btrfs: fix potential deadlock in the search ioctl
[linux-2.6-microblaze.git] / fs / btrfs / extent_io.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent-io-tree.h"
18 #include "extent_map.h"
19 #include "ctree.h"
20 #include "btrfs_inode.h"
21 #include "volumes.h"
22 #include "check-integrity.h"
23 #include "locking.h"
24 #include "rcu-string.h"
25 #include "backref.h"
26 #include "disk-io.h"
27
28 static struct kmem_cache *extent_state_cache;
29 static struct kmem_cache *extent_buffer_cache;
30 static struct bio_set btrfs_bioset;
31
32 static inline bool extent_state_in_tree(const struct extent_state *state)
33 {
34         return !RB_EMPTY_NODE(&state->rb_node);
35 }
36
37 #ifdef CONFIG_BTRFS_DEBUG
38 static LIST_HEAD(states);
39 static DEFINE_SPINLOCK(leak_lock);
40
41 static inline void btrfs_leak_debug_add(spinlock_t *lock,
42                                         struct list_head *new,
43                                         struct list_head *head)
44 {
45         unsigned long flags;
46
47         spin_lock_irqsave(lock, flags);
48         list_add(new, head);
49         spin_unlock_irqrestore(lock, flags);
50 }
51
52 static inline void btrfs_leak_debug_del(spinlock_t *lock,
53                                         struct list_head *entry)
54 {
55         unsigned long flags;
56
57         spin_lock_irqsave(lock, flags);
58         list_del(entry);
59         spin_unlock_irqrestore(lock, flags);
60 }
61
62 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
63 {
64         struct extent_buffer *eb;
65         unsigned long flags;
66
67         /*
68          * If we didn't get into open_ctree our allocated_ebs will not be
69          * initialized, so just skip this.
70          */
71         if (!fs_info->allocated_ebs.next)
72                 return;
73
74         spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75         while (!list_empty(&fs_info->allocated_ebs)) {
76                 eb = list_first_entry(&fs_info->allocated_ebs,
77                                       struct extent_buffer, leak_list);
78                 pr_err(
79         "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
80                        eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81                        btrfs_header_owner(eb));
82                 list_del(&eb->leak_list);
83                 kmem_cache_free(extent_buffer_cache, eb);
84         }
85         spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
86 }
87
88 static inline void btrfs_extent_state_leak_debug_check(void)
89 {
90         struct extent_state *state;
91
92         while (!list_empty(&states)) {
93                 state = list_entry(states.next, struct extent_state, leak_list);
94                 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
95                        state->start, state->end, state->state,
96                        extent_state_in_tree(state),
97                        refcount_read(&state->refs));
98                 list_del(&state->leak_list);
99                 kmem_cache_free(extent_state_cache, state);
100         }
101 }
102
103 #define btrfs_debug_check_extent_io_range(tree, start, end)             \
104         __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
105 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
106                 struct extent_io_tree *tree, u64 start, u64 end)
107 {
108         struct inode *inode = tree->private_data;
109         u64 isize;
110
111         if (!inode || !is_data_inode(inode))
112                 return;
113
114         isize = i_size_read(inode);
115         if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
116                 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
117                     "%s: ino %llu isize %llu odd range [%llu,%llu]",
118                         caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
119         }
120 }
121 #else
122 #define btrfs_leak_debug_add(lock, new, head)   do {} while (0)
123 #define btrfs_leak_debug_del(lock, entry)       do {} while (0)
124 #define btrfs_extent_state_leak_debug_check()   do {} while (0)
125 #define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
126 #endif
127
128 struct tree_entry {
129         u64 start;
130         u64 end;
131         struct rb_node rb_node;
132 };
133
134 struct extent_page_data {
135         struct bio *bio;
136         /* tells writepage not to lock the state bits for this range
137          * it still does the unlocking
138          */
139         unsigned int extent_locked:1;
140
141         /* tells the submit_bio code to use REQ_SYNC */
142         unsigned int sync_io:1;
143 };
144
145 static int add_extent_changeset(struct extent_state *state, unsigned bits,
146                                  struct extent_changeset *changeset,
147                                  int set)
148 {
149         int ret;
150
151         if (!changeset)
152                 return 0;
153         if (set && (state->state & bits) == bits)
154                 return 0;
155         if (!set && (state->state & bits) == 0)
156                 return 0;
157         changeset->bytes_changed += state->end - state->start + 1;
158         ret = ulist_add(&changeset->range_changed, state->start, state->end,
159                         GFP_ATOMIC);
160         return ret;
161 }
162
163 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
164                                        unsigned long bio_flags)
165 {
166         blk_status_t ret = 0;
167         struct extent_io_tree *tree = bio->bi_private;
168
169         bio->bi_private = NULL;
170
171         if (tree->ops)
172                 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
173                                                  mirror_num, bio_flags);
174         else
175                 btrfsic_submit_bio(bio);
176
177         return blk_status_to_errno(ret);
178 }
179
180 /* Cleanup unsubmitted bios */
181 static void end_write_bio(struct extent_page_data *epd, int ret)
182 {
183         if (epd->bio) {
184                 epd->bio->bi_status = errno_to_blk_status(ret);
185                 bio_endio(epd->bio);
186                 epd->bio = NULL;
187         }
188 }
189
190 /*
191  * Submit bio from extent page data via submit_one_bio
192  *
193  * Return 0 if everything is OK.
194  * Return <0 for error.
195  */
196 static int __must_check flush_write_bio(struct extent_page_data *epd)
197 {
198         int ret = 0;
199
200         if (epd->bio) {
201                 ret = submit_one_bio(epd->bio, 0, 0);
202                 /*
203                  * Clean up of epd->bio is handled by its endio function.
204                  * And endio is either triggered by successful bio execution
205                  * or the error handler of submit bio hook.
206                  * So at this point, no matter what happened, we don't need
207                  * to clean up epd->bio.
208                  */
209                 epd->bio = NULL;
210         }
211         return ret;
212 }
213
214 int __init extent_state_cache_init(void)
215 {
216         extent_state_cache = kmem_cache_create("btrfs_extent_state",
217                         sizeof(struct extent_state), 0,
218                         SLAB_MEM_SPREAD, NULL);
219         if (!extent_state_cache)
220                 return -ENOMEM;
221         return 0;
222 }
223
224 int __init extent_io_init(void)
225 {
226         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
227                         sizeof(struct extent_buffer), 0,
228                         SLAB_MEM_SPREAD, NULL);
229         if (!extent_buffer_cache)
230                 return -ENOMEM;
231
232         if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
233                         offsetof(struct btrfs_io_bio, bio),
234                         BIOSET_NEED_BVECS))
235                 goto free_buffer_cache;
236
237         if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
238                 goto free_bioset;
239
240         return 0;
241
242 free_bioset:
243         bioset_exit(&btrfs_bioset);
244
245 free_buffer_cache:
246         kmem_cache_destroy(extent_buffer_cache);
247         extent_buffer_cache = NULL;
248         return -ENOMEM;
249 }
250
251 void __cold extent_state_cache_exit(void)
252 {
253         btrfs_extent_state_leak_debug_check();
254         kmem_cache_destroy(extent_state_cache);
255 }
256
257 void __cold extent_io_exit(void)
258 {
259         /*
260          * Make sure all delayed rcu free are flushed before we
261          * destroy caches.
262          */
263         rcu_barrier();
264         kmem_cache_destroy(extent_buffer_cache);
265         bioset_exit(&btrfs_bioset);
266 }
267
268 /*
269  * For the file_extent_tree, we want to hold the inode lock when we lookup and
270  * update the disk_i_size, but lockdep will complain because our io_tree we hold
271  * the tree lock and get the inode lock when setting delalloc.  These two things
272  * are unrelated, so make a class for the file_extent_tree so we don't get the
273  * two locking patterns mixed up.
274  */
275 static struct lock_class_key file_extent_tree_class;
276
277 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
278                          struct extent_io_tree *tree, unsigned int owner,
279                          void *private_data)
280 {
281         tree->fs_info = fs_info;
282         tree->state = RB_ROOT;
283         tree->ops = NULL;
284         tree->dirty_bytes = 0;
285         spin_lock_init(&tree->lock);
286         tree->private_data = private_data;
287         tree->owner = owner;
288         if (owner == IO_TREE_INODE_FILE_EXTENT)
289                 lockdep_set_class(&tree->lock, &file_extent_tree_class);
290 }
291
292 void extent_io_tree_release(struct extent_io_tree *tree)
293 {
294         spin_lock(&tree->lock);
295         /*
296          * Do a single barrier for the waitqueue_active check here, the state
297          * of the waitqueue should not change once extent_io_tree_release is
298          * called.
299          */
300         smp_mb();
301         while (!RB_EMPTY_ROOT(&tree->state)) {
302                 struct rb_node *node;
303                 struct extent_state *state;
304
305                 node = rb_first(&tree->state);
306                 state = rb_entry(node, struct extent_state, rb_node);
307                 rb_erase(&state->rb_node, &tree->state);
308                 RB_CLEAR_NODE(&state->rb_node);
309                 /*
310                  * btree io trees aren't supposed to have tasks waiting for
311                  * changes in the flags of extent states ever.
312                  */
313                 ASSERT(!waitqueue_active(&state->wq));
314                 free_extent_state(state);
315
316                 cond_resched_lock(&tree->lock);
317         }
318         spin_unlock(&tree->lock);
319 }
320
321 static struct extent_state *alloc_extent_state(gfp_t mask)
322 {
323         struct extent_state *state;
324
325         /*
326          * The given mask might be not appropriate for the slab allocator,
327          * drop the unsupported bits
328          */
329         mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
330         state = kmem_cache_alloc(extent_state_cache, mask);
331         if (!state)
332                 return state;
333         state->state = 0;
334         state->failrec = NULL;
335         RB_CLEAR_NODE(&state->rb_node);
336         btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
337         refcount_set(&state->refs, 1);
338         init_waitqueue_head(&state->wq);
339         trace_alloc_extent_state(state, mask, _RET_IP_);
340         return state;
341 }
342
343 void free_extent_state(struct extent_state *state)
344 {
345         if (!state)
346                 return;
347         if (refcount_dec_and_test(&state->refs)) {
348                 WARN_ON(extent_state_in_tree(state));
349                 btrfs_leak_debug_del(&leak_lock, &state->leak_list);
350                 trace_free_extent_state(state, _RET_IP_);
351                 kmem_cache_free(extent_state_cache, state);
352         }
353 }
354
355 static struct rb_node *tree_insert(struct rb_root *root,
356                                    struct rb_node *search_start,
357                                    u64 offset,
358                                    struct rb_node *node,
359                                    struct rb_node ***p_in,
360                                    struct rb_node **parent_in)
361 {
362         struct rb_node **p;
363         struct rb_node *parent = NULL;
364         struct tree_entry *entry;
365
366         if (p_in && parent_in) {
367                 p = *p_in;
368                 parent = *parent_in;
369                 goto do_insert;
370         }
371
372         p = search_start ? &search_start : &root->rb_node;
373         while (*p) {
374                 parent = *p;
375                 entry = rb_entry(parent, struct tree_entry, rb_node);
376
377                 if (offset < entry->start)
378                         p = &(*p)->rb_left;
379                 else if (offset > entry->end)
380                         p = &(*p)->rb_right;
381                 else
382                         return parent;
383         }
384
385 do_insert:
386         rb_link_node(node, parent, p);
387         rb_insert_color(node, root);
388         return NULL;
389 }
390
391 /**
392  * __etree_search - searche @tree for an entry that contains @offset. Such
393  * entry would have entry->start <= offset && entry->end >= offset.
394  *
395  * @tree - the tree to search
396  * @offset - offset that should fall within an entry in @tree
397  * @next_ret - pointer to the first entry whose range ends after @offset
398  * @prev - pointer to the first entry whose range begins before @offset
399  * @p_ret - pointer where new node should be anchored (used when inserting an
400  *          entry in the tree)
401  * @parent_ret - points to entry which would have been the parent of the entry,
402  *               containing @offset
403  *
404  * This function returns a pointer to the entry that contains @offset byte
405  * address. If no such entry exists, then NULL is returned and the other
406  * pointer arguments to the function are filled, otherwise the found entry is
407  * returned and other pointers are left untouched.
408  */
409 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
410                                       struct rb_node **next_ret,
411                                       struct rb_node **prev_ret,
412                                       struct rb_node ***p_ret,
413                                       struct rb_node **parent_ret)
414 {
415         struct rb_root *root = &tree->state;
416         struct rb_node **n = &root->rb_node;
417         struct rb_node *prev = NULL;
418         struct rb_node *orig_prev = NULL;
419         struct tree_entry *entry;
420         struct tree_entry *prev_entry = NULL;
421
422         while (*n) {
423                 prev = *n;
424                 entry = rb_entry(prev, struct tree_entry, rb_node);
425                 prev_entry = entry;
426
427                 if (offset < entry->start)
428                         n = &(*n)->rb_left;
429                 else if (offset > entry->end)
430                         n = &(*n)->rb_right;
431                 else
432                         return *n;
433         }
434
435         if (p_ret)
436                 *p_ret = n;
437         if (parent_ret)
438                 *parent_ret = prev;
439
440         if (next_ret) {
441                 orig_prev = prev;
442                 while (prev && offset > prev_entry->end) {
443                         prev = rb_next(prev);
444                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
445                 }
446                 *next_ret = prev;
447                 prev = orig_prev;
448         }
449
450         if (prev_ret) {
451                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
452                 while (prev && offset < prev_entry->start) {
453                         prev = rb_prev(prev);
454                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
455                 }
456                 *prev_ret = prev;
457         }
458         return NULL;
459 }
460
461 static inline struct rb_node *
462 tree_search_for_insert(struct extent_io_tree *tree,
463                        u64 offset,
464                        struct rb_node ***p_ret,
465                        struct rb_node **parent_ret)
466 {
467         struct rb_node *next= NULL;
468         struct rb_node *ret;
469
470         ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
471         if (!ret)
472                 return next;
473         return ret;
474 }
475
476 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
477                                           u64 offset)
478 {
479         return tree_search_for_insert(tree, offset, NULL, NULL);
480 }
481
482 /*
483  * utility function to look for merge candidates inside a given range.
484  * Any extents with matching state are merged together into a single
485  * extent in the tree.  Extents with EXTENT_IO in their state field
486  * are not merged because the end_io handlers need to be able to do
487  * operations on them without sleeping (or doing allocations/splits).
488  *
489  * This should be called with the tree lock held.
490  */
491 static void merge_state(struct extent_io_tree *tree,
492                         struct extent_state *state)
493 {
494         struct extent_state *other;
495         struct rb_node *other_node;
496
497         if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
498                 return;
499
500         other_node = rb_prev(&state->rb_node);
501         if (other_node) {
502                 other = rb_entry(other_node, struct extent_state, rb_node);
503                 if (other->end == state->start - 1 &&
504                     other->state == state->state) {
505                         if (tree->private_data &&
506                             is_data_inode(tree->private_data))
507                                 btrfs_merge_delalloc_extent(tree->private_data,
508                                                             state, other);
509                         state->start = other->start;
510                         rb_erase(&other->rb_node, &tree->state);
511                         RB_CLEAR_NODE(&other->rb_node);
512                         free_extent_state(other);
513                 }
514         }
515         other_node = rb_next(&state->rb_node);
516         if (other_node) {
517                 other = rb_entry(other_node, struct extent_state, rb_node);
518                 if (other->start == state->end + 1 &&
519                     other->state == state->state) {
520                         if (tree->private_data &&
521                             is_data_inode(tree->private_data))
522                                 btrfs_merge_delalloc_extent(tree->private_data,
523                                                             state, other);
524                         state->end = other->end;
525                         rb_erase(&other->rb_node, &tree->state);
526                         RB_CLEAR_NODE(&other->rb_node);
527                         free_extent_state(other);
528                 }
529         }
530 }
531
532 static void set_state_bits(struct extent_io_tree *tree,
533                            struct extent_state *state, unsigned *bits,
534                            struct extent_changeset *changeset);
535
536 /*
537  * insert an extent_state struct into the tree.  'bits' are set on the
538  * struct before it is inserted.
539  *
540  * This may return -EEXIST if the extent is already there, in which case the
541  * state struct is freed.
542  *
543  * The tree lock is not taken internally.  This is a utility function and
544  * probably isn't what you want to call (see set/clear_extent_bit).
545  */
546 static int insert_state(struct extent_io_tree *tree,
547                         struct extent_state *state, u64 start, u64 end,
548                         struct rb_node ***p,
549                         struct rb_node **parent,
550                         unsigned *bits, struct extent_changeset *changeset)
551 {
552         struct rb_node *node;
553
554         if (end < start) {
555                 btrfs_err(tree->fs_info,
556                         "insert state: end < start %llu %llu", end, start);
557                 WARN_ON(1);
558         }
559         state->start = start;
560         state->end = end;
561
562         set_state_bits(tree, state, bits, changeset);
563
564         node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
565         if (node) {
566                 struct extent_state *found;
567                 found = rb_entry(node, struct extent_state, rb_node);
568                 btrfs_err(tree->fs_info,
569                        "found node %llu %llu on insert of %llu %llu",
570                        found->start, found->end, start, end);
571                 return -EEXIST;
572         }
573         merge_state(tree, state);
574         return 0;
575 }
576
577 /*
578  * split a given extent state struct in two, inserting the preallocated
579  * struct 'prealloc' as the newly created second half.  'split' indicates an
580  * offset inside 'orig' where it should be split.
581  *
582  * Before calling,
583  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
584  * are two extent state structs in the tree:
585  * prealloc: [orig->start, split - 1]
586  * orig: [ split, orig->end ]
587  *
588  * The tree locks are not taken by this function. They need to be held
589  * by the caller.
590  */
591 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
592                        struct extent_state *prealloc, u64 split)
593 {
594         struct rb_node *node;
595
596         if (tree->private_data && is_data_inode(tree->private_data))
597                 btrfs_split_delalloc_extent(tree->private_data, orig, split);
598
599         prealloc->start = orig->start;
600         prealloc->end = split - 1;
601         prealloc->state = orig->state;
602         orig->start = split;
603
604         node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
605                            &prealloc->rb_node, NULL, NULL);
606         if (node) {
607                 free_extent_state(prealloc);
608                 return -EEXIST;
609         }
610         return 0;
611 }
612
613 static struct extent_state *next_state(struct extent_state *state)
614 {
615         struct rb_node *next = rb_next(&state->rb_node);
616         if (next)
617                 return rb_entry(next, struct extent_state, rb_node);
618         else
619                 return NULL;
620 }
621
622 /*
623  * utility function to clear some bits in an extent state struct.
624  * it will optionally wake up anyone waiting on this state (wake == 1).
625  *
626  * If no bits are set on the state struct after clearing things, the
627  * struct is freed and removed from the tree
628  */
629 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
630                                             struct extent_state *state,
631                                             unsigned *bits, int wake,
632                                             struct extent_changeset *changeset)
633 {
634         struct extent_state *next;
635         unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
636         int ret;
637
638         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
639                 u64 range = state->end - state->start + 1;
640                 WARN_ON(range > tree->dirty_bytes);
641                 tree->dirty_bytes -= range;
642         }
643
644         if (tree->private_data && is_data_inode(tree->private_data))
645                 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
646
647         ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
648         BUG_ON(ret < 0);
649         state->state &= ~bits_to_clear;
650         if (wake)
651                 wake_up(&state->wq);
652         if (state->state == 0) {
653                 next = next_state(state);
654                 if (extent_state_in_tree(state)) {
655                         rb_erase(&state->rb_node, &tree->state);
656                         RB_CLEAR_NODE(&state->rb_node);
657                         free_extent_state(state);
658                 } else {
659                         WARN_ON(1);
660                 }
661         } else {
662                 merge_state(tree, state);
663                 next = next_state(state);
664         }
665         return next;
666 }
667
668 static struct extent_state *
669 alloc_extent_state_atomic(struct extent_state *prealloc)
670 {
671         if (!prealloc)
672                 prealloc = alloc_extent_state(GFP_ATOMIC);
673
674         return prealloc;
675 }
676
677 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
678 {
679         struct inode *inode = tree->private_data;
680
681         btrfs_panic(btrfs_sb(inode->i_sb), err,
682         "locking error: extent tree was modified by another thread while locked");
683 }
684
685 /*
686  * clear some bits on a range in the tree.  This may require splitting
687  * or inserting elements in the tree, so the gfp mask is used to
688  * indicate which allocations or sleeping are allowed.
689  *
690  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
691  * the given range from the tree regardless of state (ie for truncate).
692  *
693  * the range [start, end] is inclusive.
694  *
695  * This takes the tree lock, and returns 0 on success and < 0 on error.
696  */
697 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
698                               unsigned bits, int wake, int delete,
699                               struct extent_state **cached_state,
700                               gfp_t mask, struct extent_changeset *changeset)
701 {
702         struct extent_state *state;
703         struct extent_state *cached;
704         struct extent_state *prealloc = NULL;
705         struct rb_node *node;
706         u64 last_end;
707         int err;
708         int clear = 0;
709
710         btrfs_debug_check_extent_io_range(tree, start, end);
711         trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
712
713         if (bits & EXTENT_DELALLOC)
714                 bits |= EXTENT_NORESERVE;
715
716         if (delete)
717                 bits |= ~EXTENT_CTLBITS;
718
719         if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
720                 clear = 1;
721 again:
722         if (!prealloc && gfpflags_allow_blocking(mask)) {
723                 /*
724                  * Don't care for allocation failure here because we might end
725                  * up not needing the pre-allocated extent state at all, which
726                  * is the case if we only have in the tree extent states that
727                  * cover our input range and don't cover too any other range.
728                  * If we end up needing a new extent state we allocate it later.
729                  */
730                 prealloc = alloc_extent_state(mask);
731         }
732
733         spin_lock(&tree->lock);
734         if (cached_state) {
735                 cached = *cached_state;
736
737                 if (clear) {
738                         *cached_state = NULL;
739                         cached_state = NULL;
740                 }
741
742                 if (cached && extent_state_in_tree(cached) &&
743                     cached->start <= start && cached->end > start) {
744                         if (clear)
745                                 refcount_dec(&cached->refs);
746                         state = cached;
747                         goto hit_next;
748                 }
749                 if (clear)
750                         free_extent_state(cached);
751         }
752         /*
753          * this search will find the extents that end after
754          * our range starts
755          */
756         node = tree_search(tree, start);
757         if (!node)
758                 goto out;
759         state = rb_entry(node, struct extent_state, rb_node);
760 hit_next:
761         if (state->start > end)
762                 goto out;
763         WARN_ON(state->end < start);
764         last_end = state->end;
765
766         /* the state doesn't have the wanted bits, go ahead */
767         if (!(state->state & bits)) {
768                 state = next_state(state);
769                 goto next;
770         }
771
772         /*
773          *     | ---- desired range ---- |
774          *  | state | or
775          *  | ------------- state -------------- |
776          *
777          * We need to split the extent we found, and may flip
778          * bits on second half.
779          *
780          * If the extent we found extends past our range, we
781          * just split and search again.  It'll get split again
782          * the next time though.
783          *
784          * If the extent we found is inside our range, we clear
785          * the desired bit on it.
786          */
787
788         if (state->start < start) {
789                 prealloc = alloc_extent_state_atomic(prealloc);
790                 BUG_ON(!prealloc);
791                 err = split_state(tree, state, prealloc, start);
792                 if (err)
793                         extent_io_tree_panic(tree, err);
794
795                 prealloc = NULL;
796                 if (err)
797                         goto out;
798                 if (state->end <= end) {
799                         state = clear_state_bit(tree, state, &bits, wake,
800                                                 changeset);
801                         goto next;
802                 }
803                 goto search_again;
804         }
805         /*
806          * | ---- desired range ---- |
807          *                        | state |
808          * We need to split the extent, and clear the bit
809          * on the first half
810          */
811         if (state->start <= end && state->end > end) {
812                 prealloc = alloc_extent_state_atomic(prealloc);
813                 BUG_ON(!prealloc);
814                 err = split_state(tree, state, prealloc, end + 1);
815                 if (err)
816                         extent_io_tree_panic(tree, err);
817
818                 if (wake)
819                         wake_up(&state->wq);
820
821                 clear_state_bit(tree, prealloc, &bits, wake, changeset);
822
823                 prealloc = NULL;
824                 goto out;
825         }
826
827         state = clear_state_bit(tree, state, &bits, wake, changeset);
828 next:
829         if (last_end == (u64)-1)
830                 goto out;
831         start = last_end + 1;
832         if (start <= end && state && !need_resched())
833                 goto hit_next;
834
835 search_again:
836         if (start > end)
837                 goto out;
838         spin_unlock(&tree->lock);
839         if (gfpflags_allow_blocking(mask))
840                 cond_resched();
841         goto again;
842
843 out:
844         spin_unlock(&tree->lock);
845         if (prealloc)
846                 free_extent_state(prealloc);
847
848         return 0;
849
850 }
851
852 static void wait_on_state(struct extent_io_tree *tree,
853                           struct extent_state *state)
854                 __releases(tree->lock)
855                 __acquires(tree->lock)
856 {
857         DEFINE_WAIT(wait);
858         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
859         spin_unlock(&tree->lock);
860         schedule();
861         spin_lock(&tree->lock);
862         finish_wait(&state->wq, &wait);
863 }
864
865 /*
866  * waits for one or more bits to clear on a range in the state tree.
867  * The range [start, end] is inclusive.
868  * The tree lock is taken by this function
869  */
870 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
871                             unsigned long bits)
872 {
873         struct extent_state *state;
874         struct rb_node *node;
875
876         btrfs_debug_check_extent_io_range(tree, start, end);
877
878         spin_lock(&tree->lock);
879 again:
880         while (1) {
881                 /*
882                  * this search will find all the extents that end after
883                  * our range starts
884                  */
885                 node = tree_search(tree, start);
886 process_node:
887                 if (!node)
888                         break;
889
890                 state = rb_entry(node, struct extent_state, rb_node);
891
892                 if (state->start > end)
893                         goto out;
894
895                 if (state->state & bits) {
896                         start = state->start;
897                         refcount_inc(&state->refs);
898                         wait_on_state(tree, state);
899                         free_extent_state(state);
900                         goto again;
901                 }
902                 start = state->end + 1;
903
904                 if (start > end)
905                         break;
906
907                 if (!cond_resched_lock(&tree->lock)) {
908                         node = rb_next(node);
909                         goto process_node;
910                 }
911         }
912 out:
913         spin_unlock(&tree->lock);
914 }
915
916 static void set_state_bits(struct extent_io_tree *tree,
917                            struct extent_state *state,
918                            unsigned *bits, struct extent_changeset *changeset)
919 {
920         unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
921         int ret;
922
923         if (tree->private_data && is_data_inode(tree->private_data))
924                 btrfs_set_delalloc_extent(tree->private_data, state, bits);
925
926         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
927                 u64 range = state->end - state->start + 1;
928                 tree->dirty_bytes += range;
929         }
930         ret = add_extent_changeset(state, bits_to_set, changeset, 1);
931         BUG_ON(ret < 0);
932         state->state |= bits_to_set;
933 }
934
935 static void cache_state_if_flags(struct extent_state *state,
936                                  struct extent_state **cached_ptr,
937                                  unsigned flags)
938 {
939         if (cached_ptr && !(*cached_ptr)) {
940                 if (!flags || (state->state & flags)) {
941                         *cached_ptr = state;
942                         refcount_inc(&state->refs);
943                 }
944         }
945 }
946
947 static void cache_state(struct extent_state *state,
948                         struct extent_state **cached_ptr)
949 {
950         return cache_state_if_flags(state, cached_ptr,
951                                     EXTENT_LOCKED | EXTENT_BOUNDARY);
952 }
953
954 /*
955  * set some bits on a range in the tree.  This may require allocations or
956  * sleeping, so the gfp mask is used to indicate what is allowed.
957  *
958  * If any of the exclusive bits are set, this will fail with -EEXIST if some
959  * part of the range already has the desired bits set.  The start of the
960  * existing range is returned in failed_start in this case.
961  *
962  * [start, end] is inclusive This takes the tree lock.
963  */
964
965 static int __must_check
966 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
967                  unsigned bits, unsigned exclusive_bits,
968                  u64 *failed_start, struct extent_state **cached_state,
969                  gfp_t mask, struct extent_changeset *changeset)
970 {
971         struct extent_state *state;
972         struct extent_state *prealloc = NULL;
973         struct rb_node *node;
974         struct rb_node **p;
975         struct rb_node *parent;
976         int err = 0;
977         u64 last_start;
978         u64 last_end;
979
980         btrfs_debug_check_extent_io_range(tree, start, end);
981         trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
982
983 again:
984         if (!prealloc && gfpflags_allow_blocking(mask)) {
985                 /*
986                  * Don't care for allocation failure here because we might end
987                  * up not needing the pre-allocated extent state at all, which
988                  * is the case if we only have in the tree extent states that
989                  * cover our input range and don't cover too any other range.
990                  * If we end up needing a new extent state we allocate it later.
991                  */
992                 prealloc = alloc_extent_state(mask);
993         }
994
995         spin_lock(&tree->lock);
996         if (cached_state && *cached_state) {
997                 state = *cached_state;
998                 if (state->start <= start && state->end > start &&
999                     extent_state_in_tree(state)) {
1000                         node = &state->rb_node;
1001                         goto hit_next;
1002                 }
1003         }
1004         /*
1005          * this search will find all the extents that end after
1006          * our range starts.
1007          */
1008         node = tree_search_for_insert(tree, start, &p, &parent);
1009         if (!node) {
1010                 prealloc = alloc_extent_state_atomic(prealloc);
1011                 BUG_ON(!prealloc);
1012                 err = insert_state(tree, prealloc, start, end,
1013                                    &p, &parent, &bits, changeset);
1014                 if (err)
1015                         extent_io_tree_panic(tree, err);
1016
1017                 cache_state(prealloc, cached_state);
1018                 prealloc = NULL;
1019                 goto out;
1020         }
1021         state = rb_entry(node, struct extent_state, rb_node);
1022 hit_next:
1023         last_start = state->start;
1024         last_end = state->end;
1025
1026         /*
1027          * | ---- desired range ---- |
1028          * | state |
1029          *
1030          * Just lock what we found and keep going
1031          */
1032         if (state->start == start && state->end <= end) {
1033                 if (state->state & exclusive_bits) {
1034                         *failed_start = state->start;
1035                         err = -EEXIST;
1036                         goto out;
1037                 }
1038
1039                 set_state_bits(tree, state, &bits, changeset);
1040                 cache_state(state, cached_state);
1041                 merge_state(tree, state);
1042                 if (last_end == (u64)-1)
1043                         goto out;
1044                 start = last_end + 1;
1045                 state = next_state(state);
1046                 if (start < end && state && state->start == start &&
1047                     !need_resched())
1048                         goto hit_next;
1049                 goto search_again;
1050         }
1051
1052         /*
1053          *     | ---- desired range ---- |
1054          * | state |
1055          *   or
1056          * | ------------- state -------------- |
1057          *
1058          * We need to split the extent we found, and may flip bits on
1059          * second half.
1060          *
1061          * If the extent we found extends past our
1062          * range, we just split and search again.  It'll get split
1063          * again the next time though.
1064          *
1065          * If the extent we found is inside our range, we set the
1066          * desired bit on it.
1067          */
1068         if (state->start < start) {
1069                 if (state->state & exclusive_bits) {
1070                         *failed_start = start;
1071                         err = -EEXIST;
1072                         goto out;
1073                 }
1074
1075                 /*
1076                  * If this extent already has all the bits we want set, then
1077                  * skip it, not necessary to split it or do anything with it.
1078                  */
1079                 if ((state->state & bits) == bits) {
1080                         start = state->end + 1;
1081                         cache_state(state, cached_state);
1082                         goto search_again;
1083                 }
1084
1085                 prealloc = alloc_extent_state_atomic(prealloc);
1086                 BUG_ON(!prealloc);
1087                 err = split_state(tree, state, prealloc, start);
1088                 if (err)
1089                         extent_io_tree_panic(tree, err);
1090
1091                 prealloc = NULL;
1092                 if (err)
1093                         goto out;
1094                 if (state->end <= end) {
1095                         set_state_bits(tree, state, &bits, changeset);
1096                         cache_state(state, cached_state);
1097                         merge_state(tree, state);
1098                         if (last_end == (u64)-1)
1099                                 goto out;
1100                         start = last_end + 1;
1101                         state = next_state(state);
1102                         if (start < end && state && state->start == start &&
1103                             !need_resched())
1104                                 goto hit_next;
1105                 }
1106                 goto search_again;
1107         }
1108         /*
1109          * | ---- desired range ---- |
1110          *     | state | or               | state |
1111          *
1112          * There's a hole, we need to insert something in it and
1113          * ignore the extent we found.
1114          */
1115         if (state->start > start) {
1116                 u64 this_end;
1117                 if (end < last_start)
1118                         this_end = end;
1119                 else
1120                         this_end = last_start - 1;
1121
1122                 prealloc = alloc_extent_state_atomic(prealloc);
1123                 BUG_ON(!prealloc);
1124
1125                 /*
1126                  * Avoid to free 'prealloc' if it can be merged with
1127                  * the later extent.
1128                  */
1129                 err = insert_state(tree, prealloc, start, this_end,
1130                                    NULL, NULL, &bits, changeset);
1131                 if (err)
1132                         extent_io_tree_panic(tree, err);
1133
1134                 cache_state(prealloc, cached_state);
1135                 prealloc = NULL;
1136                 start = this_end + 1;
1137                 goto search_again;
1138         }
1139         /*
1140          * | ---- desired range ---- |
1141          *                        | state |
1142          * We need to split the extent, and set the bit
1143          * on the first half
1144          */
1145         if (state->start <= end && state->end > end) {
1146                 if (state->state & exclusive_bits) {
1147                         *failed_start = start;
1148                         err = -EEXIST;
1149                         goto out;
1150                 }
1151
1152                 prealloc = alloc_extent_state_atomic(prealloc);
1153                 BUG_ON(!prealloc);
1154                 err = split_state(tree, state, prealloc, end + 1);
1155                 if (err)
1156                         extent_io_tree_panic(tree, err);
1157
1158                 set_state_bits(tree, prealloc, &bits, changeset);
1159                 cache_state(prealloc, cached_state);
1160                 merge_state(tree, prealloc);
1161                 prealloc = NULL;
1162                 goto out;
1163         }
1164
1165 search_again:
1166         if (start > end)
1167                 goto out;
1168         spin_unlock(&tree->lock);
1169         if (gfpflags_allow_blocking(mask))
1170                 cond_resched();
1171         goto again;
1172
1173 out:
1174         spin_unlock(&tree->lock);
1175         if (prealloc)
1176                 free_extent_state(prealloc);
1177
1178         return err;
1179
1180 }
1181
1182 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1183                    unsigned bits, u64 * failed_start,
1184                    struct extent_state **cached_state, gfp_t mask)
1185 {
1186         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1187                                 cached_state, mask, NULL);
1188 }
1189
1190
1191 /**
1192  * convert_extent_bit - convert all bits in a given range from one bit to
1193  *                      another
1194  * @tree:       the io tree to search
1195  * @start:      the start offset in bytes
1196  * @end:        the end offset in bytes (inclusive)
1197  * @bits:       the bits to set in this range
1198  * @clear_bits: the bits to clear in this range
1199  * @cached_state:       state that we're going to cache
1200  *
1201  * This will go through and set bits for the given range.  If any states exist
1202  * already in this range they are set with the given bit and cleared of the
1203  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1204  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1205  * boundary bits like LOCK.
1206  *
1207  * All allocations are done with GFP_NOFS.
1208  */
1209 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1210                        unsigned bits, unsigned clear_bits,
1211                        struct extent_state **cached_state)
1212 {
1213         struct extent_state *state;
1214         struct extent_state *prealloc = NULL;
1215         struct rb_node *node;
1216         struct rb_node **p;
1217         struct rb_node *parent;
1218         int err = 0;
1219         u64 last_start;
1220         u64 last_end;
1221         bool first_iteration = true;
1222
1223         btrfs_debug_check_extent_io_range(tree, start, end);
1224         trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1225                                        clear_bits);
1226
1227 again:
1228         if (!prealloc) {
1229                 /*
1230                  * Best effort, don't worry if extent state allocation fails
1231                  * here for the first iteration. We might have a cached state
1232                  * that matches exactly the target range, in which case no
1233                  * extent state allocations are needed. We'll only know this
1234                  * after locking the tree.
1235                  */
1236                 prealloc = alloc_extent_state(GFP_NOFS);
1237                 if (!prealloc && !first_iteration)
1238                         return -ENOMEM;
1239         }
1240
1241         spin_lock(&tree->lock);
1242         if (cached_state && *cached_state) {
1243                 state = *cached_state;
1244                 if (state->start <= start && state->end > start &&
1245                     extent_state_in_tree(state)) {
1246                         node = &state->rb_node;
1247                         goto hit_next;
1248                 }
1249         }
1250
1251         /*
1252          * this search will find all the extents that end after
1253          * our range starts.
1254          */
1255         node = tree_search_for_insert(tree, start, &p, &parent);
1256         if (!node) {
1257                 prealloc = alloc_extent_state_atomic(prealloc);
1258                 if (!prealloc) {
1259                         err = -ENOMEM;
1260                         goto out;
1261                 }
1262                 err = insert_state(tree, prealloc, start, end,
1263                                    &p, &parent, &bits, NULL);
1264                 if (err)
1265                         extent_io_tree_panic(tree, err);
1266                 cache_state(prealloc, cached_state);
1267                 prealloc = NULL;
1268                 goto out;
1269         }
1270         state = rb_entry(node, struct extent_state, rb_node);
1271 hit_next:
1272         last_start = state->start;
1273         last_end = state->end;
1274
1275         /*
1276          * | ---- desired range ---- |
1277          * | state |
1278          *
1279          * Just lock what we found and keep going
1280          */
1281         if (state->start == start && state->end <= end) {
1282                 set_state_bits(tree, state, &bits, NULL);
1283                 cache_state(state, cached_state);
1284                 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1285                 if (last_end == (u64)-1)
1286                         goto out;
1287                 start = last_end + 1;
1288                 if (start < end && state && state->start == start &&
1289                     !need_resched())
1290                         goto hit_next;
1291                 goto search_again;
1292         }
1293
1294         /*
1295          *     | ---- desired range ---- |
1296          * | state |
1297          *   or
1298          * | ------------- state -------------- |
1299          *
1300          * We need to split the extent we found, and may flip bits on
1301          * second half.
1302          *
1303          * If the extent we found extends past our
1304          * range, we just split and search again.  It'll get split
1305          * again the next time though.
1306          *
1307          * If the extent we found is inside our range, we set the
1308          * desired bit on it.
1309          */
1310         if (state->start < start) {
1311                 prealloc = alloc_extent_state_atomic(prealloc);
1312                 if (!prealloc) {
1313                         err = -ENOMEM;
1314                         goto out;
1315                 }
1316                 err = split_state(tree, state, prealloc, start);
1317                 if (err)
1318                         extent_io_tree_panic(tree, err);
1319                 prealloc = NULL;
1320                 if (err)
1321                         goto out;
1322                 if (state->end <= end) {
1323                         set_state_bits(tree, state, &bits, NULL);
1324                         cache_state(state, cached_state);
1325                         state = clear_state_bit(tree, state, &clear_bits, 0,
1326                                                 NULL);
1327                         if (last_end == (u64)-1)
1328                                 goto out;
1329                         start = last_end + 1;
1330                         if (start < end && state && state->start == start &&
1331                             !need_resched())
1332                                 goto hit_next;
1333                 }
1334                 goto search_again;
1335         }
1336         /*
1337          * | ---- desired range ---- |
1338          *     | state | or               | state |
1339          *
1340          * There's a hole, we need to insert something in it and
1341          * ignore the extent we found.
1342          */
1343         if (state->start > start) {
1344                 u64 this_end;
1345                 if (end < last_start)
1346                         this_end = end;
1347                 else
1348                         this_end = last_start - 1;
1349
1350                 prealloc = alloc_extent_state_atomic(prealloc);
1351                 if (!prealloc) {
1352                         err = -ENOMEM;
1353                         goto out;
1354                 }
1355
1356                 /*
1357                  * Avoid to free 'prealloc' if it can be merged with
1358                  * the later extent.
1359                  */
1360                 err = insert_state(tree, prealloc, start, this_end,
1361                                    NULL, NULL, &bits, NULL);
1362                 if (err)
1363                         extent_io_tree_panic(tree, err);
1364                 cache_state(prealloc, cached_state);
1365                 prealloc = NULL;
1366                 start = this_end + 1;
1367                 goto search_again;
1368         }
1369         /*
1370          * | ---- desired range ---- |
1371          *                        | state |
1372          * We need to split the extent, and set the bit
1373          * on the first half
1374          */
1375         if (state->start <= end && state->end > end) {
1376                 prealloc = alloc_extent_state_atomic(prealloc);
1377                 if (!prealloc) {
1378                         err = -ENOMEM;
1379                         goto out;
1380                 }
1381
1382                 err = split_state(tree, state, prealloc, end + 1);
1383                 if (err)
1384                         extent_io_tree_panic(tree, err);
1385
1386                 set_state_bits(tree, prealloc, &bits, NULL);
1387                 cache_state(prealloc, cached_state);
1388                 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1389                 prealloc = NULL;
1390                 goto out;
1391         }
1392
1393 search_again:
1394         if (start > end)
1395                 goto out;
1396         spin_unlock(&tree->lock);
1397         cond_resched();
1398         first_iteration = false;
1399         goto again;
1400
1401 out:
1402         spin_unlock(&tree->lock);
1403         if (prealloc)
1404                 free_extent_state(prealloc);
1405
1406         return err;
1407 }
1408
1409 /* wrappers around set/clear extent bit */
1410 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1411                            unsigned bits, struct extent_changeset *changeset)
1412 {
1413         /*
1414          * We don't support EXTENT_LOCKED yet, as current changeset will
1415          * record any bits changed, so for EXTENT_LOCKED case, it will
1416          * either fail with -EEXIST or changeset will record the whole
1417          * range.
1418          */
1419         BUG_ON(bits & EXTENT_LOCKED);
1420
1421         return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1422                                 changeset);
1423 }
1424
1425 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1426                            unsigned bits)
1427 {
1428         return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1429                                 GFP_NOWAIT, NULL);
1430 }
1431
1432 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1433                      unsigned bits, int wake, int delete,
1434                      struct extent_state **cached)
1435 {
1436         return __clear_extent_bit(tree, start, end, bits, wake, delete,
1437                                   cached, GFP_NOFS, NULL);
1438 }
1439
1440 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1441                 unsigned bits, struct extent_changeset *changeset)
1442 {
1443         /*
1444          * Don't support EXTENT_LOCKED case, same reason as
1445          * set_record_extent_bits().
1446          */
1447         BUG_ON(bits & EXTENT_LOCKED);
1448
1449         return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1450                                   changeset);
1451 }
1452
1453 /*
1454  * either insert or lock state struct between start and end use mask to tell
1455  * us if waiting is desired.
1456  */
1457 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1458                      struct extent_state **cached_state)
1459 {
1460         int err;
1461         u64 failed_start;
1462
1463         while (1) {
1464                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1465                                        EXTENT_LOCKED, &failed_start,
1466                                        cached_state, GFP_NOFS, NULL);
1467                 if (err == -EEXIST) {
1468                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1469                         start = failed_start;
1470                 } else
1471                         break;
1472                 WARN_ON(start > end);
1473         }
1474         return err;
1475 }
1476
1477 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1478 {
1479         int err;
1480         u64 failed_start;
1481
1482         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1483                                &failed_start, NULL, GFP_NOFS, NULL);
1484         if (err == -EEXIST) {
1485                 if (failed_start > start)
1486                         clear_extent_bit(tree, start, failed_start - 1,
1487                                          EXTENT_LOCKED, 1, 0, NULL);
1488                 return 0;
1489         }
1490         return 1;
1491 }
1492
1493 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1494 {
1495         unsigned long index = start >> PAGE_SHIFT;
1496         unsigned long end_index = end >> PAGE_SHIFT;
1497         struct page *page;
1498
1499         while (index <= end_index) {
1500                 page = find_get_page(inode->i_mapping, index);
1501                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1502                 clear_page_dirty_for_io(page);
1503                 put_page(page);
1504                 index++;
1505         }
1506 }
1507
1508 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1509 {
1510         unsigned long index = start >> PAGE_SHIFT;
1511         unsigned long end_index = end >> PAGE_SHIFT;
1512         struct page *page;
1513
1514         while (index <= end_index) {
1515                 page = find_get_page(inode->i_mapping, index);
1516                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1517                 __set_page_dirty_nobuffers(page);
1518                 account_page_redirty(page);
1519                 put_page(page);
1520                 index++;
1521         }
1522 }
1523
1524 /* find the first state struct with 'bits' set after 'start', and
1525  * return it.  tree->lock must be held.  NULL will returned if
1526  * nothing was found after 'start'
1527  */
1528 static struct extent_state *
1529 find_first_extent_bit_state(struct extent_io_tree *tree,
1530                             u64 start, unsigned bits)
1531 {
1532         struct rb_node *node;
1533         struct extent_state *state;
1534
1535         /*
1536          * this search will find all the extents that end after
1537          * our range starts.
1538          */
1539         node = tree_search(tree, start);
1540         if (!node)
1541                 goto out;
1542
1543         while (1) {
1544                 state = rb_entry(node, struct extent_state, rb_node);
1545                 if (state->end >= start && (state->state & bits))
1546                         return state;
1547
1548                 node = rb_next(node);
1549                 if (!node)
1550                         break;
1551         }
1552 out:
1553         return NULL;
1554 }
1555
1556 /*
1557  * find the first offset in the io tree with 'bits' set. zero is
1558  * returned if we find something, and *start_ret and *end_ret are
1559  * set to reflect the state struct that was found.
1560  *
1561  * If nothing was found, 1 is returned. If found something, return 0.
1562  */
1563 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1564                           u64 *start_ret, u64 *end_ret, unsigned bits,
1565                           struct extent_state **cached_state)
1566 {
1567         struct extent_state *state;
1568         int ret = 1;
1569
1570         spin_lock(&tree->lock);
1571         if (cached_state && *cached_state) {
1572                 state = *cached_state;
1573                 if (state->end == start - 1 && extent_state_in_tree(state)) {
1574                         while ((state = next_state(state)) != NULL) {
1575                                 if (state->state & bits)
1576                                         goto got_it;
1577                         }
1578                         free_extent_state(*cached_state);
1579                         *cached_state = NULL;
1580                         goto out;
1581                 }
1582                 free_extent_state(*cached_state);
1583                 *cached_state = NULL;
1584         }
1585
1586         state = find_first_extent_bit_state(tree, start, bits);
1587 got_it:
1588         if (state) {
1589                 cache_state_if_flags(state, cached_state, 0);
1590                 *start_ret = state->start;
1591                 *end_ret = state->end;
1592                 ret = 0;
1593         }
1594 out:
1595         spin_unlock(&tree->lock);
1596         return ret;
1597 }
1598
1599 /**
1600  * find_contiguous_extent_bit: find a contiguous area of bits
1601  * @tree - io tree to check
1602  * @start - offset to start the search from
1603  * @start_ret - the first offset we found with the bits set
1604  * @end_ret - the final contiguous range of the bits that were set
1605  * @bits - bits to look for
1606  *
1607  * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1608  * to set bits appropriately, and then merge them again.  During this time it
1609  * will drop the tree->lock, so use this helper if you want to find the actual
1610  * contiguous area for given bits.  We will search to the first bit we find, and
1611  * then walk down the tree until we find a non-contiguous area.  The area
1612  * returned will be the full contiguous area with the bits set.
1613  */
1614 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1615                                u64 *start_ret, u64 *end_ret, unsigned bits)
1616 {
1617         struct extent_state *state;
1618         int ret = 1;
1619
1620         spin_lock(&tree->lock);
1621         state = find_first_extent_bit_state(tree, start, bits);
1622         if (state) {
1623                 *start_ret = state->start;
1624                 *end_ret = state->end;
1625                 while ((state = next_state(state)) != NULL) {
1626                         if (state->start > (*end_ret + 1))
1627                                 break;
1628                         *end_ret = state->end;
1629                 }
1630                 ret = 0;
1631         }
1632         spin_unlock(&tree->lock);
1633         return ret;
1634 }
1635
1636 /**
1637  * find_first_clear_extent_bit - find the first range that has @bits not set.
1638  * This range could start before @start.
1639  *
1640  * @tree - the tree to search
1641  * @start - the offset at/after which the found extent should start
1642  * @start_ret - records the beginning of the range
1643  * @end_ret - records the end of the range (inclusive)
1644  * @bits - the set of bits which must be unset
1645  *
1646  * Since unallocated range is also considered one which doesn't have the bits
1647  * set it's possible that @end_ret contains -1, this happens in case the range
1648  * spans (last_range_end, end of device]. In this case it's up to the caller to
1649  * trim @end_ret to the appropriate size.
1650  */
1651 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1652                                  u64 *start_ret, u64 *end_ret, unsigned bits)
1653 {
1654         struct extent_state *state;
1655         struct rb_node *node, *prev = NULL, *next;
1656
1657         spin_lock(&tree->lock);
1658
1659         /* Find first extent with bits cleared */
1660         while (1) {
1661                 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1662                 if (!node && !next && !prev) {
1663                         /*
1664                          * Tree is completely empty, send full range and let
1665                          * caller deal with it
1666                          */
1667                         *start_ret = 0;
1668                         *end_ret = -1;
1669                         goto out;
1670                 } else if (!node && !next) {
1671                         /*
1672                          * We are past the last allocated chunk, set start at
1673                          * the end of the last extent.
1674                          */
1675                         state = rb_entry(prev, struct extent_state, rb_node);
1676                         *start_ret = state->end + 1;
1677                         *end_ret = -1;
1678                         goto out;
1679                 } else if (!node) {
1680                         node = next;
1681                 }
1682                 /*
1683                  * At this point 'node' either contains 'start' or start is
1684                  * before 'node'
1685                  */
1686                 state = rb_entry(node, struct extent_state, rb_node);
1687
1688                 if (in_range(start, state->start, state->end - state->start + 1)) {
1689                         if (state->state & bits) {
1690                                 /*
1691                                  * |--range with bits sets--|
1692                                  *    |
1693                                  *    start
1694                                  */
1695                                 start = state->end + 1;
1696                         } else {
1697                                 /*
1698                                  * 'start' falls within a range that doesn't
1699                                  * have the bits set, so take its start as
1700                                  * the beginning of the desired range
1701                                  *
1702                                  * |--range with bits cleared----|
1703                                  *      |
1704                                  *      start
1705                                  */
1706                                 *start_ret = state->start;
1707                                 break;
1708                         }
1709                 } else {
1710                         /*
1711                          * |---prev range---|---hole/unset---|---node range---|
1712                          *                          |
1713                          *                        start
1714                          *
1715                          *                        or
1716                          *
1717                          * |---hole/unset--||--first node--|
1718                          * 0   |
1719                          *    start
1720                          */
1721                         if (prev) {
1722                                 state = rb_entry(prev, struct extent_state,
1723                                                  rb_node);
1724                                 *start_ret = state->end + 1;
1725                         } else {
1726                                 *start_ret = 0;
1727                         }
1728                         break;
1729                 }
1730         }
1731
1732         /*
1733          * Find the longest stretch from start until an entry which has the
1734          * bits set
1735          */
1736         while (1) {
1737                 state = rb_entry(node, struct extent_state, rb_node);
1738                 if (state->end >= start && !(state->state & bits)) {
1739                         *end_ret = state->end;
1740                 } else {
1741                         *end_ret = state->start - 1;
1742                         break;
1743                 }
1744
1745                 node = rb_next(node);
1746                 if (!node)
1747                         break;
1748         }
1749 out:
1750         spin_unlock(&tree->lock);
1751 }
1752
1753 /*
1754  * find a contiguous range of bytes in the file marked as delalloc, not
1755  * more than 'max_bytes'.  start and end are used to return the range,
1756  *
1757  * true is returned if we find something, false if nothing was in the tree
1758  */
1759 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1760                                u64 *end, u64 max_bytes,
1761                                struct extent_state **cached_state)
1762 {
1763         struct rb_node *node;
1764         struct extent_state *state;
1765         u64 cur_start = *start;
1766         bool found = false;
1767         u64 total_bytes = 0;
1768
1769         spin_lock(&tree->lock);
1770
1771         /*
1772          * this search will find all the extents that end after
1773          * our range starts.
1774          */
1775         node = tree_search(tree, cur_start);
1776         if (!node) {
1777                 *end = (u64)-1;
1778                 goto out;
1779         }
1780
1781         while (1) {
1782                 state = rb_entry(node, struct extent_state, rb_node);
1783                 if (found && (state->start != cur_start ||
1784                               (state->state & EXTENT_BOUNDARY))) {
1785                         goto out;
1786                 }
1787                 if (!(state->state & EXTENT_DELALLOC)) {
1788                         if (!found)
1789                                 *end = state->end;
1790                         goto out;
1791                 }
1792                 if (!found) {
1793                         *start = state->start;
1794                         *cached_state = state;
1795                         refcount_inc(&state->refs);
1796                 }
1797                 found = true;
1798                 *end = state->end;
1799                 cur_start = state->end + 1;
1800                 node = rb_next(node);
1801                 total_bytes += state->end - state->start + 1;
1802                 if (total_bytes >= max_bytes)
1803                         break;
1804                 if (!node)
1805                         break;
1806         }
1807 out:
1808         spin_unlock(&tree->lock);
1809         return found;
1810 }
1811
1812 static int __process_pages_contig(struct address_space *mapping,
1813                                   struct page *locked_page,
1814                                   pgoff_t start_index, pgoff_t end_index,
1815                                   unsigned long page_ops, pgoff_t *index_ret);
1816
1817 static noinline void __unlock_for_delalloc(struct inode *inode,
1818                                            struct page *locked_page,
1819                                            u64 start, u64 end)
1820 {
1821         unsigned long index = start >> PAGE_SHIFT;
1822         unsigned long end_index = end >> PAGE_SHIFT;
1823
1824         ASSERT(locked_page);
1825         if (index == locked_page->index && end_index == index)
1826                 return;
1827
1828         __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1829                                PAGE_UNLOCK, NULL);
1830 }
1831
1832 static noinline int lock_delalloc_pages(struct inode *inode,
1833                                         struct page *locked_page,
1834                                         u64 delalloc_start,
1835                                         u64 delalloc_end)
1836 {
1837         unsigned long index = delalloc_start >> PAGE_SHIFT;
1838         unsigned long index_ret = index;
1839         unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1840         int ret;
1841
1842         ASSERT(locked_page);
1843         if (index == locked_page->index && index == end_index)
1844                 return 0;
1845
1846         ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1847                                      end_index, PAGE_LOCK, &index_ret);
1848         if (ret == -EAGAIN)
1849                 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1850                                       (u64)index_ret << PAGE_SHIFT);
1851         return ret;
1852 }
1853
1854 /*
1855  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1856  * more than @max_bytes.  @Start and @end are used to return the range,
1857  *
1858  * Return: true if we find something
1859  *         false if nothing was in the tree
1860  */
1861 EXPORT_FOR_TESTS
1862 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1863                                     struct page *locked_page, u64 *start,
1864                                     u64 *end)
1865 {
1866         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1867         u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1868         u64 delalloc_start;
1869         u64 delalloc_end;
1870         bool found;
1871         struct extent_state *cached_state = NULL;
1872         int ret;
1873         int loops = 0;
1874
1875 again:
1876         /* step one, find a bunch of delalloc bytes starting at start */
1877         delalloc_start = *start;
1878         delalloc_end = 0;
1879         found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1880                                           max_bytes, &cached_state);
1881         if (!found || delalloc_end <= *start) {
1882                 *start = delalloc_start;
1883                 *end = delalloc_end;
1884                 free_extent_state(cached_state);
1885                 return false;
1886         }
1887
1888         /*
1889          * start comes from the offset of locked_page.  We have to lock
1890          * pages in order, so we can't process delalloc bytes before
1891          * locked_page
1892          */
1893         if (delalloc_start < *start)
1894                 delalloc_start = *start;
1895
1896         /*
1897          * make sure to limit the number of pages we try to lock down
1898          */
1899         if (delalloc_end + 1 - delalloc_start > max_bytes)
1900                 delalloc_end = delalloc_start + max_bytes - 1;
1901
1902         /* step two, lock all the pages after the page that has start */
1903         ret = lock_delalloc_pages(inode, locked_page,
1904                                   delalloc_start, delalloc_end);
1905         ASSERT(!ret || ret == -EAGAIN);
1906         if (ret == -EAGAIN) {
1907                 /* some of the pages are gone, lets avoid looping by
1908                  * shortening the size of the delalloc range we're searching
1909                  */
1910                 free_extent_state(cached_state);
1911                 cached_state = NULL;
1912                 if (!loops) {
1913                         max_bytes = PAGE_SIZE;
1914                         loops = 1;
1915                         goto again;
1916                 } else {
1917                         found = false;
1918                         goto out_failed;
1919                 }
1920         }
1921
1922         /* step three, lock the state bits for the whole range */
1923         lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1924
1925         /* then test to make sure it is all still delalloc */
1926         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1927                              EXTENT_DELALLOC, 1, cached_state);
1928         if (!ret) {
1929                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1930                                      &cached_state);
1931                 __unlock_for_delalloc(inode, locked_page,
1932                               delalloc_start, delalloc_end);
1933                 cond_resched();
1934                 goto again;
1935         }
1936         free_extent_state(cached_state);
1937         *start = delalloc_start;
1938         *end = delalloc_end;
1939 out_failed:
1940         return found;
1941 }
1942
1943 static int __process_pages_contig(struct address_space *mapping,
1944                                   struct page *locked_page,
1945                                   pgoff_t start_index, pgoff_t end_index,
1946                                   unsigned long page_ops, pgoff_t *index_ret)
1947 {
1948         unsigned long nr_pages = end_index - start_index + 1;
1949         unsigned long pages_locked = 0;
1950         pgoff_t index = start_index;
1951         struct page *pages[16];
1952         unsigned ret;
1953         int err = 0;
1954         int i;
1955
1956         if (page_ops & PAGE_LOCK) {
1957                 ASSERT(page_ops == PAGE_LOCK);
1958                 ASSERT(index_ret && *index_ret == start_index);
1959         }
1960
1961         if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1962                 mapping_set_error(mapping, -EIO);
1963
1964         while (nr_pages > 0) {
1965                 ret = find_get_pages_contig(mapping, index,
1966                                      min_t(unsigned long,
1967                                      nr_pages, ARRAY_SIZE(pages)), pages);
1968                 if (ret == 0) {
1969                         /*
1970                          * Only if we're going to lock these pages,
1971                          * can we find nothing at @index.
1972                          */
1973                         ASSERT(page_ops & PAGE_LOCK);
1974                         err = -EAGAIN;
1975                         goto out;
1976                 }
1977
1978                 for (i = 0; i < ret; i++) {
1979                         if (page_ops & PAGE_SET_PRIVATE2)
1980                                 SetPagePrivate2(pages[i]);
1981
1982                         if (locked_page && pages[i] == locked_page) {
1983                                 put_page(pages[i]);
1984                                 pages_locked++;
1985                                 continue;
1986                         }
1987                         if (page_ops & PAGE_CLEAR_DIRTY)
1988                                 clear_page_dirty_for_io(pages[i]);
1989                         if (page_ops & PAGE_SET_WRITEBACK)
1990                                 set_page_writeback(pages[i]);
1991                         if (page_ops & PAGE_SET_ERROR)
1992                                 SetPageError(pages[i]);
1993                         if (page_ops & PAGE_END_WRITEBACK)
1994                                 end_page_writeback(pages[i]);
1995                         if (page_ops & PAGE_UNLOCK)
1996                                 unlock_page(pages[i]);
1997                         if (page_ops & PAGE_LOCK) {
1998                                 lock_page(pages[i]);
1999                                 if (!PageDirty(pages[i]) ||
2000                                     pages[i]->mapping != mapping) {
2001                                         unlock_page(pages[i]);
2002                                         for (; i < ret; i++)
2003                                                 put_page(pages[i]);
2004                                         err = -EAGAIN;
2005                                         goto out;
2006                                 }
2007                         }
2008                         put_page(pages[i]);
2009                         pages_locked++;
2010                 }
2011                 nr_pages -= ret;
2012                 index += ret;
2013                 cond_resched();
2014         }
2015 out:
2016         if (err && index_ret)
2017                 *index_ret = start_index + pages_locked - 1;
2018         return err;
2019 }
2020
2021 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2022                                   struct page *locked_page,
2023                                   unsigned clear_bits,
2024                                   unsigned long page_ops)
2025 {
2026         clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2027
2028         __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2029                                start >> PAGE_SHIFT, end >> PAGE_SHIFT,
2030                                page_ops, NULL);
2031 }
2032
2033 /*
2034  * count the number of bytes in the tree that have a given bit(s)
2035  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
2036  * cached.  The total number found is returned.
2037  */
2038 u64 count_range_bits(struct extent_io_tree *tree,
2039                      u64 *start, u64 search_end, u64 max_bytes,
2040                      unsigned bits, int contig)
2041 {
2042         struct rb_node *node;
2043         struct extent_state *state;
2044         u64 cur_start = *start;
2045         u64 total_bytes = 0;
2046         u64 last = 0;
2047         int found = 0;
2048
2049         if (WARN_ON(search_end <= cur_start))
2050                 return 0;
2051
2052         spin_lock(&tree->lock);
2053         if (cur_start == 0 && bits == EXTENT_DIRTY) {
2054                 total_bytes = tree->dirty_bytes;
2055                 goto out;
2056         }
2057         /*
2058          * this search will find all the extents that end after
2059          * our range starts.
2060          */
2061         node = tree_search(tree, cur_start);
2062         if (!node)
2063                 goto out;
2064
2065         while (1) {
2066                 state = rb_entry(node, struct extent_state, rb_node);
2067                 if (state->start > search_end)
2068                         break;
2069                 if (contig && found && state->start > last + 1)
2070                         break;
2071                 if (state->end >= cur_start && (state->state & bits) == bits) {
2072                         total_bytes += min(search_end, state->end) + 1 -
2073                                        max(cur_start, state->start);
2074                         if (total_bytes >= max_bytes)
2075                                 break;
2076                         if (!found) {
2077                                 *start = max(cur_start, state->start);
2078                                 found = 1;
2079                         }
2080                         last = state->end;
2081                 } else if (contig && found) {
2082                         break;
2083                 }
2084                 node = rb_next(node);
2085                 if (!node)
2086                         break;
2087         }
2088 out:
2089         spin_unlock(&tree->lock);
2090         return total_bytes;
2091 }
2092
2093 /*
2094  * set the private field for a given byte offset in the tree.  If there isn't
2095  * an extent_state there already, this does nothing.
2096  */
2097 int set_state_failrec(struct extent_io_tree *tree, u64 start,
2098                       struct io_failure_record *failrec)
2099 {
2100         struct rb_node *node;
2101         struct extent_state *state;
2102         int ret = 0;
2103
2104         spin_lock(&tree->lock);
2105         /*
2106          * this search will find all the extents that end after
2107          * our range starts.
2108          */
2109         node = tree_search(tree, start);
2110         if (!node) {
2111                 ret = -ENOENT;
2112                 goto out;
2113         }
2114         state = rb_entry(node, struct extent_state, rb_node);
2115         if (state->start != start) {
2116                 ret = -ENOENT;
2117                 goto out;
2118         }
2119         state->failrec = failrec;
2120 out:
2121         spin_unlock(&tree->lock);
2122         return ret;
2123 }
2124
2125 struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2126 {
2127         struct rb_node *node;
2128         struct extent_state *state;
2129         struct io_failure_record *failrec;
2130
2131         spin_lock(&tree->lock);
2132         /*
2133          * this search will find all the extents that end after
2134          * our range starts.
2135          */
2136         node = tree_search(tree, start);
2137         if (!node) {
2138                 failrec = ERR_PTR(-ENOENT);
2139                 goto out;
2140         }
2141         state = rb_entry(node, struct extent_state, rb_node);
2142         if (state->start != start) {
2143                 failrec = ERR_PTR(-ENOENT);
2144                 goto out;
2145         }
2146
2147         failrec = state->failrec;
2148 out:
2149         spin_unlock(&tree->lock);
2150         return failrec;
2151 }
2152
2153 /*
2154  * searches a range in the state tree for a given mask.
2155  * If 'filled' == 1, this returns 1 only if every extent in the tree
2156  * has the bits set.  Otherwise, 1 is returned if any bit in the
2157  * range is found set.
2158  */
2159 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2160                    unsigned bits, int filled, struct extent_state *cached)
2161 {
2162         struct extent_state *state = NULL;
2163         struct rb_node *node;
2164         int bitset = 0;
2165
2166         spin_lock(&tree->lock);
2167         if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2168             cached->end > start)
2169                 node = &cached->rb_node;
2170         else
2171                 node = tree_search(tree, start);
2172         while (node && start <= end) {
2173                 state = rb_entry(node, struct extent_state, rb_node);
2174
2175                 if (filled && state->start > start) {
2176                         bitset = 0;
2177                         break;
2178                 }
2179
2180                 if (state->start > end)
2181                         break;
2182
2183                 if (state->state & bits) {
2184                         bitset = 1;
2185                         if (!filled)
2186                                 break;
2187                 } else if (filled) {
2188                         bitset = 0;
2189                         break;
2190                 }
2191
2192                 if (state->end == (u64)-1)
2193                         break;
2194
2195                 start = state->end + 1;
2196                 if (start > end)
2197                         break;
2198                 node = rb_next(node);
2199                 if (!node) {
2200                         if (filled)
2201                                 bitset = 0;
2202                         break;
2203                 }
2204         }
2205         spin_unlock(&tree->lock);
2206         return bitset;
2207 }
2208
2209 /*
2210  * helper function to set a given page up to date if all the
2211  * extents in the tree for that page are up to date
2212  */
2213 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2214 {
2215         u64 start = page_offset(page);
2216         u64 end = start + PAGE_SIZE - 1;
2217         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2218                 SetPageUptodate(page);
2219 }
2220
2221 int free_io_failure(struct extent_io_tree *failure_tree,
2222                     struct extent_io_tree *io_tree,
2223                     struct io_failure_record *rec)
2224 {
2225         int ret;
2226         int err = 0;
2227
2228         set_state_failrec(failure_tree, rec->start, NULL);
2229         ret = clear_extent_bits(failure_tree, rec->start,
2230                                 rec->start + rec->len - 1,
2231                                 EXTENT_LOCKED | EXTENT_DIRTY);
2232         if (ret)
2233                 err = ret;
2234
2235         ret = clear_extent_bits(io_tree, rec->start,
2236                                 rec->start + rec->len - 1,
2237                                 EXTENT_DAMAGED);
2238         if (ret && !err)
2239                 err = ret;
2240
2241         kfree(rec);
2242         return err;
2243 }
2244
2245 /*
2246  * this bypasses the standard btrfs submit functions deliberately, as
2247  * the standard behavior is to write all copies in a raid setup. here we only
2248  * want to write the one bad copy. so we do the mapping for ourselves and issue
2249  * submit_bio directly.
2250  * to avoid any synchronization issues, wait for the data after writing, which
2251  * actually prevents the read that triggered the error from finishing.
2252  * currently, there can be no more than two copies of every data bit. thus,
2253  * exactly one rewrite is required.
2254  */
2255 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2256                       u64 length, u64 logical, struct page *page,
2257                       unsigned int pg_offset, int mirror_num)
2258 {
2259         struct bio *bio;
2260         struct btrfs_device *dev;
2261         u64 map_length = 0;
2262         u64 sector;
2263         struct btrfs_bio *bbio = NULL;
2264         int ret;
2265
2266         ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2267         BUG_ON(!mirror_num);
2268
2269         bio = btrfs_io_bio_alloc(1);
2270         bio->bi_iter.bi_size = 0;
2271         map_length = length;
2272
2273         /*
2274          * Avoid races with device replace and make sure our bbio has devices
2275          * associated to its stripes that don't go away while we are doing the
2276          * read repair operation.
2277          */
2278         btrfs_bio_counter_inc_blocked(fs_info);
2279         if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2280                 /*
2281                  * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2282                  * to update all raid stripes, but here we just want to correct
2283                  * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2284                  * stripe's dev and sector.
2285                  */
2286                 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2287                                       &map_length, &bbio, 0);
2288                 if (ret) {
2289                         btrfs_bio_counter_dec(fs_info);
2290                         bio_put(bio);
2291                         return -EIO;
2292                 }
2293                 ASSERT(bbio->mirror_num == 1);
2294         } else {
2295                 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2296                                       &map_length, &bbio, mirror_num);
2297                 if (ret) {
2298                         btrfs_bio_counter_dec(fs_info);
2299                         bio_put(bio);
2300                         return -EIO;
2301                 }
2302                 BUG_ON(mirror_num != bbio->mirror_num);
2303         }
2304
2305         sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2306         bio->bi_iter.bi_sector = sector;
2307         dev = bbio->stripes[bbio->mirror_num - 1].dev;
2308         btrfs_put_bbio(bbio);
2309         if (!dev || !dev->bdev ||
2310             !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2311                 btrfs_bio_counter_dec(fs_info);
2312                 bio_put(bio);
2313                 return -EIO;
2314         }
2315         bio_set_dev(bio, dev->bdev);
2316         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2317         bio_add_page(bio, page, length, pg_offset);
2318
2319         if (btrfsic_submit_bio_wait(bio)) {
2320                 /* try to remap that extent elsewhere? */
2321                 btrfs_bio_counter_dec(fs_info);
2322                 bio_put(bio);
2323                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2324                 return -EIO;
2325         }
2326
2327         btrfs_info_rl_in_rcu(fs_info,
2328                 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2329                                   ino, start,
2330                                   rcu_str_deref(dev->name), sector);
2331         btrfs_bio_counter_dec(fs_info);
2332         bio_put(bio);
2333         return 0;
2334 }
2335
2336 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2337 {
2338         struct btrfs_fs_info *fs_info = eb->fs_info;
2339         u64 start = eb->start;
2340         int i, num_pages = num_extent_pages(eb);
2341         int ret = 0;
2342
2343         if (sb_rdonly(fs_info->sb))
2344                 return -EROFS;
2345
2346         for (i = 0; i < num_pages; i++) {
2347                 struct page *p = eb->pages[i];
2348
2349                 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2350                                         start - page_offset(p), mirror_num);
2351                 if (ret)
2352                         break;
2353                 start += PAGE_SIZE;
2354         }
2355
2356         return ret;
2357 }
2358
2359 /*
2360  * each time an IO finishes, we do a fast check in the IO failure tree
2361  * to see if we need to process or clean up an io_failure_record
2362  */
2363 int clean_io_failure(struct btrfs_fs_info *fs_info,
2364                      struct extent_io_tree *failure_tree,
2365                      struct extent_io_tree *io_tree, u64 start,
2366                      struct page *page, u64 ino, unsigned int pg_offset)
2367 {
2368         u64 private;
2369         struct io_failure_record *failrec;
2370         struct extent_state *state;
2371         int num_copies;
2372         int ret;
2373
2374         private = 0;
2375         ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2376                                EXTENT_DIRTY, 0);
2377         if (!ret)
2378                 return 0;
2379
2380         failrec = get_state_failrec(failure_tree, start);
2381         if (IS_ERR(failrec))
2382                 return 0;
2383
2384         BUG_ON(!failrec->this_mirror);
2385
2386         if (failrec->in_validation) {
2387                 /* there was no real error, just free the record */
2388                 btrfs_debug(fs_info,
2389                         "clean_io_failure: freeing dummy error at %llu",
2390                         failrec->start);
2391                 goto out;
2392         }
2393         if (sb_rdonly(fs_info->sb))
2394                 goto out;
2395
2396         spin_lock(&io_tree->lock);
2397         state = find_first_extent_bit_state(io_tree,
2398                                             failrec->start,
2399                                             EXTENT_LOCKED);
2400         spin_unlock(&io_tree->lock);
2401
2402         if (state && state->start <= failrec->start &&
2403             state->end >= failrec->start + failrec->len - 1) {
2404                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2405                                               failrec->len);
2406                 if (num_copies > 1)  {
2407                         repair_io_failure(fs_info, ino, start, failrec->len,
2408                                           failrec->logical, page, pg_offset,
2409                                           failrec->failed_mirror);
2410                 }
2411         }
2412
2413 out:
2414         free_io_failure(failure_tree, io_tree, failrec);
2415
2416         return 0;
2417 }
2418
2419 /*
2420  * Can be called when
2421  * - hold extent lock
2422  * - under ordered extent
2423  * - the inode is freeing
2424  */
2425 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2426 {
2427         struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2428         struct io_failure_record *failrec;
2429         struct extent_state *state, *next;
2430
2431         if (RB_EMPTY_ROOT(&failure_tree->state))
2432                 return;
2433
2434         spin_lock(&failure_tree->lock);
2435         state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2436         while (state) {
2437                 if (state->start > end)
2438                         break;
2439
2440                 ASSERT(state->end <= end);
2441
2442                 next = next_state(state);
2443
2444                 failrec = state->failrec;
2445                 free_extent_state(state);
2446                 kfree(failrec);
2447
2448                 state = next;
2449         }
2450         spin_unlock(&failure_tree->lock);
2451 }
2452
2453 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2454                                                              u64 start, u64 end)
2455 {
2456         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2457         struct io_failure_record *failrec;
2458         struct extent_map *em;
2459         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2460         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2461         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2462         int ret;
2463         u64 logical;
2464
2465         failrec = get_state_failrec(failure_tree, start);
2466         if (!IS_ERR(failrec)) {
2467                 btrfs_debug(fs_info,
2468                         "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2469                         failrec->logical, failrec->start, failrec->len,
2470                         failrec->in_validation);
2471                 /*
2472                  * when data can be on disk more than twice, add to failrec here
2473                  * (e.g. with a list for failed_mirror) to make
2474                  * clean_io_failure() clean all those errors at once.
2475                  */
2476
2477                 return failrec;
2478         }
2479
2480         failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2481         if (!failrec)
2482                 return ERR_PTR(-ENOMEM);
2483
2484         failrec->start = start;
2485         failrec->len = end - start + 1;
2486         failrec->this_mirror = 0;
2487         failrec->bio_flags = 0;
2488         failrec->in_validation = 0;
2489
2490         read_lock(&em_tree->lock);
2491         em = lookup_extent_mapping(em_tree, start, failrec->len);
2492         if (!em) {
2493                 read_unlock(&em_tree->lock);
2494                 kfree(failrec);
2495                 return ERR_PTR(-EIO);
2496         }
2497
2498         if (em->start > start || em->start + em->len <= start) {
2499                 free_extent_map(em);
2500                 em = NULL;
2501         }
2502         read_unlock(&em_tree->lock);
2503         if (!em) {
2504                 kfree(failrec);
2505                 return ERR_PTR(-EIO);
2506         }
2507
2508         logical = start - em->start;
2509         logical = em->block_start + logical;
2510         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2511                 logical = em->block_start;
2512                 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2513                 extent_set_compress_type(&failrec->bio_flags, em->compress_type);
2514         }
2515
2516         btrfs_debug(fs_info,
2517                     "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2518                     logical, start, failrec->len);
2519
2520         failrec->logical = logical;
2521         free_extent_map(em);
2522
2523         /* Set the bits in the private failure tree */
2524         ret = set_extent_bits(failure_tree, start, end,
2525                               EXTENT_LOCKED | EXTENT_DIRTY);
2526         if (ret >= 0) {
2527                 ret = set_state_failrec(failure_tree, start, failrec);
2528                 /* Set the bits in the inode's tree */
2529                 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2530         } else if (ret < 0) {
2531                 kfree(failrec);
2532                 return ERR_PTR(ret);
2533         }
2534
2535         return failrec;
2536 }
2537
2538 static bool btrfs_check_repairable(struct inode *inode, bool needs_validation,
2539                                    struct io_failure_record *failrec,
2540                                    int failed_mirror)
2541 {
2542         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2543         int num_copies;
2544
2545         num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2546         if (num_copies == 1) {
2547                 /*
2548                  * we only have a single copy of the data, so don't bother with
2549                  * all the retry and error correction code that follows. no
2550                  * matter what the error is, it is very likely to persist.
2551                  */
2552                 btrfs_debug(fs_info,
2553                         "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2554                         num_copies, failrec->this_mirror, failed_mirror);
2555                 return false;
2556         }
2557
2558         /*
2559          * there are two premises:
2560          *      a) deliver good data to the caller
2561          *      b) correct the bad sectors on disk
2562          */
2563         if (needs_validation) {
2564                 /*
2565                  * to fulfill b), we need to know the exact failing sectors, as
2566                  * we don't want to rewrite any more than the failed ones. thus,
2567                  * we need separate read requests for the failed bio
2568                  *
2569                  * if the following BUG_ON triggers, our validation request got
2570                  * merged. we need separate requests for our algorithm to work.
2571                  */
2572                 BUG_ON(failrec->in_validation);
2573                 failrec->in_validation = 1;
2574                 failrec->this_mirror = failed_mirror;
2575         } else {
2576                 /*
2577                  * we're ready to fulfill a) and b) alongside. get a good copy
2578                  * of the failed sector and if we succeed, we have setup
2579                  * everything for repair_io_failure to do the rest for us.
2580                  */
2581                 if (failrec->in_validation) {
2582                         BUG_ON(failrec->this_mirror != failed_mirror);
2583                         failrec->in_validation = 0;
2584                         failrec->this_mirror = 0;
2585                 }
2586                 failrec->failed_mirror = failed_mirror;
2587                 failrec->this_mirror++;
2588                 if (failrec->this_mirror == failed_mirror)
2589                         failrec->this_mirror++;
2590         }
2591
2592         if (failrec->this_mirror > num_copies) {
2593                 btrfs_debug(fs_info,
2594                         "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2595                         num_copies, failrec->this_mirror, failed_mirror);
2596                 return false;
2597         }
2598
2599         return true;
2600 }
2601
2602 static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio)
2603 {
2604         u64 len = 0;
2605         const u32 blocksize = inode->i_sb->s_blocksize;
2606
2607         /*
2608          * If bi_status is BLK_STS_OK, then this was a checksum error, not an
2609          * I/O error. In this case, we already know exactly which sector was
2610          * bad, so we don't need to validate.
2611          */
2612         if (bio->bi_status == BLK_STS_OK)
2613                 return false;
2614
2615         /*
2616          * We need to validate each sector individually if the failed I/O was
2617          * for multiple sectors.
2618          *
2619          * There are a few possible bios that can end up here:
2620          * 1. A buffered read bio, which is not cloned.
2621          * 2. A direct I/O read bio, which is cloned.
2622          * 3. A (buffered or direct) repair bio, which is not cloned.
2623          *
2624          * For cloned bios (case 2), we can get the size from
2625          * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get
2626          * it from the bvecs.
2627          */
2628         if (bio_flagged(bio, BIO_CLONED)) {
2629                 if (btrfs_io_bio(bio)->iter.bi_size > blocksize)
2630                         return true;
2631         } else {
2632                 struct bio_vec *bvec;
2633                 int i;
2634
2635                 bio_for_each_bvec_all(bvec, bio, i) {
2636                         len += bvec->bv_len;
2637                         if (len > blocksize)
2638                                 return true;
2639                 }
2640         }
2641         return false;
2642 }
2643
2644 blk_status_t btrfs_submit_read_repair(struct inode *inode,
2645                                       struct bio *failed_bio, u64 phy_offset,
2646                                       struct page *page, unsigned int pgoff,
2647                                       u64 start, u64 end, int failed_mirror,
2648                                       submit_bio_hook_t *submit_bio_hook)
2649 {
2650         struct io_failure_record *failrec;
2651         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2652         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2653         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2654         struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2655         const int icsum = phy_offset >> inode->i_sb->s_blocksize_bits;
2656         bool need_validation;
2657         struct bio *repair_bio;
2658         struct btrfs_io_bio *repair_io_bio;
2659         blk_status_t status;
2660
2661         btrfs_debug(fs_info,
2662                    "repair read error: read error at %llu", start);
2663
2664         BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2665
2666         failrec = btrfs_get_io_failure_record(inode, start, end);
2667         if (IS_ERR(failrec))
2668                 return errno_to_blk_status(PTR_ERR(failrec));
2669
2670         need_validation = btrfs_io_needs_validation(inode, failed_bio);
2671
2672         if (!btrfs_check_repairable(inode, need_validation, failrec,
2673                                     failed_mirror)) {
2674                 free_io_failure(failure_tree, tree, failrec);
2675                 return BLK_STS_IOERR;
2676         }
2677
2678         repair_bio = btrfs_io_bio_alloc(1);
2679         repair_io_bio = btrfs_io_bio(repair_bio);
2680         repair_bio->bi_opf = REQ_OP_READ;
2681         if (need_validation)
2682                 repair_bio->bi_opf |= REQ_FAILFAST_DEV;
2683         repair_bio->bi_end_io = failed_bio->bi_end_io;
2684         repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2685         repair_bio->bi_private = failed_bio->bi_private;
2686
2687         if (failed_io_bio->csum) {
2688                 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2689
2690                 repair_io_bio->csum = repair_io_bio->csum_inline;
2691                 memcpy(repair_io_bio->csum,
2692                        failed_io_bio->csum + csum_size * icsum, csum_size);
2693         }
2694
2695         bio_add_page(repair_bio, page, failrec->len, pgoff);
2696         repair_io_bio->logical = failrec->start;
2697         repair_io_bio->iter = repair_bio->bi_iter;
2698
2699         btrfs_debug(btrfs_sb(inode->i_sb),
2700 "repair read error: submitting new read to mirror %d, in_validation=%d",
2701                     failrec->this_mirror, failrec->in_validation);
2702
2703         status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2704                                  failrec->bio_flags);
2705         if (status) {
2706                 free_io_failure(failure_tree, tree, failrec);
2707                 bio_put(repair_bio);
2708         }
2709         return status;
2710 }
2711
2712 /* lots and lots of room for performance fixes in the end_bio funcs */
2713
2714 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2715 {
2716         int uptodate = (err == 0);
2717         int ret = 0;
2718
2719         btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2720
2721         if (!uptodate) {
2722                 ClearPageUptodate(page);
2723                 SetPageError(page);
2724                 ret = err < 0 ? err : -EIO;
2725                 mapping_set_error(page->mapping, ret);
2726         }
2727 }
2728
2729 /*
2730  * after a writepage IO is done, we need to:
2731  * clear the uptodate bits on error
2732  * clear the writeback bits in the extent tree for this IO
2733  * end_page_writeback if the page has no more pending IO
2734  *
2735  * Scheduling is not allowed, so the extent state tree is expected
2736  * to have one and only one object corresponding to this IO.
2737  */
2738 static void end_bio_extent_writepage(struct bio *bio)
2739 {
2740         int error = blk_status_to_errno(bio->bi_status);
2741         struct bio_vec *bvec;
2742         u64 start;
2743         u64 end;
2744         struct bvec_iter_all iter_all;
2745
2746         ASSERT(!bio_flagged(bio, BIO_CLONED));
2747         bio_for_each_segment_all(bvec, bio, iter_all) {
2748                 struct page *page = bvec->bv_page;
2749                 struct inode *inode = page->mapping->host;
2750                 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2751
2752                 /* We always issue full-page reads, but if some block
2753                  * in a page fails to read, blk_update_request() will
2754                  * advance bv_offset and adjust bv_len to compensate.
2755                  * Print a warning for nonzero offsets, and an error
2756                  * if they don't add up to a full page.  */
2757                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2758                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2759                                 btrfs_err(fs_info,
2760                                    "partial page write in btrfs with offset %u and length %u",
2761                                         bvec->bv_offset, bvec->bv_len);
2762                         else
2763                                 btrfs_info(fs_info,
2764                                    "incomplete page write in btrfs with offset %u and length %u",
2765                                         bvec->bv_offset, bvec->bv_len);
2766                 }
2767
2768                 start = page_offset(page);
2769                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2770
2771                 end_extent_writepage(page, error, start, end);
2772                 end_page_writeback(page);
2773         }
2774
2775         bio_put(bio);
2776 }
2777
2778 static void
2779 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2780                               int uptodate)
2781 {
2782         struct extent_state *cached = NULL;
2783         u64 end = start + len - 1;
2784
2785         if (uptodate && tree->track_uptodate)
2786                 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2787         unlock_extent_cached_atomic(tree, start, end, &cached);
2788 }
2789
2790 /*
2791  * after a readpage IO is done, we need to:
2792  * clear the uptodate bits on error
2793  * set the uptodate bits if things worked
2794  * set the page up to date if all extents in the tree are uptodate
2795  * clear the lock bit in the extent tree
2796  * unlock the page if there are no other extents locked for it
2797  *
2798  * Scheduling is not allowed, so the extent state tree is expected
2799  * to have one and only one object corresponding to this IO.
2800  */
2801 static void end_bio_extent_readpage(struct bio *bio)
2802 {
2803         struct bio_vec *bvec;
2804         int uptodate = !bio->bi_status;
2805         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2806         struct extent_io_tree *tree, *failure_tree;
2807         u64 offset = 0;
2808         u64 start;
2809         u64 end;
2810         u64 len;
2811         u64 extent_start = 0;
2812         u64 extent_len = 0;
2813         int mirror;
2814         int ret;
2815         struct bvec_iter_all iter_all;
2816
2817         ASSERT(!bio_flagged(bio, BIO_CLONED));
2818         bio_for_each_segment_all(bvec, bio, iter_all) {
2819                 struct page *page = bvec->bv_page;
2820                 struct inode *inode = page->mapping->host;
2821                 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2822                 bool data_inode = btrfs_ino(BTRFS_I(inode))
2823                         != BTRFS_BTREE_INODE_OBJECTID;
2824
2825                 btrfs_debug(fs_info,
2826                         "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2827                         (u64)bio->bi_iter.bi_sector, bio->bi_status,
2828                         io_bio->mirror_num);
2829                 tree = &BTRFS_I(inode)->io_tree;
2830                 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2831
2832                 /* We always issue full-page reads, but if some block
2833                  * in a page fails to read, blk_update_request() will
2834                  * advance bv_offset and adjust bv_len to compensate.
2835                  * Print a warning for nonzero offsets, and an error
2836                  * if they don't add up to a full page.  */
2837                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2838                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2839                                 btrfs_err(fs_info,
2840                                         "partial page read in btrfs with offset %u and length %u",
2841                                         bvec->bv_offset, bvec->bv_len);
2842                         else
2843                                 btrfs_info(fs_info,
2844                                         "incomplete page read in btrfs with offset %u and length %u",
2845                                         bvec->bv_offset, bvec->bv_len);
2846                 }
2847
2848                 start = page_offset(page);
2849                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2850                 len = bvec->bv_len;
2851
2852                 mirror = io_bio->mirror_num;
2853                 if (likely(uptodate)) {
2854                         ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2855                                                               page, start, end,
2856                                                               mirror);
2857                         if (ret)
2858                                 uptodate = 0;
2859                         else
2860                                 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2861                                                  failure_tree, tree, start,
2862                                                  page,
2863                                                  btrfs_ino(BTRFS_I(inode)), 0);
2864                 }
2865
2866                 if (likely(uptodate))
2867                         goto readpage_ok;
2868
2869                 if (data_inode) {
2870
2871                         /*
2872                          * The generic bio_readpage_error handles errors the
2873                          * following way: If possible, new read requests are
2874                          * created and submitted and will end up in
2875                          * end_bio_extent_readpage as well (if we're lucky,
2876                          * not in the !uptodate case). In that case it returns
2877                          * 0 and we just go on with the next page in our bio.
2878                          * If it can't handle the error it will return -EIO and
2879                          * we remain responsible for that page.
2880                          */
2881                         if (!btrfs_submit_read_repair(inode, bio, offset, page,
2882                                                 start - page_offset(page),
2883                                                 start, end, mirror,
2884                                                 tree->ops->submit_bio_hook)) {
2885                                 uptodate = !bio->bi_status;
2886                                 offset += len;
2887                                 continue;
2888                         }
2889                 } else {
2890                         struct extent_buffer *eb;
2891
2892                         eb = (struct extent_buffer *)page->private;
2893                         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2894                         eb->read_mirror = mirror;
2895                         atomic_dec(&eb->io_pages);
2896                         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2897                                                &eb->bflags))
2898                                 btree_readahead_hook(eb, -EIO);
2899                 }
2900 readpage_ok:
2901                 if (likely(uptodate)) {
2902                         loff_t i_size = i_size_read(inode);
2903                         pgoff_t end_index = i_size >> PAGE_SHIFT;
2904                         unsigned off;
2905
2906                         /* Zero out the end if this page straddles i_size */
2907                         off = offset_in_page(i_size);
2908                         if (page->index == end_index && off)
2909                                 zero_user_segment(page, off, PAGE_SIZE);
2910                         SetPageUptodate(page);
2911                 } else {
2912                         ClearPageUptodate(page);
2913                         SetPageError(page);
2914                 }
2915                 unlock_page(page);
2916                 offset += len;
2917
2918                 if (unlikely(!uptodate)) {
2919                         if (extent_len) {
2920                                 endio_readpage_release_extent(tree,
2921                                                               extent_start,
2922                                                               extent_len, 1);
2923                                 extent_start = 0;
2924                                 extent_len = 0;
2925                         }
2926                         endio_readpage_release_extent(tree, start,
2927                                                       end - start + 1, 0);
2928                 } else if (!extent_len) {
2929                         extent_start = start;
2930                         extent_len = end + 1 - start;
2931                 } else if (extent_start + extent_len == start) {
2932                         extent_len += end + 1 - start;
2933                 } else {
2934                         endio_readpage_release_extent(tree, extent_start,
2935                                                       extent_len, uptodate);
2936                         extent_start = start;
2937                         extent_len = end + 1 - start;
2938                 }
2939         }
2940
2941         if (extent_len)
2942                 endio_readpage_release_extent(tree, extent_start, extent_len,
2943                                               uptodate);
2944         btrfs_io_bio_free_csum(io_bio);
2945         bio_put(bio);
2946 }
2947
2948 /*
2949  * Initialize the members up to but not including 'bio'. Use after allocating a
2950  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2951  * 'bio' because use of __GFP_ZERO is not supported.
2952  */
2953 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2954 {
2955         memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2956 }
2957
2958 /*
2959  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2960  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2961  * for the appropriate container_of magic
2962  */
2963 struct bio *btrfs_bio_alloc(u64 first_byte)
2964 {
2965         struct bio *bio;
2966
2967         bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2968         bio->bi_iter.bi_sector = first_byte >> 9;
2969         btrfs_io_bio_init(btrfs_io_bio(bio));
2970         return bio;
2971 }
2972
2973 struct bio *btrfs_bio_clone(struct bio *bio)
2974 {
2975         struct btrfs_io_bio *btrfs_bio;
2976         struct bio *new;
2977
2978         /* Bio allocation backed by a bioset does not fail */
2979         new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2980         btrfs_bio = btrfs_io_bio(new);
2981         btrfs_io_bio_init(btrfs_bio);
2982         btrfs_bio->iter = bio->bi_iter;
2983         return new;
2984 }
2985
2986 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2987 {
2988         struct bio *bio;
2989
2990         /* Bio allocation backed by a bioset does not fail */
2991         bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2992         btrfs_io_bio_init(btrfs_io_bio(bio));
2993         return bio;
2994 }
2995
2996 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2997 {
2998         struct bio *bio;
2999         struct btrfs_io_bio *btrfs_bio;
3000
3001         /* this will never fail when it's backed by a bioset */
3002         bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3003         ASSERT(bio);
3004
3005         btrfs_bio = btrfs_io_bio(bio);
3006         btrfs_io_bio_init(btrfs_bio);
3007
3008         bio_trim(bio, offset >> 9, size >> 9);
3009         btrfs_bio->iter = bio->bi_iter;
3010         return bio;
3011 }
3012
3013 /*
3014  * @opf:        bio REQ_OP_* and REQ_* flags as one value
3015  * @wbc:        optional writeback control for io accounting
3016  * @page:       page to add to the bio
3017  * @pg_offset:  offset of the new bio or to check whether we are adding
3018  *              a contiguous page to the previous one
3019  * @size:       portion of page that we want to write
3020  * @offset:     starting offset in the page
3021  * @bio_ret:    must be valid pointer, newly allocated bio will be stored there
3022  * @end_io_func:     end_io callback for new bio
3023  * @mirror_num:      desired mirror to read/write
3024  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3025  * @bio_flags:  flags of the current bio to see if we can merge them
3026  */
3027 static int submit_extent_page(unsigned int opf,
3028                               struct writeback_control *wbc,
3029                               struct page *page, u64 offset,
3030                               size_t size, unsigned long pg_offset,
3031                               struct bio **bio_ret,
3032                               bio_end_io_t end_io_func,
3033                               int mirror_num,
3034                               unsigned long prev_bio_flags,
3035                               unsigned long bio_flags,
3036                               bool force_bio_submit)
3037 {
3038         int ret = 0;
3039         struct bio *bio;
3040         size_t page_size = min_t(size_t, size, PAGE_SIZE);
3041         sector_t sector = offset >> 9;
3042         struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree;
3043
3044         ASSERT(bio_ret);
3045
3046         if (*bio_ret) {
3047                 bool contig;
3048                 bool can_merge = true;
3049
3050                 bio = *bio_ret;
3051                 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
3052                         contig = bio->bi_iter.bi_sector == sector;
3053                 else
3054                         contig = bio_end_sector(bio) == sector;
3055
3056                 ASSERT(tree->ops);
3057                 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
3058                         can_merge = false;
3059
3060                 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
3061                     force_bio_submit ||
3062                     bio_add_page(bio, page, page_size, pg_offset) < page_size) {
3063                         ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
3064                         if (ret < 0) {
3065                                 *bio_ret = NULL;
3066                                 return ret;
3067                         }
3068                         bio = NULL;
3069                 } else {
3070                         if (wbc)
3071                                 wbc_account_cgroup_owner(wbc, page, page_size);
3072                         return 0;
3073                 }
3074         }
3075
3076         bio = btrfs_bio_alloc(offset);
3077         bio_add_page(bio, page, page_size, pg_offset);
3078         bio->bi_end_io = end_io_func;
3079         bio->bi_private = tree;
3080         bio->bi_write_hint = page->mapping->host->i_write_hint;
3081         bio->bi_opf = opf;
3082         if (wbc) {
3083                 struct block_device *bdev;
3084
3085                 bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
3086                 bio_set_dev(bio, bdev);
3087                 wbc_init_bio(wbc, bio);
3088                 wbc_account_cgroup_owner(wbc, page, page_size);
3089         }
3090
3091         *bio_ret = bio;
3092
3093         return ret;
3094 }
3095
3096 static void attach_extent_buffer_page(struct extent_buffer *eb,
3097                                       struct page *page)
3098 {
3099         if (!PagePrivate(page))
3100                 attach_page_private(page, eb);
3101         else
3102                 WARN_ON(page->private != (unsigned long)eb);
3103 }
3104
3105 void set_page_extent_mapped(struct page *page)
3106 {
3107         if (!PagePrivate(page))
3108                 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3109 }
3110
3111 static struct extent_map *
3112 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3113                  u64 start, u64 len, get_extent_t *get_extent,
3114                  struct extent_map **em_cached)
3115 {
3116         struct extent_map *em;
3117
3118         if (em_cached && *em_cached) {
3119                 em = *em_cached;
3120                 if (extent_map_in_tree(em) && start >= em->start &&
3121                     start < extent_map_end(em)) {
3122                         refcount_inc(&em->refs);
3123                         return em;
3124                 }
3125
3126                 free_extent_map(em);
3127                 *em_cached = NULL;
3128         }
3129
3130         em = get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3131         if (em_cached && !IS_ERR_OR_NULL(em)) {
3132                 BUG_ON(*em_cached);
3133                 refcount_inc(&em->refs);
3134                 *em_cached = em;
3135         }
3136         return em;
3137 }
3138 /*
3139  * basic readpage implementation.  Locked extent state structs are inserted
3140  * into the tree that are removed when the IO is done (by the end_io
3141  * handlers)
3142  * XXX JDM: This needs looking at to ensure proper page locking
3143  * return 0 on success, otherwise return error
3144  */
3145 static int __do_readpage(struct page *page,
3146                          get_extent_t *get_extent,
3147                          struct extent_map **em_cached,
3148                          struct bio **bio, int mirror_num,
3149                          unsigned long *bio_flags, unsigned int read_flags,
3150                          u64 *prev_em_start)
3151 {
3152         struct inode *inode = page->mapping->host;
3153         u64 start = page_offset(page);
3154         const u64 end = start + PAGE_SIZE - 1;
3155         u64 cur = start;
3156         u64 extent_offset;
3157         u64 last_byte = i_size_read(inode);
3158         u64 block_start;
3159         u64 cur_end;
3160         struct extent_map *em;
3161         int ret = 0;
3162         int nr = 0;
3163         size_t pg_offset = 0;
3164         size_t iosize;
3165         size_t disk_io_size;
3166         size_t blocksize = inode->i_sb->s_blocksize;
3167         unsigned long this_bio_flag = 0;
3168         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3169
3170         set_page_extent_mapped(page);
3171
3172         if (!PageUptodate(page)) {
3173                 if (cleancache_get_page(page) == 0) {
3174                         BUG_ON(blocksize != PAGE_SIZE);
3175                         unlock_extent(tree, start, end);
3176                         goto out;
3177                 }
3178         }
3179
3180         if (page->index == last_byte >> PAGE_SHIFT) {
3181                 char *userpage;
3182                 size_t zero_offset = offset_in_page(last_byte);
3183
3184                 if (zero_offset) {
3185                         iosize = PAGE_SIZE - zero_offset;
3186                         userpage = kmap_atomic(page);
3187                         memset(userpage + zero_offset, 0, iosize);
3188                         flush_dcache_page(page);
3189                         kunmap_atomic(userpage);
3190                 }
3191         }
3192         while (cur <= end) {
3193                 bool force_bio_submit = false;
3194                 u64 offset;
3195
3196                 if (cur >= last_byte) {
3197                         char *userpage;
3198                         struct extent_state *cached = NULL;
3199
3200                         iosize = PAGE_SIZE - pg_offset;
3201                         userpage = kmap_atomic(page);
3202                         memset(userpage + pg_offset, 0, iosize);
3203                         flush_dcache_page(page);
3204                         kunmap_atomic(userpage);
3205                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3206                                             &cached, GFP_NOFS);
3207                         unlock_extent_cached(tree, cur,
3208                                              cur + iosize - 1, &cached);
3209                         break;
3210                 }
3211                 em = __get_extent_map(inode, page, pg_offset, cur,
3212                                       end - cur + 1, get_extent, em_cached);
3213                 if (IS_ERR_OR_NULL(em)) {
3214                         SetPageError(page);
3215                         unlock_extent(tree, cur, end);
3216                         break;
3217                 }
3218                 extent_offset = cur - em->start;
3219                 BUG_ON(extent_map_end(em) <= cur);
3220                 BUG_ON(end < cur);
3221
3222                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3223                         this_bio_flag |= EXTENT_BIO_COMPRESSED;
3224                         extent_set_compress_type(&this_bio_flag,
3225                                                  em->compress_type);
3226                 }
3227
3228                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3229                 cur_end = min(extent_map_end(em) - 1, end);
3230                 iosize = ALIGN(iosize, blocksize);
3231                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3232                         disk_io_size = em->block_len;
3233                         offset = em->block_start;
3234                 } else {
3235                         offset = em->block_start + extent_offset;
3236                         disk_io_size = iosize;
3237                 }
3238                 block_start = em->block_start;
3239                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3240                         block_start = EXTENT_MAP_HOLE;
3241
3242                 /*
3243                  * If we have a file range that points to a compressed extent
3244                  * and it's followed by a consecutive file range that points to
3245                  * to the same compressed extent (possibly with a different
3246                  * offset and/or length, so it either points to the whole extent
3247                  * or only part of it), we must make sure we do not submit a
3248                  * single bio to populate the pages for the 2 ranges because
3249                  * this makes the compressed extent read zero out the pages
3250                  * belonging to the 2nd range. Imagine the following scenario:
3251                  *
3252                  *  File layout
3253                  *  [0 - 8K]                     [8K - 24K]
3254                  *    |                               |
3255                  *    |                               |
3256                  * points to extent X,         points to extent X,
3257                  * offset 4K, length of 8K     offset 0, length 16K
3258                  *
3259                  * [extent X, compressed length = 4K uncompressed length = 16K]
3260                  *
3261                  * If the bio to read the compressed extent covers both ranges,
3262                  * it will decompress extent X into the pages belonging to the
3263                  * first range and then it will stop, zeroing out the remaining
3264                  * pages that belong to the other range that points to extent X.
3265                  * So here we make sure we submit 2 bios, one for the first
3266                  * range and another one for the third range. Both will target
3267                  * the same physical extent from disk, but we can't currently
3268                  * make the compressed bio endio callback populate the pages
3269                  * for both ranges because each compressed bio is tightly
3270                  * coupled with a single extent map, and each range can have
3271                  * an extent map with a different offset value relative to the
3272                  * uncompressed data of our extent and different lengths. This
3273                  * is a corner case so we prioritize correctness over
3274                  * non-optimal behavior (submitting 2 bios for the same extent).
3275                  */
3276                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3277                     prev_em_start && *prev_em_start != (u64)-1 &&
3278                     *prev_em_start != em->start)
3279                         force_bio_submit = true;
3280
3281                 if (prev_em_start)
3282                         *prev_em_start = em->start;
3283
3284                 free_extent_map(em);
3285                 em = NULL;
3286
3287                 /* we've found a hole, just zero and go on */
3288                 if (block_start == EXTENT_MAP_HOLE) {
3289                         char *userpage;
3290                         struct extent_state *cached = NULL;
3291
3292                         userpage = kmap_atomic(page);
3293                         memset(userpage + pg_offset, 0, iosize);
3294                         flush_dcache_page(page);
3295                         kunmap_atomic(userpage);
3296
3297                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3298                                             &cached, GFP_NOFS);
3299                         unlock_extent_cached(tree, cur,
3300                                              cur + iosize - 1, &cached);
3301                         cur = cur + iosize;
3302                         pg_offset += iosize;
3303                         continue;
3304                 }
3305                 /* the get_extent function already copied into the page */
3306                 if (test_range_bit(tree, cur, cur_end,
3307                                    EXTENT_UPTODATE, 1, NULL)) {
3308                         check_page_uptodate(tree, page);
3309                         unlock_extent(tree, cur, cur + iosize - 1);
3310                         cur = cur + iosize;
3311                         pg_offset += iosize;
3312                         continue;
3313                 }
3314                 /* we have an inline extent but it didn't get marked up
3315                  * to date.  Error out
3316                  */
3317                 if (block_start == EXTENT_MAP_INLINE) {
3318                         SetPageError(page);
3319                         unlock_extent(tree, cur, cur + iosize - 1);
3320                         cur = cur + iosize;
3321                         pg_offset += iosize;
3322                         continue;
3323                 }
3324
3325                 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3326                                          page, offset, disk_io_size,
3327                                          pg_offset, bio,
3328                                          end_bio_extent_readpage, mirror_num,
3329                                          *bio_flags,
3330                                          this_bio_flag,
3331                                          force_bio_submit);
3332                 if (!ret) {
3333                         nr++;
3334                         *bio_flags = this_bio_flag;
3335                 } else {
3336                         SetPageError(page);
3337                         unlock_extent(tree, cur, cur + iosize - 1);
3338                         goto out;
3339                 }
3340                 cur = cur + iosize;
3341                 pg_offset += iosize;
3342         }
3343 out:
3344         if (!nr) {
3345                 if (!PageError(page))
3346                         SetPageUptodate(page);
3347                 unlock_page(page);
3348         }
3349         return ret;
3350 }
3351
3352 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3353                                              u64 start, u64 end,
3354                                              struct extent_map **em_cached,
3355                                              struct bio **bio,
3356                                              unsigned long *bio_flags,
3357                                              u64 *prev_em_start)
3358 {
3359         struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3360         int index;
3361
3362         btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3363
3364         for (index = 0; index < nr_pages; index++) {
3365                 __do_readpage(pages[index], btrfs_get_extent, em_cached,
3366                                 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3367                 put_page(pages[index]);
3368         }
3369 }
3370
3371 static int __extent_read_full_page(struct page *page,
3372                                    get_extent_t *get_extent,
3373                                    struct bio **bio, int mirror_num,
3374                                    unsigned long *bio_flags,
3375                                    unsigned int read_flags)
3376 {
3377         struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3378         u64 start = page_offset(page);
3379         u64 end = start + PAGE_SIZE - 1;
3380         int ret;
3381
3382         btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3383
3384         ret = __do_readpage(page, get_extent, NULL, bio, mirror_num,
3385                             bio_flags, read_flags, NULL);
3386         return ret;
3387 }
3388
3389 int extent_read_full_page(struct page *page, get_extent_t *get_extent,
3390                           int mirror_num)
3391 {
3392         struct bio *bio = NULL;
3393         unsigned long bio_flags = 0;
3394         int ret;
3395
3396         ret = __extent_read_full_page(page, get_extent, &bio, mirror_num,
3397                                       &bio_flags, 0);
3398         if (bio)
3399                 ret = submit_one_bio(bio, mirror_num, bio_flags);
3400         return ret;
3401 }
3402
3403 static void update_nr_written(struct writeback_control *wbc,
3404                               unsigned long nr_written)
3405 {
3406         wbc->nr_to_write -= nr_written;
3407 }
3408
3409 /*
3410  * helper for __extent_writepage, doing all of the delayed allocation setup.
3411  *
3412  * This returns 1 if btrfs_run_delalloc_range function did all the work required
3413  * to write the page (copy into inline extent).  In this case the IO has
3414  * been started and the page is already unlocked.
3415  *
3416  * This returns 0 if all went well (page still locked)
3417  * This returns < 0 if there were errors (page still locked)
3418  */
3419 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3420                 struct page *page, struct writeback_control *wbc,
3421                 u64 delalloc_start, unsigned long *nr_written)
3422 {
3423         u64 page_end = delalloc_start + PAGE_SIZE - 1;
3424         bool found;
3425         u64 delalloc_to_write = 0;
3426         u64 delalloc_end = 0;
3427         int ret;
3428         int page_started = 0;
3429
3430
3431         while (delalloc_end < page_end) {
3432                 found = find_lock_delalloc_range(&inode->vfs_inode, page,
3433                                                &delalloc_start,
3434                                                &delalloc_end);
3435                 if (!found) {
3436                         delalloc_start = delalloc_end + 1;
3437                         continue;
3438                 }
3439                 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3440                                 delalloc_end, &page_started, nr_written, wbc);
3441                 if (ret) {
3442                         SetPageError(page);
3443                         /*
3444                          * btrfs_run_delalloc_range should return < 0 for error
3445                          * but just in case, we use > 0 here meaning the IO is
3446                          * started, so we don't want to return > 0 unless
3447                          * things are going well.
3448                          */
3449                         return ret < 0 ? ret : -EIO;
3450                 }
3451                 /*
3452                  * delalloc_end is already one less than the total length, so
3453                  * we don't subtract one from PAGE_SIZE
3454                  */
3455                 delalloc_to_write += (delalloc_end - delalloc_start +
3456                                       PAGE_SIZE) >> PAGE_SHIFT;
3457                 delalloc_start = delalloc_end + 1;
3458         }
3459         if (wbc->nr_to_write < delalloc_to_write) {
3460                 int thresh = 8192;
3461
3462                 if (delalloc_to_write < thresh * 2)
3463                         thresh = delalloc_to_write;
3464                 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3465                                          thresh);
3466         }
3467
3468         /* did the fill delalloc function already unlock and start
3469          * the IO?
3470          */
3471         if (page_started) {
3472                 /*
3473                  * we've unlocked the page, so we can't update
3474                  * the mapping's writeback index, just update
3475                  * nr_to_write.
3476                  */
3477                 wbc->nr_to_write -= *nr_written;
3478                 return 1;
3479         }
3480
3481         return 0;
3482 }
3483
3484 /*
3485  * helper for __extent_writepage.  This calls the writepage start hooks,
3486  * and does the loop to map the page into extents and bios.
3487  *
3488  * We return 1 if the IO is started and the page is unlocked,
3489  * 0 if all went well (page still locked)
3490  * < 0 if there were errors (page still locked)
3491  */
3492 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3493                                  struct page *page,
3494                                  struct writeback_control *wbc,
3495                                  struct extent_page_data *epd,
3496                                  loff_t i_size,
3497                                  unsigned long nr_written,
3498                                  int *nr_ret)
3499 {
3500         struct extent_io_tree *tree = &inode->io_tree;
3501         u64 start = page_offset(page);
3502         u64 page_end = start + PAGE_SIZE - 1;
3503         u64 end;
3504         u64 cur = start;
3505         u64 extent_offset;
3506         u64 block_start;
3507         u64 iosize;
3508         struct extent_map *em;
3509         size_t pg_offset = 0;
3510         size_t blocksize;
3511         int ret = 0;
3512         int nr = 0;
3513         const unsigned int write_flags = wbc_to_write_flags(wbc);
3514         bool compressed;
3515
3516         ret = btrfs_writepage_cow_fixup(page, start, page_end);
3517         if (ret) {
3518                 /* Fixup worker will requeue */
3519                 redirty_page_for_writepage(wbc, page);
3520                 update_nr_written(wbc, nr_written);
3521                 unlock_page(page);
3522                 return 1;
3523         }
3524
3525         /*
3526          * we don't want to touch the inode after unlocking the page,
3527          * so we update the mapping writeback index now
3528          */
3529         update_nr_written(wbc, nr_written + 1);
3530
3531         end = page_end;
3532         blocksize = inode->vfs_inode.i_sb->s_blocksize;
3533
3534         while (cur <= end) {
3535                 u64 em_end;
3536                 u64 offset;
3537
3538                 if (cur >= i_size) {
3539                         btrfs_writepage_endio_finish_ordered(page, cur,
3540                                                              page_end, 1);
3541                         break;
3542                 }
3543                 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3544                 if (IS_ERR_OR_NULL(em)) {
3545                         SetPageError(page);
3546                         ret = PTR_ERR_OR_ZERO(em);
3547                         break;
3548                 }
3549
3550                 extent_offset = cur - em->start;
3551                 em_end = extent_map_end(em);
3552                 BUG_ON(em_end <= cur);
3553                 BUG_ON(end < cur);
3554                 iosize = min(em_end - cur, end - cur + 1);
3555                 iosize = ALIGN(iosize, blocksize);
3556                 offset = em->block_start + extent_offset;
3557                 block_start = em->block_start;
3558                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3559                 free_extent_map(em);
3560                 em = NULL;
3561
3562                 /*
3563                  * compressed and inline extents are written through other
3564                  * paths in the FS
3565                  */
3566                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3567                     block_start == EXTENT_MAP_INLINE) {
3568                         if (compressed)
3569                                 nr++;
3570                         else
3571                                 btrfs_writepage_endio_finish_ordered(page, cur,
3572                                                         cur + iosize - 1, 1);
3573                         cur += iosize;
3574                         pg_offset += iosize;
3575                         continue;
3576                 }
3577
3578                 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3579                 if (!PageWriteback(page)) {
3580                         btrfs_err(inode->root->fs_info,
3581                                    "page %lu not writeback, cur %llu end %llu",
3582                                page->index, cur, end);
3583                 }
3584
3585                 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3586                                          page, offset, iosize, pg_offset,
3587                                          &epd->bio,
3588                                          end_bio_extent_writepage,
3589                                          0, 0, 0, false);
3590                 if (ret) {
3591                         SetPageError(page);
3592                         if (PageWriteback(page))
3593                                 end_page_writeback(page);
3594                 }
3595
3596                 cur = cur + iosize;
3597                 pg_offset += iosize;
3598                 nr++;
3599         }
3600         *nr_ret = nr;
3601         return ret;
3602 }
3603
3604 /*
3605  * the writepage semantics are similar to regular writepage.  extent
3606  * records are inserted to lock ranges in the tree, and as dirty areas
3607  * are found, they are marked writeback.  Then the lock bits are removed
3608  * and the end_io handler clears the writeback ranges
3609  *
3610  * Return 0 if everything goes well.
3611  * Return <0 for error.
3612  */
3613 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3614                               struct extent_page_data *epd)
3615 {
3616         struct inode *inode = page->mapping->host;
3617         u64 start = page_offset(page);
3618         u64 page_end = start + PAGE_SIZE - 1;
3619         int ret;
3620         int nr = 0;
3621         size_t pg_offset;
3622         loff_t i_size = i_size_read(inode);
3623         unsigned long end_index = i_size >> PAGE_SHIFT;
3624         unsigned long nr_written = 0;
3625
3626         trace___extent_writepage(page, inode, wbc);
3627
3628         WARN_ON(!PageLocked(page));
3629
3630         ClearPageError(page);
3631
3632         pg_offset = offset_in_page(i_size);
3633         if (page->index > end_index ||
3634            (page->index == end_index && !pg_offset)) {
3635                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3636                 unlock_page(page);
3637                 return 0;
3638         }
3639
3640         if (page->index == end_index) {
3641                 char *userpage;
3642
3643                 userpage = kmap_atomic(page);
3644                 memset(userpage + pg_offset, 0,
3645                        PAGE_SIZE - pg_offset);
3646                 kunmap_atomic(userpage);
3647                 flush_dcache_page(page);
3648         }
3649
3650         set_page_extent_mapped(page);
3651
3652         if (!epd->extent_locked) {
3653                 ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
3654                                          &nr_written);
3655                 if (ret == 1)
3656                         return 0;
3657                 if (ret)
3658                         goto done;
3659         }
3660
3661         ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
3662                                     nr_written, &nr);
3663         if (ret == 1)
3664                 return 0;
3665
3666 done:
3667         if (nr == 0) {
3668                 /* make sure the mapping tag for page dirty gets cleared */
3669                 set_page_writeback(page);
3670                 end_page_writeback(page);
3671         }
3672         if (PageError(page)) {
3673                 ret = ret < 0 ? ret : -EIO;
3674                 end_extent_writepage(page, ret, start, page_end);
3675         }
3676         unlock_page(page);
3677         ASSERT(ret <= 0);
3678         return ret;
3679 }
3680
3681 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3682 {
3683         wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3684                        TASK_UNINTERRUPTIBLE);
3685 }
3686
3687 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3688 {
3689         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3690         smp_mb__after_atomic();
3691         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3692 }
3693
3694 /*
3695  * Lock eb pages and flush the bio if we can't the locks
3696  *
3697  * Return  0 if nothing went wrong
3698  * Return >0 is same as 0, except bio is not submitted
3699  * Return <0 if something went wrong, no page is locked
3700  */
3701 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3702                           struct extent_page_data *epd)
3703 {
3704         struct btrfs_fs_info *fs_info = eb->fs_info;
3705         int i, num_pages, failed_page_nr;
3706         int flush = 0;
3707         int ret = 0;
3708
3709         if (!btrfs_try_tree_write_lock(eb)) {
3710                 ret = flush_write_bio(epd);
3711                 if (ret < 0)
3712                         return ret;
3713                 flush = 1;
3714                 btrfs_tree_lock(eb);
3715         }
3716
3717         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3718                 btrfs_tree_unlock(eb);
3719                 if (!epd->sync_io)
3720                         return 0;
3721                 if (!flush) {
3722                         ret = flush_write_bio(epd);
3723                         if (ret < 0)
3724                                 return ret;
3725                         flush = 1;
3726                 }
3727                 while (1) {
3728                         wait_on_extent_buffer_writeback(eb);
3729                         btrfs_tree_lock(eb);
3730                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3731                                 break;
3732                         btrfs_tree_unlock(eb);
3733                 }
3734         }
3735
3736         /*
3737          * We need to do this to prevent races in people who check if the eb is
3738          * under IO since we can end up having no IO bits set for a short period
3739          * of time.
3740          */
3741         spin_lock(&eb->refs_lock);
3742         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3743                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3744                 spin_unlock(&eb->refs_lock);
3745                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3746                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3747                                          -eb->len,
3748                                          fs_info->dirty_metadata_batch);
3749                 ret = 1;
3750         } else {
3751                 spin_unlock(&eb->refs_lock);
3752         }
3753
3754         btrfs_tree_unlock(eb);
3755
3756         if (!ret)
3757                 return ret;
3758
3759         num_pages = num_extent_pages(eb);
3760         for (i = 0; i < num_pages; i++) {
3761                 struct page *p = eb->pages[i];
3762
3763                 if (!trylock_page(p)) {
3764                         if (!flush) {
3765                                 int err;
3766
3767                                 err = flush_write_bio(epd);
3768                                 if (err < 0) {
3769                                         ret = err;
3770                                         failed_page_nr = i;
3771                                         goto err_unlock;
3772                                 }
3773                                 flush = 1;
3774                         }
3775                         lock_page(p);
3776                 }
3777         }
3778
3779         return ret;
3780 err_unlock:
3781         /* Unlock already locked pages */
3782         for (i = 0; i < failed_page_nr; i++)
3783                 unlock_page(eb->pages[i]);
3784         /*
3785          * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3786          * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3787          * be made and undo everything done before.
3788          */
3789         btrfs_tree_lock(eb);
3790         spin_lock(&eb->refs_lock);
3791         set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3792         end_extent_buffer_writeback(eb);
3793         spin_unlock(&eb->refs_lock);
3794         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3795                                  fs_info->dirty_metadata_batch);
3796         btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3797         btrfs_tree_unlock(eb);
3798         return ret;
3799 }
3800
3801 static void set_btree_ioerr(struct page *page)
3802 {
3803         struct extent_buffer *eb = (struct extent_buffer *)page->private;
3804         struct btrfs_fs_info *fs_info;
3805
3806         SetPageError(page);
3807         if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3808                 return;
3809
3810         /*
3811          * If we error out, we should add back the dirty_metadata_bytes
3812          * to make it consistent.
3813          */
3814         fs_info = eb->fs_info;
3815         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3816                                  eb->len, fs_info->dirty_metadata_batch);
3817
3818         /*
3819          * If writeback for a btree extent that doesn't belong to a log tree
3820          * failed, increment the counter transaction->eb_write_errors.
3821          * We do this because while the transaction is running and before it's
3822          * committing (when we call filemap_fdata[write|wait]_range against
3823          * the btree inode), we might have
3824          * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3825          * returns an error or an error happens during writeback, when we're
3826          * committing the transaction we wouldn't know about it, since the pages
3827          * can be no longer dirty nor marked anymore for writeback (if a
3828          * subsequent modification to the extent buffer didn't happen before the
3829          * transaction commit), which makes filemap_fdata[write|wait]_range not
3830          * able to find the pages tagged with SetPageError at transaction
3831          * commit time. So if this happens we must abort the transaction,
3832          * otherwise we commit a super block with btree roots that point to
3833          * btree nodes/leafs whose content on disk is invalid - either garbage
3834          * or the content of some node/leaf from a past generation that got
3835          * cowed or deleted and is no longer valid.
3836          *
3837          * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3838          * not be enough - we need to distinguish between log tree extents vs
3839          * non-log tree extents, and the next filemap_fdatawait_range() call
3840          * will catch and clear such errors in the mapping - and that call might
3841          * be from a log sync and not from a transaction commit. Also, checking
3842          * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3843          * not done and would not be reliable - the eb might have been released
3844          * from memory and reading it back again means that flag would not be
3845          * set (since it's a runtime flag, not persisted on disk).
3846          *
3847          * Using the flags below in the btree inode also makes us achieve the
3848          * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3849          * writeback for all dirty pages and before filemap_fdatawait_range()
3850          * is called, the writeback for all dirty pages had already finished
3851          * with errors - because we were not using AS_EIO/AS_ENOSPC,
3852          * filemap_fdatawait_range() would return success, as it could not know
3853          * that writeback errors happened (the pages were no longer tagged for
3854          * writeback).
3855          */
3856         switch (eb->log_index) {
3857         case -1:
3858                 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3859                 break;
3860         case 0:
3861                 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3862                 break;
3863         case 1:
3864                 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3865                 break;
3866         default:
3867                 BUG(); /* unexpected, logic error */
3868         }
3869 }
3870
3871 static void end_bio_extent_buffer_writepage(struct bio *bio)
3872 {
3873         struct bio_vec *bvec;
3874         struct extent_buffer *eb;
3875         int done;
3876         struct bvec_iter_all iter_all;
3877
3878         ASSERT(!bio_flagged(bio, BIO_CLONED));
3879         bio_for_each_segment_all(bvec, bio, iter_all) {
3880                 struct page *page = bvec->bv_page;
3881
3882                 eb = (struct extent_buffer *)page->private;
3883                 BUG_ON(!eb);
3884                 done = atomic_dec_and_test(&eb->io_pages);
3885
3886                 if (bio->bi_status ||
3887                     test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3888                         ClearPageUptodate(page);
3889                         set_btree_ioerr(page);
3890                 }
3891
3892                 end_page_writeback(page);
3893
3894                 if (!done)
3895                         continue;
3896
3897                 end_extent_buffer_writeback(eb);
3898         }
3899
3900         bio_put(bio);
3901 }
3902
3903 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3904                         struct writeback_control *wbc,
3905                         struct extent_page_data *epd)
3906 {
3907         u64 offset = eb->start;
3908         u32 nritems;
3909         int i, num_pages;
3910         unsigned long start, end;
3911         unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3912         int ret = 0;
3913
3914         clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3915         num_pages = num_extent_pages(eb);
3916         atomic_set(&eb->io_pages, num_pages);
3917
3918         /* set btree blocks beyond nritems with 0 to avoid stale content. */
3919         nritems = btrfs_header_nritems(eb);
3920         if (btrfs_header_level(eb) > 0) {
3921                 end = btrfs_node_key_ptr_offset(nritems);
3922
3923                 memzero_extent_buffer(eb, end, eb->len - end);
3924         } else {
3925                 /*
3926                  * leaf:
3927                  * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3928                  */
3929                 start = btrfs_item_nr_offset(nritems);
3930                 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3931                 memzero_extent_buffer(eb, start, end - start);
3932         }
3933
3934         for (i = 0; i < num_pages; i++) {
3935                 struct page *p = eb->pages[i];
3936
3937                 clear_page_dirty_for_io(p);
3938                 set_page_writeback(p);
3939                 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3940                                          p, offset, PAGE_SIZE, 0,
3941                                          &epd->bio,
3942                                          end_bio_extent_buffer_writepage,
3943                                          0, 0, 0, false);
3944                 if (ret) {
3945                         set_btree_ioerr(p);
3946                         if (PageWriteback(p))
3947                                 end_page_writeback(p);
3948                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3949                                 end_extent_buffer_writeback(eb);
3950                         ret = -EIO;
3951                         break;
3952                 }
3953                 offset += PAGE_SIZE;
3954                 update_nr_written(wbc, 1);
3955                 unlock_page(p);
3956         }
3957
3958         if (unlikely(ret)) {
3959                 for (; i < num_pages; i++) {
3960                         struct page *p = eb->pages[i];
3961                         clear_page_dirty_for_io(p);
3962                         unlock_page(p);
3963                 }
3964         }
3965
3966         return ret;
3967 }
3968
3969 int btree_write_cache_pages(struct address_space *mapping,
3970                                    struct writeback_control *wbc)
3971 {
3972         struct extent_buffer *eb, *prev_eb = NULL;
3973         struct extent_page_data epd = {
3974                 .bio = NULL,
3975                 .extent_locked = 0,
3976                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3977         };
3978         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3979         int ret = 0;
3980         int done = 0;
3981         int nr_to_write_done = 0;
3982         struct pagevec pvec;
3983         int nr_pages;
3984         pgoff_t index;
3985         pgoff_t end;            /* Inclusive */
3986         int scanned = 0;
3987         xa_mark_t tag;
3988
3989         pagevec_init(&pvec);
3990         if (wbc->range_cyclic) {
3991                 index = mapping->writeback_index; /* Start from prev offset */
3992                 end = -1;
3993                 /*
3994                  * Start from the beginning does not need to cycle over the
3995                  * range, mark it as scanned.
3996                  */
3997                 scanned = (index == 0);
3998         } else {
3999                 index = wbc->range_start >> PAGE_SHIFT;
4000                 end = wbc->range_end >> PAGE_SHIFT;
4001                 scanned = 1;
4002         }
4003         if (wbc->sync_mode == WB_SYNC_ALL)
4004                 tag = PAGECACHE_TAG_TOWRITE;
4005         else
4006                 tag = PAGECACHE_TAG_DIRTY;
4007 retry:
4008         if (wbc->sync_mode == WB_SYNC_ALL)
4009                 tag_pages_for_writeback(mapping, index, end);
4010         while (!done && !nr_to_write_done && (index <= end) &&
4011                (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4012                         tag))) {
4013                 unsigned i;
4014
4015                 for (i = 0; i < nr_pages; i++) {
4016                         struct page *page = pvec.pages[i];
4017
4018                         if (!PagePrivate(page))
4019                                 continue;
4020
4021                         spin_lock(&mapping->private_lock);
4022                         if (!PagePrivate(page)) {
4023                                 spin_unlock(&mapping->private_lock);
4024                                 continue;
4025                         }
4026
4027                         eb = (struct extent_buffer *)page->private;
4028
4029                         /*
4030                          * Shouldn't happen and normally this would be a BUG_ON
4031                          * but no sense in crashing the users box for something
4032                          * we can survive anyway.
4033                          */
4034                         if (WARN_ON(!eb)) {
4035                                 spin_unlock(&mapping->private_lock);
4036                                 continue;
4037                         }
4038
4039                         if (eb == prev_eb) {
4040                                 spin_unlock(&mapping->private_lock);
4041                                 continue;
4042                         }
4043
4044                         ret = atomic_inc_not_zero(&eb->refs);
4045                         spin_unlock(&mapping->private_lock);
4046                         if (!ret)
4047                                 continue;
4048
4049                         prev_eb = eb;
4050                         ret = lock_extent_buffer_for_io(eb, &epd);
4051                         if (!ret) {
4052                                 free_extent_buffer(eb);
4053                                 continue;
4054                         } else if (ret < 0) {
4055                                 done = 1;
4056                                 free_extent_buffer(eb);
4057                                 break;
4058                         }
4059
4060                         ret = write_one_eb(eb, wbc, &epd);
4061                         if (ret) {
4062                                 done = 1;
4063                                 free_extent_buffer(eb);
4064                                 break;
4065                         }
4066                         free_extent_buffer(eb);
4067
4068                         /*
4069                          * the filesystem may choose to bump up nr_to_write.
4070                          * We have to make sure to honor the new nr_to_write
4071                          * at any time
4072                          */
4073                         nr_to_write_done = wbc->nr_to_write <= 0;
4074                 }
4075                 pagevec_release(&pvec);
4076                 cond_resched();
4077         }
4078         if (!scanned && !done) {
4079                 /*
4080                  * We hit the last page and there is more work to be done: wrap
4081                  * back to the start of the file
4082                  */
4083                 scanned = 1;
4084                 index = 0;
4085                 goto retry;
4086         }
4087         ASSERT(ret <= 0);
4088         if (ret < 0) {
4089                 end_write_bio(&epd, ret);
4090                 return ret;
4091         }
4092         /*
4093          * If something went wrong, don't allow any metadata write bio to be
4094          * submitted.
4095          *
4096          * This would prevent use-after-free if we had dirty pages not
4097          * cleaned up, which can still happen by fuzzed images.
4098          *
4099          * - Bad extent tree
4100          *   Allowing existing tree block to be allocated for other trees.
4101          *
4102          * - Log tree operations
4103          *   Exiting tree blocks get allocated to log tree, bumps its
4104          *   generation, then get cleaned in tree re-balance.
4105          *   Such tree block will not be written back, since it's clean,
4106          *   thus no WRITTEN flag set.
4107          *   And after log writes back, this tree block is not traced by
4108          *   any dirty extent_io_tree.
4109          *
4110          * - Offending tree block gets re-dirtied from its original owner
4111          *   Since it has bumped generation, no WRITTEN flag, it can be
4112          *   reused without COWing. This tree block will not be traced
4113          *   by btrfs_transaction::dirty_pages.
4114          *
4115          *   Now such dirty tree block will not be cleaned by any dirty
4116          *   extent io tree. Thus we don't want to submit such wild eb
4117          *   if the fs already has error.
4118          */
4119         if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4120                 ret = flush_write_bio(&epd);
4121         } else {
4122                 ret = -EROFS;
4123                 end_write_bio(&epd, ret);
4124         }
4125         return ret;
4126 }
4127
4128 /**
4129  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4130  * @mapping: address space structure to write
4131  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4132  * @data: data passed to __extent_writepage function
4133  *
4134  * If a page is already under I/O, write_cache_pages() skips it, even
4135  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4136  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4137  * and msync() need to guarantee that all the data which was dirty at the time
4138  * the call was made get new I/O started against them.  If wbc->sync_mode is
4139  * WB_SYNC_ALL then we were called for data integrity and we must wait for
4140  * existing IO to complete.
4141  */
4142 static int extent_write_cache_pages(struct address_space *mapping,
4143                              struct writeback_control *wbc,
4144                              struct extent_page_data *epd)
4145 {
4146         struct inode *inode = mapping->host;
4147         int ret = 0;
4148         int done = 0;
4149         int nr_to_write_done = 0;
4150         struct pagevec pvec;
4151         int nr_pages;
4152         pgoff_t index;
4153         pgoff_t end;            /* Inclusive */
4154         pgoff_t done_index;
4155         int range_whole = 0;
4156         int scanned = 0;
4157         xa_mark_t tag;
4158
4159         /*
4160          * We have to hold onto the inode so that ordered extents can do their
4161          * work when the IO finishes.  The alternative to this is failing to add
4162          * an ordered extent if the igrab() fails there and that is a huge pain
4163          * to deal with, so instead just hold onto the inode throughout the
4164          * writepages operation.  If it fails here we are freeing up the inode
4165          * anyway and we'd rather not waste our time writing out stuff that is
4166          * going to be truncated anyway.
4167          */
4168         if (!igrab(inode))
4169                 return 0;
4170
4171         pagevec_init(&pvec);
4172         if (wbc->range_cyclic) {
4173                 index = mapping->writeback_index; /* Start from prev offset */
4174                 end = -1;
4175                 /*
4176                  * Start from the beginning does not need to cycle over the
4177                  * range, mark it as scanned.
4178                  */
4179                 scanned = (index == 0);
4180         } else {
4181                 index = wbc->range_start >> PAGE_SHIFT;
4182                 end = wbc->range_end >> PAGE_SHIFT;
4183                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4184                         range_whole = 1;
4185                 scanned = 1;
4186         }
4187
4188         /*
4189          * We do the tagged writepage as long as the snapshot flush bit is set
4190          * and we are the first one who do the filemap_flush() on this inode.
4191          *
4192          * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4193          * not race in and drop the bit.
4194          */
4195         if (range_whole && wbc->nr_to_write == LONG_MAX &&
4196             test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4197                                &BTRFS_I(inode)->runtime_flags))
4198                 wbc->tagged_writepages = 1;
4199
4200         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4201                 tag = PAGECACHE_TAG_TOWRITE;
4202         else
4203                 tag = PAGECACHE_TAG_DIRTY;
4204 retry:
4205         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4206                 tag_pages_for_writeback(mapping, index, end);
4207         done_index = index;
4208         while (!done && !nr_to_write_done && (index <= end) &&
4209                         (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4210                                                 &index, end, tag))) {
4211                 unsigned i;
4212
4213                 for (i = 0; i < nr_pages; i++) {
4214                         struct page *page = pvec.pages[i];
4215
4216                         done_index = page->index + 1;
4217                         /*
4218                          * At this point we hold neither the i_pages lock nor
4219                          * the page lock: the page may be truncated or
4220                          * invalidated (changing page->mapping to NULL),
4221                          * or even swizzled back from swapper_space to
4222                          * tmpfs file mapping
4223                          */
4224                         if (!trylock_page(page)) {
4225                                 ret = flush_write_bio(epd);
4226                                 BUG_ON(ret < 0);
4227                                 lock_page(page);
4228                         }
4229
4230                         if (unlikely(page->mapping != mapping)) {
4231                                 unlock_page(page);
4232                                 continue;
4233                         }
4234
4235                         if (wbc->sync_mode != WB_SYNC_NONE) {
4236                                 if (PageWriteback(page)) {
4237                                         ret = flush_write_bio(epd);
4238                                         BUG_ON(ret < 0);
4239                                 }
4240                                 wait_on_page_writeback(page);
4241                         }
4242
4243                         if (PageWriteback(page) ||
4244                             !clear_page_dirty_for_io(page)) {
4245                                 unlock_page(page);
4246                                 continue;
4247                         }
4248
4249                         ret = __extent_writepage(page, wbc, epd);
4250                         if (ret < 0) {
4251                                 done = 1;
4252                                 break;
4253                         }
4254
4255                         /*
4256                          * the filesystem may choose to bump up nr_to_write.
4257                          * We have to make sure to honor the new nr_to_write
4258                          * at any time
4259                          */
4260                         nr_to_write_done = wbc->nr_to_write <= 0;
4261                 }
4262                 pagevec_release(&pvec);
4263                 cond_resched();
4264         }
4265         if (!scanned && !done) {
4266                 /*
4267                  * We hit the last page and there is more work to be done: wrap
4268                  * back to the start of the file
4269                  */
4270                 scanned = 1;
4271                 index = 0;
4272
4273                 /*
4274                  * If we're looping we could run into a page that is locked by a
4275                  * writer and that writer could be waiting on writeback for a
4276                  * page in our current bio, and thus deadlock, so flush the
4277                  * write bio here.
4278                  */
4279                 ret = flush_write_bio(epd);
4280                 if (!ret)
4281                         goto retry;
4282         }
4283
4284         if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4285                 mapping->writeback_index = done_index;
4286
4287         btrfs_add_delayed_iput(inode);
4288         return ret;
4289 }
4290
4291 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4292 {
4293         int ret;
4294         struct extent_page_data epd = {
4295                 .bio = NULL,
4296                 .extent_locked = 0,
4297                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4298         };
4299
4300         ret = __extent_writepage(page, wbc, &epd);
4301         ASSERT(ret <= 0);
4302         if (ret < 0) {
4303                 end_write_bio(&epd, ret);
4304                 return ret;
4305         }
4306
4307         ret = flush_write_bio(&epd);
4308         ASSERT(ret <= 0);
4309         return ret;
4310 }
4311
4312 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4313                               int mode)
4314 {
4315         int ret = 0;
4316         struct address_space *mapping = inode->i_mapping;
4317         struct page *page;
4318         unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4319                 PAGE_SHIFT;
4320
4321         struct extent_page_data epd = {
4322                 .bio = NULL,
4323                 .extent_locked = 1,
4324                 .sync_io = mode == WB_SYNC_ALL,
4325         };
4326         struct writeback_control wbc_writepages = {
4327                 .sync_mode      = mode,
4328                 .nr_to_write    = nr_pages * 2,
4329                 .range_start    = start,
4330                 .range_end      = end + 1,
4331                 /* We're called from an async helper function */
4332                 .punt_to_cgroup = 1,
4333                 .no_cgroup_owner = 1,
4334         };
4335
4336         wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4337         while (start <= end) {
4338                 page = find_get_page(mapping, start >> PAGE_SHIFT);
4339                 if (clear_page_dirty_for_io(page))
4340                         ret = __extent_writepage(page, &wbc_writepages, &epd);
4341                 else {
4342                         btrfs_writepage_endio_finish_ordered(page, start,
4343                                                     start + PAGE_SIZE - 1, 1);
4344                         unlock_page(page);
4345                 }
4346                 put_page(page);
4347                 start += PAGE_SIZE;
4348         }
4349
4350         ASSERT(ret <= 0);
4351         if (ret == 0)
4352                 ret = flush_write_bio(&epd);
4353         else
4354                 end_write_bio(&epd, ret);
4355
4356         wbc_detach_inode(&wbc_writepages);
4357         return ret;
4358 }
4359
4360 int extent_writepages(struct address_space *mapping,
4361                       struct writeback_control *wbc)
4362 {
4363         int ret = 0;
4364         struct extent_page_data epd = {
4365                 .bio = NULL,
4366                 .extent_locked = 0,
4367                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4368         };
4369
4370         ret = extent_write_cache_pages(mapping, wbc, &epd);
4371         ASSERT(ret <= 0);
4372         if (ret < 0) {
4373                 end_write_bio(&epd, ret);
4374                 return ret;
4375         }
4376         ret = flush_write_bio(&epd);
4377         return ret;
4378 }
4379
4380 void extent_readahead(struct readahead_control *rac)
4381 {
4382         struct bio *bio = NULL;
4383         unsigned long bio_flags = 0;
4384         struct page *pagepool[16];
4385         struct extent_map *em_cached = NULL;
4386         u64 prev_em_start = (u64)-1;
4387         int nr;
4388
4389         while ((nr = readahead_page_batch(rac, pagepool))) {
4390                 u64 contig_start = page_offset(pagepool[0]);
4391                 u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1;
4392
4393                 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4394
4395                 contiguous_readpages(pagepool, nr, contig_start, contig_end,
4396                                 &em_cached, &bio, &bio_flags, &prev_em_start);
4397         }
4398
4399         if (em_cached)
4400                 free_extent_map(em_cached);
4401
4402         if (bio) {
4403                 if (submit_one_bio(bio, 0, bio_flags))
4404                         return;
4405         }
4406 }
4407
4408 /*
4409  * basic invalidatepage code, this waits on any locked or writeback
4410  * ranges corresponding to the page, and then deletes any extent state
4411  * records from the tree
4412  */
4413 int extent_invalidatepage(struct extent_io_tree *tree,
4414                           struct page *page, unsigned long offset)
4415 {
4416         struct extent_state *cached_state = NULL;
4417         u64 start = page_offset(page);
4418         u64 end = start + PAGE_SIZE - 1;
4419         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4420
4421         start += ALIGN(offset, blocksize);
4422         if (start > end)
4423                 return 0;
4424
4425         lock_extent_bits(tree, start, end, &cached_state);
4426         wait_on_page_writeback(page);
4427         clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4428                          EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
4429         return 0;
4430 }
4431
4432 /*
4433  * a helper for releasepage, this tests for areas of the page that
4434  * are locked or under IO and drops the related state bits if it is safe
4435  * to drop the page.
4436  */
4437 static int try_release_extent_state(struct extent_io_tree *tree,
4438                                     struct page *page, gfp_t mask)
4439 {
4440         u64 start = page_offset(page);
4441         u64 end = start + PAGE_SIZE - 1;
4442         int ret = 1;
4443
4444         if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4445                 ret = 0;
4446         } else {
4447                 /*
4448                  * at this point we can safely clear everything except the
4449                  * locked bit and the nodatasum bit
4450                  */
4451                 ret = __clear_extent_bit(tree, start, end,
4452                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4453                                  0, 0, NULL, mask, NULL);
4454
4455                 /* if clear_extent_bit failed for enomem reasons,
4456                  * we can't allow the release to continue.
4457                  */
4458                 if (ret < 0)
4459                         ret = 0;
4460                 else
4461                         ret = 1;
4462         }
4463         return ret;
4464 }
4465
4466 /*
4467  * a helper for releasepage.  As long as there are no locked extents
4468  * in the range corresponding to the page, both state records and extent
4469  * map records are removed
4470  */
4471 int try_release_extent_mapping(struct page *page, gfp_t mask)
4472 {
4473         struct extent_map *em;
4474         u64 start = page_offset(page);
4475         u64 end = start + PAGE_SIZE - 1;
4476         struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4477         struct extent_io_tree *tree = &btrfs_inode->io_tree;
4478         struct extent_map_tree *map = &btrfs_inode->extent_tree;
4479
4480         if (gfpflags_allow_blocking(mask) &&
4481             page->mapping->host->i_size > SZ_16M) {
4482                 u64 len;
4483                 while (start <= end) {
4484                         struct btrfs_fs_info *fs_info;
4485                         u64 cur_gen;
4486
4487                         len = end - start + 1;
4488                         write_lock(&map->lock);
4489                         em = lookup_extent_mapping(map, start, len);
4490                         if (!em) {
4491                                 write_unlock(&map->lock);
4492                                 break;
4493                         }
4494                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4495                             em->start != start) {
4496                                 write_unlock(&map->lock);
4497                                 free_extent_map(em);
4498                                 break;
4499                         }
4500                         if (test_range_bit(tree, em->start,
4501                                            extent_map_end(em) - 1,
4502                                            EXTENT_LOCKED, 0, NULL))
4503                                 goto next;
4504                         /*
4505                          * If it's not in the list of modified extents, used
4506                          * by a fast fsync, we can remove it. If it's being
4507                          * logged we can safely remove it since fsync took an
4508                          * extra reference on the em.
4509                          */
4510                         if (list_empty(&em->list) ||
4511                             test_bit(EXTENT_FLAG_LOGGING, &em->flags))
4512                                 goto remove_em;
4513                         /*
4514                          * If it's in the list of modified extents, remove it
4515                          * only if its generation is older then the current one,
4516                          * in which case we don't need it for a fast fsync.
4517                          * Otherwise don't remove it, we could be racing with an
4518                          * ongoing fast fsync that could miss the new extent.
4519                          */
4520                         fs_info = btrfs_inode->root->fs_info;
4521                         spin_lock(&fs_info->trans_lock);
4522                         cur_gen = fs_info->generation;
4523                         spin_unlock(&fs_info->trans_lock);
4524                         if (em->generation >= cur_gen)
4525                                 goto next;
4526 remove_em:
4527                         /*
4528                          * We only remove extent maps that are not in the list of
4529                          * modified extents or that are in the list but with a
4530                          * generation lower then the current generation, so there
4531                          * is no need to set the full fsync flag on the inode (it
4532                          * hurts the fsync performance for workloads with a data
4533                          * size that exceeds or is close to the system's memory).
4534                          */
4535                         remove_extent_mapping(map, em);
4536                         /* once for the rb tree */
4537                         free_extent_map(em);
4538 next:
4539                         start = extent_map_end(em);
4540                         write_unlock(&map->lock);
4541
4542                         /* once for us */
4543                         free_extent_map(em);
4544                 }
4545         }
4546         return try_release_extent_state(tree, page, mask);
4547 }
4548
4549 /*
4550  * helper function for fiemap, which doesn't want to see any holes.
4551  * This maps until we find something past 'last'
4552  */
4553 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4554                                                 u64 offset, u64 last)
4555 {
4556         u64 sectorsize = btrfs_inode_sectorsize(inode);
4557         struct extent_map *em;
4558         u64 len;
4559
4560         if (offset >= last)
4561                 return NULL;
4562
4563         while (1) {
4564                 len = last - offset;
4565                 if (len == 0)
4566                         break;
4567                 len = ALIGN(len, sectorsize);
4568                 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
4569                 if (IS_ERR_OR_NULL(em))
4570                         return em;
4571
4572                 /* if this isn't a hole return it */
4573                 if (em->block_start != EXTENT_MAP_HOLE)
4574                         return em;
4575
4576                 /* this is a hole, advance to the next extent */
4577                 offset = extent_map_end(em);
4578                 free_extent_map(em);
4579                 if (offset >= last)
4580                         break;
4581         }
4582         return NULL;
4583 }
4584
4585 /*
4586  * To cache previous fiemap extent
4587  *
4588  * Will be used for merging fiemap extent
4589  */
4590 struct fiemap_cache {
4591         u64 offset;
4592         u64 phys;
4593         u64 len;
4594         u32 flags;
4595         bool cached;
4596 };
4597
4598 /*
4599  * Helper to submit fiemap extent.
4600  *
4601  * Will try to merge current fiemap extent specified by @offset, @phys,
4602  * @len and @flags with cached one.
4603  * And only when we fails to merge, cached one will be submitted as
4604  * fiemap extent.
4605  *
4606  * Return value is the same as fiemap_fill_next_extent().
4607  */
4608 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4609                                 struct fiemap_cache *cache,
4610                                 u64 offset, u64 phys, u64 len, u32 flags)
4611 {
4612         int ret = 0;
4613
4614         if (!cache->cached)
4615                 goto assign;
4616
4617         /*
4618          * Sanity check, extent_fiemap() should have ensured that new
4619          * fiemap extent won't overlap with cached one.
4620          * Not recoverable.
4621          *
4622          * NOTE: Physical address can overlap, due to compression
4623          */
4624         if (cache->offset + cache->len > offset) {
4625                 WARN_ON(1);
4626                 return -EINVAL;
4627         }
4628
4629         /*
4630          * Only merges fiemap extents if
4631          * 1) Their logical addresses are continuous
4632          *
4633          * 2) Their physical addresses are continuous
4634          *    So truly compressed (physical size smaller than logical size)
4635          *    extents won't get merged with each other
4636          *
4637          * 3) Share same flags except FIEMAP_EXTENT_LAST
4638          *    So regular extent won't get merged with prealloc extent
4639          */
4640         if (cache->offset + cache->len  == offset &&
4641             cache->phys + cache->len == phys  &&
4642             (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4643                         (flags & ~FIEMAP_EXTENT_LAST)) {
4644                 cache->len += len;
4645                 cache->flags |= flags;
4646                 goto try_submit_last;
4647         }
4648
4649         /* Not mergeable, need to submit cached one */
4650         ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4651                                       cache->len, cache->flags);
4652         cache->cached = false;
4653         if (ret)
4654                 return ret;
4655 assign:
4656         cache->cached = true;
4657         cache->offset = offset;
4658         cache->phys = phys;
4659         cache->len = len;
4660         cache->flags = flags;
4661 try_submit_last:
4662         if (cache->flags & FIEMAP_EXTENT_LAST) {
4663                 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4664                                 cache->phys, cache->len, cache->flags);
4665                 cache->cached = false;
4666         }
4667         return ret;
4668 }
4669
4670 /*
4671  * Emit last fiemap cache
4672  *
4673  * The last fiemap cache may still be cached in the following case:
4674  * 0                  4k                    8k
4675  * |<- Fiemap range ->|
4676  * |<------------  First extent ----------->|
4677  *
4678  * In this case, the first extent range will be cached but not emitted.
4679  * So we must emit it before ending extent_fiemap().
4680  */
4681 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4682                                   struct fiemap_cache *cache)
4683 {
4684         int ret;
4685
4686         if (!cache->cached)
4687                 return 0;
4688
4689         ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4690                                       cache->len, cache->flags);
4691         cache->cached = false;
4692         if (ret > 0)
4693                 ret = 0;
4694         return ret;
4695 }
4696
4697 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4698                   u64 start, u64 len)
4699 {
4700         int ret = 0;
4701         u64 off = start;
4702         u64 max = start + len;
4703         u32 flags = 0;
4704         u32 found_type;
4705         u64 last;
4706         u64 last_for_get_extent = 0;
4707         u64 disko = 0;
4708         u64 isize = i_size_read(inode);
4709         struct btrfs_key found_key;
4710         struct extent_map *em = NULL;
4711         struct extent_state *cached_state = NULL;
4712         struct btrfs_path *path;
4713         struct btrfs_root *root = BTRFS_I(inode)->root;
4714         struct fiemap_cache cache = { 0 };
4715         struct ulist *roots;
4716         struct ulist *tmp_ulist;
4717         int end = 0;
4718         u64 em_start = 0;
4719         u64 em_len = 0;
4720         u64 em_end = 0;
4721
4722         if (len == 0)
4723                 return -EINVAL;
4724
4725         path = btrfs_alloc_path();
4726         if (!path)
4727                 return -ENOMEM;
4728         path->leave_spinning = 1;
4729
4730         roots = ulist_alloc(GFP_KERNEL);
4731         tmp_ulist = ulist_alloc(GFP_KERNEL);
4732         if (!roots || !tmp_ulist) {
4733                 ret = -ENOMEM;
4734                 goto out_free_ulist;
4735         }
4736
4737         start = round_down(start, btrfs_inode_sectorsize(inode));
4738         len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4739
4740         /*
4741          * lookup the last file extent.  We're not using i_size here
4742          * because there might be preallocation past i_size
4743          */
4744         ret = btrfs_lookup_file_extent(NULL, root, path,
4745                         btrfs_ino(BTRFS_I(inode)), -1, 0);
4746         if (ret < 0) {
4747                 goto out_free_ulist;
4748         } else {
4749                 WARN_ON(!ret);
4750                 if (ret == 1)
4751                         ret = 0;
4752         }
4753
4754         path->slots[0]--;
4755         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4756         found_type = found_key.type;
4757
4758         /* No extents, but there might be delalloc bits */
4759         if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4760             found_type != BTRFS_EXTENT_DATA_KEY) {
4761                 /* have to trust i_size as the end */
4762                 last = (u64)-1;
4763                 last_for_get_extent = isize;
4764         } else {
4765                 /*
4766                  * remember the start of the last extent.  There are a
4767                  * bunch of different factors that go into the length of the
4768                  * extent, so its much less complex to remember where it started
4769                  */
4770                 last = found_key.offset;
4771                 last_for_get_extent = last + 1;
4772         }
4773         btrfs_release_path(path);
4774
4775         /*
4776          * we might have some extents allocated but more delalloc past those
4777          * extents.  so, we trust isize unless the start of the last extent is
4778          * beyond isize
4779          */
4780         if (last < isize) {
4781                 last = (u64)-1;
4782                 last_for_get_extent = isize;
4783         }
4784
4785         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4786                          &cached_state);
4787
4788         em = get_extent_skip_holes(inode, start, last_for_get_extent);
4789         if (!em)
4790                 goto out;
4791         if (IS_ERR(em)) {
4792                 ret = PTR_ERR(em);
4793                 goto out;
4794         }
4795
4796         while (!end) {
4797                 u64 offset_in_extent = 0;
4798
4799                 /* break if the extent we found is outside the range */
4800                 if (em->start >= max || extent_map_end(em) < off)
4801                         break;
4802
4803                 /*
4804                  * get_extent may return an extent that starts before our
4805                  * requested range.  We have to make sure the ranges
4806                  * we return to fiemap always move forward and don't
4807                  * overlap, so adjust the offsets here
4808                  */
4809                 em_start = max(em->start, off);
4810
4811                 /*
4812                  * record the offset from the start of the extent
4813                  * for adjusting the disk offset below.  Only do this if the
4814                  * extent isn't compressed since our in ram offset may be past
4815                  * what we have actually allocated on disk.
4816                  */
4817                 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4818                         offset_in_extent = em_start - em->start;
4819                 em_end = extent_map_end(em);
4820                 em_len = em_end - em_start;
4821                 flags = 0;
4822                 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4823                         disko = em->block_start + offset_in_extent;
4824                 else
4825                         disko = 0;
4826
4827                 /*
4828                  * bump off for our next call to get_extent
4829                  */
4830                 off = extent_map_end(em);
4831                 if (off >= max)
4832                         end = 1;
4833
4834                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4835                         end = 1;
4836                         flags |= FIEMAP_EXTENT_LAST;
4837                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4838                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4839                                   FIEMAP_EXTENT_NOT_ALIGNED);
4840                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4841                         flags |= (FIEMAP_EXTENT_DELALLOC |
4842                                   FIEMAP_EXTENT_UNKNOWN);
4843                 } else if (fieinfo->fi_extents_max) {
4844                         u64 bytenr = em->block_start -
4845                                 (em->start - em->orig_start);
4846
4847                         /*
4848                          * As btrfs supports shared space, this information
4849                          * can be exported to userspace tools via
4850                          * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4851                          * then we're just getting a count and we can skip the
4852                          * lookup stuff.
4853                          */
4854                         ret = btrfs_check_shared(root,
4855                                                  btrfs_ino(BTRFS_I(inode)),
4856                                                  bytenr, roots, tmp_ulist);
4857                         if (ret < 0)
4858                                 goto out_free;
4859                         if (ret)
4860                                 flags |= FIEMAP_EXTENT_SHARED;
4861                         ret = 0;
4862                 }
4863                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4864                         flags |= FIEMAP_EXTENT_ENCODED;
4865                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4866                         flags |= FIEMAP_EXTENT_UNWRITTEN;
4867
4868                 free_extent_map(em);
4869                 em = NULL;
4870                 if ((em_start >= last) || em_len == (u64)-1 ||
4871                    (last == (u64)-1 && isize <= em_end)) {
4872                         flags |= FIEMAP_EXTENT_LAST;
4873                         end = 1;
4874                 }
4875
4876                 /* now scan forward to see if this is really the last extent. */
4877                 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4878                 if (IS_ERR(em)) {
4879                         ret = PTR_ERR(em);
4880                         goto out;
4881                 }
4882                 if (!em) {
4883                         flags |= FIEMAP_EXTENT_LAST;
4884                         end = 1;
4885                 }
4886                 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4887                                            em_len, flags);
4888                 if (ret) {
4889                         if (ret == 1)
4890                                 ret = 0;
4891                         goto out_free;
4892                 }
4893         }
4894 out_free:
4895         if (!ret)
4896                 ret = emit_last_fiemap_cache(fieinfo, &cache);
4897         free_extent_map(em);
4898 out:
4899         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4900                              &cached_state);
4901
4902 out_free_ulist:
4903         btrfs_free_path(path);
4904         ulist_free(roots);
4905         ulist_free(tmp_ulist);
4906         return ret;
4907 }
4908
4909 static void __free_extent_buffer(struct extent_buffer *eb)
4910 {
4911         kmem_cache_free(extent_buffer_cache, eb);
4912 }
4913
4914 int extent_buffer_under_io(const struct extent_buffer *eb)
4915 {
4916         return (atomic_read(&eb->io_pages) ||
4917                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4918                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4919 }
4920
4921 /*
4922  * Release all pages attached to the extent buffer.
4923  */
4924 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4925 {
4926         int i;
4927         int num_pages;
4928         int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4929
4930         BUG_ON(extent_buffer_under_io(eb));
4931
4932         num_pages = num_extent_pages(eb);
4933         for (i = 0; i < num_pages; i++) {
4934                 struct page *page = eb->pages[i];
4935
4936                 if (!page)
4937                         continue;
4938                 if (mapped)
4939                         spin_lock(&page->mapping->private_lock);
4940                 /*
4941                  * We do this since we'll remove the pages after we've
4942                  * removed the eb from the radix tree, so we could race
4943                  * and have this page now attached to the new eb.  So
4944                  * only clear page_private if it's still connected to
4945                  * this eb.
4946                  */
4947                 if (PagePrivate(page) &&
4948                     page->private == (unsigned long)eb) {
4949                         BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4950                         BUG_ON(PageDirty(page));
4951                         BUG_ON(PageWriteback(page));
4952                         /*
4953                          * We need to make sure we haven't be attached
4954                          * to a new eb.
4955                          */
4956                         detach_page_private(page);
4957                 }
4958
4959                 if (mapped)
4960                         spin_unlock(&page->mapping->private_lock);
4961
4962                 /* One for when we allocated the page */
4963                 put_page(page);
4964         }
4965 }
4966
4967 /*
4968  * Helper for releasing the extent buffer.
4969  */
4970 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4971 {
4972         btrfs_release_extent_buffer_pages(eb);
4973         btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
4974         __free_extent_buffer(eb);
4975 }
4976
4977 static struct extent_buffer *
4978 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4979                       unsigned long len)
4980 {
4981         struct extent_buffer *eb = NULL;
4982
4983         eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4984         eb->start = start;
4985         eb->len = len;
4986         eb->fs_info = fs_info;
4987         eb->bflags = 0;
4988         rwlock_init(&eb->lock);
4989         atomic_set(&eb->blocking_readers, 0);
4990         eb->blocking_writers = 0;
4991         eb->lock_nested = false;
4992         init_waitqueue_head(&eb->write_lock_wq);
4993         init_waitqueue_head(&eb->read_lock_wq);
4994
4995         btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
4996                              &fs_info->allocated_ebs);
4997
4998         spin_lock_init(&eb->refs_lock);
4999         atomic_set(&eb->refs, 1);
5000         atomic_set(&eb->io_pages, 0);
5001
5002         /*
5003          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
5004          */
5005         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
5006                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
5007         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
5008
5009 #ifdef CONFIG_BTRFS_DEBUG
5010         eb->spinning_writers = 0;
5011         atomic_set(&eb->spinning_readers, 0);
5012         atomic_set(&eb->read_locks, 0);
5013         eb->write_locks = 0;
5014 #endif
5015
5016         return eb;
5017 }
5018
5019 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5020 {
5021         int i;
5022         struct page *p;
5023         struct extent_buffer *new;
5024         int num_pages = num_extent_pages(src);
5025
5026         new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5027         if (new == NULL)
5028                 return NULL;
5029
5030         for (i = 0; i < num_pages; i++) {
5031                 p = alloc_page(GFP_NOFS);
5032                 if (!p) {
5033                         btrfs_release_extent_buffer(new);
5034                         return NULL;
5035                 }
5036                 attach_extent_buffer_page(new, p);
5037                 WARN_ON(PageDirty(p));
5038                 SetPageUptodate(p);
5039                 new->pages[i] = p;
5040                 copy_page(page_address(p), page_address(src->pages[i]));
5041         }
5042
5043         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
5044         set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5045
5046         return new;
5047 }
5048
5049 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5050                                                   u64 start, unsigned long len)
5051 {
5052         struct extent_buffer *eb;
5053         int num_pages;
5054         int i;
5055
5056         eb = __alloc_extent_buffer(fs_info, start, len);
5057         if (!eb)
5058                 return NULL;
5059
5060         num_pages = num_extent_pages(eb);
5061         for (i = 0; i < num_pages; i++) {
5062                 eb->pages[i] = alloc_page(GFP_NOFS);
5063                 if (!eb->pages[i])
5064                         goto err;
5065         }
5066         set_extent_buffer_uptodate(eb);
5067         btrfs_set_header_nritems(eb, 0);
5068         set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5069
5070         return eb;
5071 err:
5072         for (; i > 0; i--)
5073                 __free_page(eb->pages[i - 1]);
5074         __free_extent_buffer(eb);
5075         return NULL;
5076 }
5077
5078 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5079                                                 u64 start)
5080 {
5081         return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5082 }
5083
5084 static void check_buffer_tree_ref(struct extent_buffer *eb)
5085 {
5086         int refs;
5087         /*
5088          * The TREE_REF bit is first set when the extent_buffer is added
5089          * to the radix tree. It is also reset, if unset, when a new reference
5090          * is created by find_extent_buffer.
5091          *
5092          * It is only cleared in two cases: freeing the last non-tree
5093          * reference to the extent_buffer when its STALE bit is set or
5094          * calling releasepage when the tree reference is the only reference.
5095          *
5096          * In both cases, care is taken to ensure that the extent_buffer's
5097          * pages are not under io. However, releasepage can be concurrently
5098          * called with creating new references, which is prone to race
5099          * conditions between the calls to check_buffer_tree_ref in those
5100          * codepaths and clearing TREE_REF in try_release_extent_buffer.
5101          *
5102          * The actual lifetime of the extent_buffer in the radix tree is
5103          * adequately protected by the refcount, but the TREE_REF bit and
5104          * its corresponding reference are not. To protect against this
5105          * class of races, we call check_buffer_tree_ref from the codepaths
5106          * which trigger io after they set eb->io_pages. Note that once io is
5107          * initiated, TREE_REF can no longer be cleared, so that is the
5108          * moment at which any such race is best fixed.
5109          */
5110         refs = atomic_read(&eb->refs);
5111         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5112                 return;
5113
5114         spin_lock(&eb->refs_lock);
5115         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5116                 atomic_inc(&eb->refs);
5117         spin_unlock(&eb->refs_lock);
5118 }
5119
5120 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5121                 struct page *accessed)
5122 {
5123         int num_pages, i;
5124
5125         check_buffer_tree_ref(eb);
5126
5127         num_pages = num_extent_pages(eb);
5128         for (i = 0; i < num_pages; i++) {
5129                 struct page *p = eb->pages[i];
5130
5131                 if (p != accessed)
5132                         mark_page_accessed(p);
5133         }
5134 }
5135
5136 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5137                                          u64 start)
5138 {
5139         struct extent_buffer *eb;
5140
5141         rcu_read_lock();
5142         eb = radix_tree_lookup(&fs_info->buffer_radix,
5143                                start >> PAGE_SHIFT);
5144         if (eb && atomic_inc_not_zero(&eb->refs)) {
5145                 rcu_read_unlock();
5146                 /*
5147                  * Lock our eb's refs_lock to avoid races with
5148                  * free_extent_buffer. When we get our eb it might be flagged
5149                  * with EXTENT_BUFFER_STALE and another task running
5150                  * free_extent_buffer might have seen that flag set,
5151                  * eb->refs == 2, that the buffer isn't under IO (dirty and
5152                  * writeback flags not set) and it's still in the tree (flag
5153                  * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5154                  * of decrementing the extent buffer's reference count twice.
5155                  * So here we could race and increment the eb's reference count,
5156                  * clear its stale flag, mark it as dirty and drop our reference
5157                  * before the other task finishes executing free_extent_buffer,
5158                  * which would later result in an attempt to free an extent
5159                  * buffer that is dirty.
5160                  */
5161                 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5162                         spin_lock(&eb->refs_lock);
5163                         spin_unlock(&eb->refs_lock);
5164                 }
5165                 mark_extent_buffer_accessed(eb, NULL);
5166                 return eb;
5167         }
5168         rcu_read_unlock();
5169
5170         return NULL;
5171 }
5172
5173 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5174 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5175                                         u64 start)
5176 {
5177         struct extent_buffer *eb, *exists = NULL;
5178         int ret;
5179
5180         eb = find_extent_buffer(fs_info, start);
5181         if (eb)
5182                 return eb;
5183         eb = alloc_dummy_extent_buffer(fs_info, start);
5184         if (!eb)
5185                 return ERR_PTR(-ENOMEM);
5186         eb->fs_info = fs_info;
5187 again:
5188         ret = radix_tree_preload(GFP_NOFS);
5189         if (ret) {
5190                 exists = ERR_PTR(ret);
5191                 goto free_eb;
5192         }
5193         spin_lock(&fs_info->buffer_lock);
5194         ret = radix_tree_insert(&fs_info->buffer_radix,
5195                                 start >> PAGE_SHIFT, eb);
5196         spin_unlock(&fs_info->buffer_lock);
5197         radix_tree_preload_end();
5198         if (ret == -EEXIST) {
5199                 exists = find_extent_buffer(fs_info, start);
5200                 if (exists)
5201                         goto free_eb;
5202                 else
5203                         goto again;
5204         }
5205         check_buffer_tree_ref(eb);
5206         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5207
5208         return eb;
5209 free_eb:
5210         btrfs_release_extent_buffer(eb);
5211         return exists;
5212 }
5213 #endif
5214
5215 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5216                                           u64 start)
5217 {
5218         unsigned long len = fs_info->nodesize;
5219         int num_pages;
5220         int i;
5221         unsigned long index = start >> PAGE_SHIFT;
5222         struct extent_buffer *eb;
5223         struct extent_buffer *exists = NULL;
5224         struct page *p;
5225         struct address_space *mapping = fs_info->btree_inode->i_mapping;
5226         int uptodate = 1;
5227         int ret;
5228
5229         if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5230                 btrfs_err(fs_info, "bad tree block start %llu", start);
5231                 return ERR_PTR(-EINVAL);
5232         }
5233
5234         eb = find_extent_buffer(fs_info, start);
5235         if (eb)
5236                 return eb;
5237
5238         eb = __alloc_extent_buffer(fs_info, start, len);
5239         if (!eb)
5240                 return ERR_PTR(-ENOMEM);
5241
5242         num_pages = num_extent_pages(eb);
5243         for (i = 0; i < num_pages; i++, index++) {
5244                 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5245                 if (!p) {
5246                         exists = ERR_PTR(-ENOMEM);
5247                         goto free_eb;
5248                 }
5249
5250                 spin_lock(&mapping->private_lock);
5251                 if (PagePrivate(p)) {
5252                         /*
5253                          * We could have already allocated an eb for this page
5254                          * and attached one so lets see if we can get a ref on
5255                          * the existing eb, and if we can we know it's good and
5256                          * we can just return that one, else we know we can just
5257                          * overwrite page->private.
5258                          */
5259                         exists = (struct extent_buffer *)p->private;
5260                         if (atomic_inc_not_zero(&exists->refs)) {
5261                                 spin_unlock(&mapping->private_lock);
5262                                 unlock_page(p);
5263                                 put_page(p);
5264                                 mark_extent_buffer_accessed(exists, p);
5265                                 goto free_eb;
5266                         }
5267                         exists = NULL;
5268
5269                         /*
5270                          * Do this so attach doesn't complain and we need to
5271                          * drop the ref the old guy had.
5272                          */
5273                         ClearPagePrivate(p);
5274                         WARN_ON(PageDirty(p));
5275                         put_page(p);
5276                 }
5277                 attach_extent_buffer_page(eb, p);
5278                 spin_unlock(&mapping->private_lock);
5279                 WARN_ON(PageDirty(p));
5280                 eb->pages[i] = p;
5281                 if (!PageUptodate(p))
5282                         uptodate = 0;
5283
5284                 /*
5285                  * We can't unlock the pages just yet since the extent buffer
5286                  * hasn't been properly inserted in the radix tree, this
5287                  * opens a race with btree_releasepage which can free a page
5288                  * while we are still filling in all pages for the buffer and
5289                  * we could crash.
5290                  */
5291         }
5292         if (uptodate)
5293                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5294 again:
5295         ret = radix_tree_preload(GFP_NOFS);
5296         if (ret) {
5297                 exists = ERR_PTR(ret);
5298                 goto free_eb;
5299         }
5300
5301         spin_lock(&fs_info->buffer_lock);
5302         ret = radix_tree_insert(&fs_info->buffer_radix,
5303                                 start >> PAGE_SHIFT, eb);
5304         spin_unlock(&fs_info->buffer_lock);
5305         radix_tree_preload_end();
5306         if (ret == -EEXIST) {
5307                 exists = find_extent_buffer(fs_info, start);
5308                 if (exists)
5309                         goto free_eb;
5310                 else
5311                         goto again;
5312         }
5313         /* add one reference for the tree */
5314         check_buffer_tree_ref(eb);
5315         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5316
5317         /*
5318          * Now it's safe to unlock the pages because any calls to
5319          * btree_releasepage will correctly detect that a page belongs to a
5320          * live buffer and won't free them prematurely.
5321          */
5322         for (i = 0; i < num_pages; i++)
5323                 unlock_page(eb->pages[i]);
5324         return eb;
5325
5326 free_eb:
5327         WARN_ON(!atomic_dec_and_test(&eb->refs));
5328         for (i = 0; i < num_pages; i++) {
5329                 if (eb->pages[i])
5330                         unlock_page(eb->pages[i]);
5331         }
5332
5333         btrfs_release_extent_buffer(eb);
5334         return exists;
5335 }
5336
5337 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5338 {
5339         struct extent_buffer *eb =
5340                         container_of(head, struct extent_buffer, rcu_head);
5341
5342         __free_extent_buffer(eb);
5343 }
5344
5345 static int release_extent_buffer(struct extent_buffer *eb)
5346         __releases(&eb->refs_lock)
5347 {
5348         lockdep_assert_held(&eb->refs_lock);
5349
5350         WARN_ON(atomic_read(&eb->refs) == 0);
5351         if (atomic_dec_and_test(&eb->refs)) {
5352                 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5353                         struct btrfs_fs_info *fs_info = eb->fs_info;
5354
5355                         spin_unlock(&eb->refs_lock);
5356
5357                         spin_lock(&fs_info->buffer_lock);
5358                         radix_tree_delete(&fs_info->buffer_radix,
5359                                           eb->start >> PAGE_SHIFT);
5360                         spin_unlock(&fs_info->buffer_lock);
5361                 } else {
5362                         spin_unlock(&eb->refs_lock);
5363                 }
5364
5365                 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5366                 /* Should be safe to release our pages at this point */
5367                 btrfs_release_extent_buffer_pages(eb);
5368 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5369                 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5370                         __free_extent_buffer(eb);
5371                         return 1;
5372                 }
5373 #endif
5374                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5375                 return 1;
5376         }
5377         spin_unlock(&eb->refs_lock);
5378
5379         return 0;
5380 }
5381
5382 void free_extent_buffer(struct extent_buffer *eb)
5383 {
5384         int refs;
5385         int old;
5386         if (!eb)
5387                 return;
5388
5389         while (1) {
5390                 refs = atomic_read(&eb->refs);
5391                 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5392                     || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5393                         refs == 1))
5394                         break;
5395                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5396                 if (old == refs)
5397                         return;
5398         }
5399
5400         spin_lock(&eb->refs_lock);
5401         if (atomic_read(&eb->refs) == 2 &&
5402             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5403             !extent_buffer_under_io(eb) &&
5404             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5405                 atomic_dec(&eb->refs);
5406
5407         /*
5408          * I know this is terrible, but it's temporary until we stop tracking
5409          * the uptodate bits and such for the extent buffers.
5410          */
5411         release_extent_buffer(eb);
5412 }
5413
5414 void free_extent_buffer_stale(struct extent_buffer *eb)
5415 {
5416         if (!eb)
5417                 return;
5418
5419         spin_lock(&eb->refs_lock);
5420         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5421
5422         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5423             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5424                 atomic_dec(&eb->refs);
5425         release_extent_buffer(eb);
5426 }
5427
5428 void clear_extent_buffer_dirty(const struct extent_buffer *eb)
5429 {
5430         int i;
5431         int num_pages;
5432         struct page *page;
5433
5434         num_pages = num_extent_pages(eb);
5435
5436         for (i = 0; i < num_pages; i++) {
5437                 page = eb->pages[i];
5438                 if (!PageDirty(page))
5439                         continue;
5440
5441                 lock_page(page);
5442                 WARN_ON(!PagePrivate(page));
5443
5444                 clear_page_dirty_for_io(page);
5445                 xa_lock_irq(&page->mapping->i_pages);
5446                 if (!PageDirty(page))
5447                         __xa_clear_mark(&page->mapping->i_pages,
5448                                         page_index(page), PAGECACHE_TAG_DIRTY);
5449                 xa_unlock_irq(&page->mapping->i_pages);
5450                 ClearPageError(page);
5451                 unlock_page(page);
5452         }
5453         WARN_ON(atomic_read(&eb->refs) == 0);
5454 }
5455
5456 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5457 {
5458         int i;
5459         int num_pages;
5460         bool was_dirty;
5461
5462         check_buffer_tree_ref(eb);
5463
5464         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5465
5466         num_pages = num_extent_pages(eb);
5467         WARN_ON(atomic_read(&eb->refs) == 0);
5468         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5469
5470         if (!was_dirty)
5471                 for (i = 0; i < num_pages; i++)
5472                         set_page_dirty(eb->pages[i]);
5473
5474 #ifdef CONFIG_BTRFS_DEBUG
5475         for (i = 0; i < num_pages; i++)
5476                 ASSERT(PageDirty(eb->pages[i]));
5477 #endif
5478
5479         return was_dirty;
5480 }
5481
5482 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5483 {
5484         int i;
5485         struct page *page;
5486         int num_pages;
5487
5488         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5489         num_pages = num_extent_pages(eb);
5490         for (i = 0; i < num_pages; i++) {
5491                 page = eb->pages[i];
5492                 if (page)
5493                         ClearPageUptodate(page);
5494         }
5495 }
5496
5497 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5498 {
5499         int i;
5500         struct page *page;
5501         int num_pages;
5502
5503         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5504         num_pages = num_extent_pages(eb);
5505         for (i = 0; i < num_pages; i++) {
5506                 page = eb->pages[i];
5507                 SetPageUptodate(page);
5508         }
5509 }
5510
5511 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5512 {
5513         int i;
5514         struct page *page;
5515         int err;
5516         int ret = 0;
5517         int locked_pages = 0;
5518         int all_uptodate = 1;
5519         int num_pages;
5520         unsigned long num_reads = 0;
5521         struct bio *bio = NULL;
5522         unsigned long bio_flags = 0;
5523
5524         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5525                 return 0;
5526
5527         num_pages = num_extent_pages(eb);
5528         for (i = 0; i < num_pages; i++) {
5529                 page = eb->pages[i];
5530                 if (wait == WAIT_NONE) {
5531                         if (!trylock_page(page))
5532                                 goto unlock_exit;
5533                 } else {
5534                         lock_page(page);
5535                 }
5536                 locked_pages++;
5537         }
5538         /*
5539          * We need to firstly lock all pages to make sure that
5540          * the uptodate bit of our pages won't be affected by
5541          * clear_extent_buffer_uptodate().
5542          */
5543         for (i = 0; i < num_pages; i++) {
5544                 page = eb->pages[i];
5545                 if (!PageUptodate(page)) {
5546                         num_reads++;
5547                         all_uptodate = 0;
5548                 }
5549         }
5550
5551         if (all_uptodate) {
5552                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5553                 goto unlock_exit;
5554         }
5555
5556         clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5557         eb->read_mirror = 0;
5558         atomic_set(&eb->io_pages, num_reads);
5559         /*
5560          * It is possible for releasepage to clear the TREE_REF bit before we
5561          * set io_pages. See check_buffer_tree_ref for a more detailed comment.
5562          */
5563         check_buffer_tree_ref(eb);
5564         for (i = 0; i < num_pages; i++) {
5565                 page = eb->pages[i];
5566
5567                 if (!PageUptodate(page)) {
5568                         if (ret) {
5569                                 atomic_dec(&eb->io_pages);
5570                                 unlock_page(page);
5571                                 continue;
5572                         }
5573
5574                         ClearPageError(page);
5575                         err = __extent_read_full_page(page,
5576                                                       btree_get_extent, &bio,
5577                                                       mirror_num, &bio_flags,
5578                                                       REQ_META);
5579                         if (err) {
5580                                 ret = err;
5581                                 /*
5582                                  * We use &bio in above __extent_read_full_page,
5583                                  * so we ensure that if it returns error, the
5584                                  * current page fails to add itself to bio and
5585                                  * it's been unlocked.
5586                                  *
5587                                  * We must dec io_pages by ourselves.
5588                                  */
5589                                 atomic_dec(&eb->io_pages);
5590                         }
5591                 } else {
5592                         unlock_page(page);
5593                 }
5594         }
5595
5596         if (bio) {
5597                 err = submit_one_bio(bio, mirror_num, bio_flags);
5598                 if (err)
5599                         return err;
5600         }
5601
5602         if (ret || wait != WAIT_COMPLETE)
5603                 return ret;
5604
5605         for (i = 0; i < num_pages; i++) {
5606                 page = eb->pages[i];
5607                 wait_on_page_locked(page);
5608                 if (!PageUptodate(page))
5609                         ret = -EIO;
5610         }
5611
5612         return ret;
5613
5614 unlock_exit:
5615         while (locked_pages > 0) {
5616                 locked_pages--;
5617                 page = eb->pages[locked_pages];
5618                 unlock_page(page);
5619         }
5620         return ret;
5621 }
5622
5623 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5624                         unsigned long start, unsigned long len)
5625 {
5626         size_t cur;
5627         size_t offset;
5628         struct page *page;
5629         char *kaddr;
5630         char *dst = (char *)dstv;
5631         unsigned long i = start >> PAGE_SHIFT;
5632
5633         if (start + len > eb->len) {
5634                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5635                      eb->start, eb->len, start, len);
5636                 memset(dst, 0, len);
5637                 return;
5638         }
5639
5640         offset = offset_in_page(start);
5641
5642         while (len > 0) {
5643                 page = eb->pages[i];
5644
5645                 cur = min(len, (PAGE_SIZE - offset));
5646                 kaddr = page_address(page);
5647                 memcpy(dst, kaddr + offset, cur);
5648
5649                 dst += cur;
5650                 len -= cur;
5651                 offset = 0;
5652                 i++;
5653         }
5654 }
5655
5656 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
5657                                        void __user *dstv,
5658                                        unsigned long start, unsigned long len)
5659 {
5660         size_t cur;
5661         size_t offset;
5662         struct page *page;
5663         char *kaddr;
5664         char __user *dst = (char __user *)dstv;
5665         unsigned long i = start >> PAGE_SHIFT;
5666         int ret = 0;
5667
5668         WARN_ON(start > eb->len);
5669         WARN_ON(start + len > eb->start + eb->len);
5670
5671         offset = offset_in_page(start);
5672
5673         while (len > 0) {
5674                 page = eb->pages[i];
5675
5676                 cur = min(len, (PAGE_SIZE - offset));
5677                 kaddr = page_address(page);
5678                 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
5679                         ret = -EFAULT;
5680                         break;
5681                 }
5682
5683                 dst += cur;
5684                 len -= cur;
5685                 offset = 0;
5686                 i++;
5687         }
5688
5689         return ret;
5690 }
5691
5692 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5693                          unsigned long start, unsigned long len)
5694 {
5695         size_t cur;
5696         size_t offset;
5697         struct page *page;
5698         char *kaddr;
5699         char *ptr = (char *)ptrv;
5700         unsigned long i = start >> PAGE_SHIFT;
5701         int ret = 0;
5702
5703         WARN_ON(start > eb->len);
5704         WARN_ON(start + len > eb->start + eb->len);
5705
5706         offset = offset_in_page(start);
5707
5708         while (len > 0) {
5709                 page = eb->pages[i];
5710
5711                 cur = min(len, (PAGE_SIZE - offset));
5712
5713                 kaddr = page_address(page);
5714                 ret = memcmp(ptr, kaddr + offset, cur);
5715                 if (ret)
5716                         break;
5717
5718                 ptr += cur;
5719                 len -= cur;
5720                 offset = 0;
5721                 i++;
5722         }
5723         return ret;
5724 }
5725
5726 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
5727                 const void *srcv)
5728 {
5729         char *kaddr;
5730
5731         WARN_ON(!PageUptodate(eb->pages[0]));
5732         kaddr = page_address(eb->pages[0]);
5733         memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5734                         BTRFS_FSID_SIZE);
5735 }
5736
5737 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
5738 {
5739         char *kaddr;
5740
5741         WARN_ON(!PageUptodate(eb->pages[0]));
5742         kaddr = page_address(eb->pages[0]);
5743         memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5744                         BTRFS_FSID_SIZE);
5745 }
5746
5747 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
5748                          unsigned long start, unsigned long len)
5749 {
5750         size_t cur;
5751         size_t offset;
5752         struct page *page;
5753         char *kaddr;
5754         char *src = (char *)srcv;
5755         unsigned long i = start >> PAGE_SHIFT;
5756
5757         WARN_ON(start > eb->len);
5758         WARN_ON(start + len > eb->start + eb->len);
5759
5760         offset = offset_in_page(start);
5761
5762         while (len > 0) {
5763                 page = eb->pages[i];
5764                 WARN_ON(!PageUptodate(page));
5765
5766                 cur = min(len, PAGE_SIZE - offset);
5767                 kaddr = page_address(page);
5768                 memcpy(kaddr + offset, src, cur);
5769
5770                 src += cur;
5771                 len -= cur;
5772                 offset = 0;
5773                 i++;
5774         }
5775 }
5776
5777 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
5778                 unsigned long len)
5779 {
5780         size_t cur;
5781         size_t offset;
5782         struct page *page;
5783         char *kaddr;
5784         unsigned long i = start >> PAGE_SHIFT;
5785
5786         WARN_ON(start > eb->len);
5787         WARN_ON(start + len > eb->start + eb->len);
5788
5789         offset = offset_in_page(start);
5790
5791         while (len > 0) {
5792                 page = eb->pages[i];
5793                 WARN_ON(!PageUptodate(page));
5794
5795                 cur = min(len, PAGE_SIZE - offset);
5796                 kaddr = page_address(page);
5797                 memset(kaddr + offset, 0, cur);
5798
5799                 len -= cur;
5800                 offset = 0;
5801                 i++;
5802         }
5803 }
5804
5805 void copy_extent_buffer_full(const struct extent_buffer *dst,
5806                              const struct extent_buffer *src)
5807 {
5808         int i;
5809         int num_pages;
5810
5811         ASSERT(dst->len == src->len);
5812
5813         num_pages = num_extent_pages(dst);
5814         for (i = 0; i < num_pages; i++)
5815                 copy_page(page_address(dst->pages[i]),
5816                                 page_address(src->pages[i]));
5817 }
5818
5819 void copy_extent_buffer(const struct extent_buffer *dst,
5820                         const struct extent_buffer *src,
5821                         unsigned long dst_offset, unsigned long src_offset,
5822                         unsigned long len)
5823 {
5824         u64 dst_len = dst->len;
5825         size_t cur;
5826         size_t offset;
5827         struct page *page;
5828         char *kaddr;
5829         unsigned long i = dst_offset >> PAGE_SHIFT;
5830
5831         WARN_ON(src->len != dst_len);
5832
5833         offset = offset_in_page(dst_offset);
5834
5835         while (len > 0) {
5836                 page = dst->pages[i];
5837                 WARN_ON(!PageUptodate(page));
5838
5839                 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5840
5841                 kaddr = page_address(page);
5842                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5843
5844                 src_offset += cur;
5845                 len -= cur;
5846                 offset = 0;
5847                 i++;
5848         }
5849 }
5850
5851 /*
5852  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5853  * given bit number
5854  * @eb: the extent buffer
5855  * @start: offset of the bitmap item in the extent buffer
5856  * @nr: bit number
5857  * @page_index: return index of the page in the extent buffer that contains the
5858  * given bit number
5859  * @page_offset: return offset into the page given by page_index
5860  *
5861  * This helper hides the ugliness of finding the byte in an extent buffer which
5862  * contains a given bit.
5863  */
5864 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
5865                                     unsigned long start, unsigned long nr,
5866                                     unsigned long *page_index,
5867                                     size_t *page_offset)
5868 {
5869         size_t byte_offset = BIT_BYTE(nr);
5870         size_t offset;
5871
5872         /*
5873          * The byte we want is the offset of the extent buffer + the offset of
5874          * the bitmap item in the extent buffer + the offset of the byte in the
5875          * bitmap item.
5876          */
5877         offset = start + byte_offset;
5878
5879         *page_index = offset >> PAGE_SHIFT;
5880         *page_offset = offset_in_page(offset);
5881 }
5882
5883 /**
5884  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5885  * @eb: the extent buffer
5886  * @start: offset of the bitmap item in the extent buffer
5887  * @nr: bit number to test
5888  */
5889 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
5890                            unsigned long nr)
5891 {
5892         u8 *kaddr;
5893         struct page *page;
5894         unsigned long i;
5895         size_t offset;
5896
5897         eb_bitmap_offset(eb, start, nr, &i, &offset);
5898         page = eb->pages[i];
5899         WARN_ON(!PageUptodate(page));
5900         kaddr = page_address(page);
5901         return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5902 }
5903
5904 /**
5905  * extent_buffer_bitmap_set - set an area of a bitmap
5906  * @eb: the extent buffer
5907  * @start: offset of the bitmap item in the extent buffer
5908  * @pos: bit number of the first bit
5909  * @len: number of bits to set
5910  */
5911 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
5912                               unsigned long pos, unsigned long len)
5913 {
5914         u8 *kaddr;
5915         struct page *page;
5916         unsigned long i;
5917         size_t offset;
5918         const unsigned int size = pos + len;
5919         int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5920         u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5921
5922         eb_bitmap_offset(eb, start, pos, &i, &offset);
5923         page = eb->pages[i];
5924         WARN_ON(!PageUptodate(page));
5925         kaddr = page_address(page);
5926
5927         while (len >= bits_to_set) {
5928                 kaddr[offset] |= mask_to_set;
5929                 len -= bits_to_set;
5930                 bits_to_set = BITS_PER_BYTE;
5931                 mask_to_set = ~0;
5932                 if (++offset >= PAGE_SIZE && len > 0) {
5933                         offset = 0;
5934                         page = eb->pages[++i];
5935                         WARN_ON(!PageUptodate(page));
5936                         kaddr = page_address(page);
5937                 }
5938         }
5939         if (len) {
5940                 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5941                 kaddr[offset] |= mask_to_set;
5942         }
5943 }
5944
5945
5946 /**
5947  * extent_buffer_bitmap_clear - clear an area of a bitmap
5948  * @eb: the extent buffer
5949  * @start: offset of the bitmap item in the extent buffer
5950  * @pos: bit number of the first bit
5951  * @len: number of bits to clear
5952  */
5953 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
5954                                 unsigned long start, unsigned long pos,
5955                                 unsigned long len)
5956 {
5957         u8 *kaddr;
5958         struct page *page;
5959         unsigned long i;
5960         size_t offset;
5961         const unsigned int size = pos + len;
5962         int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5963         u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5964
5965         eb_bitmap_offset(eb, start, pos, &i, &offset);
5966         page = eb->pages[i];
5967         WARN_ON(!PageUptodate(page));
5968         kaddr = page_address(page);
5969
5970         while (len >= bits_to_clear) {
5971                 kaddr[offset] &= ~mask_to_clear;
5972                 len -= bits_to_clear;
5973                 bits_to_clear = BITS_PER_BYTE;
5974                 mask_to_clear = ~0;
5975                 if (++offset >= PAGE_SIZE && len > 0) {
5976                         offset = 0;
5977                         page = eb->pages[++i];
5978                         WARN_ON(!PageUptodate(page));
5979                         kaddr = page_address(page);
5980                 }
5981         }
5982         if (len) {
5983                 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5984                 kaddr[offset] &= ~mask_to_clear;
5985         }
5986 }
5987
5988 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5989 {
5990         unsigned long distance = (src > dst) ? src - dst : dst - src;
5991         return distance < len;
5992 }
5993
5994 static void copy_pages(struct page *dst_page, struct page *src_page,
5995                        unsigned long dst_off, unsigned long src_off,
5996                        unsigned long len)
5997 {
5998         char *dst_kaddr = page_address(dst_page);
5999         char *src_kaddr;
6000         int must_memmove = 0;
6001
6002         if (dst_page != src_page) {
6003                 src_kaddr = page_address(src_page);
6004         } else {
6005                 src_kaddr = dst_kaddr;
6006                 if (areas_overlap(src_off, dst_off, len))
6007                         must_memmove = 1;
6008         }
6009
6010         if (must_memmove)
6011                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
6012         else
6013                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6014 }
6015
6016 void memcpy_extent_buffer(const struct extent_buffer *dst,
6017                           unsigned long dst_offset, unsigned long src_offset,
6018                           unsigned long len)
6019 {
6020         struct btrfs_fs_info *fs_info = dst->fs_info;
6021         size_t cur;
6022         size_t dst_off_in_page;
6023         size_t src_off_in_page;
6024         unsigned long dst_i;
6025         unsigned long src_i;
6026
6027         if (src_offset + len > dst->len) {
6028                 btrfs_err(fs_info,
6029                         "memmove bogus src_offset %lu move len %lu dst len %lu",
6030                          src_offset, len, dst->len);
6031                 BUG();
6032         }
6033         if (dst_offset + len > dst->len) {
6034                 btrfs_err(fs_info,
6035                         "memmove bogus dst_offset %lu move len %lu dst len %lu",
6036                          dst_offset, len, dst->len);
6037                 BUG();
6038         }
6039
6040         while (len > 0) {
6041                 dst_off_in_page = offset_in_page(dst_offset);
6042                 src_off_in_page = offset_in_page(src_offset);
6043
6044                 dst_i = dst_offset >> PAGE_SHIFT;
6045                 src_i = src_offset >> PAGE_SHIFT;
6046
6047                 cur = min(len, (unsigned long)(PAGE_SIZE -
6048                                                src_off_in_page));
6049                 cur = min_t(unsigned long, cur,
6050                         (unsigned long)(PAGE_SIZE - dst_off_in_page));
6051
6052                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6053                            dst_off_in_page, src_off_in_page, cur);
6054
6055                 src_offset += cur;
6056                 dst_offset += cur;
6057                 len -= cur;
6058         }
6059 }
6060
6061 void memmove_extent_buffer(const struct extent_buffer *dst,
6062                            unsigned long dst_offset, unsigned long src_offset,
6063                            unsigned long len)
6064 {
6065         struct btrfs_fs_info *fs_info = dst->fs_info;
6066         size_t cur;
6067         size_t dst_off_in_page;
6068         size_t src_off_in_page;
6069         unsigned long dst_end = dst_offset + len - 1;
6070         unsigned long src_end = src_offset + len - 1;
6071         unsigned long dst_i;
6072         unsigned long src_i;
6073
6074         if (src_offset + len > dst->len) {
6075                 btrfs_err(fs_info,
6076                           "memmove bogus src_offset %lu move len %lu len %lu",
6077                           src_offset, len, dst->len);
6078                 BUG();
6079         }
6080         if (dst_offset + len > dst->len) {
6081                 btrfs_err(fs_info,
6082                           "memmove bogus dst_offset %lu move len %lu len %lu",
6083                           dst_offset, len, dst->len);
6084                 BUG();
6085         }
6086         if (dst_offset < src_offset) {
6087                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6088                 return;
6089         }
6090         while (len > 0) {
6091                 dst_i = dst_end >> PAGE_SHIFT;
6092                 src_i = src_end >> PAGE_SHIFT;
6093
6094                 dst_off_in_page = offset_in_page(dst_end);
6095                 src_off_in_page = offset_in_page(src_end);
6096
6097                 cur = min_t(unsigned long, len, src_off_in_page + 1);
6098                 cur = min(cur, dst_off_in_page + 1);
6099                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6100                            dst_off_in_page - cur + 1,
6101                            src_off_in_page - cur + 1, cur);
6102
6103                 dst_end -= cur;
6104                 src_end -= cur;
6105                 len -= cur;
6106         }
6107 }
6108
6109 int try_release_extent_buffer(struct page *page)
6110 {
6111         struct extent_buffer *eb;
6112
6113         /*
6114          * We need to make sure nobody is attaching this page to an eb right
6115          * now.
6116          */
6117         spin_lock(&page->mapping->private_lock);
6118         if (!PagePrivate(page)) {
6119                 spin_unlock(&page->mapping->private_lock);
6120                 return 1;
6121         }
6122
6123         eb = (struct extent_buffer *)page->private;
6124         BUG_ON(!eb);
6125
6126         /*
6127          * This is a little awful but should be ok, we need to make sure that
6128          * the eb doesn't disappear out from under us while we're looking at
6129          * this page.
6130          */
6131         spin_lock(&eb->refs_lock);
6132         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6133                 spin_unlock(&eb->refs_lock);
6134                 spin_unlock(&page->mapping->private_lock);
6135                 return 0;
6136         }
6137         spin_unlock(&page->mapping->private_lock);
6138
6139         /*
6140          * If tree ref isn't set then we know the ref on this eb is a real ref,
6141          * so just return, this page will likely be freed soon anyway.
6142          */
6143         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6144                 spin_unlock(&eb->refs_lock);
6145                 return 0;
6146         }
6147
6148         return release_extent_buffer(eb);
6149 }