                           "root %llu", type, btrfs_ino(inode), extent_start,
1262                           root->root_key.objectid);
1263         }
1264 }
1265
1266 /*
1267  * Returns the end offset (non inclusive) of the file extent item the given path
1268  * points to. If it points to an inline extent, the returned offset is rounded
1269  * up to the sector size.
1270  */
1271 u64 btrfs_file_extent_end(const struct btrfs_path *path)
1272 {
1273         const struct extent_buffer *leaf = path->nodes[0];
1274         const int slot = path->slots[0];
1275         struct btrfs_file_extent_item *fi;
1276         struct btrfs_key key;
1277         u64 end;
1278
1279         btrfs_item_key_to_cpu(leaf, &key, slot);
1280         ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1281         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1282
1283         if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1284                 end = btrfs_file_extent_ram_bytes(leaf, fi);
1285                 end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1286         } else {
1287                 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1288         }
1289
1290         return end;
1291 }