btrfs: drop create parameter to btrfs_get_extent()
[linux-2.6-microblaze.git] / fs / btrfs / extent_io.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent-io-tree.h"
18 #include "extent_map.h"
19 #include "ctree.h"
20 #include "btrfs_inode.h"
21 #include "volumes.h"
22 #include "check-integrity.h"
23 #include "locking.h"
24 #include "rcu-string.h"
25 #include "backref.h"
26 #include "disk-io.h"
27
28 static struct kmem_cache *extent_state_cache;
29 static struct kmem_cache *extent_buffer_cache;
30 static struct bio_set btrfs_bioset;
31
32 static inline bool extent_state_in_tree(const struct extent_state *state)
33 {
34         return !RB_EMPTY_NODE(&state->rb_node);
35 }
36
37 #ifdef CONFIG_BTRFS_DEBUG
38 static LIST_HEAD(buffers);
39 static LIST_HEAD(states);
40
41 static DEFINE_SPINLOCK(leak_lock);
42
43 static inline
44 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
45 {
46         unsigned long flags;
47
48         spin_lock_irqsave(&leak_lock, flags);
49         list_add(new, head);
50         spin_unlock_irqrestore(&leak_lock, flags);
51 }
52
53 static inline
54 void btrfs_leak_debug_del(struct list_head *entry)
55 {
56         unsigned long flags;
57
58         spin_lock_irqsave(&leak_lock, flags);
59         list_del(entry);
60         spin_unlock_irqrestore(&leak_lock, flags);
61 }
62
63 static inline void btrfs_extent_buffer_leak_debug_check(void)
64 {
65         struct extent_buffer *eb;
66
67         while (!list_empty(&buffers)) {
68                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
69                 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
70                        eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
71                 list_del(&eb->leak_list);
72                 kmem_cache_free(extent_buffer_cache, eb);
73         }
74 }
75
76 static inline void btrfs_extent_state_leak_debug_check(void)
77 {
78         struct extent_state *state;
79
80         while (!list_empty(&states)) {
81                 state = list_entry(states.next, struct extent_state, leak_list);
82                 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
83                        state->start, state->end, state->state,
84                        extent_state_in_tree(state),
85                        refcount_read(&state->refs));
86                 list_del(&state->leak_list);
87                 kmem_cache_free(extent_state_cache, state);
88         }
89 }
90
91 #define btrfs_debug_check_extent_io_range(tree, start, end)             \
92         __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
93 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
94                 struct extent_io_tree *tree, u64 start, u64 end)
95 {
96         struct inode *inode = tree->private_data;
97         u64 isize;
98
99         if (!inode || !is_data_inode(inode))
100                 return;
101
102         isize = i_size_read(inode);
103         if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
104                 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
105                     "%s: ino %llu isize %llu odd range [%llu,%llu]",
106                         caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
107         }
108 }
109 #else
110 #define btrfs_leak_debug_add(new, head) do {} while (0)
111 #define btrfs_leak_debug_del(entry)     do {} while (0)
112 #define btrfs_extent_buffer_leak_debug_check()  do {} while (0)
113 #define btrfs_extent_state_leak_debug_check()   do {} while (0)
114 #define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
115 #endif
116
117 struct tree_entry {
118         u64 start;
119         u64 end;
120         struct rb_node rb_node;
121 };
122
123 struct extent_page_data {
124         struct bio *bio;
125         struct extent_io_tree *tree;
126         /* tells writepage not to lock the state bits for this range
127          * it still does the unlocking
128          */
129         unsigned int extent_locked:1;
130
131         /* tells the submit_bio code to use REQ_SYNC */
132         unsigned int sync_io:1;
133 };
134
135 static int add_extent_changeset(struct extent_state *state, unsigned bits,
136                                  struct extent_changeset *changeset,
137                                  int set)
138 {
139         int ret;
140
141         if (!changeset)
142                 return 0;
143         if (set && (state->state & bits) == bits)
144                 return 0;
145         if (!set && (state->state & bits) == 0)
146                 return 0;
147         changeset->bytes_changed += state->end - state->start + 1;
148         ret = ulist_add(&changeset->range_changed, state->start, state->end,
149                         GFP_ATOMIC);
150         return ret;
151 }
152
153 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
154                                        unsigned long bio_flags)
155 {
156         blk_status_t ret = 0;
157         struct extent_io_tree *tree = bio->bi_private;
158
159         bio->bi_private = NULL;
160
161         if (tree->ops)
162                 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
163                                                  mirror_num, bio_flags);
164         else
165                 btrfsic_submit_bio(bio);
166
167         return blk_status_to_errno(ret);
168 }
169
170 /* Cleanup unsubmitted bios */
171 static void end_write_bio(struct extent_page_data *epd, int ret)
172 {
173         if (epd->bio) {
174                 epd->bio->bi_status = errno_to_blk_status(ret);
175                 bio_endio(epd->bio);
176                 epd->bio = NULL;
177         }
178 }
179
180 /*
181  * Submit bio from extent page data via submit_one_bio
182  *
183  * Return 0 if everything is OK.
184  * Return <0 for error.
185  */
186 static int __must_check flush_write_bio(struct extent_page_data *epd)
187 {
188         int ret = 0;
189
190         if (epd->bio) {
191                 ret = submit_one_bio(epd->bio, 0, 0);
192                 /*
193                  * Clean up of epd->bio is handled by its endio function.
194                  * And endio is either triggered by successful bio execution
195                  * or the error handler of submit bio hook.
196                  * So at this point, no matter what happened, we don't need
197                  * to clean up epd->bio.
198                  */
199                 epd->bio = NULL;
200         }
201         return ret;
202 }
203
204 int __init extent_state_cache_init(void)
205 {
206         extent_state_cache = kmem_cache_create("btrfs_extent_state",
207                         sizeof(struct extent_state), 0,
208                         SLAB_MEM_SPREAD, NULL);
209         if (!extent_state_cache)
210                 return -ENOMEM;
211         return 0;
212 }
213
214 int __init extent_io_init(void)
215 {
216         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
217                         sizeof(struct extent_buffer), 0,
218                         SLAB_MEM_SPREAD, NULL);
219         if (!extent_buffer_cache)
220                 return -ENOMEM;
221
222         if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
223                         offsetof(struct btrfs_io_bio, bio),
224                         BIOSET_NEED_BVECS))
225                 goto free_buffer_cache;
226
227         if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
228                 goto free_bioset;
229
230         return 0;
231
232 free_bioset:
233         bioset_exit(&btrfs_bioset);
234
235 free_buffer_cache:
236         kmem_cache_destroy(extent_buffer_cache);
237         extent_buffer_cache = NULL;
238         return -ENOMEM;
239 }
240
241 void __cold extent_state_cache_exit(void)
242 {
243         btrfs_extent_state_leak_debug_check();
244         kmem_cache_destroy(extent_state_cache);
245 }
246
247 void __cold extent_io_exit(void)
248 {
249         btrfs_extent_buffer_leak_debug_check();
250
251         /*
252          * Make sure all delayed rcu free are flushed before we
253          * destroy caches.
254          */
255         rcu_barrier();
256         kmem_cache_destroy(extent_buffer_cache);
257         bioset_exit(&btrfs_bioset);
258 }
259
260 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
261                          struct extent_io_tree *tree, unsigned int owner,
262                          void *private_data)
263 {
264         tree->fs_info = fs_info;
265         tree->state = RB_ROOT;
266         tree->ops = NULL;
267         tree->dirty_bytes = 0;
268         spin_lock_init(&tree->lock);
269         tree->private_data = private_data;
270         tree->owner = owner;
271 }
272
273 void extent_io_tree_release(struct extent_io_tree *tree)
274 {
275         spin_lock(&tree->lock);
276         /*
277          * Do a single barrier for the waitqueue_active check here, the state
278          * of the waitqueue should not change once extent_io_tree_release is
279          * called.
280          */
281         smp_mb();
282         while (!RB_EMPTY_ROOT(&tree->state)) {
283                 struct rb_node *node;
284                 struct extent_state *state;
285
286                 node = rb_first(&tree->state);
287                 state = rb_entry(node, struct extent_state, rb_node);
288                 rb_erase(&state->rb_node, &tree->state);
289                 RB_CLEAR_NODE(&state->rb_node);
290                 /*
291                  * btree io trees aren't supposed to have tasks waiting for
292                  * changes in the flags of extent states ever.
293                  */
294                 ASSERT(!waitqueue_active(&state->wq));
295                 free_extent_state(state);
296
297                 cond_resched_lock(&tree->lock);
298         }
299         spin_unlock(&tree->lock);
300 }
301
302 static struct extent_state *alloc_extent_state(gfp_t mask)
303 {
304         struct extent_state *state;
305
306         /*
307          * The given mask might be not appropriate for the slab allocator,
308          * drop the unsupported bits
309          */
310         mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
311         state = kmem_cache_alloc(extent_state_cache, mask);
312         if (!state)
313                 return state;
314         state->state = 0;
315         state->failrec = NULL;
316         RB_CLEAR_NODE(&state->rb_node);
317         btrfs_leak_debug_add(&state->leak_list, &states);
318         refcount_set(&state->refs, 1);
319         init_waitqueue_head(&state->wq);
320         trace_alloc_extent_state(state, mask, _RET_IP_);
321         return state;
322 }
323
324 void free_extent_state(struct extent_state *state)
325 {
326         if (!state)
327                 return;
328         if (refcount_dec_and_test(&state->refs)) {
329                 WARN_ON(extent_state_in_tree(state));
330                 btrfs_leak_debug_del(&state->leak_list);
331                 trace_free_extent_state(state, _RET_IP_);
332                 kmem_cache_free(extent_state_cache, state);
333         }
334 }
335
336 static struct rb_node *tree_insert(struct rb_root *root,
337                                    struct rb_node *search_start,
338                                    u64 offset,
339                                    struct rb_node *node,
340                                    struct rb_node ***p_in,
341                                    struct rb_node **parent_in)
342 {
343         struct rb_node **p;
344         struct rb_node *parent = NULL;
345         struct tree_entry *entry;
346
347         if (p_in && parent_in) {
348                 p = *p_in;
349                 parent = *parent_in;
350                 goto do_insert;
351         }
352
353         p = search_start ? &search_start : &root->rb_node;
354         while (*p) {
355                 parent = *p;
356                 entry = rb_entry(parent, struct tree_entry, rb_node);
357
358                 if (offset < entry->start)
359                         p = &(*p)->rb_left;
360                 else if (offset > entry->end)
361                         p = &(*p)->rb_right;
362                 else
363                         return parent;
364         }
365
366 do_insert:
367         rb_link_node(node, parent, p);
368         rb_insert_color(node, root);
369         return NULL;
370 }
371
372 /**
373  * __etree_search - searche @tree for an entry that contains @offset. Such
374  * entry would have entry->start <= offset && entry->end >= offset.
375  *
376  * @tree - the tree to search
377  * @offset - offset that should fall within an entry in @tree
378  * @next_ret - pointer to the first entry whose range ends after @offset
379  * @prev - pointer to the first entry whose range begins before @offset
380  * @p_ret - pointer where new node should be anchored (used when inserting an
381  *          entry in the tree)
382  * @parent_ret - points to entry which would have been the parent of the entry,
383  *               containing @offset
384  *
385  * This function returns a pointer to the entry that contains @offset byte
386  * address. If no such entry exists, then NULL is returned and the other
387  * pointer arguments to the function are filled, otherwise the found entry is
388  * returned and other pointers are left untouched.
389  */
390 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
391                                       struct rb_node **next_ret,
392                                       struct rb_node **prev_ret,
393                                       struct rb_node ***p_ret,
394                                       struct rb_node **parent_ret)
395 {
396         struct rb_root *root = &tree->state;
397         struct rb_node **n = &root->rb_node;
398         struct rb_node *prev = NULL;
399         struct rb_node *orig_prev = NULL;
400         struct tree_entry *entry;
401         struct tree_entry *prev_entry = NULL;
402
403         while (*n) {
404                 prev = *n;
405                 entry = rb_entry(prev, struct tree_entry, rb_node);
406                 prev_entry = entry;
407
408                 if (offset < entry->start)
409                         n = &(*n)->rb_left;
410                 else if (offset > entry->end)
411                         n = &(*n)->rb_right;
412                 else
413                         return *n;
414         }
415
416         if (p_ret)
417                 *p_ret = n;
418         if (parent_ret)
419                 *parent_ret = prev;
420
421         if (next_ret) {
422                 orig_prev = prev;
423                 while (prev && offset > prev_entry->end) {
424                         prev = rb_next(prev);
425                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
426                 }
427                 *next_ret = prev;
428                 prev = orig_prev;
429         }
430
431         if (prev_ret) {
432                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
433                 while (prev && offset < prev_entry->start) {
434                         prev = rb_prev(prev);
435                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
436                 }
437                 *prev_ret = prev;
438         }
439         return NULL;
440 }
441
442 static inline struct rb_node *
443 tree_search_for_insert(struct extent_io_tree *tree,
444                        u64 offset,
445                        struct rb_node ***p_ret,
446                        struct rb_node **parent_ret)
447 {
448         struct rb_node *next= NULL;
449         struct rb_node *ret;
450
451         ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
452         if (!ret)
453                 return next;
454         return ret;
455 }
456
457 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
458                                           u64 offset)
459 {
460         return tree_search_for_insert(tree, offset, NULL, NULL);
461 }
462
463 /*
464  * utility function to look for merge candidates inside a given range.
465  * Any extents with matching state are merged together into a single
466  * extent in the tree.  Extents with EXTENT_IO in their state field
467  * are not merged because the end_io handlers need to be able to do
468  * operations on them without sleeping (or doing allocations/splits).
469  *
470  * This should be called with the tree lock held.
471  */
472 static void merge_state(struct extent_io_tree *tree,
473                         struct extent_state *state)
474 {
475         struct extent_state *other;
476         struct rb_node *other_node;
477
478         if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
479                 return;
480
481         other_node = rb_prev(&state->rb_node);
482         if (other_node) {
483                 other = rb_entry(other_node, struct extent_state, rb_node);
484                 if (other->end == state->start - 1 &&
485                     other->state == state->state) {
486                         if (tree->private_data &&
487                             is_data_inode(tree->private_data))
488                                 btrfs_merge_delalloc_extent(tree->private_data,
489                                                             state, other);
490                         state->start = other->start;
491                         rb_erase(&other->rb_node, &tree->state);
492                         RB_CLEAR_NODE(&other->rb_node);
493                         free_extent_state(other);
494                 }
495         }
496         other_node = rb_next(&state->rb_node);
497         if (other_node) {
498                 other = rb_entry(other_node, struct extent_state, rb_node);
499                 if (other->start == state->end + 1 &&
500                     other->state == state->state) {
501                         if (tree->private_data &&
502                             is_data_inode(tree->private_data))
503                                 btrfs_merge_delalloc_extent(tree->private_data,
504                                                             state, other);
505                         state->end = other->end;
506                         rb_erase(&other->rb_node, &tree->state);
507                         RB_CLEAR_NODE(&other->rb_node);
508                         free_extent_state(other);
509                 }
510         }
511 }
512
513 static void set_state_bits(struct extent_io_tree *tree,
514                            struct extent_state *state, unsigned *bits,
515                            struct extent_changeset *changeset);
516
517 /*
518  * insert an extent_state struct into the tree.  'bits' are set on the
519  * struct before it is inserted.
520  *
521  * This may return -EEXIST if the extent is already there, in which case the
522  * state struct is freed.
523  *
524  * The tree lock is not taken internally.  This is a utility function and
525  * probably isn't what you want to call (see set/clear_extent_bit).
526  */
527 static int insert_state(struct extent_io_tree *tree,
528                         struct extent_state *state, u64 start, u64 end,
529                         struct rb_node ***p,
530                         struct rb_node **parent,
531                         unsigned *bits, struct extent_changeset *changeset)
532 {
533         struct rb_node *node;
534
535         if (end < start) {
536                 btrfs_err(tree->fs_info,
537                         "insert state: end < start %llu %llu", end, start);
538                 WARN_ON(1);
539         }
540         state->start = start;
541         state->end = end;
542
543         set_state_bits(tree, state, bits, changeset);
544
545         node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
546         if (node) {
547                 struct extent_state *found;
548                 found = rb_entry(node, struct extent_state, rb_node);
549                 btrfs_err(tree->fs_info,
550                        "found node %llu %llu on insert of %llu %llu",
551                        found->start, found->end, start, end);
552                 return -EEXIST;
553         }
554         merge_state(tree, state);
555         return 0;
556 }
557
558 /*
559  * split a given extent state struct in two, inserting the preallocated
560  * struct 'prealloc' as the newly created second half.  'split' indicates an
561  * offset inside 'orig' where it should be split.
562  *
563  * Before calling,
564  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
565  * are two extent state structs in the tree:
566  * prealloc: [orig->start, split - 1]
567  * orig: [ split, orig->end ]
568  *
569  * The tree locks are not taken by this function. They need to be held
570  * by the caller.
571  */
572 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
573                        struct extent_state *prealloc, u64 split)
574 {
575         struct rb_node *node;
576
577         if (tree->private_data && is_data_inode(tree->private_data))
578                 btrfs_split_delalloc_extent(tree->private_data, orig, split);
579
580         prealloc->start = orig->start;
581         prealloc->end = split - 1;
582         prealloc->state = orig->state;
583         orig->start = split;
584
585         node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
586                            &prealloc->rb_node, NULL, NULL);
587         if (node) {
588                 free_extent_state(prealloc);
589                 return -EEXIST;
590         }
591         return 0;
592 }
593
594 static struct extent_state *next_state(struct extent_state *state)
595 {
596         struct rb_node *next = rb_next(&state->rb_node);
597         if (next)
598                 return rb_entry(next, struct extent_state, rb_node);
599         else
600                 return NULL;
601 }
602
603 /*
604  * utility function to clear some bits in an extent state struct.
605  * it will optionally wake up anyone waiting on this state (wake == 1).
606  *
607  * If no bits are set on the state struct after clearing things, the
608  * struct is freed and removed from the tree
609  */
610 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
611                                             struct extent_state *state,
612                                             unsigned *bits, int wake,
613                                             struct extent_changeset *changeset)
614 {
615         struct extent_state *next;
616         unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
617         int ret;
618
619         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
620                 u64 range = state->end - state->start + 1;
621                 WARN_ON(range > tree->dirty_bytes);
622                 tree->dirty_bytes -= range;
623         }
624
625         if (tree->private_data && is_data_inode(tree->private_data))
626                 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
627
628         ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
629         BUG_ON(ret < 0);
630         state->state &= ~bits_to_clear;
631         if (wake)
632                 wake_up(&state->wq);
633         if (state->state == 0) {
634                 next = next_state(state);
635                 if (extent_state_in_tree(state)) {
636                         rb_erase(&state->rb_node, &tree->state);
637                         RB_CLEAR_NODE(&state->rb_node);
638                         free_extent_state(state);
639                 } else {
640                         WARN_ON(1);
641                 }
642         } else {
643                 merge_state(tree, state);
644                 next = next_state(state);
645         }
646         return next;
647 }
648
649 static struct extent_state *
650 alloc_extent_state_atomic(struct extent_state *prealloc)
651 {
652         if (!prealloc)
653                 prealloc = alloc_extent_state(GFP_ATOMIC);
654
655         return prealloc;
656 }
657
658 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
659 {
660         struct inode *inode = tree->private_data;
661
662         btrfs_panic(btrfs_sb(inode->i_sb), err,
663         "locking error: extent tree was modified by another thread while locked");
664 }
665
666 /*
667  * clear some bits on a range in the tree.  This may require splitting
668  * or inserting elements in the tree, so the gfp mask is used to
669  * indicate which allocations or sleeping are allowed.
670  *
671  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
672  * the given range from the tree regardless of state (ie for truncate).
673  *
674  * the range [start, end] is inclusive.
675  *
676  * This takes the tree lock, and returns 0 on success and < 0 on error.
677  */
678 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
679                               unsigned bits, int wake, int delete,
680                               struct extent_state **cached_state,
681                               gfp_t mask, struct extent_changeset *changeset)
682 {
683         struct extent_state *state;
684         struct extent_state *cached;
685         struct extent_state *prealloc = NULL;
686         struct rb_node *node;
687         u64 last_end;
688         int err;
689         int clear = 0;
690
691         btrfs_debug_check_extent_io_range(tree, start, end);
692         trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
693
694         if (bits & EXTENT_DELALLOC)
695                 bits |= EXTENT_NORESERVE;
696
697         if (delete)
698                 bits |= ~EXTENT_CTLBITS;
699
700         if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
701                 clear = 1;
702 again:
703         if (!prealloc && gfpflags_allow_blocking(mask)) {
704                 /*
705                  * Don't care for allocation failure here because we might end
706                  * up not needing the pre-allocated extent state at all, which
707                  * is the case if we only have in the tree extent states that
708                  * cover our input range and don't cover too any other range.
709                  * If we end up needing a new extent state we allocate it later.
710                  */
711                 prealloc = alloc_extent_state(mask);
712         }
713
714         spin_lock(&tree->lock);
715         if (cached_state) {
716                 cached = *cached_state;
717
718                 if (clear) {
719                         *cached_state = NULL;
720                         cached_state = NULL;
721                 }
722
723                 if (cached && extent_state_in_tree(cached) &&
724                     cached->start <= start && cached->end > start) {
725                         if (clear)
726                                 refcount_dec(&cached->refs);
727                         state = cached;
728                         goto hit_next;
729                 }
730                 if (clear)
731                         free_extent_state(cached);
732         }
733         /*
734          * this search will find the extents that end after
735          * our range starts
736          */
737         node = tree_search(tree, start);
738         if (!node)
739                 goto out;
740         state = rb_entry(node, struct extent_state, rb_node);
741 hit_next:
742         if (state->start > end)
743                 goto out;
744         WARN_ON(state->end < start);
745         last_end = state->end;
746
747         /* the state doesn't have the wanted bits, go ahead */
748         if (!(state->state & bits)) {
749                 state = next_state(state);
750                 goto next;
751         }
752
753         /*
754          *     | ---- desired range ---- |
755          *  | state | or
756          *  | ------------- state -------------- |
757          *
758          * We need to split the extent we found, and may flip
759          * bits on second half.
760          *
761          * If the extent we found extends past our range, we
762          * just split and search again.  It'll get split again
763          * the next time though.
764          *
765          * If the extent we found is inside our range, we clear
766          * the desired bit on it.
767          */
768
769         if (state->start < start) {
770                 prealloc = alloc_extent_state_atomic(prealloc);
771                 BUG_ON(!prealloc);
772                 err = split_state(tree, state, prealloc, start);
773                 if (err)
774                         extent_io_tree_panic(tree, err);
775
776                 prealloc = NULL;
777                 if (err)
778                         goto out;
779                 if (state->end <= end) {
780                         state = clear_state_bit(tree, state, &bits, wake,
781                                                 changeset);
782                         goto next;
783                 }
784                 goto search_again;
785         }
786         /*
787          * | ---- desired range ---- |
788          *                        | state |
789          * We need to split the extent, and clear the bit
790          * on the first half
791          */
792         if (state->start <= end && state->end > end) {
793                 prealloc = alloc_extent_state_atomic(prealloc);
794                 BUG_ON(!prealloc);
795                 err = split_state(tree, state, prealloc, end + 1);
796                 if (err)
797                         extent_io_tree_panic(tree, err);
798
799                 if (wake)
800                         wake_up(&state->wq);
801
802                 clear_state_bit(tree, prealloc, &bits, wake, changeset);
803
804                 prealloc = NULL;
805                 goto out;
806         }
807
808         state = clear_state_bit(tree, state, &bits, wake, changeset);
809 next:
810         if (last_end == (u64)-1)
811                 goto out;
812         start = last_end + 1;
813         if (start <= end && state && !need_resched())
814                 goto hit_next;
815
816 search_again:
817         if (start > end)
818                 goto out;
819         spin_unlock(&tree->lock);
820         if (gfpflags_allow_blocking(mask))
821                 cond_resched();
822         goto again;
823
824 out:
825         spin_unlock(&tree->lock);
826         if (prealloc)
827                 free_extent_state(prealloc);
828
829         return 0;
830
831 }
832
833 static void wait_on_state(struct extent_io_tree *tree,
834                           struct extent_state *state)
835                 __releases(tree->lock)
836                 __acquires(tree->lock)
837 {
838         DEFINE_WAIT(wait);
839         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
840         spin_unlock(&tree->lock);
841         schedule();
842         spin_lock(&tree->lock);
843         finish_wait(&state->wq, &wait);
844 }
845
846 /*
847  * waits for one or more bits to clear on a range in the state tree.
848  * The range [start, end] is inclusive.
849  * The tree lock is taken by this function
850  */
851 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
852                             unsigned long bits)
853 {
854         struct extent_state *state;
855         struct rb_node *node;
856
857         btrfs_debug_check_extent_io_range(tree, start, end);
858
859         spin_lock(&tree->lock);
860 again:
861         while (1) {
862                 /*
863                  * this search will find all the extents that end after
864                  * our range starts
865                  */
866                 node = tree_search(tree, start);
867 process_node:
868                 if (!node)
869                         break;
870
871                 state = rb_entry(node, struct extent_state, rb_node);
872
873                 if (state->start > end)
874                         goto out;
875
876                 if (state->state & bits) {
877                         start = state->start;
878                         refcount_inc(&state->refs);
879                         wait_on_state(tree, state);
880                         free_extent_state(state);
881                         goto again;
882                 }
883                 start = state->end + 1;
884
885                 if (start > end)
886                         break;
887
888                 if (!cond_resched_lock(&tree->lock)) {
889                         node = rb_next(node);
890                         goto process_node;
891                 }
892         }
893 out:
894         spin_unlock(&tree->lock);
895 }
896
897 static void set_state_bits(struct extent_io_tree *tree,
898                            struct extent_state *state,
899                            unsigned *bits, struct extent_changeset *changeset)
900 {
901         unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
902         int ret;
903
904         if (tree->private_data && is_data_inode(tree->private_data))
905                 btrfs_set_delalloc_extent(tree->private_data, state, bits);
906
907         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
908                 u64 range = state->end - state->start + 1;
909                 tree->dirty_bytes += range;
910         }
911         ret = add_extent_changeset(state, bits_to_set, changeset, 1);
912         BUG_ON(ret < 0);
913         state->state |= bits_to_set;
914 }
915
916 static void cache_state_if_flags(struct extent_state *state,
917                                  struct extent_state **cached_ptr,
918                                  unsigned flags)
919 {
920         if (cached_ptr && !(*cached_ptr)) {
921                 if (!flags || (state->state & flags)) {
922                         *cached_ptr = state;
923                         refcount_inc(&state->refs);
924                 }
925         }
926 }
927
928 static void cache_state(struct extent_state *state,
929                         struct extent_state **cached_ptr)
930 {
931         return cache_state_if_flags(state, cached_ptr,
932                                     EXTENT_LOCKED | EXTENT_BOUNDARY);
933 }
934
935 /*
936  * set some bits on a range in the tree.  This may require allocations or
937  * sleeping, so the gfp mask is used to indicate what is allowed.
938  *
939  * If any of the exclusive bits are set, this will fail with -EEXIST if some
940  * part of the range already has the desired bits set.  The start of the
941  * existing range is returned in failed_start in this case.
942  *
943  * [start, end] is inclusive This takes the tree lock.
944  */
945
946 static int __must_check
947 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
948                  unsigned bits, unsigned exclusive_bits,
949                  u64 *failed_start, struct extent_state **cached_state,
950                  gfp_t mask, struct extent_changeset *changeset)
951 {
952         struct extent_state *state;
953         struct extent_state *prealloc = NULL;
954         struct rb_node *node;
955         struct rb_node **p;
956         struct rb_node *parent;
957         int err = 0;
958         u64 last_start;
959         u64 last_end;
960
961         btrfs_debug_check_extent_io_range(tree, start, end);
962         trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
963
964 again:
965         if (!prealloc && gfpflags_allow_blocking(mask)) {
966                 /*
967                  * Don't care for allocation failure here because we might end
968                  * up not needing the pre-allocated extent state at all, which
969                  * is the case if we only have in the tree extent states that
970                  * cover our input range and don't cover too any other range.
971                  * If we end up needing a new extent state we allocate it later.
972                  */
973                 prealloc = alloc_extent_state(mask);
974         }
975
976         spin_lock(&tree->lock);
977         if (cached_state && *cached_state) {
978                 state = *cached_state;
979                 if (state->start <= start && state->end > start &&
980                     extent_state_in_tree(state)) {
981                         node = &state->rb_node;
982                         goto hit_next;
983                 }
984         }
985         /*
986          * this search will find all the extents that end after
987          * our range starts.
988          */
989         node = tree_search_for_insert(tree, start, &p, &parent);
990         if (!node) {
991                 prealloc = alloc_extent_state_atomic(prealloc);
992                 BUG_ON(!prealloc);
993                 err = insert_state(tree, prealloc, start, end,
994                                    &p, &parent, &bits, changeset);
995                 if (err)
996                         extent_io_tree_panic(tree, err);
997
998                 cache_state(prealloc, cached_state);
999                 prealloc = NULL;
1000                 goto out;
1001         }
1002         state = rb_entry(node, struct extent_state, rb_node);
1003 hit_next:
1004         last_start = state->start;
1005         last_end = state->end;
1006
1007         /*
1008          * | ---- desired range ---- |
1009          * | state |
1010          *
1011          * Just lock what we found and keep going
1012          */
1013         if (state->start == start && state->end <= end) {
1014                 if (state->state & exclusive_bits) {
1015                         *failed_start = state->start;
1016                         err = -EEXIST;
1017                         goto out;
1018                 }
1019
1020                 set_state_bits(tree, state, &bits, changeset);
1021                 cache_state(state, cached_state);
1022                 merge_state(tree, state);
1023                 if (last_end == (u64)-1)
1024                         goto out;
1025                 start = last_end + 1;
1026                 state = next_state(state);
1027                 if (start < end && state && state->start == start &&
1028                     !need_resched())
1029                         goto hit_next;
1030                 goto search_again;
1031         }
1032
1033         /*
1034          *     | ---- desired range ---- |
1035          * | state |
1036          *   or
1037          * | ------------- state -------------- |
1038          *
1039          * We need to split the extent we found, and may flip bits on
1040          * second half.
1041          *
1042          * If the extent we found extends past our
1043          * range, we just split and search again.  It'll get split
1044          * again the next time though.
1045          *
1046          * If the extent we found is inside our range, we set the
1047          * desired bit on it.
1048          */
1049         if (state->start < start) {
1050                 if (state->state & exclusive_bits) {
1051                         *failed_start = start;
1052                         err = -EEXIST;
1053                         goto out;
1054                 }
1055
1056                 prealloc = alloc_extent_state_atomic(prealloc);
1057                 BUG_ON(!prealloc);
1058                 err = split_state(tree, state, prealloc, start);
1059                 if (err)
1060                         extent_io_tree_panic(tree, err);
1061
1062                 prealloc = NULL;
1063                 if (err)
1064                         goto out;
1065                 if (state->end <= end) {
1066                         set_state_bits(tree, state, &bits, changeset);
1067                         cache_state(state, cached_state);
1068                         merge_state(tree, state);
1069                         if (last_end == (u64)-1)
1070                                 goto out;
1071                         start = last_end + 1;
1072                         state = next_state(state);
1073                         if (start < end && state && state->start == start &&
1074                             !need_resched())
1075                                 goto hit_next;
1076                 }
1077                 goto search_again;
1078         }
1079         /*
1080          * | ---- desired range ---- |
1081          *     | state | or               | state |
1082          *
1083          * There's a hole, we need to insert something in it and
1084          * ignore the extent we found.
1085          */
1086         if (state->start > start) {
1087                 u64 this_end;
1088                 if (end < last_start)
1089                         this_end = end;
1090                 else
1091                         this_end = last_start - 1;
1092
1093                 prealloc = alloc_extent_state_atomic(prealloc);
1094                 BUG_ON(!prealloc);
1095
1096                 /*
1097                  * Avoid to free 'prealloc' if it can be merged with
1098                  * the later extent.
1099                  */
1100                 err = insert_state(tree, prealloc, start, this_end,
1101                                    NULL, NULL, &bits, changeset);
1102                 if (err)
1103                         extent_io_tree_panic(tree, err);
1104
1105                 cache_state(prealloc, cached_state);
1106                 prealloc = NULL;
1107                 start = this_end + 1;
1108                 goto search_again;
1109         }
1110         /*
1111          * | ---- desired range ---- |
1112          *                        | state |
1113          * We need to split the extent, and set the bit
1114          * on the first half
1115          */
1116         if (state->start <= end && state->end > end) {
1117                 if (state->state & exclusive_bits) {
1118                         *failed_start = start;
1119                         err = -EEXIST;
1120                         goto out;
1121                 }
1122
1123                 prealloc = alloc_extent_state_atomic(prealloc);
1124                 BUG_ON(!prealloc);
1125                 err = split_state(tree, state, prealloc, end + 1);
1126                 if (err)
1127                         extent_io_tree_panic(tree, err);
1128
1129                 set_state_bits(tree, prealloc, &bits, changeset);
1130                 cache_state(prealloc, cached_state);
1131                 merge_state(tree, prealloc);
1132                 prealloc = NULL;
1133                 goto out;
1134         }
1135
1136 search_again:
1137         if (start > end)
1138                 goto out;
1139         spin_unlock(&tree->lock);
1140         if (gfpflags_allow_blocking(mask))
1141                 cond_resched();
1142         goto again;
1143
1144 out:
1145         spin_unlock(&tree->lock);
1146         if (prealloc)
1147                 free_extent_state(prealloc);
1148
1149         return err;
1150
1151 }
1152
1153 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1154                    unsigned bits, u64 * failed_start,
1155                    struct extent_state **cached_state, gfp_t mask)
1156 {
1157         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1158                                 cached_state, mask, NULL);
1159 }
1160
1161
1162 /**
1163  * convert_extent_bit - convert all bits in a given range from one bit to
1164  *                      another
1165  * @tree:       the io tree to search
1166  * @start:      the start offset in bytes
1167  * @end:        the end offset in bytes (inclusive)
1168  * @bits:       the bits to set in this range
1169  * @clear_bits: the bits to clear in this range
1170  * @cached_state:       state that we're going to cache
1171  *
1172  * This will go through and set bits for the given range.  If any states exist
1173  * already in this range they are set with the given bit and cleared of the
1174  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1175  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1176  * boundary bits like LOCK.
1177  *
1178  * All allocations are done with GFP_NOFS.
1179  */
1180 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1181                        unsigned bits, unsigned clear_bits,
1182                        struct extent_state **cached_state)
1183 {
1184         struct extent_state *state;
1185         struct extent_state *prealloc = NULL;
1186         struct rb_node *node;
1187         struct rb_node **p;
1188         struct rb_node *parent;
1189         int err = 0;
1190         u64 last_start;
1191         u64 last_end;
1192         bool first_iteration = true;
1193
1194         btrfs_debug_check_extent_io_range(tree, start, end);
1195         trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1196                                        clear_bits);
1197
1198 again:
1199         if (!prealloc) {
1200                 /*
1201                  * Best effort, don't worry if extent state allocation fails
1202                  * here for the first iteration. We might have a cached state
1203                  * that matches exactly the target range, in which case no
1204                  * extent state allocations are needed. We'll only know this
1205                  * after locking the tree.
1206                  */
1207                 prealloc = alloc_extent_state(GFP_NOFS);
1208                 if (!prealloc && !first_iteration)
1209                         return -ENOMEM;
1210         }
1211
1212         spin_lock(&tree->lock);
1213         if (cached_state && *cached_state) {
1214                 state = *cached_state;
1215                 if (state->start <= start && state->end > start &&
1216                     extent_state_in_tree(state)) {
1217                         node = &state->rb_node;
1218                         goto hit_next;
1219                 }
1220         }
1221
1222         /*
1223          * this search will find all the extents that end after
1224          * our range starts.
1225          */
1226         node = tree_search_for_insert(tree, start, &p, &parent);
1227         if (!node) {
1228                 prealloc = alloc_extent_state_atomic(prealloc);
1229                 if (!prealloc) {
1230                         err = -ENOMEM;
1231                         goto out;
1232                 }
1233                 err = insert_state(tree, prealloc, start, end,
1234                                    &p, &parent, &bits, NULL);
1235                 if (err)
1236                         extent_io_tree_panic(tree, err);
1237                 cache_state(prealloc, cached_state);
1238                 prealloc = NULL;
1239                 goto out;
1240         }
1241         state = rb_entry(node, struct extent_state, rb_node);
1242 hit_next:
1243         last_start = state->start;
1244         last_end = state->end;
1245
1246         /*
1247          * | ---- desired range ---- |
1248          * | state |
1249          *
1250          * Just lock what we found and keep going
1251          */
1252         if (state->start == start && state->end <= end) {
1253                 set_state_bits(tree, state, &bits, NULL);
1254                 cache_state(state, cached_state);
1255                 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1256                 if (last_end == (u64)-1)
1257                         goto out;
1258                 start = last_end + 1;
1259                 if (start < end && state && state->start == start &&
1260                     !need_resched())
1261                         goto hit_next;
1262                 goto search_again;
1263         }
1264
1265         /*
1266          *     | ---- desired range ---- |
1267          * | state |
1268          *   or
1269          * | ------------- state -------------- |
1270          *
1271          * We need to split the extent we found, and may flip bits on
1272          * second half.
1273          *
1274          * If the extent we found extends past our
1275          * range, we just split and search again.  It'll get split
1276          * again the next time though.
1277          *
1278          * If the extent we found is inside our range, we set the
1279          * desired bit on it.
1280          */
1281         if (state->start < start) {
1282                 prealloc = alloc_extent_state_atomic(prealloc);
1283                 if (!prealloc) {
1284                         err = -ENOMEM;
1285                         goto out;
1286                 }
1287                 err = split_state(tree, state, prealloc, start);
1288                 if (err)
1289                         extent_io_tree_panic(tree, err);
1290                 prealloc = NULL;
1291                 if (err)
1292                         goto out;
1293                 if (state->end <= end) {
1294                         set_state_bits(tree, state, &bits, NULL);
1295                         cache_state(state, cached_state);
1296                         state = clear_state_bit(tree, state, &clear_bits, 0,
1297                                                 NULL);
1298                         if (last_end == (u64)-1)
1299                                 goto out;
1300                         start = last_end + 1;
1301                         if (start < end && state && state->start == start &&
1302                             !need_resched())
1303                                 goto hit_next;
1304                 }
1305                 goto search_again;
1306         }
1307         /*
1308          * | ---- desired range ---- |
1309          *     | state | or               | state |
1310          *
1311          * There's a hole, we need to insert something in it and
1312          * ignore the extent we found.
1313          */
1314         if (state->start > start) {
1315                 u64 this_end;
1316                 if (end < last_start)
1317                         this_end = end;
1318                 else
1319                         this_end = last_start - 1;
1320
1321                 prealloc = alloc_extent_state_atomic(prealloc);
1322                 if (!prealloc) {
1323                         err = -ENOMEM;
1324                         goto out;
1325                 }
1326
1327                 /*
1328                  * Avoid to free 'prealloc' if it can be merged with
1329                  * the later extent.
1330                  */
1331                 err = insert_state(tree, prealloc, start, this_end,
1332                                    NULL, NULL, &bits, NULL);
1333                 if (err)
1334                         extent_io_tree_panic(tree, err);
1335                 cache_state(prealloc, cached_state);
1336                 prealloc = NULL;
1337                 start = this_end + 1;
1338                 goto search_again;
1339         }
1340         /*
1341          * | ---- desired range ---- |
1342          *                        | state |
1343          * We need to split the extent, and set the bit
1344          * on the first half
1345          */
1346         if (state->start <= end && state->end > end) {
1347                 prealloc = alloc_extent_state_atomic(prealloc);
1348                 if (!prealloc) {
1349                         err = -ENOMEM;
1350                         goto out;
1351                 }
1352
1353                 err = split_state(tree, state, prealloc, end + 1);
1354                 if (err)
1355                         extent_io_tree_panic(tree, err);
1356
1357                 set_state_bits(tree, prealloc, &bits, NULL);
1358                 cache_state(prealloc, cached_state);
1359                 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1360                 prealloc = NULL;
1361                 goto out;
1362         }
1363
1364 search_again:
1365         if (start > end)
1366                 goto out;
1367         spin_unlock(&tree->lock);
1368         cond_resched();
1369         first_iteration = false;
1370         goto again;
1371
1372 out:
1373         spin_unlock(&tree->lock);
1374         if (prealloc)
1375                 free_extent_state(prealloc);
1376
1377         return err;
1378 }
1379
1380 /* wrappers around set/clear extent bit */
1381 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1382                            unsigned bits, struct extent_changeset *changeset)
1383 {
1384         /*
1385          * We don't support EXTENT_LOCKED yet, as current changeset will
1386          * record any bits changed, so for EXTENT_LOCKED case, it will
1387          * either fail with -EEXIST or changeset will record the whole
1388          * range.
1389          */
1390         BUG_ON(bits & EXTENT_LOCKED);
1391
1392         return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1393                                 changeset);
1394 }
1395
1396 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1397                            unsigned bits)
1398 {
1399         return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1400                                 GFP_NOWAIT, NULL);
1401 }
1402
1403 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1404                      unsigned bits, int wake, int delete,
1405                      struct extent_state **cached)
1406 {
1407         return __clear_extent_bit(tree, start, end, bits, wake, delete,
1408                                   cached, GFP_NOFS, NULL);
1409 }
1410
1411 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1412                 unsigned bits, struct extent_changeset *changeset)
1413 {
1414         /*
1415          * Don't support EXTENT_LOCKED case, same reason as
1416          * set_record_extent_bits().
1417          */
1418         BUG_ON(bits & EXTENT_LOCKED);
1419
1420         return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1421                                   changeset);
1422 }
1423
1424 /*
1425  * either insert or lock state struct between start and end use mask to tell
1426  * us if waiting is desired.
1427  */
1428 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1429                      struct extent_state **cached_state)
1430 {
1431         int err;
1432         u64 failed_start;
1433
1434         while (1) {
1435                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1436                                        EXTENT_LOCKED, &failed_start,
1437                                        cached_state, GFP_NOFS, NULL);
1438                 if (err == -EEXIST) {
1439                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1440                         start = failed_start;
1441                 } else
1442                         break;
1443                 WARN_ON(start > end);
1444         }
1445         return err;
1446 }
1447
1448 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1449 {
1450         int err;
1451         u64 failed_start;
1452
1453         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1454                                &failed_start, NULL, GFP_NOFS, NULL);
1455         if (err == -EEXIST) {
1456                 if (failed_start > start)
1457                         clear_extent_bit(tree, start, failed_start - 1,
1458                                          EXTENT_LOCKED, 1, 0, NULL);
1459                 return 0;
1460         }
1461         return 1;
1462 }
1463
1464 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1465 {
1466         unsigned long index = start >> PAGE_SHIFT;
1467         unsigned long end_index = end >> PAGE_SHIFT;
1468         struct page *page;
1469
1470         while (index <= end_index) {
1471                 page = find_get_page(inode->i_mapping, index);
1472                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1473                 clear_page_dirty_for_io(page);
1474                 put_page(page);
1475                 index++;
1476         }
1477 }
1478
1479 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1480 {
1481         unsigned long index = start >> PAGE_SHIFT;
1482         unsigned long end_index = end >> PAGE_SHIFT;
1483         struct page *page;
1484
1485         while (index <= end_index) {
1486                 page = find_get_page(inode->i_mapping, index);
1487                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1488                 __set_page_dirty_nobuffers(page);
1489                 account_page_redirty(page);
1490                 put_page(page);
1491                 index++;
1492         }
1493 }
1494
1495 /* find the first state struct with 'bits' set after 'start', and
1496  * return it.  tree->lock must be held.  NULL will returned if
1497  * nothing was found after 'start'
1498  */
1499 static struct extent_state *
1500 find_first_extent_bit_state(struct extent_io_tree *tree,
1501                             u64 start, unsigned bits)
1502 {
1503         struct rb_node *node;
1504         struct extent_state *state;
1505
1506         /*
1507          * this search will find all the extents that end after
1508          * our range starts.
1509          */
1510         node = tree_search(tree, start);
1511         if (!node)
1512                 goto out;
1513
1514         while (1) {
1515                 state = rb_entry(node, struct extent_state, rb_node);
1516                 if (state->end >= start && (state->state & bits))
1517                         return state;
1518
1519                 node = rb_next(node);
1520                 if (!node)
1521                         break;
1522         }
1523 out:
1524         return NULL;
1525 }
1526
1527 /*
1528  * find the first offset in the io tree with 'bits' set. zero is
1529  * returned if we find something, and *start_ret and *end_ret are
1530  * set to reflect the state struct that was found.
1531  *
1532  * If nothing was found, 1 is returned. If found something, return 0.
1533  */
1534 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1535                           u64 *start_ret, u64 *end_ret, unsigned bits,
1536                           struct extent_state **cached_state)
1537 {
1538         struct extent_state *state;
1539         int ret = 1;
1540
1541         spin_lock(&tree->lock);
1542         if (cached_state && *cached_state) {
1543                 state = *cached_state;
1544                 if (state->end == start - 1 && extent_state_in_tree(state)) {
1545                         while ((state = next_state(state)) != NULL) {
1546                                 if (state->state & bits)
1547                                         goto got_it;
1548                         }
1549                         free_extent_state(*cached_state);
1550                         *cached_state = NULL;
1551                         goto out;
1552                 }
1553                 free_extent_state(*cached_state);
1554                 *cached_state = NULL;
1555         }
1556
1557         state = find_first_extent_bit_state(tree, start, bits);
1558 got_it:
1559         if (state) {
1560                 cache_state_if_flags(state, cached_state, 0);
1561                 *start_ret = state->start;
1562                 *end_ret = state->end;
1563                 ret = 0;
1564         }
1565 out:
1566         spin_unlock(&tree->lock);
1567         return ret;
1568 }
1569
1570 /**
1571  * find_first_clear_extent_bit - find the first range that has @bits not set.
1572  * This range could start before @start.
1573  *
1574  * @tree - the tree to search
1575  * @start - the offset at/after which the found extent should start
1576  * @start_ret - records the beginning of the range
1577  * @end_ret - records the end of the range (inclusive)
1578  * @bits - the set of bits which must be unset
1579  *
1580  * Since unallocated range is also considered one which doesn't have the bits
1581  * set it's possible that @end_ret contains -1, this happens in case the range
1582  * spans (last_range_end, end of device]. In this case it's up to the caller to
1583  * trim @end_ret to the appropriate size.
1584  */
1585 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1586                                  u64 *start_ret, u64 *end_ret, unsigned bits)
1587 {
1588         struct extent_state *state;
1589         struct rb_node *node, *prev = NULL, *next;
1590
1591         spin_lock(&tree->lock);
1592
1593         /* Find first extent with bits cleared */
1594         while (1) {
1595                 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1596                 if (!node) {
1597                         node = next;
1598                         if (!node) {
1599                                 /*
1600                                  * We are past the last allocated chunk,
1601                                  * set start at the end of the last extent. The
1602                                  * device alloc tree should never be empty so
1603                                  * prev is always set.
1604                                  */
1605                                 ASSERT(prev);
1606                                 state = rb_entry(prev, struct extent_state, rb_node);
1607                                 *start_ret = state->end + 1;
1608                                 *end_ret = -1;
1609                                 goto out;
1610                         }
1611                 }
1612                 /*
1613                  * At this point 'node' either contains 'start' or start is
1614                  * before 'node'
1615                  */
1616                 state = rb_entry(node, struct extent_state, rb_node);
1617
1618                 if (in_range(start, state->start, state->end - state->start + 1)) {
1619                         if (state->state & bits) {
1620                                 /*
1621                                  * |--range with bits sets--|
1622                                  *    |
1623                                  *    start
1624                                  */
1625                                 start = state->end + 1;
1626                         } else {
1627                                 /*
1628                                  * 'start' falls within a range that doesn't
1629                                  * have the bits set, so take its start as
1630                                  * the beginning of the desired range
1631                                  *
1632                                  * |--range with bits cleared----|
1633                                  *      |
1634                                  *      start
1635                                  */
1636                                 *start_ret = state->start;
1637                                 break;
1638                         }
1639                 } else {
1640                         /*
1641                          * |---prev range---|---hole/unset---|---node range---|
1642                          *                          |
1643                          *                        start
1644                          *
1645                          *                        or
1646                          *
1647                          * |---hole/unset--||--first node--|
1648                          * 0   |
1649                          *    start
1650                          */
1651                         if (prev) {
1652                                 state = rb_entry(prev, struct extent_state,
1653                                                  rb_node);
1654                                 *start_ret = state->end + 1;
1655                         } else {
1656                                 *start_ret = 0;
1657                         }
1658                         break;
1659                 }
1660         }
1661
1662         /*
1663          * Find the longest stretch from start until an entry which has the
1664          * bits set
1665          */
1666         while (1) {
1667                 state = rb_entry(node, struct extent_state, rb_node);
1668                 if (state->end >= start && !(state->state & bits)) {
1669                         *end_ret = state->end;
1670                 } else {
1671                         *end_ret = state->start - 1;
1672                         break;
1673                 }
1674
1675                 node = rb_next(node);
1676                 if (!node)
1677                         break;
1678         }
1679 out:
1680         spin_unlock(&tree->lock);
1681 }
1682
1683 /*
1684  * find a contiguous range of bytes in the file marked as delalloc, not
1685  * more than 'max_bytes'.  start and end are used to return the range,
1686  *
1687  * true is returned if we find something, false if nothing was in the tree
1688  */
1689 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1690                                u64 *end, u64 max_bytes,
1691                                struct extent_state **cached_state)
1692 {
1693         struct rb_node *node;
1694         struct extent_state *state;
1695         u64 cur_start = *start;
1696         bool found = false;
1697         u64 total_bytes = 0;
1698
1699         spin_lock(&tree->lock);
1700
1701         /*
1702          * this search will find all the extents that end after
1703          * our range starts.
1704          */
1705         node = tree_search(tree, cur_start);
1706         if (!node) {
1707                 *end = (u64)-1;
1708                 goto out;
1709         }
1710
1711         while (1) {
1712                 state = rb_entry(node, struct extent_state, rb_node);
1713                 if (found && (state->start != cur_start ||
1714                               (state->state & EXTENT_BOUNDARY))) {
1715                         goto out;
1716                 }
1717                 if (!(state->state & EXTENT_DELALLOC)) {
1718                         if (!found)
1719                                 *end = state->end;
1720                         goto out;
1721                 }
1722                 if (!found) {
1723                         *start = state->start;
1724                         *cached_state = state;
1725                         refcount_inc(&state->refs);
1726                 }
1727                 found = true;
1728                 *end = state->end;
1729                 cur_start = state->end + 1;
1730                 node = rb_next(node);
1731                 total_bytes += state->end - state->start + 1;
1732                 if (total_bytes >= max_bytes)
1733                         break;
1734                 if (!node)
1735                         break;
1736         }
1737 out:
1738         spin_unlock(&tree->lock);
1739         return found;
1740 }
1741
1742 static int __process_pages_contig(struct address_space *mapping,
1743                                   struct page *locked_page,
1744                                   pgoff_t start_index, pgoff_t end_index,
1745                                   unsigned long page_ops, pgoff_t *index_ret);
1746
1747 static noinline void __unlock_for_delalloc(struct inode *inode,
1748                                            struct page *locked_page,
1749                                            u64 start, u64 end)
1750 {
1751         unsigned long index = start >> PAGE_SHIFT;
1752         unsigned long end_index = end >> PAGE_SHIFT;
1753
1754         ASSERT(locked_page);
1755         if (index == locked_page->index && end_index == index)
1756                 return;
1757
1758         __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1759                                PAGE_UNLOCK, NULL);
1760 }
1761
1762 static noinline int lock_delalloc_pages(struct inode *inode,
1763                                         struct page *locked_page,
1764                                         u64 delalloc_start,
1765                                         u64 delalloc_end)
1766 {
1767         unsigned long index = delalloc_start >> PAGE_SHIFT;
1768         unsigned long index_ret = index;
1769         unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1770         int ret;
1771
1772         ASSERT(locked_page);
1773         if (index == locked_page->index && index == end_index)
1774                 return 0;
1775
1776         ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1777                                      end_index, PAGE_LOCK, &index_ret);
1778         if (ret == -EAGAIN)
1779                 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1780                                       (u64)index_ret << PAGE_SHIFT);
1781         return ret;
1782 }
1783
1784 /*
1785  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1786  * more than @max_bytes.  @Start and @end are used to return the range,
1787  *
1788  * Return: true if we find something
1789  *         false if nothing was in the tree
1790  */
1791 EXPORT_FOR_TESTS
1792 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1793                                     struct page *locked_page, u64 *start,
1794                                     u64 *end)
1795 {
1796         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1797         u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1798         u64 delalloc_start;
1799         u64 delalloc_end;
1800         bool found;
1801         struct extent_state *cached_state = NULL;
1802         int ret;
1803         int loops = 0;
1804
1805 again:
1806         /* step one, find a bunch of delalloc bytes starting at start */
1807         delalloc_start = *start;
1808         delalloc_end = 0;
1809         found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1810                                           max_bytes, &cached_state);
1811         if (!found || delalloc_end <= *start) {
1812                 *start = delalloc_start;
1813                 *end = delalloc_end;
1814                 free_extent_state(cached_state);
1815                 return false;
1816         }
1817
1818         /*
1819          * start comes from the offset of locked_page.  We have to lock
1820          * pages in order, so we can't process delalloc bytes before
1821          * locked_page
1822          */
1823         if (delalloc_start < *start)
1824                 delalloc_start = *start;
1825
1826         /*
1827          * make sure to limit the number of pages we try to lock down
1828          */
1829         if (delalloc_end + 1 - delalloc_start > max_bytes)
1830                 delalloc_end = delalloc_start + max_bytes - 1;
1831
1832         /* step two, lock all the pages after the page that has start */
1833         ret = lock_delalloc_pages(inode, locked_page,
1834                                   delalloc_start, delalloc_end);
1835         ASSERT(!ret || ret == -EAGAIN);
1836         if (ret == -EAGAIN) {
1837                 /* some of the pages are gone, lets avoid looping by
1838                  * shortening the size of the delalloc range we're searching
1839                  */
1840                 free_extent_state(cached_state);
1841                 cached_state = NULL;
1842                 if (!loops) {
1843                         max_bytes = PAGE_SIZE;
1844                         loops = 1;
1845                         goto again;
1846                 } else {
1847                         found = false;
1848                         goto out_failed;
1849                 }
1850         }
1851
1852         /* step three, lock the state bits for the whole range */
1853         lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1854
1855         /* then test to make sure it is all still delalloc */
1856         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1857                              EXTENT_DELALLOC, 1, cached_state);
1858         if (!ret) {
1859                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1860                                      &cached_state);
1861                 __unlock_for_delalloc(inode, locked_page,
1862                               delalloc_start, delalloc_end);
1863                 cond_resched();
1864                 goto again;
1865         }
1866         free_extent_state(cached_state);
1867         *start = delalloc_start;
1868         *end = delalloc_end;
1869 out_failed:
1870         return found;
1871 }
1872
1873 static int __process_pages_contig(struct address_space *mapping,
1874                                   struct page *locked_page,
1875                                   pgoff_t start_index, pgoff_t end_index,
1876                                   unsigned long page_ops, pgoff_t *index_ret)
1877 {
1878         unsigned long nr_pages = end_index - start_index + 1;
1879         unsigned long pages_locked = 0;
1880         pgoff_t index = start_index;
1881         struct page *pages[16];
1882         unsigned ret;
1883         int err = 0;
1884         int i;
1885
1886         if (page_ops & PAGE_LOCK) {
1887                 ASSERT(page_ops == PAGE_LOCK);
1888                 ASSERT(index_ret && *index_ret == start_index);
1889         }
1890
1891         if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1892                 mapping_set_error(mapping, -EIO);
1893
1894         while (nr_pages > 0) {
1895                 ret = find_get_pages_contig(mapping, index,
1896                                      min_t(unsigned long,
1897                                      nr_pages, ARRAY_SIZE(pages)), pages);
1898                 if (ret == 0) {
1899                         /*
1900                          * Only if we're going to lock these pages,
1901                          * can we find nothing at @index.
1902                          */
1903                         ASSERT(page_ops & PAGE_LOCK);
1904                         err = -EAGAIN;
1905                         goto out;
1906                 }
1907
1908                 for (i = 0; i < ret; i++) {
1909                         if (page_ops & PAGE_SET_PRIVATE2)
1910                                 SetPagePrivate2(pages[i]);
1911
1912                         if (locked_page && pages[i] == locked_page) {
1913                                 put_page(pages[i]);
1914                                 pages_locked++;
1915                                 continue;
1916                         }
1917                         if (page_ops & PAGE_CLEAR_DIRTY)
1918                                 clear_page_dirty_for_io(pages[i]);
1919                         if (page_ops & PAGE_SET_WRITEBACK)
1920                                 set_page_writeback(pages[i]);
1921                         if (page_ops & PAGE_SET_ERROR)
1922                                 SetPageError(pages[i]);
1923                         if (page_ops & PAGE_END_WRITEBACK)
1924                                 end_page_writeback(pages[i]);
1925                         if (page_ops & PAGE_UNLOCK)
1926                                 unlock_page(pages[i]);
1927                         if (page_ops & PAGE_LOCK) {
1928                                 lock_page(pages[i]);
1929                                 if (!PageDirty(pages[i]) ||
1930                                     pages[i]->mapping != mapping) {
1931                                         unlock_page(pages[i]);
1932                                         put_page(pages[i]);
1933                                         err = -EAGAIN;
1934                                         goto out;
1935                                 }
1936                         }
1937                         put_page(pages[i]);
1938                         pages_locked++;
1939                 }
1940                 nr_pages -= ret;
1941                 index += ret;
1942                 cond_resched();
1943         }
1944 out:
1945         if (err && index_ret)
1946                 *index_ret = start_index + pages_locked - 1;
1947         return err;
1948 }
1949
1950 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1951                                   struct page *locked_page,
1952                                   unsigned clear_bits,
1953                                   unsigned long page_ops)
1954 {
1955         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1956                          NULL);
1957
1958         __process_pages_contig(inode->i_mapping, locked_page,
1959                                start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1960                                page_ops, NULL);
1961 }
1962
1963 /*
1964  * count the number of bytes in the tree that have a given bit(s)
1965  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1966  * cached.  The total number found is returned.
1967  */
1968 u64 count_range_bits(struct extent_io_tree *tree,
1969                      u64 *start, u64 search_end, u64 max_bytes,
1970                      unsigned bits, int contig)
1971 {
1972         struct rb_node *node;
1973         struct extent_state *state;
1974         u64 cur_start = *start;
1975         u64 total_bytes = 0;
1976         u64 last = 0;
1977         int found = 0;
1978
1979         if (WARN_ON(search_end <= cur_start))
1980                 return 0;
1981
1982         spin_lock(&tree->lock);
1983         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1984                 total_bytes = tree->dirty_bytes;
1985                 goto out;
1986         }
1987         /*
1988          * this search will find all the extents that end after
1989          * our range starts.
1990          */
1991         node = tree_search(tree, cur_start);
1992         if (!node)
1993                 goto out;
1994
1995         while (1) {
1996                 state = rb_entry(node, struct extent_state, rb_node);
1997                 if (state->start > search_end)
1998                         break;
1999                 if (contig && found && state->start > last + 1)
2000                         break;
2001                 if (state->end >= cur_start && (state->state & bits) == bits) {
2002                         total_bytes += min(search_end, state->end) + 1 -
2003                                        max(cur_start, state->start);
2004                         if (total_bytes >= max_bytes)
2005                                 break;
2006                         if (!found) {
2007                                 *start = max(cur_start, state->start);
2008                                 found = 1;
2009                         }
2010                         last = state->end;
2011                 } else if (contig && found) {
2012                         break;
2013                 }
2014                 node = rb_next(node);
2015                 if (!node)
2016                         break;
2017         }
2018 out:
2019         spin_unlock(&tree->lock);
2020         return total_bytes;
2021 }
2022
2023 /*
2024  * set the private field for a given byte offset in the tree.  If there isn't
2025  * an extent_state there already, this does nothing.
2026  */
2027 int set_state_failrec(struct extent_io_tree *tree, u64 start,
2028                       struct io_failure_record *failrec)
2029 {
2030         struct rb_node *node;
2031         struct extent_state *state;
2032         int ret = 0;
2033
2034         spin_lock(&tree->lock);
2035         /*
2036          * this search will find all the extents that end after
2037          * our range starts.
2038          */
2039         node = tree_search(tree, start);
2040         if (!node) {
2041                 ret = -ENOENT;
2042                 goto out;
2043         }
2044         state = rb_entry(node, struct extent_state, rb_node);
2045         if (state->start != start) {
2046                 ret = -ENOENT;
2047                 goto out;
2048         }
2049         state->failrec = failrec;
2050 out:
2051         spin_unlock(&tree->lock);
2052         return ret;
2053 }
2054
2055 int get_state_failrec(struct extent_io_tree *tree, u64 start,
2056                       struct io_failure_record **failrec)
2057 {
2058         struct rb_node *node;
2059         struct extent_state *state;
2060         int ret = 0;
2061
2062         spin_lock(&tree->lock);
2063         /*
2064          * this search will find all the extents that end after
2065          * our range starts.
2066          */
2067         node = tree_search(tree, start);
2068         if (!node) {
2069                 ret = -ENOENT;
2070                 goto out;
2071         }
2072         state = rb_entry(node, struct extent_state, rb_node);
2073         if (state->start != start) {
2074                 ret = -ENOENT;
2075                 goto out;
2076         }
2077         *failrec = state->failrec;
2078 out:
2079         spin_unlock(&tree->lock);
2080         return ret;
2081 }
2082
2083 /*
2084  * searches a range in the state tree for a given mask.
2085  * If 'filled' == 1, this returns 1 only if every extent in the tree
2086  * has the bits set.  Otherwise, 1 is returned if any bit in the
2087  * range is found set.
2088  */
2089 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2090                    unsigned bits, int filled, struct extent_state *cached)
2091 {
2092         struct extent_state *state = NULL;
2093         struct rb_node *node;
2094         int bitset = 0;
2095
2096         spin_lock(&tree->lock);
2097         if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2098             cached->end > start)
2099                 node = &cached->rb_node;
2100         else
2101                 node = tree_search(tree, start);
2102         while (node && start <= end) {
2103                 state = rb_entry(node, struct extent_state, rb_node);
2104
2105                 if (filled && state->start > start) {
2106                         bitset = 0;
2107                         break;
2108                 }
2109
2110                 if (state->start > end)
2111                         break;
2112
2113                 if (state->state & bits) {
2114                         bitset = 1;
2115                         if (!filled)
2116                                 break;
2117                 } else if (filled) {
2118                         bitset = 0;
2119                         break;
2120                 }
2121
2122                 if (state->end == (u64)-1)
2123                         break;
2124
2125                 start = state->end + 1;
2126                 if (start > end)
2127                         break;
2128                 node = rb_next(node);
2129                 if (!node) {
2130                         if (filled)
2131                                 bitset = 0;
2132                         break;
2133                 }
2134         }
2135         spin_unlock(&tree->lock);
2136         return bitset;
2137 }
2138
2139 /*
2140  * helper function to set a given page up to date if all the
2141  * extents in the tree for that page are up to date
2142  */
2143 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2144 {
2145         u64 start = page_offset(page);
2146         u64 end = start + PAGE_SIZE - 1;
2147         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2148                 SetPageUptodate(page);
2149 }
2150
2151 int free_io_failure(struct extent_io_tree *failure_tree,
2152                     struct extent_io_tree *io_tree,
2153                     struct io_failure_record *rec)
2154 {
2155         int ret;
2156         int err = 0;
2157
2158         set_state_failrec(failure_tree, rec->start, NULL);
2159         ret = clear_extent_bits(failure_tree, rec->start,
2160                                 rec->start + rec->len - 1,
2161                                 EXTENT_LOCKED | EXTENT_DIRTY);
2162         if (ret)
2163                 err = ret;
2164
2165         ret = clear_extent_bits(io_tree, rec->start,
2166                                 rec->start + rec->len - 1,
2167                                 EXTENT_DAMAGED);
2168         if (ret && !err)
2169                 err = ret;
2170
2171         kfree(rec);
2172         return err;
2173 }
2174
2175 /*
2176  * this bypasses the standard btrfs submit functions deliberately, as
2177  * the standard behavior is to write all copies in a raid setup. here we only
2178  * want to write the one bad copy. so we do the mapping for ourselves and issue
2179  * submit_bio directly.
2180  * to avoid any synchronization issues, wait for the data after writing, which
2181  * actually prevents the read that triggered the error from finishing.
2182  * currently, there can be no more than two copies of every data bit. thus,
2183  * exactly one rewrite is required.
2184  */
2185 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2186                       u64 length, u64 logical, struct page *page,
2187                       unsigned int pg_offset, int mirror_num)
2188 {
2189         struct bio *bio;
2190         struct btrfs_device *dev;
2191         u64 map_length = 0;
2192         u64 sector;
2193         struct btrfs_bio *bbio = NULL;
2194         int ret;
2195
2196         ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2197         BUG_ON(!mirror_num);
2198
2199         bio = btrfs_io_bio_alloc(1);
2200         bio->bi_iter.bi_size = 0;
2201         map_length = length;
2202
2203         /*
2204          * Avoid races with device replace and make sure our bbio has devices
2205          * associated to its stripes that don't go away while we are doing the
2206          * read repair operation.
2207          */
2208         btrfs_bio_counter_inc_blocked(fs_info);
2209         if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2210                 /*
2211                  * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2212                  * to update all raid stripes, but here we just want to correct
2213                  * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2214                  * stripe's dev and sector.
2215                  */
2216                 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2217                                       &map_length, &bbio, 0);
2218                 if (ret) {
2219                         btrfs_bio_counter_dec(fs_info);
2220                         bio_put(bio);
2221                         return -EIO;
2222                 }
2223                 ASSERT(bbio->mirror_num == 1);
2224         } else {
2225                 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2226                                       &map_length, &bbio, mirror_num);
2227                 if (ret) {
2228                         btrfs_bio_counter_dec(fs_info);
2229                         bio_put(bio);
2230                         return -EIO;
2231                 }
2232                 BUG_ON(mirror_num != bbio->mirror_num);
2233         }
2234
2235         sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2236         bio->bi_iter.bi_sector = sector;
2237         dev = bbio->stripes[bbio->mirror_num - 1].dev;
2238         btrfs_put_bbio(bbio);
2239         if (!dev || !dev->bdev ||
2240             !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2241                 btrfs_bio_counter_dec(fs_info);
2242                 bio_put(bio);
2243                 return -EIO;
2244         }
2245         bio_set_dev(bio, dev->bdev);
2246         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2247         bio_add_page(bio, page, length, pg_offset);
2248
2249         if (btrfsic_submit_bio_wait(bio)) {
2250                 /* try to remap that extent elsewhere? */
2251                 btrfs_bio_counter_dec(fs_info);
2252                 bio_put(bio);
2253                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2254                 return -EIO;
2255         }
2256
2257         btrfs_info_rl_in_rcu(fs_info,
2258                 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2259                                   ino, start,
2260                                   rcu_str_deref(dev->name), sector);
2261         btrfs_bio_counter_dec(fs_info);
2262         bio_put(bio);
2263         return 0;
2264 }
2265
2266 int btrfs_repair_eb_io_failure(struct extent_buffer *eb, int mirror_num)
2267 {
2268         struct btrfs_fs_info *fs_info = eb->fs_info;
2269         u64 start = eb->start;
2270         int i, num_pages = num_extent_pages(eb);
2271         int ret = 0;
2272
2273         if (sb_rdonly(fs_info->sb))
2274                 return -EROFS;
2275
2276         for (i = 0; i < num_pages; i++) {
2277                 struct page *p = eb->pages[i];
2278
2279                 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2280                                         start - page_offset(p), mirror_num);
2281                 if (ret)
2282                         break;
2283                 start += PAGE_SIZE;
2284         }
2285
2286         return ret;
2287 }
2288
2289 /*
2290  * each time an IO finishes, we do a fast check in the IO failure tree
2291  * to see if we need to process or clean up an io_failure_record
2292  */
2293 int clean_io_failure(struct btrfs_fs_info *fs_info,
2294                      struct extent_io_tree *failure_tree,
2295                      struct extent_io_tree *io_tree, u64 start,
2296                      struct page *page, u64 ino, unsigned int pg_offset)
2297 {
2298         u64 private;
2299         struct io_failure_record *failrec;
2300         struct extent_state *state;
2301         int num_copies;
2302         int ret;
2303
2304         private = 0;
2305         ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2306                                EXTENT_DIRTY, 0);
2307         if (!ret)
2308                 return 0;
2309
2310         ret = get_state_failrec(failure_tree, start, &failrec);
2311         if (ret)
2312                 return 0;
2313
2314         BUG_ON(!failrec->this_mirror);
2315
2316         if (failrec->in_validation) {
2317                 /* there was no real error, just free the record */
2318                 btrfs_debug(fs_info,
2319                         "clean_io_failure: freeing dummy error at %llu",
2320                         failrec->start);
2321                 goto out;
2322         }
2323         if (sb_rdonly(fs_info->sb))
2324                 goto out;
2325
2326         spin_lock(&io_tree->lock);
2327         state = find_first_extent_bit_state(io_tree,
2328                                             failrec->start,
2329                                             EXTENT_LOCKED);
2330         spin_unlock(&io_tree->lock);
2331
2332         if (state && state->start <= failrec->start &&
2333             state->end >= failrec->start + failrec->len - 1) {
2334                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2335                                               failrec->len);
2336                 if (num_copies > 1)  {
2337                         repair_io_failure(fs_info, ino, start, failrec->len,
2338                                           failrec->logical, page, pg_offset,
2339                                           failrec->failed_mirror);
2340                 }
2341         }
2342
2343 out:
2344         free_io_failure(failure_tree, io_tree, failrec);
2345
2346         return 0;
2347 }
2348
2349 /*
2350  * Can be called when
2351  * - hold extent lock
2352  * - under ordered extent
2353  * - the inode is freeing
2354  */
2355 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2356 {
2357         struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2358         struct io_failure_record *failrec;
2359         struct extent_state *state, *next;
2360
2361         if (RB_EMPTY_ROOT(&failure_tree->state))
2362                 return;
2363
2364         spin_lock(&failure_tree->lock);
2365         state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2366         while (state) {
2367                 if (state->start > end)
2368                         break;
2369
2370                 ASSERT(state->end <= end);
2371
2372                 next = next_state(state);
2373
2374                 failrec = state->failrec;
2375                 free_extent_state(state);
2376                 kfree(failrec);
2377
2378                 state = next;
2379         }
2380         spin_unlock(&failure_tree->lock);
2381 }
2382
2383 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2384                 struct io_failure_record **failrec_ret)
2385 {
2386         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2387         struct io_failure_record *failrec;
2388         struct extent_map *em;
2389         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2390         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2391         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2392         int ret;
2393         u64 logical;
2394
2395         ret = get_state_failrec(failure_tree, start, &failrec);
2396         if (ret) {
2397                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2398                 if (!failrec)
2399                         return -ENOMEM;
2400
2401                 failrec->start = start;
2402                 failrec->len = end - start + 1;
2403                 failrec->this_mirror = 0;
2404                 failrec->bio_flags = 0;
2405                 failrec->in_validation = 0;
2406
2407                 read_lock(&em_tree->lock);
2408                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2409                 if (!em) {
2410                         read_unlock(&em_tree->lock);
2411                         kfree(failrec);
2412                         return -EIO;
2413                 }
2414
2415                 if (em->start > start || em->start + em->len <= start) {
2416                         free_extent_map(em);
2417                         em = NULL;
2418                 }
2419                 read_unlock(&em_tree->lock);
2420                 if (!em) {
2421                         kfree(failrec);
2422                         return -EIO;
2423                 }
2424
2425                 logical = start - em->start;
2426                 logical = em->block_start + logical;
2427                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2428                         logical = em->block_start;
2429                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2430                         extent_set_compress_type(&failrec->bio_flags,
2431                                                  em->compress_type);
2432                 }
2433
2434                 btrfs_debug(fs_info,
2435                         "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2436                         logical, start, failrec->len);
2437
2438                 failrec->logical = logical;
2439                 free_extent_map(em);
2440
2441                 /* set the bits in the private failure tree */
2442                 ret = set_extent_bits(failure_tree, start, end,
2443                                         EXTENT_LOCKED | EXTENT_DIRTY);
2444                 if (ret >= 0)
2445                         ret = set_state_failrec(failure_tree, start, failrec);
2446                 /* set the bits in the inode's tree */
2447                 if (ret >= 0)
2448                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2449                 if (ret < 0) {
2450                         kfree(failrec);
2451                         return ret;
2452                 }
2453         } else {
2454                 btrfs_debug(fs_info,
2455                         "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2456                         failrec->logical, failrec->start, failrec->len,
2457                         failrec->in_validation);
2458                 /*
2459                  * when data can be on disk more than twice, add to failrec here
2460                  * (e.g. with a list for failed_mirror) to make
2461                  * clean_io_failure() clean all those errors at once.
2462                  */
2463         }
2464
2465         *failrec_ret = failrec;
2466
2467         return 0;
2468 }
2469
2470 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2471                            struct io_failure_record *failrec, int failed_mirror)
2472 {
2473         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2474         int num_copies;
2475
2476         num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2477         if (num_copies == 1) {
2478                 /*
2479                  * we only have a single copy of the data, so don't bother with
2480                  * all the retry and error correction code that follows. no
2481                  * matter what the error is, it is very likely to persist.
2482                  */
2483                 btrfs_debug(fs_info,
2484                         "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2485                         num_copies, failrec->this_mirror, failed_mirror);
2486                 return false;
2487         }
2488
2489         /*
2490          * there are two premises:
2491          *      a) deliver good data to the caller
2492          *      b) correct the bad sectors on disk
2493          */
2494         if (failed_bio_pages > 1) {
2495                 /*
2496                  * to fulfill b), we need to know the exact failing sectors, as
2497                  * we don't want to rewrite any more than the failed ones. thus,
2498                  * we need separate read requests for the failed bio
2499                  *
2500                  * if the following BUG_ON triggers, our validation request got
2501                  * merged. we need separate requests for our algorithm to work.
2502                  */
2503                 BUG_ON(failrec->in_validation);
2504                 failrec->in_validation = 1;
2505                 failrec->this_mirror = failed_mirror;
2506         } else {
2507                 /*
2508                  * we're ready to fulfill a) and b) alongside. get a good copy
2509                  * of the failed sector and if we succeed, we have setup
2510                  * everything for repair_io_failure to do the rest for us.
2511                  */
2512                 if (failrec->in_validation) {
2513                         BUG_ON(failrec->this_mirror != failed_mirror);
2514                         failrec->in_validation = 0;
2515                         failrec->this_mirror = 0;
2516                 }
2517                 failrec->failed_mirror = failed_mirror;
2518                 failrec->this_mirror++;
2519                 if (failrec->this_mirror == failed_mirror)
2520                         failrec->this_mirror++;
2521         }
2522
2523         if (failrec->this_mirror > num_copies) {
2524                 btrfs_debug(fs_info,
2525                         "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2526                         num_copies, failrec->this_mirror, failed_mirror);
2527                 return false;
2528         }
2529
2530         return true;
2531 }
2532
2533
2534 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2535                                     struct io_failure_record *failrec,
2536                                     struct page *page, int pg_offset, int icsum,
2537                                     bio_end_io_t *endio_func, void *data)
2538 {
2539         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2540         struct bio *bio;
2541         struct btrfs_io_bio *btrfs_failed_bio;
2542         struct btrfs_io_bio *btrfs_bio;
2543
2544         bio = btrfs_io_bio_alloc(1);
2545         bio->bi_end_io = endio_func;
2546         bio->bi_iter.bi_sector = failrec->logical >> 9;
2547         bio->bi_iter.bi_size = 0;
2548         bio->bi_private = data;
2549
2550         btrfs_failed_bio = btrfs_io_bio(failed_bio);
2551         if (btrfs_failed_bio->csum) {
2552                 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2553
2554                 btrfs_bio = btrfs_io_bio(bio);
2555                 btrfs_bio->csum = btrfs_bio->csum_inline;
2556                 icsum *= csum_size;
2557                 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2558                        csum_size);
2559         }
2560
2561         bio_add_page(bio, page, failrec->len, pg_offset);
2562
2563         return bio;
2564 }
2565
2566 /*
2567  * This is a generic handler for readpage errors. If other copies exist, read
2568  * those and write back good data to the failed position. Does not investigate
2569  * in remapping the failed extent elsewhere, hoping the device will be smart
2570  * enough to do this as needed
2571  */
2572 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2573                               struct page *page, u64 start, u64 end,
2574                               int failed_mirror)
2575 {
2576         struct io_failure_record *failrec;
2577         struct inode *inode = page->mapping->host;
2578         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2579         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2580         struct bio *bio;
2581         int read_mode = 0;
2582         blk_status_t status;
2583         int ret;
2584         unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT;
2585
2586         BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2587
2588         ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2589         if (ret)
2590                 return ret;
2591
2592         if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2593                                     failed_mirror)) {
2594                 free_io_failure(failure_tree, tree, failrec);
2595                 return -EIO;
2596         }
2597
2598         if (failed_bio_pages > 1)
2599                 read_mode |= REQ_FAILFAST_DEV;
2600
2601         phy_offset >>= inode->i_sb->s_blocksize_bits;
2602         bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2603                                       start - page_offset(page),
2604                                       (int)phy_offset, failed_bio->bi_end_io,
2605                                       NULL);
2606         bio->bi_opf = REQ_OP_READ | read_mode;
2607
2608         btrfs_debug(btrfs_sb(inode->i_sb),
2609                 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2610                 read_mode, failrec->this_mirror, failrec->in_validation);
2611
2612         status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2613                                          failrec->bio_flags);
2614         if (status) {
2615                 free_io_failure(failure_tree, tree, failrec);
2616                 bio_put(bio);
2617                 ret = blk_status_to_errno(status);
2618         }
2619
2620         return ret;
2621 }
2622
2623 /* lots and lots of room for performance fixes in the end_bio funcs */
2624
2625 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2626 {
2627         int uptodate = (err == 0);
2628         int ret = 0;
2629
2630         btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2631
2632         if (!uptodate) {
2633                 ClearPageUptodate(page);
2634                 SetPageError(page);
2635                 ret = err < 0 ? err : -EIO;
2636                 mapping_set_error(page->mapping, ret);
2637         }
2638 }
2639
2640 /*
2641  * after a writepage IO is done, we need to:
2642  * clear the uptodate bits on error
2643  * clear the writeback bits in the extent tree for this IO
2644  * end_page_writeback if the page has no more pending IO
2645  *
2646  * Scheduling is not allowed, so the extent state tree is expected
2647  * to have one and only one object corresponding to this IO.
2648  */
2649 static void end_bio_extent_writepage(struct bio *bio)
2650 {
2651         int error = blk_status_to_errno(bio->bi_status);
2652         struct bio_vec *bvec;
2653         u64 start;
2654         u64 end;
2655         struct bvec_iter_all iter_all;
2656
2657         ASSERT(!bio_flagged(bio, BIO_CLONED));
2658         bio_for_each_segment_all(bvec, bio, iter_all) {
2659                 struct page *page = bvec->bv_page;
2660                 struct inode *inode = page->mapping->host;
2661                 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2662
2663                 /* We always issue full-page reads, but if some block
2664                  * in a page fails to read, blk_update_request() will
2665                  * advance bv_offset and adjust bv_len to compensate.
2666                  * Print a warning for nonzero offsets, and an error
2667                  * if they don't add up to a full page.  */
2668                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2669                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2670                                 btrfs_err(fs_info,
2671                                    "partial page write in btrfs with offset %u and length %u",
2672                                         bvec->bv_offset, bvec->bv_len);
2673                         else
2674                                 btrfs_info(fs_info,
2675                                    "incomplete page write in btrfs with offset %u and length %u",
2676                                         bvec->bv_offset, bvec->bv_len);
2677                 }
2678
2679                 start = page_offset(page);
2680                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2681
2682                 end_extent_writepage(page, error, start, end);
2683                 end_page_writeback(page);
2684         }
2685
2686         bio_put(bio);
2687 }
2688
2689 static void
2690 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2691                               int uptodate)
2692 {
2693         struct extent_state *cached = NULL;
2694         u64 end = start + len - 1;
2695
2696         if (uptodate && tree->track_uptodate)
2697                 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2698         unlock_extent_cached_atomic(tree, start, end, &cached);
2699 }
2700
2701 /*
2702  * after a readpage IO is done, we need to:
2703  * clear the uptodate bits on error
2704  * set the uptodate bits if things worked
2705  * set the page up to date if all extents in the tree are uptodate
2706  * clear the lock bit in the extent tree
2707  * unlock the page if there are no other extents locked for it
2708  *
2709  * Scheduling is not allowed, so the extent state tree is expected
2710  * to have one and only one object corresponding to this IO.
2711  */
2712 static void end_bio_extent_readpage(struct bio *bio)
2713 {
2714         struct bio_vec *bvec;
2715         int uptodate = !bio->bi_status;
2716         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2717         struct extent_io_tree *tree, *failure_tree;
2718         u64 offset = 0;
2719         u64 start;
2720         u64 end;
2721         u64 len;
2722         u64 extent_start = 0;
2723         u64 extent_len = 0;
2724         int mirror;
2725         int ret;
2726         struct bvec_iter_all iter_all;
2727
2728         ASSERT(!bio_flagged(bio, BIO_CLONED));
2729         bio_for_each_segment_all(bvec, bio, iter_all) {
2730                 struct page *page = bvec->bv_page;
2731                 struct inode *inode = page->mapping->host;
2732                 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2733                 bool data_inode = btrfs_ino(BTRFS_I(inode))
2734                         != BTRFS_BTREE_INODE_OBJECTID;
2735
2736                 btrfs_debug(fs_info,
2737                         "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2738                         (u64)bio->bi_iter.bi_sector, bio->bi_status,
2739                         io_bio->mirror_num);
2740                 tree = &BTRFS_I(inode)->io_tree;
2741                 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2742
2743                 /* We always issue full-page reads, but if some block
2744                  * in a page fails to read, blk_update_request() will
2745                  * advance bv_offset and adjust bv_len to compensate.
2746                  * Print a warning for nonzero offsets, and an error
2747                  * if they don't add up to a full page.  */
2748                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2749                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2750                                 btrfs_err(fs_info,
2751                                         "partial page read in btrfs with offset %u and length %u",
2752                                         bvec->bv_offset, bvec->bv_len);
2753                         else
2754                                 btrfs_info(fs_info,
2755                                         "incomplete page read in btrfs with offset %u and length %u",
2756                                         bvec->bv_offset, bvec->bv_len);
2757                 }
2758
2759                 start = page_offset(page);
2760                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2761                 len = bvec->bv_len;
2762
2763                 mirror = io_bio->mirror_num;
2764                 if (likely(uptodate)) {
2765                         ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2766                                                               page, start, end,
2767                                                               mirror);
2768                         if (ret)
2769                                 uptodate = 0;
2770                         else
2771                                 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2772                                                  failure_tree, tree, start,
2773                                                  page,
2774                                                  btrfs_ino(BTRFS_I(inode)), 0);
2775                 }
2776
2777                 if (likely(uptodate))
2778                         goto readpage_ok;
2779
2780                 if (data_inode) {
2781
2782                         /*
2783                          * The generic bio_readpage_error handles errors the
2784                          * following way: If possible, new read requests are
2785                          * created and submitted and will end up in
2786                          * end_bio_extent_readpage as well (if we're lucky,
2787                          * not in the !uptodate case). In that case it returns
2788                          * 0 and we just go on with the next page in our bio.
2789                          * If it can't handle the error it will return -EIO and
2790                          * we remain responsible for that page.
2791                          */
2792                         ret = bio_readpage_error(bio, offset, page, start, end,
2793                                                  mirror);
2794                         if (ret == 0) {
2795                                 uptodate = !bio->bi_status;
2796                                 offset += len;
2797                                 continue;
2798                         }
2799                 } else {
2800                         struct extent_buffer *eb;
2801
2802                         eb = (struct extent_buffer *)page->private;
2803                         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2804                         eb->read_mirror = mirror;
2805                         atomic_dec(&eb->io_pages);
2806                         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2807                                                &eb->bflags))
2808                                 btree_readahead_hook(eb, -EIO);
2809                 }
2810 readpage_ok:
2811                 if (likely(uptodate)) {
2812                         loff_t i_size = i_size_read(inode);
2813                         pgoff_t end_index = i_size >> PAGE_SHIFT;
2814                         unsigned off;
2815
2816                         /* Zero out the end if this page straddles i_size */
2817                         off = offset_in_page(i_size);
2818                         if (page->index == end_index && off)
2819                                 zero_user_segment(page, off, PAGE_SIZE);
2820                         SetPageUptodate(page);
2821                 } else {
2822                         ClearPageUptodate(page);
2823                         SetPageError(page);
2824                 }
2825                 unlock_page(page);
2826                 offset += len;
2827
2828                 if (unlikely(!uptodate)) {
2829                         if (extent_len) {
2830                                 endio_readpage_release_extent(tree,
2831                                                               extent_start,
2832                                                               extent_len, 1);
2833                                 extent_start = 0;
2834                                 extent_len = 0;
2835                         }
2836                         endio_readpage_release_extent(tree, start,
2837                                                       end - start + 1, 0);
2838                 } else if (!extent_len) {
2839                         extent_start = start;
2840                         extent_len = end + 1 - start;
2841                 } else if (extent_start + extent_len == start) {
2842                         extent_len += end + 1 - start;
2843                 } else {
2844                         endio_readpage_release_extent(tree, extent_start,
2845                                                       extent_len, uptodate);
2846                         extent_start = start;
2847                         extent_len = end + 1 - start;
2848                 }
2849         }
2850
2851         if (extent_len)
2852                 endio_readpage_release_extent(tree, extent_start, extent_len,
2853                                               uptodate);
2854         btrfs_io_bio_free_csum(io_bio);
2855         bio_put(bio);
2856 }
2857
2858 /*
2859  * Initialize the members up to but not including 'bio'. Use after allocating a
2860  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2861  * 'bio' because use of __GFP_ZERO is not supported.
2862  */
2863 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2864 {
2865         memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2866 }
2867
2868 /*
2869  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2870  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2871  * for the appropriate container_of magic
2872  */
2873 struct bio *btrfs_bio_alloc(u64 first_byte)
2874 {
2875         struct bio *bio;
2876
2877         bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2878         bio->bi_iter.bi_sector = first_byte >> 9;
2879         btrfs_io_bio_init(btrfs_io_bio(bio));
2880         return bio;
2881 }
2882
2883 struct bio *btrfs_bio_clone(struct bio *bio)
2884 {
2885         struct btrfs_io_bio *btrfs_bio;
2886         struct bio *new;
2887
2888         /* Bio allocation backed by a bioset does not fail */
2889         new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2890         btrfs_bio = btrfs_io_bio(new);
2891         btrfs_io_bio_init(btrfs_bio);
2892         btrfs_bio->iter = bio->bi_iter;
2893         return new;
2894 }
2895
2896 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2897 {
2898         struct bio *bio;
2899
2900         /* Bio allocation backed by a bioset does not fail */
2901         bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2902         btrfs_io_bio_init(btrfs_io_bio(bio));
2903         return bio;
2904 }
2905
2906 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2907 {
2908         struct bio *bio;
2909         struct btrfs_io_bio *btrfs_bio;
2910
2911         /* this will never fail when it's backed by a bioset */
2912         bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2913         ASSERT(bio);
2914
2915         btrfs_bio = btrfs_io_bio(bio);
2916         btrfs_io_bio_init(btrfs_bio);
2917
2918         bio_trim(bio, offset >> 9, size >> 9);
2919         btrfs_bio->iter = bio->bi_iter;
2920         return bio;
2921 }
2922
2923 /*
2924  * @opf:        bio REQ_OP_* and REQ_* flags as one value
2925  * @tree:       tree so we can call our merge_bio hook
2926  * @wbc:        optional writeback control for io accounting
2927  * @page:       page to add to the bio
2928  * @pg_offset:  offset of the new bio or to check whether we are adding
2929  *              a contiguous page to the previous one
2930  * @size:       portion of page that we want to write
2931  * @offset:     starting offset in the page
2932  * @bio_ret:    must be valid pointer, newly allocated bio will be stored there
2933  * @end_io_func:     end_io callback for new bio
2934  * @mirror_num:      desired mirror to read/write
2935  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
2936  * @bio_flags:  flags of the current bio to see if we can merge them
2937  */
2938 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2939                               struct writeback_control *wbc,
2940                               struct page *page, u64 offset,
2941                               size_t size, unsigned long pg_offset,
2942                               struct bio **bio_ret,
2943                               bio_end_io_t end_io_func,
2944                               int mirror_num,
2945                               unsigned long prev_bio_flags,
2946                               unsigned long bio_flags,
2947                               bool force_bio_submit)
2948 {
2949         int ret = 0;
2950         struct bio *bio;
2951         size_t page_size = min_t(size_t, size, PAGE_SIZE);
2952         sector_t sector = offset >> 9;
2953
2954         ASSERT(bio_ret);
2955
2956         if (*bio_ret) {
2957                 bool contig;
2958                 bool can_merge = true;
2959
2960                 bio = *bio_ret;
2961                 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2962                         contig = bio->bi_iter.bi_sector == sector;
2963                 else
2964                         contig = bio_end_sector(bio) == sector;
2965
2966                 ASSERT(tree->ops);
2967                 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
2968                         can_merge = false;
2969
2970                 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2971                     force_bio_submit ||
2972                     bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2973                         ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2974                         if (ret < 0) {
2975                                 *bio_ret = NULL;
2976                                 return ret;
2977                         }
2978                         bio = NULL;
2979                 } else {
2980                         if (wbc)
2981                                 wbc_account_cgroup_owner(wbc, page, page_size);
2982                         return 0;
2983                 }
2984         }
2985
2986         bio = btrfs_bio_alloc(offset);
2987         bio_add_page(bio, page, page_size, pg_offset);
2988         bio->bi_end_io = end_io_func;
2989         bio->bi_private = tree;
2990         bio->bi_write_hint = page->mapping->host->i_write_hint;
2991         bio->bi_opf = opf;
2992         if (wbc) {
2993                 struct block_device *bdev;
2994
2995                 bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
2996                 bio_set_dev(bio, bdev);
2997                 wbc_init_bio(wbc, bio);
2998                 wbc_account_cgroup_owner(wbc, page, page_size);
2999         }
3000
3001         *bio_ret = bio;
3002
3003         return ret;
3004 }
3005
3006 static void attach_extent_buffer_page(struct extent_buffer *eb,
3007                                       struct page *page)
3008 {
3009         if (!PagePrivate(page)) {
3010                 SetPagePrivate(page);
3011                 get_page(page);
3012                 set_page_private(page, (unsigned long)eb);
3013         } else {
3014                 WARN_ON(page->private != (unsigned long)eb);
3015         }
3016 }
3017
3018 void set_page_extent_mapped(struct page *page)
3019 {
3020         if (!PagePrivate(page)) {
3021                 SetPagePrivate(page);
3022                 get_page(page);
3023                 set_page_private(page, EXTENT_PAGE_PRIVATE);
3024         }
3025 }
3026
3027 static struct extent_map *
3028 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3029                  u64 start, u64 len, get_extent_t *get_extent,
3030                  struct extent_map **em_cached)
3031 {
3032         struct extent_map *em;
3033
3034         if (em_cached && *em_cached) {
3035                 em = *em_cached;
3036                 if (extent_map_in_tree(em) && start >= em->start &&
3037                     start < extent_map_end(em)) {
3038                         refcount_inc(&em->refs);
3039                         return em;
3040                 }
3041
3042                 free_extent_map(em);
3043                 *em_cached = NULL;
3044         }
3045
3046         em = get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3047         if (em_cached && !IS_ERR_OR_NULL(em)) {
3048                 BUG_ON(*em_cached);
3049                 refcount_inc(&em->refs);
3050                 *em_cached = em;
3051         }
3052         return em;
3053 }
3054 /*
3055  * basic readpage implementation.  Locked extent state structs are inserted
3056  * into the tree that are removed when the IO is done (by the end_io
3057  * handlers)
3058  * XXX JDM: This needs looking at to ensure proper page locking
3059  * return 0 on success, otherwise return error
3060  */
3061 static int __do_readpage(struct extent_io_tree *tree,
3062                          struct page *page,
3063                          get_extent_t *get_extent,
3064                          struct extent_map **em_cached,
3065                          struct bio **bio, int mirror_num,
3066                          unsigned long *bio_flags, unsigned int read_flags,
3067                          u64 *prev_em_start)
3068 {
3069         struct inode *inode = page->mapping->host;
3070         u64 start = page_offset(page);
3071         const u64 end = start + PAGE_SIZE - 1;
3072         u64 cur = start;
3073         u64 extent_offset;
3074         u64 last_byte = i_size_read(inode);
3075         u64 block_start;
3076         u64 cur_end;
3077         struct extent_map *em;
3078         int ret = 0;
3079         int nr = 0;
3080         size_t pg_offset = 0;
3081         size_t iosize;
3082         size_t disk_io_size;
3083         size_t blocksize = inode->i_sb->s_blocksize;
3084         unsigned long this_bio_flag = 0;
3085
3086         set_page_extent_mapped(page);
3087
3088         if (!PageUptodate(page)) {
3089                 if (cleancache_get_page(page) == 0) {
3090                         BUG_ON(blocksize != PAGE_SIZE);
3091                         unlock_extent(tree, start, end);
3092                         goto out;
3093                 }
3094         }
3095
3096         if (page->index == last_byte >> PAGE_SHIFT) {
3097                 char *userpage;
3098                 size_t zero_offset = offset_in_page(last_byte);
3099
3100                 if (zero_offset) {
3101                         iosize = PAGE_SIZE - zero_offset;
3102                         userpage = kmap_atomic(page);
3103                         memset(userpage + zero_offset, 0, iosize);
3104                         flush_dcache_page(page);
3105                         kunmap_atomic(userpage);
3106                 }
3107         }
3108         while (cur <= end) {
3109                 bool force_bio_submit = false;
3110                 u64 offset;
3111
3112                 if (cur >= last_byte) {
3113                         char *userpage;
3114                         struct extent_state *cached = NULL;
3115
3116                         iosize = PAGE_SIZE - pg_offset;
3117                         userpage = kmap_atomic(page);
3118                         memset(userpage + pg_offset, 0, iosize);
3119                         flush_dcache_page(page);
3120                         kunmap_atomic(userpage);
3121                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3122                                             &cached, GFP_NOFS);
3123                         unlock_extent_cached(tree, cur,
3124                                              cur + iosize - 1, &cached);
3125                         break;
3126                 }
3127                 em = __get_extent_map(inode, page, pg_offset, cur,
3128                                       end - cur + 1, get_extent, em_cached);
3129                 if (IS_ERR_OR_NULL(em)) {
3130                         SetPageError(page);
3131                         unlock_extent(tree, cur, end);
3132                         break;
3133                 }
3134                 extent_offset = cur - em->start;
3135                 BUG_ON(extent_map_end(em) <= cur);
3136                 BUG_ON(end < cur);
3137
3138                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3139                         this_bio_flag |= EXTENT_BIO_COMPRESSED;
3140                         extent_set_compress_type(&this_bio_flag,
3141                                                  em->compress_type);
3142                 }
3143
3144                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3145                 cur_end = min(extent_map_end(em) - 1, end);
3146                 iosize = ALIGN(iosize, blocksize);
3147                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3148                         disk_io_size = em->block_len;
3149                         offset = em->block_start;
3150                 } else {
3151                         offset = em->block_start + extent_offset;
3152                         disk_io_size = iosize;
3153                 }
3154                 block_start = em->block_start;
3155                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3156                         block_start = EXTENT_MAP_HOLE;
3157
3158                 /*
3159                  * If we have a file range that points to a compressed extent
3160                  * and it's followed by a consecutive file range that points to
3161                  * to the same compressed extent (possibly with a different
3162                  * offset and/or length, so it either points to the whole extent
3163                  * or only part of it), we must make sure we do not submit a
3164                  * single bio to populate the pages for the 2 ranges because
3165                  * this makes the compressed extent read zero out the pages
3166                  * belonging to the 2nd range. Imagine the following scenario:
3167                  *
3168                  *  File layout
3169                  *  [0 - 8K]                     [8K - 24K]
3170                  *    |                               |
3171                  *    |                               |
3172                  * points to extent X,         points to extent X,
3173                  * offset 4K, length of 8K     offset 0, length 16K
3174                  *
3175                  * [extent X, compressed length = 4K uncompressed length = 16K]
3176                  *
3177                  * If the bio to read the compressed extent covers both ranges,
3178                  * it will decompress extent X into the pages belonging to the
3179                  * first range and then it will stop, zeroing out the remaining
3180                  * pages that belong to the other range that points to extent X.
3181                  * So here we make sure we submit 2 bios, one for the first
3182                  * range and another one for the third range. Both will target
3183                  * the same physical extent from disk, but we can't currently
3184                  * make the compressed bio endio callback populate the pages
3185                  * for both ranges because each compressed bio is tightly
3186                  * coupled with a single extent map, and each range can have
3187                  * an extent map with a different offset value relative to the
3188                  * uncompressed data of our extent and different lengths. This
3189                  * is a corner case so we prioritize correctness over
3190                  * non-optimal behavior (submitting 2 bios for the same extent).
3191                  */
3192                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3193                     prev_em_start && *prev_em_start != (u64)-1 &&
3194                     *prev_em_start != em->start)
3195                         force_bio_submit = true;
3196
3197                 if (prev_em_start)
3198                         *prev_em_start = em->start;
3199
3200                 free_extent_map(em);
3201                 em = NULL;
3202
3203                 /* we've found a hole, just zero and go on */
3204                 if (block_start == EXTENT_MAP_HOLE) {
3205                         char *userpage;
3206                         struct extent_state *cached = NULL;
3207
3208                         userpage = kmap_atomic(page);
3209                         memset(userpage + pg_offset, 0, iosize);
3210                         flush_dcache_page(page);
3211                         kunmap_atomic(userpage);
3212
3213                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3214                                             &cached, GFP_NOFS);
3215                         unlock_extent_cached(tree, cur,
3216                                              cur + iosize - 1, &cached);
3217                         cur = cur + iosize;
3218                         pg_offset += iosize;
3219                         continue;
3220                 }
3221                 /* the get_extent function already copied into the page */
3222                 if (test_range_bit(tree, cur, cur_end,
3223                                    EXTENT_UPTODATE, 1, NULL)) {
3224                         check_page_uptodate(tree, page);
3225                         unlock_extent(tree, cur, cur + iosize - 1);
3226                         cur = cur + iosize;
3227                         pg_offset += iosize;
3228                         continue;
3229                 }
3230                 /* we have an inline extent but it didn't get marked up
3231                  * to date.  Error out
3232                  */
3233                 if (block_start == EXTENT_MAP_INLINE) {
3234                         SetPageError(page);
3235                         unlock_extent(tree, cur, cur + iosize - 1);
3236                         cur = cur + iosize;
3237                         pg_offset += iosize;
3238                         continue;
3239                 }
3240
3241                 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3242                                          page, offset, disk_io_size,
3243                                          pg_offset, bio,
3244                                          end_bio_extent_readpage, mirror_num,
3245                                          *bio_flags,
3246                                          this_bio_flag,
3247                                          force_bio_submit);
3248                 if (!ret) {
3249                         nr++;
3250                         *bio_flags = this_bio_flag;
3251                 } else {
3252                         SetPageError(page);
3253                         unlock_extent(tree, cur, cur + iosize - 1);
3254                         goto out;
3255                 }
3256                 cur = cur + iosize;
3257                 pg_offset += iosize;
3258         }
3259 out:
3260         if (!nr) {
3261                 if (!PageError(page))
3262                         SetPageUptodate(page);
3263                 unlock_page(page);
3264         }
3265         return ret;
3266 }
3267
3268 static inline void contiguous_readpages(struct extent_io_tree *tree,
3269                                              struct page *pages[], int nr_pages,
3270                                              u64 start, u64 end,
3271                                              struct extent_map **em_cached,
3272                                              struct bio **bio,
3273                                              unsigned long *bio_flags,
3274                                              u64 *prev_em_start)
3275 {
3276         struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3277         int index;
3278
3279         btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
3280
3281         for (index = 0; index < nr_pages; index++) {
3282                 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3283                                 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3284                 put_page(pages[index]);
3285         }
3286 }
3287
3288 static int __extent_read_full_page(struct extent_io_tree *tree,
3289                                    struct page *page,
3290                                    get_extent_t *get_extent,
3291                                    struct bio **bio, int mirror_num,
3292                                    unsigned long *bio_flags,
3293                                    unsigned int read_flags)
3294 {
3295         struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3296         u64 start = page_offset(page);
3297         u64 end = start + PAGE_SIZE - 1;
3298         int ret;
3299
3300         btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
3301
3302         ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3303                             bio_flags, read_flags, NULL);
3304         return ret;
3305 }
3306
3307 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3308                             get_extent_t *get_extent, int mirror_num)
3309 {
3310         struct bio *bio = NULL;
3311         unsigned long bio_flags = 0;
3312         int ret;
3313
3314         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3315                                       &bio_flags, 0);
3316         if (bio)
3317                 ret = submit_one_bio(bio, mirror_num, bio_flags);
3318         return ret;
3319 }
3320
3321 static void update_nr_written(struct writeback_control *wbc,
3322                               unsigned long nr_written)
3323 {
3324         wbc->nr_to_write -= nr_written;
3325 }
3326
3327 /*
3328  * helper for __extent_writepage, doing all of the delayed allocation setup.
3329  *
3330  * This returns 1 if btrfs_run_delalloc_range function did all the work required
3331  * to write the page (copy into inline extent).  In this case the IO has
3332  * been started and the page is already unlocked.
3333  *
3334  * This returns 0 if all went well (page still locked)
3335  * This returns < 0 if there were errors (page still locked)
3336  */
3337 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3338                 struct page *page, struct writeback_control *wbc,
3339                 u64 delalloc_start, unsigned long *nr_written)
3340 {
3341         u64 page_end = delalloc_start + PAGE_SIZE - 1;
3342         bool found;
3343         u64 delalloc_to_write = 0;
3344         u64 delalloc_end = 0;
3345         int ret;
3346         int page_started = 0;
3347
3348
3349         while (delalloc_end < page_end) {
3350                 found = find_lock_delalloc_range(inode, page,
3351                                                &delalloc_start,
3352                                                &delalloc_end);
3353                 if (!found) {
3354                         delalloc_start = delalloc_end + 1;
3355                         continue;
3356                 }
3357                 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3358                                 delalloc_end, &page_started, nr_written, wbc);
3359                 if (ret) {
3360                         SetPageError(page);
3361                         /*
3362                          * btrfs_run_delalloc_range should return < 0 for error
3363                          * but just in case, we use > 0 here meaning the IO is
3364                          * started, so we don't want to return > 0 unless
3365                          * things are going well.
3366                          */
3367                         ret = ret < 0 ? ret : -EIO;
3368                         goto done;
3369                 }
3370                 /*
3371                  * delalloc_end is already one less than the total length, so
3372                  * we don't subtract one from PAGE_SIZE
3373                  */
3374                 delalloc_to_write += (delalloc_end - delalloc_start +
3375                                       PAGE_SIZE) >> PAGE_SHIFT;
3376                 delalloc_start = delalloc_end + 1;
3377         }
3378         if (wbc->nr_to_write < delalloc_to_write) {
3379                 int thresh = 8192;
3380
3381                 if (delalloc_to_write < thresh * 2)
3382                         thresh = delalloc_to_write;
3383                 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3384                                          thresh);
3385         }
3386
3387         /* did the fill delalloc function already unlock and start
3388          * the IO?
3389          */
3390         if (page_started) {
3391                 /*
3392                  * we've unlocked the page, so we can't update
3393                  * the mapping's writeback index, just update
3394                  * nr_to_write.
3395                  */
3396                 wbc->nr_to_write -= *nr_written;
3397                 return 1;
3398         }
3399
3400         ret = 0;
3401
3402 done:
3403         return ret;
3404 }
3405
3406 /*
3407  * helper for __extent_writepage.  This calls the writepage start hooks,
3408  * and does the loop to map the page into extents and bios.
3409  *
3410  * We return 1 if the IO is started and the page is unlocked,
3411  * 0 if all went well (page still locked)
3412  * < 0 if there were errors (page still locked)
3413  */
3414 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3415                                  struct page *page,
3416                                  struct writeback_control *wbc,
3417                                  struct extent_page_data *epd,
3418                                  loff_t i_size,
3419                                  unsigned long nr_written,
3420                                  int *nr_ret)
3421 {
3422         struct extent_io_tree *tree = epd->tree;
3423         u64 start = page_offset(page);
3424         u64 page_end = start + PAGE_SIZE - 1;
3425         u64 end;
3426         u64 cur = start;
3427         u64 extent_offset;
3428         u64 block_start;
3429         u64 iosize;
3430         struct extent_map *em;
3431         size_t pg_offset = 0;
3432         size_t blocksize;
3433         int ret = 0;
3434         int nr = 0;
3435         const unsigned int write_flags = wbc_to_write_flags(wbc);
3436         bool compressed;
3437
3438         ret = btrfs_writepage_cow_fixup(page, start, page_end);
3439         if (ret) {
3440                 /* Fixup worker will requeue */
3441                 if (ret == -EBUSY)
3442                         wbc->pages_skipped++;
3443                 else
3444                         redirty_page_for_writepage(wbc, page);
3445
3446                 update_nr_written(wbc, nr_written);
3447                 unlock_page(page);
3448                 return 1;
3449         }
3450
3451         /*
3452          * we don't want to touch the inode after unlocking the page,
3453          * so we update the mapping writeback index now
3454          */
3455         update_nr_written(wbc, nr_written + 1);
3456
3457         end = page_end;
3458         blocksize = inode->i_sb->s_blocksize;
3459
3460         while (cur <= end) {
3461                 u64 em_end;
3462                 u64 offset;
3463
3464                 if (cur >= i_size) {
3465                         btrfs_writepage_endio_finish_ordered(page, cur,
3466                                                              page_end, 1);
3467                         break;
3468                 }
3469                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur,
3470                                       end - cur + 1);
3471                 if (IS_ERR_OR_NULL(em)) {
3472                         SetPageError(page);
3473                         ret = PTR_ERR_OR_ZERO(em);
3474                         break;
3475                 }
3476
3477                 extent_offset = cur - em->start;
3478                 em_end = extent_map_end(em);
3479                 BUG_ON(em_end <= cur);
3480                 BUG_ON(end < cur);
3481                 iosize = min(em_end - cur, end - cur + 1);
3482                 iosize = ALIGN(iosize, blocksize);
3483                 offset = em->block_start + extent_offset;
3484                 block_start = em->block_start;
3485                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3486                 free_extent_map(em);
3487                 em = NULL;
3488
3489                 /*
3490                  * compressed and inline extents are written through other
3491                  * paths in the FS
3492                  */
3493                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3494                     block_start == EXTENT_MAP_INLINE) {
3495                         /*
3496                          * end_io notification does not happen here for
3497                          * compressed extents
3498                          */
3499                         if (!compressed)
3500                                 btrfs_writepage_endio_finish_ordered(page, cur,
3501                                                             cur + iosize - 1,
3502                                                             1);
3503                         else if (compressed) {
3504                                 /* we don't want to end_page_writeback on
3505                                  * a compressed extent.  this happens
3506                                  * elsewhere
3507                                  */
3508                                 nr++;
3509                         }
3510
3511                         cur += iosize;
3512                         pg_offset += iosize;
3513                         continue;
3514                 }
3515
3516                 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3517                 if (!PageWriteback(page)) {
3518                         btrfs_err(BTRFS_I(inode)->root->fs_info,
3519                                    "page %lu not writeback, cur %llu end %llu",
3520                                page->index, cur, end);
3521                 }
3522
3523                 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3524                                          page, offset, iosize, pg_offset,
3525                                          &epd->bio,
3526                                          end_bio_extent_writepage,
3527                                          0, 0, 0, false);
3528                 if (ret) {
3529                         SetPageError(page);
3530                         if (PageWriteback(page))
3531                                 end_page_writeback(page);
3532                 }
3533
3534                 cur = cur + iosize;
3535                 pg_offset += iosize;
3536                 nr++;
3537         }
3538         *nr_ret = nr;
3539         return ret;
3540 }
3541
3542 /*
3543  * the writepage semantics are similar to regular writepage.  extent
3544  * records are inserted to lock ranges in the tree, and as dirty areas
3545  * are found, they are marked writeback.  Then the lock bits are removed
3546  * and the end_io handler clears the writeback ranges
3547  *
3548  * Return 0 if everything goes well.
3549  * Return <0 for error.
3550  */
3551 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3552                               struct extent_page_data *epd)
3553 {
3554         struct inode *inode = page->mapping->host;
3555         u64 start = page_offset(page);
3556         u64 page_end = start + PAGE_SIZE - 1;
3557         int ret;
3558         int nr = 0;
3559         size_t pg_offset;
3560         loff_t i_size = i_size_read(inode);
3561         unsigned long end_index = i_size >> PAGE_SHIFT;
3562         unsigned long nr_written = 0;
3563
3564         trace___extent_writepage(page, inode, wbc);
3565
3566         WARN_ON(!PageLocked(page));
3567
3568         ClearPageError(page);
3569
3570         pg_offset = offset_in_page(i_size);
3571         if (page->index > end_index ||
3572            (page->index == end_index && !pg_offset)) {
3573                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3574                 unlock_page(page);
3575                 return 0;
3576         }
3577
3578         if (page->index == end_index) {
3579                 char *userpage;
3580
3581                 userpage = kmap_atomic(page);
3582                 memset(userpage + pg_offset, 0,
3583                        PAGE_SIZE - pg_offset);
3584                 kunmap_atomic(userpage);
3585                 flush_dcache_page(page);
3586         }
3587
3588         set_page_extent_mapped(page);
3589
3590         if (!epd->extent_locked) {
3591                 ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
3592                 if (ret == 1)
3593                         return 0;
3594                 if (ret)
3595                         goto done;
3596         }
3597
3598         ret = __extent_writepage_io(inode, page, wbc, epd,
3599                                     i_size, nr_written, &nr);
3600         if (ret == 1)
3601                 return 0;
3602
3603 done:
3604         if (nr == 0) {
3605                 /* make sure the mapping tag for page dirty gets cleared */
3606                 set_page_writeback(page);
3607                 end_page_writeback(page);
3608         }
3609         if (PageError(page)) {
3610                 ret = ret < 0 ? ret : -EIO;
3611                 end_extent_writepage(page, ret, start, page_end);
3612         }
3613         unlock_page(page);
3614         ASSERT(ret <= 0);
3615         return ret;
3616 }
3617
3618 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3619 {
3620         wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3621                        TASK_UNINTERRUPTIBLE);
3622 }
3623
3624 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3625 {
3626         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3627         smp_mb__after_atomic();
3628         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3629 }
3630
3631 /*
3632  * Lock eb pages and flush the bio if we can't the locks
3633  *
3634  * Return  0 if nothing went wrong
3635  * Return >0 is same as 0, except bio is not submitted
3636  * Return <0 if something went wrong, no page is locked
3637  */
3638 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3639                           struct extent_page_data *epd)
3640 {
3641         struct btrfs_fs_info *fs_info = eb->fs_info;
3642         int i, num_pages, failed_page_nr;
3643         int flush = 0;
3644         int ret = 0;
3645
3646         if (!btrfs_try_tree_write_lock(eb)) {
3647                 ret = flush_write_bio(epd);
3648                 if (ret < 0)
3649                         return ret;
3650                 flush = 1;
3651                 btrfs_tree_lock(eb);
3652         }
3653
3654         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3655                 btrfs_tree_unlock(eb);
3656                 if (!epd->sync_io)
3657                         return 0;
3658                 if (!flush) {
3659                         ret = flush_write_bio(epd);
3660                         if (ret < 0)
3661                                 return ret;
3662                         flush = 1;
3663                 }
3664                 while (1) {
3665                         wait_on_extent_buffer_writeback(eb);
3666                         btrfs_tree_lock(eb);
3667                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3668                                 break;
3669                         btrfs_tree_unlock(eb);
3670                 }
3671         }
3672
3673         /*
3674          * We need to do this to prevent races in people who check if the eb is
3675          * under IO since we can end up having no IO bits set for a short period
3676          * of time.
3677          */
3678         spin_lock(&eb->refs_lock);
3679         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3680                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3681                 spin_unlock(&eb->refs_lock);
3682                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3683                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3684                                          -eb->len,
3685                                          fs_info->dirty_metadata_batch);
3686                 ret = 1;
3687         } else {
3688                 spin_unlock(&eb->refs_lock);
3689         }
3690
3691         btrfs_tree_unlock(eb);
3692
3693         if (!ret)
3694                 return ret;
3695
3696         num_pages = num_extent_pages(eb);
3697         for (i = 0; i < num_pages; i++) {
3698                 struct page *p = eb->pages[i];
3699
3700                 if (!trylock_page(p)) {
3701                         if (!flush) {
3702                                 int err;
3703
3704                                 err = flush_write_bio(epd);
3705                                 if (err < 0) {
3706                                         ret = err;
3707                                         failed_page_nr = i;
3708                                         goto err_unlock;
3709                                 }
3710                                 flush = 1;
3711                         }
3712                         lock_page(p);
3713                 }
3714         }
3715
3716         return ret;
3717 err_unlock:
3718         /* Unlock already locked pages */
3719         for (i = 0; i < failed_page_nr; i++)
3720                 unlock_page(eb->pages[i]);
3721         /*
3722          * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3723          * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3724          * be made and undo everything done before.
3725          */
3726         btrfs_tree_lock(eb);
3727         spin_lock(&eb->refs_lock);
3728         set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3729         end_extent_buffer_writeback(eb);
3730         spin_unlock(&eb->refs_lock);
3731         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3732                                  fs_info->dirty_metadata_batch);
3733         btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3734         btrfs_tree_unlock(eb);
3735         return ret;
3736 }
3737
3738 static void set_btree_ioerr(struct page *page)
3739 {
3740         struct extent_buffer *eb = (struct extent_buffer *)page->private;
3741         struct btrfs_fs_info *fs_info;
3742
3743         SetPageError(page);
3744         if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3745                 return;
3746
3747         /*
3748          * If we error out, we should add back the dirty_metadata_bytes
3749          * to make it consistent.
3750          */
3751         fs_info = eb->fs_info;
3752         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3753                                  eb->len, fs_info->dirty_metadata_batch);
3754
3755         /*
3756          * If writeback for a btree extent that doesn't belong to a log tree
3757          * failed, increment the counter transaction->eb_write_errors.
3758          * We do this because while the transaction is running and before it's
3759          * committing (when we call filemap_fdata[write|wait]_range against
3760          * the btree inode), we might have
3761          * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3762          * returns an error or an error happens during writeback, when we're
3763          * committing the transaction we wouldn't know about it, since the pages
3764          * can be no longer dirty nor marked anymore for writeback (if a
3765          * subsequent modification to the extent buffer didn't happen before the
3766          * transaction commit), which makes filemap_fdata[write|wait]_range not
3767          * able to find the pages tagged with SetPageError at transaction
3768          * commit time. So if this happens we must abort the transaction,
3769          * otherwise we commit a super block with btree roots that point to
3770          * btree nodes/leafs whose content on disk is invalid - either garbage
3771          * or the content of some node/leaf from a past generation that got
3772          * cowed or deleted and is no longer valid.
3773          *
3774          * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3775          * not be enough - we need to distinguish between log tree extents vs
3776          * non-log tree extents, and the next filemap_fdatawait_range() call
3777          * will catch and clear such errors in the mapping - and that call might
3778          * be from a log sync and not from a transaction commit. Also, checking
3779          * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3780          * not done and would not be reliable - the eb might have been released
3781          * from memory and reading it back again means that flag would not be
3782          * set (since it's a runtime flag, not persisted on disk).
3783          *
3784          * Using the flags below in the btree inode also makes us achieve the
3785          * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3786          * writeback for all dirty pages and before filemap_fdatawait_range()
3787          * is called, the writeback for all dirty pages had already finished
3788          * with errors - because we were not using AS_EIO/AS_ENOSPC,
3789          * filemap_fdatawait_range() would return success, as it could not know
3790          * that writeback errors happened (the pages were no longer tagged for
3791          * writeback).
3792          */
3793         switch (eb->log_index) {
3794         case -1:
3795                 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3796                 break;
3797         case 0:
3798                 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3799                 break;
3800         case 1:
3801                 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3802                 break;
3803         default:
3804                 BUG(); /* unexpected, logic error */
3805         }
3806 }
3807
3808 static void end_bio_extent_buffer_writepage(struct bio *bio)
3809 {
3810         struct bio_vec *bvec;
3811         struct extent_buffer *eb;
3812         int done;
3813         struct bvec_iter_all iter_all;
3814
3815         ASSERT(!bio_flagged(bio, BIO_CLONED));
3816         bio_for_each_segment_all(bvec, bio, iter_all) {
3817                 struct page *page = bvec->bv_page;
3818
3819                 eb = (struct extent_buffer *)page->private;
3820                 BUG_ON(!eb);
3821                 done = atomic_dec_and_test(&eb->io_pages);
3822
3823                 if (bio->bi_status ||
3824                     test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3825                         ClearPageUptodate(page);
3826                         set_btree_ioerr(page);
3827                 }
3828
3829                 end_page_writeback(page);
3830
3831                 if (!done)
3832                         continue;
3833
3834                 end_extent_buffer_writeback(eb);
3835         }
3836
3837         bio_put(bio);
3838 }
3839
3840 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3841                         struct writeback_control *wbc,
3842                         struct extent_page_data *epd)
3843 {
3844         struct btrfs_fs_info *fs_info = eb->fs_info;
3845         struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3846         u64 offset = eb->start;
3847         u32 nritems;
3848         int i, num_pages;
3849         unsigned long start, end;
3850         unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3851         int ret = 0;
3852
3853         clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3854         num_pages = num_extent_pages(eb);
3855         atomic_set(&eb->io_pages, num_pages);
3856
3857         /* set btree blocks beyond nritems with 0 to avoid stale content. */
3858         nritems = btrfs_header_nritems(eb);
3859         if (btrfs_header_level(eb) > 0) {
3860                 end = btrfs_node_key_ptr_offset(nritems);
3861
3862                 memzero_extent_buffer(eb, end, eb->len - end);
3863         } else {
3864                 /*
3865                  * leaf:
3866                  * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3867                  */
3868                 start = btrfs_item_nr_offset(nritems);
3869                 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3870                 memzero_extent_buffer(eb, start, end - start);
3871         }
3872
3873         for (i = 0; i < num_pages; i++) {
3874                 struct page *p = eb->pages[i];
3875
3876                 clear_page_dirty_for_io(p);
3877                 set_page_writeback(p);
3878                 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3879                                          p, offset, PAGE_SIZE, 0,
3880                                          &epd->bio,
3881                                          end_bio_extent_buffer_writepage,
3882                                          0, 0, 0, false);
3883                 if (ret) {
3884                         set_btree_ioerr(p);
3885                         if (PageWriteback(p))
3886                                 end_page_writeback(p);
3887                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3888                                 end_extent_buffer_writeback(eb);
3889                         ret = -EIO;
3890                         break;
3891                 }
3892                 offset += PAGE_SIZE;
3893                 update_nr_written(wbc, 1);
3894                 unlock_page(p);
3895         }
3896
3897         if (unlikely(ret)) {
3898                 for (; i < num_pages; i++) {
3899                         struct page *p = eb->pages[i];
3900                         clear_page_dirty_for_io(p);
3901                         unlock_page(p);
3902                 }
3903         }
3904
3905         return ret;
3906 }
3907
3908 int btree_write_cache_pages(struct address_space *mapping,
3909                                    struct writeback_control *wbc)
3910 {
3911         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3912         struct extent_buffer *eb, *prev_eb = NULL;
3913         struct extent_page_data epd = {
3914                 .bio = NULL,
3915                 .tree = tree,
3916                 .extent_locked = 0,
3917                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3918         };
3919         int ret = 0;
3920         int done = 0;
3921         int nr_to_write_done = 0;
3922         struct pagevec pvec;
3923         int nr_pages;
3924         pgoff_t index;
3925         pgoff_t end;            /* Inclusive */
3926         int scanned = 0;
3927         xa_mark_t tag;
3928
3929         pagevec_init(&pvec);
3930         if (wbc->range_cyclic) {
3931                 index = mapping->writeback_index; /* Start from prev offset */
3932                 end = -1;
3933         } else {
3934                 index = wbc->range_start >> PAGE_SHIFT;
3935                 end = wbc->range_end >> PAGE_SHIFT;
3936                 scanned = 1;
3937         }
3938         if (wbc->sync_mode == WB_SYNC_ALL)
3939                 tag = PAGECACHE_TAG_TOWRITE;
3940         else
3941                 tag = PAGECACHE_TAG_DIRTY;
3942 retry:
3943         if (wbc->sync_mode == WB_SYNC_ALL)
3944                 tag_pages_for_writeback(mapping, index, end);
3945         while (!done && !nr_to_write_done && (index <= end) &&
3946                (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3947                         tag))) {
3948                 unsigned i;
3949
3950                 scanned = 1;
3951                 for (i = 0; i < nr_pages; i++) {
3952                         struct page *page = pvec.pages[i];
3953
3954                         if (!PagePrivate(page))
3955                                 continue;
3956
3957                         spin_lock(&mapping->private_lock);
3958                         if (!PagePrivate(page)) {
3959                                 spin_unlock(&mapping->private_lock);
3960                                 continue;
3961                         }
3962
3963                         eb = (struct extent_buffer *)page->private;
3964
3965                         /*
3966                          * Shouldn't happen and normally this would be a BUG_ON
3967                          * but no sense in crashing the users box for something
3968                          * we can survive anyway.
3969                          */
3970                         if (WARN_ON(!eb)) {
3971                                 spin_unlock(&mapping->private_lock);
3972                                 continue;
3973                         }
3974
3975                         if (eb == prev_eb) {
3976                                 spin_unlock(&mapping->private_lock);
3977                                 continue;
3978                         }
3979
3980                         ret = atomic_inc_not_zero(&eb->refs);
3981                         spin_unlock(&mapping->private_lock);
3982                         if (!ret)
3983                                 continue;
3984
3985                         prev_eb = eb;
3986                         ret = lock_extent_buffer_for_io(eb, &epd);
3987                         if (!ret) {
3988                                 free_extent_buffer(eb);
3989                                 continue;
3990                         } else if (ret < 0) {
3991                                 done = 1;
3992                                 free_extent_buffer(eb);
3993                                 break;
3994                         }
3995
3996                         ret = write_one_eb(eb, wbc, &epd);
3997                         if (ret) {
3998                                 done = 1;
3999                                 free_extent_buffer(eb);
4000                                 break;
4001                         }
4002                         free_extent_buffer(eb);
4003
4004                         /*
4005                          * the filesystem may choose to bump up nr_to_write.
4006                          * We have to make sure to honor the new nr_to_write
4007                          * at any time
4008                          */
4009                         nr_to_write_done = wbc->nr_to_write <= 0;
4010                 }
4011                 pagevec_release(&pvec);
4012                 cond_resched();
4013         }
4014         if (!scanned && !done) {
4015                 /*
4016                  * We hit the last page and there is more work to be done: wrap
4017                  * back to the start of the file
4018                  */
4019                 scanned = 1;
4020                 index = 0;
4021                 goto retry;
4022         }
4023         ASSERT(ret <= 0);
4024         if (ret < 0) {
4025                 end_write_bio(&epd, ret);
4026                 return ret;
4027         }
4028         ret = flush_write_bio(&epd);
4029         return ret;
4030 }
4031
4032 /**
4033  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4034  * @mapping: address space structure to write
4035  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4036  * @data: data passed to __extent_writepage function
4037  *
4038  * If a page is already under I/O, write_cache_pages() skips it, even
4039  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4040  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4041  * and msync() need to guarantee that all the data which was dirty at the time
4042  * the call was made get new I/O started against them.  If wbc->sync_mode is
4043  * WB_SYNC_ALL then we were called for data integrity and we must wait for
4044  * existing IO to complete.
4045  */
4046 static int extent_write_cache_pages(struct address_space *mapping,
4047                              struct writeback_control *wbc,
4048                              struct extent_page_data *epd)
4049 {
4050         struct inode *inode = mapping->host;
4051         int ret = 0;
4052         int done = 0;
4053         int nr_to_write_done = 0;
4054         struct pagevec pvec;
4055         int nr_pages;
4056         pgoff_t index;
4057         pgoff_t end;            /* Inclusive */
4058         pgoff_t done_index;
4059         int range_whole = 0;
4060         int scanned = 0;
4061         xa_mark_t tag;
4062
4063         /*
4064          * We have to hold onto the inode so that ordered extents can do their
4065          * work when the IO finishes.  The alternative to this is failing to add
4066          * an ordered extent if the igrab() fails there and that is a huge pain
4067          * to deal with, so instead just hold onto the inode throughout the
4068          * writepages operation.  If it fails here we are freeing up the inode
4069          * anyway and we'd rather not waste our time writing out stuff that is
4070          * going to be truncated anyway.
4071          */
4072         if (!igrab(inode))
4073                 return 0;
4074
4075         pagevec_init(&pvec);
4076         if (wbc->range_cyclic) {
4077                 index = mapping->writeback_index; /* Start from prev offset */
4078                 end = -1;
4079         } else {
4080                 index = wbc->range_start >> PAGE_SHIFT;
4081                 end = wbc->range_end >> PAGE_SHIFT;
4082                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4083                         range_whole = 1;
4084                 scanned = 1;
4085         }
4086
4087         /*
4088          * We do the tagged writepage as long as the snapshot flush bit is set
4089          * and we are the first one who do the filemap_flush() on this inode.
4090          *
4091          * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4092          * not race in and drop the bit.
4093          */
4094         if (range_whole && wbc->nr_to_write == LONG_MAX &&
4095             test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4096                                &BTRFS_I(inode)->runtime_flags))
4097                 wbc->tagged_writepages = 1;
4098
4099         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4100                 tag = PAGECACHE_TAG_TOWRITE;
4101         else
4102                 tag = PAGECACHE_TAG_DIRTY;
4103 retry:
4104         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4105                 tag_pages_for_writeback(mapping, index, end);
4106         done_index = index;
4107         while (!done && !nr_to_write_done && (index <= end) &&
4108                         (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4109                                                 &index, end, tag))) {
4110                 unsigned i;
4111
4112                 scanned = 1;
4113                 for (i = 0; i < nr_pages; i++) {
4114                         struct page *page = pvec.pages[i];
4115
4116                         done_index = page->index + 1;
4117                         /*
4118                          * At this point we hold neither the i_pages lock nor
4119                          * the page lock: the page may be truncated or
4120                          * invalidated (changing page->mapping to NULL),
4121                          * or even swizzled back from swapper_space to
4122                          * tmpfs file mapping
4123                          */
4124                         if (!trylock_page(page)) {
4125                                 ret = flush_write_bio(epd);
4126                                 BUG_ON(ret < 0);
4127                                 lock_page(page);
4128                         }
4129
4130                         if (unlikely(page->mapping != mapping)) {
4131                                 unlock_page(page);
4132                                 continue;
4133                         }
4134
4135                         if (wbc->sync_mode != WB_SYNC_NONE) {
4136                                 if (PageWriteback(page)) {
4137                                         ret = flush_write_bio(epd);
4138                                         BUG_ON(ret < 0);
4139                                 }
4140                                 wait_on_page_writeback(page);
4141                         }
4142
4143                         if (PageWriteback(page) ||
4144                             !clear_page_dirty_for_io(page)) {
4145                                 unlock_page(page);
4146                                 continue;
4147                         }
4148
4149                         ret = __extent_writepage(page, wbc, epd);
4150                         if (ret < 0) {
4151                                 done = 1;
4152                                 break;
4153                         }
4154
4155                         /*
4156                          * the filesystem may choose to bump up nr_to_write.
4157                          * We have to make sure to honor the new nr_to_write
4158                          * at any time
4159                          */
4160                         nr_to_write_done = wbc->nr_to_write <= 0;
4161                 }
4162                 pagevec_release(&pvec);
4163                 cond_resched();
4164         }
4165         if (!scanned && !done) {
4166                 /*
4167                  * We hit the last page and there is more work to be done: wrap
4168                  * back to the start of the file
4169                  */
4170                 scanned = 1;
4171                 index = 0;
4172                 goto retry;
4173         }
4174
4175         if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4176                 mapping->writeback_index = done_index;
4177
4178         btrfs_add_delayed_iput(inode);
4179         return ret;
4180 }
4181
4182 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4183 {
4184         int ret;
4185         struct extent_page_data epd = {
4186                 .bio = NULL,
4187                 .tree = &BTRFS_I(page->mapping->host)->io_tree,
4188                 .extent_locked = 0,
4189                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4190         };
4191
4192         ret = __extent_writepage(page, wbc, &epd);
4193         ASSERT(ret <= 0);
4194         if (ret < 0) {
4195                 end_write_bio(&epd, ret);
4196                 return ret;
4197         }
4198
4199         ret = flush_write_bio(&epd);
4200         ASSERT(ret <= 0);
4201         return ret;
4202 }
4203
4204 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4205                               int mode)
4206 {
4207         int ret = 0;
4208         struct address_space *mapping = inode->i_mapping;
4209         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4210         struct page *page;
4211         unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4212                 PAGE_SHIFT;
4213
4214         struct extent_page_data epd = {
4215                 .bio = NULL,
4216                 .tree = tree,
4217                 .extent_locked = 1,
4218                 .sync_io = mode == WB_SYNC_ALL,
4219         };
4220         struct writeback_control wbc_writepages = {
4221                 .sync_mode      = mode,
4222                 .nr_to_write    = nr_pages * 2,
4223                 .range_start    = start,
4224                 .range_end      = end + 1,
4225                 /* We're called from an async helper function */
4226                 .punt_to_cgroup = 1,
4227                 .no_cgroup_owner = 1,
4228         };
4229
4230         wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4231         while (start <= end) {
4232                 page = find_get_page(mapping, start >> PAGE_SHIFT);
4233                 if (clear_page_dirty_for_io(page))
4234                         ret = __extent_writepage(page, &wbc_writepages, &epd);
4235                 else {
4236                         btrfs_writepage_endio_finish_ordered(page, start,
4237                                                     start + PAGE_SIZE - 1, 1);
4238                         unlock_page(page);
4239                 }
4240                 put_page(page);
4241                 start += PAGE_SIZE;
4242         }
4243
4244         ASSERT(ret <= 0);
4245         if (ret == 0)
4246                 ret = flush_write_bio(&epd);
4247         else
4248                 end_write_bio(&epd, ret);
4249
4250         wbc_detach_inode(&wbc_writepages);
4251         return ret;
4252 }
4253
4254 int extent_writepages(struct address_space *mapping,
4255                       struct writeback_control *wbc)
4256 {
4257         int ret = 0;
4258         struct extent_page_data epd = {
4259                 .bio = NULL,
4260                 .tree = &BTRFS_I(mapping->host)->io_tree,
4261                 .extent_locked = 0,
4262                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4263         };
4264
4265         ret = extent_write_cache_pages(mapping, wbc, &epd);
4266         ASSERT(ret <= 0);
4267         if (ret < 0) {
4268                 end_write_bio(&epd, ret);
4269                 return ret;
4270         }
4271         ret = flush_write_bio(&epd);
4272         return ret;
4273 }
4274
4275 int extent_readpages(struct address_space *mapping, struct list_head *pages,
4276                      unsigned nr_pages)
4277 {
4278         struct bio *bio = NULL;
4279         unsigned long bio_flags = 0;
4280         struct page *pagepool[16];
4281         struct extent_map *em_cached = NULL;
4282         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
4283         int nr = 0;
4284         u64 prev_em_start = (u64)-1;
4285
4286         while (!list_empty(pages)) {
4287                 u64 contig_end = 0;
4288
4289                 for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
4290                         struct page *page = lru_to_page(pages);
4291
4292                         prefetchw(&page->flags);
4293                         list_del(&page->lru);
4294                         if (add_to_page_cache_lru(page, mapping, page->index,
4295                                                 readahead_gfp_mask(mapping))) {
4296                                 put_page(page);
4297                                 break;
4298                         }
4299
4300                         pagepool[nr++] = page;
4301                         contig_end = page_offset(page) + PAGE_SIZE - 1;
4302                 }
4303
4304                 if (nr) {
4305                         u64 contig_start = page_offset(pagepool[0]);
4306
4307                         ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4308
4309                         contiguous_readpages(tree, pagepool, nr, contig_start,
4310                                      contig_end, &em_cached, &bio, &bio_flags,
4311                                      &prev_em_start);
4312                 }
4313         }
4314
4315         if (em_cached)
4316                 free_extent_map(em_cached);
4317
4318         if (bio)
4319                 return submit_one_bio(bio, 0, bio_flags);
4320         return 0;
4321 }
4322
4323 /*
4324  * basic invalidatepage code, this waits on any locked or writeback
4325  * ranges corresponding to the page, and then deletes any extent state
4326  * records from the tree
4327  */
4328 int extent_invalidatepage(struct extent_io_tree *tree,
4329                           struct page *page, unsigned long offset)
4330 {
4331         struct extent_state *cached_state = NULL;
4332         u64 start = page_offset(page);
4333         u64 end = start + PAGE_SIZE - 1;
4334         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4335
4336         start += ALIGN(offset, blocksize);
4337         if (start > end)
4338                 return 0;
4339
4340         lock_extent_bits(tree, start, end, &cached_state);
4341         wait_on_page_writeback(page);
4342         clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4343                          EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
4344         return 0;
4345 }
4346
4347 /*
4348  * a helper for releasepage, this tests for areas of the page that
4349  * are locked or under IO and drops the related state bits if it is safe
4350  * to drop the page.
4351  */
4352 static int try_release_extent_state(struct extent_io_tree *tree,
4353                                     struct page *page, gfp_t mask)
4354 {
4355         u64 start = page_offset(page);
4356         u64 end = start + PAGE_SIZE - 1;
4357         int ret = 1;
4358
4359         if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4360                 ret = 0;
4361         } else {
4362                 /*
4363                  * at this point we can safely clear everything except the
4364                  * locked bit and the nodatasum bit
4365                  */
4366                 ret = __clear_extent_bit(tree, start, end,
4367                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4368                                  0, 0, NULL, mask, NULL);
4369
4370                 /* if clear_extent_bit failed for enomem reasons,
4371                  * we can't allow the release to continue.
4372                  */
4373                 if (ret < 0)
4374                         ret = 0;
4375                 else
4376                         ret = 1;
4377         }
4378         return ret;
4379 }
4380
4381 /*
4382  * a helper for releasepage.  As long as there are no locked extents
4383  * in the range corresponding to the page, both state records and extent
4384  * map records are removed
4385  */
4386 int try_release_extent_mapping(struct page *page, gfp_t mask)
4387 {
4388         struct extent_map *em;
4389         u64 start = page_offset(page);
4390         u64 end = start + PAGE_SIZE - 1;
4391         struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4392         struct extent_io_tree *tree = &btrfs_inode->io_tree;
4393         struct extent_map_tree *map = &btrfs_inode->extent_tree;
4394
4395         if (gfpflags_allow_blocking(mask) &&
4396             page->mapping->host->i_size > SZ_16M) {
4397                 u64 len;
4398                 while (start <= end) {
4399                         len = end - start + 1;
4400                         write_lock(&map->lock);
4401                         em = lookup_extent_mapping(map, start, len);
4402                         if (!em) {
4403                                 write_unlock(&map->lock);
4404                                 break;
4405                         }
4406                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4407                             em->start != start) {
4408                                 write_unlock(&map->lock);
4409                                 free_extent_map(em);
4410                                 break;
4411                         }
4412                         if (!test_range_bit(tree, em->start,
4413                                             extent_map_end(em) - 1,
4414                                             EXTENT_LOCKED, 0, NULL)) {
4415                                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4416                                         &btrfs_inode->runtime_flags);
4417                                 remove_extent_mapping(map, em);
4418                                 /* once for the rb tree */
4419                                 free_extent_map(em);
4420                         }
4421                         start = extent_map_end(em);
4422                         write_unlock(&map->lock);
4423
4424                         /* once for us */
4425                         free_extent_map(em);
4426                 }
4427         }
4428         return try_release_extent_state(tree, page, mask);
4429 }
4430
4431 /*
4432  * helper function for fiemap, which doesn't want to see any holes.
4433  * This maps until we find something past 'last'
4434  */
4435 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4436                                                 u64 offset, u64 last)
4437 {
4438         u64 sectorsize = btrfs_inode_sectorsize(inode);
4439         struct extent_map *em;
4440         u64 len;
4441
4442         if (offset >= last)
4443                 return NULL;
4444
4445         while (1) {
4446                 len = last - offset;
4447                 if (len == 0)
4448                         break;
4449                 len = ALIGN(len, sectorsize);
4450                 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
4451                 if (IS_ERR_OR_NULL(em))
4452                         return em;
4453
4454                 /* if this isn't a hole return it */
4455                 if (em->block_start != EXTENT_MAP_HOLE)
4456                         return em;
4457
4458                 /* this is a hole, advance to the next extent */
4459                 offset = extent_map_end(em);
4460                 free_extent_map(em);
4461                 if (offset >= last)
4462                         break;
4463         }
4464         return NULL;
4465 }
4466
4467 /*
4468  * To cache previous fiemap extent
4469  *
4470  * Will be used for merging fiemap extent
4471  */
4472 struct fiemap_cache {
4473         u64 offset;
4474         u64 phys;
4475         u64 len;
4476         u32 flags;
4477         bool cached;
4478 };
4479
4480 /*
4481  * Helper to submit fiemap extent.
4482  *
4483  * Will try to merge current fiemap extent specified by @offset, @phys,
4484  * @len and @flags with cached one.
4485  * And only when we fails to merge, cached one will be submitted as
4486  * fiemap extent.
4487  *
4488  * Return value is the same as fiemap_fill_next_extent().
4489  */
4490 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4491                                 struct fiemap_cache *cache,
4492                                 u64 offset, u64 phys, u64 len, u32 flags)
4493 {
4494         int ret = 0;
4495
4496         if (!cache->cached)
4497                 goto assign;
4498
4499         /*
4500          * Sanity check, extent_fiemap() should have ensured that new
4501          * fiemap extent won't overlap with cached one.
4502          * Not recoverable.
4503          *
4504          * NOTE: Physical address can overlap, due to compression
4505          */
4506         if (cache->offset + cache->len > offset) {
4507                 WARN_ON(1);
4508                 return -EINVAL;
4509         }
4510
4511         /*
4512          * Only merges fiemap extents if
4513          * 1) Their logical addresses are continuous
4514          *
4515          * 2) Their physical addresses are continuous
4516          *    So truly compressed (physical size smaller than logical size)
4517          *    extents won't get merged with each other
4518          *
4519          * 3) Share same flags except FIEMAP_EXTENT_LAST
4520          *    So regular extent won't get merged with prealloc extent
4521          */
4522         if (cache->offset + cache->len  == offset &&
4523             cache->phys + cache->len == phys  &&
4524             (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4525                         (flags & ~FIEMAP_EXTENT_LAST)) {
4526                 cache->len += len;
4527                 cache->flags |= flags;
4528                 goto try_submit_last;
4529         }
4530
4531         /* Not mergeable, need to submit cached one */
4532         ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4533                                       cache->len, cache->flags);
4534         cache->cached = false;
4535         if (ret)
4536                 return ret;
4537 assign:
4538         cache->cached = true;
4539         cache->offset = offset;
4540         cache->phys = phys;
4541         cache->len = len;
4542         cache->flags = flags;
4543 try_submit_last:
4544         if (cache->flags & FIEMAP_EXTENT_LAST) {
4545                 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4546                                 cache->phys, cache->len, cache->flags);
4547                 cache->cached = false;
4548         }
4549         return ret;
4550 }
4551
4552 /*
4553  * Emit last fiemap cache
4554  *
4555  * The last fiemap cache may still be cached in the following case:
4556  * 0                  4k                    8k
4557  * |<- Fiemap range ->|
4558  * |<------------  First extent ----------->|
4559  *
4560  * In this case, the first extent range will be cached but not emitted.
4561  * So we must emit it before ending extent_fiemap().
4562  */
4563 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4564                                   struct fiemap_cache *cache)
4565 {
4566         int ret;
4567
4568         if (!cache->cached)
4569                 return 0;
4570
4571         ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4572                                       cache->len, cache->flags);
4573         cache->cached = false;
4574         if (ret > 0)
4575                 ret = 0;
4576         return ret;
4577 }
4578
4579 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4580                 __u64 start, __u64 len)
4581 {
4582         int ret = 0;
4583         u64 off = start;
4584         u64 max = start + len;
4585         u32 flags = 0;
4586         u32 found_type;
4587         u64 last;
4588         u64 last_for_get_extent = 0;
4589         u64 disko = 0;
4590         u64 isize = i_size_read(inode);
4591         struct btrfs_key found_key;
4592         struct extent_map *em = NULL;
4593         struct extent_state *cached_state = NULL;
4594         struct btrfs_path *path;
4595         struct btrfs_root *root = BTRFS_I(inode)->root;
4596         struct fiemap_cache cache = { 0 };
4597         struct ulist *roots;
4598         struct ulist *tmp_ulist;
4599         int end = 0;
4600         u64 em_start = 0;
4601         u64 em_len = 0;
4602         u64 em_end = 0;
4603
4604         if (len == 0)
4605                 return -EINVAL;
4606
4607         path = btrfs_alloc_path();
4608         if (!path)
4609                 return -ENOMEM;
4610         path->leave_spinning = 1;
4611
4612         roots = ulist_alloc(GFP_KERNEL);
4613         tmp_ulist = ulist_alloc(GFP_KERNEL);
4614         if (!roots || !tmp_ulist) {
4615                 ret = -ENOMEM;
4616                 goto out_free_ulist;
4617         }
4618
4619         start = round_down(start, btrfs_inode_sectorsize(inode));
4620         len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4621
4622         /*
4623          * lookup the last file extent.  We're not using i_size here
4624          * because there might be preallocation past i_size
4625          */
4626         ret = btrfs_lookup_file_extent(NULL, root, path,
4627                         btrfs_ino(BTRFS_I(inode)), -1, 0);
4628         if (ret < 0) {
4629                 goto out_free_ulist;
4630         } else {
4631                 WARN_ON(!ret);
4632                 if (ret == 1)
4633                         ret = 0;
4634         }
4635
4636         path->slots[0]--;
4637         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4638         found_type = found_key.type;
4639
4640         /* No extents, but there might be delalloc bits */
4641         if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4642             found_type != BTRFS_EXTENT_DATA_KEY) {
4643                 /* have to trust i_size as the end */
4644                 last = (u64)-1;
4645                 last_for_get_extent = isize;
4646         } else {
4647                 /*
4648                  * remember the start of the last extent.  There are a
4649                  * bunch of different factors that go into the length of the
4650                  * extent, so its much less complex to remember where it started
4651                  */
4652                 last = found_key.offset;
4653                 last_for_get_extent = last + 1;
4654         }
4655         btrfs_release_path(path);
4656
4657         /*
4658          * we might have some extents allocated but more delalloc past those
4659          * extents.  so, we trust isize unless the start of the last extent is
4660          * beyond isize
4661          */
4662         if (last < isize) {
4663                 last = (u64)-1;
4664                 last_for_get_extent = isize;
4665         }
4666
4667         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4668                          &cached_state);
4669
4670         em = get_extent_skip_holes(inode, start, last_for_get_extent);
4671         if (!em)
4672                 goto out;
4673         if (IS_ERR(em)) {
4674                 ret = PTR_ERR(em);
4675                 goto out;
4676         }
4677
4678         while (!end) {
4679                 u64 offset_in_extent = 0;
4680
4681                 /* break if the extent we found is outside the range */
4682                 if (em->start >= max || extent_map_end(em) < off)
4683                         break;
4684
4685                 /*
4686                  * get_extent may return an extent that starts before our
4687                  * requested range.  We have to make sure the ranges
4688                  * we return to fiemap always move forward and don't
4689                  * overlap, so adjust the offsets here
4690                  */
4691                 em_start = max(em->start, off);
4692
4693                 /*
4694                  * record the offset from the start of the extent
4695                  * for adjusting the disk offset below.  Only do this if the
4696                  * extent isn't compressed since our in ram offset may be past
4697                  * what we have actually allocated on disk.
4698                  */
4699                 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4700                         offset_in_extent = em_start - em->start;
4701                 em_end = extent_map_end(em);
4702                 em_len = em_end - em_start;
4703                 flags = 0;
4704                 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4705                         disko = em->block_start + offset_in_extent;
4706                 else
4707                         disko = 0;
4708
4709                 /*
4710                  * bump off for our next call to get_extent
4711                  */
4712                 off = extent_map_end(em);
4713                 if (off >= max)
4714                         end = 1;
4715
4716                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4717                         end = 1;
4718                         flags |= FIEMAP_EXTENT_LAST;
4719                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4720                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4721                                   FIEMAP_EXTENT_NOT_ALIGNED);
4722                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4723                         flags |= (FIEMAP_EXTENT_DELALLOC |
4724                                   FIEMAP_EXTENT_UNKNOWN);
4725                 } else if (fieinfo->fi_extents_max) {
4726                         u64 bytenr = em->block_start -
4727                                 (em->start - em->orig_start);
4728
4729                         /*
4730                          * As btrfs supports shared space, this information
4731                          * can be exported to userspace tools via
4732                          * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4733                          * then we're just getting a count and we can skip the
4734                          * lookup stuff.
4735                          */
4736                         ret = btrfs_check_shared(root,
4737                                                  btrfs_ino(BTRFS_I(inode)),
4738                                                  bytenr, roots, tmp_ulist);
4739                         if (ret < 0)
4740                                 goto out_free;
4741                         if (ret)
4742                                 flags |= FIEMAP_EXTENT_SHARED;
4743                         ret = 0;
4744                 }
4745                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4746                         flags |= FIEMAP_EXTENT_ENCODED;
4747                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4748                         flags |= FIEMAP_EXTENT_UNWRITTEN;
4749
4750                 free_extent_map(em);
4751                 em = NULL;
4752                 if ((em_start >= last) || em_len == (u64)-1 ||
4753                    (last == (u64)-1 && isize <= em_end)) {
4754                         flags |= FIEMAP_EXTENT_LAST;
4755                         end = 1;
4756                 }
4757
4758                 /* now scan forward to see if this is really the last extent. */
4759                 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4760                 if (IS_ERR(em)) {
4761                         ret = PTR_ERR(em);
4762                         goto out;
4763                 }
4764                 if (!em) {
4765                         flags |= FIEMAP_EXTENT_LAST;
4766                         end = 1;
4767                 }
4768                 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4769                                            em_len, flags);
4770                 if (ret) {
4771                         if (ret == 1)
4772                                 ret = 0;
4773                         goto out_free;
4774                 }
4775         }
4776 out_free:
4777         if (!ret)
4778                 ret = emit_last_fiemap_cache(fieinfo, &cache);
4779         free_extent_map(em);
4780 out:
4781         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4782                              &cached_state);
4783
4784 out_free_ulist:
4785         btrfs_free_path(path);
4786         ulist_free(roots);
4787         ulist_free(tmp_ulist);
4788         return ret;
4789 }
4790
4791 static void __free_extent_buffer(struct extent_buffer *eb)
4792 {
4793         btrfs_leak_debug_del(&eb->leak_list);
4794         kmem_cache_free(extent_buffer_cache, eb);
4795 }
4796
4797 int extent_buffer_under_io(struct extent_buffer *eb)
4798 {
4799         return (atomic_read(&eb->io_pages) ||
4800                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4801                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4802 }
4803
4804 /*
4805  * Release all pages attached to the extent buffer.
4806  */
4807 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4808 {
4809         int i;
4810         int num_pages;
4811         int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4812
4813         BUG_ON(extent_buffer_under_io(eb));
4814
4815         num_pages = num_extent_pages(eb);
4816         for (i = 0; i < num_pages; i++) {
4817                 struct page *page = eb->pages[i];
4818
4819                 if (!page)
4820                         continue;
4821                 if (mapped)
4822                         spin_lock(&page->mapping->private_lock);
4823                 /*
4824                  * We do this since we'll remove the pages after we've
4825                  * removed the eb from the radix tree, so we could race
4826                  * and have this page now attached to the new eb.  So
4827                  * only clear page_private if it's still connected to
4828                  * this eb.
4829                  */
4830                 if (PagePrivate(page) &&
4831                     page->private == (unsigned long)eb) {
4832                         BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4833                         BUG_ON(PageDirty(page));
4834                         BUG_ON(PageWriteback(page));
4835                         /*
4836                          * We need to make sure we haven't be attached
4837                          * to a new eb.
4838                          */
4839                         ClearPagePrivate(page);
4840                         set_page_private(page, 0);
4841                         /* One for the page private */
4842                         put_page(page);
4843                 }
4844
4845                 if (mapped)
4846                         spin_unlock(&page->mapping->private_lock);
4847
4848                 /* One for when we allocated the page */
4849                 put_page(page);
4850         }
4851 }
4852
4853 /*
4854  * Helper for releasing the extent buffer.
4855  */
4856 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4857 {
4858         btrfs_release_extent_buffer_pages(eb);
4859         __free_extent_buffer(eb);
4860 }
4861
4862 static struct extent_buffer *
4863 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4864                       unsigned long len)
4865 {
4866         struct extent_buffer *eb = NULL;
4867
4868         eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4869         eb->start = start;
4870         eb->len = len;
4871         eb->fs_info = fs_info;
4872         eb->bflags = 0;
4873         rwlock_init(&eb->lock);
4874         atomic_set(&eb->blocking_readers, 0);
4875         eb->blocking_writers = 0;
4876         eb->lock_nested = false;
4877         init_waitqueue_head(&eb->write_lock_wq);
4878         init_waitqueue_head(&eb->read_lock_wq);
4879
4880         btrfs_leak_debug_add(&eb->leak_list, &buffers);
4881
4882         spin_lock_init(&eb->refs_lock);
4883         atomic_set(&eb->refs, 1);
4884         atomic_set(&eb->io_pages, 0);
4885
4886         /*
4887          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4888          */
4889         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4890                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4891         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4892
4893 #ifdef CONFIG_BTRFS_DEBUG
4894         eb->spinning_writers = 0;
4895         atomic_set(&eb->spinning_readers, 0);
4896         atomic_set(&eb->read_locks, 0);
4897         eb->write_locks = 0;
4898 #endif
4899
4900         return eb;
4901 }
4902
4903 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4904 {
4905         int i;
4906         struct page *p;
4907         struct extent_buffer *new;
4908         int num_pages = num_extent_pages(src);
4909
4910         new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4911         if (new == NULL)
4912                 return NULL;
4913
4914         for (i = 0; i < num_pages; i++) {
4915                 p = alloc_page(GFP_NOFS);
4916                 if (!p) {
4917                         btrfs_release_extent_buffer(new);
4918                         return NULL;
4919                 }
4920                 attach_extent_buffer_page(new, p);
4921                 WARN_ON(PageDirty(p));
4922                 SetPageUptodate(p);
4923                 new->pages[i] = p;
4924                 copy_page(page_address(p), page_address(src->pages[i]));
4925         }
4926
4927         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4928         set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4929
4930         return new;
4931 }
4932
4933 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4934                                                   u64 start, unsigned long len)
4935 {
4936         struct extent_buffer *eb;
4937         int num_pages;
4938         int i;
4939
4940         eb = __alloc_extent_buffer(fs_info, start, len);
4941         if (!eb)
4942                 return NULL;
4943
4944         num_pages = num_extent_pages(eb);
4945         for (i = 0; i < num_pages; i++) {
4946                 eb->pages[i] = alloc_page(GFP_NOFS);
4947                 if (!eb->pages[i])
4948                         goto err;
4949         }
4950         set_extent_buffer_uptodate(eb);
4951         btrfs_set_header_nritems(eb, 0);
4952         set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4953
4954         return eb;
4955 err:
4956         for (; i > 0; i--)
4957                 __free_page(eb->pages[i - 1]);
4958         __free_extent_buffer(eb);
4959         return NULL;
4960 }
4961
4962 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4963                                                 u64 start)
4964 {
4965         return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4966 }
4967
4968 static void check_buffer_tree_ref(struct extent_buffer *eb)
4969 {
4970         int refs;
4971         /* the ref bit is tricky.  We have to make sure it is set
4972          * if we have the buffer dirty.   Otherwise the
4973          * code to free a buffer can end up dropping a dirty
4974          * page
4975          *
4976          * Once the ref bit is set, it won't go away while the
4977          * buffer is dirty or in writeback, and it also won't
4978          * go away while we have the reference count on the
4979          * eb bumped.
4980          *
4981          * We can't just set the ref bit without bumping the
4982          * ref on the eb because free_extent_buffer might
4983          * see the ref bit and try to clear it.  If this happens
4984          * free_extent_buffer might end up dropping our original
4985          * ref by mistake and freeing the page before we are able
4986          * to add one more ref.
4987          *
4988          * So bump the ref count first, then set the bit.  If someone
4989          * beat us to it, drop the ref we added.
4990          */
4991         refs = atomic_read(&eb->refs);
4992         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4993                 return;
4994
4995         spin_lock(&eb->refs_lock);
4996         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4997                 atomic_inc(&eb->refs);
4998         spin_unlock(&eb->refs_lock);
4999 }
5000
5001 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5002                 struct page *accessed)
5003 {
5004         int num_pages, i;
5005
5006         check_buffer_tree_ref(eb);
5007
5008         num_pages = num_extent_pages(eb);
5009         for (i = 0; i < num_pages; i++) {
5010                 struct page *p = eb->pages[i];
5011
5012                 if (p != accessed)
5013                         mark_page_accessed(p);
5014         }
5015 }
5016
5017 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5018                                          u64 start)
5019 {
5020         struct extent_buffer *eb;
5021
5022         rcu_read_lock();
5023         eb = radix_tree_lookup(&fs_info->buffer_radix,
5024                                start >> PAGE_SHIFT);
5025         if (eb && atomic_inc_not_zero(&eb->refs)) {
5026                 rcu_read_unlock();
5027                 /*
5028                  * Lock our eb's refs_lock to avoid races with
5029                  * free_extent_buffer. When we get our eb it might be flagged
5030                  * with EXTENT_BUFFER_STALE and another task running
5031                  * free_extent_buffer might have seen that flag set,
5032                  * eb->refs == 2, that the buffer isn't under IO (dirty and
5033                  * writeback flags not set) and it's still in the tree (flag
5034                  * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5035                  * of decrementing the extent buffer's reference count twice.
5036                  * So here we could race and increment the eb's reference count,
5037                  * clear its stale flag, mark it as dirty and drop our reference
5038                  * before the other task finishes executing free_extent_buffer,
5039                  * which would later result in an attempt to free an extent
5040                  * buffer that is dirty.
5041                  */
5042                 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5043                         spin_lock(&eb->refs_lock);
5044                         spin_unlock(&eb->refs_lock);
5045                 }
5046                 mark_extent_buffer_accessed(eb, NULL);
5047                 return eb;
5048         }
5049         rcu_read_unlock();
5050
5051         return NULL;
5052 }
5053
5054 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5055 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5056                                         u64 start)
5057 {
5058         struct extent_buffer *eb, *exists = NULL;
5059         int ret;
5060
5061         eb = find_extent_buffer(fs_info, start);
5062         if (eb)
5063                 return eb;
5064         eb = alloc_dummy_extent_buffer(fs_info, start);
5065         if (!eb)
5066                 return ERR_PTR(-ENOMEM);
5067         eb->fs_info = fs_info;
5068 again:
5069         ret = radix_tree_preload(GFP_NOFS);
5070         if (ret) {
5071                 exists = ERR_PTR(ret);
5072                 goto free_eb;
5073         }
5074         spin_lock(&fs_info->buffer_lock);
5075         ret = radix_tree_insert(&fs_info->buffer_radix,
5076                                 start >> PAGE_SHIFT, eb);
5077         spin_unlock(&fs_info->buffer_lock);
5078         radix_tree_preload_end();
5079         if (ret == -EEXIST) {
5080                 exists = find_extent_buffer(fs_info, start);
5081                 if (exists)
5082                         goto free_eb;
5083                 else
5084                         goto again;
5085         }
5086         check_buffer_tree_ref(eb);
5087         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5088
5089         return eb;
5090 free_eb:
5091         btrfs_release_extent_buffer(eb);
5092         return exists;
5093 }
5094 #endif
5095
5096 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5097                                           u64 start)
5098 {
5099         unsigned long len = fs_info->nodesize;
5100         int num_pages;
5101         int i;
5102         unsigned long index = start >> PAGE_SHIFT;
5103         struct extent_buffer *eb;
5104         struct extent_buffer *exists = NULL;
5105         struct page *p;
5106         struct address_space *mapping = fs_info->btree_inode->i_mapping;
5107         int uptodate = 1;
5108         int ret;
5109
5110         if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5111                 btrfs_err(fs_info, "bad tree block start %llu", start);
5112                 return ERR_PTR(-EINVAL);
5113         }
5114
5115         eb = find_extent_buffer(fs_info, start);
5116         if (eb)
5117                 return eb;
5118
5119         eb = __alloc_extent_buffer(fs_info, start, len);
5120         if (!eb)
5121                 return ERR_PTR(-ENOMEM);
5122
5123         num_pages = num_extent_pages(eb);
5124         for (i = 0; i < num_pages; i++, index++) {
5125                 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5126                 if (!p) {
5127                         exists = ERR_PTR(-ENOMEM);
5128                         goto free_eb;
5129                 }
5130
5131                 spin_lock(&mapping->private_lock);
5132                 if (PagePrivate(p)) {
5133                         /*
5134                          * We could have already allocated an eb for this page
5135                          * and attached one so lets see if we can get a ref on
5136                          * the existing eb, and if we can we know it's good and
5137                          * we can just return that one, else we know we can just
5138                          * overwrite page->private.
5139                          */
5140                         exists = (struct extent_buffer *)p->private;
5141                         if (atomic_inc_not_zero(&exists->refs)) {
5142                                 spin_unlock(&mapping->private_lock);
5143                                 unlock_page(p);
5144                                 put_page(p);
5145                                 mark_extent_buffer_accessed(exists, p);
5146                                 goto free_eb;
5147                         }
5148                         exists = NULL;
5149
5150                         /*
5151                          * Do this so attach doesn't complain and we need to
5152                          * drop the ref the old guy had.
5153                          */
5154                         ClearPagePrivate(p);
5155                         WARN_ON(PageDirty(p));
5156                         put_page(p);
5157                 }
5158                 attach_extent_buffer_page(eb, p);
5159                 spin_unlock(&mapping->private_lock);
5160                 WARN_ON(PageDirty(p));
5161                 eb->pages[i] = p;
5162                 if (!PageUptodate(p))
5163                         uptodate = 0;
5164
5165                 /*
5166                  * We can't unlock the pages just yet since the extent buffer
5167                  * hasn't been properly inserted in the radix tree, this
5168                  * opens a race with btree_releasepage which can free a page
5169                  * while we are still filling in all pages for the buffer and
5170                  * we could crash.
5171                  */
5172         }
5173         if (uptodate)
5174                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5175 again:
5176         ret = radix_tree_preload(GFP_NOFS);
5177         if (ret) {
5178                 exists = ERR_PTR(ret);
5179                 goto free_eb;
5180         }
5181
5182         spin_lock(&fs_info->buffer_lock);
5183         ret = radix_tree_insert(&fs_info->buffer_radix,
5184                                 start >> PAGE_SHIFT, eb);
5185         spin_unlock(&fs_info->buffer_lock);
5186         radix_tree_preload_end();
5187         if (ret == -EEXIST) {
5188                 exists = find_extent_buffer(fs_info, start);
5189                 if (exists)
5190                         goto free_eb;
5191                 else
5192                         goto again;
5193         }
5194         /* add one reference for the tree */
5195         check_buffer_tree_ref(eb);
5196         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5197
5198         /*
5199          * Now it's safe to unlock the pages because any calls to
5200          * btree_releasepage will correctly detect that a page belongs to a
5201          * live buffer and won't free them prematurely.
5202          */
5203         for (i = 0; i < num_pages; i++)
5204                 unlock_page(eb->pages[i]);
5205         return eb;
5206
5207 free_eb:
5208         WARN_ON(!atomic_dec_and_test(&eb->refs));
5209         for (i = 0; i < num_pages; i++) {
5210                 if (eb->pages[i])
5211                         unlock_page(eb->pages[i]);
5212         }
5213
5214         btrfs_release_extent_buffer(eb);
5215         return exists;
5216 }
5217
5218 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5219 {
5220         struct extent_buffer *eb =
5221                         container_of(head, struct extent_buffer, rcu_head);
5222
5223         __free_extent_buffer(eb);
5224 }
5225
5226 static int release_extent_buffer(struct extent_buffer *eb)
5227 {
5228         lockdep_assert_held(&eb->refs_lock);
5229
5230         WARN_ON(atomic_read(&eb->refs) == 0);
5231         if (atomic_dec_and_test(&eb->refs)) {
5232                 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5233                         struct btrfs_fs_info *fs_info = eb->fs_info;
5234
5235                         spin_unlock(&eb->refs_lock);
5236
5237                         spin_lock(&fs_info->buffer_lock);
5238                         radix_tree_delete(&fs_info->buffer_radix,
5239                                           eb->start >> PAGE_SHIFT);
5240                         spin_unlock(&fs_info->buffer_lock);
5241                 } else {
5242                         spin_unlock(&eb->refs_lock);
5243                 }
5244
5245                 /* Should be safe to release our pages at this point */
5246                 btrfs_release_extent_buffer_pages(eb);
5247 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5248                 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5249                         __free_extent_buffer(eb);
5250                         return 1;
5251                 }
5252 #endif
5253                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5254                 return 1;
5255         }
5256         spin_unlock(&eb->refs_lock);
5257
5258         return 0;
5259 }
5260
5261 void free_extent_buffer(struct extent_buffer *eb)
5262 {
5263         int refs;
5264         int old;
5265         if (!eb)
5266                 return;
5267
5268         while (1) {
5269                 refs = atomic_read(&eb->refs);
5270                 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5271                     || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5272                         refs == 1))
5273                         break;
5274                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5275                 if (old == refs)
5276                         return;
5277         }
5278
5279         spin_lock(&eb->refs_lock);
5280         if (atomic_read(&eb->refs) == 2 &&
5281             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5282             !extent_buffer_under_io(eb) &&
5283             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5284                 atomic_dec(&eb->refs);
5285
5286         /*
5287          * I know this is terrible, but it's temporary until we stop tracking
5288          * the uptodate bits and such for the extent buffers.
5289          */
5290         release_extent_buffer(eb);
5291 }
5292
5293 void free_extent_buffer_stale(struct extent_buffer *eb)
5294 {
5295         if (!eb)
5296                 return;
5297
5298         spin_lock(&eb->refs_lock);
5299         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5300
5301         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5302             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5303                 atomic_dec(&eb->refs);
5304         release_extent_buffer(eb);
5305 }
5306
5307 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5308 {
5309         int i;
5310         int num_pages;
5311         struct page *page;
5312
5313         num_pages = num_extent_pages(eb);
5314
5315         for (i = 0; i < num_pages; i++) {
5316                 page = eb->pages[i];
5317                 if (!PageDirty(page))
5318                         continue;
5319
5320                 lock_page(page);
5321                 WARN_ON(!PagePrivate(page));
5322
5323                 clear_page_dirty_for_io(page);
5324                 xa_lock_irq(&page->mapping->i_pages);
5325                 if (!PageDirty(page))
5326                         __xa_clear_mark(&page->mapping->i_pages,
5327                                         page_index(page), PAGECACHE_TAG_DIRTY);
5328                 xa_unlock_irq(&page->mapping->i_pages);
5329                 ClearPageError(page);
5330                 unlock_page(page);
5331         }
5332         WARN_ON(atomic_read(&eb->refs) == 0);
5333 }
5334
5335 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5336 {
5337         int i;
5338         int num_pages;
5339         bool was_dirty;
5340
5341         check_buffer_tree_ref(eb);
5342
5343         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5344
5345         num_pages = num_extent_pages(eb);
5346         WARN_ON(atomic_read(&eb->refs) == 0);
5347         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5348
5349         if (!was_dirty)
5350                 for (i = 0; i < num_pages; i++)
5351                         set_page_dirty(eb->pages[i]);
5352
5353 #ifdef CONFIG_BTRFS_DEBUG
5354         for (i = 0; i < num_pages; i++)
5355                 ASSERT(PageDirty(eb->pages[i]));
5356 #endif
5357
5358         return was_dirty;
5359 }
5360
5361 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5362 {
5363         int i;
5364         struct page *page;
5365         int num_pages;
5366
5367         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5368         num_pages = num_extent_pages(eb);
5369         for (i = 0; i < num_pages; i++) {
5370                 page = eb->pages[i];
5371                 if (page)
5372                         ClearPageUptodate(page);
5373         }
5374 }
5375
5376 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5377 {
5378         int i;
5379         struct page *page;
5380         int num_pages;
5381
5382         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5383         num_pages = num_extent_pages(eb);
5384         for (i = 0; i < num_pages; i++) {
5385                 page = eb->pages[i];
5386                 SetPageUptodate(page);
5387         }
5388 }
5389
5390 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5391 {
5392         int i;
5393         struct page *page;
5394         int err;
5395         int ret = 0;
5396         int locked_pages = 0;
5397         int all_uptodate = 1;
5398         int num_pages;
5399         unsigned long num_reads = 0;
5400         struct bio *bio = NULL;
5401         unsigned long bio_flags = 0;
5402         struct extent_io_tree *tree = &BTRFS_I(eb->fs_info->btree_inode)->io_tree;
5403
5404         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5405                 return 0;
5406
5407         num_pages = num_extent_pages(eb);
5408         for (i = 0; i < num_pages; i++) {
5409                 page = eb->pages[i];
5410                 if (wait == WAIT_NONE) {
5411                         if (!trylock_page(page))
5412                                 goto unlock_exit;
5413                 } else {
5414                         lock_page(page);
5415                 }
5416                 locked_pages++;
5417         }
5418         /*
5419          * We need to firstly lock all pages to make sure that
5420          * the uptodate bit of our pages won't be affected by
5421          * clear_extent_buffer_uptodate().
5422          */
5423         for (i = 0; i < num_pages; i++) {
5424                 page = eb->pages[i];
5425                 if (!PageUptodate(page)) {
5426                         num_reads++;
5427                         all_uptodate = 0;
5428                 }
5429         }
5430
5431         if (all_uptodate) {
5432                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5433                 goto unlock_exit;
5434         }
5435
5436         clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5437         eb->read_mirror = 0;
5438         atomic_set(&eb->io_pages, num_reads);
5439         for (i = 0; i < num_pages; i++) {
5440                 page = eb->pages[i];
5441
5442                 if (!PageUptodate(page)) {
5443                         if (ret) {
5444                                 atomic_dec(&eb->io_pages);
5445                                 unlock_page(page);
5446                                 continue;
5447                         }
5448
5449                         ClearPageError(page);
5450                         err = __extent_read_full_page(tree, page,
5451                                                       btree_get_extent, &bio,
5452                                                       mirror_num, &bio_flags,
5453                                                       REQ_META);
5454                         if (err) {
5455                                 ret = err;
5456                                 /*
5457                                  * We use &bio in above __extent_read_full_page,
5458                                  * so we ensure that if it returns error, the
5459                                  * current page fails to add itself to bio and
5460                                  * it's been unlocked.
5461                                  *
5462                                  * We must dec io_pages by ourselves.
5463                                  */
5464                                 atomic_dec(&eb->io_pages);
5465                         }
5466                 } else {
5467                         unlock_page(page);
5468                 }
5469         }
5470
5471         if (bio) {
5472                 err = submit_one_bio(bio, mirror_num, bio_flags);
5473                 if (err)
5474                         return err;
5475         }
5476
5477         if (ret || wait != WAIT_COMPLETE)
5478                 return ret;
5479
5480         for (i = 0; i < num_pages; i++) {
5481                 page = eb->pages[i];
5482                 wait_on_page_locked(page);
5483                 if (!PageUptodate(page))
5484                         ret = -EIO;
5485         }
5486
5487         return ret;
5488
5489 unlock_exit:
5490         while (locked_pages > 0) {
5491                 locked_pages--;
5492                 page = eb->pages[locked_pages];
5493                 unlock_page(page);
5494         }
5495         return ret;
5496 }
5497
5498 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5499                         unsigned long start, unsigned long len)
5500 {
5501         size_t cur;
5502         size_t offset;
5503         struct page *page;
5504         char *kaddr;
5505         char *dst = (char *)dstv;
5506         size_t start_offset = offset_in_page(eb->start);
5507         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5508
5509         if (start + len > eb->len) {
5510                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5511                      eb->start, eb->len, start, len);
5512                 memset(dst, 0, len);
5513                 return;
5514         }
5515
5516         offset = offset_in_page(start_offset + start);
5517
5518         while (len > 0) {
5519                 page = eb->pages[i];
5520
5521                 cur = min(len, (PAGE_SIZE - offset));
5522                 kaddr = page_address(page);
5523                 memcpy(dst, kaddr + offset, cur);
5524
5525                 dst += cur;
5526                 len -= cur;
5527                 offset = 0;
5528                 i++;
5529         }
5530 }
5531
5532 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5533                                void __user *dstv,
5534                                unsigned long start, unsigned long len)
5535 {
5536         size_t cur;
5537         size_t offset;
5538         struct page *page;
5539         char *kaddr;
5540         char __user *dst = (char __user *)dstv;
5541         size_t start_offset = offset_in_page(eb->start);
5542         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5543         int ret = 0;
5544
5545         WARN_ON(start > eb->len);
5546         WARN_ON(start + len > eb->start + eb->len);
5547
5548         offset = offset_in_page(start_offset + start);
5549
5550         while (len > 0) {
5551                 page = eb->pages[i];
5552
5553                 cur = min(len, (PAGE_SIZE - offset));
5554                 kaddr = page_address(page);
5555                 if (copy_to_user(dst, kaddr + offset, cur)) {
5556                         ret = -EFAULT;
5557                         break;
5558                 }
5559
5560                 dst += cur;
5561                 len -= cur;
5562                 offset = 0;
5563                 i++;
5564         }
5565
5566         return ret;
5567 }
5568
5569 /*
5570  * return 0 if the item is found within a page.
5571  * return 1 if the item spans two pages.
5572  * return -EINVAL otherwise.
5573  */
5574 int map_private_extent_buffer(const struct extent_buffer *eb,
5575                               unsigned long start, unsigned long min_len,
5576                               char **map, unsigned long *map_start,
5577                               unsigned long *map_len)
5578 {
5579         size_t offset;
5580         char *kaddr;
5581         struct page *p;
5582         size_t start_offset = offset_in_page(eb->start);
5583         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5584         unsigned long end_i = (start_offset + start + min_len - 1) >>
5585                 PAGE_SHIFT;
5586
5587         if (start + min_len > eb->len) {
5588                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5589                        eb->start, eb->len, start, min_len);
5590                 return -EINVAL;
5591         }
5592
5593         if (i != end_i)
5594                 return 1;
5595
5596         if (i == 0) {
5597                 offset = start_offset;
5598                 *map_start = 0;
5599         } else {
5600                 offset = 0;
5601                 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5602         }
5603
5604         p = eb->pages[i];
5605         kaddr = page_address(p);
5606         *map = kaddr + offset;
5607         *map_len = PAGE_SIZE - offset;
5608         return 0;
5609 }
5610
5611 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5612                          unsigned long start, unsigned long len)
5613 {
5614         size_t cur;
5615         size_t offset;
5616         struct page *page;
5617         char *kaddr;
5618         char *ptr = (char *)ptrv;
5619         size_t start_offset = offset_in_page(eb->start);
5620         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5621         int ret = 0;
5622
5623         WARN_ON(start > eb->len);
5624         WARN_ON(start + len > eb->start + eb->len);
5625
5626         offset = offset_in_page(start_offset + start);
5627
5628         while (len > 0) {
5629                 page = eb->pages[i];
5630
5631                 cur = min(len, (PAGE_SIZE - offset));
5632
5633                 kaddr = page_address(page);
5634                 ret = memcmp(ptr, kaddr + offset, cur);
5635                 if (ret)
5636                         break;
5637
5638                 ptr += cur;
5639                 len -= cur;
5640                 offset = 0;
5641                 i++;
5642         }
5643         return ret;
5644 }
5645
5646 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5647                 const void *srcv)
5648 {
5649         char *kaddr;
5650
5651         WARN_ON(!PageUptodate(eb->pages[0]));
5652         kaddr = page_address(eb->pages[0]);
5653         memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5654                         BTRFS_FSID_SIZE);
5655 }
5656
5657 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5658 {
5659         char *kaddr;
5660
5661         WARN_ON(!PageUptodate(eb->pages[0]));
5662         kaddr = page_address(eb->pages[0]);
5663         memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5664                         BTRFS_FSID_SIZE);
5665 }
5666
5667 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5668                          unsigned long start, unsigned long len)
5669 {
5670         size_t cur;
5671         size_t offset;
5672         struct page *page;
5673         char *kaddr;
5674         char *src = (char *)srcv;
5675         size_t start_offset = offset_in_page(eb->start);
5676         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5677
5678         WARN_ON(start > eb->len);
5679         WARN_ON(start + len > eb->start + eb->len);
5680
5681         offset = offset_in_page(start_offset + start);
5682
5683         while (len > 0) {
5684                 page = eb->pages[i];
5685                 WARN_ON(!PageUptodate(page));
5686
5687                 cur = min(len, PAGE_SIZE - offset);
5688                 kaddr = page_address(page);
5689                 memcpy(kaddr + offset, src, cur);
5690
5691                 src += cur;
5692                 len -= cur;
5693                 offset = 0;
5694                 i++;
5695         }
5696 }
5697
5698 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5699                 unsigned long len)
5700 {
5701         size_t cur;
5702         size_t offset;
5703         struct page *page;
5704         char *kaddr;
5705         size_t start_offset = offset_in_page(eb->start);
5706         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5707
5708         WARN_ON(start > eb->len);
5709         WARN_ON(start + len > eb->start + eb->len);
5710
5711         offset = offset_in_page(start_offset + start);
5712
5713         while (len > 0) {
5714                 page = eb->pages[i];
5715                 WARN_ON(!PageUptodate(page));
5716
5717                 cur = min(len, PAGE_SIZE - offset);
5718                 kaddr = page_address(page);
5719                 memset(kaddr + offset, 0, cur);
5720
5721                 len -= cur;
5722                 offset = 0;
5723                 i++;
5724         }
5725 }
5726
5727 void copy_extent_buffer_full(struct extent_buffer *dst,
5728                              struct extent_buffer *src)
5729 {
5730         int i;
5731         int num_pages;
5732
5733         ASSERT(dst->len == src->len);
5734
5735         num_pages = num_extent_pages(dst);
5736         for (i = 0; i < num_pages; i++)
5737                 copy_page(page_address(dst->pages[i]),
5738                                 page_address(src->pages[i]));
5739 }
5740
5741 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5742                         unsigned long dst_offset, unsigned long src_offset,
5743                         unsigned long len)
5744 {
5745         u64 dst_len = dst->len;
5746         size_t cur;
5747         size_t offset;
5748         struct page *page;
5749         char *kaddr;
5750         size_t start_offset = offset_in_page(dst->start);
5751         unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5752
5753         WARN_ON(src->len != dst_len);
5754
5755         offset = offset_in_page(start_offset + dst_offset);
5756
5757         while (len > 0) {
5758                 page = dst->pages[i];
5759                 WARN_ON(!PageUptodate(page));
5760
5761                 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5762
5763                 kaddr = page_address(page);
5764                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5765
5766                 src_offset += cur;
5767                 len -= cur;
5768                 offset = 0;
5769                 i++;
5770         }
5771 }
5772
5773 /*
5774  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5775  * given bit number
5776  * @eb: the extent buffer
5777  * @start: offset of the bitmap item in the extent buffer
5778  * @nr: bit number
5779  * @page_index: return index of the page in the extent buffer that contains the
5780  * given bit number
5781  * @page_offset: return offset into the page given by page_index
5782  *
5783  * This helper hides the ugliness of finding the byte in an extent buffer which
5784  * contains a given bit.
5785  */
5786 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5787                                     unsigned long start, unsigned long nr,
5788                                     unsigned long *page_index,
5789                                     size_t *page_offset)
5790 {
5791         size_t start_offset = offset_in_page(eb->start);
5792         size_t byte_offset = BIT_BYTE(nr);
5793         size_t offset;
5794
5795         /*
5796          * The byte we want is the offset of the extent buffer + the offset of
5797          * the bitmap item in the extent buffer + the offset of the byte in the
5798          * bitmap item.
5799          */
5800         offset = start_offset + start + byte_offset;
5801
5802         *page_index = offset >> PAGE_SHIFT;
5803         *page_offset = offset_in_page(offset);
5804 }
5805
5806 /**
5807  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5808  * @eb: the extent buffer
5809  * @start: offset of the bitmap item in the extent buffer
5810  * @nr: bit number to test
5811  */
5812 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5813                            unsigned long nr)
5814 {
5815         u8 *kaddr;
5816         struct page *page;
5817         unsigned long i;
5818         size_t offset;
5819
5820         eb_bitmap_offset(eb, start, nr, &i, &offset);
5821         page = eb->pages[i];
5822         WARN_ON(!PageUptodate(page));
5823         kaddr = page_address(page);
5824         return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5825 }
5826
5827 /**
5828  * extent_buffer_bitmap_set - set an area of a bitmap
5829  * @eb: the extent buffer
5830  * @start: offset of the bitmap item in the extent buffer
5831  * @pos: bit number of the first bit
5832  * @len: number of bits to set
5833  */
5834 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5835                               unsigned long pos, unsigned long len)
5836 {
5837         u8 *kaddr;
5838         struct page *page;
5839         unsigned long i;
5840         size_t offset;
5841         const unsigned int size = pos + len;
5842         int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5843         u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5844
5845         eb_bitmap_offset(eb, start, pos, &i, &offset);
5846         page = eb->pages[i];
5847         WARN_ON(!PageUptodate(page));
5848         kaddr = page_address(page);
5849
5850         while (len >= bits_to_set) {
5851                 kaddr[offset] |= mask_to_set;
5852                 len -= bits_to_set;
5853                 bits_to_set = BITS_PER_BYTE;
5854                 mask_to_set = ~0;
5855                 if (++offset >= PAGE_SIZE && len > 0) {
5856                         offset = 0;
5857                         page = eb->pages[++i];
5858                         WARN_ON(!PageUptodate(page));
5859                         kaddr = page_address(page);
5860                 }
5861         }
5862         if (len) {
5863                 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5864                 kaddr[offset] |= mask_to_set;
5865         }
5866 }
5867
5868
5869 /**
5870  * extent_buffer_bitmap_clear - clear an area of a bitmap
5871  * @eb: the extent buffer
5872  * @start: offset of the bitmap item in the extent buffer
5873  * @pos: bit number of the first bit
5874  * @len: number of bits to clear
5875  */
5876 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5877                                 unsigned long pos, unsigned long len)
5878 {
5879         u8 *kaddr;
5880         struct page *page;
5881         unsigned long i;
5882         size_t offset;
5883         const unsigned int size = pos + len;
5884         int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5885         u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5886
5887         eb_bitmap_offset(eb, start, pos, &i, &offset);
5888         page = eb->pages[i];
5889         WARN_ON(!PageUptodate(page));
5890         kaddr = page_address(page);
5891
5892         while (len >= bits_to_clear) {
5893                 kaddr[offset] &= ~mask_to_clear;
5894                 len -= bits_to_clear;
5895                 bits_to_clear = BITS_PER_BYTE;
5896                 mask_to_clear = ~0;
5897                 if (++offset >= PAGE_SIZE && len > 0) {
5898                         offset = 0;
5899                         page = eb->pages[++i];
5900                         WARN_ON(!PageUptodate(page));
5901                         kaddr = page_address(page);
5902                 }
5903         }
5904         if (len) {
5905                 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5906                 kaddr[offset] &= ~mask_to_clear;
5907         }
5908 }
5909
5910 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5911 {
5912         unsigned long distance = (src > dst) ? src - dst : dst - src;
5913         return distance < len;
5914 }
5915
5916 static void copy_pages(struct page *dst_page, struct page *src_page,
5917                        unsigned long dst_off, unsigned long src_off,
5918                        unsigned long len)
5919 {
5920         char *dst_kaddr = page_address(dst_page);
5921         char *src_kaddr;
5922         int must_memmove = 0;
5923
5924         if (dst_page != src_page) {
5925                 src_kaddr = page_address(src_page);
5926         } else {
5927                 src_kaddr = dst_kaddr;
5928                 if (areas_overlap(src_off, dst_off, len))
5929                         must_memmove = 1;
5930         }
5931
5932         if (must_memmove)
5933                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5934         else
5935                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5936 }
5937
5938 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5939                            unsigned long src_offset, unsigned long len)
5940 {
5941         struct btrfs_fs_info *fs_info = dst->fs_info;
5942         size_t cur;
5943         size_t dst_off_in_page;
5944         size_t src_off_in_page;
5945         size_t start_offset = offset_in_page(dst->start);
5946         unsigned long dst_i;
5947         unsigned long src_i;
5948
5949         if (src_offset + len > dst->len) {
5950                 btrfs_err(fs_info,
5951                         "memmove bogus src_offset %lu move len %lu dst len %lu",
5952                          src_offset, len, dst->len);
5953                 BUG();
5954         }
5955         if (dst_offset + len > dst->len) {
5956                 btrfs_err(fs_info,
5957                         "memmove bogus dst_offset %lu move len %lu dst len %lu",
5958                          dst_offset, len, dst->len);
5959                 BUG();
5960         }
5961
5962         while (len > 0) {
5963                 dst_off_in_page = offset_in_page(start_offset + dst_offset);
5964                 src_off_in_page = offset_in_page(start_offset + src_offset);
5965
5966                 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5967                 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5968
5969                 cur = min(len, (unsigned long)(PAGE_SIZE -
5970                                                src_off_in_page));
5971                 cur = min_t(unsigned long, cur,
5972                         (unsigned long)(PAGE_SIZE - dst_off_in_page));
5973
5974                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5975                            dst_off_in_page, src_off_in_page, cur);
5976
5977                 src_offset += cur;
5978                 dst_offset += cur;
5979                 len -= cur;
5980         }
5981 }
5982
5983 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5984                            unsigned long src_offset, unsigned long len)
5985 {
5986         struct btrfs_fs_info *fs_info = dst->fs_info;
5987         size_t cur;
5988         size_t dst_off_in_page;
5989         size_t src_off_in_page;
5990         unsigned long dst_end = dst_offset + len - 1;
5991         unsigned long src_end = src_offset + len - 1;
5992         size_t start_offset = offset_in_page(dst->start);
5993         unsigned long dst_i;
5994         unsigned long src_i;
5995
5996         if (src_offset + len > dst->len) {
5997                 btrfs_err(fs_info,
5998                           "memmove bogus src_offset %lu move len %lu len %lu",
5999                           src_offset, len, dst->len);
6000                 BUG();
6001         }
6002         if (dst_offset + len > dst->len) {
6003                 btrfs_err(fs_info,
6004                           "memmove bogus dst_offset %lu move len %lu len %lu",
6005                           dst_offset, len, dst->len);
6006                 BUG();
6007         }
6008         if (dst_offset < src_offset) {
6009                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6010                 return;
6011         }
6012         while (len > 0) {
6013                 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
6014                 src_i = (start_offset + src_end) >> PAGE_SHIFT;
6015
6016                 dst_off_in_page = offset_in_page(start_offset + dst_end);
6017                 src_off_in_page = offset_in_page(start_offset + src_end);
6018
6019                 cur = min_t(unsigned long, len, src_off_in_page + 1);
6020                 cur = min(cur, dst_off_in_page + 1);
6021                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6022                            dst_off_in_page - cur + 1,
6023                            src_off_in_page - cur + 1, cur);
6024
6025                 dst_end -= cur;
6026                 src_end -= cur;
6027                 len -= cur;
6028         }
6029 }
6030
6031 int try_release_extent_buffer(struct page *page)
6032 {
6033         struct extent_buffer *eb;
6034
6035         /*
6036          * We need to make sure nobody is attaching this page to an eb right
6037          * now.
6038          */
6039         spin_lock(&page->mapping->private_lock);
6040         if (!PagePrivate(page)) {
6041                 spin_unlock(&page->mapping->private_lock);
6042                 return 1;
6043         }
6044
6045         eb = (struct extent_buffer *)page->private;
6046         BUG_ON(!eb);
6047
6048         /*
6049          * This is a little awful but should be ok, we need to make sure that
6050          * the eb doesn't disappear out from under us while we're looking at
6051          * this page.
6052          */
6053         spin_lock(&eb->refs_lock);
6054         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6055                 spin_unlock(&eb->refs_lock);
6056                 spin_unlock(&page->mapping->private_lock);
6057                 return 0;
6058         }
6059         spin_unlock(&page->mapping->private_lock);
6060
6061         /*
6062          * If tree ref isn't set then we know the ref on this eb is a real ref,
6063          * so just return, this page will likely be freed soon anyway.
6064          */
6065         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6066                 spin_unlock(&eb->refs_lock);
6067                 return 0;
6068         }
6069
6070         return release_extent_buffer(eb);
6071 }