Merge branch 'for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck...
[linux-2.6-microblaze.git] / fs / btrfs / extent_io.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent-io-tree.h"
18 #include "extent_map.h"
19 #include "ctree.h"
20 #include "btrfs_inode.h"
21 #include "volumes.h"
22 #include "check-integrity.h"
23 #include "locking.h"
24 #include "rcu-string.h"
25 #include "backref.h"
26 #include "disk-io.h"
27
28 static struct kmem_cache *extent_state_cache;
29 static struct kmem_cache *extent_buffer_cache;
30 static struct bio_set btrfs_bioset;
31
32 static inline bool extent_state_in_tree(const struct extent_state *state)
33 {
34         return !RB_EMPTY_NODE(&state->rb_node);
35 }
36
37 #ifdef CONFIG_BTRFS_DEBUG
38 static LIST_HEAD(states);
39 static DEFINE_SPINLOCK(leak_lock);
40
41 static inline void btrfs_leak_debug_add(spinlock_t *lock,
42                                         struct list_head *new,
43                                         struct list_head *head)
44 {
45         unsigned long flags;
46
47         spin_lock_irqsave(lock, flags);
48         list_add(new, head);
49         spin_unlock_irqrestore(lock, flags);
50 }
51
52 static inline void btrfs_leak_debug_del(spinlock_t *lock,
53                                         struct list_head *entry)
54 {
55         unsigned long flags;
56
57         spin_lock_irqsave(lock, flags);
58         list_del(entry);
59         spin_unlock_irqrestore(lock, flags);
60 }
61
62 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
63 {
64         struct extent_buffer *eb;
65         unsigned long flags;
66
67         /*
68          * If we didn't get into open_ctree our allocated_ebs will not be
69          * initialized, so just skip this.
70          */
71         if (!fs_info->allocated_ebs.next)
72                 return;
73
74         spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75         while (!list_empty(&fs_info->allocated_ebs)) {
76                 eb = list_first_entry(&fs_info->allocated_ebs,
77                                       struct extent_buffer, leak_list);
78                 pr_err(
79         "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
80                        eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81                        btrfs_header_owner(eb));
82                 list_del(&eb->leak_list);
83                 kmem_cache_free(extent_buffer_cache, eb);
84         }
85         spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
86 }
87
88 static inline void btrfs_extent_state_leak_debug_check(void)
89 {
90         struct extent_state *state;
91
92         while (!list_empty(&states)) {
93                 state = list_entry(states.next, struct extent_state, leak_list);
94                 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
95                        state->start, state->end, state->state,
96                        extent_state_in_tree(state),
97                        refcount_read(&state->refs));
98                 list_del(&state->leak_list);
99                 kmem_cache_free(extent_state_cache, state);
100         }
101 }
102
103 #define btrfs_debug_check_extent_io_range(tree, start, end)             \
104         __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
105 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
106                 struct extent_io_tree *tree, u64 start, u64 end)
107 {
108         struct inode *inode = tree->private_data;
109         u64 isize;
110
111         if (!inode || !is_data_inode(inode))
112                 return;
113
114         isize = i_size_read(inode);
115         if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
116                 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
117                     "%s: ino %llu isize %llu odd range [%llu,%llu]",
118                         caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
119         }
120 }
121 #else
122 #define btrfs_leak_debug_add(lock, new, head)   do {} while (0)
123 #define btrfs_leak_debug_del(lock, entry)       do {} while (0)
124 #define btrfs_extent_state_leak_debug_check()   do {} while (0)
125 #define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
126 #endif
127
128 struct tree_entry {
129         u64 start;
130         u64 end;
131         struct rb_node rb_node;
132 };
133
134 struct extent_page_data {
135         struct bio *bio;
136         /* tells writepage not to lock the state bits for this range
137          * it still does the unlocking
138          */
139         unsigned int extent_locked:1;
140
141         /* tells the submit_bio code to use REQ_SYNC */
142         unsigned int sync_io:1;
143 };
144
145 static int add_extent_changeset(struct extent_state *state, unsigned bits,
146                                  struct extent_changeset *changeset,
147                                  int set)
148 {
149         int ret;
150
151         if (!changeset)
152                 return 0;
153         if (set && (state->state & bits) == bits)
154                 return 0;
155         if (!set && (state->state & bits) == 0)
156                 return 0;
157         changeset->bytes_changed += state->end - state->start + 1;
158         ret = ulist_add(&changeset->range_changed, state->start, state->end,
159                         GFP_ATOMIC);
160         return ret;
161 }
162
163 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
164                                        unsigned long bio_flags)
165 {
166         blk_status_t ret = 0;
167         struct extent_io_tree *tree = bio->bi_private;
168
169         bio->bi_private = NULL;
170
171         if (tree->ops)
172                 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
173                                                  mirror_num, bio_flags);
174         else
175                 btrfsic_submit_bio(bio);
176
177         return blk_status_to_errno(ret);
178 }
179
180 /* Cleanup unsubmitted bios */
181 static void end_write_bio(struct extent_page_data *epd, int ret)
182 {
183         if (epd->bio) {
184                 epd->bio->bi_status = errno_to_blk_status(ret);
185                 bio_endio(epd->bio);
186                 epd->bio = NULL;
187         }
188 }
189
190 /*
191  * Submit bio from extent page data via submit_one_bio
192  *
193  * Return 0 if everything is OK.
194  * Return <0 for error.
195  */
196 static int __must_check flush_write_bio(struct extent_page_data *epd)
197 {
198         int ret = 0;
199
200         if (epd->bio) {
201                 ret = submit_one_bio(epd->bio, 0, 0);
202                 /*
203                  * Clean up of epd->bio is handled by its endio function.
204                  * And endio is either triggered by successful bio execution
205                  * or the error handler of submit bio hook.
206                  * So at this point, no matter what happened, we don't need
207                  * to clean up epd->bio.
208                  */
209                 epd->bio = NULL;
210         }
211         return ret;
212 }
213
214 int __init extent_state_cache_init(void)
215 {
216         extent_state_cache = kmem_cache_create("btrfs_extent_state",
217                         sizeof(struct extent_state), 0,
218                         SLAB_MEM_SPREAD, NULL);
219         if (!extent_state_cache)
220                 return -ENOMEM;
221         return 0;
222 }
223
224 int __init extent_io_init(void)
225 {
226         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
227                         sizeof(struct extent_buffer), 0,
228                         SLAB_MEM_SPREAD, NULL);
229         if (!extent_buffer_cache)
230                 return -ENOMEM;
231
232         if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
233                         offsetof(struct btrfs_io_bio, bio),
234                         BIOSET_NEED_BVECS))
235                 goto free_buffer_cache;
236
237         if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
238                 goto free_bioset;
239
240         return 0;
241
242 free_bioset:
243         bioset_exit(&btrfs_bioset);
244
245 free_buffer_cache:
246         kmem_cache_destroy(extent_buffer_cache);
247         extent_buffer_cache = NULL;
248         return -ENOMEM;
249 }
250
251 void __cold extent_state_cache_exit(void)
252 {
253         btrfs_extent_state_leak_debug_check();
254         kmem_cache_destroy(extent_state_cache);
255 }
256
257 void __cold extent_io_exit(void)
258 {
259         /*
260          * Make sure all delayed rcu free are flushed before we
261          * destroy caches.
262          */
263         rcu_barrier();
264         kmem_cache_destroy(extent_buffer_cache);
265         bioset_exit(&btrfs_bioset);
266 }
267
268 /*
269  * For the file_extent_tree, we want to hold the inode lock when we lookup and
270  * update the disk_i_size, but lockdep will complain because our io_tree we hold
271  * the tree lock and get the inode lock when setting delalloc.  These two things
272  * are unrelated, so make a class for the file_extent_tree so we don't get the
273  * two locking patterns mixed up.
274  */
275 static struct lock_class_key file_extent_tree_class;
276
277 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
278                          struct extent_io_tree *tree, unsigned int owner,
279                          void *private_data)
280 {
281         tree->fs_info = fs_info;
282         tree->state = RB_ROOT;
283         tree->ops = NULL;
284         tree->dirty_bytes = 0;
285         spin_lock_init(&tree->lock);
286         tree->private_data = private_data;
287         tree->owner = owner;
288         if (owner == IO_TREE_INODE_FILE_EXTENT)
289                 lockdep_set_class(&tree->lock, &file_extent_tree_class);
290 }
291
292 void extent_io_tree_release(struct extent_io_tree *tree)
293 {
294         spin_lock(&tree->lock);
295         /*
296          * Do a single barrier for the waitqueue_active check here, the state
297          * of the waitqueue should not change once extent_io_tree_release is
298          * called.
299          */
300         smp_mb();
301         while (!RB_EMPTY_ROOT(&tree->state)) {
302                 struct rb_node *node;
303                 struct extent_state *state;
304
305                 node = rb_first(&tree->state);
306                 state = rb_entry(node, struct extent_state, rb_node);
307                 rb_erase(&state->rb_node, &tree->state);
308                 RB_CLEAR_NODE(&state->rb_node);
309                 /*
310                  * btree io trees aren't supposed to have tasks waiting for
311                  * changes in the flags of extent states ever.
312                  */
313                 ASSERT(!waitqueue_active(&state->wq));
314                 free_extent_state(state);
315
316                 cond_resched_lock(&tree->lock);
317         }
318         spin_unlock(&tree->lock);
319 }
320
321 static struct extent_state *alloc_extent_state(gfp_t mask)
322 {
323         struct extent_state *state;
324
325         /*
326          * The given mask might be not appropriate for the slab allocator,
327          * drop the unsupported bits
328          */
329         mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
330         state = kmem_cache_alloc(extent_state_cache, mask);
331         if (!state)
332                 return state;
333         state->state = 0;
334         state->failrec = NULL;
335         RB_CLEAR_NODE(&state->rb_node);
336         btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
337         refcount_set(&state->refs, 1);
338         init_waitqueue_head(&state->wq);
339         trace_alloc_extent_state(state, mask, _RET_IP_);
340         return state;
341 }
342
343 void free_extent_state(struct extent_state *state)
344 {
345         if (!state)
346                 return;
347         if (refcount_dec_and_test(&state->refs)) {
348                 WARN_ON(extent_state_in_tree(state));
349                 btrfs_leak_debug_del(&leak_lock, &state->leak_list);
350                 trace_free_extent_state(state, _RET_IP_);
351                 kmem_cache_free(extent_state_cache, state);
352         }
353 }
354
355 static struct rb_node *tree_insert(struct rb_root *root,
356                                    struct rb_node *search_start,
357                                    u64 offset,
358                                    struct rb_node *node,
359                                    struct rb_node ***p_in,
360                                    struct rb_node **parent_in)
361 {
362         struct rb_node **p;
363         struct rb_node *parent = NULL;
364         struct tree_entry *entry;
365
366         if (p_in && parent_in) {
367                 p = *p_in;
368                 parent = *parent_in;
369                 goto do_insert;
370         }
371
372         p = search_start ? &search_start : &root->rb_node;
373         while (*p) {
374                 parent = *p;
375                 entry = rb_entry(parent, struct tree_entry, rb_node);
376
377                 if (offset < entry->start)
378                         p = &(*p)->rb_left;
379                 else if (offset > entry->end)
380                         p = &(*p)->rb_right;
381                 else
382                         return parent;
383         }
384
385 do_insert:
386         rb_link_node(node, parent, p);
387         rb_insert_color(node, root);
388         return NULL;
389 }
390
391 /**
392  * __etree_search - searche @tree for an entry that contains @offset. Such
393  * entry would have entry->start <= offset && entry->end >= offset.
394  *
395  * @tree - the tree to search
396  * @offset - offset that should fall within an entry in @tree
397  * @next_ret - pointer to the first entry whose range ends after @offset
398  * @prev - pointer to the first entry whose range begins before @offset
399  * @p_ret - pointer where new node should be anchored (used when inserting an
400  *          entry in the tree)
401  * @parent_ret - points to entry which would have been the parent of the entry,
402  *               containing @offset
403  *
404  * This function returns a pointer to the entry that contains @offset byte
405  * address. If no such entry exists, then NULL is returned and the other
406  * pointer arguments to the function are filled, otherwise the found entry is
407  * returned and other pointers are left untouched.
408  */
409 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
410                                       struct rb_node **next_ret,
411                                       struct rb_node **prev_ret,
412                                       struct rb_node ***p_ret,
413                                       struct rb_node **parent_ret)
414 {
415         struct rb_root *root = &tree->state;
416         struct rb_node **n = &root->rb_node;
417         struct rb_node *prev = NULL;
418         struct rb_node *orig_prev = NULL;
419         struct tree_entry *entry;
420         struct tree_entry *prev_entry = NULL;
421
422         while (*n) {
423                 prev = *n;
424                 entry = rb_entry(prev, struct tree_entry, rb_node);
425                 prev_entry = entry;
426
427                 if (offset < entry->start)
428                         n = &(*n)->rb_left;
429                 else if (offset > entry->end)
430                         n = &(*n)->rb_right;
431                 else
432                         return *n;
433         }
434
435         if (p_ret)
436                 *p_ret = n;
437         if (parent_ret)
438                 *parent_ret = prev;
439
440         if (next_ret) {
441                 orig_prev = prev;
442                 while (prev && offset > prev_entry->end) {
443                         prev = rb_next(prev);
444                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
445                 }
446                 *next_ret = prev;
447                 prev = orig_prev;
448         }
449
450         if (prev_ret) {
451                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
452                 while (prev && offset < prev_entry->start) {
453                         prev = rb_prev(prev);
454                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
455                 }
456                 *prev_ret = prev;
457         }
458         return NULL;
459 }
460
461 static inline struct rb_node *
462 tree_search_for_insert(struct extent_io_tree *tree,
463                        u64 offset,
464                        struct rb_node ***p_ret,
465                        struct rb_node **parent_ret)
466 {
467         struct rb_node *next= NULL;
468         struct rb_node *ret;
469
470         ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
471         if (!ret)
472                 return next;
473         return ret;
474 }
475
476 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
477                                           u64 offset)
478 {
479         return tree_search_for_insert(tree, offset, NULL, NULL);
480 }
481
482 /*
483  * utility function to look for merge candidates inside a given range.
484  * Any extents with matching state are merged together into a single
485  * extent in the tree.  Extents with EXTENT_IO in their state field
486  * are not merged because the end_io handlers need to be able to do
487  * operations on them without sleeping (or doing allocations/splits).
488  *
489  * This should be called with the tree lock held.
490  */
491 static void merge_state(struct extent_io_tree *tree,
492                         struct extent_state *state)
493 {
494         struct extent_state *other;
495         struct rb_node *other_node;
496
497         if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
498                 return;
499
500         other_node = rb_prev(&state->rb_node);
501         if (other_node) {
502                 other = rb_entry(other_node, struct extent_state, rb_node);
503                 if (other->end == state->start - 1 &&
504                     other->state == state->state) {
505                         if (tree->private_data &&
506                             is_data_inode(tree->private_data))
507                                 btrfs_merge_delalloc_extent(tree->private_data,
508                                                             state, other);
509                         state->start = other->start;
510                         rb_erase(&other->rb_node, &tree->state);
511                         RB_CLEAR_NODE(&other->rb_node);
512                         free_extent_state(other);
513                 }
514         }
515         other_node = rb_next(&state->rb_node);
516         if (other_node) {
517                 other = rb_entry(other_node, struct extent_state, rb_node);
518                 if (other->start == state->end + 1 &&
519                     other->state == state->state) {
520                         if (tree->private_data &&
521                             is_data_inode(tree->private_data))
522                                 btrfs_merge_delalloc_extent(tree->private_data,
523                                                             state, other);
524                         state->end = other->end;
525                         rb_erase(&other->rb_node, &tree->state);
526                         RB_CLEAR_NODE(&other->rb_node);
527                         free_extent_state(other);
528                 }
529         }
530 }
531
532 static void set_state_bits(struct extent_io_tree *tree,
533                            struct extent_state *state, unsigned *bits,
534                            struct extent_changeset *changeset);
535
536 /*
537  * insert an extent_state struct into the tree.  'bits' are set on the
538  * struct before it is inserted.
539  *
540  * This may return -EEXIST if the extent is already there, in which case the
541  * state struct is freed.
542  *
543  * The tree lock is not taken internally.  This is a utility function and
544  * probably isn't what you want to call (see set/clear_extent_bit).
545  */
546 static int insert_state(struct extent_io_tree *tree,
547                         struct extent_state *state, u64 start, u64 end,
548                         struct rb_node ***p,
549                         struct rb_node **parent,
550                         unsigned *bits, struct extent_changeset *changeset)
551 {
552         struct rb_node *node;
553
554         if (end < start) {
555                 btrfs_err(tree->fs_info,
556                         "insert state: end < start %llu %llu", end, start);
557                 WARN_ON(1);
558         }
559         state->start = start;
560         state->end = end;
561
562         set_state_bits(tree, state, bits, changeset);
563
564         node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
565         if (node) {
566                 struct extent_state *found;
567                 found = rb_entry(node, struct extent_state, rb_node);
568                 btrfs_err(tree->fs_info,
569                        "found node %llu %llu on insert of %llu %llu",
570                        found->start, found->end, start, end);
571                 return -EEXIST;
572         }
573         merge_state(tree, state);
574         return 0;
575 }
576
577 /*
578  * split a given extent state struct in two, inserting the preallocated
579  * struct 'prealloc' as the newly created second half.  'split' indicates an
580  * offset inside 'orig' where it should be split.
581  *
582  * Before calling,
583  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
584  * are two extent state structs in the tree:
585  * prealloc: [orig->start, split - 1]
586  * orig: [ split, orig->end ]
587  *
588  * The tree locks are not taken by this function. They need to be held
589  * by the caller.
590  */
591 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
592                        struct extent_state *prealloc, u64 split)
593 {
594         struct rb_node *node;
595
596         if (tree->private_data && is_data_inode(tree->private_data))
597                 btrfs_split_delalloc_extent(tree->private_data, orig, split);
598
599         prealloc->start = orig->start;
600         prealloc->end = split - 1;
601         prealloc->state = orig->state;
602         orig->start = split;
603
604         node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
605                            &prealloc->rb_node, NULL, NULL);
606         if (node) {
607                 free_extent_state(prealloc);
608                 return -EEXIST;
609         }
610         return 0;
611 }
612
613 static struct extent_state *next_state(struct extent_state *state)
614 {
615         struct rb_node *next = rb_next(&state->rb_node);
616         if (next)
617                 return rb_entry(next, struct extent_state, rb_node);
618         else
619                 return NULL;
620 }
621
622 /*
623  * utility function to clear some bits in an extent state struct.
624  * it will optionally wake up anyone waiting on this state (wake == 1).
625  *
626  * If no bits are set on the state struct after clearing things, the
627  * struct is freed and removed from the tree
628  */
629 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
630                                             struct extent_state *state,
631                                             unsigned *bits, int wake,
632                                             struct extent_changeset *changeset)
633 {
634         struct extent_state *next;
635         unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
636         int ret;
637
638         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
639                 u64 range = state->end - state->start + 1;
640                 WARN_ON(range > tree->dirty_bytes);
641                 tree->dirty_bytes -= range;
642         }
643
644         if (tree->private_data && is_data_inode(tree->private_data))
645                 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
646
647         ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
648         BUG_ON(ret < 0);
649         state->state &= ~bits_to_clear;
650         if (wake)
651                 wake_up(&state->wq);
652         if (state->state == 0) {
653                 next = next_state(state);
654                 if (extent_state_in_tree(state)) {
655                         rb_erase(&state->rb_node, &tree->state);
656                         RB_CLEAR_NODE(&state->rb_node);
657                         free_extent_state(state);
658                 } else {
659                         WARN_ON(1);
660                 }
661         } else {
662                 merge_state(tree, state);
663                 next = next_state(state);
664         }
665         return next;
666 }
667
668 static struct extent_state *
669 alloc_extent_state_atomic(struct extent_state *prealloc)
670 {
671         if (!prealloc)
672                 prealloc = alloc_extent_state(GFP_ATOMIC);
673
674         return prealloc;
675 }
676
677 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
678 {
679         struct inode *inode = tree->private_data;
680
681         btrfs_panic(btrfs_sb(inode->i_sb), err,
682         "locking error: extent tree was modified by another thread while locked");
683 }
684
685 /*
686  * clear some bits on a range in the tree.  This may require splitting
687  * or inserting elements in the tree, so the gfp mask is used to
688  * indicate which allocations or sleeping are allowed.
689  *
690  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
691  * the given range from the tree regardless of state (ie for truncate).
692  *
693  * the range [start, end] is inclusive.
694  *
695  * This takes the tree lock, and returns 0 on success and < 0 on error.
696  */
697 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
698                               unsigned bits, int wake, int delete,
699                               struct extent_state **cached_state,
700                               gfp_t mask, struct extent_changeset *changeset)
701 {
702         struct extent_state *state;
703         struct extent_state *cached;
704         struct extent_state *prealloc = NULL;
705         struct rb_node *node;
706         u64 last_end;
707         int err;
708         int clear = 0;
709
710         btrfs_debug_check_extent_io_range(tree, start, end);
711         trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
712
713         if (bits & EXTENT_DELALLOC)
714                 bits |= EXTENT_NORESERVE;
715
716         if (delete)
717                 bits |= ~EXTENT_CTLBITS;
718
719         if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
720                 clear = 1;
721 again:
722         if (!prealloc && gfpflags_allow_blocking(mask)) {
723                 /*
724                  * Don't care for allocation failure here because we might end
725                  * up not needing the pre-allocated extent state at all, which
726                  * is the case if we only have in the tree extent states that
727                  * cover our input range and don't cover too any other range.
728                  * If we end up needing a new extent state we allocate it later.
729                  */
730                 prealloc = alloc_extent_state(mask);
731         }
732
733         spin_lock(&tree->lock);
734         if (cached_state) {
735                 cached = *cached_state;
736
737                 if (clear) {
738                         *cached_state = NULL;
739                         cached_state = NULL;
740                 }
741
742                 if (cached && extent_state_in_tree(cached) &&
743                     cached->start <= start && cached->end > start) {
744                         if (clear)
745                                 refcount_dec(&cached->refs);
746                         state = cached;
747                         goto hit_next;
748                 }
749                 if (clear)
750                         free_extent_state(cached);
751         }
752         /*
753          * this search will find the extents that end after
754          * our range starts
755          */
756         node = tree_search(tree, start);
757         if (!node)
758                 goto out;
759         state = rb_entry(node, struct extent_state, rb_node);
760 hit_next:
761         if (state->start > end)
762                 goto out;
763         WARN_ON(state->end < start);
764         last_end = state->end;
765
766         /* the state doesn't have the wanted bits, go ahead */
767         if (!(state->state & bits)) {
768                 state = next_state(state);
769                 goto next;
770         }
771
772         /*
773          *     | ---- desired range ---- |
774          *  | state | or
775          *  | ------------- state -------------- |
776          *
777          * We need to split the extent we found, and may flip
778          * bits on second half.
779          *
780          * If the extent we found extends past our range, we
781          * just split and search again.  It'll get split again
782          * the next time though.
783          *
784          * If the extent we found is inside our range, we clear
785          * the desired bit on it.
786          */
787
788         if (state->start < start) {
789                 prealloc = alloc_extent_state_atomic(prealloc);
790                 BUG_ON(!prealloc);
791                 err = split_state(tree, state, prealloc, start);
792                 if (err)
793                         extent_io_tree_panic(tree, err);
794
795                 prealloc = NULL;
796                 if (err)
797                         goto out;
798                 if (state->end <= end) {
799                         state = clear_state_bit(tree, state, &bits, wake,
800                                                 changeset);
801                         goto next;
802                 }
803                 goto search_again;
804         }
805         /*
806          * | ---- desired range ---- |
807          *                        | state |
808          * We need to split the extent, and clear the bit
809          * on the first half
810          */
811         if (state->start <= end && state->end > end) {
812                 prealloc = alloc_extent_state_atomic(prealloc);
813                 BUG_ON(!prealloc);
814                 err = split_state(tree, state, prealloc, end + 1);
815                 if (err)
816                         extent_io_tree_panic(tree, err);
817
818                 if (wake)
819                         wake_up(&state->wq);
820
821                 clear_state_bit(tree, prealloc, &bits, wake, changeset);
822
823                 prealloc = NULL;
824                 goto out;
825         }
826
827         state = clear_state_bit(tree, state, &bits, wake, changeset);
828 next:
829         if (last_end == (u64)-1)
830                 goto out;
831         start = last_end + 1;
832         if (start <= end && state && !need_resched())
833                 goto hit_next;
834
835 search_again:
836         if (start > end)
837                 goto out;
838         spin_unlock(&tree->lock);
839         if (gfpflags_allow_blocking(mask))
840                 cond_resched();
841         goto again;
842
843 out:
844         spin_unlock(&tree->lock);
845         if (prealloc)
846                 free_extent_state(prealloc);
847
848         return 0;
849
850 }
851
852 static void wait_on_state(struct extent_io_tree *tree,
853                           struct extent_state *state)
854                 __releases(tree->lock)
855                 __acquires(tree->lock)
856 {
857         DEFINE_WAIT(wait);
858         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
859         spin_unlock(&tree->lock);
860         schedule();
861         spin_lock(&tree->lock);
862         finish_wait(&state->wq, &wait);
863 }
864
865 /*
866  * waits for one or more bits to clear on a range in the state tree.
867  * The range [start, end] is inclusive.
868  * The tree lock is taken by this function
869  */
870 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
871                             unsigned long bits)
872 {
873         struct extent_state *state;
874         struct rb_node *node;
875
876         btrfs_debug_check_extent_io_range(tree, start, end);
877
878         spin_lock(&tree->lock);
879 again:
880         while (1) {
881                 /*
882                  * this search will find all the extents that end after
883                  * our range starts
884                  */
885                 node = tree_search(tree, start);
886 process_node:
887                 if (!node)
888                         break;
889
890                 state = rb_entry(node, struct extent_state, rb_node);
891
892                 if (state->start > end)
893                         goto out;
894
895                 if (state->state & bits) {
896                         start = state->start;
897                         refcount_inc(&state->refs);
898                         wait_on_state(tree, state);
899                         free_extent_state(state);
900                         goto again;
901                 }
902                 start = state->end + 1;
903
904                 if (start > end)
905                         break;
906
907                 if (!cond_resched_lock(&tree->lock)) {
908                         node = rb_next(node);
909                         goto process_node;
910                 }
911         }
912 out:
913         spin_unlock(&tree->lock);
914 }
915
916 static void set_state_bits(struct extent_io_tree *tree,
917                            struct extent_state *state,
918                            unsigned *bits, struct extent_changeset *changeset)
919 {
920         unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
921         int ret;
922
923         if (tree->private_data && is_data_inode(tree->private_data))
924                 btrfs_set_delalloc_extent(tree->private_data, state, bits);
925
926         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
927                 u64 range = state->end - state->start + 1;
928                 tree->dirty_bytes += range;
929         }
930         ret = add_extent_changeset(state, bits_to_set, changeset, 1);
931         BUG_ON(ret < 0);
932         state->state |= bits_to_set;
933 }
934
935 static void cache_state_if_flags(struct extent_state *state,
936                                  struct extent_state **cached_ptr,
937                                  unsigned flags)
938 {
939         if (cached_ptr && !(*cached_ptr)) {
940                 if (!flags || (state->state & flags)) {
941                         *cached_ptr = state;
942                         refcount_inc(&state->refs);
943                 }
944         }
945 }
946
947 static void cache_state(struct extent_state *state,
948                         struct extent_state **cached_ptr)
949 {
950         return cache_state_if_flags(state, cached_ptr,
951                                     EXTENT_LOCKED | EXTENT_BOUNDARY);
952 }
953
954 /*
955  * set some bits on a range in the tree.  This may require allocations or
956  * sleeping, so the gfp mask is used to indicate what is allowed.
957  *
958  * If any of the exclusive bits are set, this will fail with -EEXIST if some
959  * part of the range already has the desired bits set.  The start of the
960  * existing range is returned in failed_start in this case.
961  *
962  * [start, end] is inclusive This takes the tree lock.
963  */
964
965 static int __must_check
966 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
967                  unsigned bits, unsigned exclusive_bits,
968                  u64 *failed_start, struct extent_state **cached_state,
969                  gfp_t mask, struct extent_changeset *changeset)
970 {
971         struct extent_state *state;
972         struct extent_state *prealloc = NULL;
973         struct rb_node *node;
974         struct rb_node **p;
975         struct rb_node *parent;
976         int err = 0;
977         u64 last_start;
978         u64 last_end;
979
980         btrfs_debug_check_extent_io_range(tree, start, end);
981         trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
982
983 again:
984         if (!prealloc && gfpflags_allow_blocking(mask)) {
985                 /*
986                  * Don't care for allocation failure here because we might end
987                  * up not needing the pre-allocated extent state at all, which
988                  * is the case if we only have in the tree extent states that
989                  * cover our input range and don't cover too any other range.
990                  * If we end up needing a new extent state we allocate it later.
991                  */
992                 prealloc = alloc_extent_state(mask);
993         }
994
995         spin_lock(&tree->lock);
996         if (cached_state && *cached_state) {
997                 state = *cached_state;
998                 if (state->start <= start && state->end > start &&
999                     extent_state_in_tree(state)) {
1000                         node = &state->rb_node;
1001                         goto hit_next;
1002                 }
1003         }
1004         /*
1005          * this search will find all the extents that end after
1006          * our range starts.
1007          */
1008         node = tree_search_for_insert(tree, start, &p, &parent);
1009         if (!node) {
1010                 prealloc = alloc_extent_state_atomic(prealloc);
1011                 BUG_ON(!prealloc);
1012                 err = insert_state(tree, prealloc, start, end,
1013                                    &p, &parent, &bits, changeset);
1014                 if (err)
1015                         extent_io_tree_panic(tree, err);
1016
1017                 cache_state(prealloc, cached_state);
1018                 prealloc = NULL;
1019                 goto out;
1020         }
1021         state = rb_entry(node, struct extent_state, rb_node);
1022 hit_next:
1023         last_start = state->start;
1024         last_end = state->end;
1025
1026         /*
1027          * | ---- desired range ---- |
1028          * | state |
1029          *
1030          * Just lock what we found and keep going
1031          */
1032         if (state->start == start && state->end <= end) {
1033                 if (state->state & exclusive_bits) {
1034                         *failed_start = state->start;
1035                         err = -EEXIST;
1036                         goto out;
1037                 }
1038
1039                 set_state_bits(tree, state, &bits, changeset);
1040                 cache_state(state, cached_state);
1041                 merge_state(tree, state);
1042                 if (last_end == (u64)-1)
1043                         goto out;
1044                 start = last_end + 1;
1045                 state = next_state(state);
1046                 if (start < end && state && state->start == start &&
1047                     !need_resched())
1048                         goto hit_next;
1049                 goto search_again;
1050         }
1051
1052         /*
1053          *     | ---- desired range ---- |
1054          * | state |
1055          *   or
1056          * | ------------- state -------------- |
1057          *
1058          * We need to split the extent we found, and may flip bits on
1059          * second half.
1060          *
1061          * If the extent we found extends past our
1062          * range, we just split and search again.  It'll get split
1063          * again the next time though.
1064          *
1065          * If the extent we found is inside our range, we set the
1066          * desired bit on it.
1067          */
1068         if (state->start < start) {
1069                 if (state->state & exclusive_bits) {
1070                         *failed_start = start;
1071                         err = -EEXIST;
1072                         goto out;
1073                 }
1074
1075                 /*
1076                  * If this extent already has all the bits we want set, then
1077                  * skip it, not necessary to split it or do anything with it.
1078                  */
1079                 if ((state->state & bits) == bits) {
1080                         start = state->end + 1;
1081                         cache_state(state, cached_state);
1082                         goto search_again;
1083                 }
1084
1085                 prealloc = alloc_extent_state_atomic(prealloc);
1086                 BUG_ON(!prealloc);
1087                 err = split_state(tree, state, prealloc, start);
1088                 if (err)
1089                         extent_io_tree_panic(tree, err);
1090
1091                 prealloc = NULL;
1092                 if (err)
1093                         goto out;
1094                 if (state->end <= end) {
1095                         set_state_bits(tree, state, &bits, changeset);
1096                         cache_state(state, cached_state);
1097                         merge_state(tree, state);
1098                         if (last_end == (u64)-1)
1099                                 goto out;
1100                         start = last_end + 1;
1101                         state = next_state(state);
1102                         if (start < end && state && state->start == start &&
1103                             !need_resched())
1104                                 goto hit_next;
1105                 }
1106                 goto search_again;
1107         }
1108         /*
1109          * | ---- desired range ---- |
1110          *     | state | or               | state |
1111          *
1112          * There's a hole, we need to insert something in it and
1113          * ignore the extent we found.
1114          */
1115         if (state->start > start) {
1116                 u64 this_end;
1117                 if (end < last_start)
1118                         this_end = end;
1119                 else
1120                         this_end = last_start - 1;
1121
1122                 prealloc = alloc_extent_state_atomic(prealloc);
1123                 BUG_ON(!prealloc);
1124
1125                 /*
1126                  * Avoid to free 'prealloc' if it can be merged with
1127                  * the later extent.
1128                  */
1129                 err = insert_state(tree, prealloc, start, this_end,
1130                                    NULL, NULL, &bits, changeset);
1131                 if (err)
1132                         extent_io_tree_panic(tree, err);
1133
1134                 cache_state(prealloc, cached_state);
1135                 prealloc = NULL;
1136                 start = this_end + 1;
1137                 goto search_again;
1138         }
1139         /*
1140          * | ---- desired range ---- |
1141          *                        | state |
1142          * We need to split the extent, and set the bit
1143          * on the first half
1144          */
1145         if (state->start <= end && state->end > end) {
1146                 if (state->state & exclusive_bits) {
1147                         *failed_start = start;
1148                         err = -EEXIST;
1149                         goto out;
1150                 }
1151
1152                 prealloc = alloc_extent_state_atomic(prealloc);
1153                 BUG_ON(!prealloc);
1154                 err = split_state(tree, state, prealloc, end + 1);
1155                 if (err)
1156                         extent_io_tree_panic(tree, err);
1157
1158                 set_state_bits(tree, prealloc, &bits, changeset);
1159                 cache_state(prealloc, cached_state);
1160                 merge_state(tree, prealloc);
1161                 prealloc = NULL;
1162                 goto out;
1163         }
1164
1165 search_again:
1166         if (start > end)
1167                 goto out;
1168         spin_unlock(&tree->lock);
1169         if (gfpflags_allow_blocking(mask))
1170                 cond_resched();
1171         goto again;
1172
1173 out:
1174         spin_unlock(&tree->lock);
1175         if (prealloc)
1176                 free_extent_state(prealloc);
1177
1178         return err;
1179
1180 }
1181
1182 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1183                    unsigned bits, u64 * failed_start,
1184                    struct extent_state **cached_state, gfp_t mask)
1185 {
1186         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1187                                 cached_state, mask, NULL);
1188 }
1189
1190
1191 /**
1192  * convert_extent_bit - convert all bits in a given range from one bit to
1193  *                      another
1194  * @tree:       the io tree to search
1195  * @start:      the start offset in bytes
1196  * @end:        the end offset in bytes (inclusive)
1197  * @bits:       the bits to set in this range
1198  * @clear_bits: the bits to clear in this range
1199  * @cached_state:       state that we're going to cache
1200  *
1201  * This will go through and set bits for the given range.  If any states exist
1202  * already in this range they are set with the given bit and cleared of the
1203  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1204  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1205  * boundary bits like LOCK.
1206  *
1207  * All allocations are done with GFP_NOFS.
1208  */
1209 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1210                        unsigned bits, unsigned clear_bits,
1211                        struct extent_state **cached_state)
1212 {
1213         struct extent_state *state;
1214         struct extent_state *prealloc = NULL;
1215         struct rb_node *node;
1216         struct rb_node **p;
1217         struct rb_node *parent;
1218         int err = 0;
1219         u64 last_start;
1220         u64 last_end;
1221         bool first_iteration = true;
1222
1223         btrfs_debug_check_extent_io_range(tree, start, end);
1224         trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1225                                        clear_bits);
1226
1227 again:
1228         if (!prealloc) {
1229                 /*
1230                  * Best effort, don't worry if extent state allocation fails
1231                  * here for the first iteration. We might have a cached state
1232                  * that matches exactly the target range, in which case no
1233                  * extent state allocations are needed. We'll only know this
1234                  * after locking the tree.
1235                  */
1236                 prealloc = alloc_extent_state(GFP_NOFS);
1237                 if (!prealloc && !first_iteration)
1238                         return -ENOMEM;
1239         }
1240
1241         spin_lock(&tree->lock);
1242         if (cached_state && *cached_state) {
1243                 state = *cached_state;
1244                 if (state->start <= start && state->end > start &&
1245                     extent_state_in_tree(state)) {
1246                         node = &state->rb_node;
1247                         goto hit_next;
1248                 }
1249         }
1250
1251         /*
1252          * this search will find all the extents that end after
1253          * our range starts.
1254          */
1255         node = tree_search_for_insert(tree, start, &p, &parent);
1256         if (!node) {
1257                 prealloc = alloc_extent_state_atomic(prealloc);
1258                 if (!prealloc) {
1259                         err = -ENOMEM;
1260                         goto out;
1261                 }
1262                 err = insert_state(tree, prealloc, start, end,
1263                                    &p, &parent, &bits, NULL);
1264                 if (err)
1265                         extent_io_tree_panic(tree, err);
1266                 cache_state(prealloc, cached_state);
1267                 prealloc = NULL;
1268                 goto out;
1269         }
1270         state = rb_entry(node, struct extent_state, rb_node);
1271 hit_next:
1272         last_start = state->start;
1273         last_end = state->end;
1274
1275         /*
1276          * | ---- desired range ---- |
1277          * | state |
1278          *
1279          * Just lock what we found and keep going
1280          */
1281         if (state->start == start && state->end <= end) {
1282                 set_state_bits(tree, state, &bits, NULL);
1283                 cache_state(state, cached_state);
1284                 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1285                 if (last_end == (u64)-1)
1286                         goto out;
1287                 start = last_end + 1;
1288                 if (start < end && state && state->start == start &&
1289                     !need_resched())
1290                         goto hit_next;
1291                 goto search_again;
1292         }
1293
1294         /*
1295          *     | ---- desired range ---- |
1296          * | state |
1297          *   or
1298          * | ------------- state -------------- |
1299          *
1300          * We need to split the extent we found, and may flip bits on
1301          * second half.
1302          *
1303          * If the extent we found extends past our
1304          * range, we just split and search again.  It'll get split
1305          * again the next time though.
1306          *
1307          * If the extent we found is inside our range, we set the
1308          * desired bit on it.
1309          */
1310         if (state->start < start) {
1311                 prealloc = alloc_extent_state_atomic(prealloc);
1312                 if (!prealloc) {
1313                         err = -ENOMEM;
1314                         goto out;
1315                 }
1316                 err = split_state(tree, state, prealloc, start);
1317                 if (err)
1318                         extent_io_tree_panic(tree, err);
1319                 prealloc = NULL;
1320                 if (err)
1321                         goto out;
1322                 if (state->end <= end) {
1323                         set_state_bits(tree, state, &bits, NULL);
1324                         cache_state(state, cached_state);
1325                         state = clear_state_bit(tree, state, &clear_bits, 0,
1326                                                 NULL);
1327                         if (last_end == (u64)-1)
1328                                 goto out;
1329                         start = last_end + 1;
1330                         if (start < end && state && state->start == start &&
1331                             !need_resched())
1332                                 goto hit_next;
1333                 }
1334                 goto search_again;
1335         }
1336         /*
1337          * | ---- desired range ---- |
1338          *     | state | or               | state |
1339          *
1340          * There's a hole, we need to insert something in it and
1341          * ignore the extent we found.
1342          */
1343         if (state->start > start) {
1344                 u64 this_end;
1345                 if (end < last_start)
1346                         this_end = end;
1347                 else
1348                         this_end = last_start - 1;
1349
1350                 prealloc = alloc_extent_state_atomic(prealloc);
1351                 if (!prealloc) {
1352                         err = -ENOMEM;
1353                         goto out;
1354                 }
1355
1356                 /*
1357                  * Avoid to free 'prealloc' if it can be merged with
1358                  * the later extent.
1359                  */
1360                 err = insert_state(tree, prealloc, start, this_end,
1361                                    NULL, NULL, &bits, NULL);
1362                 if (err)
1363                         extent_io_tree_panic(tree, err);
1364                 cache_state(prealloc, cached_state);
1365                 prealloc = NULL;
1366                 start = this_end + 1;
1367                 goto search_again;
1368         }
1369         /*
1370          * | ---- desired range ---- |
1371          *                        | state |
1372          * We need to split the extent, and set the bit
1373          * on the first half
1374          */
1375         if (state->start <= end && state->end > end) {
1376                 prealloc = alloc_extent_state_atomic(prealloc);
1377                 if (!prealloc) {
1378                         err = -ENOMEM;
1379                         goto out;
1380                 }
1381
1382                 err = split_state(tree, state, prealloc, end + 1);
1383                 if (err)
1384                         extent_io_tree_panic(tree, err);
1385
1386                 set_state_bits(tree, prealloc, &bits, NULL);
1387                 cache_state(prealloc, cached_state);
1388                 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1389                 prealloc = NULL;
1390                 goto out;
1391         }
1392
1393 search_again:
1394         if (start > end)
1395                 goto out;
1396         spin_unlock(&tree->lock);
1397         cond_resched();
1398         first_iteration = false;
1399         goto again;
1400
1401 out:
1402         spin_unlock(&tree->lock);
1403         if (prealloc)
1404                 free_extent_state(prealloc);
1405
1406         return err;
1407 }
1408
1409 /* wrappers around set/clear extent bit */
1410 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1411                            unsigned bits, struct extent_changeset *changeset)
1412 {
1413         /*
1414          * We don't support EXTENT_LOCKED yet, as current changeset will
1415          * record any bits changed, so for EXTENT_LOCKED case, it will
1416          * either fail with -EEXIST or changeset will record the whole
1417          * range.
1418          */
1419         BUG_ON(bits & EXTENT_LOCKED);
1420
1421         return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1422                                 changeset);
1423 }
1424
1425 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1426                            unsigned bits)
1427 {
1428         return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1429                                 GFP_NOWAIT, NULL);
1430 }
1431
1432 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1433                      unsigned bits, int wake, int delete,
1434                      struct extent_state **cached)
1435 {
1436         return __clear_extent_bit(tree, start, end, bits, wake, delete,
1437                                   cached, GFP_NOFS, NULL);
1438 }
1439
1440 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1441                 unsigned bits, struct extent_changeset *changeset)
1442 {
1443         /*
1444          * Don't support EXTENT_LOCKED case, same reason as
1445          * set_record_extent_bits().
1446          */
1447         BUG_ON(bits & EXTENT_LOCKED);
1448
1449         return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1450                                   changeset);
1451 }
1452
1453 /*
1454  * either insert or lock state struct between start and end use mask to tell
1455  * us if waiting is desired.
1456  */
1457 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1458                      struct extent_state **cached_state)
1459 {
1460         int err;
1461         u64 failed_start;
1462
1463         while (1) {
1464                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1465                                        EXTENT_LOCKED, &failed_start,
1466                                        cached_state, GFP_NOFS, NULL);
1467                 if (err == -EEXIST) {
1468                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1469                         start = failed_start;
1470                 } else
1471                         break;
1472                 WARN_ON(start > end);
1473         }
1474         return err;
1475 }
1476
1477 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1478 {
1479         int err;
1480         u64 failed_start;
1481
1482         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1483                                &failed_start, NULL, GFP_NOFS, NULL);
1484         if (err == -EEXIST) {
1485                 if (failed_start > start)
1486                         clear_extent_bit(tree, start, failed_start - 1,
1487                                          EXTENT_LOCKED, 1, 0, NULL);
1488                 return 0;
1489         }
1490         return 1;
1491 }
1492
1493 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1494 {
1495         unsigned long index = start >> PAGE_SHIFT;
1496         unsigned long end_index = end >> PAGE_SHIFT;
1497         struct page *page;
1498
1499         while (index <= end_index) {
1500                 page = find_get_page(inode->i_mapping, index);
1501                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1502                 clear_page_dirty_for_io(page);
1503                 put_page(page);
1504                 index++;
1505         }
1506 }
1507
1508 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1509 {
1510         unsigned long index = start >> PAGE_SHIFT;
1511         unsigned long end_index = end >> PAGE_SHIFT;
1512         struct page *page;
1513
1514         while (index <= end_index) {
1515                 page = find_get_page(inode->i_mapping, index);
1516                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1517                 __set_page_dirty_nobuffers(page);
1518                 account_page_redirty(page);
1519                 put_page(page);
1520                 index++;
1521         }
1522 }
1523
1524 /* find the first state struct with 'bits' set after 'start', and
1525  * return it.  tree->lock must be held.  NULL will returned if
1526  * nothing was found after 'start'
1527  */
1528 static struct extent_state *
1529 find_first_extent_bit_state(struct extent_io_tree *tree,
1530                             u64 start, unsigned bits)
1531 {
1532         struct rb_node *node;
1533         struct extent_state *state;
1534
1535         /*
1536          * this search will find all the extents that end after
1537          * our range starts.
1538          */
1539         node = tree_search(tree, start);
1540         if (!node)
1541                 goto out;
1542
1543         while (1) {
1544                 state = rb_entry(node, struct extent_state, rb_node);
1545                 if (state->end >= start && (state->state & bits))
1546                         return state;
1547
1548                 node = rb_next(node);
1549                 if (!node)
1550                         break;
1551         }
1552 out:
1553         return NULL;
1554 }
1555
1556 /*
1557  * find the first offset in the io tree with 'bits' set. zero is
1558  * returned if we find something, and *start_ret and *end_ret are
1559  * set to reflect the state struct that was found.
1560  *
1561  * If nothing was found, 1 is returned. If found something, return 0.
1562  */
1563 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1564                           u64 *start_ret, u64 *end_ret, unsigned bits,
1565                           struct extent_state **cached_state)
1566 {
1567         struct extent_state *state;
1568         int ret = 1;
1569
1570         spin_lock(&tree->lock);
1571         if (cached_state && *cached_state) {
1572                 state = *cached_state;
1573                 if (state->end == start - 1 && extent_state_in_tree(state)) {
1574                         while ((state = next_state(state)) != NULL) {
1575                                 if (state->state & bits)
1576                                         goto got_it;
1577                         }
1578                         free_extent_state(*cached_state);
1579                         *cached_state = NULL;
1580                         goto out;
1581                 }
1582                 free_extent_state(*cached_state);
1583                 *cached_state = NULL;
1584         }
1585
1586         state = find_first_extent_bit_state(tree, start, bits);
1587 got_it:
1588         if (state) {
1589                 cache_state_if_flags(state, cached_state, 0);
1590                 *start_ret = state->start;
1591                 *end_ret = state->end;
1592                 ret = 0;
1593         }
1594 out:
1595         spin_unlock(&tree->lock);
1596         return ret;
1597 }
1598
1599 /**
1600  * find_contiguous_extent_bit: find a contiguous area of bits
1601  * @tree - io tree to check
1602  * @start - offset to start the search from
1603  * @start_ret - the first offset we found with the bits set
1604  * @end_ret - the final contiguous range of the bits that were set
1605  * @bits - bits to look for
1606  *
1607  * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1608  * to set bits appropriately, and then merge them again.  During this time it
1609  * will drop the tree->lock, so use this helper if you want to find the actual
1610  * contiguous area for given bits.  We will search to the first bit we find, and
1611  * then walk down the tree until we find a non-contiguous area.  The area
1612  * returned will be the full contiguous area with the bits set.
1613  */
1614 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1615                                u64 *start_ret, u64 *end_ret, unsigned bits)
1616 {
1617         struct extent_state *state;
1618         int ret = 1;
1619
1620         spin_lock(&tree->lock);
1621         state = find_first_extent_bit_state(tree, start, bits);
1622         if (state) {
1623                 *start_ret = state->start;
1624                 *end_ret = state->end;
1625                 while ((state = next_state(state)) != NULL) {
1626                         if (state->start > (*end_ret + 1))
1627                                 break;
1628                         *end_ret = state->end;
1629                 }
1630                 ret = 0;
1631         }
1632         spin_unlock(&tree->lock);
1633         return ret;
1634 }
1635
1636 /**
1637  * find_first_clear_extent_bit - find the first range that has @bits not set.
1638  * This range could start before @start.
1639  *
1640  * @tree - the tree to search
1641  * @start - the offset at/after which the found extent should start
1642  * @start_ret - records the beginning of the range
1643  * @end_ret - records the end of the range (inclusive)
1644  * @bits - the set of bits which must be unset
1645  *
1646  * Since unallocated range is also considered one which doesn't have the bits
1647  * set it's possible that @end_ret contains -1, this happens in case the range
1648  * spans (last_range_end, end of device]. In this case it's up to the caller to
1649  * trim @end_ret to the appropriate size.
1650  */
1651 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1652                                  u64 *start_ret, u64 *end_ret, unsigned bits)
1653 {
1654         struct extent_state *state;
1655         struct rb_node *node, *prev = NULL, *next;
1656
1657         spin_lock(&tree->lock);
1658
1659         /* Find first extent with bits cleared */
1660         while (1) {
1661                 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1662                 if (!node && !next && !prev) {
1663                         /*
1664                          * Tree is completely empty, send full range and let
1665                          * caller deal with it
1666                          */
1667                         *start_ret = 0;
1668                         *end_ret = -1;
1669                         goto out;
1670                 } else if (!node && !next) {
1671                         /*
1672                          * We are past the last allocated chunk, set start at
1673                          * the end of the last extent.
1674                          */
1675                         state = rb_entry(prev, struct extent_state, rb_node);
1676                         *start_ret = state->end + 1;
1677                         *end_ret = -1;
1678                         goto out;
1679                 } else if (!node) {
1680                         node = next;
1681                 }
1682                 /*
1683                  * At this point 'node' either contains 'start' or start is
1684                  * before 'node'
1685                  */
1686                 state = rb_entry(node, struct extent_state, rb_node);
1687
1688                 if (in_range(start, state->start, state->end - state->start + 1)) {
1689                         if (state->state & bits) {
1690                                 /*
1691                                  * |--range with bits sets--|
1692                                  *    |
1693                                  *    start
1694                                  */
1695                                 start = state->end + 1;
1696                         } else {
1697                                 /*
1698                                  * 'start' falls within a range that doesn't
1699                                  * have the bits set, so take its start as
1700                                  * the beginning of the desired range
1701                                  *
1702                                  * |--range with bits cleared----|
1703                                  *      |
1704                                  *      start
1705                                  */
1706                                 *start_ret = state->start;
1707                                 break;
1708                         }
1709                 } else {
1710                         /*
1711                          * |---prev range---|---hole/unset---|---node range---|
1712                          *                          |
1713                          *                        start
1714                          *
1715                          *                        or
1716                          *
1717                          * |---hole/unset--||--first node--|
1718                          * 0   |
1719                          *    start
1720                          */
1721                         if (prev) {
1722                                 state = rb_entry(prev, struct extent_state,
1723                                                  rb_node);
1724                                 *start_ret = state->end + 1;
1725                         } else {
1726                                 *start_ret = 0;
1727                         }
1728                         break;
1729                 }
1730         }
1731
1732         /*
1733          * Find the longest stretch from start until an entry which has the
1734          * bits set
1735          */
1736         while (1) {
1737                 state = rb_entry(node, struct extent_state, rb_node);
1738                 if (state->end >= start && !(state->state & bits)) {
1739                         *end_ret = state->end;
1740                 } else {
1741                         *end_ret = state->start - 1;
1742                         break;
1743                 }
1744
1745                 node = rb_next(node);
1746                 if (!node)
1747                         break;
1748         }
1749 out:
1750         spin_unlock(&tree->lock);
1751 }
1752
1753 /*
1754  * find a contiguous range of bytes in the file marked as delalloc, not
1755  * more than 'max_bytes'.  start and end are used to return the range,
1756  *
1757  * true is returned if we find something, false if nothing was in the tree
1758  */
1759 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1760                                u64 *end, u64 max_bytes,
1761                                struct extent_state **cached_state)
1762 {
1763         struct rb_node *node;
1764         struct extent_state *state;
1765         u64 cur_start = *start;
1766         bool found = false;
1767         u64 total_bytes = 0;
1768
1769         spin_lock(&tree->lock);
1770
1771         /*
1772          * this search will find all the extents that end after
1773          * our range starts.
1774          */
1775         node = tree_search(tree, cur_start);
1776         if (!node) {
1777                 *end = (u64)-1;
1778                 goto out;
1779         }
1780
1781         while (1) {
1782                 state = rb_entry(node, struct extent_state, rb_node);
1783                 if (found && (state->start != cur_start ||
1784                               (state->state & EXTENT_BOUNDARY))) {
1785                         goto out;
1786                 }
1787                 if (!(state->state & EXTENT_DELALLOC)) {
1788                         if (!found)
1789                                 *end = state->end;
1790                         goto out;
1791                 }
1792                 if (!found) {
1793                         *start = state->start;
1794                         *cached_state = state;
1795                         refcount_inc(&state->refs);
1796                 }
1797                 found = true;
1798                 *end = state->end;
1799                 cur_start = state->end + 1;
1800                 node = rb_next(node);
1801                 total_bytes += state->end - state->start + 1;
1802                 if (total_bytes >= max_bytes)
1803                         break;
1804                 if (!node)
1805                         break;
1806         }
1807 out:
1808         spin_unlock(&tree->lock);
1809         return found;
1810 }
1811
1812 static int __process_pages_contig(struct address_space *mapping,
1813                                   struct page *locked_page,
1814                                   pgoff_t start_index, pgoff_t end_index,
1815                                   unsigned long page_ops, pgoff_t *index_ret);
1816
1817 static noinline void __unlock_for_delalloc(struct inode *inode,
1818                                            struct page *locked_page,
1819                                            u64 start, u64 end)
1820 {
1821         unsigned long index = start >> PAGE_SHIFT;
1822         unsigned long end_index = end >> PAGE_SHIFT;
1823
1824         ASSERT(locked_page);
1825         if (index == locked_page->index && end_index == index)
1826                 return;
1827
1828         __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1829                                PAGE_UNLOCK, NULL);
1830 }
1831
1832 static noinline int lock_delalloc_pages(struct inode *inode,
1833                                         struct page *locked_page,
1834                                         u64 delalloc_start,
1835                                         u64 delalloc_end)
1836 {
1837         unsigned long index = delalloc_start >> PAGE_SHIFT;
1838         unsigned long index_ret = index;
1839         unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1840         int ret;
1841
1842         ASSERT(locked_page);
1843         if (index == locked_page->index && index == end_index)
1844                 return 0;
1845
1846         ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1847                                      end_index, PAGE_LOCK, &index_ret);
1848         if (ret == -EAGAIN)
1849                 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1850                                       (u64)index_ret << PAGE_SHIFT);
1851         return ret;
1852 }
1853
1854 /*
1855  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1856  * more than @max_bytes.  @Start and @end are used to return the range,
1857  *
1858  * Return: true if we find something
1859  *         false if nothing was in the tree
1860  */
1861 EXPORT_FOR_TESTS
1862 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1863                                     struct page *locked_page, u64 *start,
1864                                     u64 *end)
1865 {
1866         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1867         u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1868         u64 delalloc_start;
1869         u64 delalloc_end;
1870         bool found;
1871         struct extent_state *cached_state = NULL;
1872         int ret;
1873         int loops = 0;
1874
1875 again:
1876         /* step one, find a bunch of delalloc bytes starting at start */
1877         delalloc_start = *start;
1878         delalloc_end = 0;
1879         found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1880                                           max_bytes, &cached_state);
1881         if (!found || delalloc_end <= *start) {
1882                 *start = delalloc_start;
1883                 *end = delalloc_end;
1884                 free_extent_state(cached_state);
1885                 return false;
1886         }
1887
1888         /*
1889          * start comes from the offset of locked_page.  We have to lock
1890          * pages in order, so we can't process delalloc bytes before
1891          * locked_page
1892          */
1893         if (delalloc_start < *start)
1894                 delalloc_start = *start;
1895
1896         /*
1897          * make sure to limit the number of pages we try to lock down
1898          */
1899         if (delalloc_end + 1 - delalloc_start > max_bytes)
1900                 delalloc_end = delalloc_start + max_bytes - 1;
1901
1902         /* step two, lock all the pages after the page that has start */
1903         ret = lock_delalloc_pages(inode, locked_page,
1904                                   delalloc_start, delalloc_end);
1905         ASSERT(!ret || ret == -EAGAIN);
1906         if (ret == -EAGAIN) {
1907                 /* some of the pages are gone, lets avoid looping by
1908                  * shortening the size of the delalloc range we're searching
1909                  */
1910                 free_extent_state(cached_state);
1911                 cached_state = NULL;
1912                 if (!loops) {
1913                         max_bytes = PAGE_SIZE;
1914                         loops = 1;
1915                         goto again;
1916                 } else {
1917                         found = false;
1918                         goto out_failed;
1919                 }
1920         }
1921
1922         /* step three, lock the state bits for the whole range */
1923         lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1924
1925         /* then test to make sure it is all still delalloc */
1926         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1927                              EXTENT_DELALLOC, 1, cached_state);
1928         if (!ret) {
1929                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1930                                      &cached_state);
1931                 __unlock_for_delalloc(inode, locked_page,
1932                               delalloc_start, delalloc_end);
1933                 cond_resched();
1934                 goto again;
1935         }
1936         free_extent_state(cached_state);
1937         *start = delalloc_start;
1938         *end = delalloc_end;
1939 out_failed:
1940         return found;
1941 }
1942
1943 static int __process_pages_contig(struct address_space *mapping,
1944                                   struct page *locked_page,
1945                                   pgoff_t start_index, pgoff_t end_index,
1946                                   unsigned long page_ops, pgoff_t *index_ret)
1947 {
1948         unsigned long nr_pages = end_index - start_index + 1;
1949         unsigned long pages_locked = 0;
1950         pgoff_t index = start_index;
1951         struct page *pages[16];
1952         unsigned ret;
1953         int err = 0;
1954         int i;
1955
1956         if (page_ops & PAGE_LOCK) {
1957                 ASSERT(page_ops == PAGE_LOCK);
1958                 ASSERT(index_ret && *index_ret == start_index);
1959         }
1960
1961         if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1962                 mapping_set_error(mapping, -EIO);
1963
1964         while (nr_pages > 0) {
1965                 ret = find_get_pages_contig(mapping, index,
1966                                      min_t(unsigned long,
1967                                      nr_pages, ARRAY_SIZE(pages)), pages);
1968                 if (ret == 0) {
1969                         /*
1970                          * Only if we're going to lock these pages,
1971                          * can we find nothing at @index.
1972                          */
1973                         ASSERT(page_ops & PAGE_LOCK);
1974                         err = -EAGAIN;
1975                         goto out;
1976                 }
1977
1978                 for (i = 0; i < ret; i++) {
1979                         if (page_ops & PAGE_SET_PRIVATE2)
1980                                 SetPagePrivate2(pages[i]);
1981
1982                         if (locked_page && pages[i] == locked_page) {
1983                                 put_page(pages[i]);
1984                                 pages_locked++;
1985                                 continue;
1986                         }
1987                         if (page_ops & PAGE_CLEAR_DIRTY)
1988                                 clear_page_dirty_for_io(pages[i]);
1989                         if (page_ops & PAGE_SET_WRITEBACK)
1990                                 set_page_writeback(pages[i]);
1991                         if (page_ops & PAGE_SET_ERROR)
1992                                 SetPageError(pages[i]);
1993                         if (page_ops & PAGE_END_WRITEBACK)
1994                                 end_page_writeback(pages[i]);
1995                         if (page_ops & PAGE_UNLOCK)
1996                                 unlock_page(pages[i]);
1997                         if (page_ops & PAGE_LOCK) {
1998                                 lock_page(pages[i]);
1999                                 if (!PageDirty(pages[i]) ||
2000                                     pages[i]->mapping != mapping) {
2001                                         unlock_page(pages[i]);
2002                                         for (; i < ret; i++)
2003                                                 put_page(pages[i]);
2004                                         err = -EAGAIN;
2005                                         goto out;
2006                                 }
2007                         }
2008                         put_page(pages[i]);
2009                         pages_locked++;
2010                 }
2011                 nr_pages -= ret;
2012                 index += ret;
2013                 cond_resched();
2014         }
2015 out:
2016         if (err && index_ret)
2017                 *index_ret = start_index + pages_locked - 1;
2018         return err;
2019 }
2020
2021 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
2022                                   struct page *locked_page,
2023                                   unsigned clear_bits,
2024                                   unsigned long page_ops)
2025 {
2026         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
2027                          NULL);
2028
2029         __process_pages_contig(inode->i_mapping, locked_page,
2030                                start >> PAGE_SHIFT, end >> PAGE_SHIFT,
2031                                page_ops, NULL);
2032 }
2033
2034 /*
2035  * count the number of bytes in the tree that have a given bit(s)
2036  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
2037  * cached.  The total number found is returned.
2038  */
2039 u64 count_range_bits(struct extent_io_tree *tree,
2040                      u64 *start, u64 search_end, u64 max_bytes,
2041                      unsigned bits, int contig)
2042 {
2043         struct rb_node *node;
2044         struct extent_state *state;
2045         u64 cur_start = *start;
2046         u64 total_bytes = 0;
2047         u64 last = 0;
2048         int found = 0;
2049
2050         if (WARN_ON(search_end <= cur_start))
2051                 return 0;
2052
2053         spin_lock(&tree->lock);
2054         if (cur_start == 0 && bits == EXTENT_DIRTY) {
2055                 total_bytes = tree->dirty_bytes;
2056                 goto out;
2057         }
2058         /*
2059          * this search will find all the extents that end after
2060          * our range starts.
2061          */
2062         node = tree_search(tree, cur_start);
2063         if (!node)
2064                 goto out;
2065
2066         while (1) {
2067                 state = rb_entry(node, struct extent_state, rb_node);
2068                 if (state->start > search_end)
2069                         break;
2070                 if (contig && found && state->start > last + 1)
2071                         break;
2072                 if (state->end >= cur_start && (state->state & bits) == bits) {
2073                         total_bytes += min(search_end, state->end) + 1 -
2074                                        max(cur_start, state->start);
2075                         if (total_bytes >= max_bytes)
2076                                 break;
2077                         if (!found) {
2078                                 *start = max(cur_start, state->start);
2079                                 found = 1;
2080                         }
2081                         last = state->end;
2082                 } else if (contig && found) {
2083                         break;
2084                 }
2085                 node = rb_next(node);
2086                 if (!node)
2087                         break;
2088         }
2089 out:
2090         spin_unlock(&tree->lock);
2091         return total_bytes;
2092 }
2093
2094 /*
2095  * set the private field for a given byte offset in the tree.  If there isn't
2096  * an extent_state there already, this does nothing.
2097  */
2098 int set_state_failrec(struct extent_io_tree *tree, u64 start,
2099                       struct io_failure_record *failrec)
2100 {
2101         struct rb_node *node;
2102         struct extent_state *state;
2103         int ret = 0;
2104
2105         spin_lock(&tree->lock);
2106         /*
2107          * this search will find all the extents that end after
2108          * our range starts.
2109          */
2110         node = tree_search(tree, start);
2111         if (!node) {
2112                 ret = -ENOENT;
2113                 goto out;
2114         }
2115         state = rb_entry(node, struct extent_state, rb_node);
2116         if (state->start != start) {
2117                 ret = -ENOENT;
2118                 goto out;
2119         }
2120         state->failrec = failrec;
2121 out:
2122         spin_unlock(&tree->lock);
2123         return ret;
2124 }
2125
2126 int get_state_failrec(struct extent_io_tree *tree, u64 start,
2127                       struct io_failure_record **failrec)
2128 {
2129         struct rb_node *node;
2130         struct extent_state *state;
2131         int ret = 0;
2132
2133         spin_lock(&tree->lock);
2134         /*
2135          * this search will find all the extents that end after
2136          * our range starts.
2137          */
2138         node = tree_search(tree, start);
2139         if (!node) {
2140                 ret = -ENOENT;
2141                 goto out;
2142         }
2143         state = rb_entry(node, struct extent_state, rb_node);
2144         if (state->start != start) {
2145                 ret = -ENOENT;
2146                 goto out;
2147         }
2148         *failrec = state->failrec;
2149 out:
2150         spin_unlock(&tree->lock);
2151         return ret;
2152 }
2153
2154 /*
2155  * searches a range in the state tree for a given mask.
2156  * If 'filled' == 1, this returns 1 only if every extent in the tree
2157  * has the bits set.  Otherwise, 1 is returned if any bit in the
2158  * range is found set.
2159  */
2160 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2161                    unsigned bits, int filled, struct extent_state *cached)
2162 {
2163         struct extent_state *state = NULL;
2164         struct rb_node *node;
2165         int bitset = 0;
2166
2167         spin_lock(&tree->lock);
2168         if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2169             cached->end > start)
2170                 node = &cached->rb_node;
2171         else
2172                 node = tree_search(tree, start);
2173         while (node && start <= end) {
2174                 state = rb_entry(node, struct extent_state, rb_node);
2175
2176                 if (filled && state->start > start) {
2177                         bitset = 0;
2178                         break;
2179                 }
2180
2181                 if (state->start > end)
2182                         break;
2183
2184                 if (state->state & bits) {
2185                         bitset = 1;
2186                         if (!filled)
2187                                 break;
2188                 } else if (filled) {
2189                         bitset = 0;
2190                         break;
2191                 }
2192
2193                 if (state->end == (u64)-1)
2194                         break;
2195
2196                 start = state->end + 1;
2197                 if (start > end)
2198                         break;
2199                 node = rb_next(node);
2200                 if (!node) {
2201                         if (filled)
2202                                 bitset = 0;
2203                         break;
2204                 }
2205         }
2206         spin_unlock(&tree->lock);
2207         return bitset;
2208 }
2209
2210 /*
2211  * helper function to set a given page up to date if all the
2212  * extents in the tree for that page are up to date
2213  */
2214 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2215 {
2216         u64 start = page_offset(page);
2217         u64 end = start + PAGE_SIZE - 1;
2218         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2219                 SetPageUptodate(page);
2220 }
2221
2222 int free_io_failure(struct extent_io_tree *failure_tree,
2223                     struct extent_io_tree *io_tree,
2224                     struct io_failure_record *rec)
2225 {
2226         int ret;
2227         int err = 0;
2228
2229         set_state_failrec(failure_tree, rec->start, NULL);
2230         ret = clear_extent_bits(failure_tree, rec->start,
2231                                 rec->start + rec->len - 1,
2232                                 EXTENT_LOCKED | EXTENT_DIRTY);
2233         if (ret)
2234                 err = ret;
2235
2236         ret = clear_extent_bits(io_tree, rec->start,
2237                                 rec->start + rec->len - 1,
2238                                 EXTENT_DAMAGED);
2239         if (ret && !err)
2240                 err = ret;
2241
2242         kfree(rec);
2243         return err;
2244 }
2245
2246 /*
2247  * this bypasses the standard btrfs submit functions deliberately, as
2248  * the standard behavior is to write all copies in a raid setup. here we only
2249  * want to write the one bad copy. so we do the mapping for ourselves and issue
2250  * submit_bio directly.
2251  * to avoid any synchronization issues, wait for the data after writing, which
2252  * actually prevents the read that triggered the error from finishing.
2253  * currently, there can be no more than two copies of every data bit. thus,
2254  * exactly one rewrite is required.
2255  */
2256 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2257                       u64 length, u64 logical, struct page *page,
2258                       unsigned int pg_offset, int mirror_num)
2259 {
2260         struct bio *bio;
2261         struct btrfs_device *dev;
2262         u64 map_length = 0;
2263         u64 sector;
2264         struct btrfs_bio *bbio = NULL;
2265         int ret;
2266
2267         ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2268         BUG_ON(!mirror_num);
2269
2270         bio = btrfs_io_bio_alloc(1);
2271         bio->bi_iter.bi_size = 0;
2272         map_length = length;
2273
2274         /*
2275          * Avoid races with device replace and make sure our bbio has devices
2276          * associated to its stripes that don't go away while we are doing the
2277          * read repair operation.
2278          */
2279         btrfs_bio_counter_inc_blocked(fs_info);
2280         if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2281                 /*
2282                  * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2283                  * to update all raid stripes, but here we just want to correct
2284                  * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2285                  * stripe's dev and sector.
2286                  */
2287                 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2288                                       &map_length, &bbio, 0);
2289                 if (ret) {
2290                         btrfs_bio_counter_dec(fs_info);
2291                         bio_put(bio);
2292                         return -EIO;
2293                 }
2294                 ASSERT(bbio->mirror_num == 1);
2295         } else {
2296                 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2297                                       &map_length, &bbio, mirror_num);
2298                 if (ret) {
2299                         btrfs_bio_counter_dec(fs_info);
2300                         bio_put(bio);
2301                         return -EIO;
2302                 }
2303                 BUG_ON(mirror_num != bbio->mirror_num);
2304         }
2305
2306         sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2307         bio->bi_iter.bi_sector = sector;
2308         dev = bbio->stripes[bbio->mirror_num - 1].dev;
2309         btrfs_put_bbio(bbio);
2310         if (!dev || !dev->bdev ||
2311             !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2312                 btrfs_bio_counter_dec(fs_info);
2313                 bio_put(bio);
2314                 return -EIO;
2315         }
2316         bio_set_dev(bio, dev->bdev);
2317         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2318         bio_add_page(bio, page, length, pg_offset);
2319
2320         if (btrfsic_submit_bio_wait(bio)) {
2321                 /* try to remap that extent elsewhere? */
2322                 btrfs_bio_counter_dec(fs_info);
2323                 bio_put(bio);
2324                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2325                 return -EIO;
2326         }
2327
2328         btrfs_info_rl_in_rcu(fs_info,
2329                 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2330                                   ino, start,
2331                                   rcu_str_deref(dev->name), sector);
2332         btrfs_bio_counter_dec(fs_info);
2333         bio_put(bio);
2334         return 0;
2335 }
2336
2337 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2338 {
2339         struct btrfs_fs_info *fs_info = eb->fs_info;
2340         u64 start = eb->start;
2341         int i, num_pages = num_extent_pages(eb);
2342         int ret = 0;
2343
2344         if (sb_rdonly(fs_info->sb))
2345                 return -EROFS;
2346
2347         for (i = 0; i < num_pages; i++) {
2348                 struct page *p = eb->pages[i];
2349
2350                 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2351                                         start - page_offset(p), mirror_num);
2352                 if (ret)
2353                         break;
2354                 start += PAGE_SIZE;
2355         }
2356
2357         return ret;
2358 }
2359
2360 /*
2361  * each time an IO finishes, we do a fast check in the IO failure tree
2362  * to see if we need to process or clean up an io_failure_record
2363  */
2364 int clean_io_failure(struct btrfs_fs_info *fs_info,
2365                      struct extent_io_tree *failure_tree,
2366                      struct extent_io_tree *io_tree, u64 start,
2367                      struct page *page, u64 ino, unsigned int pg_offset)
2368 {
2369         u64 private;
2370         struct io_failure_record *failrec;
2371         struct extent_state *state;
2372         int num_copies;
2373         int ret;
2374
2375         private = 0;
2376         ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2377                                EXTENT_DIRTY, 0);
2378         if (!ret)
2379                 return 0;
2380
2381         ret = get_state_failrec(failure_tree, start, &failrec);
2382         if (ret)
2383                 return 0;
2384
2385         BUG_ON(!failrec->this_mirror);
2386
2387         if (failrec->in_validation) {
2388                 /* there was no real error, just free the record */
2389                 btrfs_debug(fs_info,
2390                         "clean_io_failure: freeing dummy error at %llu",
2391                         failrec->start);
2392                 goto out;
2393         }
2394         if (sb_rdonly(fs_info->sb))
2395                 goto out;
2396
2397         spin_lock(&io_tree->lock);
2398         state = find_first_extent_bit_state(io_tree,
2399                                             failrec->start,
2400                                             EXTENT_LOCKED);
2401         spin_unlock(&io_tree->lock);
2402
2403         if (state && state->start <= failrec->start &&
2404             state->end >= failrec->start + failrec->len - 1) {
2405                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2406                                               failrec->len);
2407                 if (num_copies > 1)  {
2408                         repair_io_failure(fs_info, ino, start, failrec->len,
2409                                           failrec->logical, page, pg_offset,
2410                                           failrec->failed_mirror);
2411                 }
2412         }
2413
2414 out:
2415         free_io_failure(failure_tree, io_tree, failrec);
2416
2417         return 0;
2418 }
2419
2420 /*
2421  * Can be called when
2422  * - hold extent lock
2423  * - under ordered extent
2424  * - the inode is freeing
2425  */
2426 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2427 {
2428         struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2429         struct io_failure_record *failrec;
2430         struct extent_state *state, *next;
2431
2432         if (RB_EMPTY_ROOT(&failure_tree->state))
2433                 return;
2434
2435         spin_lock(&failure_tree->lock);
2436         state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2437         while (state) {
2438                 if (state->start > end)
2439                         break;
2440
2441                 ASSERT(state->end <= end);
2442
2443                 next = next_state(state);
2444
2445                 failrec = state->failrec;
2446                 free_extent_state(state);
2447                 kfree(failrec);
2448
2449                 state = next;
2450         }
2451         spin_unlock(&failure_tree->lock);
2452 }
2453
2454 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2455                 struct io_failure_record **failrec_ret)
2456 {
2457         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2458         struct io_failure_record *failrec;
2459         struct extent_map *em;
2460         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2461         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2462         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2463         int ret;
2464         u64 logical;
2465
2466         ret = get_state_failrec(failure_tree, start, &failrec);
2467         if (ret) {
2468                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2469                 if (!failrec)
2470                         return -ENOMEM;
2471
2472                 failrec->start = start;
2473                 failrec->len = end - start + 1;
2474                 failrec->this_mirror = 0;
2475                 failrec->bio_flags = 0;
2476                 failrec->in_validation = 0;
2477
2478                 read_lock(&em_tree->lock);
2479                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2480                 if (!em) {
2481                         read_unlock(&em_tree->lock);
2482                         kfree(failrec);
2483                         return -EIO;
2484                 }
2485
2486                 if (em->start > start || em->start + em->len <= start) {
2487                         free_extent_map(em);
2488                         em = NULL;
2489                 }
2490                 read_unlock(&em_tree->lock);
2491                 if (!em) {
2492                         kfree(failrec);
2493                         return -EIO;
2494                 }
2495
2496                 logical = start - em->start;
2497                 logical = em->block_start + logical;
2498                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2499                         logical = em->block_start;
2500                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2501                         extent_set_compress_type(&failrec->bio_flags,
2502                                                  em->compress_type);
2503                 }
2504
2505                 btrfs_debug(fs_info,
2506                         "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2507                         logical, start, failrec->len);
2508
2509                 failrec->logical = logical;
2510                 free_extent_map(em);
2511
2512                 /* set the bits in the private failure tree */
2513                 ret = set_extent_bits(failure_tree, start, end,
2514                                         EXTENT_LOCKED | EXTENT_DIRTY);
2515                 if (ret >= 0)
2516                         ret = set_state_failrec(failure_tree, start, failrec);
2517                 /* set the bits in the inode's tree */
2518                 if (ret >= 0)
2519                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2520                 if (ret < 0) {
2521                         kfree(failrec);
2522                         return ret;
2523                 }
2524         } else {
2525                 btrfs_debug(fs_info,
2526                         "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2527                         failrec->logical, failrec->start, failrec->len,
2528                         failrec->in_validation);
2529                 /*
2530                  * when data can be on disk more than twice, add to failrec here
2531                  * (e.g. with a list for failed_mirror) to make
2532                  * clean_io_failure() clean all those errors at once.
2533                  */
2534         }
2535
2536         *failrec_ret = failrec;
2537
2538         return 0;
2539 }
2540
2541 static bool btrfs_check_repairable(struct inode *inode, bool needs_validation,
2542                                    struct io_failure_record *failrec,
2543                                    int failed_mirror)
2544 {
2545         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2546         int num_copies;
2547
2548         num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2549         if (num_copies == 1) {
2550                 /*
2551                  * we only have a single copy of the data, so don't bother with
2552                  * all the retry and error correction code that follows. no
2553                  * matter what the error is, it is very likely to persist.
2554                  */
2555                 btrfs_debug(fs_info,
2556                         "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2557                         num_copies, failrec->this_mirror, failed_mirror);
2558                 return false;
2559         }
2560
2561         /*
2562          * there are two premises:
2563          *      a) deliver good data to the caller
2564          *      b) correct the bad sectors on disk
2565          */
2566         if (needs_validation) {
2567                 /*
2568                  * to fulfill b), we need to know the exact failing sectors, as
2569                  * we don't want to rewrite any more than the failed ones. thus,
2570                  * we need separate read requests for the failed bio
2571                  *
2572                  * if the following BUG_ON triggers, our validation request got
2573                  * merged. we need separate requests for our algorithm to work.
2574                  */
2575                 BUG_ON(failrec->in_validation);
2576                 failrec->in_validation = 1;
2577                 failrec->this_mirror = failed_mirror;
2578         } else {
2579                 /*
2580                  * we're ready to fulfill a) and b) alongside. get a good copy
2581                  * of the failed sector and if we succeed, we have setup
2582                  * everything for repair_io_failure to do the rest for us.
2583                  */
2584                 if (failrec->in_validation) {
2585                         BUG_ON(failrec->this_mirror != failed_mirror);
2586                         failrec->in_validation = 0;
2587                         failrec->this_mirror = 0;
2588                 }
2589                 failrec->failed_mirror = failed_mirror;
2590                 failrec->this_mirror++;
2591                 if (failrec->this_mirror == failed_mirror)
2592                         failrec->this_mirror++;
2593         }
2594
2595         if (failrec->this_mirror > num_copies) {
2596                 btrfs_debug(fs_info,
2597                         "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2598                         num_copies, failrec->this_mirror, failed_mirror);
2599                 return false;
2600         }
2601
2602         return true;
2603 }
2604
2605 static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio)
2606 {
2607         u64 len = 0;
2608         const u32 blocksize = inode->i_sb->s_blocksize;
2609
2610         /*
2611          * If bi_status is BLK_STS_OK, then this was a checksum error, not an
2612          * I/O error. In this case, we already know exactly which sector was
2613          * bad, so we don't need to validate.
2614          */
2615         if (bio->bi_status == BLK_STS_OK)
2616                 return false;
2617
2618         /*
2619          * We need to validate each sector individually if the failed I/O was
2620          * for multiple sectors.
2621          *
2622          * There are a few possible bios that can end up here:
2623          * 1. A buffered read bio, which is not cloned.
2624          * 2. A direct I/O read bio, which is cloned.
2625          * 3. A (buffered or direct) repair bio, which is not cloned.
2626          *
2627          * For cloned bios (case 2), we can get the size from
2628          * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get
2629          * it from the bvecs.
2630          */
2631         if (bio_flagged(bio, BIO_CLONED)) {
2632                 if (btrfs_io_bio(bio)->iter.bi_size > blocksize)
2633                         return true;
2634         } else {
2635                 struct bio_vec *bvec;
2636                 int i;
2637
2638                 bio_for_each_bvec_all(bvec, bio, i) {
2639                         len += bvec->bv_len;
2640                         if (len > blocksize)
2641                                 return true;
2642                 }
2643         }
2644         return false;
2645 }
2646
2647 blk_status_t btrfs_submit_read_repair(struct inode *inode,
2648                                       struct bio *failed_bio, u64 phy_offset,
2649                                       struct page *page, unsigned int pgoff,
2650                                       u64 start, u64 end, int failed_mirror,
2651                                       submit_bio_hook_t *submit_bio_hook)
2652 {
2653         struct io_failure_record *failrec;
2654         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2655         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2656         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2657         struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2658         const int icsum = phy_offset >> inode->i_sb->s_blocksize_bits;
2659         bool need_validation;
2660         struct bio *repair_bio;
2661         struct btrfs_io_bio *repair_io_bio;
2662         blk_status_t status;
2663         int ret;
2664
2665         btrfs_debug(fs_info,
2666                    "repair read error: read error at %llu", start);
2667
2668         BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2669
2670         ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2671         if (ret)
2672                 return errno_to_blk_status(ret);
2673
2674         need_validation = btrfs_io_needs_validation(inode, failed_bio);
2675
2676         if (!btrfs_check_repairable(inode, need_validation, failrec,
2677                                     failed_mirror)) {
2678                 free_io_failure(failure_tree, tree, failrec);
2679                 return BLK_STS_IOERR;
2680         }
2681
2682         repair_bio = btrfs_io_bio_alloc(1);
2683         repair_io_bio = btrfs_io_bio(repair_bio);
2684         repair_bio->bi_opf = REQ_OP_READ;
2685         if (need_validation)
2686                 repair_bio->bi_opf |= REQ_FAILFAST_DEV;
2687         repair_bio->bi_end_io = failed_bio->bi_end_io;
2688         repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2689         repair_bio->bi_private = failed_bio->bi_private;
2690
2691         if (failed_io_bio->csum) {
2692                 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2693
2694                 repair_io_bio->csum = repair_io_bio->csum_inline;
2695                 memcpy(repair_io_bio->csum,
2696                        failed_io_bio->csum + csum_size * icsum, csum_size);
2697         }
2698
2699         bio_add_page(repair_bio, page, failrec->len, pgoff);
2700         repair_io_bio->logical = failrec->start;
2701         repair_io_bio->iter = repair_bio->bi_iter;
2702
2703         btrfs_debug(btrfs_sb(inode->i_sb),
2704 "repair read error: submitting new read to mirror %d, in_validation=%d",
2705                     failrec->this_mirror, failrec->in_validation);
2706
2707         status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2708                                  failrec->bio_flags);
2709         if (status) {
2710                 free_io_failure(failure_tree, tree, failrec);
2711                 bio_put(repair_bio);
2712         }
2713         return status;
2714 }
2715
2716 /* lots and lots of room for performance fixes in the end_bio funcs */
2717
2718 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2719 {
2720         int uptodate = (err == 0);
2721         int ret = 0;
2722
2723         btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2724
2725         if (!uptodate) {
2726                 ClearPageUptodate(page);
2727                 SetPageError(page);
2728                 ret = err < 0 ? err : -EIO;
2729                 mapping_set_error(page->mapping, ret);
2730         }
2731 }
2732
2733 /*
2734  * after a writepage IO is done, we need to:
2735  * clear the uptodate bits on error
2736  * clear the writeback bits in the extent tree for this IO
2737  * end_page_writeback if the page has no more pending IO
2738  *
2739  * Scheduling is not allowed, so the extent state tree is expected
2740  * to have one and only one object corresponding to this IO.
2741  */
2742 static void end_bio_extent_writepage(struct bio *bio)
2743 {
2744         int error = blk_status_to_errno(bio->bi_status);
2745         struct bio_vec *bvec;
2746         u64 start;
2747         u64 end;
2748         struct bvec_iter_all iter_all;
2749
2750         ASSERT(!bio_flagged(bio, BIO_CLONED));
2751         bio_for_each_segment_all(bvec, bio, iter_all) {
2752                 struct page *page = bvec->bv_page;
2753                 struct inode *inode = page->mapping->host;
2754                 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2755
2756                 /* We always issue full-page reads, but if some block
2757                  * in a page fails to read, blk_update_request() will
2758                  * advance bv_offset and adjust bv_len to compensate.
2759                  * Print a warning for nonzero offsets, and an error
2760                  * if they don't add up to a full page.  */
2761                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2762                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2763                                 btrfs_err(fs_info,
2764                                    "partial page write in btrfs with offset %u and length %u",
2765                                         bvec->bv_offset, bvec->bv_len);
2766                         else
2767                                 btrfs_info(fs_info,
2768                                    "incomplete page write in btrfs with offset %u and length %u",
2769                                         bvec->bv_offset, bvec->bv_len);
2770                 }
2771
2772                 start = page_offset(page);
2773                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2774
2775                 end_extent_writepage(page, error, start, end);
2776                 end_page_writeback(page);
2777         }
2778
2779         bio_put(bio);
2780 }
2781
2782 static void
2783 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2784                               int uptodate)
2785 {
2786         struct extent_state *cached = NULL;
2787         u64 end = start + len - 1;
2788
2789         if (uptodate && tree->track_uptodate)
2790                 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2791         unlock_extent_cached_atomic(tree, start, end, &cached);
2792 }
2793
2794 /*
2795  * after a readpage IO is done, we need to:
2796  * clear the uptodate bits on error
2797  * set the uptodate bits if things worked
2798  * set the page up to date if all extents in the tree are uptodate
2799  * clear the lock bit in the extent tree
2800  * unlock the page if there are no other extents locked for it
2801  *
2802  * Scheduling is not allowed, so the extent state tree is expected
2803  * to have one and only one object corresponding to this IO.
2804  */
2805 static void end_bio_extent_readpage(struct bio *bio)
2806 {
2807         struct bio_vec *bvec;
2808         int uptodate = !bio->bi_status;
2809         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2810         struct extent_io_tree *tree, *failure_tree;
2811         u64 offset = 0;
2812         u64 start;
2813         u64 end;
2814         u64 len;
2815         u64 extent_start = 0;
2816         u64 extent_len = 0;
2817         int mirror;
2818         int ret;
2819         struct bvec_iter_all iter_all;
2820
2821         ASSERT(!bio_flagged(bio, BIO_CLONED));
2822         bio_for_each_segment_all(bvec, bio, iter_all) {
2823                 struct page *page = bvec->bv_page;
2824                 struct inode *inode = page->mapping->host;
2825                 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2826                 bool data_inode = btrfs_ino(BTRFS_I(inode))
2827                         != BTRFS_BTREE_INODE_OBJECTID;
2828
2829                 btrfs_debug(fs_info,
2830                         "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2831                         (u64)bio->bi_iter.bi_sector, bio->bi_status,
2832                         io_bio->mirror_num);
2833                 tree = &BTRFS_I(inode)->io_tree;
2834                 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2835
2836                 /* We always issue full-page reads, but if some block
2837                  * in a page fails to read, blk_update_request() will
2838                  * advance bv_offset and adjust bv_len to compensate.
2839                  * Print a warning for nonzero offsets, and an error
2840                  * if they don't add up to a full page.  */
2841                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2842                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2843                                 btrfs_err(fs_info,
2844                                         "partial page read in btrfs with offset %u and length %u",
2845                                         bvec->bv_offset, bvec->bv_len);
2846                         else
2847                                 btrfs_info(fs_info,
2848                                         "incomplete page read in btrfs with offset %u and length %u",
2849                                         bvec->bv_offset, bvec->bv_len);
2850                 }
2851
2852                 start = page_offset(page);
2853                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2854                 len = bvec->bv_len;
2855
2856                 mirror = io_bio->mirror_num;
2857                 if (likely(uptodate)) {
2858                         ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2859                                                               page, start, end,
2860                                                               mirror);
2861                         if (ret)
2862                                 uptodate = 0;
2863                         else
2864                                 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2865                                                  failure_tree, tree, start,
2866                                                  page,
2867                                                  btrfs_ino(BTRFS_I(inode)), 0);
2868                 }
2869
2870                 if (likely(uptodate))
2871                         goto readpage_ok;
2872
2873                 if (data_inode) {
2874
2875                         /*
2876                          * The generic bio_readpage_error handles errors the
2877                          * following way: If possible, new read requests are
2878                          * created and submitted and will end up in
2879                          * end_bio_extent_readpage as well (if we're lucky,
2880                          * not in the !uptodate case). In that case it returns
2881                          * 0 and we just go on with the next page in our bio.
2882                          * If it can't handle the error it will return -EIO and
2883                          * we remain responsible for that page.
2884                          */
2885                         if (!btrfs_submit_read_repair(inode, bio, offset, page,
2886                                                 start - page_offset(page),
2887                                                 start, end, mirror,
2888                                                 tree->ops->submit_bio_hook)) {
2889                                 uptodate = !bio->bi_status;
2890                                 offset += len;
2891                                 continue;
2892                         }
2893                 } else {
2894                         struct extent_buffer *eb;
2895
2896                         eb = (struct extent_buffer *)page->private;
2897                         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2898                         eb->read_mirror = mirror;
2899                         atomic_dec(&eb->io_pages);
2900                         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2901                                                &eb->bflags))
2902                                 btree_readahead_hook(eb, -EIO);
2903                 }
2904 readpage_ok:
2905                 if (likely(uptodate)) {
2906                         loff_t i_size = i_size_read(inode);
2907                         pgoff_t end_index = i_size >> PAGE_SHIFT;
2908                         unsigned off;
2909
2910                         /* Zero out the end if this page straddles i_size */
2911                         off = offset_in_page(i_size);
2912                         if (page->index == end_index && off)
2913                                 zero_user_segment(page, off, PAGE_SIZE);
2914                         SetPageUptodate(page);
2915                 } else {
2916                         ClearPageUptodate(page);
2917                         SetPageError(page);
2918                 }
2919                 unlock_page(page);
2920                 offset += len;
2921
2922                 if (unlikely(!uptodate)) {
2923                         if (extent_len) {
2924                                 endio_readpage_release_extent(tree,
2925                                                               extent_start,
2926                                                               extent_len, 1);
2927                                 extent_start = 0;
2928                                 extent_len = 0;
2929                         }
2930                         endio_readpage_release_extent(tree, start,
2931                                                       end - start + 1, 0);
2932                 } else if (!extent_len) {
2933                         extent_start = start;
2934                         extent_len = end + 1 - start;
2935                 } else if (extent_start + extent_len == start) {
2936                         extent_len += end + 1 - start;
2937                 } else {
2938                         endio_readpage_release_extent(tree, extent_start,
2939                                                       extent_len, uptodate);
2940                         extent_start = start;
2941                         extent_len = end + 1 - start;
2942                 }
2943         }
2944
2945         if (extent_len)
2946                 endio_readpage_release_extent(tree, extent_start, extent_len,
2947                                               uptodate);
2948         btrfs_io_bio_free_csum(io_bio);
2949         bio_put(bio);
2950 }
2951
2952 /*
2953  * Initialize the members up to but not including 'bio'. Use after allocating a
2954  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2955  * 'bio' because use of __GFP_ZERO is not supported.
2956  */
2957 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2958 {
2959         memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2960 }
2961
2962 /*
2963  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2964  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2965  * for the appropriate container_of magic
2966  */
2967 struct bio *btrfs_bio_alloc(u64 first_byte)
2968 {
2969         struct bio *bio;
2970
2971         bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2972         bio->bi_iter.bi_sector = first_byte >> 9;
2973         btrfs_io_bio_init(btrfs_io_bio(bio));
2974         return bio;
2975 }
2976
2977 struct bio *btrfs_bio_clone(struct bio *bio)
2978 {
2979         struct btrfs_io_bio *btrfs_bio;
2980         struct bio *new;
2981
2982         /* Bio allocation backed by a bioset does not fail */
2983         new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2984         btrfs_bio = btrfs_io_bio(new);
2985         btrfs_io_bio_init(btrfs_bio);
2986         btrfs_bio->iter = bio->bi_iter;
2987         return new;
2988 }
2989
2990 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2991 {
2992         struct bio *bio;
2993
2994         /* Bio allocation backed by a bioset does not fail */
2995         bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2996         btrfs_io_bio_init(btrfs_io_bio(bio));
2997         return bio;
2998 }
2999
3000 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
3001 {
3002         struct bio *bio;
3003         struct btrfs_io_bio *btrfs_bio;
3004
3005         /* this will never fail when it's backed by a bioset */
3006         bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3007         ASSERT(bio);
3008
3009         btrfs_bio = btrfs_io_bio(bio);
3010         btrfs_io_bio_init(btrfs_bio);
3011
3012         bio_trim(bio, offset >> 9, size >> 9);
3013         btrfs_bio->iter = bio->bi_iter;
3014         return bio;
3015 }
3016
3017 /*
3018  * @opf:        bio REQ_OP_* and REQ_* flags as one value
3019  * @wbc:        optional writeback control for io accounting
3020  * @page:       page to add to the bio
3021  * @pg_offset:  offset of the new bio or to check whether we are adding
3022  *              a contiguous page to the previous one
3023  * @size:       portion of page that we want to write
3024  * @offset:     starting offset in the page
3025  * @bio_ret:    must be valid pointer, newly allocated bio will be stored there
3026  * @end_io_func:     end_io callback for new bio
3027  * @mirror_num:      desired mirror to read/write
3028  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3029  * @bio_flags:  flags of the current bio to see if we can merge them
3030  */
3031 static int submit_extent_page(unsigned int opf,
3032                               struct writeback_control *wbc,
3033                               struct page *page, u64 offset,
3034                               size_t size, unsigned long pg_offset,
3035                               struct bio **bio_ret,
3036                               bio_end_io_t end_io_func,
3037                               int mirror_num,
3038                               unsigned long prev_bio_flags,
3039                               unsigned long bio_flags,
3040                               bool force_bio_submit)
3041 {
3042         int ret = 0;
3043         struct bio *bio;
3044         size_t page_size = min_t(size_t, size, PAGE_SIZE);
3045         sector_t sector = offset >> 9;
3046         struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree;
3047
3048         ASSERT(bio_ret);
3049
3050         if (*bio_ret) {
3051                 bool contig;
3052                 bool can_merge = true;
3053
3054                 bio = *bio_ret;
3055                 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
3056                         contig = bio->bi_iter.bi_sector == sector;
3057                 else
3058                         contig = bio_end_sector(bio) == sector;
3059
3060                 ASSERT(tree->ops);
3061                 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
3062                         can_merge = false;
3063
3064                 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
3065                     force_bio_submit ||
3066                     bio_add_page(bio, page, page_size, pg_offset) < page_size) {
3067                         ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
3068                         if (ret < 0) {
3069                                 *bio_ret = NULL;
3070                                 return ret;
3071                         }
3072                         bio = NULL;
3073                 } else {
3074                         if (wbc)
3075                                 wbc_account_cgroup_owner(wbc, page, page_size);
3076                         return 0;
3077                 }
3078         }
3079
3080         bio = btrfs_bio_alloc(offset);
3081         bio_add_page(bio, page, page_size, pg_offset);
3082         bio->bi_end_io = end_io_func;
3083         bio->bi_private = tree;
3084         bio->bi_write_hint = page->mapping->host->i_write_hint;
3085         bio->bi_opf = opf;
3086         if (wbc) {
3087                 struct block_device *bdev;
3088
3089                 bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
3090                 bio_set_dev(bio, bdev);
3091                 wbc_init_bio(wbc, bio);
3092                 wbc_account_cgroup_owner(wbc, page, page_size);
3093         }
3094
3095         *bio_ret = bio;
3096
3097         return ret;
3098 }
3099
3100 static void attach_extent_buffer_page(struct extent_buffer *eb,
3101                                       struct page *page)
3102 {
3103         if (!PagePrivate(page))
3104                 attach_page_private(page, eb);
3105         else
3106                 WARN_ON(page->private != (unsigned long)eb);
3107 }
3108
3109 void set_page_extent_mapped(struct page *page)
3110 {
3111         if (!PagePrivate(page))
3112                 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3113 }
3114
3115 static struct extent_map *
3116 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3117                  u64 start, u64 len, get_extent_t *get_extent,
3118                  struct extent_map **em_cached)
3119 {
3120         struct extent_map *em;
3121
3122         if (em_cached && *em_cached) {
3123                 em = *em_cached;
3124                 if (extent_map_in_tree(em) && start >= em->start &&
3125                     start < extent_map_end(em)) {
3126                         refcount_inc(&em->refs);
3127                         return em;
3128                 }
3129
3130                 free_extent_map(em);
3131                 *em_cached = NULL;
3132         }
3133
3134         em = get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3135         if (em_cached && !IS_ERR_OR_NULL(em)) {
3136                 BUG_ON(*em_cached);
3137                 refcount_inc(&em->refs);
3138                 *em_cached = em;
3139         }
3140         return em;
3141 }
3142 /*
3143  * basic readpage implementation.  Locked extent state structs are inserted
3144  * into the tree that are removed when the IO is done (by the end_io
3145  * handlers)
3146  * XXX JDM: This needs looking at to ensure proper page locking
3147  * return 0 on success, otherwise return error
3148  */
3149 static int __do_readpage(struct page *page,
3150                          get_extent_t *get_extent,
3151                          struct extent_map **em_cached,
3152                          struct bio **bio, int mirror_num,
3153                          unsigned long *bio_flags, unsigned int read_flags,
3154                          u64 *prev_em_start)
3155 {
3156         struct inode *inode = page->mapping->host;
3157         u64 start = page_offset(page);
3158         const u64 end = start + PAGE_SIZE - 1;
3159         u64 cur = start;
3160         u64 extent_offset;
3161         u64 last_byte = i_size_read(inode);
3162         u64 block_start;
3163         u64 cur_end;
3164         struct extent_map *em;
3165         int ret = 0;
3166         int nr = 0;
3167         size_t pg_offset = 0;
3168         size_t iosize;
3169         size_t disk_io_size;
3170         size_t blocksize = inode->i_sb->s_blocksize;
3171         unsigned long this_bio_flag = 0;
3172         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3173
3174         set_page_extent_mapped(page);
3175
3176         if (!PageUptodate(page)) {
3177                 if (cleancache_get_page(page) == 0) {
3178                         BUG_ON(blocksize != PAGE_SIZE);
3179                         unlock_extent(tree, start, end);
3180                         goto out;
3181                 }
3182         }
3183
3184         if (page->index == last_byte >> PAGE_SHIFT) {
3185                 char *userpage;
3186                 size_t zero_offset = offset_in_page(last_byte);
3187
3188                 if (zero_offset) {
3189                         iosize = PAGE_SIZE - zero_offset;
3190                         userpage = kmap_atomic(page);
3191                         memset(userpage + zero_offset, 0, iosize);
3192                         flush_dcache_page(page);
3193                         kunmap_atomic(userpage);
3194                 }
3195         }
3196         while (cur <= end) {
3197                 bool force_bio_submit = false;
3198                 u64 offset;
3199
3200                 if (cur >= last_byte) {
3201                         char *userpage;
3202                         struct extent_state *cached = NULL;
3203
3204                         iosize = PAGE_SIZE - pg_offset;
3205                         userpage = kmap_atomic(page);
3206                         memset(userpage + pg_offset, 0, iosize);
3207                         flush_dcache_page(page);
3208                         kunmap_atomic(userpage);
3209                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3210                                             &cached, GFP_NOFS);
3211                         unlock_extent_cached(tree, cur,
3212                                              cur + iosize - 1, &cached);
3213                         break;
3214                 }
3215                 em = __get_extent_map(inode, page, pg_offset, cur,
3216                                       end - cur + 1, get_extent, em_cached);
3217                 if (IS_ERR_OR_NULL(em)) {
3218                         SetPageError(page);
3219                         unlock_extent(tree, cur, end);
3220                         break;
3221                 }
3222                 extent_offset = cur - em->start;
3223                 BUG_ON(extent_map_end(em) <= cur);
3224                 BUG_ON(end < cur);
3225
3226                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3227                         this_bio_flag |= EXTENT_BIO_COMPRESSED;
3228                         extent_set_compress_type(&this_bio_flag,
3229                                                  em->compress_type);
3230                 }
3231
3232                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3233                 cur_end = min(extent_map_end(em) - 1, end);
3234                 iosize = ALIGN(iosize, blocksize);
3235                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3236                         disk_io_size = em->block_len;
3237                         offset = em->block_start;
3238                 } else {
3239                         offset = em->block_start + extent_offset;
3240                         disk_io_size = iosize;
3241                 }
3242                 block_start = em->block_start;
3243                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3244                         block_start = EXTENT_MAP_HOLE;
3245
3246                 /*
3247                  * If we have a file range that points to a compressed extent
3248                  * and it's followed by a consecutive file range that points to
3249                  * to the same compressed extent (possibly with a different
3250                  * offset and/or length, so it either points to the whole extent
3251                  * or only part of it), we must make sure we do not submit a
3252                  * single bio to populate the pages for the 2 ranges because
3253                  * this makes the compressed extent read zero out the pages
3254                  * belonging to the 2nd range. Imagine the following scenario:
3255                  *
3256                  *  File layout
3257                  *  [0 - 8K]                     [8K - 24K]
3258                  *    |                               |
3259                  *    |                               |
3260                  * points to extent X,         points to extent X,
3261                  * offset 4K, length of 8K     offset 0, length 16K
3262                  *
3263                  * [extent X, compressed length = 4K uncompressed length = 16K]
3264                  *
3265                  * If the bio to read the compressed extent covers both ranges,
3266                  * it will decompress extent X into the pages belonging to the
3267                  * first range and then it will stop, zeroing out the remaining
3268                  * pages that belong to the other range that points to extent X.
3269                  * So here we make sure we submit 2 bios, one for the first
3270                  * range and another one for the third range. Both will target
3271                  * the same physical extent from disk, but we can't currently
3272                  * make the compressed bio endio callback populate the pages
3273                  * for both ranges because each compressed bio is tightly
3274                  * coupled with a single extent map, and each range can have
3275                  * an extent map with a different offset value relative to the
3276                  * uncompressed data of our extent and different lengths. This
3277                  * is a corner case so we prioritize correctness over
3278                  * non-optimal behavior (submitting 2 bios for the same extent).
3279                  */
3280                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3281                     prev_em_start && *prev_em_start != (u64)-1 &&
3282                     *prev_em_start != em->start)
3283                         force_bio_submit = true;
3284
3285                 if (prev_em_start)
3286                         *prev_em_start = em->start;
3287
3288                 free_extent_map(em);
3289                 em = NULL;
3290
3291                 /* we've found a hole, just zero and go on */
3292                 if (block_start == EXTENT_MAP_HOLE) {
3293                         char *userpage;
3294                         struct extent_state *cached = NULL;
3295
3296                         userpage = kmap_atomic(page);
3297                         memset(userpage + pg_offset, 0, iosize);
3298                         flush_dcache_page(page);
3299                         kunmap_atomic(userpage);
3300
3301                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3302                                             &cached, GFP_NOFS);
3303                         unlock_extent_cached(tree, cur,
3304                                              cur + iosize - 1, &cached);
3305                         cur = cur + iosize;
3306                         pg_offset += iosize;
3307                         continue;
3308                 }
3309                 /* the get_extent function already copied into the page */
3310                 if (test_range_bit(tree, cur, cur_end,
3311                                    EXTENT_UPTODATE, 1, NULL)) {
3312                         check_page_uptodate(tree, page);
3313                         unlock_extent(tree, cur, cur + iosize - 1);
3314                         cur = cur + iosize;
3315                         pg_offset += iosize;
3316                         continue;
3317                 }
3318                 /* we have an inline extent but it didn't get marked up
3319                  * to date.  Error out
3320                  */
3321                 if (block_start == EXTENT_MAP_INLINE) {
3322                         SetPageError(page);
3323                         unlock_extent(tree, cur, cur + iosize - 1);
3324                         cur = cur + iosize;
3325                         pg_offset += iosize;
3326                         continue;
3327                 }
3328
3329                 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3330                                          page, offset, disk_io_size,
3331                                          pg_offset, bio,
3332                                          end_bio_extent_readpage, mirror_num,
3333                                          *bio_flags,
3334                                          this_bio_flag,
3335                                          force_bio_submit);
3336                 if (!ret) {
3337                         nr++;
3338                         *bio_flags = this_bio_flag;
3339                 } else {
3340                         SetPageError(page);
3341                         unlock_extent(tree, cur, cur + iosize - 1);
3342                         goto out;
3343                 }
3344                 cur = cur + iosize;
3345                 pg_offset += iosize;
3346         }
3347 out:
3348         if (!nr) {
3349                 if (!PageError(page))
3350                         SetPageUptodate(page);
3351                 unlock_page(page);
3352         }
3353         return ret;
3354 }
3355
3356 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3357                                              u64 start, u64 end,
3358                                              struct extent_map **em_cached,
3359                                              struct bio **bio,
3360                                              unsigned long *bio_flags,
3361                                              u64 *prev_em_start)
3362 {
3363         struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3364         int index;
3365
3366         btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3367
3368         for (index = 0; index < nr_pages; index++) {
3369                 __do_readpage(pages[index], btrfs_get_extent, em_cached,
3370                                 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3371                 put_page(pages[index]);
3372         }
3373 }
3374
3375 static int __extent_read_full_page(struct page *page,
3376                                    get_extent_t *get_extent,
3377                                    struct bio **bio, int mirror_num,
3378                                    unsigned long *bio_flags,
3379                                    unsigned int read_flags)
3380 {
3381         struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3382         u64 start = page_offset(page);
3383         u64 end = start + PAGE_SIZE - 1;
3384         int ret;
3385
3386         btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3387
3388         ret = __do_readpage(page, get_extent, NULL, bio, mirror_num,
3389                             bio_flags, read_flags, NULL);
3390         return ret;
3391 }
3392
3393 int extent_read_full_page(struct page *page, get_extent_t *get_extent,
3394                           int mirror_num)
3395 {
3396         struct bio *bio = NULL;
3397         unsigned long bio_flags = 0;
3398         int ret;
3399
3400         ret = __extent_read_full_page(page, get_extent, &bio, mirror_num,
3401                                       &bio_flags, 0);
3402         if (bio)
3403                 ret = submit_one_bio(bio, mirror_num, bio_flags);
3404         return ret;
3405 }
3406
3407 static void update_nr_written(struct writeback_control *wbc,
3408                               unsigned long nr_written)
3409 {
3410         wbc->nr_to_write -= nr_written;
3411 }
3412
3413 /*
3414  * helper for __extent_writepage, doing all of the delayed allocation setup.
3415  *
3416  * This returns 1 if btrfs_run_delalloc_range function did all the work required
3417  * to write the page (copy into inline extent).  In this case the IO has
3418  * been started and the page is already unlocked.
3419  *
3420  * This returns 0 if all went well (page still locked)
3421  * This returns < 0 if there were errors (page still locked)
3422  */
3423 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3424                 struct page *page, struct writeback_control *wbc,
3425                 u64 delalloc_start, unsigned long *nr_written)
3426 {
3427         u64 page_end = delalloc_start + PAGE_SIZE - 1;
3428         bool found;
3429         u64 delalloc_to_write = 0;
3430         u64 delalloc_end = 0;
3431         int ret;
3432         int page_started = 0;
3433
3434
3435         while (delalloc_end < page_end) {
3436                 found = find_lock_delalloc_range(inode, page,
3437                                                &delalloc_start,
3438                                                &delalloc_end);
3439                 if (!found) {
3440                         delalloc_start = delalloc_end + 1;
3441                         continue;
3442                 }
3443                 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3444                                 delalloc_end, &page_started, nr_written, wbc);
3445                 if (ret) {
3446                         SetPageError(page);
3447                         /*
3448                          * btrfs_run_delalloc_range should return < 0 for error
3449                          * but just in case, we use > 0 here meaning the IO is
3450                          * started, so we don't want to return > 0 unless
3451                          * things are going well.
3452                          */
3453                         ret = ret < 0 ? ret : -EIO;
3454                         goto done;
3455                 }
3456                 /*
3457                  * delalloc_end is already one less than the total length, so
3458                  * we don't subtract one from PAGE_SIZE
3459                  */
3460                 delalloc_to_write += (delalloc_end - delalloc_start +
3461                                       PAGE_SIZE) >> PAGE_SHIFT;
3462                 delalloc_start = delalloc_end + 1;
3463         }
3464         if (wbc->nr_to_write < delalloc_to_write) {
3465                 int thresh = 8192;
3466
3467                 if (delalloc_to_write < thresh * 2)
3468                         thresh = delalloc_to_write;
3469                 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3470                                          thresh);
3471         }
3472
3473         /* did the fill delalloc function already unlock and start
3474          * the IO?
3475          */
3476         if (page_started) {
3477                 /*
3478                  * we've unlocked the page, so we can't update
3479                  * the mapping's writeback index, just update
3480                  * nr_to_write.
3481                  */
3482                 wbc->nr_to_write -= *nr_written;
3483                 return 1;
3484         }
3485
3486         ret = 0;
3487
3488 done:
3489         return ret;
3490 }
3491
3492 /*
3493  * helper for __extent_writepage.  This calls the writepage start hooks,
3494  * and does the loop to map the page into extents and bios.
3495  *
3496  * We return 1 if the IO is started and the page is unlocked,
3497  * 0 if all went well (page still locked)
3498  * < 0 if there were errors (page still locked)
3499  */
3500 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3501                                  struct page *page,
3502                                  struct writeback_control *wbc,
3503                                  struct extent_page_data *epd,
3504                                  loff_t i_size,
3505                                  unsigned long nr_written,
3506                                  int *nr_ret)
3507 {
3508         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3509         u64 start = page_offset(page);
3510         u64 page_end = start + PAGE_SIZE - 1;
3511         u64 end;
3512         u64 cur = start;
3513         u64 extent_offset;
3514         u64 block_start;
3515         u64 iosize;
3516         struct extent_map *em;
3517         size_t pg_offset = 0;
3518         size_t blocksize;
3519         int ret = 0;
3520         int nr = 0;
3521         const unsigned int write_flags = wbc_to_write_flags(wbc);
3522         bool compressed;
3523
3524         ret = btrfs_writepage_cow_fixup(page, start, page_end);
3525         if (ret) {
3526                 /* Fixup worker will requeue */
3527                 redirty_page_for_writepage(wbc, page);
3528                 update_nr_written(wbc, nr_written);
3529                 unlock_page(page);
3530                 return 1;
3531         }
3532
3533         /*
3534          * we don't want to touch the inode after unlocking the page,
3535          * so we update the mapping writeback index now
3536          */
3537         update_nr_written(wbc, nr_written + 1);
3538
3539         end = page_end;
3540         blocksize = inode->i_sb->s_blocksize;
3541
3542         while (cur <= end) {
3543                 u64 em_end;
3544                 u64 offset;
3545
3546                 if (cur >= i_size) {
3547                         btrfs_writepage_endio_finish_ordered(page, cur,
3548                                                              page_end, 1);
3549                         break;
3550                 }
3551                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur,
3552                                       end - cur + 1);
3553                 if (IS_ERR_OR_NULL(em)) {
3554                         SetPageError(page);
3555                         ret = PTR_ERR_OR_ZERO(em);
3556                         break;
3557                 }
3558
3559                 extent_offset = cur - em->start;
3560                 em_end = extent_map_end(em);
3561                 BUG_ON(em_end <= cur);
3562                 BUG_ON(end < cur);
3563                 iosize = min(em_end - cur, end - cur + 1);
3564                 iosize = ALIGN(iosize, blocksize);
3565                 offset = em->block_start + extent_offset;
3566                 block_start = em->block_start;
3567                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3568                 free_extent_map(em);
3569                 em = NULL;
3570
3571                 /*
3572                  * compressed and inline extents are written through other
3573                  * paths in the FS
3574                  */
3575                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3576                     block_start == EXTENT_MAP_INLINE) {
3577                         if (compressed)
3578                                 nr++;
3579                         else
3580                                 btrfs_writepage_endio_finish_ordered(page, cur,
3581                                                         cur + iosize - 1, 1);
3582                         cur += iosize;
3583                         pg_offset += iosize;
3584                         continue;
3585                 }
3586
3587                 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3588                 if (!PageWriteback(page)) {
3589                         btrfs_err(BTRFS_I(inode)->root->fs_info,
3590                                    "page %lu not writeback, cur %llu end %llu",
3591                                page->index, cur, end);
3592                 }
3593
3594                 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3595                                          page, offset, iosize, pg_offset,
3596                                          &epd->bio,
3597                                          end_bio_extent_writepage,
3598                                          0, 0, 0, false);
3599                 if (ret) {
3600                         SetPageError(page);
3601                         if (PageWriteback(page))
3602                                 end_page_writeback(page);
3603                 }
3604
3605                 cur = cur + iosize;
3606                 pg_offset += iosize;
3607                 nr++;
3608         }
3609         *nr_ret = nr;
3610         return ret;
3611 }
3612
3613 /*
3614  * the writepage semantics are similar to regular writepage.  extent
3615  * records are inserted to lock ranges in the tree, and as dirty areas
3616  * are found, they are marked writeback.  Then the lock bits are removed
3617  * and the end_io handler clears the writeback ranges
3618  *
3619  * Return 0 if everything goes well.
3620  * Return <0 for error.
3621  */
3622 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3623                               struct extent_page_data *epd)
3624 {
3625         struct inode *inode = page->mapping->host;
3626         u64 start = page_offset(page);
3627         u64 page_end = start + PAGE_SIZE - 1;
3628         int ret;
3629         int nr = 0;
3630         size_t pg_offset;
3631         loff_t i_size = i_size_read(inode);
3632         unsigned long end_index = i_size >> PAGE_SHIFT;
3633         unsigned long nr_written = 0;
3634
3635         trace___extent_writepage(page, inode, wbc);
3636
3637         WARN_ON(!PageLocked(page));
3638
3639         ClearPageError(page);
3640
3641         pg_offset = offset_in_page(i_size);
3642         if (page->index > end_index ||
3643            (page->index == end_index && !pg_offset)) {
3644                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3645                 unlock_page(page);
3646                 return 0;
3647         }
3648
3649         if (page->index == end_index) {
3650                 char *userpage;
3651
3652                 userpage = kmap_atomic(page);
3653                 memset(userpage + pg_offset, 0,
3654                        PAGE_SIZE - pg_offset);
3655                 kunmap_atomic(userpage);
3656                 flush_dcache_page(page);
3657         }
3658
3659         set_page_extent_mapped(page);
3660
3661         if (!epd->extent_locked) {
3662                 ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
3663                 if (ret == 1)
3664                         return 0;
3665                 if (ret)
3666                         goto done;
3667         }
3668
3669         ret = __extent_writepage_io(inode, page, wbc, epd,
3670                                     i_size, nr_written, &nr);
3671         if (ret == 1)
3672                 return 0;
3673
3674 done:
3675         if (nr == 0) {
3676                 /* make sure the mapping tag for page dirty gets cleared */
3677                 set_page_writeback(page);
3678                 end_page_writeback(page);
3679         }
3680         if (PageError(page)) {
3681                 ret = ret < 0 ? ret : -EIO;
3682                 end_extent_writepage(page, ret, start, page_end);
3683         }
3684         unlock_page(page);
3685         ASSERT(ret <= 0);
3686         return ret;
3687 }
3688
3689 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3690 {
3691         wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3692                        TASK_UNINTERRUPTIBLE);
3693 }
3694
3695 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3696 {
3697         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3698         smp_mb__after_atomic();
3699         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3700 }
3701
3702 /*
3703  * Lock eb pages and flush the bio if we can't the locks
3704  *
3705  * Return  0 if nothing went wrong
3706  * Return >0 is same as 0, except bio is not submitted
3707  * Return <0 if something went wrong, no page is locked
3708  */
3709 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3710                           struct extent_page_data *epd)
3711 {
3712         struct btrfs_fs_info *fs_info = eb->fs_info;
3713         int i, num_pages, failed_page_nr;
3714         int flush = 0;
3715         int ret = 0;
3716
3717         if (!btrfs_try_tree_write_lock(eb)) {
3718                 ret = flush_write_bio(epd);
3719                 if (ret < 0)
3720                         return ret;
3721                 flush = 1;
3722                 btrfs_tree_lock(eb);
3723         }
3724
3725         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3726                 btrfs_tree_unlock(eb);
3727                 if (!epd->sync_io)
3728                         return 0;
3729                 if (!flush) {
3730                         ret = flush_write_bio(epd);
3731                         if (ret < 0)
3732                                 return ret;
3733                         flush = 1;
3734                 }
3735                 while (1) {
3736                         wait_on_extent_buffer_writeback(eb);
3737                         btrfs_tree_lock(eb);
3738                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3739                                 break;
3740                         btrfs_tree_unlock(eb);
3741                 }
3742         }
3743
3744         /*
3745          * We need to do this to prevent races in people who check if the eb is
3746          * under IO since we can end up having no IO bits set for a short period
3747          * of time.
3748          */
3749         spin_lock(&eb->refs_lock);
3750         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3751                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3752                 spin_unlock(&eb->refs_lock);
3753                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3754                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3755                                          -eb->len,
3756                                          fs_info->dirty_metadata_batch);
3757                 ret = 1;
3758         } else {
3759                 spin_unlock(&eb->refs_lock);
3760         }
3761
3762         btrfs_tree_unlock(eb);
3763
3764         if (!ret)
3765                 return ret;
3766
3767         num_pages = num_extent_pages(eb);
3768         for (i = 0; i < num_pages; i++) {
3769                 struct page *p = eb->pages[i];
3770
3771                 if (!trylock_page(p)) {
3772                         if (!flush) {
3773                                 int err;
3774
3775                                 err = flush_write_bio(epd);
3776                                 if (err < 0) {
3777                                         ret = err;
3778                                         failed_page_nr = i;
3779                                         goto err_unlock;
3780                                 }
3781                                 flush = 1;
3782                         }
3783                         lock_page(p);
3784                 }
3785         }
3786
3787         return ret;
3788 err_unlock:
3789         /* Unlock already locked pages */
3790         for (i = 0; i < failed_page_nr; i++)
3791                 unlock_page(eb->pages[i]);
3792         /*
3793          * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3794          * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3795          * be made and undo everything done before.
3796          */
3797         btrfs_tree_lock(eb);
3798         spin_lock(&eb->refs_lock);
3799         set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3800         end_extent_buffer_writeback(eb);
3801         spin_unlock(&eb->refs_lock);
3802         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3803                                  fs_info->dirty_metadata_batch);
3804         btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3805         btrfs_tree_unlock(eb);
3806         return ret;
3807 }
3808
3809 static void set_btree_ioerr(struct page *page)
3810 {
3811         struct extent_buffer *eb = (struct extent_buffer *)page->private;
3812         struct btrfs_fs_info *fs_info;
3813
3814         SetPageError(page);
3815         if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3816                 return;
3817
3818         /*
3819          * If we error out, we should add back the dirty_metadata_bytes
3820          * to make it consistent.
3821          */
3822         fs_info = eb->fs_info;
3823         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3824                                  eb->len, fs_info->dirty_metadata_batch);
3825
3826         /*
3827          * If writeback for a btree extent that doesn't belong to a log tree
3828          * failed, increment the counter transaction->eb_write_errors.
3829          * We do this because while the transaction is running and before it's
3830          * committing (when we call filemap_fdata[write|wait]_range against
3831          * the btree inode), we might have
3832          * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3833          * returns an error or an error happens during writeback, when we're
3834          * committing the transaction we wouldn't know about it, since the pages
3835          * can be no longer dirty nor marked anymore for writeback (if a
3836          * subsequent modification to the extent buffer didn't happen before the
3837          * transaction commit), which makes filemap_fdata[write|wait]_range not
3838          * able to find the pages tagged with SetPageError at transaction
3839          * commit time. So if this happens we must abort the transaction,
3840          * otherwise we commit a super block with btree roots that point to
3841          * btree nodes/leafs whose content on disk is invalid - either garbage
3842          * or the content of some node/leaf from a past generation that got
3843          * cowed or deleted and is no longer valid.
3844          *
3845          * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3846          * not be enough - we need to distinguish between log tree extents vs
3847          * non-log tree extents, and the next filemap_fdatawait_range() call
3848          * will catch and clear such errors in the mapping - and that call might
3849          * be from a log sync and not from a transaction commit. Also, checking
3850          * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3851          * not done and would not be reliable - the eb might have been released
3852          * from memory and reading it back again means that flag would not be
3853          * set (since it's a runtime flag, not persisted on disk).
3854          *
3855          * Using the flags below in the btree inode also makes us achieve the
3856          * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3857          * writeback for all dirty pages and before filemap_fdatawait_range()
3858          * is called, the writeback for all dirty pages had already finished
3859          * with errors - because we were not using AS_EIO/AS_ENOSPC,
3860          * filemap_fdatawait_range() would return success, as it could not know
3861          * that writeback errors happened (the pages were no longer tagged for
3862          * writeback).
3863          */
3864         switch (eb->log_index) {
3865         case -1:
3866                 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3867                 break;
3868         case 0:
3869                 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3870                 break;
3871         case 1:
3872                 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3873                 break;
3874         default:
3875                 BUG(); /* unexpected, logic error */
3876         }
3877 }
3878
3879 static void end_bio_extent_buffer_writepage(struct bio *bio)
3880 {
3881         struct bio_vec *bvec;
3882         struct extent_buffer *eb;
3883         int done;
3884         struct bvec_iter_all iter_all;
3885
3886         ASSERT(!bio_flagged(bio, BIO_CLONED));
3887         bio_for_each_segment_all(bvec, bio, iter_all) {
3888                 struct page *page = bvec->bv_page;
3889
3890                 eb = (struct extent_buffer *)page->private;
3891                 BUG_ON(!eb);
3892                 done = atomic_dec_and_test(&eb->io_pages);
3893
3894                 if (bio->bi_status ||
3895                     test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3896                         ClearPageUptodate(page);
3897                         set_btree_ioerr(page);
3898                 }
3899
3900                 end_page_writeback(page);
3901
3902                 if (!done)
3903                         continue;
3904
3905                 end_extent_buffer_writeback(eb);
3906         }
3907
3908         bio_put(bio);
3909 }
3910
3911 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3912                         struct writeback_control *wbc,
3913                         struct extent_page_data *epd)
3914 {
3915         u64 offset = eb->start;
3916         u32 nritems;
3917         int i, num_pages;
3918         unsigned long start, end;
3919         unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3920         int ret = 0;
3921
3922         clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3923         num_pages = num_extent_pages(eb);
3924         atomic_set(&eb->io_pages, num_pages);
3925
3926         /* set btree blocks beyond nritems with 0 to avoid stale content. */
3927         nritems = btrfs_header_nritems(eb);
3928         if (btrfs_header_level(eb) > 0) {
3929                 end = btrfs_node_key_ptr_offset(nritems);
3930
3931                 memzero_extent_buffer(eb, end, eb->len - end);
3932         } else {
3933                 /*
3934                  * leaf:
3935                  * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3936                  */
3937                 start = btrfs_item_nr_offset(nritems);
3938                 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3939                 memzero_extent_buffer(eb, start, end - start);
3940         }
3941
3942         for (i = 0; i < num_pages; i++) {
3943                 struct page *p = eb->pages[i];
3944
3945                 clear_page_dirty_for_io(p);
3946                 set_page_writeback(p);
3947                 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3948                                          p, offset, PAGE_SIZE, 0,
3949                                          &epd->bio,
3950                                          end_bio_extent_buffer_writepage,
3951                                          0, 0, 0, false);
3952                 if (ret) {
3953                         set_btree_ioerr(p);
3954                         if (PageWriteback(p))
3955                                 end_page_writeback(p);
3956                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3957                                 end_extent_buffer_writeback(eb);
3958                         ret = -EIO;
3959                         break;
3960                 }
3961                 offset += PAGE_SIZE;
3962                 update_nr_written(wbc, 1);
3963                 unlock_page(p);
3964         }
3965
3966         if (unlikely(ret)) {
3967                 for (; i < num_pages; i++) {
3968                         struct page *p = eb->pages[i];
3969                         clear_page_dirty_for_io(p);
3970                         unlock_page(p);
3971                 }
3972         }
3973
3974         return ret;
3975 }
3976
3977 int btree_write_cache_pages(struct address_space *mapping,
3978                                    struct writeback_control *wbc)
3979 {
3980         struct extent_buffer *eb, *prev_eb = NULL;
3981         struct extent_page_data epd = {
3982                 .bio = NULL,
3983                 .extent_locked = 0,
3984                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3985         };
3986         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3987         int ret = 0;
3988         int done = 0;
3989         int nr_to_write_done = 0;
3990         struct pagevec pvec;
3991         int nr_pages;
3992         pgoff_t index;
3993         pgoff_t end;            /* Inclusive */
3994         int scanned = 0;
3995         xa_mark_t tag;
3996
3997         pagevec_init(&pvec);
3998         if (wbc->range_cyclic) {
3999                 index = mapping->writeback_index; /* Start from prev offset */
4000                 end = -1;
4001                 /*
4002                  * Start from the beginning does not need to cycle over the
4003                  * range, mark it as scanned.
4004                  */
4005                 scanned = (index == 0);
4006         } else {
4007                 index = wbc->range_start >> PAGE_SHIFT;
4008                 end = wbc->range_end >> PAGE_SHIFT;
4009                 scanned = 1;
4010         }
4011         if (wbc->sync_mode == WB_SYNC_ALL)
4012                 tag = PAGECACHE_TAG_TOWRITE;
4013         else
4014                 tag = PAGECACHE_TAG_DIRTY;
4015 retry:
4016         if (wbc->sync_mode == WB_SYNC_ALL)
4017                 tag_pages_for_writeback(mapping, index, end);
4018         while (!done && !nr_to_write_done && (index <= end) &&
4019                (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4020                         tag))) {
4021                 unsigned i;
4022
4023                 for (i = 0; i < nr_pages; i++) {
4024                         struct page *page = pvec.pages[i];
4025
4026                         if (!PagePrivate(page))
4027                                 continue;
4028
4029                         spin_lock(&mapping->private_lock);
4030                         if (!PagePrivate(page)) {
4031                                 spin_unlock(&mapping->private_lock);
4032                                 continue;
4033                         }
4034
4035                         eb = (struct extent_buffer *)page->private;
4036
4037                         /*
4038                          * Shouldn't happen and normally this would be a BUG_ON
4039                          * but no sense in crashing the users box for something
4040                          * we can survive anyway.
4041                          */
4042                         if (WARN_ON(!eb)) {
4043                                 spin_unlock(&mapping->private_lock);
4044                                 continue;
4045                         }
4046
4047                         if (eb == prev_eb) {
4048                                 spin_unlock(&mapping->private_lock);
4049                                 continue;
4050                         }
4051
4052                         ret = atomic_inc_not_zero(&eb->refs);
4053                         spin_unlock(&mapping->private_lock);
4054                         if (!ret)
4055                                 continue;
4056
4057                         prev_eb = eb;
4058                         ret = lock_extent_buffer_for_io(eb, &epd);
4059                         if (!ret) {
4060                                 free_extent_buffer(eb);
4061                                 continue;
4062                         } else if (ret < 0) {
4063                                 done = 1;
4064                                 free_extent_buffer(eb);
4065                                 break;
4066                         }
4067
4068                         ret = write_one_eb(eb, wbc, &epd);
4069                         if (ret) {
4070                                 done = 1;
4071                                 free_extent_buffer(eb);
4072                                 break;
4073                         }
4074                         free_extent_buffer(eb);
4075
4076                         /*
4077                          * the filesystem may choose to bump up nr_to_write.
4078                          * We have to make sure to honor the new nr_to_write
4079                          * at any time
4080                          */
4081                         nr_to_write_done = wbc->nr_to_write <= 0;
4082                 }
4083                 pagevec_release(&pvec);
4084                 cond_resched();
4085         }
4086         if (!scanned && !done) {
4087                 /*
4088                  * We hit the last page and there is more work to be done: wrap
4089                  * back to the start of the file
4090                  */
4091                 scanned = 1;
4092                 index = 0;
4093                 goto retry;
4094         }
4095         ASSERT(ret <= 0);
4096         if (ret < 0) {
4097                 end_write_bio(&epd, ret);
4098                 return ret;
4099         }
4100         /*
4101          * If something went wrong, don't allow any metadata write bio to be
4102          * submitted.
4103          *
4104          * This would prevent use-after-free if we had dirty pages not
4105          * cleaned up, which can still happen by fuzzed images.
4106          *
4107          * - Bad extent tree
4108          *   Allowing existing tree block to be allocated for other trees.
4109          *
4110          * - Log tree operations
4111          *   Exiting tree blocks get allocated to log tree, bumps its
4112          *   generation, then get cleaned in tree re-balance.
4113          *   Such tree block will not be written back, since it's clean,
4114          *   thus no WRITTEN flag set.
4115          *   And after log writes back, this tree block is not traced by
4116          *   any dirty extent_io_tree.
4117          *
4118          * - Offending tree block gets re-dirtied from its original owner
4119          *   Since it has bumped generation, no WRITTEN flag, it can be
4120          *   reused without COWing. This tree block will not be traced
4121          *   by btrfs_transaction::dirty_pages.
4122          *
4123          *   Now such dirty tree block will not be cleaned by any dirty
4124          *   extent io tree. Thus we don't want to submit such wild eb
4125          *   if the fs already has error.
4126          */
4127         if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4128                 ret = flush_write_bio(&epd);
4129         } else {
4130                 ret = -EUCLEAN;
4131                 end_write_bio(&epd, ret);
4132         }
4133         return ret;
4134 }
4135
4136 /**
4137  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4138  * @mapping: address space structure to write
4139  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4140  * @data: data passed to __extent_writepage function
4141  *
4142  * If a page is already under I/O, write_cache_pages() skips it, even
4143  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4144  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4145  * and msync() need to guarantee that all the data which was dirty at the time
4146  * the call was made get new I/O started against them.  If wbc->sync_mode is
4147  * WB_SYNC_ALL then we were called for data integrity and we must wait for
4148  * existing IO to complete.
4149  */
4150 static int extent_write_cache_pages(struct address_space *mapping,
4151                              struct writeback_control *wbc,
4152                              struct extent_page_data *epd)
4153 {
4154         struct inode *inode = mapping->host;
4155         int ret = 0;
4156         int done = 0;
4157         int nr_to_write_done = 0;
4158         struct pagevec pvec;
4159         int nr_pages;
4160         pgoff_t index;
4161         pgoff_t end;            /* Inclusive */
4162         pgoff_t done_index;
4163         int range_whole = 0;
4164         int scanned = 0;
4165         xa_mark_t tag;
4166
4167         /*
4168          * We have to hold onto the inode so that ordered extents can do their
4169          * work when the IO finishes.  The alternative to this is failing to add
4170          * an ordered extent if the igrab() fails there and that is a huge pain
4171          * to deal with, so instead just hold onto the inode throughout the
4172          * writepages operation.  If it fails here we are freeing up the inode
4173          * anyway and we'd rather not waste our time writing out stuff that is
4174          * going to be truncated anyway.
4175          */
4176         if (!igrab(inode))
4177                 return 0;
4178
4179         pagevec_init(&pvec);
4180         if (wbc->range_cyclic) {
4181                 index = mapping->writeback_index; /* Start from prev offset */
4182                 end = -1;
4183                 /*
4184                  * Start from the beginning does not need to cycle over the
4185                  * range, mark it as scanned.
4186                  */
4187                 scanned = (index == 0);
4188         } else {
4189                 index = wbc->range_start >> PAGE_SHIFT;
4190                 end = wbc->range_end >> PAGE_SHIFT;
4191                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4192                         range_whole = 1;
4193                 scanned = 1;
4194         }
4195
4196         /*
4197          * We do the tagged writepage as long as the snapshot flush bit is set
4198          * and we are the first one who do the filemap_flush() on this inode.
4199          *
4200          * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4201          * not race in and drop the bit.
4202          */
4203         if (range_whole && wbc->nr_to_write == LONG_MAX &&
4204             test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4205                                &BTRFS_I(inode)->runtime_flags))
4206                 wbc->tagged_writepages = 1;
4207
4208         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4209                 tag = PAGECACHE_TAG_TOWRITE;
4210         else
4211                 tag = PAGECACHE_TAG_DIRTY;
4212 retry:
4213         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4214                 tag_pages_for_writeback(mapping, index, end);
4215         done_index = index;
4216         while (!done && !nr_to_write_done && (index <= end) &&
4217                         (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4218                                                 &index, end, tag))) {
4219                 unsigned i;
4220
4221                 for (i = 0; i < nr_pages; i++) {
4222                         struct page *page = pvec.pages[i];
4223
4224                         done_index = page->index + 1;
4225                         /*
4226                          * At this point we hold neither the i_pages lock nor
4227                          * the page lock: the page may be truncated or
4228                          * invalidated (changing page->mapping to NULL),
4229                          * or even swizzled back from swapper_space to
4230                          * tmpfs file mapping
4231                          */
4232                         if (!trylock_page(page)) {
4233                                 ret = flush_write_bio(epd);
4234                                 BUG_ON(ret < 0);
4235                                 lock_page(page);
4236                         }
4237
4238                         if (unlikely(page->mapping != mapping)) {
4239                                 unlock_page(page);
4240                                 continue;
4241                         }
4242
4243                         if (wbc->sync_mode != WB_SYNC_NONE) {
4244                                 if (PageWriteback(page)) {
4245                                         ret = flush_write_bio(epd);
4246                                         BUG_ON(ret < 0);
4247                                 }
4248                                 wait_on_page_writeback(page);
4249                         }
4250
4251                         if (PageWriteback(page) ||
4252                             !clear_page_dirty_for_io(page)) {
4253                                 unlock_page(page);
4254                                 continue;
4255                         }
4256
4257                         ret = __extent_writepage(page, wbc, epd);
4258                         if (ret < 0) {
4259                                 done = 1;
4260                                 break;
4261                         }
4262
4263                         /*
4264                          * the filesystem may choose to bump up nr_to_write.
4265                          * We have to make sure to honor the new nr_to_write
4266                          * at any time
4267                          */
4268                         nr_to_write_done = wbc->nr_to_write <= 0;
4269                 }
4270                 pagevec_release(&pvec);
4271                 cond_resched();
4272         }
4273         if (!scanned && !done) {
4274                 /*
4275                  * We hit the last page and there is more work to be done: wrap
4276                  * back to the start of the file
4277                  */
4278                 scanned = 1;
4279                 index = 0;
4280
4281                 /*
4282                  * If we're looping we could run into a page that is locked by a
4283                  * writer and that writer could be waiting on writeback for a
4284                  * page in our current bio, and thus deadlock, so flush the
4285                  * write bio here.
4286                  */
4287                 ret = flush_write_bio(epd);
4288                 if (!ret)
4289                         goto retry;
4290         }
4291
4292         if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4293                 mapping->writeback_index = done_index;
4294
4295         btrfs_add_delayed_iput(inode);
4296         return ret;
4297 }
4298
4299 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4300 {
4301         int ret;
4302         struct extent_page_data epd = {
4303                 .bio = NULL,
4304                 .extent_locked = 0,
4305                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4306         };
4307
4308         ret = __extent_writepage(page, wbc, &epd);
4309         ASSERT(ret <= 0);
4310         if (ret < 0) {
4311                 end_write_bio(&epd, ret);
4312                 return ret;
4313         }
4314
4315         ret = flush_write_bio(&epd);
4316         ASSERT(ret <= 0);
4317         return ret;
4318 }
4319
4320 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4321                               int mode)
4322 {
4323         int ret = 0;
4324         struct address_space *mapping = inode->i_mapping;
4325         struct page *page;
4326         unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4327                 PAGE_SHIFT;
4328
4329         struct extent_page_data epd = {
4330                 .bio = NULL,
4331                 .extent_locked = 1,
4332                 .sync_io = mode == WB_SYNC_ALL,
4333         };
4334         struct writeback_control wbc_writepages = {
4335                 .sync_mode      = mode,
4336                 .nr_to_write    = nr_pages * 2,
4337                 .range_start    = start,
4338                 .range_end      = end + 1,
4339                 /* We're called from an async helper function */
4340                 .punt_to_cgroup = 1,
4341                 .no_cgroup_owner = 1,
4342         };
4343
4344         wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4345         while (start <= end) {
4346                 page = find_get_page(mapping, start >> PAGE_SHIFT);
4347                 if (clear_page_dirty_for_io(page))
4348                         ret = __extent_writepage(page, &wbc_writepages, &epd);
4349                 else {
4350                         btrfs_writepage_endio_finish_ordered(page, start,
4351                                                     start + PAGE_SIZE - 1, 1);
4352                         unlock_page(page);
4353                 }
4354                 put_page(page);
4355                 start += PAGE_SIZE;
4356         }
4357
4358         ASSERT(ret <= 0);
4359         if (ret == 0)
4360                 ret = flush_write_bio(&epd);
4361         else
4362                 end_write_bio(&epd, ret);
4363
4364         wbc_detach_inode(&wbc_writepages);
4365         return ret;
4366 }
4367
4368 int extent_writepages(struct address_space *mapping,
4369                       struct writeback_control *wbc)
4370 {
4371         int ret = 0;
4372         struct extent_page_data epd = {
4373                 .bio = NULL,
4374                 .extent_locked = 0,
4375                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4376         };
4377
4378         ret = extent_write_cache_pages(mapping, wbc, &epd);
4379         ASSERT(ret <= 0);
4380         if (ret < 0) {
4381                 end_write_bio(&epd, ret);
4382                 return ret;
4383         }
4384         ret = flush_write_bio(&epd);
4385         return ret;
4386 }
4387
4388 void extent_readahead(struct readahead_control *rac)
4389 {
4390         struct bio *bio = NULL;
4391         unsigned long bio_flags = 0;
4392         struct page *pagepool[16];
4393         struct extent_map *em_cached = NULL;
4394         u64 prev_em_start = (u64)-1;
4395         int nr;
4396
4397         while ((nr = readahead_page_batch(rac, pagepool))) {
4398                 u64 contig_start = page_offset(pagepool[0]);
4399                 u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1;
4400
4401                 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4402
4403                 contiguous_readpages(pagepool, nr, contig_start, contig_end,
4404                                 &em_cached, &bio, &bio_flags, &prev_em_start);
4405         }
4406
4407         if (em_cached)
4408                 free_extent_map(em_cached);
4409
4410         if (bio) {
4411                 if (submit_one_bio(bio, 0, bio_flags))
4412                         return;
4413         }
4414 }
4415
4416 /*
4417  * basic invalidatepage code, this waits on any locked or writeback
4418  * ranges corresponding to the page, and then deletes any extent state
4419  * records from the tree
4420  */
4421 int extent_invalidatepage(struct extent_io_tree *tree,
4422                           struct page *page, unsigned long offset)
4423 {
4424         struct extent_state *cached_state = NULL;
4425         u64 start = page_offset(page);
4426         u64 end = start + PAGE_SIZE - 1;
4427         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4428
4429         start += ALIGN(offset, blocksize);
4430         if (start > end)
4431                 return 0;
4432
4433         lock_extent_bits(tree, start, end, &cached_state);
4434         wait_on_page_writeback(page);
4435         clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4436                          EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
4437         return 0;
4438 }
4439
4440 /*
4441  * a helper for releasepage, this tests for areas of the page that
4442  * are locked or under IO and drops the related state bits if it is safe
4443  * to drop the page.
4444  */
4445 static int try_release_extent_state(struct extent_io_tree *tree,
4446                                     struct page *page, gfp_t mask)
4447 {
4448         u64 start = page_offset(page);
4449         u64 end = start + PAGE_SIZE - 1;
4450         int ret = 1;
4451
4452         if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4453                 ret = 0;
4454         } else {
4455                 /*
4456                  * at this point we can safely clear everything except the
4457                  * locked bit and the nodatasum bit
4458                  */
4459                 ret = __clear_extent_bit(tree, start, end,
4460                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4461                                  0, 0, NULL, mask, NULL);
4462
4463                 /* if clear_extent_bit failed for enomem reasons,
4464                  * we can't allow the release to continue.
4465                  */
4466                 if (ret < 0)
4467                         ret = 0;
4468                 else
4469                         ret = 1;
4470         }
4471         return ret;
4472 }
4473
4474 /*
4475  * a helper for releasepage.  As long as there are no locked extents
4476  * in the range corresponding to the page, both state records and extent
4477  * map records are removed
4478  */
4479 int try_release_extent_mapping(struct page *page, gfp_t mask)
4480 {
4481         struct extent_map *em;
4482         u64 start = page_offset(page);
4483         u64 end = start + PAGE_SIZE - 1;
4484         struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4485         struct extent_io_tree *tree = &btrfs_inode->io_tree;
4486         struct extent_map_tree *map = &btrfs_inode->extent_tree;
4487
4488         if (gfpflags_allow_blocking(mask) &&
4489             page->mapping->host->i_size > SZ_16M) {
4490                 u64 len;
4491                 while (start <= end) {
4492                         len = end - start + 1;
4493                         write_lock(&map->lock);
4494                         em = lookup_extent_mapping(map, start, len);
4495                         if (!em) {
4496                                 write_unlock(&map->lock);
4497                                 break;
4498                         }
4499                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4500                             em->start != start) {
4501                                 write_unlock(&map->lock);
4502                                 free_extent_map(em);
4503                                 break;
4504                         }
4505                         if (!test_range_bit(tree, em->start,
4506                                             extent_map_end(em) - 1,
4507                                             EXTENT_LOCKED, 0, NULL)) {
4508                                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4509                                         &btrfs_inode->runtime_flags);
4510                                 remove_extent_mapping(map, em);
4511                                 /* once for the rb tree */
4512                                 free_extent_map(em);
4513                         }
4514                         start = extent_map_end(em);
4515                         write_unlock(&map->lock);
4516
4517                         /* once for us */
4518                         free_extent_map(em);
4519
4520                         cond_resched(); /* Allow large-extent preemption. */
4521                 }
4522         }
4523         return try_release_extent_state(tree, page, mask);
4524 }
4525
4526 /*
4527  * helper function for fiemap, which doesn't want to see any holes.
4528  * This maps until we find something past 'last'
4529  */
4530 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4531                                                 u64 offset, u64 last)
4532 {
4533         u64 sectorsize = btrfs_inode_sectorsize(inode);
4534         struct extent_map *em;
4535         u64 len;
4536
4537         if (offset >= last)
4538                 return NULL;
4539
4540         while (1) {
4541                 len = last - offset;
4542                 if (len == 0)
4543                         break;
4544                 len = ALIGN(len, sectorsize);
4545                 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
4546                 if (IS_ERR_OR_NULL(em))
4547                         return em;
4548
4549                 /* if this isn't a hole return it */
4550                 if (em->block_start != EXTENT_MAP_HOLE)
4551                         return em;
4552
4553                 /* this is a hole, advance to the next extent */
4554                 offset = extent_map_end(em);
4555                 free_extent_map(em);
4556                 if (offset >= last)
4557                         break;
4558         }
4559         return NULL;
4560 }
4561
4562 /*
4563  * To cache previous fiemap extent
4564  *
4565  * Will be used for merging fiemap extent
4566  */
4567 struct fiemap_cache {
4568         u64 offset;
4569         u64 phys;
4570         u64 len;
4571         u32 flags;
4572         bool cached;
4573 };
4574
4575 /*
4576  * Helper to submit fiemap extent.
4577  *
4578  * Will try to merge current fiemap extent specified by @offset, @phys,
4579  * @len and @flags with cached one.
4580  * And only when we fails to merge, cached one will be submitted as
4581  * fiemap extent.
4582  *
4583  * Return value is the same as fiemap_fill_next_extent().
4584  */
4585 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4586                                 struct fiemap_cache *cache,
4587                                 u64 offset, u64 phys, u64 len, u32 flags)
4588 {
4589         int ret = 0;
4590
4591         if (!cache->cached)
4592                 goto assign;
4593
4594         /*
4595          * Sanity check, extent_fiemap() should have ensured that new
4596          * fiemap extent won't overlap with cached one.
4597          * Not recoverable.
4598          *
4599          * NOTE: Physical address can overlap, due to compression
4600          */
4601         if (cache->offset + cache->len > offset) {
4602                 WARN_ON(1);
4603                 return -EINVAL;
4604         }
4605
4606         /*
4607          * Only merges fiemap extents if
4608          * 1) Their logical addresses are continuous
4609          *
4610          * 2) Their physical addresses are continuous
4611          *    So truly compressed (physical size smaller than logical size)
4612          *    extents won't get merged with each other
4613          *
4614          * 3) Share same flags except FIEMAP_EXTENT_LAST
4615          *    So regular extent won't get merged with prealloc extent
4616          */
4617         if (cache->offset + cache->len  == offset &&
4618             cache->phys + cache->len == phys  &&
4619             (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4620                         (flags & ~FIEMAP_EXTENT_LAST)) {
4621                 cache->len += len;
4622                 cache->flags |= flags;
4623                 goto try_submit_last;
4624         }
4625
4626         /* Not mergeable, need to submit cached one */
4627         ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4628                                       cache->len, cache->flags);
4629         cache->cached = false;
4630         if (ret)
4631                 return ret;
4632 assign:
4633         cache->cached = true;
4634         cache->offset = offset;
4635         cache->phys = phys;
4636         cache->len = len;
4637         cache->flags = flags;
4638 try_submit_last:
4639         if (cache->flags & FIEMAP_EXTENT_LAST) {
4640                 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4641                                 cache->phys, cache->len, cache->flags);
4642                 cache->cached = false;
4643         }
4644         return ret;
4645 }
4646
4647 /*
4648  * Emit last fiemap cache
4649  *
4650  * The last fiemap cache may still be cached in the following case:
4651  * 0                  4k                    8k
4652  * |<- Fiemap range ->|
4653  * |<------------  First extent ----------->|
4654  *
4655  * In this case, the first extent range will be cached but not emitted.
4656  * So we must emit it before ending extent_fiemap().
4657  */
4658 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4659                                   struct fiemap_cache *cache)
4660 {
4661         int ret;
4662
4663         if (!cache->cached)
4664                 return 0;
4665
4666         ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4667                                       cache->len, cache->flags);
4668         cache->cached = false;
4669         if (ret > 0)
4670                 ret = 0;
4671         return ret;
4672 }
4673
4674 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4675                 __u64 start, __u64 len)
4676 {
4677         int ret = 0;
4678         u64 off = start;
4679         u64 max = start + len;
4680         u32 flags = 0;
4681         u32 found_type;
4682         u64 last;
4683         u64 last_for_get_extent = 0;
4684         u64 disko = 0;
4685         u64 isize = i_size_read(inode);
4686         struct btrfs_key found_key;
4687         struct extent_map *em = NULL;
4688         struct extent_state *cached_state = NULL;
4689         struct btrfs_path *path;
4690         struct btrfs_root *root = BTRFS_I(inode)->root;
4691         struct fiemap_cache cache = { 0 };
4692         struct ulist *roots;
4693         struct ulist *tmp_ulist;
4694         int end = 0;
4695         u64 em_start = 0;
4696         u64 em_len = 0;
4697         u64 em_end = 0;
4698
4699         if (len == 0)
4700                 return -EINVAL;
4701
4702         path = btrfs_alloc_path();
4703         if (!path)
4704                 return -ENOMEM;
4705         path->leave_spinning = 1;
4706
4707         roots = ulist_alloc(GFP_KERNEL);
4708         tmp_ulist = ulist_alloc(GFP_KERNEL);
4709         if (!roots || !tmp_ulist) {
4710                 ret = -ENOMEM;
4711                 goto out_free_ulist;
4712         }
4713
4714         start = round_down(start, btrfs_inode_sectorsize(inode));
4715         len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4716
4717         /*
4718          * lookup the last file extent.  We're not using i_size here
4719          * because there might be preallocation past i_size
4720          */
4721         ret = btrfs_lookup_file_extent(NULL, root, path,
4722                         btrfs_ino(BTRFS_I(inode)), -1, 0);
4723         if (ret < 0) {
4724                 goto out_free_ulist;
4725         } else {
4726                 WARN_ON(!ret);
4727                 if (ret == 1)
4728                         ret = 0;
4729         }
4730
4731         path->slots[0]--;
4732         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4733         found_type = found_key.type;
4734
4735         /* No extents, but there might be delalloc bits */
4736         if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4737             found_type != BTRFS_EXTENT_DATA_KEY) {
4738                 /* have to trust i_size as the end */
4739                 last = (u64)-1;
4740                 last_for_get_extent = isize;
4741         } else {
4742                 /*
4743                  * remember the start of the last extent.  There are a
4744                  * bunch of different factors that go into the length of the
4745                  * extent, so its much less complex to remember where it started
4746                  */
4747                 last = found_key.offset;
4748                 last_for_get_extent = last + 1;
4749         }
4750         btrfs_release_path(path);
4751
4752         /*
4753          * we might have some extents allocated but more delalloc past those
4754          * extents.  so, we trust isize unless the start of the last extent is
4755          * beyond isize
4756          */
4757         if (last < isize) {
4758                 last = (u64)-1;
4759                 last_for_get_extent = isize;
4760         }
4761
4762         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4763                          &cached_state);
4764
4765         em = get_extent_skip_holes(inode, start, last_for_get_extent);
4766         if (!em)
4767                 goto out;
4768         if (IS_ERR(em)) {
4769                 ret = PTR_ERR(em);
4770                 goto out;
4771         }
4772
4773         while (!end) {
4774                 u64 offset_in_extent = 0;
4775
4776                 /* break if the extent we found is outside the range */
4777                 if (em->start >= max || extent_map_end(em) < off)
4778                         break;
4779
4780                 /*
4781                  * get_extent may return an extent that starts before our
4782                  * requested range.  We have to make sure the ranges
4783                  * we return to fiemap always move forward and don't
4784                  * overlap, so adjust the offsets here
4785                  */
4786                 em_start = max(em->start, off);
4787
4788                 /*
4789                  * record the offset from the start of the extent
4790                  * for adjusting the disk offset below.  Only do this if the
4791                  * extent isn't compressed since our in ram offset may be past
4792                  * what we have actually allocated on disk.
4793                  */
4794                 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4795                         offset_in_extent = em_start - em->start;
4796                 em_end = extent_map_end(em);
4797                 em_len = em_end - em_start;
4798                 flags = 0;
4799                 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4800                         disko = em->block_start + offset_in_extent;
4801                 else
4802                         disko = 0;
4803
4804                 /*
4805                  * bump off for our next call to get_extent
4806                  */
4807                 off = extent_map_end(em);
4808                 if (off >= max)
4809                         end = 1;
4810
4811                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4812                         end = 1;
4813                         flags |= FIEMAP_EXTENT_LAST;
4814                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4815                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4816                                   FIEMAP_EXTENT_NOT_ALIGNED);
4817                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4818                         flags |= (FIEMAP_EXTENT_DELALLOC |
4819                                   FIEMAP_EXTENT_UNKNOWN);
4820                 } else if (fieinfo->fi_extents_max) {
4821                         u64 bytenr = em->block_start -
4822                                 (em->start - em->orig_start);
4823
4824                         /*
4825                          * As btrfs supports shared space, this information
4826                          * can be exported to userspace tools via
4827                          * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4828                          * then we're just getting a count and we can skip the
4829                          * lookup stuff.
4830                          */
4831                         ret = btrfs_check_shared(root,
4832                                                  btrfs_ino(BTRFS_I(inode)),
4833                                                  bytenr, roots, tmp_ulist);
4834                         if (ret < 0)
4835                                 goto out_free;
4836                         if (ret)
4837                                 flags |= FIEMAP_EXTENT_SHARED;
4838                         ret = 0;
4839                 }
4840                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4841                         flags |= FIEMAP_EXTENT_ENCODED;
4842                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4843                         flags |= FIEMAP_EXTENT_UNWRITTEN;
4844
4845                 free_extent_map(em);
4846                 em = NULL;
4847                 if ((em_start >= last) || em_len == (u64)-1 ||
4848                    (last == (u64)-1 && isize <= em_end)) {
4849                         flags |= FIEMAP_EXTENT_LAST;
4850                         end = 1;
4851                 }
4852
4853                 /* now scan forward to see if this is really the last extent. */
4854                 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4855                 if (IS_ERR(em)) {
4856                         ret = PTR_ERR(em);
4857                         goto out;
4858                 }
4859                 if (!em) {
4860                         flags |= FIEMAP_EXTENT_LAST;
4861                         end = 1;
4862                 }
4863                 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4864                                            em_len, flags);
4865                 if (ret) {
4866                         if (ret == 1)
4867                                 ret = 0;
4868                         goto out_free;
4869                 }
4870         }
4871 out_free:
4872         if (!ret)
4873                 ret = emit_last_fiemap_cache(fieinfo, &cache);
4874         free_extent_map(em);
4875 out:
4876         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4877                              &cached_state);
4878
4879 out_free_ulist:
4880         btrfs_free_path(path);
4881         ulist_free(roots);
4882         ulist_free(tmp_ulist);
4883         return ret;
4884 }
4885
4886 static void __free_extent_buffer(struct extent_buffer *eb)
4887 {
4888         kmem_cache_free(extent_buffer_cache, eb);
4889 }
4890
4891 int extent_buffer_under_io(const struct extent_buffer *eb)
4892 {
4893         return (atomic_read(&eb->io_pages) ||
4894                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4895                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4896 }
4897
4898 /*
4899  * Release all pages attached to the extent buffer.
4900  */
4901 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4902 {
4903         int i;
4904         int num_pages;
4905         int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4906
4907         BUG_ON(extent_buffer_under_io(eb));
4908
4909         num_pages = num_extent_pages(eb);
4910         for (i = 0; i < num_pages; i++) {
4911                 struct page *page = eb->pages[i];
4912
4913                 if (!page)
4914                         continue;
4915                 if (mapped)
4916                         spin_lock(&page->mapping->private_lock);
4917                 /*
4918                  * We do this since we'll remove the pages after we've
4919                  * removed the eb from the radix tree, so we could race
4920                  * and have this page now attached to the new eb.  So
4921                  * only clear page_private if it's still connected to
4922                  * this eb.
4923                  */
4924                 if (PagePrivate(page) &&
4925                     page->private == (unsigned long)eb) {
4926                         BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4927                         BUG_ON(PageDirty(page));
4928                         BUG_ON(PageWriteback(page));
4929                         /*
4930                          * We need to make sure we haven't be attached
4931                          * to a new eb.
4932                          */
4933                         detach_page_private(page);
4934                 }
4935
4936                 if (mapped)
4937                         spin_unlock(&page->mapping->private_lock);
4938
4939                 /* One for when we allocated the page */
4940                 put_page(page);
4941         }
4942 }
4943
4944 /*
4945  * Helper for releasing the extent buffer.
4946  */
4947 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4948 {
4949         btrfs_release_extent_buffer_pages(eb);
4950         btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
4951         __free_extent_buffer(eb);
4952 }
4953
4954 static struct extent_buffer *
4955 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4956                       unsigned long len)
4957 {
4958         struct extent_buffer *eb = NULL;
4959
4960         eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4961         eb->start = start;
4962         eb->len = len;
4963         eb->fs_info = fs_info;
4964         eb->bflags = 0;
4965         rwlock_init(&eb->lock);
4966         atomic_set(&eb->blocking_readers, 0);
4967         eb->blocking_writers = 0;
4968         eb->lock_nested = false;
4969         init_waitqueue_head(&eb->write_lock_wq);
4970         init_waitqueue_head(&eb->read_lock_wq);
4971
4972         btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
4973                              &fs_info->allocated_ebs);
4974
4975         spin_lock_init(&eb->refs_lock);
4976         atomic_set(&eb->refs, 1);
4977         atomic_set(&eb->io_pages, 0);
4978
4979         /*
4980          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4981          */
4982         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4983                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4984         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4985
4986 #ifdef CONFIG_BTRFS_DEBUG
4987         eb->spinning_writers = 0;
4988         atomic_set(&eb->spinning_readers, 0);
4989         atomic_set(&eb->read_locks, 0);
4990         eb->write_locks = 0;
4991 #endif
4992
4993         return eb;
4994 }
4995
4996 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
4997 {
4998         int i;
4999         struct page *p;
5000         struct extent_buffer *new;
5001         int num_pages = num_extent_pages(src);
5002
5003         new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5004         if (new == NULL)
5005                 return NULL;
5006
5007         for (i = 0; i < num_pages; i++) {
5008                 p = alloc_page(GFP_NOFS);
5009                 if (!p) {
5010                         btrfs_release_extent_buffer(new);
5011                         return NULL;
5012                 }
5013                 attach_extent_buffer_page(new, p);
5014                 WARN_ON(PageDirty(p));
5015                 SetPageUptodate(p);
5016                 new->pages[i] = p;
5017                 copy_page(page_address(p), page_address(src->pages[i]));
5018         }
5019
5020         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
5021         set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5022
5023         return new;
5024 }
5025
5026 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5027                                                   u64 start, unsigned long len)
5028 {
5029         struct extent_buffer *eb;
5030         int num_pages;
5031         int i;
5032
5033         eb = __alloc_extent_buffer(fs_info, start, len);
5034         if (!eb)
5035                 return NULL;
5036
5037         num_pages = num_extent_pages(eb);
5038         for (i = 0; i < num_pages; i++) {
5039                 eb->pages[i] = alloc_page(GFP_NOFS);
5040                 if (!eb->pages[i])
5041                         goto err;
5042         }
5043         set_extent_buffer_uptodate(eb);
5044         btrfs_set_header_nritems(eb, 0);
5045         set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5046
5047         return eb;
5048 err:
5049         for (; i > 0; i--)
5050                 __free_page(eb->pages[i - 1]);
5051         __free_extent_buffer(eb);
5052         return NULL;
5053 }
5054
5055 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5056                                                 u64 start)
5057 {
5058         return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5059 }
5060
5061 static void check_buffer_tree_ref(struct extent_buffer *eb)
5062 {
5063         int refs;
5064         /*
5065          * The TREE_REF bit is first set when the extent_buffer is added
5066          * to the radix tree. It is also reset, if unset, when a new reference
5067          * is created by find_extent_buffer.
5068          *
5069          * It is only cleared in two cases: freeing the last non-tree
5070          * reference to the extent_buffer when its STALE bit is set or
5071          * calling releasepage when the tree reference is the only reference.
5072          *
5073          * In both cases, care is taken to ensure that the extent_buffer's
5074          * pages are not under io. However, releasepage can be concurrently
5075          * called with creating new references, which is prone to race
5076          * conditions between the calls to check_buffer_tree_ref in those
5077          * codepaths and clearing TREE_REF in try_release_extent_buffer.
5078          *
5079          * The actual lifetime of the extent_buffer in the radix tree is
5080          * adequately protected by the refcount, but the TREE_REF bit and
5081          * its corresponding reference are not. To protect against this
5082          * class of races, we call check_buffer_tree_ref from the codepaths
5083          * which trigger io after they set eb->io_pages. Note that once io is
5084          * initiated, TREE_REF can no longer be cleared, so that is the
5085          * moment at which any such race is best fixed.
5086          */
5087         refs = atomic_read(&eb->refs);
5088         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5089                 return;
5090
5091         spin_lock(&eb->refs_lock);
5092         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5093                 atomic_inc(&eb->refs);
5094         spin_unlock(&eb->refs_lock);
5095 }
5096
5097 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5098                 struct page *accessed)
5099 {
5100         int num_pages, i;
5101
5102         check_buffer_tree_ref(eb);
5103
5104         num_pages = num_extent_pages(eb);
5105         for (i = 0; i < num_pages; i++) {
5106                 struct page *p = eb->pages[i];
5107
5108                 if (p != accessed)
5109                         mark_page_accessed(p);
5110         }
5111 }
5112
5113 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5114                                          u64 start)
5115 {
5116         struct extent_buffer *eb;
5117
5118         rcu_read_lock();
5119         eb = radix_tree_lookup(&fs_info->buffer_radix,
5120                                start >> PAGE_SHIFT);
5121         if (eb && atomic_inc_not_zero(&eb->refs)) {
5122                 rcu_read_unlock();
5123                 /*
5124                  * Lock our eb's refs_lock to avoid races with
5125                  * free_extent_buffer. When we get our eb it might be flagged
5126                  * with EXTENT_BUFFER_STALE and another task running
5127                  * free_extent_buffer might have seen that flag set,
5128                  * eb->refs == 2, that the buffer isn't under IO (dirty and
5129                  * writeback flags not set) and it's still in the tree (flag
5130                  * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5131                  * of decrementing the extent buffer's reference count twice.
5132                  * So here we could race and increment the eb's reference count,
5133                  * clear its stale flag, mark it as dirty and drop our reference
5134                  * before the other task finishes executing free_extent_buffer,
5135                  * which would later result in an attempt to free an extent
5136                  * buffer that is dirty.
5137                  */
5138                 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5139                         spin_lock(&eb->refs_lock);
5140                         spin_unlock(&eb->refs_lock);
5141                 }
5142                 mark_extent_buffer_accessed(eb, NULL);
5143                 return eb;
5144         }
5145         rcu_read_unlock();
5146
5147         return NULL;
5148 }
5149
5150 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5151 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5152                                         u64 start)
5153 {
5154         struct extent_buffer *eb, *exists = NULL;
5155         int ret;
5156
5157         eb = find_extent_buffer(fs_info, start);
5158         if (eb)
5159                 return eb;
5160         eb = alloc_dummy_extent_buffer(fs_info, start);
5161         if (!eb)
5162                 return ERR_PTR(-ENOMEM);
5163         eb->fs_info = fs_info;
5164 again:
5165         ret = radix_tree_preload(GFP_NOFS);
5166         if (ret) {
5167                 exists = ERR_PTR(ret);
5168                 goto free_eb;
5169         }
5170         spin_lock(&fs_info->buffer_lock);
5171         ret = radix_tree_insert(&fs_info->buffer_radix,
5172                                 start >> PAGE_SHIFT, eb);
5173         spin_unlock(&fs_info->buffer_lock);
5174         radix_tree_preload_end();
5175         if (ret == -EEXIST) {
5176                 exists = find_extent_buffer(fs_info, start);
5177                 if (exists)
5178                         goto free_eb;
5179                 else
5180                         goto again;
5181         }
5182         check_buffer_tree_ref(eb);
5183         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5184
5185         return eb;
5186 free_eb:
5187         btrfs_release_extent_buffer(eb);
5188         return exists;
5189 }
5190 #endif
5191
5192 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5193                                           u64 start)
5194 {
5195         unsigned long len = fs_info->nodesize;
5196         int num_pages;
5197         int i;
5198         unsigned long index = start >> PAGE_SHIFT;
5199         struct extent_buffer *eb;
5200         struct extent_buffer *exists = NULL;
5201         struct page *p;
5202         struct address_space *mapping = fs_info->btree_inode->i_mapping;
5203         int uptodate = 1;
5204         int ret;
5205
5206         if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5207                 btrfs_err(fs_info, "bad tree block start %llu", start);
5208                 return ERR_PTR(-EINVAL);
5209         }
5210
5211         eb = find_extent_buffer(fs_info, start);
5212         if (eb)
5213                 return eb;
5214
5215         eb = __alloc_extent_buffer(fs_info, start, len);
5216         if (!eb)
5217                 return ERR_PTR(-ENOMEM);
5218
5219         num_pages = num_extent_pages(eb);
5220         for (i = 0; i < num_pages; i++, index++) {
5221                 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5222                 if (!p) {
5223                         exists = ERR_PTR(-ENOMEM);
5224                         goto free_eb;
5225                 }
5226
5227                 spin_lock(&mapping->private_lock);
5228                 if (PagePrivate(p)) {
5229                         /*
5230                          * We could have already allocated an eb for this page
5231                          * and attached one so lets see if we can get a ref on
5232                          * the existing eb, and if we can we know it's good and
5233                          * we can just return that one, else we know we can just
5234                          * overwrite page->private.
5235                          */
5236                         exists = (struct extent_buffer *)p->private;
5237                         if (atomic_inc_not_zero(&exists->refs)) {
5238                                 spin_unlock(&mapping->private_lock);
5239                                 unlock_page(p);
5240                                 put_page(p);
5241                                 mark_extent_buffer_accessed(exists, p);
5242                                 goto free_eb;
5243                         }
5244                         exists = NULL;
5245
5246                         /*
5247                          * Do this so attach doesn't complain and we need to
5248                          * drop the ref the old guy had.
5249                          */
5250                         ClearPagePrivate(p);
5251                         WARN_ON(PageDirty(p));
5252                         put_page(p);
5253                 }
5254                 attach_extent_buffer_page(eb, p);
5255                 spin_unlock(&mapping->private_lock);
5256                 WARN_ON(PageDirty(p));
5257                 eb->pages[i] = p;
5258                 if (!PageUptodate(p))
5259                         uptodate = 0;
5260
5261                 /*
5262                  * We can't unlock the pages just yet since the extent buffer
5263                  * hasn't been properly inserted in the radix tree, this
5264                  * opens a race with btree_releasepage which can free a page
5265                  * while we are still filling in all pages for the buffer and
5266                  * we could crash.
5267                  */
5268         }
5269         if (uptodate)
5270                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5271 again:
5272         ret = radix_tree_preload(GFP_NOFS);
5273         if (ret) {
5274                 exists = ERR_PTR(ret);
5275                 goto free_eb;
5276         }
5277
5278         spin_lock(&fs_info->buffer_lock);
5279         ret = radix_tree_insert(&fs_info->buffer_radix,
5280                                 start >> PAGE_SHIFT, eb);
5281         spin_unlock(&fs_info->buffer_lock);
5282         radix_tree_preload_end();
5283         if (ret == -EEXIST) {
5284                 exists = find_extent_buffer(fs_info, start);
5285                 if (exists)
5286                         goto free_eb;
5287                 else
5288                         goto again;
5289         }
5290         /* add one reference for the tree */
5291         check_buffer_tree_ref(eb);
5292         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5293
5294         /*
5295          * Now it's safe to unlock the pages because any calls to
5296          * btree_releasepage will correctly detect that a page belongs to a
5297          * live buffer and won't free them prematurely.
5298          */
5299         for (i = 0; i < num_pages; i++)
5300                 unlock_page(eb->pages[i]);
5301         return eb;
5302
5303 free_eb:
5304         WARN_ON(!atomic_dec_and_test(&eb->refs));
5305         for (i = 0; i < num_pages; i++) {
5306                 if (eb->pages[i])
5307                         unlock_page(eb->pages[i]);
5308         }
5309
5310         btrfs_release_extent_buffer(eb);
5311         return exists;
5312 }
5313
5314 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5315 {
5316         struct extent_buffer *eb =
5317                         container_of(head, struct extent_buffer, rcu_head);
5318
5319         __free_extent_buffer(eb);
5320 }
5321
5322 static int release_extent_buffer(struct extent_buffer *eb)
5323         __releases(&eb->refs_lock)
5324 {
5325         lockdep_assert_held(&eb->refs_lock);
5326
5327         WARN_ON(atomic_read(&eb->refs) == 0);
5328         if (atomic_dec_and_test(&eb->refs)) {
5329                 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5330                         struct btrfs_fs_info *fs_info = eb->fs_info;
5331
5332                         spin_unlock(&eb->refs_lock);
5333
5334                         spin_lock(&fs_info->buffer_lock);
5335                         radix_tree_delete(&fs_info->buffer_radix,
5336                                           eb->start >> PAGE_SHIFT);
5337                         spin_unlock(&fs_info->buffer_lock);
5338                 } else {
5339                         spin_unlock(&eb->refs_lock);
5340                 }
5341
5342                 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5343                 /* Should be safe to release our pages at this point */
5344                 btrfs_release_extent_buffer_pages(eb);
5345 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5346                 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5347                         __free_extent_buffer(eb);
5348                         return 1;
5349                 }
5350 #endif
5351                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5352                 return 1;
5353         }
5354         spin_unlock(&eb->refs_lock);
5355
5356         return 0;
5357 }
5358
5359 void free_extent_buffer(struct extent_buffer *eb)
5360 {
5361         int refs;
5362         int old;
5363         if (!eb)
5364                 return;
5365
5366         while (1) {
5367                 refs = atomic_read(&eb->refs);
5368                 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5369                     || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5370                         refs == 1))
5371                         break;
5372                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5373                 if (old == refs)
5374                         return;
5375         }
5376
5377         spin_lock(&eb->refs_lock);
5378         if (atomic_read(&eb->refs) == 2 &&
5379             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5380             !extent_buffer_under_io(eb) &&
5381             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5382                 atomic_dec(&eb->refs);
5383
5384         /*
5385          * I know this is terrible, but it's temporary until we stop tracking
5386          * the uptodate bits and such for the extent buffers.
5387          */
5388         release_extent_buffer(eb);
5389 }
5390
5391 void free_extent_buffer_stale(struct extent_buffer *eb)
5392 {
5393         if (!eb)
5394                 return;
5395
5396         spin_lock(&eb->refs_lock);
5397         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5398
5399         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5400             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5401                 atomic_dec(&eb->refs);
5402         release_extent_buffer(eb);
5403 }
5404
5405 void clear_extent_buffer_dirty(const struct extent_buffer *eb)
5406 {
5407         int i;
5408         int num_pages;
5409         struct page *page;
5410
5411         num_pages = num_extent_pages(eb);
5412
5413         for (i = 0; i < num_pages; i++) {
5414                 page = eb->pages[i];
5415                 if (!PageDirty(page))
5416                         continue;
5417
5418                 lock_page(page);
5419                 WARN_ON(!PagePrivate(page));
5420
5421                 clear_page_dirty_for_io(page);
5422                 xa_lock_irq(&page->mapping->i_pages);
5423                 if (!PageDirty(page))
5424                         __xa_clear_mark(&page->mapping->i_pages,
5425                                         page_index(page), PAGECACHE_TAG_DIRTY);
5426                 xa_unlock_irq(&page->mapping->i_pages);
5427                 ClearPageError(page);
5428                 unlock_page(page);
5429         }
5430         WARN_ON(atomic_read(&eb->refs) == 0);
5431 }
5432
5433 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5434 {
5435         int i;
5436         int num_pages;
5437         bool was_dirty;
5438
5439         check_buffer_tree_ref(eb);
5440
5441         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5442
5443         num_pages = num_extent_pages(eb);
5444         WARN_ON(atomic_read(&eb->refs) == 0);
5445         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5446
5447         if (!was_dirty)
5448                 for (i = 0; i < num_pages; i++)
5449                         set_page_dirty(eb->pages[i]);
5450
5451 #ifdef CONFIG_BTRFS_DEBUG
5452         for (i = 0; i < num_pages; i++)
5453                 ASSERT(PageDirty(eb->pages[i]));
5454 #endif
5455
5456         return was_dirty;
5457 }
5458
5459 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5460 {
5461         int i;
5462         struct page *page;
5463         int num_pages;
5464
5465         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5466         num_pages = num_extent_pages(eb);
5467         for (i = 0; i < num_pages; i++) {
5468                 page = eb->pages[i];
5469                 if (page)
5470                         ClearPageUptodate(page);
5471         }
5472 }
5473
5474 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5475 {
5476         int i;
5477         struct page *page;
5478         int num_pages;
5479
5480         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5481         num_pages = num_extent_pages(eb);
5482         for (i = 0; i < num_pages; i++) {
5483                 page = eb->pages[i];
5484                 SetPageUptodate(page);
5485         }
5486 }
5487
5488 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5489 {
5490         int i;
5491         struct page *page;
5492         int err;
5493         int ret = 0;
5494         int locked_pages = 0;
5495         int all_uptodate = 1;
5496         int num_pages;
5497         unsigned long num_reads = 0;
5498         struct bio *bio = NULL;
5499         unsigned long bio_flags = 0;
5500
5501         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5502                 return 0;
5503
5504         num_pages = num_extent_pages(eb);
5505         for (i = 0; i < num_pages; i++) {
5506                 page = eb->pages[i];
5507                 if (wait == WAIT_NONE) {
5508                         if (!trylock_page(page))
5509                                 goto unlock_exit;
5510                 } else {
5511                         lock_page(page);
5512                 }
5513                 locked_pages++;
5514         }
5515         /*
5516          * We need to firstly lock all pages to make sure that
5517          * the uptodate bit of our pages won't be affected by
5518          * clear_extent_buffer_uptodate().
5519          */
5520         for (i = 0; i < num_pages; i++) {
5521                 page = eb->pages[i];
5522                 if (!PageUptodate(page)) {
5523                         num_reads++;
5524                         all_uptodate = 0;
5525                 }
5526         }
5527
5528         if (all_uptodate) {
5529                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5530                 goto unlock_exit;
5531         }
5532
5533         clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5534         eb->read_mirror = 0;
5535         atomic_set(&eb->io_pages, num_reads);
5536         /*
5537          * It is possible for releasepage to clear the TREE_REF bit before we
5538          * set io_pages. See check_buffer_tree_ref for a more detailed comment.
5539          */
5540         check_buffer_tree_ref(eb);
5541         for (i = 0; i < num_pages; i++) {
5542                 page = eb->pages[i];
5543
5544                 if (!PageUptodate(page)) {
5545                         if (ret) {
5546                                 atomic_dec(&eb->io_pages);
5547                                 unlock_page(page);
5548                                 continue;
5549                         }
5550
5551                         ClearPageError(page);
5552                         err = __extent_read_full_page(page,
5553                                                       btree_get_extent, &bio,
5554                                                       mirror_num, &bio_flags,
5555                                                       REQ_META);
5556                         if (err) {
5557                                 ret = err;
5558                                 /*
5559                                  * We use &bio in above __extent_read_full_page,
5560                                  * so we ensure that if it returns error, the
5561                                  * current page fails to add itself to bio and
5562                                  * it's been unlocked.
5563                                  *
5564                                  * We must dec io_pages by ourselves.
5565                                  */
5566                                 atomic_dec(&eb->io_pages);
5567                         }
5568                 } else {
5569                         unlock_page(page);
5570                 }
5571         }
5572
5573         if (bio) {
5574                 err = submit_one_bio(bio, mirror_num, bio_flags);
5575                 if (err)
5576                         return err;
5577         }
5578
5579         if (ret || wait != WAIT_COMPLETE)
5580                 return ret;
5581
5582         for (i = 0; i < num_pages; i++) {
5583                 page = eb->pages[i];
5584                 wait_on_page_locked(page);
5585                 if (!PageUptodate(page))
5586                         ret = -EIO;
5587         }
5588
5589         return ret;
5590
5591 unlock_exit:
5592         while (locked_pages > 0) {
5593                 locked_pages--;
5594                 page = eb->pages[locked_pages];
5595                 unlock_page(page);
5596         }
5597         return ret;
5598 }
5599
5600 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5601                         unsigned long start, unsigned long len)
5602 {
5603         size_t cur;
5604         size_t offset;
5605         struct page *page;
5606         char *kaddr;
5607         char *dst = (char *)dstv;
5608         unsigned long i = start >> PAGE_SHIFT;
5609
5610         if (start + len > eb->len) {
5611                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5612                      eb->start, eb->len, start, len);
5613                 memset(dst, 0, len);
5614                 return;
5615         }
5616
5617         offset = offset_in_page(start);
5618
5619         while (len > 0) {
5620                 page = eb->pages[i];
5621
5622                 cur = min(len, (PAGE_SIZE - offset));
5623                 kaddr = page_address(page);
5624                 memcpy(dst, kaddr + offset, cur);
5625
5626                 dst += cur;
5627                 len -= cur;
5628                 offset = 0;
5629                 i++;
5630         }
5631 }
5632
5633 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5634                                void __user *dstv,
5635                                unsigned long start, unsigned long len)
5636 {
5637         size_t cur;
5638         size_t offset;
5639         struct page *page;
5640         char *kaddr;
5641         char __user *dst = (char __user *)dstv;
5642         unsigned long i = start >> PAGE_SHIFT;
5643         int ret = 0;
5644
5645         WARN_ON(start > eb->len);
5646         WARN_ON(start + len > eb->start + eb->len);
5647
5648         offset = offset_in_page(start);
5649
5650         while (len > 0) {
5651                 page = eb->pages[i];
5652
5653                 cur = min(len, (PAGE_SIZE - offset));
5654                 kaddr = page_address(page);
5655                 if (copy_to_user(dst, kaddr + offset, cur)) {
5656                         ret = -EFAULT;
5657                         break;
5658                 }
5659
5660                 dst += cur;
5661                 len -= cur;
5662                 offset = 0;
5663                 i++;
5664         }
5665
5666         return ret;
5667 }
5668
5669 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5670                          unsigned long start, unsigned long len)
5671 {
5672         size_t cur;
5673         size_t offset;
5674         struct page *page;
5675         char *kaddr;
5676         char *ptr = (char *)ptrv;
5677         unsigned long i = start >> PAGE_SHIFT;
5678         int ret = 0;
5679
5680         WARN_ON(start > eb->len);
5681         WARN_ON(start + len > eb->start + eb->len);
5682
5683         offset = offset_in_page(start);
5684
5685         while (len > 0) {
5686                 page = eb->pages[i];
5687
5688                 cur = min(len, (PAGE_SIZE - offset));
5689
5690                 kaddr = page_address(page);
5691                 ret = memcmp(ptr, kaddr + offset, cur);
5692                 if (ret)
5693                         break;
5694
5695                 ptr += cur;
5696                 len -= cur;
5697                 offset = 0;
5698                 i++;
5699         }
5700         return ret;
5701 }
5702
5703 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
5704                 const void *srcv)
5705 {
5706         char *kaddr;
5707
5708         WARN_ON(!PageUptodate(eb->pages[0]));
5709         kaddr = page_address(eb->pages[0]);
5710         memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5711                         BTRFS_FSID_SIZE);
5712 }
5713
5714 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
5715 {
5716         char *kaddr;
5717
5718         WARN_ON(!PageUptodate(eb->pages[0]));
5719         kaddr = page_address(eb->pages[0]);
5720         memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5721                         BTRFS_FSID_SIZE);
5722 }
5723
5724 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
5725                          unsigned long start, unsigned long len)
5726 {
5727         size_t cur;
5728         size_t offset;
5729         struct page *page;
5730         char *kaddr;
5731         char *src = (char *)srcv;
5732         unsigned long i = start >> PAGE_SHIFT;
5733
5734         WARN_ON(start > eb->len);
5735         WARN_ON(start + len > eb->start + eb->len);
5736
5737         offset = offset_in_page(start);
5738
5739         while (len > 0) {
5740                 page = eb->pages[i];
5741                 WARN_ON(!PageUptodate(page));
5742
5743                 cur = min(len, PAGE_SIZE - offset);
5744                 kaddr = page_address(page);
5745                 memcpy(kaddr + offset, src, cur);
5746
5747                 src += cur;
5748                 len -= cur;
5749                 offset = 0;
5750                 i++;
5751         }
5752 }
5753
5754 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
5755                 unsigned long len)
5756 {
5757         size_t cur;
5758         size_t offset;
5759         struct page *page;
5760         char *kaddr;
5761         unsigned long i = start >> PAGE_SHIFT;
5762
5763         WARN_ON(start > eb->len);
5764         WARN_ON(start + len > eb->start + eb->len);
5765
5766         offset = offset_in_page(start);
5767
5768         while (len > 0) {
5769                 page = eb->pages[i];
5770                 WARN_ON(!PageUptodate(page));
5771
5772                 cur = min(len, PAGE_SIZE - offset);
5773                 kaddr = page_address(page);
5774                 memset(kaddr + offset, 0, cur);
5775
5776                 len -= cur;
5777                 offset = 0;
5778                 i++;
5779         }
5780 }
5781
5782 void copy_extent_buffer_full(const struct extent_buffer *dst,
5783                              const struct extent_buffer *src)
5784 {
5785         int i;
5786         int num_pages;
5787
5788         ASSERT(dst->len == src->len);
5789
5790         num_pages = num_extent_pages(dst);
5791         for (i = 0; i < num_pages; i++)
5792                 copy_page(page_address(dst->pages[i]),
5793                                 page_address(src->pages[i]));
5794 }
5795
5796 void copy_extent_buffer(const struct extent_buffer *dst,
5797                         const struct extent_buffer *src,
5798                         unsigned long dst_offset, unsigned long src_offset,
5799                         unsigned long len)
5800 {
5801         u64 dst_len = dst->len;
5802         size_t cur;
5803         size_t offset;
5804         struct page *page;
5805         char *kaddr;
5806         unsigned long i = dst_offset >> PAGE_SHIFT;
5807
5808         WARN_ON(src->len != dst_len);
5809
5810         offset = offset_in_page(dst_offset);
5811
5812         while (len > 0) {
5813                 page = dst->pages[i];
5814                 WARN_ON(!PageUptodate(page));
5815
5816                 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5817
5818                 kaddr = page_address(page);
5819                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5820
5821                 src_offset += cur;
5822                 len -= cur;
5823                 offset = 0;
5824                 i++;
5825         }
5826 }
5827
5828 /*
5829  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5830  * given bit number
5831  * @eb: the extent buffer
5832  * @start: offset of the bitmap item in the extent buffer
5833  * @nr: bit number
5834  * @page_index: return index of the page in the extent buffer that contains the
5835  * given bit number
5836  * @page_offset: return offset into the page given by page_index
5837  *
5838  * This helper hides the ugliness of finding the byte in an extent buffer which
5839  * contains a given bit.
5840  */
5841 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
5842                                     unsigned long start, unsigned long nr,
5843                                     unsigned long *page_index,
5844                                     size_t *page_offset)
5845 {
5846         size_t byte_offset = BIT_BYTE(nr);
5847         size_t offset;
5848
5849         /*
5850          * The byte we want is the offset of the extent buffer + the offset of
5851          * the bitmap item in the extent buffer + the offset of the byte in the
5852          * bitmap item.
5853          */
5854         offset = start + byte_offset;
5855
5856         *page_index = offset >> PAGE_SHIFT;
5857         *page_offset = offset_in_page(offset);
5858 }
5859
5860 /**
5861  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5862  * @eb: the extent buffer
5863  * @start: offset of the bitmap item in the extent buffer
5864  * @nr: bit number to test
5865  */
5866 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
5867                            unsigned long nr)
5868 {
5869         u8 *kaddr;
5870         struct page *page;
5871         unsigned long i;
5872         size_t offset;
5873
5874         eb_bitmap_offset(eb, start, nr, &i, &offset);
5875         page = eb->pages[i];
5876         WARN_ON(!PageUptodate(page));
5877         kaddr = page_address(page);
5878         return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5879 }
5880
5881 /**
5882  * extent_buffer_bitmap_set - set an area of a bitmap
5883  * @eb: the extent buffer
5884  * @start: offset of the bitmap item in the extent buffer
5885  * @pos: bit number of the first bit
5886  * @len: number of bits to set
5887  */
5888 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
5889                               unsigned long pos, unsigned long len)
5890 {
5891         u8 *kaddr;
5892         struct page *page;
5893         unsigned long i;
5894         size_t offset;
5895         const unsigned int size = pos + len;
5896         int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5897         u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5898
5899         eb_bitmap_offset(eb, start, pos, &i, &offset);
5900         page = eb->pages[i];
5901         WARN_ON(!PageUptodate(page));
5902         kaddr = page_address(page);
5903
5904         while (len >= bits_to_set) {
5905                 kaddr[offset] |= mask_to_set;
5906                 len -= bits_to_set;
5907                 bits_to_set = BITS_PER_BYTE;
5908                 mask_to_set = ~0;
5909                 if (++offset >= PAGE_SIZE && len > 0) {
5910                         offset = 0;
5911                         page = eb->pages[++i];
5912                         WARN_ON(!PageUptodate(page));
5913                         kaddr = page_address(page);
5914                 }
5915         }
5916         if (len) {
5917                 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5918                 kaddr[offset] |= mask_to_set;
5919         }
5920 }
5921
5922
5923 /**
5924  * extent_buffer_bitmap_clear - clear an area of a bitmap
5925  * @eb: the extent buffer
5926  * @start: offset of the bitmap item in the extent buffer
5927  * @pos: bit number of the first bit
5928  * @len: number of bits to clear
5929  */
5930 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
5931                                 unsigned long start, unsigned long pos,
5932                                 unsigned long len)
5933 {
5934         u8 *kaddr;
5935         struct page *page;
5936         unsigned long i;
5937         size_t offset;
5938         const unsigned int size = pos + len;
5939         int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5940         u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5941
5942         eb_bitmap_offset(eb, start, pos, &i, &offset);
5943         page = eb->pages[i];
5944         WARN_ON(!PageUptodate(page));
5945         kaddr = page_address(page);
5946
5947         while (len >= bits_to_clear) {
5948                 kaddr[offset] &= ~mask_to_clear;
5949                 len -= bits_to_clear;
5950                 bits_to_clear = BITS_PER_BYTE;
5951                 mask_to_clear = ~0;
5952                 if (++offset >= PAGE_SIZE && len > 0) {
5953                         offset = 0;
5954                         page = eb->pages[++i];
5955                         WARN_ON(!PageUptodate(page));
5956                         kaddr = page_address(page);
5957                 }
5958         }
5959         if (len) {
5960                 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5961                 kaddr[offset] &= ~mask_to_clear;
5962         }
5963 }
5964
5965 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5966 {
5967         unsigned long distance = (src > dst) ? src - dst : dst - src;
5968         return distance < len;
5969 }
5970
5971 static void copy_pages(struct page *dst_page, struct page *src_page,
5972                        unsigned long dst_off, unsigned long src_off,
5973                        unsigned long len)
5974 {
5975         char *dst_kaddr = page_address(dst_page);
5976         char *src_kaddr;
5977         int must_memmove = 0;
5978
5979         if (dst_page != src_page) {
5980                 src_kaddr = page_address(src_page);
5981         } else {
5982                 src_kaddr = dst_kaddr;
5983                 if (areas_overlap(src_off, dst_off, len))
5984                         must_memmove = 1;
5985         }
5986
5987         if (must_memmove)
5988                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5989         else
5990                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5991 }
5992
5993 void memcpy_extent_buffer(const struct extent_buffer *dst,
5994                           unsigned long dst_offset, unsigned long src_offset,
5995                           unsigned long len)
5996 {
5997         struct btrfs_fs_info *fs_info = dst->fs_info;
5998         size_t cur;
5999         size_t dst_off_in_page;
6000         size_t src_off_in_page;
6001         unsigned long dst_i;
6002         unsigned long src_i;
6003
6004         if (src_offset + len > dst->len) {
6005                 btrfs_err(fs_info,
6006                         "memmove bogus src_offset %lu move len %lu dst len %lu",
6007                          src_offset, len, dst->len);
6008                 BUG();
6009         }
6010         if (dst_offset + len > dst->len) {
6011                 btrfs_err(fs_info,
6012                         "memmove bogus dst_offset %lu move len %lu dst len %lu",
6013                          dst_offset, len, dst->len);
6014                 BUG();
6015         }
6016
6017         while (len > 0) {
6018                 dst_off_in_page = offset_in_page(dst_offset);
6019                 src_off_in_page = offset_in_page(src_offset);
6020
6021                 dst_i = dst_offset >> PAGE_SHIFT;
6022                 src_i = src_offset >> PAGE_SHIFT;
6023
6024                 cur = min(len, (unsigned long)(PAGE_SIZE -
6025                                                src_off_in_page));
6026                 cur = min_t(unsigned long, cur,
6027                         (unsigned long)(PAGE_SIZE - dst_off_in_page));
6028
6029                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6030                            dst_off_in_page, src_off_in_page, cur);
6031
6032                 src_offset += cur;
6033                 dst_offset += cur;
6034                 len -= cur;
6035         }
6036 }
6037
6038 void memmove_extent_buffer(const struct extent_buffer *dst,
6039                            unsigned long dst_offset, unsigned long src_offset,
6040                            unsigned long len)
6041 {
6042         struct btrfs_fs_info *fs_info = dst->fs_info;
6043         size_t cur;
6044         size_t dst_off_in_page;
6045         size_t src_off_in_page;
6046         unsigned long dst_end = dst_offset + len - 1;
6047         unsigned long src_end = src_offset + len - 1;
6048         unsigned long dst_i;
6049         unsigned long src_i;
6050
6051         if (src_offset + len > dst->len) {
6052                 btrfs_err(fs_info,
6053                           "memmove bogus src_offset %lu move len %lu len %lu",
6054                           src_offset, len, dst->len);
6055                 BUG();
6056         }
6057         if (dst_offset + len > dst->len) {
6058                 btrfs_err(fs_info,
6059                           "memmove bogus dst_offset %lu move len %lu len %lu",
6060                           dst_offset, len, dst->len);
6061                 BUG();
6062         }
6063         if (dst_offset < src_offset) {
6064                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6065                 return;
6066         }
6067         while (len > 0) {
6068                 dst_i = dst_end >> PAGE_SHIFT;
6069                 src_i = src_end >> PAGE_SHIFT;
6070
6071                 dst_off_in_page = offset_in_page(dst_end);
6072                 src_off_in_page = offset_in_page(src_end);
6073
6074                 cur = min_t(unsigned long, len, src_off_in_page + 1);
6075                 cur = min(cur, dst_off_in_page + 1);
6076                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6077                            dst_off_in_page - cur + 1,
6078                            src_off_in_page - cur + 1, cur);
6079
6080                 dst_end -= cur;
6081                 src_end -= cur;
6082                 len -= cur;
6083         }
6084 }
6085
6086 int try_release_extent_buffer(struct page *page)
6087 {
6088         struct extent_buffer *eb;
6089
6090         /*
6091          * We need to make sure nobody is attaching this page to an eb right
6092          * now.
6093          */
6094         spin_lock(&page->mapping->private_lock);
6095         if (!PagePrivate(page)) {
6096                 spin_unlock(&page->mapping->private_lock);
6097                 return 1;
6098         }
6099
6100         eb = (struct extent_buffer *)page->private;
6101         BUG_ON(!eb);
6102
6103         /*
6104          * This is a little awful but should be ok, we need to make sure that
6105          * the eb doesn't disappear out from under us while we're looking at
6106          * this page.
6107          */
6108         spin_lock(&eb->refs_lock);
6109         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6110                 spin_unlock(&eb->refs_lock);
6111                 spin_unlock(&page->mapping->private_lock);
6112                 return 0;
6113         }
6114         spin_unlock(&page->mapping->private_lock);
6115
6116         /*
6117          * If tree ref isn't set then we know the ref on this eb is a real ref,
6118          * so just return, this page will likely be freed soon anyway.
6119          */
6120         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6121                 spin_unlock(&eb->refs_lock);
6122                 return 0;
6123         }
6124
6125         return release_extent_buffer(eb);
6126 }