Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[linux-2.6-microblaze.git] / fs / btrfs / extent_io.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent_map.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24 #include "backref.h"
25 #include "disk-io.h"
26
27 static struct kmem_cache *extent_state_cache;
28 static struct kmem_cache *extent_buffer_cache;
29 static struct bio_set btrfs_bioset;
30
31 static inline bool extent_state_in_tree(const struct extent_state *state)
32 {
33         return !RB_EMPTY_NODE(&state->rb_node);
34 }
35
36 #ifdef CONFIG_BTRFS_DEBUG
37 static LIST_HEAD(buffers);
38 static LIST_HEAD(states);
39
40 static DEFINE_SPINLOCK(leak_lock);
41
42 static inline
43 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44 {
45         unsigned long flags;
46
47         spin_lock_irqsave(&leak_lock, flags);
48         list_add(new, head);
49         spin_unlock_irqrestore(&leak_lock, flags);
50 }
51
52 static inline
53 void btrfs_leak_debug_del(struct list_head *entry)
54 {
55         unsigned long flags;
56
57         spin_lock_irqsave(&leak_lock, flags);
58         list_del(entry);
59         spin_unlock_irqrestore(&leak_lock, flags);
60 }
61
62 static inline
63 void btrfs_leak_debug_check(void)
64 {
65         struct extent_state *state;
66         struct extent_buffer *eb;
67
68         while (!list_empty(&states)) {
69                 state = list_entry(states.next, struct extent_state, leak_list);
70                 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
71                        state->start, state->end, state->state,
72                        extent_state_in_tree(state),
73                        refcount_read(&state->refs));
74                 list_del(&state->leak_list);
75                 kmem_cache_free(extent_state_cache, state);
76         }
77
78         while (!list_empty(&buffers)) {
79                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
80                 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81                        eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
82                 list_del(&eb->leak_list);
83                 kmem_cache_free(extent_buffer_cache, eb);
84         }
85 }
86
87 #define btrfs_debug_check_extent_io_range(tree, start, end)             \
88         __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
89 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
90                 struct extent_io_tree *tree, u64 start, u64 end)
91 {
92         if (tree->ops && tree->ops->check_extent_io_range)
93                 tree->ops->check_extent_io_range(tree->private_data, caller,
94                                                  start, end);
95 }
96 #else
97 #define btrfs_leak_debug_add(new, head) do {} while (0)
98 #define btrfs_leak_debug_del(entry)     do {} while (0)
99 #define btrfs_leak_debug_check()        do {} while (0)
100 #define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
101 #endif
102
103 #define BUFFER_LRU_MAX 64
104
105 struct tree_entry {
106         u64 start;
107         u64 end;
108         struct rb_node rb_node;
109 };
110
111 struct extent_page_data {
112         struct bio *bio;
113         struct extent_io_tree *tree;
114         /* tells writepage not to lock the state bits for this range
115          * it still does the unlocking
116          */
117         unsigned int extent_locked:1;
118
119         /* tells the submit_bio code to use REQ_SYNC */
120         unsigned int sync_io:1;
121 };
122
123 static int add_extent_changeset(struct extent_state *state, unsigned bits,
124                                  struct extent_changeset *changeset,
125                                  int set)
126 {
127         int ret;
128
129         if (!changeset)
130                 return 0;
131         if (set && (state->state & bits) == bits)
132                 return 0;
133         if (!set && (state->state & bits) == 0)
134                 return 0;
135         changeset->bytes_changed += state->end - state->start + 1;
136         ret = ulist_add(&changeset->range_changed, state->start, state->end,
137                         GFP_ATOMIC);
138         return ret;
139 }
140
141 static void flush_write_bio(struct extent_page_data *epd);
142
143 int __init extent_io_init(void)
144 {
145         extent_state_cache = kmem_cache_create("btrfs_extent_state",
146                         sizeof(struct extent_state), 0,
147                         SLAB_MEM_SPREAD, NULL);
148         if (!extent_state_cache)
149                 return -ENOMEM;
150
151         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
152                         sizeof(struct extent_buffer), 0,
153                         SLAB_MEM_SPREAD, NULL);
154         if (!extent_buffer_cache)
155                 goto free_state_cache;
156
157         if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
158                         offsetof(struct btrfs_io_bio, bio),
159                         BIOSET_NEED_BVECS))
160                 goto free_buffer_cache;
161
162         if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
163                 goto free_bioset;
164
165         return 0;
166
167 free_bioset:
168         bioset_exit(&btrfs_bioset);
169
170 free_buffer_cache:
171         kmem_cache_destroy(extent_buffer_cache);
172         extent_buffer_cache = NULL;
173
174 free_state_cache:
175         kmem_cache_destroy(extent_state_cache);
176         extent_state_cache = NULL;
177         return -ENOMEM;
178 }
179
180 void __cold extent_io_exit(void)
181 {
182         btrfs_leak_debug_check();
183
184         /*
185          * Make sure all delayed rcu free are flushed before we
186          * destroy caches.
187          */
188         rcu_barrier();
189         kmem_cache_destroy(extent_state_cache);
190         kmem_cache_destroy(extent_buffer_cache);
191         bioset_exit(&btrfs_bioset);
192 }
193
194 void extent_io_tree_init(struct extent_io_tree *tree,
195                          void *private_data)
196 {
197         tree->state = RB_ROOT;
198         tree->ops = NULL;
199         tree->dirty_bytes = 0;
200         spin_lock_init(&tree->lock);
201         tree->private_data = private_data;
202 }
203
204 static struct extent_state *alloc_extent_state(gfp_t mask)
205 {
206         struct extent_state *state;
207
208         /*
209          * The given mask might be not appropriate for the slab allocator,
210          * drop the unsupported bits
211          */
212         mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
213         state = kmem_cache_alloc(extent_state_cache, mask);
214         if (!state)
215                 return state;
216         state->state = 0;
217         state->failrec = NULL;
218         RB_CLEAR_NODE(&state->rb_node);
219         btrfs_leak_debug_add(&state->leak_list, &states);
220         refcount_set(&state->refs, 1);
221         init_waitqueue_head(&state->wq);
222         trace_alloc_extent_state(state, mask, _RET_IP_);
223         return state;
224 }
225
226 void free_extent_state(struct extent_state *state)
227 {
228         if (!state)
229                 return;
230         if (refcount_dec_and_test(&state->refs)) {
231                 WARN_ON(extent_state_in_tree(state));
232                 btrfs_leak_debug_del(&state->leak_list);
233                 trace_free_extent_state(state, _RET_IP_);
234                 kmem_cache_free(extent_state_cache, state);
235         }
236 }
237
238 static struct rb_node *tree_insert(struct rb_root *root,
239                                    struct rb_node *search_start,
240                                    u64 offset,
241                                    struct rb_node *node,
242                                    struct rb_node ***p_in,
243                                    struct rb_node **parent_in)
244 {
245         struct rb_node **p;
246         struct rb_node *parent = NULL;
247         struct tree_entry *entry;
248
249         if (p_in && parent_in) {
250                 p = *p_in;
251                 parent = *parent_in;
252                 goto do_insert;
253         }
254
255         p = search_start ? &search_start : &root->rb_node;
256         while (*p) {
257                 parent = *p;
258                 entry = rb_entry(parent, struct tree_entry, rb_node);
259
260                 if (offset < entry->start)
261                         p = &(*p)->rb_left;
262                 else if (offset > entry->end)
263                         p = &(*p)->rb_right;
264                 else
265                         return parent;
266         }
267
268 do_insert:
269         rb_link_node(node, parent, p);
270         rb_insert_color(node, root);
271         return NULL;
272 }
273
274 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
275                                       struct rb_node **prev_ret,
276                                       struct rb_node **next_ret,
277                                       struct rb_node ***p_ret,
278                                       struct rb_node **parent_ret)
279 {
280         struct rb_root *root = &tree->state;
281         struct rb_node **n = &root->rb_node;
282         struct rb_node *prev = NULL;
283         struct rb_node *orig_prev = NULL;
284         struct tree_entry *entry;
285         struct tree_entry *prev_entry = NULL;
286
287         while (*n) {
288                 prev = *n;
289                 entry = rb_entry(prev, struct tree_entry, rb_node);
290                 prev_entry = entry;
291
292                 if (offset < entry->start)
293                         n = &(*n)->rb_left;
294                 else if (offset > entry->end)
295                         n = &(*n)->rb_right;
296                 else
297                         return *n;
298         }
299
300         if (p_ret)
301                 *p_ret = n;
302         if (parent_ret)
303                 *parent_ret = prev;
304
305         if (prev_ret) {
306                 orig_prev = prev;
307                 while (prev && offset > prev_entry->end) {
308                         prev = rb_next(prev);
309                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
310                 }
311                 *prev_ret = prev;
312                 prev = orig_prev;
313         }
314
315         if (next_ret) {
316                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
317                 while (prev && offset < prev_entry->start) {
318                         prev = rb_prev(prev);
319                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
320                 }
321                 *next_ret = prev;
322         }
323         return NULL;
324 }
325
326 static inline struct rb_node *
327 tree_search_for_insert(struct extent_io_tree *tree,
328                        u64 offset,
329                        struct rb_node ***p_ret,
330                        struct rb_node **parent_ret)
331 {
332         struct rb_node *prev = NULL;
333         struct rb_node *ret;
334
335         ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
336         if (!ret)
337                 return prev;
338         return ret;
339 }
340
341 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
342                                           u64 offset)
343 {
344         return tree_search_for_insert(tree, offset, NULL, NULL);
345 }
346
347 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
348                      struct extent_state *other)
349 {
350         if (tree->ops && tree->ops->merge_extent_hook)
351                 tree->ops->merge_extent_hook(tree->private_data, new, other);
352 }
353
354 /*
355  * utility function to look for merge candidates inside a given range.
356  * Any extents with matching state are merged together into a single
357  * extent in the tree.  Extents with EXTENT_IO in their state field
358  * are not merged because the end_io handlers need to be able to do
359  * operations on them without sleeping (or doing allocations/splits).
360  *
361  * This should be called with the tree lock held.
362  */
363 static void merge_state(struct extent_io_tree *tree,
364                         struct extent_state *state)
365 {
366         struct extent_state *other;
367         struct rb_node *other_node;
368
369         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
370                 return;
371
372         other_node = rb_prev(&state->rb_node);
373         if (other_node) {
374                 other = rb_entry(other_node, struct extent_state, rb_node);
375                 if (other->end == state->start - 1 &&
376                     other->state == state->state) {
377                         merge_cb(tree, state, other);
378                         state->start = other->start;
379                         rb_erase(&other->rb_node, &tree->state);
380                         RB_CLEAR_NODE(&other->rb_node);
381                         free_extent_state(other);
382                 }
383         }
384         other_node = rb_next(&state->rb_node);
385         if (other_node) {
386                 other = rb_entry(other_node, struct extent_state, rb_node);
387                 if (other->start == state->end + 1 &&
388                     other->state == state->state) {
389                         merge_cb(tree, state, other);
390                         state->end = other->end;
391                         rb_erase(&other->rb_node, &tree->state);
392                         RB_CLEAR_NODE(&other->rb_node);
393                         free_extent_state(other);
394                 }
395         }
396 }
397
398 static void set_state_cb(struct extent_io_tree *tree,
399                          struct extent_state *state, unsigned *bits)
400 {
401         if (tree->ops && tree->ops->set_bit_hook)
402                 tree->ops->set_bit_hook(tree->private_data, state, bits);
403 }
404
405 static void clear_state_cb(struct extent_io_tree *tree,
406                            struct extent_state *state, unsigned *bits)
407 {
408         if (tree->ops && tree->ops->clear_bit_hook)
409                 tree->ops->clear_bit_hook(tree->private_data, state, bits);
410 }
411
412 static void set_state_bits(struct extent_io_tree *tree,
413                            struct extent_state *state, unsigned *bits,
414                            struct extent_changeset *changeset);
415
416 /*
417  * insert an extent_state struct into the tree.  'bits' are set on the
418  * struct before it is inserted.
419  *
420  * This may return -EEXIST if the extent is already there, in which case the
421  * state struct is freed.
422  *
423  * The tree lock is not taken internally.  This is a utility function and
424  * probably isn't what you want to call (see set/clear_extent_bit).
425  */
426 static int insert_state(struct extent_io_tree *tree,
427                         struct extent_state *state, u64 start, u64 end,
428                         struct rb_node ***p,
429                         struct rb_node **parent,
430                         unsigned *bits, struct extent_changeset *changeset)
431 {
432         struct rb_node *node;
433
434         if (end < start)
435                 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
436                        end, start);
437         state->start = start;
438         state->end = end;
439
440         set_state_bits(tree, state, bits, changeset);
441
442         node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
443         if (node) {
444                 struct extent_state *found;
445                 found = rb_entry(node, struct extent_state, rb_node);
446                 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
447                        found->start, found->end, start, end);
448                 return -EEXIST;
449         }
450         merge_state(tree, state);
451         return 0;
452 }
453
454 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
455                      u64 split)
456 {
457         if (tree->ops && tree->ops->split_extent_hook)
458                 tree->ops->split_extent_hook(tree->private_data, orig, split);
459 }
460
461 /*
462  * split a given extent state struct in two, inserting the preallocated
463  * struct 'prealloc' as the newly created second half.  'split' indicates an
464  * offset inside 'orig' where it should be split.
465  *
466  * Before calling,
467  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
468  * are two extent state structs in the tree:
469  * prealloc: [orig->start, split - 1]
470  * orig: [ split, orig->end ]
471  *
472  * The tree locks are not taken by this function. They need to be held
473  * by the caller.
474  */
475 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
476                        struct extent_state *prealloc, u64 split)
477 {
478         struct rb_node *node;
479
480         split_cb(tree, orig, split);
481
482         prealloc->start = orig->start;
483         prealloc->end = split - 1;
484         prealloc->state = orig->state;
485         orig->start = split;
486
487         node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
488                            &prealloc->rb_node, NULL, NULL);
489         if (node) {
490                 free_extent_state(prealloc);
491                 return -EEXIST;
492         }
493         return 0;
494 }
495
496 static struct extent_state *next_state(struct extent_state *state)
497 {
498         struct rb_node *next = rb_next(&state->rb_node);
499         if (next)
500                 return rb_entry(next, struct extent_state, rb_node);
501         else
502                 return NULL;
503 }
504
505 /*
506  * utility function to clear some bits in an extent state struct.
507  * it will optionally wake up any one waiting on this state (wake == 1).
508  *
509  * If no bits are set on the state struct after clearing things, the
510  * struct is freed and removed from the tree
511  */
512 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
513                                             struct extent_state *state,
514                                             unsigned *bits, int wake,
515                                             struct extent_changeset *changeset)
516 {
517         struct extent_state *next;
518         unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
519         int ret;
520
521         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
522                 u64 range = state->end - state->start + 1;
523                 WARN_ON(range > tree->dirty_bytes);
524                 tree->dirty_bytes -= range;
525         }
526         clear_state_cb(tree, state, bits);
527         ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
528         BUG_ON(ret < 0);
529         state->state &= ~bits_to_clear;
530         if (wake)
531                 wake_up(&state->wq);
532         if (state->state == 0) {
533                 next = next_state(state);
534                 if (extent_state_in_tree(state)) {
535                         rb_erase(&state->rb_node, &tree->state);
536                         RB_CLEAR_NODE(&state->rb_node);
537                         free_extent_state(state);
538                 } else {
539                         WARN_ON(1);
540                 }
541         } else {
542                 merge_state(tree, state);
543                 next = next_state(state);
544         }
545         return next;
546 }
547
548 static struct extent_state *
549 alloc_extent_state_atomic(struct extent_state *prealloc)
550 {
551         if (!prealloc)
552                 prealloc = alloc_extent_state(GFP_ATOMIC);
553
554         return prealloc;
555 }
556
557 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
558 {
559         struct inode *inode = tree->private_data;
560
561         btrfs_panic(btrfs_sb(inode->i_sb), err,
562         "locking error: extent tree was modified by another thread while locked");
563 }
564
565 /*
566  * clear some bits on a range in the tree.  This may require splitting
567  * or inserting elements in the tree, so the gfp mask is used to
568  * indicate which allocations or sleeping are allowed.
569  *
570  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
571  * the given range from the tree regardless of state (ie for truncate).
572  *
573  * the range [start, end] is inclusive.
574  *
575  * This takes the tree lock, and returns 0 on success and < 0 on error.
576  */
577 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
578                               unsigned bits, int wake, int delete,
579                               struct extent_state **cached_state,
580                               gfp_t mask, struct extent_changeset *changeset)
581 {
582         struct extent_state *state;
583         struct extent_state *cached;
584         struct extent_state *prealloc = NULL;
585         struct rb_node *node;
586         u64 last_end;
587         int err;
588         int clear = 0;
589
590         btrfs_debug_check_extent_io_range(tree, start, end);
591
592         if (bits & EXTENT_DELALLOC)
593                 bits |= EXTENT_NORESERVE;
594
595         if (delete)
596                 bits |= ~EXTENT_CTLBITS;
597         bits |= EXTENT_FIRST_DELALLOC;
598
599         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
600                 clear = 1;
601 again:
602         if (!prealloc && gfpflags_allow_blocking(mask)) {
603                 /*
604                  * Don't care for allocation failure here because we might end
605                  * up not needing the pre-allocated extent state at all, which
606                  * is the case if we only have in the tree extent states that
607                  * cover our input range and don't cover too any other range.
608                  * If we end up needing a new extent state we allocate it later.
609                  */
610                 prealloc = alloc_extent_state(mask);
611         }
612
613         spin_lock(&tree->lock);
614         if (cached_state) {
615                 cached = *cached_state;
616
617                 if (clear) {
618                         *cached_state = NULL;
619                         cached_state = NULL;
620                 }
621
622                 if (cached && extent_state_in_tree(cached) &&
623                     cached->start <= start && cached->end > start) {
624                         if (clear)
625                                 refcount_dec(&cached->refs);
626                         state = cached;
627                         goto hit_next;
628                 }
629                 if (clear)
630                         free_extent_state(cached);
631         }
632         /*
633          * this search will find the extents that end after
634          * our range starts
635          */
636         node = tree_search(tree, start);
637         if (!node)
638                 goto out;
639         state = rb_entry(node, struct extent_state, rb_node);
640 hit_next:
641         if (state->start > end)
642                 goto out;
643         WARN_ON(state->end < start);
644         last_end = state->end;
645
646         /* the state doesn't have the wanted bits, go ahead */
647         if (!(state->state & bits)) {
648                 state = next_state(state);
649                 goto next;
650         }
651
652         /*
653          *     | ---- desired range ---- |
654          *  | state | or
655          *  | ------------- state -------------- |
656          *
657          * We need to split the extent we found, and may flip
658          * bits on second half.
659          *
660          * If the extent we found extends past our range, we
661          * just split and search again.  It'll get split again
662          * the next time though.
663          *
664          * If the extent we found is inside our range, we clear
665          * the desired bit on it.
666          */
667
668         if (state->start < start) {
669                 prealloc = alloc_extent_state_atomic(prealloc);
670                 BUG_ON(!prealloc);
671                 err = split_state(tree, state, prealloc, start);
672                 if (err)
673                         extent_io_tree_panic(tree, err);
674
675                 prealloc = NULL;
676                 if (err)
677                         goto out;
678                 if (state->end <= end) {
679                         state = clear_state_bit(tree, state, &bits, wake,
680                                                 changeset);
681                         goto next;
682                 }
683                 goto search_again;
684         }
685         /*
686          * | ---- desired range ---- |
687          *                        | state |
688          * We need to split the extent, and clear the bit
689          * on the first half
690          */
691         if (state->start <= end && state->end > end) {
692                 prealloc = alloc_extent_state_atomic(prealloc);
693                 BUG_ON(!prealloc);
694                 err = split_state(tree, state, prealloc, end + 1);
695                 if (err)
696                         extent_io_tree_panic(tree, err);
697
698                 if (wake)
699                         wake_up(&state->wq);
700
701                 clear_state_bit(tree, prealloc, &bits, wake, changeset);
702
703                 prealloc = NULL;
704                 goto out;
705         }
706
707         state = clear_state_bit(tree, state, &bits, wake, changeset);
708 next:
709         if (last_end == (u64)-1)
710                 goto out;
711         start = last_end + 1;
712         if (start <= end && state && !need_resched())
713                 goto hit_next;
714
715 search_again:
716         if (start > end)
717                 goto out;
718         spin_unlock(&tree->lock);
719         if (gfpflags_allow_blocking(mask))
720                 cond_resched();
721         goto again;
722
723 out:
724         spin_unlock(&tree->lock);
725         if (prealloc)
726                 free_extent_state(prealloc);
727
728         return 0;
729
730 }
731
732 static void wait_on_state(struct extent_io_tree *tree,
733                           struct extent_state *state)
734                 __releases(tree->lock)
735                 __acquires(tree->lock)
736 {
737         DEFINE_WAIT(wait);
738         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
739         spin_unlock(&tree->lock);
740         schedule();
741         spin_lock(&tree->lock);
742         finish_wait(&state->wq, &wait);
743 }
744
745 /*
746  * waits for one or more bits to clear on a range in the state tree.
747  * The range [start, end] is inclusive.
748  * The tree lock is taken by this function
749  */
750 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
751                             unsigned long bits)
752 {
753         struct extent_state *state;
754         struct rb_node *node;
755
756         btrfs_debug_check_extent_io_range(tree, start, end);
757
758         spin_lock(&tree->lock);
759 again:
760         while (1) {
761                 /*
762                  * this search will find all the extents that end after
763                  * our range starts
764                  */
765                 node = tree_search(tree, start);
766 process_node:
767                 if (!node)
768                         break;
769
770                 state = rb_entry(node, struct extent_state, rb_node);
771
772                 if (state->start > end)
773                         goto out;
774
775                 if (state->state & bits) {
776                         start = state->start;
777                         refcount_inc(&state->refs);
778                         wait_on_state(tree, state);
779                         free_extent_state(state);
780                         goto again;
781                 }
782                 start = state->end + 1;
783
784                 if (start > end)
785                         break;
786
787                 if (!cond_resched_lock(&tree->lock)) {
788                         node = rb_next(node);
789                         goto process_node;
790                 }
791         }
792 out:
793         spin_unlock(&tree->lock);
794 }
795
796 static void set_state_bits(struct extent_io_tree *tree,
797                            struct extent_state *state,
798                            unsigned *bits, struct extent_changeset *changeset)
799 {
800         unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
801         int ret;
802
803         set_state_cb(tree, state, bits);
804         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
805                 u64 range = state->end - state->start + 1;
806                 tree->dirty_bytes += range;
807         }
808         ret = add_extent_changeset(state, bits_to_set, changeset, 1);
809         BUG_ON(ret < 0);
810         state->state |= bits_to_set;
811 }
812
813 static void cache_state_if_flags(struct extent_state *state,
814                                  struct extent_state **cached_ptr,
815                                  unsigned flags)
816 {
817         if (cached_ptr && !(*cached_ptr)) {
818                 if (!flags || (state->state & flags)) {
819                         *cached_ptr = state;
820                         refcount_inc(&state->refs);
821                 }
822         }
823 }
824
825 static void cache_state(struct extent_state *state,
826                         struct extent_state **cached_ptr)
827 {
828         return cache_state_if_flags(state, cached_ptr,
829                                     EXTENT_IOBITS | EXTENT_BOUNDARY);
830 }
831
832 /*
833  * set some bits on a range in the tree.  This may require allocations or
834  * sleeping, so the gfp mask is used to indicate what is allowed.
835  *
836  * If any of the exclusive bits are set, this will fail with -EEXIST if some
837  * part of the range already has the desired bits set.  The start of the
838  * existing range is returned in failed_start in this case.
839  *
840  * [start, end] is inclusive This takes the tree lock.
841  */
842
843 static int __must_check
844 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
845                  unsigned bits, unsigned exclusive_bits,
846                  u64 *failed_start, struct extent_state **cached_state,
847                  gfp_t mask, struct extent_changeset *changeset)
848 {
849         struct extent_state *state;
850         struct extent_state *prealloc = NULL;
851         struct rb_node *node;
852         struct rb_node **p;
853         struct rb_node *parent;
854         int err = 0;
855         u64 last_start;
856         u64 last_end;
857
858         btrfs_debug_check_extent_io_range(tree, start, end);
859
860         bits |= EXTENT_FIRST_DELALLOC;
861 again:
862         if (!prealloc && gfpflags_allow_blocking(mask)) {
863                 /*
864                  * Don't care for allocation failure here because we might end
865                  * up not needing the pre-allocated extent state at all, which
866                  * is the case if we only have in the tree extent states that
867                  * cover our input range and don't cover too any other range.
868                  * If we end up needing a new extent state we allocate it later.
869                  */
870                 prealloc = alloc_extent_state(mask);
871         }
872
873         spin_lock(&tree->lock);
874         if (cached_state && *cached_state) {
875                 state = *cached_state;
876                 if (state->start <= start && state->end > start &&
877                     extent_state_in_tree(state)) {
878                         node = &state->rb_node;
879                         goto hit_next;
880                 }
881         }
882         /*
883          * this search will find all the extents that end after
884          * our range starts.
885          */
886         node = tree_search_for_insert(tree, start, &p, &parent);
887         if (!node) {
888                 prealloc = alloc_extent_state_atomic(prealloc);
889                 BUG_ON(!prealloc);
890                 err = insert_state(tree, prealloc, start, end,
891                                    &p, &parent, &bits, changeset);
892                 if (err)
893                         extent_io_tree_panic(tree, err);
894
895                 cache_state(prealloc, cached_state);
896                 prealloc = NULL;
897                 goto out;
898         }
899         state = rb_entry(node, struct extent_state, rb_node);
900 hit_next:
901         last_start = state->start;
902         last_end = state->end;
903
904         /*
905          * | ---- desired range ---- |
906          * | state |
907          *
908          * Just lock what we found and keep going
909          */
910         if (state->start == start && state->end <= end) {
911                 if (state->state & exclusive_bits) {
912                         *failed_start = state->start;
913                         err = -EEXIST;
914                         goto out;
915                 }
916
917                 set_state_bits(tree, state, &bits, changeset);
918                 cache_state(state, cached_state);
919                 merge_state(tree, state);
920                 if (last_end == (u64)-1)
921                         goto out;
922                 start = last_end + 1;
923                 state = next_state(state);
924                 if (start < end && state && state->start == start &&
925                     !need_resched())
926                         goto hit_next;
927                 goto search_again;
928         }
929
930         /*
931          *     | ---- desired range ---- |
932          * | state |
933          *   or
934          * | ------------- state -------------- |
935          *
936          * We need to split the extent we found, and may flip bits on
937          * second half.
938          *
939          * If the extent we found extends past our
940          * range, we just split and search again.  It'll get split
941          * again the next time though.
942          *
943          * If the extent we found is inside our range, we set the
944          * desired bit on it.
945          */
946         if (state->start < start) {
947                 if (state->state & exclusive_bits) {
948                         *failed_start = start;
949                         err = -EEXIST;
950                         goto out;
951                 }
952
953                 prealloc = alloc_extent_state_atomic(prealloc);
954                 BUG_ON(!prealloc);
955                 err = split_state(tree, state, prealloc, start);
956                 if (err)
957                         extent_io_tree_panic(tree, err);
958
959                 prealloc = NULL;
960                 if (err)
961                         goto out;
962                 if (state->end <= end) {
963                         set_state_bits(tree, state, &bits, changeset);
964                         cache_state(state, cached_state);
965                         merge_state(tree, state);
966                         if (last_end == (u64)-1)
967                                 goto out;
968                         start = last_end + 1;
969                         state = next_state(state);
970                         if (start < end && state && state->start == start &&
971                             !need_resched())
972                                 goto hit_next;
973                 }
974                 goto search_again;
975         }
976         /*
977          * | ---- desired range ---- |
978          *     | state | or               | state |
979          *
980          * There's a hole, we need to insert something in it and
981          * ignore the extent we found.
982          */
983         if (state->start > start) {
984                 u64 this_end;
985                 if (end < last_start)
986                         this_end = end;
987                 else
988                         this_end = last_start - 1;
989
990                 prealloc = alloc_extent_state_atomic(prealloc);
991                 BUG_ON(!prealloc);
992
993                 /*
994                  * Avoid to free 'prealloc' if it can be merged with
995                  * the later extent.
996                  */
997                 err = insert_state(tree, prealloc, start, this_end,
998                                    NULL, NULL, &bits, changeset);
999                 if (err)
1000                         extent_io_tree_panic(tree, err);
1001
1002                 cache_state(prealloc, cached_state);
1003                 prealloc = NULL;
1004                 start = this_end + 1;
1005                 goto search_again;
1006         }
1007         /*
1008          * | ---- desired range ---- |
1009          *                        | state |
1010          * We need to split the extent, and set the bit
1011          * on the first half
1012          */
1013         if (state->start <= end && state->end > end) {
1014                 if (state->state & exclusive_bits) {
1015                         *failed_start = start;
1016                         err = -EEXIST;
1017                         goto out;
1018                 }
1019
1020                 prealloc = alloc_extent_state_atomic(prealloc);
1021                 BUG_ON(!prealloc);
1022                 err = split_state(tree, state, prealloc, end + 1);
1023                 if (err)
1024                         extent_io_tree_panic(tree, err);
1025
1026                 set_state_bits(tree, prealloc, &bits, changeset);
1027                 cache_state(prealloc, cached_state);
1028                 merge_state(tree, prealloc);
1029                 prealloc = NULL;
1030                 goto out;
1031         }
1032
1033 search_again:
1034         if (start > end)
1035                 goto out;
1036         spin_unlock(&tree->lock);
1037         if (gfpflags_allow_blocking(mask))
1038                 cond_resched();
1039         goto again;
1040
1041 out:
1042         spin_unlock(&tree->lock);
1043         if (prealloc)
1044                 free_extent_state(prealloc);
1045
1046         return err;
1047
1048 }
1049
1050 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1051                    unsigned bits, u64 * failed_start,
1052                    struct extent_state **cached_state, gfp_t mask)
1053 {
1054         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1055                                 cached_state, mask, NULL);
1056 }
1057
1058
1059 /**
1060  * convert_extent_bit - convert all bits in a given range from one bit to
1061  *                      another
1062  * @tree:       the io tree to search
1063  * @start:      the start offset in bytes
1064  * @end:        the end offset in bytes (inclusive)
1065  * @bits:       the bits to set in this range
1066  * @clear_bits: the bits to clear in this range
1067  * @cached_state:       state that we're going to cache
1068  *
1069  * This will go through and set bits for the given range.  If any states exist
1070  * already in this range they are set with the given bit and cleared of the
1071  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1072  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1073  * boundary bits like LOCK.
1074  *
1075  * All allocations are done with GFP_NOFS.
1076  */
1077 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1078                        unsigned bits, unsigned clear_bits,
1079                        struct extent_state **cached_state)
1080 {
1081         struct extent_state *state;
1082         struct extent_state *prealloc = NULL;
1083         struct rb_node *node;
1084         struct rb_node **p;
1085         struct rb_node *parent;
1086         int err = 0;
1087         u64 last_start;
1088         u64 last_end;
1089         bool first_iteration = true;
1090
1091         btrfs_debug_check_extent_io_range(tree, start, end);
1092
1093 again:
1094         if (!prealloc) {
1095                 /*
1096                  * Best effort, don't worry if extent state allocation fails
1097                  * here for the first iteration. We might have a cached state
1098                  * that matches exactly the target range, in which case no
1099                  * extent state allocations are needed. We'll only know this
1100                  * after locking the tree.
1101                  */
1102                 prealloc = alloc_extent_state(GFP_NOFS);
1103                 if (!prealloc && !first_iteration)
1104                         return -ENOMEM;
1105         }
1106
1107         spin_lock(&tree->lock);
1108         if (cached_state && *cached_state) {
1109                 state = *cached_state;
1110                 if (state->start <= start && state->end > start &&
1111                     extent_state_in_tree(state)) {
1112                         node = &state->rb_node;
1113                         goto hit_next;
1114                 }
1115         }
1116
1117         /*
1118          * this search will find all the extents that end after
1119          * our range starts.
1120          */
1121         node = tree_search_for_insert(tree, start, &p, &parent);
1122         if (!node) {
1123                 prealloc = alloc_extent_state_atomic(prealloc);
1124                 if (!prealloc) {
1125                         err = -ENOMEM;
1126                         goto out;
1127                 }
1128                 err = insert_state(tree, prealloc, start, end,
1129                                    &p, &parent, &bits, NULL);
1130                 if (err)
1131                         extent_io_tree_panic(tree, err);
1132                 cache_state(prealloc, cached_state);
1133                 prealloc = NULL;
1134                 goto out;
1135         }
1136         state = rb_entry(node, struct extent_state, rb_node);
1137 hit_next:
1138         last_start = state->start;
1139         last_end = state->end;
1140
1141         /*
1142          * | ---- desired range ---- |
1143          * | state |
1144          *
1145          * Just lock what we found and keep going
1146          */
1147         if (state->start == start && state->end <= end) {
1148                 set_state_bits(tree, state, &bits, NULL);
1149                 cache_state(state, cached_state);
1150                 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1151                 if (last_end == (u64)-1)
1152                         goto out;
1153                 start = last_end + 1;
1154                 if (start < end && state && state->start == start &&
1155                     !need_resched())
1156                         goto hit_next;
1157                 goto search_again;
1158         }
1159
1160         /*
1161          *     | ---- desired range ---- |
1162          * | state |
1163          *   or
1164          * | ------------- state -------------- |
1165          *
1166          * We need to split the extent we found, and may flip bits on
1167          * second half.
1168          *
1169          * If the extent we found extends past our
1170          * range, we just split and search again.  It'll get split
1171          * again the next time though.
1172          *
1173          * If the extent we found is inside our range, we set the
1174          * desired bit on it.
1175          */
1176         if (state->start < start) {
1177                 prealloc = alloc_extent_state_atomic(prealloc);
1178                 if (!prealloc) {
1179                         err = -ENOMEM;
1180                         goto out;
1181                 }
1182                 err = split_state(tree, state, prealloc, start);
1183                 if (err)
1184                         extent_io_tree_panic(tree, err);
1185                 prealloc = NULL;
1186                 if (err)
1187                         goto out;
1188                 if (state->end <= end) {
1189                         set_state_bits(tree, state, &bits, NULL);
1190                         cache_state(state, cached_state);
1191                         state = clear_state_bit(tree, state, &clear_bits, 0,
1192                                                 NULL);
1193                         if (last_end == (u64)-1)
1194                                 goto out;
1195                         start = last_end + 1;
1196                         if (start < end && state && state->start == start &&
1197                             !need_resched())
1198                                 goto hit_next;
1199                 }
1200                 goto search_again;
1201         }
1202         /*
1203          * | ---- desired range ---- |
1204          *     | state | or               | state |
1205          *
1206          * There's a hole, we need to insert something in it and
1207          * ignore the extent we found.
1208          */
1209         if (state->start > start) {
1210                 u64 this_end;
1211                 if (end < last_start)
1212                         this_end = end;
1213                 else
1214                         this_end = last_start - 1;
1215
1216                 prealloc = alloc_extent_state_atomic(prealloc);
1217                 if (!prealloc) {
1218                         err = -ENOMEM;
1219                         goto out;
1220                 }
1221
1222                 /*
1223                  * Avoid to free 'prealloc' if it can be merged with
1224                  * the later extent.
1225                  */
1226                 err = insert_state(tree, prealloc, start, this_end,
1227                                    NULL, NULL, &bits, NULL);
1228                 if (err)
1229                         extent_io_tree_panic(tree, err);
1230                 cache_state(prealloc, cached_state);
1231                 prealloc = NULL;
1232                 start = this_end + 1;
1233                 goto search_again;
1234         }
1235         /*
1236          * | ---- desired range ---- |
1237          *                        | state |
1238          * We need to split the extent, and set the bit
1239          * on the first half
1240          */
1241         if (state->start <= end && state->end > end) {
1242                 prealloc = alloc_extent_state_atomic(prealloc);
1243                 if (!prealloc) {
1244                         err = -ENOMEM;
1245                         goto out;
1246                 }
1247
1248                 err = split_state(tree, state, prealloc, end + 1);
1249                 if (err)
1250                         extent_io_tree_panic(tree, err);
1251
1252                 set_state_bits(tree, prealloc, &bits, NULL);
1253                 cache_state(prealloc, cached_state);
1254                 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1255                 prealloc = NULL;
1256                 goto out;
1257         }
1258
1259 search_again:
1260         if (start > end)
1261                 goto out;
1262         spin_unlock(&tree->lock);
1263         cond_resched();
1264         first_iteration = false;
1265         goto again;
1266
1267 out:
1268         spin_unlock(&tree->lock);
1269         if (prealloc)
1270                 free_extent_state(prealloc);
1271
1272         return err;
1273 }
1274
1275 /* wrappers around set/clear extent bit */
1276 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1277                            unsigned bits, struct extent_changeset *changeset)
1278 {
1279         /*
1280          * We don't support EXTENT_LOCKED yet, as current changeset will
1281          * record any bits changed, so for EXTENT_LOCKED case, it will
1282          * either fail with -EEXIST or changeset will record the whole
1283          * range.
1284          */
1285         BUG_ON(bits & EXTENT_LOCKED);
1286
1287         return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1288                                 changeset);
1289 }
1290
1291 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1292                      unsigned bits, int wake, int delete,
1293                      struct extent_state **cached)
1294 {
1295         return __clear_extent_bit(tree, start, end, bits, wake, delete,
1296                                   cached, GFP_NOFS, NULL);
1297 }
1298
1299 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1300                 unsigned bits, struct extent_changeset *changeset)
1301 {
1302         /*
1303          * Don't support EXTENT_LOCKED case, same reason as
1304          * set_record_extent_bits().
1305          */
1306         BUG_ON(bits & EXTENT_LOCKED);
1307
1308         return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1309                                   changeset);
1310 }
1311
1312 /*
1313  * either insert or lock state struct between start and end use mask to tell
1314  * us if waiting is desired.
1315  */
1316 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1317                      struct extent_state **cached_state)
1318 {
1319         int err;
1320         u64 failed_start;
1321
1322         while (1) {
1323                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1324                                        EXTENT_LOCKED, &failed_start,
1325                                        cached_state, GFP_NOFS, NULL);
1326                 if (err == -EEXIST) {
1327                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1328                         start = failed_start;
1329                 } else
1330                         break;
1331                 WARN_ON(start > end);
1332         }
1333         return err;
1334 }
1335
1336 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1337 {
1338         int err;
1339         u64 failed_start;
1340
1341         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1342                                &failed_start, NULL, GFP_NOFS, NULL);
1343         if (err == -EEXIST) {
1344                 if (failed_start > start)
1345                         clear_extent_bit(tree, start, failed_start - 1,
1346                                          EXTENT_LOCKED, 1, 0, NULL);
1347                 return 0;
1348         }
1349         return 1;
1350 }
1351
1352 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1353 {
1354         unsigned long index = start >> PAGE_SHIFT;
1355         unsigned long end_index = end >> PAGE_SHIFT;
1356         struct page *page;
1357
1358         while (index <= end_index) {
1359                 page = find_get_page(inode->i_mapping, index);
1360                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1361                 clear_page_dirty_for_io(page);
1362                 put_page(page);
1363                 index++;
1364         }
1365 }
1366
1367 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1368 {
1369         unsigned long index = start >> PAGE_SHIFT;
1370         unsigned long end_index = end >> PAGE_SHIFT;
1371         struct page *page;
1372
1373         while (index <= end_index) {
1374                 page = find_get_page(inode->i_mapping, index);
1375                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1376                 __set_page_dirty_nobuffers(page);
1377                 account_page_redirty(page);
1378                 put_page(page);
1379                 index++;
1380         }
1381 }
1382
1383 /* find the first state struct with 'bits' set after 'start', and
1384  * return it.  tree->lock must be held.  NULL will returned if
1385  * nothing was found after 'start'
1386  */
1387 static struct extent_state *
1388 find_first_extent_bit_state(struct extent_io_tree *tree,
1389                             u64 start, unsigned bits)
1390 {
1391         struct rb_node *node;
1392         struct extent_state *state;
1393
1394         /*
1395          * this search will find all the extents that end after
1396          * our range starts.
1397          */
1398         node = tree_search(tree, start);
1399         if (!node)
1400                 goto out;
1401
1402         while (1) {
1403                 state = rb_entry(node, struct extent_state, rb_node);
1404                 if (state->end >= start && (state->state & bits))
1405                         return state;
1406
1407                 node = rb_next(node);
1408                 if (!node)
1409                         break;
1410         }
1411 out:
1412         return NULL;
1413 }
1414
1415 /*
1416  * find the first offset in the io tree with 'bits' set. zero is
1417  * returned if we find something, and *start_ret and *end_ret are
1418  * set to reflect the state struct that was found.
1419  *
1420  * If nothing was found, 1 is returned. If found something, return 0.
1421  */
1422 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1423                           u64 *start_ret, u64 *end_ret, unsigned bits,
1424                           struct extent_state **cached_state)
1425 {
1426         struct extent_state *state;
1427         struct rb_node *n;
1428         int ret = 1;
1429
1430         spin_lock(&tree->lock);
1431         if (cached_state && *cached_state) {
1432                 state = *cached_state;
1433                 if (state->end == start - 1 && extent_state_in_tree(state)) {
1434                         n = rb_next(&state->rb_node);
1435                         while (n) {
1436                                 state = rb_entry(n, struct extent_state,
1437                                                  rb_node);
1438                                 if (state->state & bits)
1439                                         goto got_it;
1440                                 n = rb_next(n);
1441                         }
1442                         free_extent_state(*cached_state);
1443                         *cached_state = NULL;
1444                         goto out;
1445                 }
1446                 free_extent_state(*cached_state);
1447                 *cached_state = NULL;
1448         }
1449
1450         state = find_first_extent_bit_state(tree, start, bits);
1451 got_it:
1452         if (state) {
1453                 cache_state_if_flags(state, cached_state, 0);
1454                 *start_ret = state->start;
1455                 *end_ret = state->end;
1456                 ret = 0;
1457         }
1458 out:
1459         spin_unlock(&tree->lock);
1460         return ret;
1461 }
1462
1463 /*
1464  * find a contiguous range of bytes in the file marked as delalloc, not
1465  * more than 'max_bytes'.  start and end are used to return the range,
1466  *
1467  * 1 is returned if we find something, 0 if nothing was in the tree
1468  */
1469 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1470                                         u64 *start, u64 *end, u64 max_bytes,
1471                                         struct extent_state **cached_state)
1472 {
1473         struct rb_node *node;
1474         struct extent_state *state;
1475         u64 cur_start = *start;
1476         u64 found = 0;
1477         u64 total_bytes = 0;
1478
1479         spin_lock(&tree->lock);
1480
1481         /*
1482          * this search will find all the extents that end after
1483          * our range starts.
1484          */
1485         node = tree_search(tree, cur_start);
1486         if (!node) {
1487                 if (!found)
1488                         *end = (u64)-1;
1489                 goto out;
1490         }
1491
1492         while (1) {
1493                 state = rb_entry(node, struct extent_state, rb_node);
1494                 if (found && (state->start != cur_start ||
1495                               (state->state & EXTENT_BOUNDARY))) {
1496                         goto out;
1497                 }
1498                 if (!(state->state & EXTENT_DELALLOC)) {
1499                         if (!found)
1500                                 *end = state->end;
1501                         goto out;
1502                 }
1503                 if (!found) {
1504                         *start = state->start;
1505                         *cached_state = state;
1506                         refcount_inc(&state->refs);
1507                 }
1508                 found++;
1509                 *end = state->end;
1510                 cur_start = state->end + 1;
1511                 node = rb_next(node);
1512                 total_bytes += state->end - state->start + 1;
1513                 if (total_bytes >= max_bytes)
1514                         break;
1515                 if (!node)
1516                         break;
1517         }
1518 out:
1519         spin_unlock(&tree->lock);
1520         return found;
1521 }
1522
1523 static int __process_pages_contig(struct address_space *mapping,
1524                                   struct page *locked_page,
1525                                   pgoff_t start_index, pgoff_t end_index,
1526                                   unsigned long page_ops, pgoff_t *index_ret);
1527
1528 static noinline void __unlock_for_delalloc(struct inode *inode,
1529                                            struct page *locked_page,
1530                                            u64 start, u64 end)
1531 {
1532         unsigned long index = start >> PAGE_SHIFT;
1533         unsigned long end_index = end >> PAGE_SHIFT;
1534
1535         ASSERT(locked_page);
1536         if (index == locked_page->index && end_index == index)
1537                 return;
1538
1539         __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1540                                PAGE_UNLOCK, NULL);
1541 }
1542
1543 static noinline int lock_delalloc_pages(struct inode *inode,
1544                                         struct page *locked_page,
1545                                         u64 delalloc_start,
1546                                         u64 delalloc_end)
1547 {
1548         unsigned long index = delalloc_start >> PAGE_SHIFT;
1549         unsigned long index_ret = index;
1550         unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1551         int ret;
1552
1553         ASSERT(locked_page);
1554         if (index == locked_page->index && index == end_index)
1555                 return 0;
1556
1557         ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1558                                      end_index, PAGE_LOCK, &index_ret);
1559         if (ret == -EAGAIN)
1560                 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1561                                       (u64)index_ret << PAGE_SHIFT);
1562         return ret;
1563 }
1564
1565 /*
1566  * find a contiguous range of bytes in the file marked as delalloc, not
1567  * more than 'max_bytes'.  start and end are used to return the range,
1568  *
1569  * 1 is returned if we find something, 0 if nothing was in the tree
1570  */
1571 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1572                                     struct extent_io_tree *tree,
1573                                     struct page *locked_page, u64 *start,
1574                                     u64 *end, u64 max_bytes)
1575 {
1576         u64 delalloc_start;
1577         u64 delalloc_end;
1578         u64 found;
1579         struct extent_state *cached_state = NULL;
1580         int ret;
1581         int loops = 0;
1582
1583 again:
1584         /* step one, find a bunch of delalloc bytes starting at start */
1585         delalloc_start = *start;
1586         delalloc_end = 0;
1587         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1588                                     max_bytes, &cached_state);
1589         if (!found || delalloc_end <= *start) {
1590                 *start = delalloc_start;
1591                 *end = delalloc_end;
1592                 free_extent_state(cached_state);
1593                 return 0;
1594         }
1595
1596         /*
1597          * start comes from the offset of locked_page.  We have to lock
1598          * pages in order, so we can't process delalloc bytes before
1599          * locked_page
1600          */
1601         if (delalloc_start < *start)
1602                 delalloc_start = *start;
1603
1604         /*
1605          * make sure to limit the number of pages we try to lock down
1606          */
1607         if (delalloc_end + 1 - delalloc_start > max_bytes)
1608                 delalloc_end = delalloc_start + max_bytes - 1;
1609
1610         /* step two, lock all the pages after the page that has start */
1611         ret = lock_delalloc_pages(inode, locked_page,
1612                                   delalloc_start, delalloc_end);
1613         if (ret == -EAGAIN) {
1614                 /* some of the pages are gone, lets avoid looping by
1615                  * shortening the size of the delalloc range we're searching
1616                  */
1617                 free_extent_state(cached_state);
1618                 cached_state = NULL;
1619                 if (!loops) {
1620                         max_bytes = PAGE_SIZE;
1621                         loops = 1;
1622                         goto again;
1623                 } else {
1624                         found = 0;
1625                         goto out_failed;
1626                 }
1627         }
1628         BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1629
1630         /* step three, lock the state bits for the whole range */
1631         lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1632
1633         /* then test to make sure it is all still delalloc */
1634         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1635                              EXTENT_DELALLOC, 1, cached_state);
1636         if (!ret) {
1637                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1638                                      &cached_state);
1639                 __unlock_for_delalloc(inode, locked_page,
1640                               delalloc_start, delalloc_end);
1641                 cond_resched();
1642                 goto again;
1643         }
1644         free_extent_state(cached_state);
1645         *start = delalloc_start;
1646         *end = delalloc_end;
1647 out_failed:
1648         return found;
1649 }
1650
1651 static int __process_pages_contig(struct address_space *mapping,
1652                                   struct page *locked_page,
1653                                   pgoff_t start_index, pgoff_t end_index,
1654                                   unsigned long page_ops, pgoff_t *index_ret)
1655 {
1656         unsigned long nr_pages = end_index - start_index + 1;
1657         unsigned long pages_locked = 0;
1658         pgoff_t index = start_index;
1659         struct page *pages[16];
1660         unsigned ret;
1661         int err = 0;
1662         int i;
1663
1664         if (page_ops & PAGE_LOCK) {
1665                 ASSERT(page_ops == PAGE_LOCK);
1666                 ASSERT(index_ret && *index_ret == start_index);
1667         }
1668
1669         if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1670                 mapping_set_error(mapping, -EIO);
1671
1672         while (nr_pages > 0) {
1673                 ret = find_get_pages_contig(mapping, index,
1674                                      min_t(unsigned long,
1675                                      nr_pages, ARRAY_SIZE(pages)), pages);
1676                 if (ret == 0) {
1677                         /*
1678                          * Only if we're going to lock these pages,
1679                          * can we find nothing at @index.
1680                          */
1681                         ASSERT(page_ops & PAGE_LOCK);
1682                         err = -EAGAIN;
1683                         goto out;
1684                 }
1685
1686                 for (i = 0; i < ret; i++) {
1687                         if (page_ops & PAGE_SET_PRIVATE2)
1688                                 SetPagePrivate2(pages[i]);
1689
1690                         if (pages[i] == locked_page) {
1691                                 put_page(pages[i]);
1692                                 pages_locked++;
1693                                 continue;
1694                         }
1695                         if (page_ops & PAGE_CLEAR_DIRTY)
1696                                 clear_page_dirty_for_io(pages[i]);
1697                         if (page_ops & PAGE_SET_WRITEBACK)
1698                                 set_page_writeback(pages[i]);
1699                         if (page_ops & PAGE_SET_ERROR)
1700                                 SetPageError(pages[i]);
1701                         if (page_ops & PAGE_END_WRITEBACK)
1702                                 end_page_writeback(pages[i]);
1703                         if (page_ops & PAGE_UNLOCK)
1704                                 unlock_page(pages[i]);
1705                         if (page_ops & PAGE_LOCK) {
1706                                 lock_page(pages[i]);
1707                                 if (!PageDirty(pages[i]) ||
1708                                     pages[i]->mapping != mapping) {
1709                                         unlock_page(pages[i]);
1710                                         put_page(pages[i]);
1711                                         err = -EAGAIN;
1712                                         goto out;
1713                                 }
1714                         }
1715                         put_page(pages[i]);
1716                         pages_locked++;
1717                 }
1718                 nr_pages -= ret;
1719                 index += ret;
1720                 cond_resched();
1721         }
1722 out:
1723         if (err && index_ret)
1724                 *index_ret = start_index + pages_locked - 1;
1725         return err;
1726 }
1727
1728 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1729                                  u64 delalloc_end, struct page *locked_page,
1730                                  unsigned clear_bits,
1731                                  unsigned long page_ops)
1732 {
1733         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1734                          NULL);
1735
1736         __process_pages_contig(inode->i_mapping, locked_page,
1737                                start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1738                                page_ops, NULL);
1739 }
1740
1741 /*
1742  * count the number of bytes in the tree that have a given bit(s)
1743  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1744  * cached.  The total number found is returned.
1745  */
1746 u64 count_range_bits(struct extent_io_tree *tree,
1747                      u64 *start, u64 search_end, u64 max_bytes,
1748                      unsigned bits, int contig)
1749 {
1750         struct rb_node *node;
1751         struct extent_state *state;
1752         u64 cur_start = *start;
1753         u64 total_bytes = 0;
1754         u64 last = 0;
1755         int found = 0;
1756
1757         if (WARN_ON(search_end <= cur_start))
1758                 return 0;
1759
1760         spin_lock(&tree->lock);
1761         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1762                 total_bytes = tree->dirty_bytes;
1763                 goto out;
1764         }
1765         /*
1766          * this search will find all the extents that end after
1767          * our range starts.
1768          */
1769         node = tree_search(tree, cur_start);
1770         if (!node)
1771                 goto out;
1772
1773         while (1) {
1774                 state = rb_entry(node, struct extent_state, rb_node);
1775                 if (state->start > search_end)
1776                         break;
1777                 if (contig && found && state->start > last + 1)
1778                         break;
1779                 if (state->end >= cur_start && (state->state & bits) == bits) {
1780                         total_bytes += min(search_end, state->end) + 1 -
1781                                        max(cur_start, state->start);
1782                         if (total_bytes >= max_bytes)
1783                                 break;
1784                         if (!found) {
1785                                 *start = max(cur_start, state->start);
1786                                 found = 1;
1787                         }
1788                         last = state->end;
1789                 } else if (contig && found) {
1790                         break;
1791                 }
1792                 node = rb_next(node);
1793                 if (!node)
1794                         break;
1795         }
1796 out:
1797         spin_unlock(&tree->lock);
1798         return total_bytes;
1799 }
1800
1801 /*
1802  * set the private field for a given byte offset in the tree.  If there isn't
1803  * an extent_state there already, this does nothing.
1804  */
1805 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1806                 struct io_failure_record *failrec)
1807 {
1808         struct rb_node *node;
1809         struct extent_state *state;
1810         int ret = 0;
1811
1812         spin_lock(&tree->lock);
1813         /*
1814          * this search will find all the extents that end after
1815          * our range starts.
1816          */
1817         node = tree_search(tree, start);
1818         if (!node) {
1819                 ret = -ENOENT;
1820                 goto out;
1821         }
1822         state = rb_entry(node, struct extent_state, rb_node);
1823         if (state->start != start) {
1824                 ret = -ENOENT;
1825                 goto out;
1826         }
1827         state->failrec = failrec;
1828 out:
1829         spin_unlock(&tree->lock);
1830         return ret;
1831 }
1832
1833 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1834                 struct io_failure_record **failrec)
1835 {
1836         struct rb_node *node;
1837         struct extent_state *state;
1838         int ret = 0;
1839
1840         spin_lock(&tree->lock);
1841         /*
1842          * this search will find all the extents that end after
1843          * our range starts.
1844          */
1845         node = tree_search(tree, start);
1846         if (!node) {
1847                 ret = -ENOENT;
1848                 goto out;
1849         }
1850         state = rb_entry(node, struct extent_state, rb_node);
1851         if (state->start != start) {
1852                 ret = -ENOENT;
1853                 goto out;
1854         }
1855         *failrec = state->failrec;
1856 out:
1857         spin_unlock(&tree->lock);
1858         return ret;
1859 }
1860
1861 /*
1862  * searches a range in the state tree for a given mask.
1863  * If 'filled' == 1, this returns 1 only if every extent in the tree
1864  * has the bits set.  Otherwise, 1 is returned if any bit in the
1865  * range is found set.
1866  */
1867 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1868                    unsigned bits, int filled, struct extent_state *cached)
1869 {
1870         struct extent_state *state = NULL;
1871         struct rb_node *node;
1872         int bitset = 0;
1873
1874         spin_lock(&tree->lock);
1875         if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1876             cached->end > start)
1877                 node = &cached->rb_node;
1878         else
1879                 node = tree_search(tree, start);
1880         while (node && start <= end) {
1881                 state = rb_entry(node, struct extent_state, rb_node);
1882
1883                 if (filled && state->start > start) {
1884                         bitset = 0;
1885                         break;
1886                 }
1887
1888                 if (state->start > end)
1889                         break;
1890
1891                 if (state->state & bits) {
1892                         bitset = 1;
1893                         if (!filled)
1894                                 break;
1895                 } else if (filled) {
1896                         bitset = 0;
1897                         break;
1898                 }
1899
1900                 if (state->end == (u64)-1)
1901                         break;
1902
1903                 start = state->end + 1;
1904                 if (start > end)
1905                         break;
1906                 node = rb_next(node);
1907                 if (!node) {
1908                         if (filled)
1909                                 bitset = 0;
1910                         break;
1911                 }
1912         }
1913         spin_unlock(&tree->lock);
1914         return bitset;
1915 }
1916
1917 /*
1918  * helper function to set a given page up to date if all the
1919  * extents in the tree for that page are up to date
1920  */
1921 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1922 {
1923         u64 start = page_offset(page);
1924         u64 end = start + PAGE_SIZE - 1;
1925         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1926                 SetPageUptodate(page);
1927 }
1928
1929 int free_io_failure(struct extent_io_tree *failure_tree,
1930                     struct extent_io_tree *io_tree,
1931                     struct io_failure_record *rec)
1932 {
1933         int ret;
1934         int err = 0;
1935
1936         set_state_failrec(failure_tree, rec->start, NULL);
1937         ret = clear_extent_bits(failure_tree, rec->start,
1938                                 rec->start + rec->len - 1,
1939                                 EXTENT_LOCKED | EXTENT_DIRTY);
1940         if (ret)
1941                 err = ret;
1942
1943         ret = clear_extent_bits(io_tree, rec->start,
1944                                 rec->start + rec->len - 1,
1945                                 EXTENT_DAMAGED);
1946         if (ret && !err)
1947                 err = ret;
1948
1949         kfree(rec);
1950         return err;
1951 }
1952
1953 /*
1954  * this bypasses the standard btrfs submit functions deliberately, as
1955  * the standard behavior is to write all copies in a raid setup. here we only
1956  * want to write the one bad copy. so we do the mapping for ourselves and issue
1957  * submit_bio directly.
1958  * to avoid any synchronization issues, wait for the data after writing, which
1959  * actually prevents the read that triggered the error from finishing.
1960  * currently, there can be no more than two copies of every data bit. thus,
1961  * exactly one rewrite is required.
1962  */
1963 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1964                       u64 length, u64 logical, struct page *page,
1965                       unsigned int pg_offset, int mirror_num)
1966 {
1967         struct bio *bio;
1968         struct btrfs_device *dev;
1969         u64 map_length = 0;
1970         u64 sector;
1971         struct btrfs_bio *bbio = NULL;
1972         int ret;
1973
1974         ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
1975         BUG_ON(!mirror_num);
1976
1977         bio = btrfs_io_bio_alloc(1);
1978         bio->bi_iter.bi_size = 0;
1979         map_length = length;
1980
1981         /*
1982          * Avoid races with device replace and make sure our bbio has devices
1983          * associated to its stripes that don't go away while we are doing the
1984          * read repair operation.
1985          */
1986         btrfs_bio_counter_inc_blocked(fs_info);
1987         if (btrfs_is_parity_mirror(fs_info, logical, length)) {
1988                 /*
1989                  * Note that we don't use BTRFS_MAP_WRITE because it's supposed
1990                  * to update all raid stripes, but here we just want to correct
1991                  * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
1992                  * stripe's dev and sector.
1993                  */
1994                 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1995                                       &map_length, &bbio, 0);
1996                 if (ret) {
1997                         btrfs_bio_counter_dec(fs_info);
1998                         bio_put(bio);
1999                         return -EIO;
2000                 }
2001                 ASSERT(bbio->mirror_num == 1);
2002         } else {
2003                 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2004                                       &map_length, &bbio, mirror_num);
2005                 if (ret) {
2006                         btrfs_bio_counter_dec(fs_info);
2007                         bio_put(bio);
2008                         return -EIO;
2009                 }
2010                 BUG_ON(mirror_num != bbio->mirror_num);
2011         }
2012
2013         sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2014         bio->bi_iter.bi_sector = sector;
2015         dev = bbio->stripes[bbio->mirror_num - 1].dev;
2016         btrfs_put_bbio(bbio);
2017         if (!dev || !dev->bdev ||
2018             !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2019                 btrfs_bio_counter_dec(fs_info);
2020                 bio_put(bio);
2021                 return -EIO;
2022         }
2023         bio_set_dev(bio, dev->bdev);
2024         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2025         bio_add_page(bio, page, length, pg_offset);
2026
2027         if (btrfsic_submit_bio_wait(bio)) {
2028                 /* try to remap that extent elsewhere? */
2029                 btrfs_bio_counter_dec(fs_info);
2030                 bio_put(bio);
2031                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2032                 return -EIO;
2033         }
2034
2035         btrfs_info_rl_in_rcu(fs_info,
2036                 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2037                                   ino, start,
2038                                   rcu_str_deref(dev->name), sector);
2039         btrfs_bio_counter_dec(fs_info);
2040         bio_put(bio);
2041         return 0;
2042 }
2043
2044 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2045                          struct extent_buffer *eb, int mirror_num)
2046 {
2047         u64 start = eb->start;
2048         int i, num_pages = num_extent_pages(eb);
2049         int ret = 0;
2050
2051         if (sb_rdonly(fs_info->sb))
2052                 return -EROFS;
2053
2054         for (i = 0; i < num_pages; i++) {
2055                 struct page *p = eb->pages[i];
2056
2057                 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2058                                         start - page_offset(p), mirror_num);
2059                 if (ret)
2060                         break;
2061                 start += PAGE_SIZE;
2062         }
2063
2064         return ret;
2065 }
2066
2067 /*
2068  * each time an IO finishes, we do a fast check in the IO failure tree
2069  * to see if we need to process or clean up an io_failure_record
2070  */
2071 int clean_io_failure(struct btrfs_fs_info *fs_info,
2072                      struct extent_io_tree *failure_tree,
2073                      struct extent_io_tree *io_tree, u64 start,
2074                      struct page *page, u64 ino, unsigned int pg_offset)
2075 {
2076         u64 private;
2077         struct io_failure_record *failrec;
2078         struct extent_state *state;
2079         int num_copies;
2080         int ret;
2081
2082         private = 0;
2083         ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2084                                EXTENT_DIRTY, 0);
2085         if (!ret)
2086                 return 0;
2087
2088         ret = get_state_failrec(failure_tree, start, &failrec);
2089         if (ret)
2090                 return 0;
2091
2092         BUG_ON(!failrec->this_mirror);
2093
2094         if (failrec->in_validation) {
2095                 /* there was no real error, just free the record */
2096                 btrfs_debug(fs_info,
2097                         "clean_io_failure: freeing dummy error at %llu",
2098                         failrec->start);
2099                 goto out;
2100         }
2101         if (sb_rdonly(fs_info->sb))
2102                 goto out;
2103
2104         spin_lock(&io_tree->lock);
2105         state = find_first_extent_bit_state(io_tree,
2106                                             failrec->start,
2107                                             EXTENT_LOCKED);
2108         spin_unlock(&io_tree->lock);
2109
2110         if (state && state->start <= failrec->start &&
2111             state->end >= failrec->start + failrec->len - 1) {
2112                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2113                                               failrec->len);
2114                 if (num_copies > 1)  {
2115                         repair_io_failure(fs_info, ino, start, failrec->len,
2116                                           failrec->logical, page, pg_offset,
2117                                           failrec->failed_mirror);
2118                 }
2119         }
2120
2121 out:
2122         free_io_failure(failure_tree, io_tree, failrec);
2123
2124         return 0;
2125 }
2126
2127 /*
2128  * Can be called when
2129  * - hold extent lock
2130  * - under ordered extent
2131  * - the inode is freeing
2132  */
2133 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2134 {
2135         struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2136         struct io_failure_record *failrec;
2137         struct extent_state *state, *next;
2138
2139         if (RB_EMPTY_ROOT(&failure_tree->state))
2140                 return;
2141
2142         spin_lock(&failure_tree->lock);
2143         state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2144         while (state) {
2145                 if (state->start > end)
2146                         break;
2147
2148                 ASSERT(state->end <= end);
2149
2150                 next = next_state(state);
2151
2152                 failrec = state->failrec;
2153                 free_extent_state(state);
2154                 kfree(failrec);
2155
2156                 state = next;
2157         }
2158         spin_unlock(&failure_tree->lock);
2159 }
2160
2161 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2162                 struct io_failure_record **failrec_ret)
2163 {
2164         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2165         struct io_failure_record *failrec;
2166         struct extent_map *em;
2167         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2168         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2169         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2170         int ret;
2171         u64 logical;
2172
2173         ret = get_state_failrec(failure_tree, start, &failrec);
2174         if (ret) {
2175                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2176                 if (!failrec)
2177                         return -ENOMEM;
2178
2179                 failrec->start = start;
2180                 failrec->len = end - start + 1;
2181                 failrec->this_mirror = 0;
2182                 failrec->bio_flags = 0;
2183                 failrec->in_validation = 0;
2184
2185                 read_lock(&em_tree->lock);
2186                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2187                 if (!em) {
2188                         read_unlock(&em_tree->lock);
2189                         kfree(failrec);
2190                         return -EIO;
2191                 }
2192
2193                 if (em->start > start || em->start + em->len <= start) {
2194                         free_extent_map(em);
2195                         em = NULL;
2196                 }
2197                 read_unlock(&em_tree->lock);
2198                 if (!em) {
2199                         kfree(failrec);
2200                         return -EIO;
2201                 }
2202
2203                 logical = start - em->start;
2204                 logical = em->block_start + logical;
2205                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2206                         logical = em->block_start;
2207                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2208                         extent_set_compress_type(&failrec->bio_flags,
2209                                                  em->compress_type);
2210                 }
2211
2212                 btrfs_debug(fs_info,
2213                         "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2214                         logical, start, failrec->len);
2215
2216                 failrec->logical = logical;
2217                 free_extent_map(em);
2218
2219                 /* set the bits in the private failure tree */
2220                 ret = set_extent_bits(failure_tree, start, end,
2221                                         EXTENT_LOCKED | EXTENT_DIRTY);
2222                 if (ret >= 0)
2223                         ret = set_state_failrec(failure_tree, start, failrec);
2224                 /* set the bits in the inode's tree */
2225                 if (ret >= 0)
2226                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2227                 if (ret < 0) {
2228                         kfree(failrec);
2229                         return ret;
2230                 }
2231         } else {
2232                 btrfs_debug(fs_info,
2233                         "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2234                         failrec->logical, failrec->start, failrec->len,
2235                         failrec->in_validation);
2236                 /*
2237                  * when data can be on disk more than twice, add to failrec here
2238                  * (e.g. with a list for failed_mirror) to make
2239                  * clean_io_failure() clean all those errors at once.
2240                  */
2241         }
2242
2243         *failrec_ret = failrec;
2244
2245         return 0;
2246 }
2247
2248 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2249                            struct io_failure_record *failrec, int failed_mirror)
2250 {
2251         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2252         int num_copies;
2253
2254         num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2255         if (num_copies == 1) {
2256                 /*
2257                  * we only have a single copy of the data, so don't bother with
2258                  * all the retry and error correction code that follows. no
2259                  * matter what the error is, it is very likely to persist.
2260                  */
2261                 btrfs_debug(fs_info,
2262                         "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2263                         num_copies, failrec->this_mirror, failed_mirror);
2264                 return false;
2265         }
2266
2267         /*
2268          * there are two premises:
2269          *      a) deliver good data to the caller
2270          *      b) correct the bad sectors on disk
2271          */
2272         if (failed_bio_pages > 1) {
2273                 /*
2274                  * to fulfill b), we need to know the exact failing sectors, as
2275                  * we don't want to rewrite any more than the failed ones. thus,
2276                  * we need separate read requests for the failed bio
2277                  *
2278                  * if the following BUG_ON triggers, our validation request got
2279                  * merged. we need separate requests for our algorithm to work.
2280                  */
2281                 BUG_ON(failrec->in_validation);
2282                 failrec->in_validation = 1;
2283                 failrec->this_mirror = failed_mirror;
2284         } else {
2285                 /*
2286                  * we're ready to fulfill a) and b) alongside. get a good copy
2287                  * of the failed sector and if we succeed, we have setup
2288                  * everything for repair_io_failure to do the rest for us.
2289                  */
2290                 if (failrec->in_validation) {
2291                         BUG_ON(failrec->this_mirror != failed_mirror);
2292                         failrec->in_validation = 0;
2293                         failrec->this_mirror = 0;
2294                 }
2295                 failrec->failed_mirror = failed_mirror;
2296                 failrec->this_mirror++;
2297                 if (failrec->this_mirror == failed_mirror)
2298                         failrec->this_mirror++;
2299         }
2300
2301         if (failrec->this_mirror > num_copies) {
2302                 btrfs_debug(fs_info,
2303                         "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2304                         num_copies, failrec->this_mirror, failed_mirror);
2305                 return false;
2306         }
2307
2308         return true;
2309 }
2310
2311
2312 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2313                                     struct io_failure_record *failrec,
2314                                     struct page *page, int pg_offset, int icsum,
2315                                     bio_end_io_t *endio_func, void *data)
2316 {
2317         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2318         struct bio *bio;
2319         struct btrfs_io_bio *btrfs_failed_bio;
2320         struct btrfs_io_bio *btrfs_bio;
2321
2322         bio = btrfs_io_bio_alloc(1);
2323         bio->bi_end_io = endio_func;
2324         bio->bi_iter.bi_sector = failrec->logical >> 9;
2325         bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2326         bio->bi_iter.bi_size = 0;
2327         bio->bi_private = data;
2328
2329         btrfs_failed_bio = btrfs_io_bio(failed_bio);
2330         if (btrfs_failed_bio->csum) {
2331                 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2332
2333                 btrfs_bio = btrfs_io_bio(bio);
2334                 btrfs_bio->csum = btrfs_bio->csum_inline;
2335                 icsum *= csum_size;
2336                 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2337                        csum_size);
2338         }
2339
2340         bio_add_page(bio, page, failrec->len, pg_offset);
2341
2342         return bio;
2343 }
2344
2345 /*
2346  * this is a generic handler for readpage errors (default
2347  * readpage_io_failed_hook). if other copies exist, read those and write back
2348  * good data to the failed position. does not investigate in remapping the
2349  * failed extent elsewhere, hoping the device will be smart enough to do this as
2350  * needed
2351  */
2352
2353 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2354                               struct page *page, u64 start, u64 end,
2355                               int failed_mirror)
2356 {
2357         struct io_failure_record *failrec;
2358         struct inode *inode = page->mapping->host;
2359         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2360         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2361         struct bio *bio;
2362         int read_mode = 0;
2363         blk_status_t status;
2364         int ret;
2365         unsigned failed_bio_pages = bio_pages_all(failed_bio);
2366
2367         BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2368
2369         ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2370         if (ret)
2371                 return ret;
2372
2373         if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2374                                     failed_mirror)) {
2375                 free_io_failure(failure_tree, tree, failrec);
2376                 return -EIO;
2377         }
2378
2379         if (failed_bio_pages > 1)
2380                 read_mode |= REQ_FAILFAST_DEV;
2381
2382         phy_offset >>= inode->i_sb->s_blocksize_bits;
2383         bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2384                                       start - page_offset(page),
2385                                       (int)phy_offset, failed_bio->bi_end_io,
2386                                       NULL);
2387         bio->bi_opf = REQ_OP_READ | read_mode;
2388
2389         btrfs_debug(btrfs_sb(inode->i_sb),
2390                 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2391                 read_mode, failrec->this_mirror, failrec->in_validation);
2392
2393         status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2394                                          failrec->bio_flags, 0);
2395         if (status) {
2396                 free_io_failure(failure_tree, tree, failrec);
2397                 bio_put(bio);
2398                 ret = blk_status_to_errno(status);
2399         }
2400
2401         return ret;
2402 }
2403
2404 /* lots and lots of room for performance fixes in the end_bio funcs */
2405
2406 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2407 {
2408         int uptodate = (err == 0);
2409         struct extent_io_tree *tree;
2410         int ret = 0;
2411
2412         tree = &BTRFS_I(page->mapping->host)->io_tree;
2413
2414         if (tree->ops && tree->ops->writepage_end_io_hook)
2415                 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2416                                 uptodate);
2417
2418         if (!uptodate) {
2419                 ClearPageUptodate(page);
2420                 SetPageError(page);
2421                 ret = err < 0 ? err : -EIO;
2422                 mapping_set_error(page->mapping, ret);
2423         }
2424 }
2425
2426 /*
2427  * after a writepage IO is done, we need to:
2428  * clear the uptodate bits on error
2429  * clear the writeback bits in the extent tree for this IO
2430  * end_page_writeback if the page has no more pending IO
2431  *
2432  * Scheduling is not allowed, so the extent state tree is expected
2433  * to have one and only one object corresponding to this IO.
2434  */
2435 static void end_bio_extent_writepage(struct bio *bio)
2436 {
2437         int error = blk_status_to_errno(bio->bi_status);
2438         struct bio_vec *bvec;
2439         u64 start;
2440         u64 end;
2441         int i;
2442
2443         ASSERT(!bio_flagged(bio, BIO_CLONED));
2444         bio_for_each_segment_all(bvec, bio, i) {
2445                 struct page *page = bvec->bv_page;
2446                 struct inode *inode = page->mapping->host;
2447                 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2448
2449                 /* We always issue full-page reads, but if some block
2450                  * in a page fails to read, blk_update_request() will
2451                  * advance bv_offset and adjust bv_len to compensate.
2452                  * Print a warning for nonzero offsets, and an error
2453                  * if they don't add up to a full page.  */
2454                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2455                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2456                                 btrfs_err(fs_info,
2457                                    "partial page write in btrfs with offset %u and length %u",
2458                                         bvec->bv_offset, bvec->bv_len);
2459                         else
2460                                 btrfs_info(fs_info,
2461                                    "incomplete page write in btrfs with offset %u and length %u",
2462                                         bvec->bv_offset, bvec->bv_len);
2463                 }
2464
2465                 start = page_offset(page);
2466                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2467
2468                 end_extent_writepage(page, error, start, end);
2469                 end_page_writeback(page);
2470         }
2471
2472         bio_put(bio);
2473 }
2474
2475 static void
2476 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2477                               int uptodate)
2478 {
2479         struct extent_state *cached = NULL;
2480         u64 end = start + len - 1;
2481
2482         if (uptodate && tree->track_uptodate)
2483                 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2484         unlock_extent_cached_atomic(tree, start, end, &cached);
2485 }
2486
2487 /*
2488  * after a readpage IO is done, we need to:
2489  * clear the uptodate bits on error
2490  * set the uptodate bits if things worked
2491  * set the page up to date if all extents in the tree are uptodate
2492  * clear the lock bit in the extent tree
2493  * unlock the page if there are no other extents locked for it
2494  *
2495  * Scheduling is not allowed, so the extent state tree is expected
2496  * to have one and only one object corresponding to this IO.
2497  */
2498 static void end_bio_extent_readpage(struct bio *bio)
2499 {
2500         struct bio_vec *bvec;
2501         int uptodate = !bio->bi_status;
2502         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2503         struct extent_io_tree *tree, *failure_tree;
2504         u64 offset = 0;
2505         u64 start;
2506         u64 end;
2507         u64 len;
2508         u64 extent_start = 0;
2509         u64 extent_len = 0;
2510         int mirror;
2511         int ret;
2512         int i;
2513
2514         ASSERT(!bio_flagged(bio, BIO_CLONED));
2515         bio_for_each_segment_all(bvec, bio, i) {
2516                 struct page *page = bvec->bv_page;
2517                 struct inode *inode = page->mapping->host;
2518                 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2519
2520                 btrfs_debug(fs_info,
2521                         "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2522                         (u64)bio->bi_iter.bi_sector, bio->bi_status,
2523                         io_bio->mirror_num);
2524                 tree = &BTRFS_I(inode)->io_tree;
2525                 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2526
2527                 /* We always issue full-page reads, but if some block
2528                  * in a page fails to read, blk_update_request() will
2529                  * advance bv_offset and adjust bv_len to compensate.
2530                  * Print a warning for nonzero offsets, and an error
2531                  * if they don't add up to a full page.  */
2532                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2533                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2534                                 btrfs_err(fs_info,
2535                                         "partial page read in btrfs with offset %u and length %u",
2536                                         bvec->bv_offset, bvec->bv_len);
2537                         else
2538                                 btrfs_info(fs_info,
2539                                         "incomplete page read in btrfs with offset %u and length %u",
2540                                         bvec->bv_offset, bvec->bv_len);
2541                 }
2542
2543                 start = page_offset(page);
2544                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2545                 len = bvec->bv_len;
2546
2547                 mirror = io_bio->mirror_num;
2548                 if (likely(uptodate && tree->ops)) {
2549                         ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2550                                                               page, start, end,
2551                                                               mirror);
2552                         if (ret)
2553                                 uptodate = 0;
2554                         else
2555                                 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2556                                                  failure_tree, tree, start,
2557                                                  page,
2558                                                  btrfs_ino(BTRFS_I(inode)), 0);
2559                 }
2560
2561                 if (likely(uptodate))
2562                         goto readpage_ok;
2563
2564                 if (tree->ops) {
2565                         ret = tree->ops->readpage_io_failed_hook(page, mirror);
2566                         if (ret == -EAGAIN) {
2567                                 /*
2568                                  * Data inode's readpage_io_failed_hook() always
2569                                  * returns -EAGAIN.
2570                                  *
2571                                  * The generic bio_readpage_error handles errors
2572                                  * the following way: If possible, new read
2573                                  * requests are created and submitted and will
2574                                  * end up in end_bio_extent_readpage as well (if
2575                                  * we're lucky, not in the !uptodate case). In
2576                                  * that case it returns 0 and we just go on with
2577                                  * the next page in our bio. If it can't handle
2578                                  * the error it will return -EIO and we remain
2579                                  * responsible for that page.
2580                                  */
2581                                 ret = bio_readpage_error(bio, offset, page,
2582                                                          start, end, mirror);
2583                                 if (ret == 0) {
2584                                         uptodate = !bio->bi_status;
2585                                         offset += len;
2586                                         continue;
2587                                 }
2588                         }
2589
2590                         /*
2591                          * metadata's readpage_io_failed_hook() always returns
2592                          * -EIO and fixes nothing.  -EIO is also returned if
2593                          * data inode error could not be fixed.
2594                          */
2595                         ASSERT(ret == -EIO);
2596                 }
2597 readpage_ok:
2598                 if (likely(uptodate)) {
2599                         loff_t i_size = i_size_read(inode);
2600                         pgoff_t end_index = i_size >> PAGE_SHIFT;
2601                         unsigned off;
2602
2603                         /* Zero out the end if this page straddles i_size */
2604                         off = i_size & (PAGE_SIZE-1);
2605                         if (page->index == end_index && off)
2606                                 zero_user_segment(page, off, PAGE_SIZE);
2607                         SetPageUptodate(page);
2608                 } else {
2609                         ClearPageUptodate(page);
2610                         SetPageError(page);
2611                 }
2612                 unlock_page(page);
2613                 offset += len;
2614
2615                 if (unlikely(!uptodate)) {
2616                         if (extent_len) {
2617                                 endio_readpage_release_extent(tree,
2618                                                               extent_start,
2619                                                               extent_len, 1);
2620                                 extent_start = 0;
2621                                 extent_len = 0;
2622                         }
2623                         endio_readpage_release_extent(tree, start,
2624                                                       end - start + 1, 0);
2625                 } else if (!extent_len) {
2626                         extent_start = start;
2627                         extent_len = end + 1 - start;
2628                 } else if (extent_start + extent_len == start) {
2629                         extent_len += end + 1 - start;
2630                 } else {
2631                         endio_readpage_release_extent(tree, extent_start,
2632                                                       extent_len, uptodate);
2633                         extent_start = start;
2634                         extent_len = end + 1 - start;
2635                 }
2636         }
2637
2638         if (extent_len)
2639                 endio_readpage_release_extent(tree, extent_start, extent_len,
2640                                               uptodate);
2641         if (io_bio->end_io)
2642                 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
2643         bio_put(bio);
2644 }
2645
2646 /*
2647  * Initialize the members up to but not including 'bio'. Use after allocating a
2648  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2649  * 'bio' because use of __GFP_ZERO is not supported.
2650  */
2651 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2652 {
2653         memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2654 }
2655
2656 /*
2657  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2658  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2659  * for the appropriate container_of magic
2660  */
2661 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2662 {
2663         struct bio *bio;
2664
2665         bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2666         bio_set_dev(bio, bdev);
2667         bio->bi_iter.bi_sector = first_byte >> 9;
2668         btrfs_io_bio_init(btrfs_io_bio(bio));
2669         return bio;
2670 }
2671
2672 struct bio *btrfs_bio_clone(struct bio *bio)
2673 {
2674         struct btrfs_io_bio *btrfs_bio;
2675         struct bio *new;
2676
2677         /* Bio allocation backed by a bioset does not fail */
2678         new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2679         btrfs_bio = btrfs_io_bio(new);
2680         btrfs_io_bio_init(btrfs_bio);
2681         btrfs_bio->iter = bio->bi_iter;
2682         return new;
2683 }
2684
2685 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2686 {
2687         struct bio *bio;
2688
2689         /* Bio allocation backed by a bioset does not fail */
2690         bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2691         btrfs_io_bio_init(btrfs_io_bio(bio));
2692         return bio;
2693 }
2694
2695 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2696 {
2697         struct bio *bio;
2698         struct btrfs_io_bio *btrfs_bio;
2699
2700         /* this will never fail when it's backed by a bioset */
2701         bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2702         ASSERT(bio);
2703
2704         btrfs_bio = btrfs_io_bio(bio);
2705         btrfs_io_bio_init(btrfs_bio);
2706
2707         bio_trim(bio, offset >> 9, size >> 9);
2708         btrfs_bio->iter = bio->bi_iter;
2709         return bio;
2710 }
2711
2712 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2713                                        unsigned long bio_flags)
2714 {
2715         blk_status_t ret = 0;
2716         struct bio_vec *bvec = bio_last_bvec_all(bio);
2717         struct page *page = bvec->bv_page;
2718         struct extent_io_tree *tree = bio->bi_private;
2719         u64 start;
2720
2721         start = page_offset(page) + bvec->bv_offset;
2722
2723         bio->bi_private = NULL;
2724
2725         if (tree->ops)
2726                 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
2727                                            mirror_num, bio_flags, start);
2728         else
2729                 btrfsic_submit_bio(bio);
2730
2731         return blk_status_to_errno(ret);
2732 }
2733
2734 /*
2735  * @opf:        bio REQ_OP_* and REQ_* flags as one value
2736  * @tree:       tree so we can call our merge_bio hook
2737  * @wbc:        optional writeback control for io accounting
2738  * @page:       page to add to the bio
2739  * @pg_offset:  offset of the new bio or to check whether we are adding
2740  *              a contiguous page to the previous one
2741  * @size:       portion of page that we want to write
2742  * @offset:     starting offset in the page
2743  * @bdev:       attach newly created bios to this bdev
2744  * @bio_ret:    must be valid pointer, newly allocated bio will be stored there
2745  * @end_io_func:     end_io callback for new bio
2746  * @mirror_num:      desired mirror to read/write
2747  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
2748  * @bio_flags:  flags of the current bio to see if we can merge them
2749  */
2750 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2751                               struct writeback_control *wbc,
2752                               struct page *page, u64 offset,
2753                               size_t size, unsigned long pg_offset,
2754                               struct block_device *bdev,
2755                               struct bio **bio_ret,
2756                               bio_end_io_t end_io_func,
2757                               int mirror_num,
2758                               unsigned long prev_bio_flags,
2759                               unsigned long bio_flags,
2760                               bool force_bio_submit)
2761 {
2762         int ret = 0;
2763         struct bio *bio;
2764         size_t page_size = min_t(size_t, size, PAGE_SIZE);
2765         sector_t sector = offset >> 9;
2766
2767         ASSERT(bio_ret);
2768
2769         if (*bio_ret) {
2770                 bool contig;
2771                 bool can_merge = true;
2772
2773                 bio = *bio_ret;
2774                 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2775                         contig = bio->bi_iter.bi_sector == sector;
2776                 else
2777                         contig = bio_end_sector(bio) == sector;
2778
2779                 if (tree->ops && btrfs_merge_bio_hook(page, offset, page_size,
2780                                                       bio, bio_flags))
2781                         can_merge = false;
2782
2783                 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2784                     force_bio_submit ||
2785                     bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2786                         ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2787                         if (ret < 0) {
2788                                 *bio_ret = NULL;
2789                                 return ret;
2790                         }
2791                         bio = NULL;
2792                 } else {
2793                         if (wbc)
2794                                 wbc_account_io(wbc, page, page_size);
2795                         return 0;
2796                 }
2797         }
2798
2799         bio = btrfs_bio_alloc(bdev, offset);
2800         bio_add_page(bio, page, page_size, pg_offset);
2801         bio->bi_end_io = end_io_func;
2802         bio->bi_private = tree;
2803         bio->bi_write_hint = page->mapping->host->i_write_hint;
2804         bio->bi_opf = opf;
2805         if (wbc) {
2806                 wbc_init_bio(wbc, bio);
2807                 wbc_account_io(wbc, page, page_size);
2808         }
2809
2810         *bio_ret = bio;
2811
2812         return ret;
2813 }
2814
2815 static void attach_extent_buffer_page(struct extent_buffer *eb,
2816                                       struct page *page)
2817 {
2818         if (!PagePrivate(page)) {
2819                 SetPagePrivate(page);
2820                 get_page(page);
2821                 set_page_private(page, (unsigned long)eb);
2822         } else {
2823                 WARN_ON(page->private != (unsigned long)eb);
2824         }
2825 }
2826
2827 void set_page_extent_mapped(struct page *page)
2828 {
2829         if (!PagePrivate(page)) {
2830                 SetPagePrivate(page);
2831                 get_page(page);
2832                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2833         }
2834 }
2835
2836 static struct extent_map *
2837 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2838                  u64 start, u64 len, get_extent_t *get_extent,
2839                  struct extent_map **em_cached)
2840 {
2841         struct extent_map *em;
2842
2843         if (em_cached && *em_cached) {
2844                 em = *em_cached;
2845                 if (extent_map_in_tree(em) && start >= em->start &&
2846                     start < extent_map_end(em)) {
2847                         refcount_inc(&em->refs);
2848                         return em;
2849                 }
2850
2851                 free_extent_map(em);
2852                 *em_cached = NULL;
2853         }
2854
2855         em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2856         if (em_cached && !IS_ERR_OR_NULL(em)) {
2857                 BUG_ON(*em_cached);
2858                 refcount_inc(&em->refs);
2859                 *em_cached = em;
2860         }
2861         return em;
2862 }
2863 /*
2864  * basic readpage implementation.  Locked extent state structs are inserted
2865  * into the tree that are removed when the IO is done (by the end_io
2866  * handlers)
2867  * XXX JDM: This needs looking at to ensure proper page locking
2868  * return 0 on success, otherwise return error
2869  */
2870 static int __do_readpage(struct extent_io_tree *tree,
2871                          struct page *page,
2872                          get_extent_t *get_extent,
2873                          struct extent_map **em_cached,
2874                          struct bio **bio, int mirror_num,
2875                          unsigned long *bio_flags, unsigned int read_flags,
2876                          u64 *prev_em_start)
2877 {
2878         struct inode *inode = page->mapping->host;
2879         u64 start = page_offset(page);
2880         const u64 end = start + PAGE_SIZE - 1;
2881         u64 cur = start;
2882         u64 extent_offset;
2883         u64 last_byte = i_size_read(inode);
2884         u64 block_start;
2885         u64 cur_end;
2886         struct extent_map *em;
2887         struct block_device *bdev;
2888         int ret = 0;
2889         int nr = 0;
2890         size_t pg_offset = 0;
2891         size_t iosize;
2892         size_t disk_io_size;
2893         size_t blocksize = inode->i_sb->s_blocksize;
2894         unsigned long this_bio_flag = 0;
2895
2896         set_page_extent_mapped(page);
2897
2898         if (!PageUptodate(page)) {
2899                 if (cleancache_get_page(page) == 0) {
2900                         BUG_ON(blocksize != PAGE_SIZE);
2901                         unlock_extent(tree, start, end);
2902                         goto out;
2903                 }
2904         }
2905
2906         if (page->index == last_byte >> PAGE_SHIFT) {
2907                 char *userpage;
2908                 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2909
2910                 if (zero_offset) {
2911                         iosize = PAGE_SIZE - zero_offset;
2912                         userpage = kmap_atomic(page);
2913                         memset(userpage + zero_offset, 0, iosize);
2914                         flush_dcache_page(page);
2915                         kunmap_atomic(userpage);
2916                 }
2917         }
2918         while (cur <= end) {
2919                 bool force_bio_submit = false;
2920                 u64 offset;
2921
2922                 if (cur >= last_byte) {
2923                         char *userpage;
2924                         struct extent_state *cached = NULL;
2925
2926                         iosize = PAGE_SIZE - pg_offset;
2927                         userpage = kmap_atomic(page);
2928                         memset(userpage + pg_offset, 0, iosize);
2929                         flush_dcache_page(page);
2930                         kunmap_atomic(userpage);
2931                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2932                                             &cached, GFP_NOFS);
2933                         unlock_extent_cached(tree, cur,
2934                                              cur + iosize - 1, &cached);
2935                         break;
2936                 }
2937                 em = __get_extent_map(inode, page, pg_offset, cur,
2938                                       end - cur + 1, get_extent, em_cached);
2939                 if (IS_ERR_OR_NULL(em)) {
2940                         SetPageError(page);
2941                         unlock_extent(tree, cur, end);
2942                         break;
2943                 }
2944                 extent_offset = cur - em->start;
2945                 BUG_ON(extent_map_end(em) <= cur);
2946                 BUG_ON(end < cur);
2947
2948                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2949                         this_bio_flag |= EXTENT_BIO_COMPRESSED;
2950                         extent_set_compress_type(&this_bio_flag,
2951                                                  em->compress_type);
2952                 }
2953
2954                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2955                 cur_end = min(extent_map_end(em) - 1, end);
2956                 iosize = ALIGN(iosize, blocksize);
2957                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2958                         disk_io_size = em->block_len;
2959                         offset = em->block_start;
2960                 } else {
2961                         offset = em->block_start + extent_offset;
2962                         disk_io_size = iosize;
2963                 }
2964                 bdev = em->bdev;
2965                 block_start = em->block_start;
2966                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2967                         block_start = EXTENT_MAP_HOLE;
2968
2969                 /*
2970                  * If we have a file range that points to a compressed extent
2971                  * and it's followed by a consecutive file range that points to
2972                  * to the same compressed extent (possibly with a different
2973                  * offset and/or length, so it either points to the whole extent
2974                  * or only part of it), we must make sure we do not submit a
2975                  * single bio to populate the pages for the 2 ranges because
2976                  * this makes the compressed extent read zero out the pages
2977                  * belonging to the 2nd range. Imagine the following scenario:
2978                  *
2979                  *  File layout
2980                  *  [0 - 8K]                     [8K - 24K]
2981                  *    |                               |
2982                  *    |                               |
2983                  * points to extent X,         points to extent X,
2984                  * offset 4K, length of 8K     offset 0, length 16K
2985                  *
2986                  * [extent X, compressed length = 4K uncompressed length = 16K]
2987                  *
2988                  * If the bio to read the compressed extent covers both ranges,
2989                  * it will decompress extent X into the pages belonging to the
2990                  * first range and then it will stop, zeroing out the remaining
2991                  * pages that belong to the other range that points to extent X.
2992                  * So here we make sure we submit 2 bios, one for the first
2993                  * range and another one for the third range. Both will target
2994                  * the same physical extent from disk, but we can't currently
2995                  * make the compressed bio endio callback populate the pages
2996                  * for both ranges because each compressed bio is tightly
2997                  * coupled with a single extent map, and each range can have
2998                  * an extent map with a different offset value relative to the
2999                  * uncompressed data of our extent and different lengths. This
3000                  * is a corner case so we prioritize correctness over
3001                  * non-optimal behavior (submitting 2 bios for the same extent).
3002                  */
3003                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3004                     prev_em_start && *prev_em_start != (u64)-1 &&
3005                     *prev_em_start != em->orig_start)
3006                         force_bio_submit = true;
3007
3008                 if (prev_em_start)
3009                         *prev_em_start = em->orig_start;
3010
3011                 free_extent_map(em);
3012                 em = NULL;
3013
3014                 /* we've found a hole, just zero and go on */
3015                 if (block_start == EXTENT_MAP_HOLE) {
3016                         char *userpage;
3017                         struct extent_state *cached = NULL;
3018
3019                         userpage = kmap_atomic(page);
3020                         memset(userpage + pg_offset, 0, iosize);
3021                         flush_dcache_page(page);
3022                         kunmap_atomic(userpage);
3023
3024                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3025                                             &cached, GFP_NOFS);
3026                         unlock_extent_cached(tree, cur,
3027                                              cur + iosize - 1, &cached);
3028                         cur = cur + iosize;
3029                         pg_offset += iosize;
3030                         continue;
3031                 }
3032                 /* the get_extent function already copied into the page */
3033                 if (test_range_bit(tree, cur, cur_end,
3034                                    EXTENT_UPTODATE, 1, NULL)) {
3035                         check_page_uptodate(tree, page);
3036                         unlock_extent(tree, cur, cur + iosize - 1);
3037                         cur = cur + iosize;
3038                         pg_offset += iosize;
3039                         continue;
3040                 }
3041                 /* we have an inline extent but it didn't get marked up
3042                  * to date.  Error out
3043                  */
3044                 if (block_start == EXTENT_MAP_INLINE) {
3045                         SetPageError(page);
3046                         unlock_extent(tree, cur, cur + iosize - 1);
3047                         cur = cur + iosize;
3048                         pg_offset += iosize;
3049                         continue;
3050                 }
3051
3052                 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3053                                          page, offset, disk_io_size,
3054                                          pg_offset, bdev, bio,
3055                                          end_bio_extent_readpage, mirror_num,
3056                                          *bio_flags,
3057                                          this_bio_flag,
3058                                          force_bio_submit);
3059                 if (!ret) {
3060                         nr++;
3061                         *bio_flags = this_bio_flag;
3062                 } else {
3063                         SetPageError(page);
3064                         unlock_extent(tree, cur, cur + iosize - 1);
3065                         goto out;
3066                 }
3067                 cur = cur + iosize;
3068                 pg_offset += iosize;
3069         }
3070 out:
3071         if (!nr) {
3072                 if (!PageError(page))
3073                         SetPageUptodate(page);
3074                 unlock_page(page);
3075         }
3076         return ret;
3077 }
3078
3079 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3080                                              struct page *pages[], int nr_pages,
3081                                              u64 start, u64 end,
3082                                              struct extent_map **em_cached,
3083                                              struct bio **bio,
3084                                              unsigned long *bio_flags,
3085                                              u64 *prev_em_start)
3086 {
3087         struct inode *inode;
3088         struct btrfs_ordered_extent *ordered;
3089         int index;
3090
3091         inode = pages[0]->mapping->host;
3092         while (1) {
3093                 lock_extent(tree, start, end);
3094                 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3095                                                      end - start + 1);
3096                 if (!ordered)
3097                         break;
3098                 unlock_extent(tree, start, end);
3099                 btrfs_start_ordered_extent(inode, ordered, 1);
3100                 btrfs_put_ordered_extent(ordered);
3101         }
3102
3103         for (index = 0; index < nr_pages; index++) {
3104                 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3105                                 bio, 0, bio_flags, 0, prev_em_start);
3106                 put_page(pages[index]);
3107         }
3108 }
3109
3110 static void __extent_readpages(struct extent_io_tree *tree,
3111                                struct page *pages[],
3112                                int nr_pages,
3113                                struct extent_map **em_cached,
3114                                struct bio **bio, unsigned long *bio_flags,
3115                                u64 *prev_em_start)
3116 {
3117         u64 start = 0;
3118         u64 end = 0;
3119         u64 page_start;
3120         int index;
3121         int first_index = 0;
3122
3123         for (index = 0; index < nr_pages; index++) {
3124                 page_start = page_offset(pages[index]);
3125                 if (!end) {
3126                         start = page_start;
3127                         end = start + PAGE_SIZE - 1;
3128                         first_index = index;
3129                 } else if (end + 1 == page_start) {
3130                         end += PAGE_SIZE;
3131                 } else {
3132                         __do_contiguous_readpages(tree, &pages[first_index],
3133                                                   index - first_index, start,
3134                                                   end, em_cached,
3135                                                   bio, bio_flags,
3136                                                   prev_em_start);
3137                         start = page_start;
3138                         end = start + PAGE_SIZE - 1;
3139                         first_index = index;
3140                 }
3141         }
3142
3143         if (end)
3144                 __do_contiguous_readpages(tree, &pages[first_index],
3145                                           index - first_index, start,
3146                                           end, em_cached, bio,
3147                                           bio_flags, prev_em_start);
3148 }
3149
3150 static int __extent_read_full_page(struct extent_io_tree *tree,
3151                                    struct page *page,
3152                                    get_extent_t *get_extent,
3153                                    struct bio **bio, int mirror_num,
3154                                    unsigned long *bio_flags,
3155                                    unsigned int read_flags)
3156 {
3157         struct inode *inode = page->mapping->host;
3158         struct btrfs_ordered_extent *ordered;
3159         u64 start = page_offset(page);
3160         u64 end = start + PAGE_SIZE - 1;
3161         int ret;
3162
3163         while (1) {
3164                 lock_extent(tree, start, end);
3165                 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3166                                                 PAGE_SIZE);
3167                 if (!ordered)
3168                         break;
3169                 unlock_extent(tree, start, end);
3170                 btrfs_start_ordered_extent(inode, ordered, 1);
3171                 btrfs_put_ordered_extent(ordered);
3172         }
3173
3174         ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3175                             bio_flags, read_flags, NULL);
3176         return ret;
3177 }
3178
3179 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3180                             get_extent_t *get_extent, int mirror_num)
3181 {
3182         struct bio *bio = NULL;
3183         unsigned long bio_flags = 0;
3184         int ret;
3185
3186         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3187                                       &bio_flags, 0);
3188         if (bio)
3189                 ret = submit_one_bio(bio, mirror_num, bio_flags);
3190         return ret;
3191 }
3192
3193 static void update_nr_written(struct writeback_control *wbc,
3194                               unsigned long nr_written)
3195 {
3196         wbc->nr_to_write -= nr_written;
3197 }
3198
3199 /*
3200  * helper for __extent_writepage, doing all of the delayed allocation setup.
3201  *
3202  * This returns 1 if our fill_delalloc function did all the work required
3203  * to write the page (copy into inline extent).  In this case the IO has
3204  * been started and the page is already unlocked.
3205  *
3206  * This returns 0 if all went well (page still locked)
3207  * This returns < 0 if there were errors (page still locked)
3208  */
3209 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3210                               struct page *page, struct writeback_control *wbc,
3211                               struct extent_page_data *epd,
3212                               u64 delalloc_start,
3213                               unsigned long *nr_written)
3214 {
3215         struct extent_io_tree *tree = epd->tree;
3216         u64 page_end = delalloc_start + PAGE_SIZE - 1;
3217         u64 nr_delalloc;
3218         u64 delalloc_to_write = 0;
3219         u64 delalloc_end = 0;
3220         int ret;
3221         int page_started = 0;
3222
3223         if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3224                 return 0;
3225
3226         while (delalloc_end < page_end) {
3227                 nr_delalloc = find_lock_delalloc_range(inode, tree,
3228                                                page,
3229                                                &delalloc_start,
3230                                                &delalloc_end,
3231                                                BTRFS_MAX_EXTENT_SIZE);
3232                 if (nr_delalloc == 0) {
3233                         delalloc_start = delalloc_end + 1;
3234                         continue;
3235                 }
3236                 ret = tree->ops->fill_delalloc(inode, page,
3237                                                delalloc_start,
3238                                                delalloc_end,
3239                                                &page_started,
3240                                                nr_written, wbc);
3241                 /* File system has been set read-only */
3242                 if (ret) {
3243                         SetPageError(page);
3244                         /* fill_delalloc should be return < 0 for error
3245                          * but just in case, we use > 0 here meaning the
3246                          * IO is started, so we don't want to return > 0
3247                          * unless things are going well.
3248                          */
3249                         ret = ret < 0 ? ret : -EIO;
3250                         goto done;
3251                 }
3252                 /*
3253                  * delalloc_end is already one less than the total length, so
3254                  * we don't subtract one from PAGE_SIZE
3255                  */
3256                 delalloc_to_write += (delalloc_end - delalloc_start +
3257                                       PAGE_SIZE) >> PAGE_SHIFT;
3258                 delalloc_start = delalloc_end + 1;
3259         }
3260         if (wbc->nr_to_write < delalloc_to_write) {
3261                 int thresh = 8192;
3262
3263                 if (delalloc_to_write < thresh * 2)
3264                         thresh = delalloc_to_write;
3265                 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3266                                          thresh);
3267         }
3268
3269         /* did the fill delalloc function already unlock and start
3270          * the IO?
3271          */
3272         if (page_started) {
3273                 /*
3274                  * we've unlocked the page, so we can't update
3275                  * the mapping's writeback index, just update
3276                  * nr_to_write.
3277                  */
3278                 wbc->nr_to_write -= *nr_written;
3279                 return 1;
3280         }
3281
3282         ret = 0;
3283
3284 done:
3285         return ret;
3286 }
3287
3288 /*
3289  * helper for __extent_writepage.  This calls the writepage start hooks,
3290  * and does the loop to map the page into extents and bios.
3291  *
3292  * We return 1 if the IO is started and the page is unlocked,
3293  * 0 if all went well (page still locked)
3294  * < 0 if there were errors (page still locked)
3295  */
3296 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3297                                  struct page *page,
3298                                  struct writeback_control *wbc,
3299                                  struct extent_page_data *epd,
3300                                  loff_t i_size,
3301                                  unsigned long nr_written,
3302                                  unsigned int write_flags, int *nr_ret)
3303 {
3304         struct extent_io_tree *tree = epd->tree;
3305         u64 start = page_offset(page);
3306         u64 page_end = start + PAGE_SIZE - 1;
3307         u64 end;
3308         u64 cur = start;
3309         u64 extent_offset;
3310         u64 block_start;
3311         u64 iosize;
3312         struct extent_map *em;
3313         struct block_device *bdev;
3314         size_t pg_offset = 0;
3315         size_t blocksize;
3316         int ret = 0;
3317         int nr = 0;
3318         bool compressed;
3319
3320         if (tree->ops && tree->ops->writepage_start_hook) {
3321                 ret = tree->ops->writepage_start_hook(page, start,
3322                                                       page_end);
3323                 if (ret) {
3324                         /* Fixup worker will requeue */
3325                         if (ret == -EBUSY)
3326                                 wbc->pages_skipped++;
3327                         else
3328                                 redirty_page_for_writepage(wbc, page);
3329
3330                         update_nr_written(wbc, nr_written);
3331                         unlock_page(page);
3332                         return 1;
3333                 }
3334         }
3335
3336         /*
3337          * we don't want to touch the inode after unlocking the page,
3338          * so we update the mapping writeback index now
3339          */
3340         update_nr_written(wbc, nr_written + 1);
3341
3342         end = page_end;
3343         if (i_size <= start) {
3344                 if (tree->ops && tree->ops->writepage_end_io_hook)
3345                         tree->ops->writepage_end_io_hook(page, start,
3346                                                          page_end, NULL, 1);
3347                 goto done;
3348         }
3349
3350         blocksize = inode->i_sb->s_blocksize;
3351
3352         while (cur <= end) {
3353                 u64 em_end;
3354                 u64 offset;
3355
3356                 if (cur >= i_size) {
3357                         if (tree->ops && tree->ops->writepage_end_io_hook)
3358                                 tree->ops->writepage_end_io_hook(page, cur,
3359                                                          page_end, NULL, 1);
3360                         break;
3361                 }
3362                 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3363                                      end - cur + 1, 1);
3364                 if (IS_ERR_OR_NULL(em)) {
3365                         SetPageError(page);
3366                         ret = PTR_ERR_OR_ZERO(em);
3367                         break;
3368                 }
3369
3370                 extent_offset = cur - em->start;
3371                 em_end = extent_map_end(em);
3372                 BUG_ON(em_end <= cur);
3373                 BUG_ON(end < cur);
3374                 iosize = min(em_end - cur, end - cur + 1);
3375                 iosize = ALIGN(iosize, blocksize);
3376                 offset = em->block_start + extent_offset;
3377                 bdev = em->bdev;
3378                 block_start = em->block_start;
3379                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3380                 free_extent_map(em);
3381                 em = NULL;
3382
3383                 /*
3384                  * compressed and inline extents are written through other
3385                  * paths in the FS
3386                  */
3387                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3388                     block_start == EXTENT_MAP_INLINE) {
3389                         /*
3390                          * end_io notification does not happen here for
3391                          * compressed extents
3392                          */
3393                         if (!compressed && tree->ops &&
3394                             tree->ops->writepage_end_io_hook)
3395                                 tree->ops->writepage_end_io_hook(page, cur,
3396                                                          cur + iosize - 1,
3397                                                          NULL, 1);
3398                         else if (compressed) {
3399                                 /* we don't want to end_page_writeback on
3400                                  * a compressed extent.  this happens
3401                                  * elsewhere
3402                                  */
3403                                 nr++;
3404                         }
3405
3406                         cur += iosize;
3407                         pg_offset += iosize;
3408                         continue;
3409                 }
3410
3411                 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3412                 if (!PageWriteback(page)) {
3413                         btrfs_err(BTRFS_I(inode)->root->fs_info,
3414                                    "page %lu not writeback, cur %llu end %llu",
3415                                page->index, cur, end);
3416                 }
3417
3418                 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3419                                          page, offset, iosize, pg_offset,
3420                                          bdev, &epd->bio,
3421                                          end_bio_extent_writepage,
3422                                          0, 0, 0, false);
3423                 if (ret) {
3424                         SetPageError(page);
3425                         if (PageWriteback(page))
3426                                 end_page_writeback(page);
3427                 }
3428
3429                 cur = cur + iosize;
3430                 pg_offset += iosize;
3431                 nr++;
3432         }
3433 done:
3434         *nr_ret = nr;
3435         return ret;
3436 }
3437
3438 /*
3439  * the writepage semantics are similar to regular writepage.  extent
3440  * records are inserted to lock ranges in the tree, and as dirty areas
3441  * are found, they are marked writeback.  Then the lock bits are removed
3442  * and the end_io handler clears the writeback ranges
3443  */
3444 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3445                               struct extent_page_data *epd)
3446 {
3447         struct inode *inode = page->mapping->host;
3448         u64 start = page_offset(page);
3449         u64 page_end = start + PAGE_SIZE - 1;
3450         int ret;
3451         int nr = 0;
3452         size_t pg_offset = 0;
3453         loff_t i_size = i_size_read(inode);
3454         unsigned long end_index = i_size >> PAGE_SHIFT;
3455         unsigned int write_flags = 0;
3456         unsigned long nr_written = 0;
3457
3458         write_flags = wbc_to_write_flags(wbc);
3459
3460         trace___extent_writepage(page, inode, wbc);
3461
3462         WARN_ON(!PageLocked(page));
3463
3464         ClearPageError(page);
3465
3466         pg_offset = i_size & (PAGE_SIZE - 1);
3467         if (page->index > end_index ||
3468            (page->index == end_index && !pg_offset)) {
3469                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3470                 unlock_page(page);
3471                 return 0;
3472         }
3473
3474         if (page->index == end_index) {
3475                 char *userpage;
3476
3477                 userpage = kmap_atomic(page);
3478                 memset(userpage + pg_offset, 0,
3479                        PAGE_SIZE - pg_offset);
3480                 kunmap_atomic(userpage);
3481                 flush_dcache_page(page);
3482         }
3483
3484         pg_offset = 0;
3485
3486         set_page_extent_mapped(page);
3487
3488         ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3489         if (ret == 1)
3490                 goto done_unlocked;
3491         if (ret)
3492                 goto done;
3493
3494         ret = __extent_writepage_io(inode, page, wbc, epd,
3495                                     i_size, nr_written, write_flags, &nr);
3496         if (ret == 1)
3497                 goto done_unlocked;
3498
3499 done:
3500         if (nr == 0) {
3501                 /* make sure the mapping tag for page dirty gets cleared */
3502                 set_page_writeback(page);
3503                 end_page_writeback(page);
3504         }
3505         if (PageError(page)) {
3506                 ret = ret < 0 ? ret : -EIO;
3507                 end_extent_writepage(page, ret, start, page_end);
3508         }
3509         unlock_page(page);
3510         return ret;
3511
3512 done_unlocked:
3513         return 0;
3514 }
3515
3516 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3517 {
3518         wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3519                        TASK_UNINTERRUPTIBLE);
3520 }
3521
3522 static noinline_for_stack int
3523 lock_extent_buffer_for_io(struct extent_buffer *eb,
3524                           struct btrfs_fs_info *fs_info,
3525                           struct extent_page_data *epd)
3526 {
3527         int i, num_pages;
3528         int flush = 0;
3529         int ret = 0;
3530
3531         if (!btrfs_try_tree_write_lock(eb)) {
3532                 flush = 1;
3533                 flush_write_bio(epd);
3534                 btrfs_tree_lock(eb);
3535         }
3536
3537         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3538                 btrfs_tree_unlock(eb);
3539                 if (!epd->sync_io)
3540                         return 0;
3541                 if (!flush) {
3542                         flush_write_bio(epd);
3543                         flush = 1;
3544                 }
3545                 while (1) {
3546                         wait_on_extent_buffer_writeback(eb);
3547                         btrfs_tree_lock(eb);
3548                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3549                                 break;
3550                         btrfs_tree_unlock(eb);
3551                 }
3552         }
3553
3554         /*
3555          * We need to do this to prevent races in people who check if the eb is
3556          * under IO since we can end up having no IO bits set for a short period
3557          * of time.
3558          */
3559         spin_lock(&eb->refs_lock);
3560         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3561                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3562                 spin_unlock(&eb->refs_lock);
3563                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3564                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3565                                          -eb->len,
3566                                          fs_info->dirty_metadata_batch);
3567                 ret = 1;
3568         } else {
3569                 spin_unlock(&eb->refs_lock);
3570         }
3571
3572         btrfs_tree_unlock(eb);
3573
3574         if (!ret)
3575                 return ret;
3576
3577         num_pages = num_extent_pages(eb);
3578         for (i = 0; i < num_pages; i++) {
3579                 struct page *p = eb->pages[i];
3580
3581                 if (!trylock_page(p)) {
3582                         if (!flush) {
3583                                 flush_write_bio(epd);
3584                                 flush = 1;
3585                         }
3586                         lock_page(p);
3587                 }
3588         }
3589
3590         return ret;
3591 }
3592
3593 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3594 {
3595         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3596         smp_mb__after_atomic();
3597         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3598 }
3599
3600 static void set_btree_ioerr(struct page *page)
3601 {
3602         struct extent_buffer *eb = (struct extent_buffer *)page->private;
3603
3604         SetPageError(page);
3605         if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3606                 return;
3607
3608         /*
3609          * If writeback for a btree extent that doesn't belong to a log tree
3610          * failed, increment the counter transaction->eb_write_errors.
3611          * We do this because while the transaction is running and before it's
3612          * committing (when we call filemap_fdata[write|wait]_range against
3613          * the btree inode), we might have
3614          * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3615          * returns an error or an error happens during writeback, when we're
3616          * committing the transaction we wouldn't know about it, since the pages
3617          * can be no longer dirty nor marked anymore for writeback (if a
3618          * subsequent modification to the extent buffer didn't happen before the
3619          * transaction commit), which makes filemap_fdata[write|wait]_range not
3620          * able to find the pages tagged with SetPageError at transaction
3621          * commit time. So if this happens we must abort the transaction,
3622          * otherwise we commit a super block with btree roots that point to
3623          * btree nodes/leafs whose content on disk is invalid - either garbage
3624          * or the content of some node/leaf from a past generation that got
3625          * cowed or deleted and is no longer valid.
3626          *
3627          * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3628          * not be enough - we need to distinguish between log tree extents vs
3629          * non-log tree extents, and the next filemap_fdatawait_range() call
3630          * will catch and clear such errors in the mapping - and that call might
3631          * be from a log sync and not from a transaction commit. Also, checking
3632          * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3633          * not done and would not be reliable - the eb might have been released
3634          * from memory and reading it back again means that flag would not be
3635          * set (since it's a runtime flag, not persisted on disk).
3636          *
3637          * Using the flags below in the btree inode also makes us achieve the
3638          * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3639          * writeback for all dirty pages and before filemap_fdatawait_range()
3640          * is called, the writeback for all dirty pages had already finished
3641          * with errors - because we were not using AS_EIO/AS_ENOSPC,
3642          * filemap_fdatawait_range() would return success, as it could not know
3643          * that writeback errors happened (the pages were no longer tagged for
3644          * writeback).
3645          */
3646         switch (eb->log_index) {
3647         case -1:
3648                 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3649                 break;
3650         case 0:
3651                 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3652                 break;
3653         case 1:
3654                 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3655                 break;
3656         default:
3657                 BUG(); /* unexpected, logic error */
3658         }
3659 }
3660
3661 static void end_bio_extent_buffer_writepage(struct bio *bio)
3662 {
3663         struct bio_vec *bvec;
3664         struct extent_buffer *eb;
3665         int i, done;
3666
3667         ASSERT(!bio_flagged(bio, BIO_CLONED));
3668         bio_for_each_segment_all(bvec, bio, i) {
3669                 struct page *page = bvec->bv_page;
3670
3671                 eb = (struct extent_buffer *)page->private;
3672                 BUG_ON(!eb);
3673                 done = atomic_dec_and_test(&eb->io_pages);
3674
3675                 if (bio->bi_status ||
3676                     test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3677                         ClearPageUptodate(page);
3678                         set_btree_ioerr(page);
3679                 }
3680
3681                 end_page_writeback(page);
3682
3683                 if (!done)
3684                         continue;
3685
3686                 end_extent_buffer_writeback(eb);
3687         }
3688
3689         bio_put(bio);
3690 }
3691
3692 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3693                         struct btrfs_fs_info *fs_info,
3694                         struct writeback_control *wbc,
3695                         struct extent_page_data *epd)
3696 {
3697         struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3698         struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3699         u64 offset = eb->start;
3700         u32 nritems;
3701         int i, num_pages;
3702         unsigned long start, end;
3703         unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3704         int ret = 0;
3705
3706         clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3707         num_pages = num_extent_pages(eb);
3708         atomic_set(&eb->io_pages, num_pages);
3709
3710         /* set btree blocks beyond nritems with 0 to avoid stale content. */
3711         nritems = btrfs_header_nritems(eb);
3712         if (btrfs_header_level(eb) > 0) {
3713                 end = btrfs_node_key_ptr_offset(nritems);
3714
3715                 memzero_extent_buffer(eb, end, eb->len - end);
3716         } else {
3717                 /*
3718                  * leaf:
3719                  * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3720                  */
3721                 start = btrfs_item_nr_offset(nritems);
3722                 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3723                 memzero_extent_buffer(eb, start, end - start);
3724         }
3725
3726         for (i = 0; i < num_pages; i++) {
3727                 struct page *p = eb->pages[i];
3728
3729                 clear_page_dirty_for_io(p);
3730                 set_page_writeback(p);
3731                 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3732                                          p, offset, PAGE_SIZE, 0, bdev,
3733                                          &epd->bio,
3734                                          end_bio_extent_buffer_writepage,
3735                                          0, 0, 0, false);
3736                 if (ret) {
3737                         set_btree_ioerr(p);
3738                         if (PageWriteback(p))
3739                                 end_page_writeback(p);
3740                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3741                                 end_extent_buffer_writeback(eb);
3742                         ret = -EIO;
3743                         break;
3744                 }
3745                 offset += PAGE_SIZE;
3746                 update_nr_written(wbc, 1);
3747                 unlock_page(p);
3748         }
3749
3750         if (unlikely(ret)) {
3751                 for (; i < num_pages; i++) {
3752                         struct page *p = eb->pages[i];
3753                         clear_page_dirty_for_io(p);
3754                         unlock_page(p);
3755                 }
3756         }
3757
3758         return ret;
3759 }
3760
3761 int btree_write_cache_pages(struct address_space *mapping,
3762                                    struct writeback_control *wbc)
3763 {
3764         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3765         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3766         struct extent_buffer *eb, *prev_eb = NULL;
3767         struct extent_page_data epd = {
3768                 .bio = NULL,
3769                 .tree = tree,
3770                 .extent_locked = 0,
3771                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3772         };
3773         int ret = 0;
3774         int done = 0;
3775         int nr_to_write_done = 0;
3776         struct pagevec pvec;
3777         int nr_pages;
3778         pgoff_t index;
3779         pgoff_t end;            /* Inclusive */
3780         int scanned = 0;
3781         int tag;
3782
3783         pagevec_init(&pvec);
3784         if (wbc->range_cyclic) {
3785                 index = mapping->writeback_index; /* Start from prev offset */
3786                 end = -1;
3787         } else {
3788                 index = wbc->range_start >> PAGE_SHIFT;
3789                 end = wbc->range_end >> PAGE_SHIFT;
3790                 scanned = 1;
3791         }
3792         if (wbc->sync_mode == WB_SYNC_ALL)
3793                 tag = PAGECACHE_TAG_TOWRITE;
3794         else
3795                 tag = PAGECACHE_TAG_DIRTY;
3796 retry:
3797         if (wbc->sync_mode == WB_SYNC_ALL)
3798                 tag_pages_for_writeback(mapping, index, end);
3799         while (!done && !nr_to_write_done && (index <= end) &&
3800                (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3801                         tag))) {
3802                 unsigned i;
3803
3804                 scanned = 1;
3805                 for (i = 0; i < nr_pages; i++) {
3806                         struct page *page = pvec.pages[i];
3807
3808                         if (!PagePrivate(page))
3809                                 continue;
3810
3811                         spin_lock(&mapping->private_lock);
3812                         if (!PagePrivate(page)) {
3813                                 spin_unlock(&mapping->private_lock);
3814                                 continue;
3815                         }
3816
3817                         eb = (struct extent_buffer *)page->private;
3818
3819                         /*
3820                          * Shouldn't happen and normally this would be a BUG_ON
3821                          * but no sense in crashing the users box for something
3822                          * we can survive anyway.
3823                          */
3824                         if (WARN_ON(!eb)) {
3825                                 spin_unlock(&mapping->private_lock);
3826                                 continue;
3827                         }
3828
3829                         if (eb == prev_eb) {
3830                                 spin_unlock(&mapping->private_lock);
3831                                 continue;
3832                         }
3833
3834                         ret = atomic_inc_not_zero(&eb->refs);
3835                         spin_unlock(&mapping->private_lock);
3836                         if (!ret)
3837                                 continue;
3838
3839                         prev_eb = eb;
3840                         ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3841                         if (!ret) {
3842                                 free_extent_buffer(eb);
3843                                 continue;
3844                         }
3845
3846                         ret = write_one_eb(eb, fs_info, wbc, &epd);
3847                         if (ret) {
3848                                 done = 1;
3849                                 free_extent_buffer(eb);
3850                                 break;
3851                         }
3852                         free_extent_buffer(eb);
3853
3854                         /*
3855                          * the filesystem may choose to bump up nr_to_write.
3856                          * We have to make sure to honor the new nr_to_write
3857                          * at any time
3858                          */
3859                         nr_to_write_done = wbc->nr_to_write <= 0;
3860                 }
3861                 pagevec_release(&pvec);
3862                 cond_resched();
3863         }
3864         if (!scanned && !done) {
3865                 /*
3866                  * We hit the last page and there is more work to be done: wrap
3867                  * back to the start of the file
3868                  */
3869                 scanned = 1;
3870                 index = 0;
3871                 goto retry;
3872         }
3873         flush_write_bio(&epd);
3874         return ret;
3875 }
3876
3877 /**
3878  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3879  * @mapping: address space structure to write
3880  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3881  * @data: data passed to __extent_writepage function
3882  *
3883  * If a page is already under I/O, write_cache_pages() skips it, even
3884  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3885  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3886  * and msync() need to guarantee that all the data which was dirty at the time
3887  * the call was made get new I/O started against them.  If wbc->sync_mode is
3888  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3889  * existing IO to complete.
3890  */
3891 static int extent_write_cache_pages(struct address_space *mapping,
3892                              struct writeback_control *wbc,
3893                              struct extent_page_data *epd)
3894 {
3895         struct inode *inode = mapping->host;
3896         int ret = 0;
3897         int done = 0;
3898         int nr_to_write_done = 0;
3899         struct pagevec pvec;
3900         int nr_pages;
3901         pgoff_t index;
3902         pgoff_t end;            /* Inclusive */
3903         pgoff_t done_index;
3904         int range_whole = 0;
3905         int scanned = 0;
3906         int tag;
3907
3908         /*
3909          * We have to hold onto the inode so that ordered extents can do their
3910          * work when the IO finishes.  The alternative to this is failing to add
3911          * an ordered extent if the igrab() fails there and that is a huge pain
3912          * to deal with, so instead just hold onto the inode throughout the
3913          * writepages operation.  If it fails here we are freeing up the inode
3914          * anyway and we'd rather not waste our time writing out stuff that is
3915          * going to be truncated anyway.
3916          */
3917         if (!igrab(inode))
3918                 return 0;
3919
3920         pagevec_init(&pvec);
3921         if (wbc->range_cyclic) {
3922                 index = mapping->writeback_index; /* Start from prev offset */
3923                 end = -1;
3924         } else {
3925                 index = wbc->range_start >> PAGE_SHIFT;
3926                 end = wbc->range_end >> PAGE_SHIFT;
3927                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3928                         range_whole = 1;
3929                 scanned = 1;
3930         }
3931         if (wbc->sync_mode == WB_SYNC_ALL)
3932                 tag = PAGECACHE_TAG_TOWRITE;
3933         else
3934                 tag = PAGECACHE_TAG_DIRTY;
3935 retry:
3936         if (wbc->sync_mode == WB_SYNC_ALL)
3937                 tag_pages_for_writeback(mapping, index, end);
3938         done_index = index;
3939         while (!done && !nr_to_write_done && (index <= end) &&
3940                         (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3941                                                 &index, end, tag))) {
3942                 unsigned i;
3943
3944                 scanned = 1;
3945                 for (i = 0; i < nr_pages; i++) {
3946                         struct page *page = pvec.pages[i];
3947
3948                         done_index = page->index;
3949                         /*
3950                          * At this point we hold neither the i_pages lock nor
3951                          * the page lock: the page may be truncated or
3952                          * invalidated (changing page->mapping to NULL),
3953                          * or even swizzled back from swapper_space to
3954                          * tmpfs file mapping
3955                          */
3956                         if (!trylock_page(page)) {
3957                                 flush_write_bio(epd);
3958                                 lock_page(page);
3959                         }
3960
3961                         if (unlikely(page->mapping != mapping)) {
3962                                 unlock_page(page);
3963                                 continue;
3964                         }
3965
3966                         if (wbc->sync_mode != WB_SYNC_NONE) {
3967                                 if (PageWriteback(page))
3968                                         flush_write_bio(epd);
3969                                 wait_on_page_writeback(page);
3970                         }
3971
3972                         if (PageWriteback(page) ||
3973                             !clear_page_dirty_for_io(page)) {
3974                                 unlock_page(page);
3975                                 continue;
3976                         }
3977
3978                         ret = __extent_writepage(page, wbc, epd);
3979
3980                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3981                                 unlock_page(page);
3982                                 ret = 0;
3983                         }
3984                         if (ret < 0) {
3985                                 /*
3986                                  * done_index is set past this page,
3987                                  * so media errors will not choke
3988                                  * background writeout for the entire
3989                                  * file. This has consequences for
3990                                  * range_cyclic semantics (ie. it may
3991                                  * not be suitable for data integrity
3992                                  * writeout).
3993                                  */
3994                                 done_index = page->index + 1;
3995                                 done = 1;
3996                                 break;
3997                         }
3998
3999                         /*
4000                          * the filesystem may choose to bump up nr_to_write.
4001                          * We have to make sure to honor the new nr_to_write
4002                          * at any time
4003                          */
4004                         nr_to_write_done = wbc->nr_to_write <= 0;
4005                 }
4006                 pagevec_release(&pvec);
4007                 cond_resched();
4008         }
4009         if (!scanned && !done) {
4010                 /*
4011                  * We hit the last page and there is more work to be done: wrap
4012                  * back to the start of the file
4013                  */
4014                 scanned = 1;
4015                 index = 0;
4016                 goto retry;
4017         }
4018
4019         if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4020                 mapping->writeback_index = done_index;
4021
4022         btrfs_add_delayed_iput(inode);
4023         return ret;
4024 }
4025
4026 static void flush_write_bio(struct extent_page_data *epd)
4027 {
4028         if (epd->bio) {
4029                 int ret;
4030
4031                 ret = submit_one_bio(epd->bio, 0, 0);
4032                 BUG_ON(ret < 0); /* -ENOMEM */
4033                 epd->bio = NULL;
4034         }
4035 }
4036
4037 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4038 {
4039         int ret;
4040         struct extent_page_data epd = {
4041                 .bio = NULL,
4042                 .tree = &BTRFS_I(page->mapping->host)->io_tree,
4043                 .extent_locked = 0,
4044                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4045         };
4046
4047         ret = __extent_writepage(page, wbc, &epd);
4048
4049         flush_write_bio(&epd);
4050         return ret;
4051 }
4052
4053 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4054                               int mode)
4055 {
4056         int ret = 0;
4057         struct address_space *mapping = inode->i_mapping;
4058         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4059         struct page *page;
4060         unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4061                 PAGE_SHIFT;
4062
4063         struct extent_page_data epd = {
4064                 .bio = NULL,
4065                 .tree = tree,
4066                 .extent_locked = 1,
4067                 .sync_io = mode == WB_SYNC_ALL,
4068         };
4069         struct writeback_control wbc_writepages = {
4070                 .sync_mode      = mode,
4071                 .nr_to_write    = nr_pages * 2,
4072                 .range_start    = start,
4073                 .range_end      = end + 1,
4074         };
4075
4076         while (start <= end) {
4077                 page = find_get_page(mapping, start >> PAGE_SHIFT);
4078                 if (clear_page_dirty_for_io(page))
4079                         ret = __extent_writepage(page, &wbc_writepages, &epd);
4080                 else {
4081                         if (tree->ops && tree->ops->writepage_end_io_hook)
4082                                 tree->ops->writepage_end_io_hook(page, start,
4083                                                  start + PAGE_SIZE - 1,
4084                                                  NULL, 1);
4085                         unlock_page(page);
4086                 }
4087                 put_page(page);
4088                 start += PAGE_SIZE;
4089         }
4090
4091         flush_write_bio(&epd);
4092         return ret;
4093 }
4094
4095 int extent_writepages(struct address_space *mapping,
4096                       struct writeback_control *wbc)
4097 {
4098         int ret = 0;
4099         struct extent_page_data epd = {
4100                 .bio = NULL,
4101                 .tree = &BTRFS_I(mapping->host)->io_tree,
4102                 .extent_locked = 0,
4103                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4104         };
4105
4106         ret = extent_write_cache_pages(mapping, wbc, &epd);
4107         flush_write_bio(&epd);
4108         return ret;
4109 }
4110
4111 int extent_readpages(struct address_space *mapping, struct list_head *pages,
4112                      unsigned nr_pages)
4113 {
4114         struct bio *bio = NULL;
4115         unsigned page_idx;
4116         unsigned long bio_flags = 0;
4117         struct page *pagepool[16];
4118         struct page *page;
4119         struct extent_map *em_cached = NULL;
4120         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
4121         int nr = 0;
4122         u64 prev_em_start = (u64)-1;
4123
4124         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4125                 page = list_entry(pages->prev, struct page, lru);
4126
4127                 prefetchw(&page->flags);
4128                 list_del(&page->lru);
4129                 if (add_to_page_cache_lru(page, mapping,
4130                                         page->index,
4131                                         readahead_gfp_mask(mapping))) {
4132                         put_page(page);
4133                         continue;
4134                 }
4135
4136                 pagepool[nr++] = page;
4137                 if (nr < ARRAY_SIZE(pagepool))
4138                         continue;
4139                 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4140                                 &bio_flags, &prev_em_start);
4141                 nr = 0;
4142         }
4143         if (nr)
4144                 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4145                                 &bio_flags, &prev_em_start);
4146
4147         if (em_cached)
4148                 free_extent_map(em_cached);
4149
4150         BUG_ON(!list_empty(pages));
4151         if (bio)
4152                 return submit_one_bio(bio, 0, bio_flags);
4153         return 0;
4154 }
4155
4156 /*
4157  * basic invalidatepage code, this waits on any locked or writeback
4158  * ranges corresponding to the page, and then deletes any extent state
4159  * records from the tree
4160  */
4161 int extent_invalidatepage(struct extent_io_tree *tree,
4162                           struct page *page, unsigned long offset)
4163 {
4164         struct extent_state *cached_state = NULL;
4165         u64 start = page_offset(page);
4166         u64 end = start + PAGE_SIZE - 1;
4167         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4168
4169         start += ALIGN(offset, blocksize);
4170         if (start > end)
4171                 return 0;
4172
4173         lock_extent_bits(tree, start, end, &cached_state);
4174         wait_on_page_writeback(page);
4175         clear_extent_bit(tree, start, end,
4176                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4177                          EXTENT_DO_ACCOUNTING,
4178                          1, 1, &cached_state);
4179         return 0;
4180 }
4181
4182 /*
4183  * a helper for releasepage, this tests for areas of the page that
4184  * are locked or under IO and drops the related state bits if it is safe
4185  * to drop the page.
4186  */
4187 static int try_release_extent_state(struct extent_io_tree *tree,
4188                                     struct page *page, gfp_t mask)
4189 {
4190         u64 start = page_offset(page);
4191         u64 end = start + PAGE_SIZE - 1;
4192         int ret = 1;
4193
4194         if (test_range_bit(tree, start, end,
4195                            EXTENT_IOBITS, 0, NULL))
4196                 ret = 0;
4197         else {
4198                 /*
4199                  * at this point we can safely clear everything except the
4200                  * locked bit and the nodatasum bit
4201                  */
4202                 ret = __clear_extent_bit(tree, start, end,
4203                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4204                                  0, 0, NULL, mask, NULL);
4205
4206                 /* if clear_extent_bit failed for enomem reasons,
4207                  * we can't allow the release to continue.
4208                  */
4209                 if (ret < 0)
4210                         ret = 0;
4211                 else
4212                         ret = 1;
4213         }
4214         return ret;
4215 }
4216
4217 /*
4218  * a helper for releasepage.  As long as there are no locked extents
4219  * in the range corresponding to the page, both state records and extent
4220  * map records are removed
4221  */
4222 int try_release_extent_mapping(struct page *page, gfp_t mask)
4223 {
4224         struct extent_map *em;
4225         u64 start = page_offset(page);
4226         u64 end = start + PAGE_SIZE - 1;
4227         struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4228         struct extent_io_tree *tree = &btrfs_inode->io_tree;
4229         struct extent_map_tree *map = &btrfs_inode->extent_tree;
4230
4231         if (gfpflags_allow_blocking(mask) &&
4232             page->mapping->host->i_size > SZ_16M) {
4233                 u64 len;
4234                 while (start <= end) {
4235                         len = end - start + 1;
4236                         write_lock(&map->lock);
4237                         em = lookup_extent_mapping(map, start, len);
4238                         if (!em) {
4239                                 write_unlock(&map->lock);
4240                                 break;
4241                         }
4242                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4243                             em->start != start) {
4244                                 write_unlock(&map->lock);
4245                                 free_extent_map(em);
4246                                 break;
4247                         }
4248                         if (!test_range_bit(tree, em->start,
4249                                             extent_map_end(em) - 1,
4250                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
4251                                             0, NULL)) {
4252                                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4253                                         &btrfs_inode->runtime_flags);
4254                                 remove_extent_mapping(map, em);
4255                                 /* once for the rb tree */
4256                                 free_extent_map(em);
4257                         }
4258                         start = extent_map_end(em);
4259                         write_unlock(&map->lock);
4260
4261                         /* once for us */
4262                         free_extent_map(em);
4263                 }
4264         }
4265         return try_release_extent_state(tree, page, mask);
4266 }
4267
4268 /*
4269  * helper function for fiemap, which doesn't want to see any holes.
4270  * This maps until we find something past 'last'
4271  */
4272 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4273                                                 u64 offset, u64 last)
4274 {
4275         u64 sectorsize = btrfs_inode_sectorsize(inode);
4276         struct extent_map *em;
4277         u64 len;
4278
4279         if (offset >= last)
4280                 return NULL;
4281
4282         while (1) {
4283                 len = last - offset;
4284                 if (len == 0)
4285                         break;
4286                 len = ALIGN(len, sectorsize);
4287                 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset,
4288                                 len, 0);
4289                 if (IS_ERR_OR_NULL(em))
4290                         return em;
4291
4292                 /* if this isn't a hole return it */
4293                 if (em->block_start != EXTENT_MAP_HOLE)
4294                         return em;
4295
4296                 /* this is a hole, advance to the next extent */
4297                 offset = extent_map_end(em);
4298                 free_extent_map(em);
4299                 if (offset >= last)
4300                         break;
4301         }
4302         return NULL;
4303 }
4304
4305 /*
4306  * To cache previous fiemap extent
4307  *
4308  * Will be used for merging fiemap extent
4309  */
4310 struct fiemap_cache {
4311         u64 offset;
4312         u64 phys;
4313         u64 len;
4314         u32 flags;
4315         bool cached;
4316 };
4317
4318 /*
4319  * Helper to submit fiemap extent.
4320  *
4321  * Will try to merge current fiemap extent specified by @offset, @phys,
4322  * @len and @flags with cached one.
4323  * And only when we fails to merge, cached one will be submitted as
4324  * fiemap extent.
4325  *
4326  * Return value is the same as fiemap_fill_next_extent().
4327  */
4328 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4329                                 struct fiemap_cache *cache,
4330                                 u64 offset, u64 phys, u64 len, u32 flags)
4331 {
4332         int ret = 0;
4333
4334         if (!cache->cached)
4335                 goto assign;
4336
4337         /*
4338          * Sanity check, extent_fiemap() should have ensured that new
4339          * fiemap extent won't overlap with cahced one.
4340          * Not recoverable.
4341          *
4342          * NOTE: Physical address can overlap, due to compression
4343          */
4344         if (cache->offset + cache->len > offset) {
4345                 WARN_ON(1);
4346                 return -EINVAL;
4347         }
4348
4349         /*
4350          * Only merges fiemap extents if
4351          * 1) Their logical addresses are continuous
4352          *
4353          * 2) Their physical addresses are continuous
4354          *    So truly compressed (physical size smaller than logical size)
4355          *    extents won't get merged with each other
4356          *
4357          * 3) Share same flags except FIEMAP_EXTENT_LAST
4358          *    So regular extent won't get merged with prealloc extent
4359          */
4360         if (cache->offset + cache->len  == offset &&
4361             cache->phys + cache->len == phys  &&
4362             (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4363                         (flags & ~FIEMAP_EXTENT_LAST)) {
4364                 cache->len += len;
4365                 cache->flags |= flags;
4366                 goto try_submit_last;
4367         }
4368
4369         /* Not mergeable, need to submit cached one */
4370         ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4371                                       cache->len, cache->flags);
4372         cache->cached = false;
4373         if (ret)
4374                 return ret;
4375 assign:
4376         cache->cached = true;
4377         cache->offset = offset;
4378         cache->phys = phys;
4379         cache->len = len;
4380         cache->flags = flags;
4381 try_submit_last:
4382         if (cache->flags & FIEMAP_EXTENT_LAST) {
4383                 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4384                                 cache->phys, cache->len, cache->flags);
4385                 cache->cached = false;
4386         }
4387         return ret;
4388 }
4389
4390 /*
4391  * Emit last fiemap cache
4392  *
4393  * The last fiemap cache may still be cached in the following case:
4394  * 0                  4k                    8k
4395  * |<- Fiemap range ->|
4396  * |<------------  First extent ----------->|
4397  *
4398  * In this case, the first extent range will be cached but not emitted.
4399  * So we must emit it before ending extent_fiemap().
4400  */
4401 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4402                                   struct fiemap_extent_info *fieinfo,
4403                                   struct fiemap_cache *cache)
4404 {
4405         int ret;
4406
4407         if (!cache->cached)
4408                 return 0;
4409
4410         ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4411                                       cache->len, cache->flags);
4412         cache->cached = false;
4413         if (ret > 0)
4414                 ret = 0;
4415         return ret;
4416 }
4417
4418 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4419                 __u64 start, __u64 len)
4420 {
4421         int ret = 0;
4422         u64 off = start;
4423         u64 max = start + len;
4424         u32 flags = 0;
4425         u32 found_type;
4426         u64 last;
4427         u64 last_for_get_extent = 0;
4428         u64 disko = 0;
4429         u64 isize = i_size_read(inode);
4430         struct btrfs_key found_key;
4431         struct extent_map *em = NULL;
4432         struct extent_state *cached_state = NULL;
4433         struct btrfs_path *path;
4434         struct btrfs_root *root = BTRFS_I(inode)->root;
4435         struct fiemap_cache cache = { 0 };
4436         int end = 0;
4437         u64 em_start = 0;
4438         u64 em_len = 0;
4439         u64 em_end = 0;
4440
4441         if (len == 0)
4442                 return -EINVAL;
4443
4444         path = btrfs_alloc_path();
4445         if (!path)
4446                 return -ENOMEM;
4447         path->leave_spinning = 1;
4448
4449         start = round_down(start, btrfs_inode_sectorsize(inode));
4450         len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4451
4452         /*
4453          * lookup the last file extent.  We're not using i_size here
4454          * because there might be preallocation past i_size
4455          */
4456         ret = btrfs_lookup_file_extent(NULL, root, path,
4457                         btrfs_ino(BTRFS_I(inode)), -1, 0);
4458         if (ret < 0) {
4459                 btrfs_free_path(path);
4460                 return ret;
4461         } else {
4462                 WARN_ON(!ret);
4463                 if (ret == 1)
4464                         ret = 0;
4465         }
4466
4467         path->slots[0]--;
4468         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4469         found_type = found_key.type;
4470
4471         /* No extents, but there might be delalloc bits */
4472         if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4473             found_type != BTRFS_EXTENT_DATA_KEY) {
4474                 /* have to trust i_size as the end */
4475                 last = (u64)-1;
4476                 last_for_get_extent = isize;
4477         } else {
4478                 /*
4479                  * remember the start of the last extent.  There are a
4480                  * bunch of different factors that go into the length of the
4481                  * extent, so its much less complex to remember where it started
4482                  */
4483                 last = found_key.offset;
4484                 last_for_get_extent = last + 1;
4485         }
4486         btrfs_release_path(path);
4487
4488         /*
4489          * we might have some extents allocated but more delalloc past those
4490          * extents.  so, we trust isize unless the start of the last extent is
4491          * beyond isize
4492          */
4493         if (last < isize) {
4494                 last = (u64)-1;
4495                 last_for_get_extent = isize;
4496         }
4497
4498         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4499                          &cached_state);
4500
4501         em = get_extent_skip_holes(inode, start, last_for_get_extent);
4502         if (!em)
4503                 goto out;
4504         if (IS_ERR(em)) {
4505                 ret = PTR_ERR(em);
4506                 goto out;
4507         }
4508
4509         while (!end) {
4510                 u64 offset_in_extent = 0;
4511
4512                 /* break if the extent we found is outside the range */
4513                 if (em->start >= max || extent_map_end(em) < off)
4514                         break;
4515
4516                 /*
4517                  * get_extent may return an extent that starts before our
4518                  * requested range.  We have to make sure the ranges
4519                  * we return to fiemap always move forward and don't
4520                  * overlap, so adjust the offsets here
4521                  */
4522                 em_start = max(em->start, off);
4523
4524                 /*
4525                  * record the offset from the start of the extent
4526                  * for adjusting the disk offset below.  Only do this if the
4527                  * extent isn't compressed since our in ram offset may be past
4528                  * what we have actually allocated on disk.
4529                  */
4530                 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4531                         offset_in_extent = em_start - em->start;
4532                 em_end = extent_map_end(em);
4533                 em_len = em_end - em_start;
4534                 flags = 0;
4535                 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4536                         disko = em->block_start + offset_in_extent;
4537                 else
4538                         disko = 0;
4539
4540                 /*
4541                  * bump off for our next call to get_extent
4542                  */
4543                 off = extent_map_end(em);
4544                 if (off >= max)
4545                         end = 1;
4546
4547                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4548                         end = 1;
4549                         flags |= FIEMAP_EXTENT_LAST;
4550                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4551                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4552                                   FIEMAP_EXTENT_NOT_ALIGNED);
4553                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4554                         flags |= (FIEMAP_EXTENT_DELALLOC |
4555                                   FIEMAP_EXTENT_UNKNOWN);
4556                 } else if (fieinfo->fi_extents_max) {
4557                         u64 bytenr = em->block_start -
4558                                 (em->start - em->orig_start);
4559
4560                         /*
4561                          * As btrfs supports shared space, this information
4562                          * can be exported to userspace tools via
4563                          * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4564                          * then we're just getting a count and we can skip the
4565                          * lookup stuff.
4566                          */
4567                         ret = btrfs_check_shared(root,
4568                                                  btrfs_ino(BTRFS_I(inode)),
4569                                                  bytenr);
4570                         if (ret < 0)
4571                                 goto out_free;
4572                         if (ret)
4573                                 flags |= FIEMAP_EXTENT_SHARED;
4574                         ret = 0;
4575                 }
4576                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4577                         flags |= FIEMAP_EXTENT_ENCODED;
4578                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4579                         flags |= FIEMAP_EXTENT_UNWRITTEN;
4580
4581                 free_extent_map(em);
4582                 em = NULL;
4583                 if ((em_start >= last) || em_len == (u64)-1 ||
4584                    (last == (u64)-1 && isize <= em_end)) {
4585                         flags |= FIEMAP_EXTENT_LAST;
4586                         end = 1;
4587                 }
4588
4589                 /* now scan forward to see if this is really the last extent. */
4590                 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4591                 if (IS_ERR(em)) {
4592                         ret = PTR_ERR(em);
4593                         goto out;
4594                 }
4595                 if (!em) {
4596                         flags |= FIEMAP_EXTENT_LAST;
4597                         end = 1;
4598                 }
4599                 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4600                                            em_len, flags);
4601                 if (ret) {
4602                         if (ret == 1)
4603                                 ret = 0;
4604                         goto out_free;
4605                 }
4606         }
4607 out_free:
4608         if (!ret)
4609                 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4610         free_extent_map(em);
4611 out:
4612         btrfs_free_path(path);
4613         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4614                              &cached_state);
4615         return ret;
4616 }
4617
4618 static void __free_extent_buffer(struct extent_buffer *eb)
4619 {
4620         btrfs_leak_debug_del(&eb->leak_list);
4621         kmem_cache_free(extent_buffer_cache, eb);
4622 }
4623
4624 int extent_buffer_under_io(struct extent_buffer *eb)
4625 {
4626         return (atomic_read(&eb->io_pages) ||
4627                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4628                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4629 }
4630
4631 /*
4632  * Release all pages attached to the extent buffer.
4633  */
4634 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4635 {
4636         int i;
4637         int num_pages;
4638         int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4639
4640         BUG_ON(extent_buffer_under_io(eb));
4641
4642         num_pages = num_extent_pages(eb);
4643         for (i = 0; i < num_pages; i++) {
4644                 struct page *page = eb->pages[i];
4645
4646                 if (!page)
4647                         continue;
4648                 if (mapped)
4649                         spin_lock(&page->mapping->private_lock);
4650                 /*
4651                  * We do this since we'll remove the pages after we've
4652                  * removed the eb from the radix tree, so we could race
4653                  * and have this page now attached to the new eb.  So
4654                  * only clear page_private if it's still connected to
4655                  * this eb.
4656                  */
4657                 if (PagePrivate(page) &&
4658                     page->private == (unsigned long)eb) {
4659                         BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4660                         BUG_ON(PageDirty(page));
4661                         BUG_ON(PageWriteback(page));
4662                         /*
4663                          * We need to make sure we haven't be attached
4664                          * to a new eb.
4665                          */
4666                         ClearPagePrivate(page);
4667                         set_page_private(page, 0);
4668                         /* One for the page private */
4669                         put_page(page);
4670                 }
4671
4672                 if (mapped)
4673                         spin_unlock(&page->mapping->private_lock);
4674
4675                 /* One for when we allocated the page */
4676                 put_page(page);
4677         }
4678 }
4679
4680 /*
4681  * Helper for releasing the extent buffer.
4682  */
4683 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4684 {
4685         btrfs_release_extent_buffer_pages(eb);
4686         __free_extent_buffer(eb);
4687 }
4688
4689 static struct extent_buffer *
4690 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4691                       unsigned long len)
4692 {
4693         struct extent_buffer *eb = NULL;
4694
4695         eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4696         eb->start = start;
4697         eb->len = len;
4698         eb->fs_info = fs_info;
4699         eb->bflags = 0;
4700         rwlock_init(&eb->lock);
4701         atomic_set(&eb->write_locks, 0);
4702         atomic_set(&eb->read_locks, 0);
4703         atomic_set(&eb->blocking_readers, 0);
4704         atomic_set(&eb->blocking_writers, 0);
4705         atomic_set(&eb->spinning_readers, 0);
4706         atomic_set(&eb->spinning_writers, 0);
4707         eb->lock_nested = 0;
4708         init_waitqueue_head(&eb->write_lock_wq);
4709         init_waitqueue_head(&eb->read_lock_wq);
4710
4711         btrfs_leak_debug_add(&eb->leak_list, &buffers);
4712
4713         spin_lock_init(&eb->refs_lock);
4714         atomic_set(&eb->refs, 1);
4715         atomic_set(&eb->io_pages, 0);
4716
4717         /*
4718          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4719          */
4720         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4721                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4722         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4723
4724         return eb;
4725 }
4726
4727 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4728 {
4729         int i;
4730         struct page *p;
4731         struct extent_buffer *new;
4732         int num_pages = num_extent_pages(src);
4733
4734         new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4735         if (new == NULL)
4736                 return NULL;
4737
4738         for (i = 0; i < num_pages; i++) {
4739                 p = alloc_page(GFP_NOFS);
4740                 if (!p) {
4741                         btrfs_release_extent_buffer(new);
4742                         return NULL;
4743                 }
4744                 attach_extent_buffer_page(new, p);
4745                 WARN_ON(PageDirty(p));
4746                 SetPageUptodate(p);
4747                 new->pages[i] = p;
4748                 copy_page(page_address(p), page_address(src->pages[i]));
4749         }
4750
4751         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4752         set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4753
4754         return new;
4755 }
4756
4757 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4758                                                   u64 start, unsigned long len)
4759 {
4760         struct extent_buffer *eb;
4761         int num_pages;
4762         int i;
4763
4764         eb = __alloc_extent_buffer(fs_info, start, len);
4765         if (!eb)
4766                 return NULL;
4767
4768         num_pages = num_extent_pages(eb);
4769         for (i = 0; i < num_pages; i++) {
4770                 eb->pages[i] = alloc_page(GFP_NOFS);
4771                 if (!eb->pages[i])
4772                         goto err;
4773         }
4774         set_extent_buffer_uptodate(eb);
4775         btrfs_set_header_nritems(eb, 0);
4776         set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4777
4778         return eb;
4779 err:
4780         for (; i > 0; i--)
4781                 __free_page(eb->pages[i - 1]);
4782         __free_extent_buffer(eb);
4783         return NULL;
4784 }
4785
4786 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4787                                                 u64 start)
4788 {
4789         return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4790 }
4791
4792 static void check_buffer_tree_ref(struct extent_buffer *eb)
4793 {
4794         int refs;
4795         /* the ref bit is tricky.  We have to make sure it is set
4796          * if we have the buffer dirty.   Otherwise the
4797          * code to free a buffer can end up dropping a dirty
4798          * page
4799          *
4800          * Once the ref bit is set, it won't go away while the
4801          * buffer is dirty or in writeback, and it also won't
4802          * go away while we have the reference count on the
4803          * eb bumped.
4804          *
4805          * We can't just set the ref bit without bumping the
4806          * ref on the eb because free_extent_buffer might
4807          * see the ref bit and try to clear it.  If this happens
4808          * free_extent_buffer might end up dropping our original
4809          * ref by mistake and freeing the page before we are able
4810          * to add one more ref.
4811          *
4812          * So bump the ref count first, then set the bit.  If someone
4813          * beat us to it, drop the ref we added.
4814          */
4815         refs = atomic_read(&eb->refs);
4816         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4817                 return;
4818
4819         spin_lock(&eb->refs_lock);
4820         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4821                 atomic_inc(&eb->refs);
4822         spin_unlock(&eb->refs_lock);
4823 }
4824
4825 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4826                 struct page *accessed)
4827 {
4828         int num_pages, i;
4829
4830         check_buffer_tree_ref(eb);
4831
4832         num_pages = num_extent_pages(eb);
4833         for (i = 0; i < num_pages; i++) {
4834                 struct page *p = eb->pages[i];
4835
4836                 if (p != accessed)
4837                         mark_page_accessed(p);
4838         }
4839 }
4840
4841 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4842                                          u64 start)
4843 {
4844         struct extent_buffer *eb;
4845
4846         rcu_read_lock();
4847         eb = radix_tree_lookup(&fs_info->buffer_radix,
4848                                start >> PAGE_SHIFT);
4849         if (eb && atomic_inc_not_zero(&eb->refs)) {
4850                 rcu_read_unlock();
4851                 /*
4852                  * Lock our eb's refs_lock to avoid races with
4853                  * free_extent_buffer. When we get our eb it might be flagged
4854                  * with EXTENT_BUFFER_STALE and another task running
4855                  * free_extent_buffer might have seen that flag set,
4856                  * eb->refs == 2, that the buffer isn't under IO (dirty and
4857                  * writeback flags not set) and it's still in the tree (flag
4858                  * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4859                  * of decrementing the extent buffer's reference count twice.
4860                  * So here we could race and increment the eb's reference count,
4861                  * clear its stale flag, mark it as dirty and drop our reference
4862                  * before the other task finishes executing free_extent_buffer,
4863                  * which would later result in an attempt to free an extent
4864                  * buffer that is dirty.
4865                  */
4866                 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4867                         spin_lock(&eb->refs_lock);
4868                         spin_unlock(&eb->refs_lock);
4869                 }
4870                 mark_extent_buffer_accessed(eb, NULL);
4871                 return eb;
4872         }
4873         rcu_read_unlock();
4874
4875         return NULL;
4876 }
4877
4878 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4879 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4880                                         u64 start)
4881 {
4882         struct extent_buffer *eb, *exists = NULL;
4883         int ret;
4884
4885         eb = find_extent_buffer(fs_info, start);
4886         if (eb)
4887                 return eb;
4888         eb = alloc_dummy_extent_buffer(fs_info, start);
4889         if (!eb)
4890                 return NULL;
4891         eb->fs_info = fs_info;
4892 again:
4893         ret = radix_tree_preload(GFP_NOFS);
4894         if (ret)
4895                 goto free_eb;
4896         spin_lock(&fs_info->buffer_lock);
4897         ret = radix_tree_insert(&fs_info->buffer_radix,
4898                                 start >> PAGE_SHIFT, eb);
4899         spin_unlock(&fs_info->buffer_lock);
4900         radix_tree_preload_end();
4901         if (ret == -EEXIST) {
4902                 exists = find_extent_buffer(fs_info, start);
4903                 if (exists)
4904                         goto free_eb;
4905                 else
4906                         goto again;
4907         }
4908         check_buffer_tree_ref(eb);
4909         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4910
4911         /*
4912          * We will free dummy extent buffer's if they come into
4913          * free_extent_buffer with a ref count of 2, but if we are using this we
4914          * want the buffers to stay in memory until we're done with them, so
4915          * bump the ref count again.
4916          */
4917         atomic_inc(&eb->refs);
4918         return eb;
4919 free_eb:
4920         btrfs_release_extent_buffer(eb);
4921         return exists;
4922 }
4923 #endif
4924
4925 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4926                                           u64 start)
4927 {
4928         unsigned long len = fs_info->nodesize;
4929         int num_pages;
4930         int i;
4931         unsigned long index = start >> PAGE_SHIFT;
4932         struct extent_buffer *eb;
4933         struct extent_buffer *exists = NULL;
4934         struct page *p;
4935         struct address_space *mapping = fs_info->btree_inode->i_mapping;
4936         int uptodate = 1;
4937         int ret;
4938
4939         if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4940                 btrfs_err(fs_info, "bad tree block start %llu", start);
4941                 return ERR_PTR(-EINVAL);
4942         }
4943
4944         eb = find_extent_buffer(fs_info, start);
4945         if (eb)
4946                 return eb;
4947
4948         eb = __alloc_extent_buffer(fs_info, start, len);
4949         if (!eb)
4950                 return ERR_PTR(-ENOMEM);
4951
4952         num_pages = num_extent_pages(eb);
4953         for (i = 0; i < num_pages; i++, index++) {
4954                 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4955                 if (!p) {
4956                         exists = ERR_PTR(-ENOMEM);
4957                         goto free_eb;
4958                 }
4959
4960                 spin_lock(&mapping->private_lock);
4961                 if (PagePrivate(p)) {
4962                         /*
4963                          * We could have already allocated an eb for this page
4964                          * and attached one so lets see if we can get a ref on
4965                          * the existing eb, and if we can we know it's good and
4966                          * we can just return that one, else we know we can just
4967                          * overwrite page->private.
4968                          */
4969                         exists = (struct extent_buffer *)p->private;
4970                         if (atomic_inc_not_zero(&exists->refs)) {
4971                                 spin_unlock(&mapping->private_lock);
4972                                 unlock_page(p);
4973                                 put_page(p);
4974                                 mark_extent_buffer_accessed(exists, p);
4975                                 goto free_eb;
4976                         }
4977                         exists = NULL;
4978
4979                         /*
4980                          * Do this so attach doesn't complain and we need to
4981                          * drop the ref the old guy had.
4982                          */
4983                         ClearPagePrivate(p);
4984                         WARN_ON(PageDirty(p));
4985                         put_page(p);
4986                 }
4987                 attach_extent_buffer_page(eb, p);
4988                 spin_unlock(&mapping->private_lock);
4989                 WARN_ON(PageDirty(p));
4990                 eb->pages[i] = p;
4991                 if (!PageUptodate(p))
4992                         uptodate = 0;
4993
4994                 /*
4995                  * We can't unlock the pages just yet since the extent buffer
4996                  * hasn't been properly inserted in the radix tree, this
4997                  * opens a race with btree_releasepage which can free a page
4998                  * while we are still filling in all pages for the buffer and
4999                  * we could crash.
5000                  */
5001         }
5002         if (uptodate)
5003                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5004 again:
5005         ret = radix_tree_preload(GFP_NOFS);
5006         if (ret) {
5007                 exists = ERR_PTR(ret);
5008                 goto free_eb;
5009         }
5010
5011         spin_lock(&fs_info->buffer_lock);
5012         ret = radix_tree_insert(&fs_info->buffer_radix,
5013                                 start >> PAGE_SHIFT, eb);
5014         spin_unlock(&fs_info->buffer_lock);
5015         radix_tree_preload_end();
5016         if (ret == -EEXIST) {
5017                 exists = find_extent_buffer(fs_info, start);
5018                 if (exists)
5019                         goto free_eb;
5020                 else
5021                         goto again;
5022         }
5023         /* add one reference for the tree */
5024         check_buffer_tree_ref(eb);
5025         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5026
5027         /*
5028          * Now it's safe to unlock the pages because any calls to
5029          * btree_releasepage will correctly detect that a page belongs to a
5030          * live buffer and won't free them prematurely.
5031          */
5032         for (i = 0; i < num_pages; i++)
5033                 unlock_page(eb->pages[i]);
5034         return eb;
5035
5036 free_eb:
5037         WARN_ON(!atomic_dec_and_test(&eb->refs));
5038         for (i = 0; i < num_pages; i++) {
5039                 if (eb->pages[i])
5040                         unlock_page(eb->pages[i]);
5041         }
5042
5043         btrfs_release_extent_buffer(eb);
5044         return exists;
5045 }
5046
5047 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5048 {
5049         struct extent_buffer *eb =
5050                         container_of(head, struct extent_buffer, rcu_head);
5051
5052         __free_extent_buffer(eb);
5053 }
5054
5055 static int release_extent_buffer(struct extent_buffer *eb)
5056 {
5057         lockdep_assert_held(&eb->refs_lock);
5058
5059         WARN_ON(atomic_read(&eb->refs) == 0);
5060         if (atomic_dec_and_test(&eb->refs)) {
5061                 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5062                         struct btrfs_fs_info *fs_info = eb->fs_info;
5063
5064                         spin_unlock(&eb->refs_lock);
5065
5066                         spin_lock(&fs_info->buffer_lock);
5067                         radix_tree_delete(&fs_info->buffer_radix,
5068                                           eb->start >> PAGE_SHIFT);
5069                         spin_unlock(&fs_info->buffer_lock);
5070                 } else {
5071                         spin_unlock(&eb->refs_lock);
5072                 }
5073
5074                 /* Should be safe to release our pages at this point */
5075                 btrfs_release_extent_buffer_pages(eb);
5076 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5077                 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5078                         __free_extent_buffer(eb);
5079                         return 1;
5080                 }
5081 #endif
5082                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5083                 return 1;
5084         }
5085         spin_unlock(&eb->refs_lock);
5086
5087         return 0;
5088 }
5089
5090 void free_extent_buffer(struct extent_buffer *eb)
5091 {
5092         int refs;
5093         int old;
5094         if (!eb)
5095                 return;
5096
5097         while (1) {
5098                 refs = atomic_read(&eb->refs);
5099                 if (refs <= 3)
5100                         break;
5101                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5102                 if (old == refs)
5103                         return;
5104         }
5105
5106         spin_lock(&eb->refs_lock);
5107         if (atomic_read(&eb->refs) == 2 &&
5108             test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))
5109                 atomic_dec(&eb->refs);
5110
5111         if (atomic_read(&eb->refs) == 2 &&
5112             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5113             !extent_buffer_under_io(eb) &&
5114             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5115                 atomic_dec(&eb->refs);
5116
5117         /*
5118          * I know this is terrible, but it's temporary until we stop tracking
5119          * the uptodate bits and such for the extent buffers.
5120          */
5121         release_extent_buffer(eb);
5122 }
5123
5124 void free_extent_buffer_stale(struct extent_buffer *eb)
5125 {
5126         if (!eb)
5127                 return;
5128
5129         spin_lock(&eb->refs_lock);
5130         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5131
5132         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5133             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5134                 atomic_dec(&eb->refs);
5135         release_extent_buffer(eb);
5136 }
5137
5138 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5139 {
5140         int i;
5141         int num_pages;
5142         struct page *page;
5143
5144         num_pages = num_extent_pages(eb);
5145
5146         for (i = 0; i < num_pages; i++) {
5147                 page = eb->pages[i];
5148                 if (!PageDirty(page))
5149                         continue;
5150
5151                 lock_page(page);
5152                 WARN_ON(!PagePrivate(page));
5153
5154                 clear_page_dirty_for_io(page);
5155                 xa_lock_irq(&page->mapping->i_pages);
5156                 if (!PageDirty(page)) {
5157                         radix_tree_tag_clear(&page->mapping->i_pages,
5158                                                 page_index(page),
5159                                                 PAGECACHE_TAG_DIRTY);
5160                 }
5161                 xa_unlock_irq(&page->mapping->i_pages);
5162                 ClearPageError(page);
5163                 unlock_page(page);
5164         }
5165         WARN_ON(atomic_read(&eb->refs) == 0);
5166 }
5167
5168 int set_extent_buffer_dirty(struct extent_buffer *eb)
5169 {
5170         int i;
5171         int num_pages;
5172         int was_dirty = 0;
5173
5174         check_buffer_tree_ref(eb);
5175
5176         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5177
5178         num_pages = num_extent_pages(eb);
5179         WARN_ON(atomic_read(&eb->refs) == 0);
5180         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5181
5182         for (i = 0; i < num_pages; i++)
5183                 set_page_dirty(eb->pages[i]);
5184         return was_dirty;
5185 }
5186
5187 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5188 {
5189         int i;
5190         struct page *page;
5191         int num_pages;
5192
5193         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5194         num_pages = num_extent_pages(eb);
5195         for (i = 0; i < num_pages; i++) {
5196                 page = eb->pages[i];
5197                 if (page)
5198                         ClearPageUptodate(page);
5199         }
5200 }
5201
5202 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5203 {
5204         int i;
5205         struct page *page;
5206         int num_pages;
5207
5208         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5209         num_pages = num_extent_pages(eb);
5210         for (i = 0; i < num_pages; i++) {
5211                 page = eb->pages[i];
5212                 SetPageUptodate(page);
5213         }
5214 }
5215
5216 int read_extent_buffer_pages(struct extent_io_tree *tree,
5217                              struct extent_buffer *eb, int wait, int mirror_num)
5218 {
5219         int i;
5220         struct page *page;
5221         int err;
5222         int ret = 0;
5223         int locked_pages = 0;
5224         int all_uptodate = 1;
5225         int num_pages;
5226         unsigned long num_reads = 0;
5227         struct bio *bio = NULL;
5228         unsigned long bio_flags = 0;
5229
5230         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5231                 return 0;
5232
5233         num_pages = num_extent_pages(eb);
5234         for (i = 0; i < num_pages; i++) {
5235                 page = eb->pages[i];
5236                 if (wait == WAIT_NONE) {
5237                         if (!trylock_page(page))
5238                                 goto unlock_exit;
5239                 } else {
5240                         lock_page(page);
5241                 }
5242                 locked_pages++;
5243         }
5244         /*
5245          * We need to firstly lock all pages to make sure that
5246          * the uptodate bit of our pages won't be affected by
5247          * clear_extent_buffer_uptodate().
5248          */
5249         for (i = 0; i < num_pages; i++) {
5250                 page = eb->pages[i];
5251                 if (!PageUptodate(page)) {
5252                         num_reads++;
5253                         all_uptodate = 0;
5254                 }
5255         }
5256
5257         if (all_uptodate) {
5258                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5259                 goto unlock_exit;
5260         }
5261
5262         clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5263         eb->read_mirror = 0;
5264         atomic_set(&eb->io_pages, num_reads);
5265         for (i = 0; i < num_pages; i++) {
5266                 page = eb->pages[i];
5267
5268                 if (!PageUptodate(page)) {
5269                         if (ret) {
5270                                 atomic_dec(&eb->io_pages);
5271                                 unlock_page(page);
5272                                 continue;
5273                         }
5274
5275                         ClearPageError(page);
5276                         err = __extent_read_full_page(tree, page,
5277                                                       btree_get_extent, &bio,
5278                                                       mirror_num, &bio_flags,
5279                                                       REQ_META);
5280                         if (err) {
5281                                 ret = err;
5282                                 /*
5283                                  * We use &bio in above __extent_read_full_page,
5284                                  * so we ensure that if it returns error, the
5285                                  * current page fails to add itself to bio and
5286                                  * it's been unlocked.
5287                                  *
5288                                  * We must dec io_pages by ourselves.
5289                                  */
5290                                 atomic_dec(&eb->io_pages);
5291                         }
5292                 } else {
5293                         unlock_page(page);
5294                 }
5295         }
5296
5297         if (bio) {
5298                 err = submit_one_bio(bio, mirror_num, bio_flags);
5299                 if (err)
5300                         return err;
5301         }
5302
5303         if (ret || wait != WAIT_COMPLETE)
5304                 return ret;
5305
5306         for (i = 0; i < num_pages; i++) {
5307                 page = eb->pages[i];
5308                 wait_on_page_locked(page);
5309                 if (!PageUptodate(page))
5310                         ret = -EIO;
5311         }
5312
5313         return ret;
5314
5315 unlock_exit:
5316         while (locked_pages > 0) {
5317                 locked_pages--;
5318                 page = eb->pages[locked_pages];
5319                 unlock_page(page);
5320         }
5321         return ret;
5322 }
5323
5324 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5325                         unsigned long start, unsigned long len)
5326 {
5327         size_t cur;
5328         size_t offset;
5329         struct page *page;
5330         char *kaddr;
5331         char *dst = (char *)dstv;
5332         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5333         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5334
5335         if (start + len > eb->len) {
5336                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5337                      eb->start, eb->len, start, len);
5338                 memset(dst, 0, len);
5339                 return;
5340         }
5341
5342         offset = (start_offset + start) & (PAGE_SIZE - 1);
5343
5344         while (len > 0) {
5345                 page = eb->pages[i];
5346
5347                 cur = min(len, (PAGE_SIZE - offset));
5348                 kaddr = page_address(page);
5349                 memcpy(dst, kaddr + offset, cur);
5350
5351                 dst += cur;
5352                 len -= cur;
5353                 offset = 0;
5354                 i++;
5355         }
5356 }
5357
5358 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5359                                void __user *dstv,
5360                                unsigned long start, unsigned long len)
5361 {
5362         size_t cur;
5363         size_t offset;
5364         struct page *page;
5365         char *kaddr;
5366         char __user *dst = (char __user *)dstv;
5367         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5368         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5369         int ret = 0;
5370
5371         WARN_ON(start > eb->len);
5372         WARN_ON(start + len > eb->start + eb->len);
5373
5374         offset = (start_offset + start) & (PAGE_SIZE - 1);
5375
5376         while (len > 0) {
5377                 page = eb->pages[i];
5378
5379                 cur = min(len, (PAGE_SIZE - offset));
5380                 kaddr = page_address(page);
5381                 if (copy_to_user(dst, kaddr + offset, cur)) {
5382                         ret = -EFAULT;
5383                         break;
5384                 }
5385
5386                 dst += cur;
5387                 len -= cur;
5388                 offset = 0;
5389                 i++;
5390         }
5391
5392         return ret;
5393 }
5394
5395 /*
5396  * return 0 if the item is found within a page.
5397  * return 1 if the item spans two pages.
5398  * return -EINVAL otherwise.
5399  */
5400 int map_private_extent_buffer(const struct extent_buffer *eb,
5401                               unsigned long start, unsigned long min_len,
5402                               char **map, unsigned long *map_start,
5403                               unsigned long *map_len)
5404 {
5405         size_t offset = start & (PAGE_SIZE - 1);
5406         char *kaddr;
5407         struct page *p;
5408         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5409         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5410         unsigned long end_i = (start_offset + start + min_len - 1) >>
5411                 PAGE_SHIFT;
5412
5413         if (start + min_len > eb->len) {
5414                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5415                        eb->start, eb->len, start, min_len);
5416                 return -EINVAL;
5417         }
5418
5419         if (i != end_i)
5420                 return 1;
5421
5422         if (i == 0) {
5423                 offset = start_offset;
5424                 *map_start = 0;
5425         } else {
5426                 offset = 0;
5427                 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5428         }
5429
5430         p = eb->pages[i];
5431         kaddr = page_address(p);
5432         *map = kaddr + offset;
5433         *map_len = PAGE_SIZE - offset;
5434         return 0;
5435 }
5436
5437 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5438                          unsigned long start, unsigned long len)
5439 {
5440         size_t cur;
5441         size_t offset;
5442         struct page *page;
5443         char *kaddr;
5444         char *ptr = (char *)ptrv;
5445         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5446         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5447         int ret = 0;
5448
5449         WARN_ON(start > eb->len);
5450         WARN_ON(start + len > eb->start + eb->len);
5451
5452         offset = (start_offset + start) & (PAGE_SIZE - 1);
5453
5454         while (len > 0) {
5455                 page = eb->pages[i];
5456
5457                 cur = min(len, (PAGE_SIZE - offset));
5458
5459                 kaddr = page_address(page);
5460                 ret = memcmp(ptr, kaddr + offset, cur);
5461                 if (ret)
5462                         break;
5463
5464                 ptr += cur;
5465                 len -= cur;
5466                 offset = 0;
5467                 i++;
5468         }
5469         return ret;
5470 }
5471
5472 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5473                 const void *srcv)
5474 {
5475         char *kaddr;
5476
5477         WARN_ON(!PageUptodate(eb->pages[0]));
5478         kaddr = page_address(eb->pages[0]);
5479         memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5480                         BTRFS_FSID_SIZE);
5481 }
5482
5483 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5484 {
5485         char *kaddr;
5486
5487         WARN_ON(!PageUptodate(eb->pages[0]));
5488         kaddr = page_address(eb->pages[0]);
5489         memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5490                         BTRFS_FSID_SIZE);
5491 }
5492
5493 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5494                          unsigned long start, unsigned long len)
5495 {
5496         size_t cur;
5497         size_t offset;
5498         struct page *page;
5499         char *kaddr;
5500         char *src = (char *)srcv;
5501         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5502         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5503
5504         WARN_ON(start > eb->len);
5505         WARN_ON(start + len > eb->start + eb->len);
5506
5507         offset = (start_offset + start) & (PAGE_SIZE - 1);
5508
5509         while (len > 0) {
5510                 page = eb->pages[i];
5511                 WARN_ON(!PageUptodate(page));
5512
5513                 cur = min(len, PAGE_SIZE - offset);
5514                 kaddr = page_address(page);
5515                 memcpy(kaddr + offset, src, cur);
5516
5517                 src += cur;
5518                 len -= cur;
5519                 offset = 0;
5520                 i++;
5521         }
5522 }
5523
5524 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5525                 unsigned long len)
5526 {
5527         size_t cur;
5528         size_t offset;
5529         struct page *page;
5530         char *kaddr;
5531         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5532         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5533
5534         WARN_ON(start > eb->len);
5535         WARN_ON(start + len > eb->start + eb->len);
5536
5537         offset = (start_offset + start) & (PAGE_SIZE - 1);
5538
5539         while (len > 0) {
5540                 page = eb->pages[i];
5541                 WARN_ON(!PageUptodate(page));
5542
5543                 cur = min(len, PAGE_SIZE - offset);
5544                 kaddr = page_address(page);
5545                 memset(kaddr + offset, 0, cur);
5546
5547                 len -= cur;
5548                 offset = 0;
5549                 i++;
5550         }
5551 }
5552
5553 void copy_extent_buffer_full(struct extent_buffer *dst,
5554                              struct extent_buffer *src)
5555 {
5556         int i;
5557         int num_pages;
5558
5559         ASSERT(dst->len == src->len);
5560
5561         num_pages = num_extent_pages(dst);
5562         for (i = 0; i < num_pages; i++)
5563                 copy_page(page_address(dst->pages[i]),
5564                                 page_address(src->pages[i]));
5565 }
5566
5567 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5568                         unsigned long dst_offset, unsigned long src_offset,
5569                         unsigned long len)
5570 {
5571         u64 dst_len = dst->len;
5572         size_t cur;
5573         size_t offset;
5574         struct page *page;
5575         char *kaddr;
5576         size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5577         unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5578
5579         WARN_ON(src->len != dst_len);
5580
5581         offset = (start_offset + dst_offset) &
5582                 (PAGE_SIZE - 1);
5583
5584         while (len > 0) {
5585                 page = dst->pages[i];
5586                 WARN_ON(!PageUptodate(page));
5587
5588                 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5589
5590                 kaddr = page_address(page);
5591                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5592
5593                 src_offset += cur;
5594                 len -= cur;
5595                 offset = 0;
5596                 i++;
5597         }
5598 }
5599
5600 /*
5601  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5602  * given bit number
5603  * @eb: the extent buffer
5604  * @start: offset of the bitmap item in the extent buffer
5605  * @nr: bit number
5606  * @page_index: return index of the page in the extent buffer that contains the
5607  * given bit number
5608  * @page_offset: return offset into the page given by page_index
5609  *
5610  * This helper hides the ugliness of finding the byte in an extent buffer which
5611  * contains a given bit.
5612  */
5613 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5614                                     unsigned long start, unsigned long nr,
5615                                     unsigned long *page_index,
5616                                     size_t *page_offset)
5617 {
5618         size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5619         size_t byte_offset = BIT_BYTE(nr);
5620         size_t offset;
5621
5622         /*
5623          * The byte we want is the offset of the extent buffer + the offset of
5624          * the bitmap item in the extent buffer + the offset of the byte in the
5625          * bitmap item.
5626          */
5627         offset = start_offset + start + byte_offset;
5628
5629         *page_index = offset >> PAGE_SHIFT;
5630         *page_offset = offset & (PAGE_SIZE - 1);
5631 }
5632
5633 /**
5634  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5635  * @eb: the extent buffer
5636  * @start: offset of the bitmap item in the extent buffer
5637  * @nr: bit number to test
5638  */
5639 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5640                            unsigned long nr)
5641 {
5642         u8 *kaddr;
5643         struct page *page;
5644         unsigned long i;
5645         size_t offset;
5646
5647         eb_bitmap_offset(eb, start, nr, &i, &offset);
5648         page = eb->pages[i];
5649         WARN_ON(!PageUptodate(page));
5650         kaddr = page_address(page);
5651         return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5652 }
5653
5654 /**
5655  * extent_buffer_bitmap_set - set an area of a bitmap
5656  * @eb: the extent buffer
5657  * @start: offset of the bitmap item in the extent buffer
5658  * @pos: bit number of the first bit
5659  * @len: number of bits to set
5660  */
5661 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5662                               unsigned long pos, unsigned long len)
5663 {
5664         u8 *kaddr;
5665         struct page *page;
5666         unsigned long i;
5667         size_t offset;
5668         const unsigned int size = pos + len;
5669         int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5670         u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5671
5672         eb_bitmap_offset(eb, start, pos, &i, &offset);
5673         page = eb->pages[i];
5674         WARN_ON(!PageUptodate(page));
5675         kaddr = page_address(page);
5676
5677         while (len >= bits_to_set) {
5678                 kaddr[offset] |= mask_to_set;
5679                 len -= bits_to_set;
5680                 bits_to_set = BITS_PER_BYTE;
5681                 mask_to_set = ~0;
5682                 if (++offset >= PAGE_SIZE && len > 0) {
5683                         offset = 0;
5684                         page = eb->pages[++i];
5685                         WARN_ON(!PageUptodate(page));
5686                         kaddr = page_address(page);
5687                 }
5688         }
5689         if (len) {
5690                 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5691                 kaddr[offset] |= mask_to_set;
5692         }
5693 }
5694
5695
5696 /**
5697  * extent_buffer_bitmap_clear - clear an area of a bitmap
5698  * @eb: the extent buffer
5699  * @start: offset of the bitmap item in the extent buffer
5700  * @pos: bit number of the first bit
5701  * @len: number of bits to clear
5702  */
5703 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5704                                 unsigned long pos, unsigned long len)
5705 {
5706         u8 *kaddr;
5707         struct page *page;
5708         unsigned long i;
5709         size_t offset;
5710         const unsigned int size = pos + len;
5711         int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5712         u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5713
5714         eb_bitmap_offset(eb, start, pos, &i, &offset);
5715         page = eb->pages[i];
5716         WARN_ON(!PageUptodate(page));
5717         kaddr = page_address(page);
5718
5719         while (len >= bits_to_clear) {
5720                 kaddr[offset] &= ~mask_to_clear;
5721                 len -= bits_to_clear;
5722                 bits_to_clear = BITS_PER_BYTE;
5723                 mask_to_clear = ~0;
5724                 if (++offset >= PAGE_SIZE && len > 0) {
5725                         offset = 0;
5726                         page = eb->pages[++i];
5727                         WARN_ON(!PageUptodate(page));
5728                         kaddr = page_address(page);
5729                 }
5730         }
5731         if (len) {
5732                 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5733                 kaddr[offset] &= ~mask_to_clear;
5734         }
5735 }
5736
5737 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5738 {
5739         unsigned long distance = (src > dst) ? src - dst : dst - src;
5740         return distance < len;
5741 }
5742
5743 static void copy_pages(struct page *dst_page, struct page *src_page,
5744                        unsigned long dst_off, unsigned long src_off,
5745                        unsigned long len)
5746 {
5747         char *dst_kaddr = page_address(dst_page);
5748         char *src_kaddr;
5749         int must_memmove = 0;
5750
5751         if (dst_page != src_page) {
5752                 src_kaddr = page_address(src_page);
5753         } else {
5754                 src_kaddr = dst_kaddr;
5755                 if (areas_overlap(src_off, dst_off, len))
5756                         must_memmove = 1;
5757         }
5758
5759         if (must_memmove)
5760                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5761         else
5762                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5763 }
5764
5765 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5766                            unsigned long src_offset, unsigned long len)
5767 {
5768         struct btrfs_fs_info *fs_info = dst->fs_info;
5769         size_t cur;
5770         size_t dst_off_in_page;
5771         size_t src_off_in_page;
5772         size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5773         unsigned long dst_i;
5774         unsigned long src_i;
5775
5776         if (src_offset + len > dst->len) {
5777                 btrfs_err(fs_info,
5778                         "memmove bogus src_offset %lu move len %lu dst len %lu",
5779                          src_offset, len, dst->len);
5780                 BUG_ON(1);
5781         }
5782         if (dst_offset + len > dst->len) {
5783                 btrfs_err(fs_info,
5784                         "memmove bogus dst_offset %lu move len %lu dst len %lu",
5785                          dst_offset, len, dst->len);
5786                 BUG_ON(1);
5787         }
5788
5789         while (len > 0) {
5790                 dst_off_in_page = (start_offset + dst_offset) &
5791                         (PAGE_SIZE - 1);
5792                 src_off_in_page = (start_offset + src_offset) &
5793                         (PAGE_SIZE - 1);
5794
5795                 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5796                 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5797
5798                 cur = min(len, (unsigned long)(PAGE_SIZE -
5799                                                src_off_in_page));
5800                 cur = min_t(unsigned long, cur,
5801                         (unsigned long)(PAGE_SIZE - dst_off_in_page));
5802
5803                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5804                            dst_off_in_page, src_off_in_page, cur);
5805
5806                 src_offset += cur;
5807                 dst_offset += cur;
5808                 len -= cur;
5809         }
5810 }
5811
5812 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5813                            unsigned long src_offset, unsigned long len)
5814 {
5815         struct btrfs_fs_info *fs_info = dst->fs_info;
5816         size_t cur;
5817         size_t dst_off_in_page;
5818         size_t src_off_in_page;
5819         unsigned long dst_end = dst_offset + len - 1;
5820         unsigned long src_end = src_offset + len - 1;
5821         size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5822         unsigned long dst_i;
5823         unsigned long src_i;
5824
5825         if (src_offset + len > dst->len) {
5826                 btrfs_err(fs_info,
5827                           "memmove bogus src_offset %lu move len %lu len %lu",
5828                           src_offset, len, dst->len);
5829                 BUG_ON(1);
5830         }
5831         if (dst_offset + len > dst->len) {
5832                 btrfs_err(fs_info,
5833                           "memmove bogus dst_offset %lu move len %lu len %lu",
5834                           dst_offset, len, dst->len);
5835                 BUG_ON(1);
5836         }
5837         if (dst_offset < src_offset) {
5838                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5839                 return;
5840         }
5841         while (len > 0) {
5842                 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5843                 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5844
5845                 dst_off_in_page = (start_offset + dst_end) &
5846                         (PAGE_SIZE - 1);
5847                 src_off_in_page = (start_offset + src_end) &
5848                         (PAGE_SIZE - 1);
5849
5850                 cur = min_t(unsigned long, len, src_off_in_page + 1);
5851                 cur = min(cur, dst_off_in_page + 1);
5852                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5853                            dst_off_in_page - cur + 1,
5854                            src_off_in_page - cur + 1, cur);
5855
5856                 dst_end -= cur;
5857                 src_end -= cur;
5858                 len -= cur;
5859         }
5860 }
5861
5862 int try_release_extent_buffer(struct page *page)
5863 {
5864         struct extent_buffer *eb;
5865
5866         /*
5867          * We need to make sure nobody is attaching this page to an eb right
5868          * now.
5869          */
5870         spin_lock(&page->mapping->private_lock);
5871         if (!PagePrivate(page)) {
5872                 spin_unlock(&page->mapping->private_lock);
5873                 return 1;
5874         }
5875
5876         eb = (struct extent_buffer *)page->private;
5877         BUG_ON(!eb);
5878
5879         /*
5880          * This is a little awful but should be ok, we need to make sure that
5881          * the eb doesn't disappear out from under us while we're looking at
5882          * this page.
5883          */
5884         spin_lock(&eb->refs_lock);
5885         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5886                 spin_unlock(&eb->refs_lock);
5887                 spin_unlock(&page->mapping->private_lock);
5888                 return 0;
5889         }
5890         spin_unlock(&page->mapping->private_lock);
5891
5892         /*
5893          * If tree ref isn't set then we know the ref on this eb is a real ref,
5894          * so just return, this page will likely be freed soon anyway.
5895          */
5896         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5897                 spin_unlock(&eb->refs_lock);
5898                 return 0;
5899         }
5900
5901         return release_extent_buffer(eb);
5902 }