Merge branch 'next' into for-linus
[linux-2.6-microblaze.git] / fs / btrfs / file-item.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/bio.h>
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/highmem.h>
10 #include <linux/sched/mm.h>
11 #include <crypto/hash.h>
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "volumes.h"
16 #include "print-tree.h"
17 #include "compression.h"
18
19 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
20                                    sizeof(struct btrfs_item) * 2) / \
21                                   size) - 1))
22
23 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
24                                        PAGE_SIZE))
25
26 /**
27  * @inode - the inode we want to update the disk_i_size for
28  * @new_i_size - the i_size we want to set to, 0 if we use i_size
29  *
30  * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
31  * returns as it is perfectly fine with a file that has holes without hole file
32  * extent items.
33  *
34  * However without NO_HOLES we need to only return the area that is contiguous
35  * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
36  * to an extent that has a gap in between.
37  *
38  * Finally new_i_size should only be set in the case of truncate where we're not
39  * ready to use i_size_read() as the limiter yet.
40  */
41 void btrfs_inode_safe_disk_i_size_write(struct inode *inode, u64 new_i_size)
42 {
43         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
44         u64 start, end, i_size;
45         int ret;
46
47         i_size = new_i_size ?: i_size_read(inode);
48         if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
49                 BTRFS_I(inode)->disk_i_size = i_size;
50                 return;
51         }
52
53         spin_lock(&BTRFS_I(inode)->lock);
54         ret = find_contiguous_extent_bit(&BTRFS_I(inode)->file_extent_tree, 0,
55                                          &start, &end, EXTENT_DIRTY);
56         if (!ret && start == 0)
57                 i_size = min(i_size, end + 1);
58         else
59                 i_size = 0;
60         BTRFS_I(inode)->disk_i_size = i_size;
61         spin_unlock(&BTRFS_I(inode)->lock);
62 }
63
64 /**
65  * @inode - the inode we're modifying
66  * @start - the start file offset of the file extent we've inserted
67  * @len - the logical length of the file extent item
68  *
69  * Call when we are inserting a new file extent where there was none before.
70  * Does not need to call this in the case where we're replacing an existing file
71  * extent, however if not sure it's fine to call this multiple times.
72  *
73  * The start and len must match the file extent item, so thus must be sectorsize
74  * aligned.
75  */
76 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
77                                       u64 len)
78 {
79         if (len == 0)
80                 return 0;
81
82         ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
83
84         if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
85                 return 0;
86         return set_extent_bits(&inode->file_extent_tree, start, start + len - 1,
87                                EXTENT_DIRTY);
88 }
89
90 /**
91  * @inode - the inode we're modifying
92  * @start - the start file offset of the file extent we've inserted
93  * @len - the logical length of the file extent item
94  *
95  * Called when we drop a file extent, for example when we truncate.  Doesn't
96  * need to be called for cases where we're replacing a file extent, like when
97  * we've COWed a file extent.
98  *
99  * The start and len must match the file extent item, so thus must be sectorsize
100  * aligned.
101  */
102 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
103                                         u64 len)
104 {
105         if (len == 0)
106                 return 0;
107
108         ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
109                len == (u64)-1);
110
111         if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
112                 return 0;
113         return clear_extent_bit(&inode->file_extent_tree, start,
114                                 start + len - 1, EXTENT_DIRTY, 0, 0, NULL);
115 }
116
117 static inline u32 max_ordered_sum_bytes(struct btrfs_fs_info *fs_info,
118                                         u16 csum_size)
119 {
120         u32 ncsums = (PAGE_SIZE - sizeof(struct btrfs_ordered_sum)) / csum_size;
121
122         return ncsums * fs_info->sectorsize;
123 }
124
125 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
126                              struct btrfs_root *root,
127                              u64 objectid, u64 pos,
128                              u64 disk_offset, u64 disk_num_bytes,
129                              u64 num_bytes, u64 offset, u64 ram_bytes,
130                              u8 compression, u8 encryption, u16 other_encoding)
131 {
132         int ret = 0;
133         struct btrfs_file_extent_item *item;
134         struct btrfs_key file_key;
135         struct btrfs_path *path;
136         struct extent_buffer *leaf;
137
138         path = btrfs_alloc_path();
139         if (!path)
140                 return -ENOMEM;
141         file_key.objectid = objectid;
142         file_key.offset = pos;
143         file_key.type = BTRFS_EXTENT_DATA_KEY;
144
145         path->leave_spinning = 1;
146         ret = btrfs_insert_empty_item(trans, root, path, &file_key,
147                                       sizeof(*item));
148         if (ret < 0)
149                 goto out;
150         BUG_ON(ret); /* Can't happen */
151         leaf = path->nodes[0];
152         item = btrfs_item_ptr(leaf, path->slots[0],
153                               struct btrfs_file_extent_item);
154         btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset);
155         btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes);
156         btrfs_set_file_extent_offset(leaf, item, offset);
157         btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
158         btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes);
159         btrfs_set_file_extent_generation(leaf, item, trans->transid);
160         btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
161         btrfs_set_file_extent_compression(leaf, item, compression);
162         btrfs_set_file_extent_encryption(leaf, item, encryption);
163         btrfs_set_file_extent_other_encoding(leaf, item, other_encoding);
164
165         btrfs_mark_buffer_dirty(leaf);
166 out:
167         btrfs_free_path(path);
168         return ret;
169 }
170
171 static struct btrfs_csum_item *
172 btrfs_lookup_csum(struct btrfs_trans_handle *trans,
173                   struct btrfs_root *root,
174                   struct btrfs_path *path,
175                   u64 bytenr, int cow)
176 {
177         struct btrfs_fs_info *fs_info = root->fs_info;
178         int ret;
179         struct btrfs_key file_key;
180         struct btrfs_key found_key;
181         struct btrfs_csum_item *item;
182         struct extent_buffer *leaf;
183         u64 csum_offset = 0;
184         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
185         int csums_in_item;
186
187         file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
188         file_key.offset = bytenr;
189         file_key.type = BTRFS_EXTENT_CSUM_KEY;
190         ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
191         if (ret < 0)
192                 goto fail;
193         leaf = path->nodes[0];
194         if (ret > 0) {
195                 ret = 1;
196                 if (path->slots[0] == 0)
197                         goto fail;
198                 path->slots[0]--;
199                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
200                 if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
201                         goto fail;
202
203                 csum_offset = (bytenr - found_key.offset) >>
204                                 fs_info->sb->s_blocksize_bits;
205                 csums_in_item = btrfs_item_size_nr(leaf, path->slots[0]);
206                 csums_in_item /= csum_size;
207
208                 if (csum_offset == csums_in_item) {
209                         ret = -EFBIG;
210                         goto fail;
211                 } else if (csum_offset > csums_in_item) {
212                         goto fail;
213                 }
214         }
215         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
216         item = (struct btrfs_csum_item *)((unsigned char *)item +
217                                           csum_offset * csum_size);
218         return item;
219 fail:
220         if (ret > 0)
221                 ret = -ENOENT;
222         return ERR_PTR(ret);
223 }
224
225 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
226                              struct btrfs_root *root,
227                              struct btrfs_path *path, u64 objectid,
228                              u64 offset, int mod)
229 {
230         int ret;
231         struct btrfs_key file_key;
232         int ins_len = mod < 0 ? -1 : 0;
233         int cow = mod != 0;
234
235         file_key.objectid = objectid;
236         file_key.offset = offset;
237         file_key.type = BTRFS_EXTENT_DATA_KEY;
238         ret = btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
239         return ret;
240 }
241
242 /**
243  * btrfs_lookup_bio_sums - Look up checksums for a bio.
244  * @inode: inode that the bio is for.
245  * @bio: bio to look up.
246  * @offset: Unless (u64)-1, look up checksums for this offset in the file.
247  *          If (u64)-1, use the page offsets from the bio instead.
248  * @dst: Buffer of size nblocks * btrfs_super_csum_size() used to return
249  *       checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If
250  *       NULL, the checksum buffer is allocated and returned in
251  *       btrfs_io_bio(bio)->csum instead.
252  *
253  * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
254  */
255 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio,
256                                    u64 offset, u8 *dst)
257 {
258         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
259         struct bio_vec bvec;
260         struct bvec_iter iter;
261         struct btrfs_csum_item *item = NULL;
262         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
263         struct btrfs_path *path;
264         const bool page_offsets = (offset == (u64)-1);
265         u8 *csum;
266         u64 item_start_offset = 0;
267         u64 item_last_offset = 0;
268         u64 disk_bytenr;
269         u64 page_bytes_left;
270         u32 diff;
271         int nblocks;
272         int count = 0;
273         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
274
275         path = btrfs_alloc_path();
276         if (!path)
277                 return BLK_STS_RESOURCE;
278
279         nblocks = bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits;
280         if (!dst) {
281                 struct btrfs_io_bio *btrfs_bio = btrfs_io_bio(bio);
282
283                 if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
284                         btrfs_bio->csum = kmalloc_array(nblocks, csum_size,
285                                                         GFP_NOFS);
286                         if (!btrfs_bio->csum) {
287                                 btrfs_free_path(path);
288                                 return BLK_STS_RESOURCE;
289                         }
290                 } else {
291                         btrfs_bio->csum = btrfs_bio->csum_inline;
292                 }
293                 csum = btrfs_bio->csum;
294         } else {
295                 csum = dst;
296         }
297
298         if (bio->bi_iter.bi_size > PAGE_SIZE * 8)
299                 path->reada = READA_FORWARD;
300
301         /*
302          * the free space stuff is only read when it hasn't been
303          * updated in the current transaction.  So, we can safely
304          * read from the commit root and sidestep a nasty deadlock
305          * between reading the free space cache and updating the csum tree.
306          */
307         if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
308                 path->search_commit_root = 1;
309                 path->skip_locking = 1;
310         }
311
312         disk_bytenr = (u64)bio->bi_iter.bi_sector << 9;
313
314         bio_for_each_segment(bvec, bio, iter) {
315                 page_bytes_left = bvec.bv_len;
316                 if (count)
317                         goto next;
318
319                 if (page_offsets)
320                         offset = page_offset(bvec.bv_page) + bvec.bv_offset;
321                 count = btrfs_find_ordered_sum(inode, offset, disk_bytenr,
322                                                csum, nblocks);
323                 if (count)
324                         goto found;
325
326                 if (!item || disk_bytenr < item_start_offset ||
327                     disk_bytenr >= item_last_offset) {
328                         struct btrfs_key found_key;
329                         u32 item_size;
330
331                         if (item)
332                                 btrfs_release_path(path);
333                         item = btrfs_lookup_csum(NULL, fs_info->csum_root,
334                                                  path, disk_bytenr, 0);
335                         if (IS_ERR(item)) {
336                                 count = 1;
337                                 memset(csum, 0, csum_size);
338                                 if (BTRFS_I(inode)->root->root_key.objectid ==
339                                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
340                                         set_extent_bits(io_tree, offset,
341                                                 offset + fs_info->sectorsize - 1,
342                                                 EXTENT_NODATASUM);
343                                 } else {
344                                         btrfs_info_rl(fs_info,
345                                                    "no csum found for inode %llu start %llu",
346                                                btrfs_ino(BTRFS_I(inode)), offset);
347                                 }
348                                 item = NULL;
349                                 btrfs_release_path(path);
350                                 goto found;
351                         }
352                         btrfs_item_key_to_cpu(path->nodes[0], &found_key,
353                                               path->slots[0]);
354
355                         item_start_offset = found_key.offset;
356                         item_size = btrfs_item_size_nr(path->nodes[0],
357                                                        path->slots[0]);
358                         item_last_offset = item_start_offset +
359                                 (item_size / csum_size) *
360                                 fs_info->sectorsize;
361                         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
362                                               struct btrfs_csum_item);
363                 }
364                 /*
365                  * this byte range must be able to fit inside
366                  * a single leaf so it will also fit inside a u32
367                  */
368                 diff = disk_bytenr - item_start_offset;
369                 diff = diff / fs_info->sectorsize;
370                 diff = diff * csum_size;
371                 count = min_t(int, nblocks, (item_last_offset - disk_bytenr) >>
372                                             inode->i_sb->s_blocksize_bits);
373                 read_extent_buffer(path->nodes[0], csum,
374                                    ((unsigned long)item) + diff,
375                                    csum_size * count);
376 found:
377                 csum += count * csum_size;
378                 nblocks -= count;
379 next:
380                 while (count > 0) {
381                         count--;
382                         disk_bytenr += fs_info->sectorsize;
383                         offset += fs_info->sectorsize;
384                         page_bytes_left -= fs_info->sectorsize;
385                         if (!page_bytes_left)
386                                 break; /* move to next bio */
387                 }
388         }
389
390         WARN_ON_ONCE(count);
391         btrfs_free_path(path);
392         return BLK_STS_OK;
393 }
394
395 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
396                              struct list_head *list, int search_commit)
397 {
398         struct btrfs_fs_info *fs_info = root->fs_info;
399         struct btrfs_key key;
400         struct btrfs_path *path;
401         struct extent_buffer *leaf;
402         struct btrfs_ordered_sum *sums;
403         struct btrfs_csum_item *item;
404         LIST_HEAD(tmplist);
405         unsigned long offset;
406         int ret;
407         size_t size;
408         u64 csum_end;
409         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
410
411         ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
412                IS_ALIGNED(end + 1, fs_info->sectorsize));
413
414         path = btrfs_alloc_path();
415         if (!path)
416                 return -ENOMEM;
417
418         if (search_commit) {
419                 path->skip_locking = 1;
420                 path->reada = READA_FORWARD;
421                 path->search_commit_root = 1;
422         }
423
424         key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
425         key.offset = start;
426         key.type = BTRFS_EXTENT_CSUM_KEY;
427
428         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
429         if (ret < 0)
430                 goto fail;
431         if (ret > 0 && path->slots[0] > 0) {
432                 leaf = path->nodes[0];
433                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
434                 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
435                     key.type == BTRFS_EXTENT_CSUM_KEY) {
436                         offset = (start - key.offset) >>
437                                  fs_info->sb->s_blocksize_bits;
438                         if (offset * csum_size <
439                             btrfs_item_size_nr(leaf, path->slots[0] - 1))
440                                 path->slots[0]--;
441                 }
442         }
443
444         while (start <= end) {
445                 leaf = path->nodes[0];
446                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
447                         ret = btrfs_next_leaf(root, path);
448                         if (ret < 0)
449                                 goto fail;
450                         if (ret > 0)
451                                 break;
452                         leaf = path->nodes[0];
453                 }
454
455                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
456                 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
457                     key.type != BTRFS_EXTENT_CSUM_KEY ||
458                     key.offset > end)
459                         break;
460
461                 if (key.offset > start)
462                         start = key.offset;
463
464                 size = btrfs_item_size_nr(leaf, path->slots[0]);
465                 csum_end = key.offset + (size / csum_size) * fs_info->sectorsize;
466                 if (csum_end <= start) {
467                         path->slots[0]++;
468                         continue;
469                 }
470
471                 csum_end = min(csum_end, end + 1);
472                 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
473                                       struct btrfs_csum_item);
474                 while (start < csum_end) {
475                         size = min_t(size_t, csum_end - start,
476                                      max_ordered_sum_bytes(fs_info, csum_size));
477                         sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
478                                        GFP_NOFS);
479                         if (!sums) {
480                                 ret = -ENOMEM;
481                                 goto fail;
482                         }
483
484                         sums->bytenr = start;
485                         sums->len = (int)size;
486
487                         offset = (start - key.offset) >>
488                                 fs_info->sb->s_blocksize_bits;
489                         offset *= csum_size;
490                         size >>= fs_info->sb->s_blocksize_bits;
491
492                         read_extent_buffer(path->nodes[0],
493                                            sums->sums,
494                                            ((unsigned long)item) + offset,
495                                            csum_size * size);
496
497                         start += fs_info->sectorsize * size;
498                         list_add_tail(&sums->list, &tmplist);
499                 }
500                 path->slots[0]++;
501         }
502         ret = 0;
503 fail:
504         while (ret < 0 && !list_empty(&tmplist)) {
505                 sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
506                 list_del(&sums->list);
507                 kfree(sums);
508         }
509         list_splice_tail(&tmplist, list);
510
511         btrfs_free_path(path);
512         return ret;
513 }
514
515 /*
516  * btrfs_csum_one_bio - Calculates checksums of the data contained inside a bio
517  * @inode:       Owner of the data inside the bio
518  * @bio:         Contains the data to be checksummed
519  * @file_start:  offset in file this bio begins to describe
520  * @contig:      Boolean. If true/1 means all bio vecs in this bio are
521  *               contiguous and they begin at @file_start in the file. False/0
522  *               means this bio can contains potentially discontigous bio vecs
523  *               so the logical offset of each should be calculated separately.
524  */
525 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
526                        u64 file_start, int contig)
527 {
528         struct btrfs_fs_info *fs_info = inode->root->fs_info;
529         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
530         struct btrfs_ordered_sum *sums;
531         struct btrfs_ordered_extent *ordered = NULL;
532         char *data;
533         struct bvec_iter iter;
534         struct bio_vec bvec;
535         int index;
536         int nr_sectors;
537         unsigned long total_bytes = 0;
538         unsigned long this_sum_bytes = 0;
539         int i;
540         u64 offset;
541         unsigned nofs_flag;
542         const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
543
544         nofs_flag = memalloc_nofs_save();
545         sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
546                        GFP_KERNEL);
547         memalloc_nofs_restore(nofs_flag);
548
549         if (!sums)
550                 return BLK_STS_RESOURCE;
551
552         sums->len = bio->bi_iter.bi_size;
553         INIT_LIST_HEAD(&sums->list);
554
555         if (contig)
556                 offset = file_start;
557         else
558                 offset = 0; /* shut up gcc */
559
560         sums->bytenr = (u64)bio->bi_iter.bi_sector << 9;
561         index = 0;
562
563         shash->tfm = fs_info->csum_shash;
564
565         bio_for_each_segment(bvec, bio, iter) {
566                 if (!contig)
567                         offset = page_offset(bvec.bv_page) + bvec.bv_offset;
568
569                 if (!ordered) {
570                         ordered = btrfs_lookup_ordered_extent(inode, offset);
571                         BUG_ON(!ordered); /* Logic error */
572                 }
573
574                 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info,
575                                                  bvec.bv_len + fs_info->sectorsize
576                                                  - 1);
577
578                 for (i = 0; i < nr_sectors; i++) {
579                         if (offset >= ordered->file_offset + ordered->num_bytes ||
580                             offset < ordered->file_offset) {
581                                 unsigned long bytes_left;
582
583                                 sums->len = this_sum_bytes;
584                                 this_sum_bytes = 0;
585                                 btrfs_add_ordered_sum(ordered, sums);
586                                 btrfs_put_ordered_extent(ordered);
587
588                                 bytes_left = bio->bi_iter.bi_size - total_bytes;
589
590                                 nofs_flag = memalloc_nofs_save();
591                                 sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
592                                                       bytes_left), GFP_KERNEL);
593                                 memalloc_nofs_restore(nofs_flag);
594                                 BUG_ON(!sums); /* -ENOMEM */
595                                 sums->len = bytes_left;
596                                 ordered = btrfs_lookup_ordered_extent(inode,
597                                                                 offset);
598                                 ASSERT(ordered); /* Logic error */
599                                 sums->bytenr = ((u64)bio->bi_iter.bi_sector << 9)
600                                         + total_bytes;
601                                 index = 0;
602                         }
603
604                         data = kmap_atomic(bvec.bv_page);
605                         crypto_shash_digest(shash, data + bvec.bv_offset
606                                             + (i * fs_info->sectorsize),
607                                             fs_info->sectorsize,
608                                             sums->sums + index);
609                         kunmap_atomic(data);
610                         index += csum_size;
611                         offset += fs_info->sectorsize;
612                         this_sum_bytes += fs_info->sectorsize;
613                         total_bytes += fs_info->sectorsize;
614                 }
615
616         }
617         this_sum_bytes = 0;
618         btrfs_add_ordered_sum(ordered, sums);
619         btrfs_put_ordered_extent(ordered);
620         return 0;
621 }
622
623 /*
624  * helper function for csum removal, this expects the
625  * key to describe the csum pointed to by the path, and it expects
626  * the csum to overlap the range [bytenr, len]
627  *
628  * The csum should not be entirely contained in the range and the
629  * range should not be entirely contained in the csum.
630  *
631  * This calls btrfs_truncate_item with the correct args based on the
632  * overlap, and fixes up the key as required.
633  */
634 static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
635                                        struct btrfs_path *path,
636                                        struct btrfs_key *key,
637                                        u64 bytenr, u64 len)
638 {
639         struct extent_buffer *leaf;
640         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
641         u64 csum_end;
642         u64 end_byte = bytenr + len;
643         u32 blocksize_bits = fs_info->sb->s_blocksize_bits;
644
645         leaf = path->nodes[0];
646         csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
647         csum_end <<= fs_info->sb->s_blocksize_bits;
648         csum_end += key->offset;
649
650         if (key->offset < bytenr && csum_end <= end_byte) {
651                 /*
652                  *         [ bytenr - len ]
653                  *         [   ]
654                  *   [csum     ]
655                  *   A simple truncate off the end of the item
656                  */
657                 u32 new_size = (bytenr - key->offset) >> blocksize_bits;
658                 new_size *= csum_size;
659                 btrfs_truncate_item(path, new_size, 1);
660         } else if (key->offset >= bytenr && csum_end > end_byte &&
661                    end_byte > key->offset) {
662                 /*
663                  *         [ bytenr - len ]
664                  *                 [ ]
665                  *                 [csum     ]
666                  * we need to truncate from the beginning of the csum
667                  */
668                 u32 new_size = (csum_end - end_byte) >> blocksize_bits;
669                 new_size *= csum_size;
670
671                 btrfs_truncate_item(path, new_size, 0);
672
673                 key->offset = end_byte;
674                 btrfs_set_item_key_safe(fs_info, path, key);
675         } else {
676                 BUG();
677         }
678 }
679
680 /*
681  * deletes the csum items from the csum tree for a given
682  * range of bytes.
683  */
684 int btrfs_del_csums(struct btrfs_trans_handle *trans,
685                     struct btrfs_root *root, u64 bytenr, u64 len)
686 {
687         struct btrfs_fs_info *fs_info = trans->fs_info;
688         struct btrfs_path *path;
689         struct btrfs_key key;
690         u64 end_byte = bytenr + len;
691         u64 csum_end;
692         struct extent_buffer *leaf;
693         int ret;
694         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
695         int blocksize_bits = fs_info->sb->s_blocksize_bits;
696
697         ASSERT(root == fs_info->csum_root ||
698                root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
699
700         path = btrfs_alloc_path();
701         if (!path)
702                 return -ENOMEM;
703
704         while (1) {
705                 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
706                 key.offset = end_byte - 1;
707                 key.type = BTRFS_EXTENT_CSUM_KEY;
708
709                 path->leave_spinning = 1;
710                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
711                 if (ret > 0) {
712                         if (path->slots[0] == 0)
713                                 break;
714                         path->slots[0]--;
715                 } else if (ret < 0) {
716                         break;
717                 }
718
719                 leaf = path->nodes[0];
720                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
721
722                 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
723                     key.type != BTRFS_EXTENT_CSUM_KEY) {
724                         break;
725                 }
726
727                 if (key.offset >= end_byte)
728                         break;
729
730                 csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
731                 csum_end <<= blocksize_bits;
732                 csum_end += key.offset;
733
734                 /* this csum ends before we start, we're done */
735                 if (csum_end <= bytenr)
736                         break;
737
738                 /* delete the entire item, it is inside our range */
739                 if (key.offset >= bytenr && csum_end <= end_byte) {
740                         int del_nr = 1;
741
742                         /*
743                          * Check how many csum items preceding this one in this
744                          * leaf correspond to our range and then delete them all
745                          * at once.
746                          */
747                         if (key.offset > bytenr && path->slots[0] > 0) {
748                                 int slot = path->slots[0] - 1;
749
750                                 while (slot >= 0) {
751                                         struct btrfs_key pk;
752
753                                         btrfs_item_key_to_cpu(leaf, &pk, slot);
754                                         if (pk.offset < bytenr ||
755                                             pk.type != BTRFS_EXTENT_CSUM_KEY ||
756                                             pk.objectid !=
757                                             BTRFS_EXTENT_CSUM_OBJECTID)
758                                                 break;
759                                         path->slots[0] = slot;
760                                         del_nr++;
761                                         key.offset = pk.offset;
762                                         slot--;
763                                 }
764                         }
765                         ret = btrfs_del_items(trans, root, path,
766                                               path->slots[0], del_nr);
767                         if (ret)
768                                 goto out;
769                         if (key.offset == bytenr)
770                                 break;
771                 } else if (key.offset < bytenr && csum_end > end_byte) {
772                         unsigned long offset;
773                         unsigned long shift_len;
774                         unsigned long item_offset;
775                         /*
776                          *        [ bytenr - len ]
777                          *     [csum                ]
778                          *
779                          * Our bytes are in the middle of the csum,
780                          * we need to split this item and insert a new one.
781                          *
782                          * But we can't drop the path because the
783                          * csum could change, get removed, extended etc.
784                          *
785                          * The trick here is the max size of a csum item leaves
786                          * enough room in the tree block for a single
787                          * item header.  So, we split the item in place,
788                          * adding a new header pointing to the existing
789                          * bytes.  Then we loop around again and we have
790                          * a nicely formed csum item that we can neatly
791                          * truncate.
792                          */
793                         offset = (bytenr - key.offset) >> blocksize_bits;
794                         offset *= csum_size;
795
796                         shift_len = (len >> blocksize_bits) * csum_size;
797
798                         item_offset = btrfs_item_ptr_offset(leaf,
799                                                             path->slots[0]);
800
801                         memzero_extent_buffer(leaf, item_offset + offset,
802                                              shift_len);
803                         key.offset = bytenr;
804
805                         /*
806                          * btrfs_split_item returns -EAGAIN when the
807                          * item changed size or key
808                          */
809                         ret = btrfs_split_item(trans, root, path, &key, offset);
810                         if (ret && ret != -EAGAIN) {
811                                 btrfs_abort_transaction(trans, ret);
812                                 goto out;
813                         }
814
815                         key.offset = end_byte - 1;
816                 } else {
817                         truncate_one_csum(fs_info, path, &key, bytenr, len);
818                         if (key.offset < bytenr)
819                                 break;
820                 }
821                 btrfs_release_path(path);
822         }
823         ret = 0;
824 out:
825         btrfs_free_path(path);
826         return ret;
827 }
828
829 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
830                            struct btrfs_root *root,
831                            struct btrfs_ordered_sum *sums)
832 {
833         struct btrfs_fs_info *fs_info = root->fs_info;
834         struct btrfs_key file_key;
835         struct btrfs_key found_key;
836         struct btrfs_path *path;
837         struct btrfs_csum_item *item;
838         struct btrfs_csum_item *item_end;
839         struct extent_buffer *leaf = NULL;
840         u64 next_offset;
841         u64 total_bytes = 0;
842         u64 csum_offset;
843         u64 bytenr;
844         u32 nritems;
845         u32 ins_size;
846         int index = 0;
847         int found_next;
848         int ret;
849         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
850
851         path = btrfs_alloc_path();
852         if (!path)
853                 return -ENOMEM;
854 again:
855         next_offset = (u64)-1;
856         found_next = 0;
857         bytenr = sums->bytenr + total_bytes;
858         file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
859         file_key.offset = bytenr;
860         file_key.type = BTRFS_EXTENT_CSUM_KEY;
861
862         item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
863         if (!IS_ERR(item)) {
864                 ret = 0;
865                 leaf = path->nodes[0];
866                 item_end = btrfs_item_ptr(leaf, path->slots[0],
867                                           struct btrfs_csum_item);
868                 item_end = (struct btrfs_csum_item *)((char *)item_end +
869                            btrfs_item_size_nr(leaf, path->slots[0]));
870                 goto found;
871         }
872         ret = PTR_ERR(item);
873         if (ret != -EFBIG && ret != -ENOENT)
874                 goto out;
875
876         if (ret == -EFBIG) {
877                 u32 item_size;
878                 /* we found one, but it isn't big enough yet */
879                 leaf = path->nodes[0];
880                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
881                 if ((item_size / csum_size) >=
882                     MAX_CSUM_ITEMS(fs_info, csum_size)) {
883                         /* already at max size, make a new one */
884                         goto insert;
885                 }
886         } else {
887                 int slot = path->slots[0] + 1;
888                 /* we didn't find a csum item, insert one */
889                 nritems = btrfs_header_nritems(path->nodes[0]);
890                 if (!nritems || (path->slots[0] >= nritems - 1)) {
891                         ret = btrfs_next_leaf(root, path);
892                         if (ret < 0) {
893                                 goto out;
894                         } else if (ret > 0) {
895                                 found_next = 1;
896                                 goto insert;
897                         }
898                         slot = path->slots[0];
899                 }
900                 btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
901                 if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
902                     found_key.type != BTRFS_EXTENT_CSUM_KEY) {
903                         found_next = 1;
904                         goto insert;
905                 }
906                 next_offset = found_key.offset;
907                 found_next = 1;
908                 goto insert;
909         }
910
911         /*
912          * At this point, we know the tree has a checksum item that ends at an
913          * offset matching the start of the checksum range we want to insert.
914          * We try to extend that item as much as possible and then add as many
915          * checksums to it as they fit.
916          *
917          * First check if the leaf has enough free space for at least one
918          * checksum. If it has go directly to the item extension code, otherwise
919          * release the path and do a search for insertion before the extension.
920          */
921         if (btrfs_leaf_free_space(leaf) >= csum_size) {
922                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
923                 csum_offset = (bytenr - found_key.offset) >>
924                         fs_info->sb->s_blocksize_bits;
925                 goto extend_csum;
926         }
927
928         btrfs_release_path(path);
929         ret = btrfs_search_slot(trans, root, &file_key, path,
930                                 csum_size, 1);
931         if (ret < 0)
932                 goto out;
933
934         if (ret > 0) {
935                 if (path->slots[0] == 0)
936                         goto insert;
937                 path->slots[0]--;
938         }
939
940         leaf = path->nodes[0];
941         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
942         csum_offset = (bytenr - found_key.offset) >>
943                         fs_info->sb->s_blocksize_bits;
944
945         if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
946             found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
947             csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
948                 goto insert;
949         }
950
951 extend_csum:
952         if (csum_offset == btrfs_item_size_nr(leaf, path->slots[0]) /
953             csum_size) {
954                 int extend_nr;
955                 u64 tmp;
956                 u32 diff;
957
958                 tmp = sums->len - total_bytes;
959                 tmp >>= fs_info->sb->s_blocksize_bits;
960                 WARN_ON(tmp < 1);
961
962                 extend_nr = max_t(int, 1, (int)tmp);
963                 diff = (csum_offset + extend_nr) * csum_size;
964                 diff = min(diff,
965                            MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
966
967                 diff = diff - btrfs_item_size_nr(leaf, path->slots[0]);
968                 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
969                 diff /= csum_size;
970                 diff *= csum_size;
971
972                 btrfs_extend_item(path, diff);
973                 ret = 0;
974                 goto csum;
975         }
976
977 insert:
978         btrfs_release_path(path);
979         csum_offset = 0;
980         if (found_next) {
981                 u64 tmp;
982
983                 tmp = sums->len - total_bytes;
984                 tmp >>= fs_info->sb->s_blocksize_bits;
985                 tmp = min(tmp, (next_offset - file_key.offset) >>
986                                          fs_info->sb->s_blocksize_bits);
987
988                 tmp = max_t(u64, 1, tmp);
989                 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
990                 ins_size = csum_size * tmp;
991         } else {
992                 ins_size = csum_size;
993         }
994         path->leave_spinning = 1;
995         ret = btrfs_insert_empty_item(trans, root, path, &file_key,
996                                       ins_size);
997         path->leave_spinning = 0;
998         if (ret < 0)
999                 goto out;
1000         if (WARN_ON(ret != 0))
1001                 goto out;
1002         leaf = path->nodes[0];
1003 csum:
1004         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1005         item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1006                                       btrfs_item_size_nr(leaf, path->slots[0]));
1007         item = (struct btrfs_csum_item *)((unsigned char *)item +
1008                                           csum_offset * csum_size);
1009 found:
1010         ins_size = (u32)(sums->len - total_bytes) >>
1011                    fs_info->sb->s_blocksize_bits;
1012         ins_size *= csum_size;
1013         ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1014                               ins_size);
1015         write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1016                             ins_size);
1017
1018         index += ins_size;
1019         ins_size /= csum_size;
1020         total_bytes += ins_size * fs_info->sectorsize;
1021
1022         btrfs_mark_buffer_dirty(path->nodes[0]);
1023         if (total_bytes < sums->len) {
1024                 btrfs_release_path(path);
1025                 cond_resched();
1026                 goto again;
1027         }
1028 out:
1029         btrfs_free_path(path);
1030         return ret;
1031 }
1032
1033 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1034                                      const struct btrfs_path *path,
1035                                      struct btrfs_file_extent_item *fi,
1036                                      const bool new_inline,
1037                                      struct extent_map *em)
1038 {
1039         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1040         struct btrfs_root *root = inode->root;
1041         struct extent_buffer *leaf = path->nodes[0];
1042         const int slot = path->slots[0];
1043         struct btrfs_key key;
1044         u64 extent_start, extent_end;
1045         u64 bytenr;
1046         u8 type = btrfs_file_extent_type(leaf, fi);
1047         int compress_type = btrfs_file_extent_compression(leaf, fi);
1048
1049         btrfs_item_key_to_cpu(leaf, &key, slot);
1050         extent_start = key.offset;
1051         extent_end = btrfs_file_extent_end(path);
1052         em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1053         if (type == BTRFS_FILE_EXTENT_REG ||
1054             type == BTRFS_FILE_EXTENT_PREALLOC) {
1055                 em->start = extent_start;
1056                 em->len = extent_end - extent_start;
1057                 em->orig_start = extent_start -
1058                         btrfs_file_extent_offset(leaf, fi);
1059                 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1060                 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1061                 if (bytenr == 0) {
1062                         em->block_start = EXTENT_MAP_HOLE;
1063                         return;
1064                 }
1065                 if (compress_type != BTRFS_COMPRESS_NONE) {
1066                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1067                         em->compress_type = compress_type;
1068                         em->block_start = bytenr;
1069                         em->block_len = em->orig_block_len;
1070                 } else {
1071                         bytenr += btrfs_file_extent_offset(leaf, fi);
1072                         em->block_start = bytenr;
1073                         em->block_len = em->len;
1074                         if (type == BTRFS_FILE_EXTENT_PREALLOC)
1075                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1076                 }
1077         } else if (type == BTRFS_FILE_EXTENT_INLINE) {
1078                 em->block_start = EXTENT_MAP_INLINE;
1079                 em->start = extent_start;
1080                 em->len = extent_end - extent_start;
1081                 /*
1082                  * Initialize orig_start and block_len with the same values
1083                  * as in inode.c:btrfs_get_extent().
1084                  */
1085                 em->orig_start = EXTENT_MAP_HOLE;
1086                 em->block_len = (u64)-1;
1087                 if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) {
1088                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1089                         em->compress_type = compress_type;
1090                 }
1091         } else {
1092                 btrfs_err(fs_info,
1093                           "unknown file extent item type %d, inode %llu, offset %llu, "
1094                           "root %llu", type, btrfs_ino(inode), extent_start,
1095                           root->root_key.objectid);
1096         }
1097 }
1098
1099 /*
1100  * Returns the end offset (non inclusive) of the file extent item the given path
1101  * points to. If it points to an inline extent, the returned offset is rounded
1102  * up to the sector size.
1103  */
1104 u64 btrfs_file_extent_end(const struct btrfs_path *path)
1105 {
1106         const struct extent_buffer *leaf = path->nodes[0];
1107         const int slot = path->slots[0];
1108         struct btrfs_file_extent_item *fi;
1109         struct btrfs_key key;
1110         u64 end;
1111
1112         btrfs_item_key_to_cpu(leaf, &key, slot);
1113         ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1114         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1115
1116         if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1117                 end = btrfs_file_extent_ram_bytes(leaf, fi);
1118                 end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1119         } else {
1120                 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1121         }
1122
1123         return end;
1124 }