Merge tag 'x86-urgent-2020-10-27' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / fs / btrfs / extent_io.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent-io-tree.h"
18 #include "extent_map.h"
19 #include "ctree.h"
20 #include "btrfs_inode.h"
21 #include "volumes.h"
22 #include "check-integrity.h"
23 #include "locking.h"
24 #include "rcu-string.h"
25 #include "backref.h"
26 #include "disk-io.h"
27
28 static struct kmem_cache *extent_state_cache;
29 static struct kmem_cache *extent_buffer_cache;
30 static struct bio_set btrfs_bioset;
31
32 static inline bool extent_state_in_tree(const struct extent_state *state)
33 {
34         return !RB_EMPTY_NODE(&state->rb_node);
35 }
36
37 #ifdef CONFIG_BTRFS_DEBUG
38 static LIST_HEAD(states);
39 static DEFINE_SPINLOCK(leak_lock);
40
41 static inline void btrfs_leak_debug_add(spinlock_t *lock,
42                                         struct list_head *new,
43                                         struct list_head *head)
44 {
45         unsigned long flags;
46
47         spin_lock_irqsave(lock, flags);
48         list_add(new, head);
49         spin_unlock_irqrestore(lock, flags);
50 }
51
52 static inline void btrfs_leak_debug_del(spinlock_t *lock,
53                                         struct list_head *entry)
54 {
55         unsigned long flags;
56
57         spin_lock_irqsave(lock, flags);
58         list_del(entry);
59         spin_unlock_irqrestore(lock, flags);
60 }
61
62 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
63 {
64         struct extent_buffer *eb;
65         unsigned long flags;
66
67         /*
68          * If we didn't get into open_ctree our allocated_ebs will not be
69          * initialized, so just skip this.
70          */
71         if (!fs_info->allocated_ebs.next)
72                 return;
73
74         spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75         while (!list_empty(&fs_info->allocated_ebs)) {
76                 eb = list_first_entry(&fs_info->allocated_ebs,
77                                       struct extent_buffer, leak_list);
78                 pr_err(
79         "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
80                        eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81                        btrfs_header_owner(eb));
82                 list_del(&eb->leak_list);
83                 kmem_cache_free(extent_buffer_cache, eb);
84         }
85         spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
86 }
87
88 static inline void btrfs_extent_state_leak_debug_check(void)
89 {
90         struct extent_state *state;
91
92         while (!list_empty(&states)) {
93                 state = list_entry(states.next, struct extent_state, leak_list);
94                 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
95                        state->start, state->end, state->state,
96                        extent_state_in_tree(state),
97                        refcount_read(&state->refs));
98                 list_del(&state->leak_list);
99                 kmem_cache_free(extent_state_cache, state);
100         }
101 }
102
103 #define btrfs_debug_check_extent_io_range(tree, start, end)             \
104         __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
105 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
106                 struct extent_io_tree *tree, u64 start, u64 end)
107 {
108         struct inode *inode = tree->private_data;
109         u64 isize;
110
111         if (!inode || !is_data_inode(inode))
112                 return;
113
114         isize = i_size_read(inode);
115         if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
116                 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
117                     "%s: ino %llu isize %llu odd range [%llu,%llu]",
118                         caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
119         }
120 }
121 #else
122 #define btrfs_leak_debug_add(lock, new, head)   do {} while (0)
123 #define btrfs_leak_debug_del(lock, entry)       do {} while (0)
124 #define btrfs_extent_state_leak_debug_check()   do {} while (0)
125 #define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
126 #endif
127
128 struct tree_entry {
129         u64 start;
130         u64 end;
131         struct rb_node rb_node;
132 };
133
134 struct extent_page_data {
135         struct bio *bio;
136         /* tells writepage not to lock the state bits for this range
137          * it still does the unlocking
138          */
139         unsigned int extent_locked:1;
140
141         /* tells the submit_bio code to use REQ_SYNC */
142         unsigned int sync_io:1;
143 };
144
145 static int add_extent_changeset(struct extent_state *state, unsigned bits,
146                                  struct extent_changeset *changeset,
147                                  int set)
148 {
149         int ret;
150
151         if (!changeset)
152                 return 0;
153         if (set && (state->state & bits) == bits)
154                 return 0;
155         if (!set && (state->state & bits) == 0)
156                 return 0;
157         changeset->bytes_changed += state->end - state->start + 1;
158         ret = ulist_add(&changeset->range_changed, state->start, state->end,
159                         GFP_ATOMIC);
160         return ret;
161 }
162
163 int __must_check submit_one_bio(struct bio *bio, int mirror_num,
164                                 unsigned long bio_flags)
165 {
166         blk_status_t ret = 0;
167         struct extent_io_tree *tree = bio->bi_private;
168
169         bio->bi_private = NULL;
170
171         if (is_data_inode(tree->private_data))
172                 ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
173                                             bio_flags);
174         else
175                 ret = btrfs_submit_metadata_bio(tree->private_data, bio,
176                                                 mirror_num, bio_flags);
177
178         return blk_status_to_errno(ret);
179 }
180
181 /* Cleanup unsubmitted bios */
182 static void end_write_bio(struct extent_page_data *epd, int ret)
183 {
184         if (epd->bio) {
185                 epd->bio->bi_status = errno_to_blk_status(ret);
186                 bio_endio(epd->bio);
187                 epd->bio = NULL;
188         }
189 }
190
191 /*
192  * Submit bio from extent page data via submit_one_bio
193  *
194  * Return 0 if everything is OK.
195  * Return <0 for error.
196  */
197 static int __must_check flush_write_bio(struct extent_page_data *epd)
198 {
199         int ret = 0;
200
201         if (epd->bio) {
202                 ret = submit_one_bio(epd->bio, 0, 0);
203                 /*
204                  * Clean up of epd->bio is handled by its endio function.
205                  * And endio is either triggered by successful bio execution
206                  * or the error handler of submit bio hook.
207                  * So at this point, no matter what happened, we don't need
208                  * to clean up epd->bio.
209                  */
210                 epd->bio = NULL;
211         }
212         return ret;
213 }
214
215 int __init extent_state_cache_init(void)
216 {
217         extent_state_cache = kmem_cache_create("btrfs_extent_state",
218                         sizeof(struct extent_state), 0,
219                         SLAB_MEM_SPREAD, NULL);
220         if (!extent_state_cache)
221                 return -ENOMEM;
222         return 0;
223 }
224
225 int __init extent_io_init(void)
226 {
227         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
228                         sizeof(struct extent_buffer), 0,
229                         SLAB_MEM_SPREAD, NULL);
230         if (!extent_buffer_cache)
231                 return -ENOMEM;
232
233         if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
234                         offsetof(struct btrfs_io_bio, bio),
235                         BIOSET_NEED_BVECS))
236                 goto free_buffer_cache;
237
238         if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
239                 goto free_bioset;
240
241         return 0;
242
243 free_bioset:
244         bioset_exit(&btrfs_bioset);
245
246 free_buffer_cache:
247         kmem_cache_destroy(extent_buffer_cache);
248         extent_buffer_cache = NULL;
249         return -ENOMEM;
250 }
251
252 void __cold extent_state_cache_exit(void)
253 {
254         btrfs_extent_state_leak_debug_check();
255         kmem_cache_destroy(extent_state_cache);
256 }
257
258 void __cold extent_io_exit(void)
259 {
260         /*
261          * Make sure all delayed rcu free are flushed before we
262          * destroy caches.
263          */
264         rcu_barrier();
265         kmem_cache_destroy(extent_buffer_cache);
266         bioset_exit(&btrfs_bioset);
267 }
268
269 /*
270  * For the file_extent_tree, we want to hold the inode lock when we lookup and
271  * update the disk_i_size, but lockdep will complain because our io_tree we hold
272  * the tree lock and get the inode lock when setting delalloc.  These two things
273  * are unrelated, so make a class for the file_extent_tree so we don't get the
274  * two locking patterns mixed up.
275  */
276 static struct lock_class_key file_extent_tree_class;
277
278 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
279                          struct extent_io_tree *tree, unsigned int owner,
280                          void *private_data)
281 {
282         tree->fs_info = fs_info;
283         tree->state = RB_ROOT;
284         tree->dirty_bytes = 0;
285         spin_lock_init(&tree->lock);
286         tree->private_data = private_data;
287         tree->owner = owner;
288         if (owner == IO_TREE_INODE_FILE_EXTENT)
289                 lockdep_set_class(&tree->lock, &file_extent_tree_class);
290 }
291
292 void extent_io_tree_release(struct extent_io_tree *tree)
293 {
294         spin_lock(&tree->lock);
295         /*
296          * Do a single barrier for the waitqueue_active check here, the state
297          * of the waitqueue should not change once extent_io_tree_release is
298          * called.
299          */
300         smp_mb();
301         while (!RB_EMPTY_ROOT(&tree->state)) {
302                 struct rb_node *node;
303                 struct extent_state *state;
304
305                 node = rb_first(&tree->state);
306                 state = rb_entry(node, struct extent_state, rb_node);
307                 rb_erase(&state->rb_node, &tree->state);
308                 RB_CLEAR_NODE(&state->rb_node);
309                 /*
310                  * btree io trees aren't supposed to have tasks waiting for
311                  * changes in the flags of extent states ever.
312                  */
313                 ASSERT(!waitqueue_active(&state->wq));
314                 free_extent_state(state);
315
316                 cond_resched_lock(&tree->lock);
317         }
318         spin_unlock(&tree->lock);
319 }
320
321 static struct extent_state *alloc_extent_state(gfp_t mask)
322 {
323         struct extent_state *state;
324
325         /*
326          * The given mask might be not appropriate for the slab allocator,
327          * drop the unsupported bits
328          */
329         mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
330         state = kmem_cache_alloc(extent_state_cache, mask);
331         if (!state)
332                 return state;
333         state->state = 0;
334         state->failrec = NULL;
335         RB_CLEAR_NODE(&state->rb_node);
336         btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
337         refcount_set(&state->refs, 1);
338         init_waitqueue_head(&state->wq);
339         trace_alloc_extent_state(state, mask, _RET_IP_);
340         return state;
341 }
342
343 void free_extent_state(struct extent_state *state)
344 {
345         if (!state)
346                 return;
347         if (refcount_dec_and_test(&state->refs)) {
348                 WARN_ON(extent_state_in_tree(state));
349                 btrfs_leak_debug_del(&leak_lock, &state->leak_list);
350                 trace_free_extent_state(state, _RET_IP_);
351                 kmem_cache_free(extent_state_cache, state);
352         }
353 }
354
355 static struct rb_node *tree_insert(struct rb_root *root,
356                                    struct rb_node *search_start,
357                                    u64 offset,
358                                    struct rb_node *node,
359                                    struct rb_node ***p_in,
360                                    struct rb_node **parent_in)
361 {
362         struct rb_node **p;
363         struct rb_node *parent = NULL;
364         struct tree_entry *entry;
365
366         if (p_in && parent_in) {
367                 p = *p_in;
368                 parent = *parent_in;
369                 goto do_insert;
370         }
371
372         p = search_start ? &search_start : &root->rb_node;
373         while (*p) {
374                 parent = *p;
375                 entry = rb_entry(parent, struct tree_entry, rb_node);
376
377                 if (offset < entry->start)
378                         p = &(*p)->rb_left;
379                 else if (offset > entry->end)
380                         p = &(*p)->rb_right;
381                 else
382                         return parent;
383         }
384
385 do_insert:
386         rb_link_node(node, parent, p);
387         rb_insert_color(node, root);
388         return NULL;
389 }
390
391 /**
392  * __etree_search - searche @tree for an entry that contains @offset. Such
393  * entry would have entry->start <= offset && entry->end >= offset.
394  *
395  * @tree - the tree to search
396  * @offset - offset that should fall within an entry in @tree
397  * @next_ret - pointer to the first entry whose range ends after @offset
398  * @prev - pointer to the first entry whose range begins before @offset
399  * @p_ret - pointer where new node should be anchored (used when inserting an
400  *          entry in the tree)
401  * @parent_ret - points to entry which would have been the parent of the entry,
402  *               containing @offset
403  *
404  * This function returns a pointer to the entry that contains @offset byte
405  * address. If no such entry exists, then NULL is returned and the other
406  * pointer arguments to the function are filled, otherwise the found entry is
407  * returned and other pointers are left untouched.
408  */
409 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
410                                       struct rb_node **next_ret,
411                                       struct rb_node **prev_ret,
412                                       struct rb_node ***p_ret,
413                                       struct rb_node **parent_ret)
414 {
415         struct rb_root *root = &tree->state;
416         struct rb_node **n = &root->rb_node;
417         struct rb_node *prev = NULL;
418         struct rb_node *orig_prev = NULL;
419         struct tree_entry *entry;
420         struct tree_entry *prev_entry = NULL;
421
422         while (*n) {
423                 prev = *n;
424                 entry = rb_entry(prev, struct tree_entry, rb_node);
425                 prev_entry = entry;
426
427                 if (offset < entry->start)
428                         n = &(*n)->rb_left;
429                 else if (offset > entry->end)
430                         n = &(*n)->rb_right;
431                 else
432                         return *n;
433         }
434
435         if (p_ret)
436                 *p_ret = n;
437         if (parent_ret)
438                 *parent_ret = prev;
439
440         if (next_ret) {
441                 orig_prev = prev;
442                 while (prev && offset > prev_entry->end) {
443                         prev = rb_next(prev);
444                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
445                 }
446                 *next_ret = prev;
447                 prev = orig_prev;
448         }
449
450         if (prev_ret) {
451                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
452                 while (prev && offset < prev_entry->start) {
453                         prev = rb_prev(prev);
454                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
455                 }
456                 *prev_ret = prev;
457         }
458         return NULL;
459 }
460
461 static inline struct rb_node *
462 tree_search_for_insert(struct extent_io_tree *tree,
463                        u64 offset,
464                        struct rb_node ***p_ret,
465                        struct rb_node **parent_ret)
466 {
467         struct rb_node *next= NULL;
468         struct rb_node *ret;
469
470         ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
471         if (!ret)
472                 return next;
473         return ret;
474 }
475
476 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
477                                           u64 offset)
478 {
479         return tree_search_for_insert(tree, offset, NULL, NULL);
480 }
481
482 /*
483  * utility function to look for merge candidates inside a given range.
484  * Any extents with matching state are merged together into a single
485  * extent in the tree.  Extents with EXTENT_IO in their state field
486  * are not merged because the end_io handlers need to be able to do
487  * operations on them without sleeping (or doing allocations/splits).
488  *
489  * This should be called with the tree lock held.
490  */
491 static void merge_state(struct extent_io_tree *tree,
492                         struct extent_state *state)
493 {
494         struct extent_state *other;
495         struct rb_node *other_node;
496
497         if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
498                 return;
499
500         other_node = rb_prev(&state->rb_node);
501         if (other_node) {
502                 other = rb_entry(other_node, struct extent_state, rb_node);
503                 if (other->end == state->start - 1 &&
504                     other->state == state->state) {
505                         if (tree->private_data &&
506                             is_data_inode(tree->private_data))
507                                 btrfs_merge_delalloc_extent(tree->private_data,
508                                                             state, other);
509                         state->start = other->start;
510                         rb_erase(&other->rb_node, &tree->state);
511                         RB_CLEAR_NODE(&other->rb_node);
512                         free_extent_state(other);
513                 }
514         }
515         other_node = rb_next(&state->rb_node);
516         if (other_node) {
517                 other = rb_entry(other_node, struct extent_state, rb_node);
518                 if (other->start == state->end + 1 &&
519                     other->state == state->state) {
520                         if (tree->private_data &&
521                             is_data_inode(tree->private_data))
522                                 btrfs_merge_delalloc_extent(tree->private_data,
523                                                             state, other);
524                         state->end = other->end;
525                         rb_erase(&other->rb_node, &tree->state);
526                         RB_CLEAR_NODE(&other->rb_node);
527                         free_extent_state(other);
528                 }
529         }
530 }
531
532 static void set_state_bits(struct extent_io_tree *tree,
533                            struct extent_state *state, unsigned *bits,
534                            struct extent_changeset *changeset);
535
536 /*
537  * insert an extent_state struct into the tree.  'bits' are set on the
538  * struct before it is inserted.
539  *
540  * This may return -EEXIST if the extent is already there, in which case the
541  * state struct is freed.
542  *
543  * The tree lock is not taken internally.  This is a utility function and
544  * probably isn't what you want to call (see set/clear_extent_bit).
545  */
546 static int insert_state(struct extent_io_tree *tree,
547                         struct extent_state *state, u64 start, u64 end,
548                         struct rb_node ***p,
549                         struct rb_node **parent,
550                         unsigned *bits, struct extent_changeset *changeset)
551 {
552         struct rb_node *node;
553
554         if (end < start) {
555                 btrfs_err(tree->fs_info,
556                         "insert state: end < start %llu %llu", end, start);
557                 WARN_ON(1);
558         }
559         state->start = start;
560         state->end = end;
561
562         set_state_bits(tree, state, bits, changeset);
563
564         node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
565         if (node) {
566                 struct extent_state *found;
567                 found = rb_entry(node, struct extent_state, rb_node);
568                 btrfs_err(tree->fs_info,
569                        "found node %llu %llu on insert of %llu %llu",
570                        found->start, found->end, start, end);
571                 return -EEXIST;
572         }
573         merge_state(tree, state);
574         return 0;
575 }
576
577 /*
578  * split a given extent state struct in two, inserting the preallocated
579  * struct 'prealloc' as the newly created second half.  'split' indicates an
580  * offset inside 'orig' where it should be split.
581  *
582  * Before calling,
583  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
584  * are two extent state structs in the tree:
585  * prealloc: [orig->start, split - 1]
586  * orig: [ split, orig->end ]
587  *
588  * The tree locks are not taken by this function. They need to be held
589  * by the caller.
590  */
591 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
592                        struct extent_state *prealloc, u64 split)
593 {
594         struct rb_node *node;
595
596         if (tree->private_data && is_data_inode(tree->private_data))
597                 btrfs_split_delalloc_extent(tree->private_data, orig, split);
598
599         prealloc->start = orig->start;
600         prealloc->end = split - 1;
601         prealloc->state = orig->state;
602         orig->start = split;
603
604         node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
605                            &prealloc->rb_node, NULL, NULL);
606         if (node) {
607                 free_extent_state(prealloc);
608                 return -EEXIST;
609         }
610         return 0;
611 }
612
613 static struct extent_state *next_state(struct extent_state *state)
614 {
615         struct rb_node *next = rb_next(&state->rb_node);
616         if (next)
617                 return rb_entry(next, struct extent_state, rb_node);
618         else
619                 return NULL;
620 }
621
622 /*
623  * utility function to clear some bits in an extent state struct.
624  * it will optionally wake up anyone waiting on this state (wake == 1).
625  *
626  * If no bits are set on the state struct after clearing things, the
627  * struct is freed and removed from the tree
628  */
629 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
630                                             struct extent_state *state,
631                                             unsigned *bits, int wake,
632                                             struct extent_changeset *changeset)
633 {
634         struct extent_state *next;
635         unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
636         int ret;
637
638         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
639                 u64 range = state->end - state->start + 1;
640                 WARN_ON(range > tree->dirty_bytes);
641                 tree->dirty_bytes -= range;
642         }
643
644         if (tree->private_data && is_data_inode(tree->private_data))
645                 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
646
647         ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
648         BUG_ON(ret < 0);
649         state->state &= ~bits_to_clear;
650         if (wake)
651                 wake_up(&state->wq);
652         if (state->state == 0) {
653                 next = next_state(state);
654                 if (extent_state_in_tree(state)) {
655                         rb_erase(&state->rb_node, &tree->state);
656                         RB_CLEAR_NODE(&state->rb_node);
657                         free_extent_state(state);
658                 } else {
659                         WARN_ON(1);
660                 }
661         } else {
662                 merge_state(tree, state);
663                 next = next_state(state);
664         }
665         return next;
666 }
667
668 static struct extent_state *
669 alloc_extent_state_atomic(struct extent_state *prealloc)
670 {
671         if (!prealloc)
672                 prealloc = alloc_extent_state(GFP_ATOMIC);
673
674         return prealloc;
675 }
676
677 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
678 {
679         struct inode *inode = tree->private_data;
680
681         btrfs_panic(btrfs_sb(inode->i_sb), err,
682         "locking error: extent tree was modified by another thread while locked");
683 }
684
685 /*
686  * clear some bits on a range in the tree.  This may require splitting
687  * or inserting elements in the tree, so the gfp mask is used to
688  * indicate which allocations or sleeping are allowed.
689  *
690  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
691  * the given range from the tree regardless of state (ie for truncate).
692  *
693  * the range [start, end] is inclusive.
694  *
695  * This takes the tree lock, and returns 0 on success and < 0 on error.
696  */
697 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
698                               unsigned bits, int wake, int delete,
699                               struct extent_state **cached_state,
700                               gfp_t mask, struct extent_changeset *changeset)
701 {
702         struct extent_state *state;
703         struct extent_state *cached;
704         struct extent_state *prealloc = NULL;
705         struct rb_node *node;
706         u64 last_end;
707         int err;
708         int clear = 0;
709
710         btrfs_debug_check_extent_io_range(tree, start, end);
711         trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
712
713         if (bits & EXTENT_DELALLOC)
714                 bits |= EXTENT_NORESERVE;
715
716         if (delete)
717                 bits |= ~EXTENT_CTLBITS;
718
719         if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
720                 clear = 1;
721 again:
722         if (!prealloc && gfpflags_allow_blocking(mask)) {
723                 /*
724                  * Don't care for allocation failure here because we might end
725                  * up not needing the pre-allocated extent state at all, which
726                  * is the case if we only have in the tree extent states that
727                  * cover our input range and don't cover too any other range.
728                  * If we end up needing a new extent state we allocate it later.
729                  */
730                 prealloc = alloc_extent_state(mask);
731         }
732
733         spin_lock(&tree->lock);
734         if (cached_state) {
735                 cached = *cached_state;
736
737                 if (clear) {
738                         *cached_state = NULL;
739                         cached_state = NULL;
740                 }
741
742                 if (cached && extent_state_in_tree(cached) &&
743                     cached->start <= start && cached->end > start) {
744                         if (clear)
745                                 refcount_dec(&cached->refs);
746                         state = cached;
747                         goto hit_next;
748                 }
749                 if (clear)
750                         free_extent_state(cached);
751         }
752         /*
753          * this search will find the extents that end after
754          * our range starts
755          */
756         node = tree_search(tree, start);
757         if (!node)
758                 goto out;
759         state = rb_entry(node, struct extent_state, rb_node);
760 hit_next:
761         if (state->start > end)
762                 goto out;
763         WARN_ON(state->end < start);
764         last_end = state->end;
765
766         /* the state doesn't have the wanted bits, go ahead */
767         if (!(state->state & bits)) {
768                 state = next_state(state);
769                 goto next;
770         }
771
772         /*
773          *     | ---- desired range ---- |
774          *  | state | or
775          *  | ------------- state -------------- |
776          *
777          * We need to split the extent we found, and may flip
778          * bits on second half.
779          *
780          * If the extent we found extends past our range, we
781          * just split and search again.  It'll get split again
782          * the next time though.
783          *
784          * If the extent we found is inside our range, we clear
785          * the desired bit on it.
786          */
787
788         if (state->start < start) {
789                 prealloc = alloc_extent_state_atomic(prealloc);
790                 BUG_ON(!prealloc);
791                 err = split_state(tree, state, prealloc, start);
792                 if (err)
793                         extent_io_tree_panic(tree, err);
794
795                 prealloc = NULL;
796                 if (err)
797                         goto out;
798                 if (state->end <= end) {
799                         state = clear_state_bit(tree, state, &bits, wake,
800                                                 changeset);
801                         goto next;
802                 }
803                 goto search_again;
804         }
805         /*
806          * | ---- desired range ---- |
807          *                        | state |
808          * We need to split the extent, and clear the bit
809          * on the first half
810          */
811         if (state->start <= end && state->end > end) {
812                 prealloc = alloc_extent_state_atomic(prealloc);
813                 BUG_ON(!prealloc);
814                 err = split_state(tree, state, prealloc, end + 1);
815                 if (err)
816                         extent_io_tree_panic(tree, err);
817
818                 if (wake)
819                         wake_up(&state->wq);
820
821                 clear_state_bit(tree, prealloc, &bits, wake, changeset);
822
823                 prealloc = NULL;
824                 goto out;
825         }
826
827         state = clear_state_bit(tree, state, &bits, wake, changeset);
828 next:
829         if (last_end == (u64)-1)
830                 goto out;
831         start = last_end + 1;
832         if (start <= end && state && !need_resched())
833                 goto hit_next;
834
835 search_again:
836         if (start > end)
837                 goto out;
838         spin_unlock(&tree->lock);
839         if (gfpflags_allow_blocking(mask))
840                 cond_resched();
841         goto again;
842
843 out:
844         spin_unlock(&tree->lock);
845         if (prealloc)
846                 free_extent_state(prealloc);
847
848         return 0;
849
850 }
851
852 static void wait_on_state(struct extent_io_tree *tree,
853                           struct extent_state *state)
854                 __releases(tree->lock)
855                 __acquires(tree->lock)
856 {
857         DEFINE_WAIT(wait);
858         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
859         spin_unlock(&tree->lock);
860         schedule();
861         spin_lock(&tree->lock);
862         finish_wait(&state->wq, &wait);
863 }
864
865 /*
866  * waits for one or more bits to clear on a range in the state tree.
867  * The range [start, end] is inclusive.
868  * The tree lock is taken by this function
869  */
870 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
871                             unsigned long bits)
872 {
873         struct extent_state *state;
874         struct rb_node *node;
875
876         btrfs_debug_check_extent_io_range(tree, start, end);
877
878         spin_lock(&tree->lock);
879 again:
880         while (1) {
881                 /*
882                  * this search will find all the extents that end after
883                  * our range starts
884                  */
885                 node = tree_search(tree, start);
886 process_node:
887                 if (!node)
888                         break;
889
890                 state = rb_entry(node, struct extent_state, rb_node);
891
892                 if (state->start > end)
893                         goto out;
894
895                 if (state->state & bits) {
896                         start = state->start;
897                         refcount_inc(&state->refs);
898                         wait_on_state(tree, state);
899                         free_extent_state(state);
900                         goto again;
901                 }
902                 start = state->end + 1;
903
904                 if (start > end)
905                         break;
906
907                 if (!cond_resched_lock(&tree->lock)) {
908                         node = rb_next(node);
909                         goto process_node;
910                 }
911         }
912 out:
913         spin_unlock(&tree->lock);
914 }
915
916 static void set_state_bits(struct extent_io_tree *tree,
917                            struct extent_state *state,
918                            unsigned *bits, struct extent_changeset *changeset)
919 {
920         unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
921         int ret;
922
923         if (tree->private_data && is_data_inode(tree->private_data))
924                 btrfs_set_delalloc_extent(tree->private_data, state, bits);
925
926         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
927                 u64 range = state->end - state->start + 1;
928                 tree->dirty_bytes += range;
929         }
930         ret = add_extent_changeset(state, bits_to_set, changeset, 1);
931         BUG_ON(ret < 0);
932         state->state |= bits_to_set;
933 }
934
935 static void cache_state_if_flags(struct extent_state *state,
936                                  struct extent_state **cached_ptr,
937                                  unsigned flags)
938 {
939         if (cached_ptr && !(*cached_ptr)) {
940                 if (!flags || (state->state & flags)) {
941                         *cached_ptr = state;
942                         refcount_inc(&state->refs);
943                 }
944         }
945 }
946
947 static void cache_state(struct extent_state *state,
948                         struct extent_state **cached_ptr)
949 {
950         return cache_state_if_flags(state, cached_ptr,
951                                     EXTENT_LOCKED | EXTENT_BOUNDARY);
952 }
953
954 /*
955  * set some bits on a range in the tree.  This may require allocations or
956  * sleeping, so the gfp mask is used to indicate what is allowed.
957  *
958  * If any of the exclusive bits are set, this will fail with -EEXIST if some
959  * part of the range already has the desired bits set.  The start of the
960  * existing range is returned in failed_start in this case.
961  *
962  * [start, end] is inclusive This takes the tree lock.
963  */
964
965 static int __must_check
966 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
967                  unsigned bits, unsigned exclusive_bits,
968                  u64 *failed_start, struct extent_state **cached_state,
969                  gfp_t mask, struct extent_changeset *changeset)
970 {
971         struct extent_state *state;
972         struct extent_state *prealloc = NULL;
973         struct rb_node *node;
974         struct rb_node **p;
975         struct rb_node *parent;
976         int err = 0;
977         u64 last_start;
978         u64 last_end;
979
980         btrfs_debug_check_extent_io_range(tree, start, end);
981         trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
982
983 again:
984         if (!prealloc && gfpflags_allow_blocking(mask)) {
985                 /*
986                  * Don't care for allocation failure here because we might end
987                  * up not needing the pre-allocated extent state at all, which
988                  * is the case if we only have in the tree extent states that
989                  * cover our input range and don't cover too any other range.
990                  * If we end up needing a new extent state we allocate it later.
991                  */
992                 prealloc = alloc_extent_state(mask);
993         }
994
995         spin_lock(&tree->lock);
996         if (cached_state && *cached_state) {
997                 state = *cached_state;
998                 if (state->start <= start && state->end > start &&
999                     extent_state_in_tree(state)) {
1000                         node = &state->rb_node;
1001                         goto hit_next;
1002                 }
1003         }
1004         /*
1005          * this search will find all the extents that end after
1006          * our range starts.
1007          */
1008         node = tree_search_for_insert(tree, start, &p, &parent);
1009         if (!node) {
1010                 prealloc = alloc_extent_state_atomic(prealloc);
1011                 BUG_ON(!prealloc);
1012                 err = insert_state(tree, prealloc, start, end,
1013                                    &p, &parent, &bits, changeset);
1014                 if (err)
1015                         extent_io_tree_panic(tree, err);
1016
1017                 cache_state(prealloc, cached_state);
1018                 prealloc = NULL;
1019                 goto out;
1020         }
1021         state = rb_entry(node, struct extent_state, rb_node);
1022 hit_next:
1023         last_start = state->start;
1024         last_end = state->end;
1025
1026         /*
1027          * | ---- desired range ---- |
1028          * | state |
1029          *
1030          * Just lock what we found and keep going
1031          */
1032         if (state->start == start && state->end <= end) {
1033                 if (state->state & exclusive_bits) {
1034                         *failed_start = state->start;
1035                         err = -EEXIST;
1036                         goto out;
1037                 }
1038
1039                 set_state_bits(tree, state, &bits, changeset);
1040                 cache_state(state, cached_state);
1041                 merge_state(tree, state);
1042                 if (last_end == (u64)-1)
1043                         goto out;
1044                 start = last_end + 1;
1045                 state = next_state(state);
1046                 if (start < end && state && state->start == start &&
1047                     !need_resched())
1048                         goto hit_next;
1049                 goto search_again;
1050         }
1051
1052         /*
1053          *     | ---- desired range ---- |
1054          * | state |
1055          *   or
1056          * | ------------- state -------------- |
1057          *
1058          * We need to split the extent we found, and may flip bits on
1059          * second half.
1060          *
1061          * If the extent we found extends past our
1062          * range, we just split and search again.  It'll get split
1063          * again the next time though.
1064          *
1065          * If the extent we found is inside our range, we set the
1066          * desired bit on it.
1067          */
1068         if (state->start < start) {
1069                 if (state->state & exclusive_bits) {
1070                         *failed_start = start;
1071                         err = -EEXIST;
1072                         goto out;
1073                 }
1074
1075                 /*
1076                  * If this extent already has all the bits we want set, then
1077                  * skip it, not necessary to split it or do anything with it.
1078                  */
1079                 if ((state->state & bits) == bits) {
1080                         start = state->end + 1;
1081                         cache_state(state, cached_state);
1082                         goto search_again;
1083                 }
1084
1085                 prealloc = alloc_extent_state_atomic(prealloc);
1086                 BUG_ON(!prealloc);
1087                 err = split_state(tree, state, prealloc, start);
1088                 if (err)
1089                         extent_io_tree_panic(tree, err);
1090
1091                 prealloc = NULL;
1092                 if (err)
1093                         goto out;
1094                 if (state->end <= end) {
1095                         set_state_bits(tree, state, &bits, changeset);
1096                         cache_state(state, cached_state);
1097                         merge_state(tree, state);
1098                         if (last_end == (u64)-1)
1099                                 goto out;
1100                         start = last_end + 1;
1101                         state = next_state(state);
1102                         if (start < end && state && state->start == start &&
1103                             !need_resched())
1104                                 goto hit_next;
1105                 }
1106                 goto search_again;
1107         }
1108         /*
1109          * | ---- desired range ---- |
1110          *     | state | or               | state |
1111          *
1112          * There's a hole, we need to insert something in it and
1113          * ignore the extent we found.
1114          */
1115         if (state->start > start) {
1116                 u64 this_end;
1117                 if (end < last_start)
1118                         this_end = end;
1119                 else
1120                         this_end = last_start - 1;
1121
1122                 prealloc = alloc_extent_state_atomic(prealloc);
1123                 BUG_ON(!prealloc);
1124
1125                 /*
1126                  * Avoid to free 'prealloc' if it can be merged with
1127                  * the later extent.
1128                  */
1129                 err = insert_state(tree, prealloc, start, this_end,
1130                                    NULL, NULL, &bits, changeset);
1131                 if (err)
1132                         extent_io_tree_panic(tree, err);
1133
1134                 cache_state(prealloc, cached_state);
1135                 prealloc = NULL;
1136                 start = this_end + 1;
1137                 goto search_again;
1138         }
1139         /*
1140          * | ---- desired range ---- |
1141          *                        | state |
1142          * We need to split the extent, and set the bit
1143          * on the first half
1144          */
1145         if (state->start <= end && state->end > end) {
1146                 if (state->state & exclusive_bits) {
1147                         *failed_start = start;
1148                         err = -EEXIST;
1149                         goto out;
1150                 }
1151
1152                 prealloc = alloc_extent_state_atomic(prealloc);
1153                 BUG_ON(!prealloc);
1154                 err = split_state(tree, state, prealloc, end + 1);
1155                 if (err)
1156                         extent_io_tree_panic(tree, err);
1157
1158                 set_state_bits(tree, prealloc, &bits, changeset);
1159                 cache_state(prealloc, cached_state);
1160                 merge_state(tree, prealloc);
1161                 prealloc = NULL;
1162                 goto out;
1163         }
1164
1165 search_again:
1166         if (start > end)
1167                 goto out;
1168         spin_unlock(&tree->lock);
1169         if (gfpflags_allow_blocking(mask))
1170                 cond_resched();
1171         goto again;
1172
1173 out:
1174         spin_unlock(&tree->lock);
1175         if (prealloc)
1176                 free_extent_state(prealloc);
1177
1178         return err;
1179
1180 }
1181
1182 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1183                    unsigned bits, u64 * failed_start,
1184                    struct extent_state **cached_state, gfp_t mask)
1185 {
1186         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1187                                 cached_state, mask, NULL);
1188 }
1189
1190
1191 /**
1192  * convert_extent_bit - convert all bits in a given range from one bit to
1193  *                      another
1194  * @tree:       the io tree to search
1195  * @start:      the start offset in bytes
1196  * @end:        the end offset in bytes (inclusive)
1197  * @bits:       the bits to set in this range
1198  * @clear_bits: the bits to clear in this range
1199  * @cached_state:       state that we're going to cache
1200  *
1201  * This will go through and set bits for the given range.  If any states exist
1202  * already in this range they are set with the given bit and cleared of the
1203  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1204  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1205  * boundary bits like LOCK.
1206  *
1207  * All allocations are done with GFP_NOFS.
1208  */
1209 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1210                        unsigned bits, unsigned clear_bits,
1211                        struct extent_state **cached_state)
1212 {
1213         struct extent_state *state;
1214         struct extent_state *prealloc = NULL;
1215         struct rb_node *node;
1216         struct rb_node **p;
1217         struct rb_node *parent;
1218         int err = 0;
1219         u64 last_start;
1220         u64 last_end;
1221         bool first_iteration = true;
1222
1223         btrfs_debug_check_extent_io_range(tree, start, end);
1224         trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1225                                        clear_bits);
1226
1227 again:
1228         if (!prealloc) {
1229                 /*
1230                  * Best effort, don't worry if extent state allocation fails
1231                  * here for the first iteration. We might have a cached state
1232                  * that matches exactly the target range, in which case no
1233                  * extent state allocations are needed. We'll only know this
1234                  * after locking the tree.
1235                  */
1236                 prealloc = alloc_extent_state(GFP_NOFS);
1237                 if (!prealloc && !first_iteration)
1238                         return -ENOMEM;
1239         }
1240
1241         spin_lock(&tree->lock);
1242         if (cached_state && *cached_state) {
1243                 state = *cached_state;
1244                 if (state->start <= start && state->end > start &&
1245                     extent_state_in_tree(state)) {
1246                         node = &state->rb_node;
1247                         goto hit_next;
1248                 }
1249         }
1250
1251         /*
1252          * this search will find all the extents that end after
1253          * our range starts.
1254          */
1255         node = tree_search_for_insert(tree, start, &p, &parent);
1256         if (!node) {
1257                 prealloc = alloc_extent_state_atomic(prealloc);
1258                 if (!prealloc) {
1259                         err = -ENOMEM;
1260                         goto out;
1261                 }
1262                 err = insert_state(tree, prealloc, start, end,
1263                                    &p, &parent, &bits, NULL);
1264                 if (err)
1265                         extent_io_tree_panic(tree, err);
1266                 cache_state(prealloc, cached_state);
1267                 prealloc = NULL;
1268                 goto out;
1269         }
1270         state = rb_entry(node, struct extent_state, rb_node);
1271 hit_next:
1272         last_start = state->start;
1273         last_end = state->end;
1274
1275         /*
1276          * | ---- desired range ---- |
1277          * | state |
1278          *
1279          * Just lock what we found and keep going
1280          */
1281         if (state->start == start && state->end <= end) {
1282                 set_state_bits(tree, state, &bits, NULL);
1283                 cache_state(state, cached_state);
1284                 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1285                 if (last_end == (u64)-1)
1286                         goto out;
1287                 start = last_end + 1;
1288                 if (start < end && state && state->start == start &&
1289                     !need_resched())
1290                         goto hit_next;
1291                 goto search_again;
1292         }
1293
1294         /*
1295          *     | ---- desired range ---- |
1296          * | state |
1297          *   or
1298          * | ------------- state -------------- |
1299          *
1300          * We need to split the extent we found, and may flip bits on
1301          * second half.
1302          *
1303          * If the extent we found extends past our
1304          * range, we just split and search again.  It'll get split
1305          * again the next time though.
1306          *
1307          * If the extent we found is inside our range, we set the
1308          * desired bit on it.
1309          */
1310         if (state->start < start) {
1311                 prealloc = alloc_extent_state_atomic(prealloc);
1312                 if (!prealloc) {
1313                         err = -ENOMEM;
1314                         goto out;
1315                 }
1316                 err = split_state(tree, state, prealloc, start);
1317                 if (err)
1318                         extent_io_tree_panic(tree, err);
1319                 prealloc = NULL;
1320                 if (err)
1321                         goto out;
1322                 if (state->end <= end) {
1323                         set_state_bits(tree, state, &bits, NULL);
1324                         cache_state(state, cached_state);
1325                         state = clear_state_bit(tree, state, &clear_bits, 0,
1326                                                 NULL);
1327                         if (last_end == (u64)-1)
1328                                 goto out;
1329                         start = last_end + 1;
1330                         if (start < end && state && state->start == start &&
1331                             !need_resched())
1332                                 goto hit_next;
1333                 }
1334                 goto search_again;
1335         }
1336         /*
1337          * | ---- desired range ---- |
1338          *     | state | or               | state |
1339          *
1340          * There's a hole, we need to insert something in it and
1341          * ignore the extent we found.
1342          */
1343         if (state->start > start) {
1344                 u64 this_end;
1345                 if (end < last_start)
1346                         this_end = end;
1347                 else
1348                         this_end = last_start - 1;
1349
1350                 prealloc = alloc_extent_state_atomic(prealloc);
1351                 if (!prealloc) {
1352                         err = -ENOMEM;
1353                         goto out;
1354                 }
1355
1356                 /*
1357                  * Avoid to free 'prealloc' if it can be merged with
1358                  * the later extent.
1359                  */
1360                 err = insert_state(tree, prealloc, start, this_end,
1361                                    NULL, NULL, &bits, NULL);
1362                 if (err)
1363                         extent_io_tree_panic(tree, err);
1364                 cache_state(prealloc, cached_state);
1365                 prealloc = NULL;
1366                 start = this_end + 1;
1367                 goto search_again;
1368         }
1369         /*
1370          * | ---- desired range ---- |
1371          *                        | state |
1372          * We need to split the extent, and set the bit
1373          * on the first half
1374          */
1375         if (state->start <= end && state->end > end) {
1376                 prealloc = alloc_extent_state_atomic(prealloc);
1377                 if (!prealloc) {
1378                         err = -ENOMEM;
1379                         goto out;
1380                 }
1381
1382                 err = split_state(tree, state, prealloc, end + 1);
1383                 if (err)
1384                         extent_io_tree_panic(tree, err);
1385
1386                 set_state_bits(tree, prealloc, &bits, NULL);
1387                 cache_state(prealloc, cached_state);
1388                 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1389                 prealloc = NULL;
1390                 goto out;
1391         }
1392
1393 search_again:
1394         if (start > end)
1395                 goto out;
1396         spin_unlock(&tree->lock);
1397         cond_resched();
1398         first_iteration = false;
1399         goto again;
1400
1401 out:
1402         spin_unlock(&tree->lock);
1403         if (prealloc)
1404                 free_extent_state(prealloc);
1405
1406         return err;
1407 }
1408
1409 /* wrappers around set/clear extent bit */
1410 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1411                            unsigned bits, struct extent_changeset *changeset)
1412 {
1413         /*
1414          * We don't support EXTENT_LOCKED yet, as current changeset will
1415          * record any bits changed, so for EXTENT_LOCKED case, it will
1416          * either fail with -EEXIST or changeset will record the whole
1417          * range.
1418          */
1419         BUG_ON(bits & EXTENT_LOCKED);
1420
1421         return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1422                                 changeset);
1423 }
1424
1425 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1426                            unsigned bits)
1427 {
1428         return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1429                                 GFP_NOWAIT, NULL);
1430 }
1431
1432 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1433                      unsigned bits, int wake, int delete,
1434                      struct extent_state **cached)
1435 {
1436         return __clear_extent_bit(tree, start, end, bits, wake, delete,
1437                                   cached, GFP_NOFS, NULL);
1438 }
1439
1440 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1441                 unsigned bits, struct extent_changeset *changeset)
1442 {
1443         /*
1444          * Don't support EXTENT_LOCKED case, same reason as
1445          * set_record_extent_bits().
1446          */
1447         BUG_ON(bits & EXTENT_LOCKED);
1448
1449         return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1450                                   changeset);
1451 }
1452
1453 /*
1454  * either insert or lock state struct between start and end use mask to tell
1455  * us if waiting is desired.
1456  */
1457 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1458                      struct extent_state **cached_state)
1459 {
1460         int err;
1461         u64 failed_start;
1462
1463         while (1) {
1464                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1465                                        EXTENT_LOCKED, &failed_start,
1466                                        cached_state, GFP_NOFS, NULL);
1467                 if (err == -EEXIST) {
1468                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1469                         start = failed_start;
1470                 } else
1471                         break;
1472                 WARN_ON(start > end);
1473         }
1474         return err;
1475 }
1476
1477 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1478 {
1479         int err;
1480         u64 failed_start;
1481
1482         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1483                                &failed_start, NULL, GFP_NOFS, NULL);
1484         if (err == -EEXIST) {
1485                 if (failed_start > start)
1486                         clear_extent_bit(tree, start, failed_start - 1,
1487                                          EXTENT_LOCKED, 1, 0, NULL);
1488                 return 0;
1489         }
1490         return 1;
1491 }
1492
1493 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1494 {
1495         unsigned long index = start >> PAGE_SHIFT;
1496         unsigned long end_index = end >> PAGE_SHIFT;
1497         struct page *page;
1498
1499         while (index <= end_index) {
1500                 page = find_get_page(inode->i_mapping, index);
1501                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1502                 clear_page_dirty_for_io(page);
1503                 put_page(page);
1504                 index++;
1505         }
1506 }
1507
1508 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1509 {
1510         unsigned long index = start >> PAGE_SHIFT;
1511         unsigned long end_index = end >> PAGE_SHIFT;
1512         struct page *page;
1513
1514         while (index <= end_index) {
1515                 page = find_get_page(inode->i_mapping, index);
1516                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1517                 __set_page_dirty_nobuffers(page);
1518                 account_page_redirty(page);
1519                 put_page(page);
1520                 index++;
1521         }
1522 }
1523
1524 /* find the first state struct with 'bits' set after 'start', and
1525  * return it.  tree->lock must be held.  NULL will returned if
1526  * nothing was found after 'start'
1527  */
1528 static struct extent_state *
1529 find_first_extent_bit_state(struct extent_io_tree *tree,
1530                             u64 start, unsigned bits)
1531 {
1532         struct rb_node *node;
1533         struct extent_state *state;
1534
1535         /*
1536          * this search will find all the extents that end after
1537          * our range starts.
1538          */
1539         node = tree_search(tree, start);
1540         if (!node)
1541                 goto out;
1542
1543         while (1) {
1544                 state = rb_entry(node, struct extent_state, rb_node);
1545                 if (state->end >= start && (state->state & bits))
1546                         return state;
1547
1548                 node = rb_next(node);
1549                 if (!node)
1550                         break;
1551         }
1552 out:
1553         return NULL;
1554 }
1555
1556 /*
1557  * find the first offset in the io tree with 'bits' set. zero is
1558  * returned if we find something, and *start_ret and *end_ret are
1559  * set to reflect the state struct that was found.
1560  *
1561  * If nothing was found, 1 is returned. If found something, return 0.
1562  */
1563 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1564                           u64 *start_ret, u64 *end_ret, unsigned bits,
1565                           struct extent_state **cached_state)
1566 {
1567         struct extent_state *state;
1568         int ret = 1;
1569
1570         spin_lock(&tree->lock);
1571         if (cached_state && *cached_state) {
1572                 state = *cached_state;
1573                 if (state->end == start - 1 && extent_state_in_tree(state)) {
1574                         while ((state = next_state(state)) != NULL) {
1575                                 if (state->state & bits)
1576                                         goto got_it;
1577                         }
1578                         free_extent_state(*cached_state);
1579                         *cached_state = NULL;
1580                         goto out;
1581                 }
1582                 free_extent_state(*cached_state);
1583                 *cached_state = NULL;
1584         }
1585
1586         state = find_first_extent_bit_state(tree, start, bits);
1587 got_it:
1588         if (state) {
1589                 cache_state_if_flags(state, cached_state, 0);
1590                 *start_ret = state->start;
1591                 *end_ret = state->end;
1592                 ret = 0;
1593         }
1594 out:
1595         spin_unlock(&tree->lock);
1596         return ret;
1597 }
1598
1599 /**
1600  * find_contiguous_extent_bit: find a contiguous area of bits
1601  * @tree - io tree to check
1602  * @start - offset to start the search from
1603  * @start_ret - the first offset we found with the bits set
1604  * @end_ret - the final contiguous range of the bits that were set
1605  * @bits - bits to look for
1606  *
1607  * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1608  * to set bits appropriately, and then merge them again.  During this time it
1609  * will drop the tree->lock, so use this helper if you want to find the actual
1610  * contiguous area for given bits.  We will search to the first bit we find, and
1611  * then walk down the tree until we find a non-contiguous area.  The area
1612  * returned will be the full contiguous area with the bits set.
1613  */
1614 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1615                                u64 *start_ret, u64 *end_ret, unsigned bits)
1616 {
1617         struct extent_state *state;
1618         int ret = 1;
1619
1620         spin_lock(&tree->lock);
1621         state = find_first_extent_bit_state(tree, start, bits);
1622         if (state) {
1623                 *start_ret = state->start;
1624                 *end_ret = state->end;
1625                 while ((state = next_state(state)) != NULL) {
1626                         if (state->start > (*end_ret + 1))
1627                                 break;
1628                         *end_ret = state->end;
1629                 }
1630                 ret = 0;
1631         }
1632         spin_unlock(&tree->lock);
1633         return ret;
1634 }
1635
1636 /**
1637  * find_first_clear_extent_bit - find the first range that has @bits not set.
1638  * This range could start before @start.
1639  *
1640  * @tree - the tree to search
1641  * @start - the offset at/after which the found extent should start
1642  * @start_ret - records the beginning of the range
1643  * @end_ret - records the end of the range (inclusive)
1644  * @bits - the set of bits which must be unset
1645  *
1646  * Since unallocated range is also considered one which doesn't have the bits
1647  * set it's possible that @end_ret contains -1, this happens in case the range
1648  * spans (last_range_end, end of device]. In this case it's up to the caller to
1649  * trim @end_ret to the appropriate size.
1650  */
1651 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1652                                  u64 *start_ret, u64 *end_ret, unsigned bits)
1653 {
1654         struct extent_state *state;
1655         struct rb_node *node, *prev = NULL, *next;
1656
1657         spin_lock(&tree->lock);
1658
1659         /* Find first extent with bits cleared */
1660         while (1) {
1661                 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1662                 if (!node && !next && !prev) {
1663                         /*
1664                          * Tree is completely empty, send full range and let
1665                          * caller deal with it
1666                          */
1667                         *start_ret = 0;
1668                         *end_ret = -1;
1669                         goto out;
1670                 } else if (!node && !next) {
1671                         /*
1672                          * We are past the last allocated chunk, set start at
1673                          * the end of the last extent.
1674                          */
1675                         state = rb_entry(prev, struct extent_state, rb_node);
1676                         *start_ret = state->end + 1;
1677                         *end_ret = -1;
1678                         goto out;
1679                 } else if (!node) {
1680                         node = next;
1681                 }
1682                 /*
1683                  * At this point 'node' either contains 'start' or start is
1684                  * before 'node'
1685                  */
1686                 state = rb_entry(node, struct extent_state, rb_node);
1687
1688                 if (in_range(start, state->start, state->end - state->start + 1)) {
1689                         if (state->state & bits) {
1690                                 /*
1691                                  * |--range with bits sets--|
1692                                  *    |
1693                                  *    start
1694                                  */
1695                                 start = state->end + 1;
1696                         } else {
1697                                 /*
1698                                  * 'start' falls within a range that doesn't
1699                                  * have the bits set, so take its start as
1700                                  * the beginning of the desired range
1701                                  *
1702                                  * |--range with bits cleared----|
1703                                  *      |
1704                                  *      start
1705                                  */
1706                                 *start_ret = state->start;
1707                                 break;
1708                         }
1709                 } else {
1710                         /*
1711                          * |---prev range---|---hole/unset---|---node range---|
1712                          *                          |
1713                          *                        start
1714                          *
1715                          *                        or
1716                          *
1717                          * |---hole/unset--||--first node--|
1718                          * 0   |
1719                          *    start
1720                          */
1721                         if (prev) {
1722                                 state = rb_entry(prev, struct extent_state,
1723                                                  rb_node);
1724                                 *start_ret = state->end + 1;
1725                         } else {
1726                                 *start_ret = 0;
1727                         }
1728                         break;
1729                 }
1730         }
1731
1732         /*
1733          * Find the longest stretch from start until an entry which has the
1734          * bits set
1735          */
1736         while (1) {
1737                 state = rb_entry(node, struct extent_state, rb_node);
1738                 if (state->end >= start && !(state->state & bits)) {
1739                         *end_ret = state->end;
1740                 } else {
1741                         *end_ret = state->start - 1;
1742                         break;
1743                 }
1744
1745                 node = rb_next(node);
1746                 if (!node)
1747                         break;
1748         }
1749 out:
1750         spin_unlock(&tree->lock);
1751 }
1752
1753 /*
1754  * find a contiguous range of bytes in the file marked as delalloc, not
1755  * more than 'max_bytes'.  start and end are used to return the range,
1756  *
1757  * true is returned if we find something, false if nothing was in the tree
1758  */
1759 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1760                                u64 *end, u64 max_bytes,
1761                                struct extent_state **cached_state)
1762 {
1763         struct rb_node *node;
1764         struct extent_state *state;
1765         u64 cur_start = *start;
1766         bool found = false;
1767         u64 total_bytes = 0;
1768
1769         spin_lock(&tree->lock);
1770
1771         /*
1772          * this search will find all the extents that end after
1773          * our range starts.
1774          */
1775         node = tree_search(tree, cur_start);
1776         if (!node) {
1777                 *end = (u64)-1;
1778                 goto out;
1779         }
1780
1781         while (1) {
1782                 state = rb_entry(node, struct extent_state, rb_node);
1783                 if (found && (state->start != cur_start ||
1784                               (state->state & EXTENT_BOUNDARY))) {
1785                         goto out;
1786                 }
1787                 if (!(state->state & EXTENT_DELALLOC)) {
1788                         if (!found)
1789                                 *end = state->end;
1790                         goto out;
1791                 }
1792                 if (!found) {
1793                         *start = state->start;
1794                         *cached_state = state;
1795                         refcount_inc(&state->refs);
1796                 }
1797                 found = true;
1798                 *end = state->end;
1799                 cur_start = state->end + 1;
1800                 node = rb_next(node);
1801                 total_bytes += state->end - state->start + 1;
1802                 if (total_bytes >= max_bytes)
1803                         break;
1804                 if (!node)
1805                         break;
1806         }
1807 out:
1808         spin_unlock(&tree->lock);
1809         return found;
1810 }
1811
1812 static int __process_pages_contig(struct address_space *mapping,
1813                                   struct page *locked_page,
1814                                   pgoff_t start_index, pgoff_t end_index,
1815                                   unsigned long page_ops, pgoff_t *index_ret);
1816
1817 static noinline void __unlock_for_delalloc(struct inode *inode,
1818                                            struct page *locked_page,
1819                                            u64 start, u64 end)
1820 {
1821         unsigned long index = start >> PAGE_SHIFT;
1822         unsigned long end_index = end >> PAGE_SHIFT;
1823
1824         ASSERT(locked_page);
1825         if (index == locked_page->index && end_index == index)
1826                 return;
1827
1828         __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1829                                PAGE_UNLOCK, NULL);
1830 }
1831
1832 static noinline int lock_delalloc_pages(struct inode *inode,
1833                                         struct page *locked_page,
1834                                         u64 delalloc_start,
1835                                         u64 delalloc_end)
1836 {
1837         unsigned long index = delalloc_start >> PAGE_SHIFT;
1838         unsigned long index_ret = index;
1839         unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1840         int ret;
1841
1842         ASSERT(locked_page);
1843         if (index == locked_page->index && index == end_index)
1844                 return 0;
1845
1846         ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1847                                      end_index, PAGE_LOCK, &index_ret);
1848         if (ret == -EAGAIN)
1849                 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1850                                       (u64)index_ret << PAGE_SHIFT);
1851         return ret;
1852 }
1853
1854 /*
1855  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1856  * more than @max_bytes.  @Start and @end are used to return the range,
1857  *
1858  * Return: true if we find something
1859  *         false if nothing was in the tree
1860  */
1861 EXPORT_FOR_TESTS
1862 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1863                                     struct page *locked_page, u64 *start,
1864                                     u64 *end)
1865 {
1866         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1867         u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1868         u64 delalloc_start;
1869         u64 delalloc_end;
1870         bool found;
1871         struct extent_state *cached_state = NULL;
1872         int ret;
1873         int loops = 0;
1874
1875 again:
1876         /* step one, find a bunch of delalloc bytes starting at start */
1877         delalloc_start = *start;
1878         delalloc_end = 0;
1879         found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1880                                           max_bytes, &cached_state);
1881         if (!found || delalloc_end <= *start) {
1882                 *start = delalloc_start;
1883                 *end = delalloc_end;
1884                 free_extent_state(cached_state);
1885                 return false;
1886         }
1887
1888         /*
1889          * start comes from the offset of locked_page.  We have to lock
1890          * pages in order, so we can't process delalloc bytes before
1891          * locked_page
1892          */
1893         if (delalloc_start < *start)
1894                 delalloc_start = *start;
1895
1896         /*
1897          * make sure to limit the number of pages we try to lock down
1898          */
1899         if (delalloc_end + 1 - delalloc_start > max_bytes)
1900                 delalloc_end = delalloc_start + max_bytes - 1;
1901
1902         /* step two, lock all the pages after the page that has start */
1903         ret = lock_delalloc_pages(inode, locked_page,
1904                                   delalloc_start, delalloc_end);
1905         ASSERT(!ret || ret == -EAGAIN);
1906         if (ret == -EAGAIN) {
1907                 /* some of the pages are gone, lets avoid looping by
1908                  * shortening the size of the delalloc range we're searching
1909                  */
1910                 free_extent_state(cached_state);
1911                 cached_state = NULL;
1912                 if (!loops) {
1913                         max_bytes = PAGE_SIZE;
1914                         loops = 1;
1915                         goto again;
1916                 } else {
1917                         found = false;
1918                         goto out_failed;
1919                 }
1920         }
1921
1922         /* step three, lock the state bits for the whole range */
1923         lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1924
1925         /* then test to make sure it is all still delalloc */
1926         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1927                              EXTENT_DELALLOC, 1, cached_state);
1928         if (!ret) {
1929                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1930                                      &cached_state);
1931                 __unlock_for_delalloc(inode, locked_page,
1932                               delalloc_start, delalloc_end);
1933                 cond_resched();
1934                 goto again;
1935         }
1936         free_extent_state(cached_state);
1937         *start = delalloc_start;
1938         *end = delalloc_end;
1939 out_failed:
1940         return found;
1941 }
1942
1943 static int __process_pages_contig(struct address_space *mapping,
1944                                   struct page *locked_page,
1945                                   pgoff_t start_index, pgoff_t end_index,
1946                                   unsigned long page_ops, pgoff_t *index_ret)
1947 {
1948         unsigned long nr_pages = end_index - start_index + 1;
1949         unsigned long pages_locked = 0;
1950         pgoff_t index = start_index;
1951         struct page *pages[16];
1952         unsigned ret;
1953         int err = 0;
1954         int i;
1955
1956         if (page_ops & PAGE_LOCK) {
1957                 ASSERT(page_ops == PAGE_LOCK);
1958                 ASSERT(index_ret && *index_ret == start_index);
1959         }
1960
1961         if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1962                 mapping_set_error(mapping, -EIO);
1963
1964         while (nr_pages > 0) {
1965                 ret = find_get_pages_contig(mapping, index,
1966                                      min_t(unsigned long,
1967                                      nr_pages, ARRAY_SIZE(pages)), pages);
1968                 if (ret == 0) {
1969                         /*
1970                          * Only if we're going to lock these pages,
1971                          * can we find nothing at @index.
1972                          */
1973                         ASSERT(page_ops & PAGE_LOCK);
1974                         err = -EAGAIN;
1975                         goto out;
1976                 }
1977
1978                 for (i = 0; i < ret; i++) {
1979                         if (page_ops & PAGE_SET_PRIVATE2)
1980                                 SetPagePrivate2(pages[i]);
1981
1982                         if (locked_page && pages[i] == locked_page) {
1983                                 put_page(pages[i]);
1984                                 pages_locked++;
1985                                 continue;
1986                         }
1987                         if (page_ops & PAGE_CLEAR_DIRTY)
1988                                 clear_page_dirty_for_io(pages[i]);
1989                         if (page_ops & PAGE_SET_WRITEBACK)
1990                                 set_page_writeback(pages[i]);
1991                         if (page_ops & PAGE_SET_ERROR)
1992                                 SetPageError(pages[i]);
1993                         if (page_ops & PAGE_END_WRITEBACK)
1994                                 end_page_writeback(pages[i]);
1995                         if (page_ops & PAGE_UNLOCK)
1996                                 unlock_page(pages[i]);
1997                         if (page_ops & PAGE_LOCK) {
1998                                 lock_page(pages[i]);
1999                                 if (!PageDirty(pages[i]) ||
2000                                     pages[i]->mapping != mapping) {
2001                                         unlock_page(pages[i]);
2002                                         for (; i < ret; i++)
2003                                                 put_page(pages[i]);
2004                                         err = -EAGAIN;
2005                                         goto out;
2006                                 }
2007                         }
2008                         put_page(pages[i]);
2009                         pages_locked++;
2010                 }
2011                 nr_pages -= ret;
2012                 index += ret;
2013                 cond_resched();
2014         }
2015 out:
2016         if (err && index_ret)
2017                 *index_ret = start_index + pages_locked - 1;
2018         return err;
2019 }
2020
2021 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2022                                   struct page *locked_page,
2023                                   unsigned clear_bits,
2024                                   unsigned long page_ops)
2025 {
2026         clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2027
2028         __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2029                                start >> PAGE_SHIFT, end >> PAGE_SHIFT,
2030                                page_ops, NULL);
2031 }
2032
2033 /*
2034  * count the number of bytes in the tree that have a given bit(s)
2035  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
2036  * cached.  The total number found is returned.
2037  */
2038 u64 count_range_bits(struct extent_io_tree *tree,
2039                      u64 *start, u64 search_end, u64 max_bytes,
2040                      unsigned bits, int contig)
2041 {
2042         struct rb_node *node;
2043         struct extent_state *state;
2044         u64 cur_start = *start;
2045         u64 total_bytes = 0;
2046         u64 last = 0;
2047         int found = 0;
2048
2049         if (WARN_ON(search_end <= cur_start))
2050                 return 0;
2051
2052         spin_lock(&tree->lock);
2053         if (cur_start == 0 && bits == EXTENT_DIRTY) {
2054                 total_bytes = tree->dirty_bytes;
2055                 goto out;
2056         }
2057         /*
2058          * this search will find all the extents that end after
2059          * our range starts.
2060          */
2061         node = tree_search(tree, cur_start);
2062         if (!node)
2063                 goto out;
2064
2065         while (1) {
2066                 state = rb_entry(node, struct extent_state, rb_node);
2067                 if (state->start > search_end)
2068                         break;
2069                 if (contig && found && state->start > last + 1)
2070                         break;
2071                 if (state->end >= cur_start && (state->state & bits) == bits) {
2072                         total_bytes += min(search_end, state->end) + 1 -
2073                                        max(cur_start, state->start);
2074                         if (total_bytes >= max_bytes)
2075                                 break;
2076                         if (!found) {
2077                                 *start = max(cur_start, state->start);
2078                                 found = 1;
2079                         }
2080                         last = state->end;
2081                 } else if (contig && found) {
2082                         break;
2083                 }
2084                 node = rb_next(node);
2085                 if (!node)
2086                         break;
2087         }
2088 out:
2089         spin_unlock(&tree->lock);
2090         return total_bytes;
2091 }
2092
2093 /*
2094  * set the private field for a given byte offset in the tree.  If there isn't
2095  * an extent_state there already, this does nothing.
2096  */
2097 int set_state_failrec(struct extent_io_tree *tree, u64 start,
2098                       struct io_failure_record *failrec)
2099 {
2100         struct rb_node *node;
2101         struct extent_state *state;
2102         int ret = 0;
2103
2104         spin_lock(&tree->lock);
2105         /*
2106          * this search will find all the extents that end after
2107          * our range starts.
2108          */
2109         node = tree_search(tree, start);
2110         if (!node) {
2111                 ret = -ENOENT;
2112                 goto out;
2113         }
2114         state = rb_entry(node, struct extent_state, rb_node);
2115         if (state->start != start) {
2116                 ret = -ENOENT;
2117                 goto out;
2118         }
2119         state->failrec = failrec;
2120 out:
2121         spin_unlock(&tree->lock);
2122         return ret;
2123 }
2124
2125 struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2126 {
2127         struct rb_node *node;
2128         struct extent_state *state;
2129         struct io_failure_record *failrec;
2130
2131         spin_lock(&tree->lock);
2132         /*
2133          * this search will find all the extents that end after
2134          * our range starts.
2135          */
2136         node = tree_search(tree, start);
2137         if (!node) {
2138                 failrec = ERR_PTR(-ENOENT);
2139                 goto out;
2140         }
2141         state = rb_entry(node, struct extent_state, rb_node);
2142         if (state->start != start) {
2143                 failrec = ERR_PTR(-ENOENT);
2144                 goto out;
2145         }
2146
2147         failrec = state->failrec;
2148 out:
2149         spin_unlock(&tree->lock);
2150         return failrec;
2151 }
2152
2153 /*
2154  * searches a range in the state tree for a given mask.
2155  * If 'filled' == 1, this returns 1 only if every extent in the tree
2156  * has the bits set.  Otherwise, 1 is returned if any bit in the
2157  * range is found set.
2158  */
2159 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2160                    unsigned bits, int filled, struct extent_state *cached)
2161 {
2162         struct extent_state *state = NULL;
2163         struct rb_node *node;
2164         int bitset = 0;
2165
2166         spin_lock(&tree->lock);
2167         if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2168             cached->end > start)
2169                 node = &cached->rb_node;
2170         else
2171                 node = tree_search(tree, start);
2172         while (node && start <= end) {
2173                 state = rb_entry(node, struct extent_state, rb_node);
2174
2175                 if (filled && state->start > start) {
2176                         bitset = 0;
2177                         break;
2178                 }
2179
2180                 if (state->start > end)
2181                         break;
2182
2183                 if (state->state & bits) {
2184                         bitset = 1;
2185                         if (!filled)
2186                                 break;
2187                 } else if (filled) {
2188                         bitset = 0;
2189                         break;
2190                 }
2191
2192                 if (state->end == (u64)-1)
2193                         break;
2194
2195                 start = state->end + 1;
2196                 if (start > end)
2197                         break;
2198                 node = rb_next(node);
2199                 if (!node) {
2200                         if (filled)
2201                                 bitset = 0;
2202                         break;
2203                 }
2204         }
2205         spin_unlock(&tree->lock);
2206         return bitset;
2207 }
2208
2209 /*
2210  * helper function to set a given page up to date if all the
2211  * extents in the tree for that page are up to date
2212  */
2213 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2214 {
2215         u64 start = page_offset(page);
2216         u64 end = start + PAGE_SIZE - 1;
2217         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2218                 SetPageUptodate(page);
2219 }
2220
2221 int free_io_failure(struct extent_io_tree *failure_tree,
2222                     struct extent_io_tree *io_tree,
2223                     struct io_failure_record *rec)
2224 {
2225         int ret;
2226         int err = 0;
2227
2228         set_state_failrec(failure_tree, rec->start, NULL);
2229         ret = clear_extent_bits(failure_tree, rec->start,
2230                                 rec->start + rec->len - 1,
2231                                 EXTENT_LOCKED | EXTENT_DIRTY);
2232         if (ret)
2233                 err = ret;
2234
2235         ret = clear_extent_bits(io_tree, rec->start,
2236                                 rec->start + rec->len - 1,
2237                                 EXTENT_DAMAGED);
2238         if (ret && !err)
2239                 err = ret;
2240
2241         kfree(rec);
2242         return err;
2243 }
2244
2245 /*
2246  * this bypasses the standard btrfs submit functions deliberately, as
2247  * the standard behavior is to write all copies in a raid setup. here we only
2248  * want to write the one bad copy. so we do the mapping for ourselves and issue
2249  * submit_bio directly.
2250  * to avoid any synchronization issues, wait for the data after writing, which
2251  * actually prevents the read that triggered the error from finishing.
2252  * currently, there can be no more than two copies of every data bit. thus,
2253  * exactly one rewrite is required.
2254  */
2255 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2256                       u64 length, u64 logical, struct page *page,
2257                       unsigned int pg_offset, int mirror_num)
2258 {
2259         struct bio *bio;
2260         struct btrfs_device *dev;
2261         u64 map_length = 0;
2262         u64 sector;
2263         struct btrfs_bio *bbio = NULL;
2264         int ret;
2265
2266         ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2267         BUG_ON(!mirror_num);
2268
2269         bio = btrfs_io_bio_alloc(1);
2270         bio->bi_iter.bi_size = 0;
2271         map_length = length;
2272
2273         /*
2274          * Avoid races with device replace and make sure our bbio has devices
2275          * associated to its stripes that don't go away while we are doing the
2276          * read repair operation.
2277          */
2278         btrfs_bio_counter_inc_blocked(fs_info);
2279         if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2280                 /*
2281                  * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2282                  * to update all raid stripes, but here we just want to correct
2283                  * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2284                  * stripe's dev and sector.
2285                  */
2286                 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2287                                       &map_length, &bbio, 0);
2288                 if (ret) {
2289                         btrfs_bio_counter_dec(fs_info);
2290                         bio_put(bio);
2291                         return -EIO;
2292                 }
2293                 ASSERT(bbio->mirror_num == 1);
2294         } else {
2295                 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2296                                       &map_length, &bbio, mirror_num);
2297                 if (ret) {
2298                         btrfs_bio_counter_dec(fs_info);
2299                         bio_put(bio);
2300                         return -EIO;
2301                 }
2302                 BUG_ON(mirror_num != bbio->mirror_num);
2303         }
2304
2305         sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2306         bio->bi_iter.bi_sector = sector;
2307         dev = bbio->stripes[bbio->mirror_num - 1].dev;
2308         btrfs_put_bbio(bbio);
2309         if (!dev || !dev->bdev ||
2310             !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2311                 btrfs_bio_counter_dec(fs_info);
2312                 bio_put(bio);
2313                 return -EIO;
2314         }
2315         bio_set_dev(bio, dev->bdev);
2316         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2317         bio_add_page(bio, page, length, pg_offset);
2318
2319         if (btrfsic_submit_bio_wait(bio)) {
2320                 /* try to remap that extent elsewhere? */
2321                 btrfs_bio_counter_dec(fs_info);
2322                 bio_put(bio);
2323                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2324                 return -EIO;
2325         }
2326
2327         btrfs_info_rl_in_rcu(fs_info,
2328                 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2329                                   ino, start,
2330                                   rcu_str_deref(dev->name), sector);
2331         btrfs_bio_counter_dec(fs_info);
2332         bio_put(bio);
2333         return 0;
2334 }
2335
2336 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2337 {
2338         struct btrfs_fs_info *fs_info = eb->fs_info;
2339         u64 start = eb->start;
2340         int i, num_pages = num_extent_pages(eb);
2341         int ret = 0;
2342
2343         if (sb_rdonly(fs_info->sb))
2344                 return -EROFS;
2345
2346         for (i = 0; i < num_pages; i++) {
2347                 struct page *p = eb->pages[i];
2348
2349                 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2350                                         start - page_offset(p), mirror_num);
2351                 if (ret)
2352                         break;
2353                 start += PAGE_SIZE;
2354         }
2355
2356         return ret;
2357 }
2358
2359 /*
2360  * each time an IO finishes, we do a fast check in the IO failure tree
2361  * to see if we need to process or clean up an io_failure_record
2362  */
2363 int clean_io_failure(struct btrfs_fs_info *fs_info,
2364                      struct extent_io_tree *failure_tree,
2365                      struct extent_io_tree *io_tree, u64 start,
2366                      struct page *page, u64 ino, unsigned int pg_offset)
2367 {
2368         u64 private;
2369         struct io_failure_record *failrec;
2370         struct extent_state *state;
2371         int num_copies;
2372         int ret;
2373
2374         private = 0;
2375         ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2376                                EXTENT_DIRTY, 0);
2377         if (!ret)
2378                 return 0;
2379
2380         failrec = get_state_failrec(failure_tree, start);
2381         if (IS_ERR(failrec))
2382                 return 0;
2383
2384         BUG_ON(!failrec->this_mirror);
2385
2386         if (failrec->in_validation) {
2387                 /* there was no real error, just free the record */
2388                 btrfs_debug(fs_info,
2389                         "clean_io_failure: freeing dummy error at %llu",
2390                         failrec->start);
2391                 goto out;
2392         }
2393         if (sb_rdonly(fs_info->sb))
2394                 goto out;
2395
2396         spin_lock(&io_tree->lock);
2397         state = find_first_extent_bit_state(io_tree,
2398                                             failrec->start,
2399                                             EXTENT_LOCKED);
2400         spin_unlock(&io_tree->lock);
2401
2402         if (state && state->start <= failrec->start &&
2403             state->end >= failrec->start + failrec->len - 1) {
2404                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2405                                               failrec->len);
2406                 if (num_copies > 1)  {
2407                         repair_io_failure(fs_info, ino, start, failrec->len,
2408                                           failrec->logical, page, pg_offset,
2409                                           failrec->failed_mirror);
2410                 }
2411         }
2412
2413 out:
2414         free_io_failure(failure_tree, io_tree, failrec);
2415
2416         return 0;
2417 }
2418
2419 /*
2420  * Can be called when
2421  * - hold extent lock
2422  * - under ordered extent
2423  * - the inode is freeing
2424  */
2425 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2426 {
2427         struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2428         struct io_failure_record *failrec;
2429         struct extent_state *state, *next;
2430
2431         if (RB_EMPTY_ROOT(&failure_tree->state))
2432                 return;
2433
2434         spin_lock(&failure_tree->lock);
2435         state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2436         while (state) {
2437                 if (state->start > end)
2438                         break;
2439
2440                 ASSERT(state->end <= end);
2441
2442                 next = next_state(state);
2443
2444                 failrec = state->failrec;
2445                 free_extent_state(state);
2446                 kfree(failrec);
2447
2448                 state = next;
2449         }
2450         spin_unlock(&failure_tree->lock);
2451 }
2452
2453 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2454                                                              u64 start, u64 end)
2455 {
2456         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2457         struct io_failure_record *failrec;
2458         struct extent_map *em;
2459         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2460         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2461         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2462         int ret;
2463         u64 logical;
2464
2465         failrec = get_state_failrec(failure_tree, start);
2466         if (!IS_ERR(failrec)) {
2467                 btrfs_debug(fs_info,
2468                         "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2469                         failrec->logical, failrec->start, failrec->len,
2470                         failrec->in_validation);
2471                 /*
2472                  * when data can be on disk more than twice, add to failrec here
2473                  * (e.g. with a list for failed_mirror) to make
2474                  * clean_io_failure() clean all those errors at once.
2475                  */
2476
2477                 return failrec;
2478         }
2479
2480         failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2481         if (!failrec)
2482                 return ERR_PTR(-ENOMEM);
2483
2484         failrec->start = start;
2485         failrec->len = end - start + 1;
2486         failrec->this_mirror = 0;
2487         failrec->bio_flags = 0;
2488         failrec->in_validation = 0;
2489
2490         read_lock(&em_tree->lock);
2491         em = lookup_extent_mapping(em_tree, start, failrec->len);
2492         if (!em) {
2493                 read_unlock(&em_tree->lock);
2494                 kfree(failrec);
2495                 return ERR_PTR(-EIO);
2496         }
2497
2498         if (em->start > start || em->start + em->len <= start) {
2499                 free_extent_map(em);
2500                 em = NULL;
2501         }
2502         read_unlock(&em_tree->lock);
2503         if (!em) {
2504                 kfree(failrec);
2505                 return ERR_PTR(-EIO);
2506         }
2507
2508         logical = start - em->start;
2509         logical = em->block_start + logical;
2510         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2511                 logical = em->block_start;
2512                 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2513                 extent_set_compress_type(&failrec->bio_flags, em->compress_type);
2514         }
2515
2516         btrfs_debug(fs_info,
2517                     "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2518                     logical, start, failrec->len);
2519
2520         failrec->logical = logical;
2521         free_extent_map(em);
2522
2523         /* Set the bits in the private failure tree */
2524         ret = set_extent_bits(failure_tree, start, end,
2525                               EXTENT_LOCKED | EXTENT_DIRTY);
2526         if (ret >= 0) {
2527                 ret = set_state_failrec(failure_tree, start, failrec);
2528                 /* Set the bits in the inode's tree */
2529                 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2530         } else if (ret < 0) {
2531                 kfree(failrec);
2532                 return ERR_PTR(ret);
2533         }
2534
2535         return failrec;
2536 }
2537
2538 static bool btrfs_check_repairable(struct inode *inode, bool needs_validation,
2539                                    struct io_failure_record *failrec,
2540                                    int failed_mirror)
2541 {
2542         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2543         int num_copies;
2544
2545         num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2546         if (num_copies == 1) {
2547                 /*
2548                  * we only have a single copy of the data, so don't bother with
2549                  * all the retry and error correction code that follows. no
2550                  * matter what the error is, it is very likely to persist.
2551                  */
2552                 btrfs_debug(fs_info,
2553                         "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2554                         num_copies, failrec->this_mirror, failed_mirror);
2555                 return false;
2556         }
2557
2558         /*
2559          * there are two premises:
2560          *      a) deliver good data to the caller
2561          *      b) correct the bad sectors on disk
2562          */
2563         if (needs_validation) {
2564                 /*
2565                  * to fulfill b), we need to know the exact failing sectors, as
2566                  * we don't want to rewrite any more than the failed ones. thus,
2567                  * we need separate read requests for the failed bio
2568                  *
2569                  * if the following BUG_ON triggers, our validation request got
2570                  * merged. we need separate requests for our algorithm to work.
2571                  */
2572                 BUG_ON(failrec->in_validation);
2573                 failrec->in_validation = 1;
2574                 failrec->this_mirror = failed_mirror;
2575         } else {
2576                 /*
2577                  * we're ready to fulfill a) and b) alongside. get a good copy
2578                  * of the failed sector and if we succeed, we have setup
2579                  * everything for repair_io_failure to do the rest for us.
2580                  */
2581                 if (failrec->in_validation) {
2582                         BUG_ON(failrec->this_mirror != failed_mirror);
2583                         failrec->in_validation = 0;
2584                         failrec->this_mirror = 0;
2585                 }
2586                 failrec->failed_mirror = failed_mirror;
2587                 failrec->this_mirror++;
2588                 if (failrec->this_mirror == failed_mirror)
2589                         failrec->this_mirror++;
2590         }
2591
2592         if (failrec->this_mirror > num_copies) {
2593                 btrfs_debug(fs_info,
2594                         "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2595                         num_copies, failrec->this_mirror, failed_mirror);
2596                 return false;
2597         }
2598
2599         return true;
2600 }
2601
2602 static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio)
2603 {
2604         u64 len = 0;
2605         const u32 blocksize = inode->i_sb->s_blocksize;
2606
2607         /*
2608          * If bi_status is BLK_STS_OK, then this was a checksum error, not an
2609          * I/O error. In this case, we already know exactly which sector was
2610          * bad, so we don't need to validate.
2611          */
2612         if (bio->bi_status == BLK_STS_OK)
2613                 return false;
2614
2615         /*
2616          * We need to validate each sector individually if the failed I/O was
2617          * for multiple sectors.
2618          *
2619          * There are a few possible bios that can end up here:
2620          * 1. A buffered read bio, which is not cloned.
2621          * 2. A direct I/O read bio, which is cloned.
2622          * 3. A (buffered or direct) repair bio, which is not cloned.
2623          *
2624          * For cloned bios (case 2), we can get the size from
2625          * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get
2626          * it from the bvecs.
2627          */
2628         if (bio_flagged(bio, BIO_CLONED)) {
2629                 if (btrfs_io_bio(bio)->iter.bi_size > blocksize)
2630                         return true;
2631         } else {
2632                 struct bio_vec *bvec;
2633                 int i;
2634
2635                 bio_for_each_bvec_all(bvec, bio, i) {
2636                         len += bvec->bv_len;
2637                         if (len > blocksize)
2638                                 return true;
2639                 }
2640         }
2641         return false;
2642 }
2643
2644 blk_status_t btrfs_submit_read_repair(struct inode *inode,
2645                                       struct bio *failed_bio, u64 phy_offset,
2646                                       struct page *page, unsigned int pgoff,
2647                                       u64 start, u64 end, int failed_mirror,
2648                                       submit_bio_hook_t *submit_bio_hook)
2649 {
2650         struct io_failure_record *failrec;
2651         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2652         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2653         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2654         struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2655         const int icsum = phy_offset >> inode->i_sb->s_blocksize_bits;
2656         bool need_validation;
2657         struct bio *repair_bio;
2658         struct btrfs_io_bio *repair_io_bio;
2659         blk_status_t status;
2660
2661         btrfs_debug(fs_info,
2662                    "repair read error: read error at %llu", start);
2663
2664         BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2665
2666         failrec = btrfs_get_io_failure_record(inode, start, end);
2667         if (IS_ERR(failrec))
2668                 return errno_to_blk_status(PTR_ERR(failrec));
2669
2670         need_validation = btrfs_io_needs_validation(inode, failed_bio);
2671
2672         if (!btrfs_check_repairable(inode, need_validation, failrec,
2673                                     failed_mirror)) {
2674                 free_io_failure(failure_tree, tree, failrec);
2675                 return BLK_STS_IOERR;
2676         }
2677
2678         repair_bio = btrfs_io_bio_alloc(1);
2679         repair_io_bio = btrfs_io_bio(repair_bio);
2680         repair_bio->bi_opf = REQ_OP_READ;
2681         if (need_validation)
2682                 repair_bio->bi_opf |= REQ_FAILFAST_DEV;
2683         repair_bio->bi_end_io = failed_bio->bi_end_io;
2684         repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2685         repair_bio->bi_private = failed_bio->bi_private;
2686
2687         if (failed_io_bio->csum) {
2688                 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2689
2690                 repair_io_bio->csum = repair_io_bio->csum_inline;
2691                 memcpy(repair_io_bio->csum,
2692                        failed_io_bio->csum + csum_size * icsum, csum_size);
2693         }
2694
2695         bio_add_page(repair_bio, page, failrec->len, pgoff);
2696         repair_io_bio->logical = failrec->start;
2697         repair_io_bio->iter = repair_bio->bi_iter;
2698
2699         btrfs_debug(btrfs_sb(inode->i_sb),
2700 "repair read error: submitting new read to mirror %d, in_validation=%d",
2701                     failrec->this_mirror, failrec->in_validation);
2702
2703         status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2704                                  failrec->bio_flags);
2705         if (status) {
2706                 free_io_failure(failure_tree, tree, failrec);
2707                 bio_put(repair_bio);
2708         }
2709         return status;
2710 }
2711
2712 /* lots and lots of room for performance fixes in the end_bio funcs */
2713
2714 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2715 {
2716         int uptodate = (err == 0);
2717         int ret = 0;
2718
2719         btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2720
2721         if (!uptodate) {
2722                 ClearPageUptodate(page);
2723                 SetPageError(page);
2724                 ret = err < 0 ? err : -EIO;
2725                 mapping_set_error(page->mapping, ret);
2726         }
2727 }
2728
2729 /*
2730  * after a writepage IO is done, we need to:
2731  * clear the uptodate bits on error
2732  * clear the writeback bits in the extent tree for this IO
2733  * end_page_writeback if the page has no more pending IO
2734  *
2735  * Scheduling is not allowed, so the extent state tree is expected
2736  * to have one and only one object corresponding to this IO.
2737  */
2738 static void end_bio_extent_writepage(struct bio *bio)
2739 {
2740         int error = blk_status_to_errno(bio->bi_status);
2741         struct bio_vec *bvec;
2742         u64 start;
2743         u64 end;
2744         struct bvec_iter_all iter_all;
2745
2746         ASSERT(!bio_flagged(bio, BIO_CLONED));
2747         bio_for_each_segment_all(bvec, bio, iter_all) {
2748                 struct page *page = bvec->bv_page;
2749                 struct inode *inode = page->mapping->host;
2750                 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2751
2752                 /* We always issue full-page reads, but if some block
2753                  * in a page fails to read, blk_update_request() will
2754                  * advance bv_offset and adjust bv_len to compensate.
2755                  * Print a warning for nonzero offsets, and an error
2756                  * if they don't add up to a full page.  */
2757                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2758                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2759                                 btrfs_err(fs_info,
2760                                    "partial page write in btrfs with offset %u and length %u",
2761                                         bvec->bv_offset, bvec->bv_len);
2762                         else
2763                                 btrfs_info(fs_info,
2764                                    "incomplete page write in btrfs with offset %u and length %u",
2765                                         bvec->bv_offset, bvec->bv_len);
2766                 }
2767
2768                 start = page_offset(page);
2769                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2770
2771                 end_extent_writepage(page, error, start, end);
2772                 end_page_writeback(page);
2773         }
2774
2775         bio_put(bio);
2776 }
2777
2778 static void
2779 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2780                               int uptodate)
2781 {
2782         struct extent_state *cached = NULL;
2783         u64 end = start + len - 1;
2784
2785         if (uptodate && tree->track_uptodate)
2786                 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2787         unlock_extent_cached_atomic(tree, start, end, &cached);
2788 }
2789
2790 /*
2791  * after a readpage IO is done, we need to:
2792  * clear the uptodate bits on error
2793  * set the uptodate bits if things worked
2794  * set the page up to date if all extents in the tree are uptodate
2795  * clear the lock bit in the extent tree
2796  * unlock the page if there are no other extents locked for it
2797  *
2798  * Scheduling is not allowed, so the extent state tree is expected
2799  * to have one and only one object corresponding to this IO.
2800  */
2801 static void end_bio_extent_readpage(struct bio *bio)
2802 {
2803         struct bio_vec *bvec;
2804         int uptodate = !bio->bi_status;
2805         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2806         struct extent_io_tree *tree, *failure_tree;
2807         u64 offset = 0;
2808         u64 start;
2809         u64 end;
2810         u64 len;
2811         u64 extent_start = 0;
2812         u64 extent_len = 0;
2813         int mirror;
2814         int ret;
2815         struct bvec_iter_all iter_all;
2816
2817         ASSERT(!bio_flagged(bio, BIO_CLONED));
2818         bio_for_each_segment_all(bvec, bio, iter_all) {
2819                 struct page *page = bvec->bv_page;
2820                 struct inode *inode = page->mapping->host;
2821                 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2822
2823                 btrfs_debug(fs_info,
2824                         "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2825                         (u64)bio->bi_iter.bi_sector, bio->bi_status,
2826                         io_bio->mirror_num);
2827                 tree = &BTRFS_I(inode)->io_tree;
2828                 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2829
2830                 /* We always issue full-page reads, but if some block
2831                  * in a page fails to read, blk_update_request() will
2832                  * advance bv_offset and adjust bv_len to compensate.
2833                  * Print a warning for nonzero offsets, and an error
2834                  * if they don't add up to a full page.  */
2835                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2836                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2837                                 btrfs_err(fs_info,
2838                                         "partial page read in btrfs with offset %u and length %u",
2839                                         bvec->bv_offset, bvec->bv_len);
2840                         else
2841                                 btrfs_info(fs_info,
2842                                         "incomplete page read in btrfs with offset %u and length %u",
2843                                         bvec->bv_offset, bvec->bv_len);
2844                 }
2845
2846                 start = page_offset(page);
2847                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2848                 len = bvec->bv_len;
2849
2850                 mirror = io_bio->mirror_num;
2851                 if (likely(uptodate)) {
2852                         if (is_data_inode(inode))
2853                                 ret = btrfs_verify_data_csum(io_bio, offset, page,
2854                                                              start, end, mirror);
2855                         else
2856                                 ret = btrfs_validate_metadata_buffer(io_bio,
2857                                         offset, page, start, end, mirror);
2858                         if (ret)
2859                                 uptodate = 0;
2860                         else
2861                                 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2862                                                  failure_tree, tree, start,
2863                                                  page,
2864                                                  btrfs_ino(BTRFS_I(inode)), 0);
2865                 }
2866
2867                 if (likely(uptodate))
2868                         goto readpage_ok;
2869
2870                 if (is_data_inode(inode)) {
2871
2872                         /*
2873                          * The generic bio_readpage_error handles errors the
2874                          * following way: If possible, new read requests are
2875                          * created and submitted and will end up in
2876                          * end_bio_extent_readpage as well (if we're lucky,
2877                          * not in the !uptodate case). In that case it returns
2878                          * 0 and we just go on with the next page in our bio.
2879                          * If it can't handle the error it will return -EIO and
2880                          * we remain responsible for that page.
2881                          */
2882                         if (!btrfs_submit_read_repair(inode, bio, offset, page,
2883                                                 start - page_offset(page),
2884                                                 start, end, mirror,
2885                                                 btrfs_submit_data_bio)) {
2886                                 uptodate = !bio->bi_status;
2887                                 offset += len;
2888                                 continue;
2889                         }
2890                 } else {
2891                         struct extent_buffer *eb;
2892
2893                         eb = (struct extent_buffer *)page->private;
2894                         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2895                         eb->read_mirror = mirror;
2896                         atomic_dec(&eb->io_pages);
2897                         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2898                                                &eb->bflags))
2899                                 btree_readahead_hook(eb, -EIO);
2900                 }
2901 readpage_ok:
2902                 if (likely(uptodate)) {
2903                         loff_t i_size = i_size_read(inode);
2904                         pgoff_t end_index = i_size >> PAGE_SHIFT;
2905                         unsigned off;
2906
2907                         /* Zero out the end if this page straddles i_size */
2908                         off = offset_in_page(i_size);
2909                         if (page->index == end_index && off)
2910                                 zero_user_segment(page, off, PAGE_SIZE);
2911                         SetPageUptodate(page);
2912                 } else {
2913                         ClearPageUptodate(page);
2914                         SetPageError(page);
2915                 }
2916                 unlock_page(page);
2917                 offset += len;
2918
2919                 if (unlikely(!uptodate)) {
2920                         if (extent_len) {
2921                                 endio_readpage_release_extent(tree,
2922                                                               extent_start,
2923                                                               extent_len, 1);
2924                                 extent_start = 0;
2925                                 extent_len = 0;
2926                         }
2927                         endio_readpage_release_extent(tree, start,
2928                                                       end - start + 1, 0);
2929                 } else if (!extent_len) {
2930                         extent_start = start;
2931                         extent_len = end + 1 - start;
2932                 } else if (extent_start + extent_len == start) {
2933                         extent_len += end + 1 - start;
2934                 } else {
2935                         endio_readpage_release_extent(tree, extent_start,
2936                                                       extent_len, uptodate);
2937                         extent_start = start;
2938                         extent_len = end + 1 - start;
2939                 }
2940         }
2941
2942         if (extent_len)
2943                 endio_readpage_release_extent(tree, extent_start, extent_len,
2944                                               uptodate);
2945         btrfs_io_bio_free_csum(io_bio);
2946         bio_put(bio);
2947 }
2948
2949 /*
2950  * Initialize the members up to but not including 'bio'. Use after allocating a
2951  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2952  * 'bio' because use of __GFP_ZERO is not supported.
2953  */
2954 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2955 {
2956         memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2957 }
2958
2959 /*
2960  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2961  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2962  * for the appropriate container_of magic
2963  */
2964 struct bio *btrfs_bio_alloc(u64 first_byte)
2965 {
2966         struct bio *bio;
2967
2968         bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2969         bio->bi_iter.bi_sector = first_byte >> 9;
2970         btrfs_io_bio_init(btrfs_io_bio(bio));
2971         return bio;
2972 }
2973
2974 struct bio *btrfs_bio_clone(struct bio *bio)
2975 {
2976         struct btrfs_io_bio *btrfs_bio;
2977         struct bio *new;
2978
2979         /* Bio allocation backed by a bioset does not fail */
2980         new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2981         btrfs_bio = btrfs_io_bio(new);
2982         btrfs_io_bio_init(btrfs_bio);
2983         btrfs_bio->iter = bio->bi_iter;
2984         return new;
2985 }
2986
2987 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2988 {
2989         struct bio *bio;
2990
2991         /* Bio allocation backed by a bioset does not fail */
2992         bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2993         btrfs_io_bio_init(btrfs_io_bio(bio));
2994         return bio;
2995 }
2996
2997 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2998 {
2999         struct bio *bio;
3000         struct btrfs_io_bio *btrfs_bio;
3001
3002         /* this will never fail when it's backed by a bioset */
3003         bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3004         ASSERT(bio);
3005
3006         btrfs_bio = btrfs_io_bio(bio);
3007         btrfs_io_bio_init(btrfs_bio);
3008
3009         bio_trim(bio, offset >> 9, size >> 9);
3010         btrfs_bio->iter = bio->bi_iter;
3011         return bio;
3012 }
3013
3014 /*
3015  * @opf:        bio REQ_OP_* and REQ_* flags as one value
3016  * @wbc:        optional writeback control for io accounting
3017  * @page:       page to add to the bio
3018  * @pg_offset:  offset of the new bio or to check whether we are adding
3019  *              a contiguous page to the previous one
3020  * @size:       portion of page that we want to write
3021  * @offset:     starting offset in the page
3022  * @bio_ret:    must be valid pointer, newly allocated bio will be stored there
3023  * @end_io_func:     end_io callback for new bio
3024  * @mirror_num:      desired mirror to read/write
3025  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3026  * @bio_flags:  flags of the current bio to see if we can merge them
3027  */
3028 static int submit_extent_page(unsigned int opf,
3029                               struct writeback_control *wbc,
3030                               struct page *page, u64 offset,
3031                               size_t size, unsigned long pg_offset,
3032                               struct bio **bio_ret,
3033                               bio_end_io_t end_io_func,
3034                               int mirror_num,
3035                               unsigned long prev_bio_flags,
3036                               unsigned long bio_flags,
3037                               bool force_bio_submit)
3038 {
3039         int ret = 0;
3040         struct bio *bio;
3041         size_t page_size = min_t(size_t, size, PAGE_SIZE);
3042         sector_t sector = offset >> 9;
3043         struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree;
3044
3045         ASSERT(bio_ret);
3046
3047         if (*bio_ret) {
3048                 bool contig;
3049                 bool can_merge = true;
3050
3051                 bio = *bio_ret;
3052                 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
3053                         contig = bio->bi_iter.bi_sector == sector;
3054                 else
3055                         contig = bio_end_sector(bio) == sector;
3056
3057                 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
3058                         can_merge = false;
3059
3060                 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
3061                     force_bio_submit ||
3062                     bio_add_page(bio, page, page_size, pg_offset) < page_size) {
3063                         ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
3064                         if (ret < 0) {
3065                                 *bio_ret = NULL;
3066                                 return ret;
3067                         }
3068                         bio = NULL;
3069                 } else {
3070                         if (wbc)
3071                                 wbc_account_cgroup_owner(wbc, page, page_size);
3072                         return 0;
3073                 }
3074         }
3075
3076         bio = btrfs_bio_alloc(offset);
3077         bio_add_page(bio, page, page_size, pg_offset);
3078         bio->bi_end_io = end_io_func;
3079         bio->bi_private = tree;
3080         bio->bi_write_hint = page->mapping->host->i_write_hint;
3081         bio->bi_opf = opf;
3082         if (wbc) {
3083                 struct block_device *bdev;
3084
3085                 bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
3086                 bio_set_dev(bio, bdev);
3087                 wbc_init_bio(wbc, bio);
3088                 wbc_account_cgroup_owner(wbc, page, page_size);
3089         }
3090
3091         *bio_ret = bio;
3092
3093         return ret;
3094 }
3095
3096 static void attach_extent_buffer_page(struct extent_buffer *eb,
3097                                       struct page *page)
3098 {
3099         if (!PagePrivate(page))
3100                 attach_page_private(page, eb);
3101         else
3102                 WARN_ON(page->private != (unsigned long)eb);
3103 }
3104
3105 void set_page_extent_mapped(struct page *page)
3106 {
3107         if (!PagePrivate(page))
3108                 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3109 }
3110
3111 static struct extent_map *
3112 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3113                  u64 start, u64 len, struct extent_map **em_cached)
3114 {
3115         struct extent_map *em;
3116
3117         if (em_cached && *em_cached) {
3118                 em = *em_cached;
3119                 if (extent_map_in_tree(em) && start >= em->start &&
3120                     start < extent_map_end(em)) {
3121                         refcount_inc(&em->refs);
3122                         return em;
3123                 }
3124
3125                 free_extent_map(em);
3126                 *em_cached = NULL;
3127         }
3128
3129         em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3130         if (em_cached && !IS_ERR_OR_NULL(em)) {
3131                 BUG_ON(*em_cached);
3132                 refcount_inc(&em->refs);
3133                 *em_cached = em;
3134         }
3135         return em;
3136 }
3137 /*
3138  * basic readpage implementation.  Locked extent state structs are inserted
3139  * into the tree that are removed when the IO is done (by the end_io
3140  * handlers)
3141  * XXX JDM: This needs looking at to ensure proper page locking
3142  * return 0 on success, otherwise return error
3143  */
3144 int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3145                       struct bio **bio, unsigned long *bio_flags,
3146                       unsigned int read_flags, u64 *prev_em_start)
3147 {
3148         struct inode *inode = page->mapping->host;
3149         u64 start = page_offset(page);
3150         const u64 end = start + PAGE_SIZE - 1;
3151         u64 cur = start;
3152         u64 extent_offset;
3153         u64 last_byte = i_size_read(inode);
3154         u64 block_start;
3155         u64 cur_end;
3156         struct extent_map *em;
3157         int ret = 0;
3158         int nr = 0;
3159         size_t pg_offset = 0;
3160         size_t iosize;
3161         size_t disk_io_size;
3162         size_t blocksize = inode->i_sb->s_blocksize;
3163         unsigned long this_bio_flag = 0;
3164         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3165
3166         set_page_extent_mapped(page);
3167
3168         if (!PageUptodate(page)) {
3169                 if (cleancache_get_page(page) == 0) {
3170                         BUG_ON(blocksize != PAGE_SIZE);
3171                         unlock_extent(tree, start, end);
3172                         goto out;
3173                 }
3174         }
3175
3176         if (page->index == last_byte >> PAGE_SHIFT) {
3177                 char *userpage;
3178                 size_t zero_offset = offset_in_page(last_byte);
3179
3180                 if (zero_offset) {
3181                         iosize = PAGE_SIZE - zero_offset;
3182                         userpage = kmap_atomic(page);
3183                         memset(userpage + zero_offset, 0, iosize);
3184                         flush_dcache_page(page);
3185                         kunmap_atomic(userpage);
3186                 }
3187         }
3188         while (cur <= end) {
3189                 bool force_bio_submit = false;
3190                 u64 offset;
3191
3192                 if (cur >= last_byte) {
3193                         char *userpage;
3194                         struct extent_state *cached = NULL;
3195
3196                         iosize = PAGE_SIZE - pg_offset;
3197                         userpage = kmap_atomic(page);
3198                         memset(userpage + pg_offset, 0, iosize);
3199                         flush_dcache_page(page);
3200                         kunmap_atomic(userpage);
3201                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3202                                             &cached, GFP_NOFS);
3203                         unlock_extent_cached(tree, cur,
3204                                              cur + iosize - 1, &cached);
3205                         break;
3206                 }
3207                 em = __get_extent_map(inode, page, pg_offset, cur,
3208                                       end - cur + 1, em_cached);
3209                 if (IS_ERR_OR_NULL(em)) {
3210                         SetPageError(page);
3211                         unlock_extent(tree, cur, end);
3212                         break;
3213                 }
3214                 extent_offset = cur - em->start;
3215                 BUG_ON(extent_map_end(em) <= cur);
3216                 BUG_ON(end < cur);
3217
3218                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3219                         this_bio_flag |= EXTENT_BIO_COMPRESSED;
3220                         extent_set_compress_type(&this_bio_flag,
3221                                                  em->compress_type);
3222                 }
3223
3224                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3225                 cur_end = min(extent_map_end(em) - 1, end);
3226                 iosize = ALIGN(iosize, blocksize);
3227                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3228                         disk_io_size = em->block_len;
3229                         offset = em->block_start;
3230                 } else {
3231                         offset = em->block_start + extent_offset;
3232                         disk_io_size = iosize;
3233                 }
3234                 block_start = em->block_start;
3235                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3236                         block_start = EXTENT_MAP_HOLE;
3237
3238                 /*
3239                  * If we have a file range that points to a compressed extent
3240                  * and it's followed by a consecutive file range that points
3241                  * to the same compressed extent (possibly with a different
3242                  * offset and/or length, so it either points to the whole extent
3243                  * or only part of it), we must make sure we do not submit a
3244                  * single bio to populate the pages for the 2 ranges because
3245                  * this makes the compressed extent read zero out the pages
3246                  * belonging to the 2nd range. Imagine the following scenario:
3247                  *
3248                  *  File layout
3249                  *  [0 - 8K]                     [8K - 24K]
3250                  *    |                               |
3251                  *    |                               |
3252                  * points to extent X,         points to extent X,
3253                  * offset 4K, length of 8K     offset 0, length 16K
3254                  *
3255                  * [extent X, compressed length = 4K uncompressed length = 16K]
3256                  *
3257                  * If the bio to read the compressed extent covers both ranges,
3258                  * it will decompress extent X into the pages belonging to the
3259                  * first range and then it will stop, zeroing out the remaining
3260                  * pages that belong to the other range that points to extent X.
3261                  * So here we make sure we submit 2 bios, one for the first
3262                  * range and another one for the third range. Both will target
3263                  * the same physical extent from disk, but we can't currently
3264                  * make the compressed bio endio callback populate the pages
3265                  * for both ranges because each compressed bio is tightly
3266                  * coupled with a single extent map, and each range can have
3267                  * an extent map with a different offset value relative to the
3268                  * uncompressed data of our extent and different lengths. This
3269                  * is a corner case so we prioritize correctness over
3270                  * non-optimal behavior (submitting 2 bios for the same extent).
3271                  */
3272                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3273                     prev_em_start && *prev_em_start != (u64)-1 &&
3274                     *prev_em_start != em->start)
3275                         force_bio_submit = true;
3276
3277                 if (prev_em_start)
3278                         *prev_em_start = em->start;
3279
3280                 free_extent_map(em);
3281                 em = NULL;
3282
3283                 /* we've found a hole, just zero and go on */
3284                 if (block_start == EXTENT_MAP_HOLE) {
3285                         char *userpage;
3286                         struct extent_state *cached = NULL;
3287
3288                         userpage = kmap_atomic(page);
3289                         memset(userpage + pg_offset, 0, iosize);
3290                         flush_dcache_page(page);
3291                         kunmap_atomic(userpage);
3292
3293                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3294                                             &cached, GFP_NOFS);
3295                         unlock_extent_cached(tree, cur,
3296                                              cur + iosize - 1, &cached);
3297                         cur = cur + iosize;
3298                         pg_offset += iosize;
3299                         continue;
3300                 }
3301                 /* the get_extent function already copied into the page */
3302                 if (test_range_bit(tree, cur, cur_end,
3303                                    EXTENT_UPTODATE, 1, NULL)) {
3304                         check_page_uptodate(tree, page);
3305                         unlock_extent(tree, cur, cur + iosize - 1);
3306                         cur = cur + iosize;
3307                         pg_offset += iosize;
3308                         continue;
3309                 }
3310                 /* we have an inline extent but it didn't get marked up
3311                  * to date.  Error out
3312                  */
3313                 if (block_start == EXTENT_MAP_INLINE) {
3314                         SetPageError(page);
3315                         unlock_extent(tree, cur, cur + iosize - 1);
3316                         cur = cur + iosize;
3317                         pg_offset += iosize;
3318                         continue;
3319                 }
3320
3321                 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3322                                          page, offset, disk_io_size,
3323                                          pg_offset, bio,
3324                                          end_bio_extent_readpage, 0,
3325                                          *bio_flags,
3326                                          this_bio_flag,
3327                                          force_bio_submit);
3328                 if (!ret) {
3329                         nr++;
3330                         *bio_flags = this_bio_flag;
3331                 } else {
3332                         SetPageError(page);
3333                         unlock_extent(tree, cur, cur + iosize - 1);
3334                         goto out;
3335                 }
3336                 cur = cur + iosize;
3337                 pg_offset += iosize;
3338         }
3339 out:
3340         if (!nr) {
3341                 if (!PageError(page))
3342                         SetPageUptodate(page);
3343                 unlock_page(page);
3344         }
3345         return ret;
3346 }
3347
3348 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3349                                              u64 start, u64 end,
3350                                              struct extent_map **em_cached,
3351                                              struct bio **bio,
3352                                              unsigned long *bio_flags,
3353                                              u64 *prev_em_start)
3354 {
3355         struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3356         int index;
3357
3358         btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3359
3360         for (index = 0; index < nr_pages; index++) {
3361                 btrfs_do_readpage(pages[index], em_cached, bio, bio_flags,
3362                                   REQ_RAHEAD, prev_em_start);
3363                 put_page(pages[index]);
3364         }
3365 }
3366
3367 static void update_nr_written(struct writeback_control *wbc,
3368                               unsigned long nr_written)
3369 {
3370         wbc->nr_to_write -= nr_written;
3371 }
3372
3373 /*
3374  * helper for __extent_writepage, doing all of the delayed allocation setup.
3375  *
3376  * This returns 1 if btrfs_run_delalloc_range function did all the work required
3377  * to write the page (copy into inline extent).  In this case the IO has
3378  * been started and the page is already unlocked.
3379  *
3380  * This returns 0 if all went well (page still locked)
3381  * This returns < 0 if there were errors (page still locked)
3382  */
3383 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3384                 struct page *page, struct writeback_control *wbc,
3385                 u64 delalloc_start, unsigned long *nr_written)
3386 {
3387         u64 page_end = delalloc_start + PAGE_SIZE - 1;
3388         bool found;
3389         u64 delalloc_to_write = 0;
3390         u64 delalloc_end = 0;
3391         int ret;
3392         int page_started = 0;
3393
3394
3395         while (delalloc_end < page_end) {
3396                 found = find_lock_delalloc_range(&inode->vfs_inode, page,
3397                                                &delalloc_start,
3398                                                &delalloc_end);
3399                 if (!found) {
3400                         delalloc_start = delalloc_end + 1;
3401                         continue;
3402                 }
3403                 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3404                                 delalloc_end, &page_started, nr_written, wbc);
3405                 if (ret) {
3406                         SetPageError(page);
3407                         /*
3408                          * btrfs_run_delalloc_range should return < 0 for error
3409                          * but just in case, we use > 0 here meaning the IO is
3410                          * started, so we don't want to return > 0 unless
3411                          * things are going well.
3412                          */
3413                         return ret < 0 ? ret : -EIO;
3414                 }
3415                 /*
3416                  * delalloc_end is already one less than the total length, so
3417                  * we don't subtract one from PAGE_SIZE
3418                  */
3419                 delalloc_to_write += (delalloc_end - delalloc_start +
3420                                       PAGE_SIZE) >> PAGE_SHIFT;
3421                 delalloc_start = delalloc_end + 1;
3422         }
3423         if (wbc->nr_to_write < delalloc_to_write) {
3424                 int thresh = 8192;
3425
3426                 if (delalloc_to_write < thresh * 2)
3427                         thresh = delalloc_to_write;
3428                 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3429                                          thresh);
3430         }
3431
3432         /* did the fill delalloc function already unlock and start
3433          * the IO?
3434          */
3435         if (page_started) {
3436                 /*
3437                  * we've unlocked the page, so we can't update
3438                  * the mapping's writeback index, just update
3439                  * nr_to_write.
3440                  */
3441                 wbc->nr_to_write -= *nr_written;
3442                 return 1;
3443         }
3444
3445         return 0;
3446 }
3447
3448 /*
3449  * helper for __extent_writepage.  This calls the writepage start hooks,
3450  * and does the loop to map the page into extents and bios.
3451  *
3452  * We return 1 if the IO is started and the page is unlocked,
3453  * 0 if all went well (page still locked)
3454  * < 0 if there were errors (page still locked)
3455  */
3456 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3457                                  struct page *page,
3458                                  struct writeback_control *wbc,
3459                                  struct extent_page_data *epd,
3460                                  loff_t i_size,
3461                                  unsigned long nr_written,
3462                                  int *nr_ret)
3463 {
3464         struct extent_io_tree *tree = &inode->io_tree;
3465         u64 start = page_offset(page);
3466         u64 page_end = start + PAGE_SIZE - 1;
3467         u64 end;
3468         u64 cur = start;
3469         u64 extent_offset;
3470         u64 block_start;
3471         u64 iosize;
3472         struct extent_map *em;
3473         size_t pg_offset = 0;
3474         size_t blocksize;
3475         int ret = 0;
3476         int nr = 0;
3477         const unsigned int write_flags = wbc_to_write_flags(wbc);
3478         bool compressed;
3479
3480         ret = btrfs_writepage_cow_fixup(page, start, page_end);
3481         if (ret) {
3482                 /* Fixup worker will requeue */
3483                 redirty_page_for_writepage(wbc, page);
3484                 update_nr_written(wbc, nr_written);
3485                 unlock_page(page);
3486                 return 1;
3487         }
3488
3489         /*
3490          * we don't want to touch the inode after unlocking the page,
3491          * so we update the mapping writeback index now
3492          */
3493         update_nr_written(wbc, nr_written + 1);
3494
3495         end = page_end;
3496         blocksize = inode->vfs_inode.i_sb->s_blocksize;
3497
3498         while (cur <= end) {
3499                 u64 em_end;
3500                 u64 offset;
3501
3502                 if (cur >= i_size) {
3503                         btrfs_writepage_endio_finish_ordered(page, cur,
3504                                                              page_end, 1);
3505                         break;
3506                 }
3507                 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3508                 if (IS_ERR_OR_NULL(em)) {
3509                         SetPageError(page);
3510                         ret = PTR_ERR_OR_ZERO(em);
3511                         break;
3512                 }
3513
3514                 extent_offset = cur - em->start;
3515                 em_end = extent_map_end(em);
3516                 BUG_ON(em_end <= cur);
3517                 BUG_ON(end < cur);
3518                 iosize = min(em_end - cur, end - cur + 1);
3519                 iosize = ALIGN(iosize, blocksize);
3520                 offset = em->block_start + extent_offset;
3521                 block_start = em->block_start;
3522                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3523                 free_extent_map(em);
3524                 em = NULL;
3525
3526                 /*
3527                  * compressed and inline extents are written through other
3528                  * paths in the FS
3529                  */
3530                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3531                     block_start == EXTENT_MAP_INLINE) {
3532                         if (compressed)
3533                                 nr++;
3534                         else
3535                                 btrfs_writepage_endio_finish_ordered(page, cur,
3536                                                         cur + iosize - 1, 1);
3537                         cur += iosize;
3538                         pg_offset += iosize;
3539                         continue;
3540                 }
3541
3542                 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3543                 if (!PageWriteback(page)) {
3544                         btrfs_err(inode->root->fs_info,
3545                                    "page %lu not writeback, cur %llu end %llu",
3546                                page->index, cur, end);
3547                 }
3548
3549                 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3550                                          page, offset, iosize, pg_offset,
3551                                          &epd->bio,
3552                                          end_bio_extent_writepage,
3553                                          0, 0, 0, false);
3554                 if (ret) {
3555                         SetPageError(page);
3556                         if (PageWriteback(page))
3557                                 end_page_writeback(page);
3558                 }
3559
3560                 cur = cur + iosize;
3561                 pg_offset += iosize;
3562                 nr++;
3563         }
3564         *nr_ret = nr;
3565         return ret;
3566 }
3567
3568 /*
3569  * the writepage semantics are similar to regular writepage.  extent
3570  * records are inserted to lock ranges in the tree, and as dirty areas
3571  * are found, they are marked writeback.  Then the lock bits are removed
3572  * and the end_io handler clears the writeback ranges
3573  *
3574  * Return 0 if everything goes well.
3575  * Return <0 for error.
3576  */
3577 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3578                               struct extent_page_data *epd)
3579 {
3580         struct inode *inode = page->mapping->host;
3581         u64 start = page_offset(page);
3582         u64 page_end = start + PAGE_SIZE - 1;
3583         int ret;
3584         int nr = 0;
3585         size_t pg_offset;
3586         loff_t i_size = i_size_read(inode);
3587         unsigned long end_index = i_size >> PAGE_SHIFT;
3588         unsigned long nr_written = 0;
3589
3590         trace___extent_writepage(page, inode, wbc);
3591
3592         WARN_ON(!PageLocked(page));
3593
3594         ClearPageError(page);
3595
3596         pg_offset = offset_in_page(i_size);
3597         if (page->index > end_index ||
3598            (page->index == end_index && !pg_offset)) {
3599                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3600                 unlock_page(page);
3601                 return 0;
3602         }
3603
3604         if (page->index == end_index) {
3605                 char *userpage;
3606
3607                 userpage = kmap_atomic(page);
3608                 memset(userpage + pg_offset, 0,
3609                        PAGE_SIZE - pg_offset);
3610                 kunmap_atomic(userpage);
3611                 flush_dcache_page(page);
3612         }
3613
3614         set_page_extent_mapped(page);
3615
3616         if (!epd->extent_locked) {
3617                 ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
3618                                          &nr_written);
3619                 if (ret == 1)
3620                         return 0;
3621                 if (ret)
3622                         goto done;
3623         }
3624
3625         ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
3626                                     nr_written, &nr);
3627         if (ret == 1)
3628                 return 0;
3629
3630 done:
3631         if (nr == 0) {
3632                 /* make sure the mapping tag for page dirty gets cleared */
3633                 set_page_writeback(page);
3634                 end_page_writeback(page);
3635         }
3636         if (PageError(page)) {
3637                 ret = ret < 0 ? ret : -EIO;
3638                 end_extent_writepage(page, ret, start, page_end);
3639         }
3640         unlock_page(page);
3641         ASSERT(ret <= 0);
3642         return ret;
3643 }
3644
3645 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3646 {
3647         wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3648                        TASK_UNINTERRUPTIBLE);
3649 }
3650
3651 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3652 {
3653         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3654         smp_mb__after_atomic();
3655         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3656 }
3657
3658 /*
3659  * Lock eb pages and flush the bio if we can't the locks
3660  *
3661  * Return  0 if nothing went wrong
3662  * Return >0 is same as 0, except bio is not submitted
3663  * Return <0 if something went wrong, no page is locked
3664  */
3665 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3666                           struct extent_page_data *epd)
3667 {
3668         struct btrfs_fs_info *fs_info = eb->fs_info;
3669         int i, num_pages, failed_page_nr;
3670         int flush = 0;
3671         int ret = 0;
3672
3673         if (!btrfs_try_tree_write_lock(eb)) {
3674                 ret = flush_write_bio(epd);
3675                 if (ret < 0)
3676                         return ret;
3677                 flush = 1;
3678                 btrfs_tree_lock(eb);
3679         }
3680
3681         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3682                 btrfs_tree_unlock(eb);
3683                 if (!epd->sync_io)
3684                         return 0;
3685                 if (!flush) {
3686                         ret = flush_write_bio(epd);
3687                         if (ret < 0)
3688                                 return ret;
3689                         flush = 1;
3690                 }
3691                 while (1) {
3692                         wait_on_extent_buffer_writeback(eb);
3693                         btrfs_tree_lock(eb);
3694                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3695                                 break;
3696                         btrfs_tree_unlock(eb);
3697                 }
3698         }
3699
3700         /*
3701          * We need to do this to prevent races in people who check if the eb is
3702          * under IO since we can end up having no IO bits set for a short period
3703          * of time.
3704          */
3705         spin_lock(&eb->refs_lock);
3706         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3707                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3708                 spin_unlock(&eb->refs_lock);
3709                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3710                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3711                                          -eb->len,
3712                                          fs_info->dirty_metadata_batch);
3713                 ret = 1;
3714         } else {
3715                 spin_unlock(&eb->refs_lock);
3716         }
3717
3718         btrfs_tree_unlock(eb);
3719
3720         if (!ret)
3721                 return ret;
3722
3723         num_pages = num_extent_pages(eb);
3724         for (i = 0; i < num_pages; i++) {
3725                 struct page *p = eb->pages[i];
3726
3727                 if (!trylock_page(p)) {
3728                         if (!flush) {
3729                                 int err;
3730
3731                                 err = flush_write_bio(epd);
3732                                 if (err < 0) {
3733                                         ret = err;
3734                                         failed_page_nr = i;
3735                                         goto err_unlock;
3736                                 }
3737                                 flush = 1;
3738                         }
3739                         lock_page(p);
3740                 }
3741         }
3742
3743         return ret;
3744 err_unlock:
3745         /* Unlock already locked pages */
3746         for (i = 0; i < failed_page_nr; i++)
3747                 unlock_page(eb->pages[i]);
3748         /*
3749          * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3750          * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3751          * be made and undo everything done before.
3752          */
3753         btrfs_tree_lock(eb);
3754         spin_lock(&eb->refs_lock);
3755         set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3756         end_extent_buffer_writeback(eb);
3757         spin_unlock(&eb->refs_lock);
3758         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3759                                  fs_info->dirty_metadata_batch);
3760         btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3761         btrfs_tree_unlock(eb);
3762         return ret;
3763 }
3764
3765 static void set_btree_ioerr(struct page *page)
3766 {
3767         struct extent_buffer *eb = (struct extent_buffer *)page->private;
3768         struct btrfs_fs_info *fs_info;
3769
3770         SetPageError(page);
3771         if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3772                 return;
3773
3774         /*
3775          * If we error out, we should add back the dirty_metadata_bytes
3776          * to make it consistent.
3777          */
3778         fs_info = eb->fs_info;
3779         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3780                                  eb->len, fs_info->dirty_metadata_batch);
3781
3782         /*
3783          * If writeback for a btree extent that doesn't belong to a log tree
3784          * failed, increment the counter transaction->eb_write_errors.
3785          * We do this because while the transaction is running and before it's
3786          * committing (when we call filemap_fdata[write|wait]_range against
3787          * the btree inode), we might have
3788          * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3789          * returns an error or an error happens during writeback, when we're
3790          * committing the transaction we wouldn't know about it, since the pages
3791          * can be no longer dirty nor marked anymore for writeback (if a
3792          * subsequent modification to the extent buffer didn't happen before the
3793          * transaction commit), which makes filemap_fdata[write|wait]_range not
3794          * able to find the pages tagged with SetPageError at transaction
3795          * commit time. So if this happens we must abort the transaction,
3796          * otherwise we commit a super block with btree roots that point to
3797          * btree nodes/leafs whose content on disk is invalid - either garbage
3798          * or the content of some node/leaf from a past generation that got
3799          * cowed or deleted and is no longer valid.
3800          *
3801          * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3802          * not be enough - we need to distinguish between log tree extents vs
3803          * non-log tree extents, and the next filemap_fdatawait_range() call
3804          * will catch and clear such errors in the mapping - and that call might
3805          * be from a log sync and not from a transaction commit. Also, checking
3806          * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3807          * not done and would not be reliable - the eb might have been released
3808          * from memory and reading it back again means that flag would not be
3809          * set (since it's a runtime flag, not persisted on disk).
3810          *
3811          * Using the flags below in the btree inode also makes us achieve the
3812          * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3813          * writeback for all dirty pages and before filemap_fdatawait_range()
3814          * is called, the writeback for all dirty pages had already finished
3815          * with errors - because we were not using AS_EIO/AS_ENOSPC,
3816          * filemap_fdatawait_range() would return success, as it could not know
3817          * that writeback errors happened (the pages were no longer tagged for
3818          * writeback).
3819          */
3820         switch (eb->log_index) {
3821         case -1:
3822                 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3823                 break;
3824         case 0:
3825                 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3826                 break;
3827         case 1:
3828                 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3829                 break;
3830         default:
3831                 BUG(); /* unexpected, logic error */
3832         }
3833 }
3834
3835 static void end_bio_extent_buffer_writepage(struct bio *bio)
3836 {
3837         struct bio_vec *bvec;
3838         struct extent_buffer *eb;
3839         int done;
3840         struct bvec_iter_all iter_all;
3841
3842         ASSERT(!bio_flagged(bio, BIO_CLONED));
3843         bio_for_each_segment_all(bvec, bio, iter_all) {
3844                 struct page *page = bvec->bv_page;
3845
3846                 eb = (struct extent_buffer *)page->private;
3847                 BUG_ON(!eb);
3848                 done = atomic_dec_and_test(&eb->io_pages);
3849
3850                 if (bio->bi_status ||
3851                     test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3852                         ClearPageUptodate(page);
3853                         set_btree_ioerr(page);
3854                 }
3855
3856                 end_page_writeback(page);
3857
3858                 if (!done)
3859                         continue;
3860
3861                 end_extent_buffer_writeback(eb);
3862         }
3863
3864         bio_put(bio);
3865 }
3866
3867 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3868                         struct writeback_control *wbc,
3869                         struct extent_page_data *epd)
3870 {
3871         u64 offset = eb->start;
3872         u32 nritems;
3873         int i, num_pages;
3874         unsigned long start, end;
3875         unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3876         int ret = 0;
3877
3878         clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3879         num_pages = num_extent_pages(eb);
3880         atomic_set(&eb->io_pages, num_pages);
3881
3882         /* set btree blocks beyond nritems with 0 to avoid stale content. */
3883         nritems = btrfs_header_nritems(eb);
3884         if (btrfs_header_level(eb) > 0) {
3885                 end = btrfs_node_key_ptr_offset(nritems);
3886
3887                 memzero_extent_buffer(eb, end, eb->len - end);
3888         } else {
3889                 /*
3890                  * leaf:
3891                  * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3892                  */
3893                 start = btrfs_item_nr_offset(nritems);
3894                 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3895                 memzero_extent_buffer(eb, start, end - start);
3896         }
3897
3898         for (i = 0; i < num_pages; i++) {
3899                 struct page *p = eb->pages[i];
3900
3901                 clear_page_dirty_for_io(p);
3902                 set_page_writeback(p);
3903                 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3904                                          p, offset, PAGE_SIZE, 0,
3905                                          &epd->bio,
3906                                          end_bio_extent_buffer_writepage,
3907                                          0, 0, 0, false);
3908                 if (ret) {
3909                         set_btree_ioerr(p);
3910                         if (PageWriteback(p))
3911                                 end_page_writeback(p);
3912                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3913                                 end_extent_buffer_writeback(eb);
3914                         ret = -EIO;
3915                         break;
3916                 }
3917                 offset += PAGE_SIZE;
3918                 update_nr_written(wbc, 1);
3919                 unlock_page(p);
3920         }
3921
3922         if (unlikely(ret)) {
3923                 for (; i < num_pages; i++) {
3924                         struct page *p = eb->pages[i];
3925                         clear_page_dirty_for_io(p);
3926                         unlock_page(p);
3927                 }
3928         }
3929
3930         return ret;
3931 }
3932
3933 int btree_write_cache_pages(struct address_space *mapping,
3934                                    struct writeback_control *wbc)
3935 {
3936         struct extent_buffer *eb, *prev_eb = NULL;
3937         struct extent_page_data epd = {
3938                 .bio = NULL,
3939                 .extent_locked = 0,
3940                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3941         };
3942         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3943         int ret = 0;
3944         int done = 0;
3945         int nr_to_write_done = 0;
3946         struct pagevec pvec;
3947         int nr_pages;
3948         pgoff_t index;
3949         pgoff_t end;            /* Inclusive */
3950         int scanned = 0;
3951         xa_mark_t tag;
3952
3953         pagevec_init(&pvec);
3954         if (wbc->range_cyclic) {
3955                 index = mapping->writeback_index; /* Start from prev offset */
3956                 end = -1;
3957                 /*
3958                  * Start from the beginning does not need to cycle over the
3959                  * range, mark it as scanned.
3960                  */
3961                 scanned = (index == 0);
3962         } else {
3963                 index = wbc->range_start >> PAGE_SHIFT;
3964                 end = wbc->range_end >> PAGE_SHIFT;
3965                 scanned = 1;
3966         }
3967         if (wbc->sync_mode == WB_SYNC_ALL)
3968                 tag = PAGECACHE_TAG_TOWRITE;
3969         else
3970                 tag = PAGECACHE_TAG_DIRTY;
3971 retry:
3972         if (wbc->sync_mode == WB_SYNC_ALL)
3973                 tag_pages_for_writeback(mapping, index, end);
3974         while (!done && !nr_to_write_done && (index <= end) &&
3975                (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3976                         tag))) {
3977                 unsigned i;
3978
3979                 for (i = 0; i < nr_pages; i++) {
3980                         struct page *page = pvec.pages[i];
3981
3982                         if (!PagePrivate(page))
3983                                 continue;
3984
3985                         spin_lock(&mapping->private_lock);
3986                         if (!PagePrivate(page)) {
3987                                 spin_unlock(&mapping->private_lock);
3988                                 continue;
3989                         }
3990
3991                         eb = (struct extent_buffer *)page->private;
3992
3993                         /*
3994                          * Shouldn't happen and normally this would be a BUG_ON
3995                          * but no sense in crashing the users box for something
3996                          * we can survive anyway.
3997                          */
3998                         if (WARN_ON(!eb)) {
3999                                 spin_unlock(&mapping->private_lock);
4000                                 continue;
4001                         }
4002
4003                         if (eb == prev_eb) {
4004                                 spin_unlock(&mapping->private_lock);
4005                                 continue;
4006                         }
4007
4008                         ret = atomic_inc_not_zero(&eb->refs);
4009                         spin_unlock(&mapping->private_lock);
4010                         if (!ret)
4011                                 continue;
4012
4013                         prev_eb = eb;
4014                         ret = lock_extent_buffer_for_io(eb, &epd);
4015                         if (!ret) {
4016                                 free_extent_buffer(eb);
4017                                 continue;
4018                         } else if (ret < 0) {
4019                                 done = 1;
4020                                 free_extent_buffer(eb);
4021                                 break;
4022                         }
4023
4024                         ret = write_one_eb(eb, wbc, &epd);
4025                         if (ret) {
4026                                 done = 1;
4027                                 free_extent_buffer(eb);
4028                                 break;
4029                         }
4030                         free_extent_buffer(eb);
4031
4032                         /*
4033                          * the filesystem may choose to bump up nr_to_write.
4034                          * We have to make sure to honor the new nr_to_write
4035                          * at any time
4036                          */
4037                         nr_to_write_done = wbc->nr_to_write <= 0;
4038                 }
4039                 pagevec_release(&pvec);
4040                 cond_resched();
4041         }
4042         if (!scanned && !done) {
4043                 /*
4044                  * We hit the last page and there is more work to be done: wrap
4045                  * back to the start of the file
4046                  */
4047                 scanned = 1;
4048                 index = 0;
4049                 goto retry;
4050         }
4051         ASSERT(ret <= 0);
4052         if (ret < 0) {
4053                 end_write_bio(&epd, ret);
4054                 return ret;
4055         }
4056         /*
4057          * If something went wrong, don't allow any metadata write bio to be
4058          * submitted.
4059          *
4060          * This would prevent use-after-free if we had dirty pages not
4061          * cleaned up, which can still happen by fuzzed images.
4062          *
4063          * - Bad extent tree
4064          *   Allowing existing tree block to be allocated for other trees.
4065          *
4066          * - Log tree operations
4067          *   Exiting tree blocks get allocated to log tree, bumps its
4068          *   generation, then get cleaned in tree re-balance.
4069          *   Such tree block will not be written back, since it's clean,
4070          *   thus no WRITTEN flag set.
4071          *   And after log writes back, this tree block is not traced by
4072          *   any dirty extent_io_tree.
4073          *
4074          * - Offending tree block gets re-dirtied from its original owner
4075          *   Since it has bumped generation, no WRITTEN flag, it can be
4076          *   reused without COWing. This tree block will not be traced
4077          *   by btrfs_transaction::dirty_pages.
4078          *
4079          *   Now such dirty tree block will not be cleaned by any dirty
4080          *   extent io tree. Thus we don't want to submit such wild eb
4081          *   if the fs already has error.
4082          */
4083         if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4084                 ret = flush_write_bio(&epd);
4085         } else {
4086                 ret = -EROFS;
4087                 end_write_bio(&epd, ret);
4088         }
4089         return ret;
4090 }
4091
4092 /**
4093  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4094  * @mapping: address space structure to write
4095  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4096  * @data: data passed to __extent_writepage function
4097  *
4098  * If a page is already under I/O, write_cache_pages() skips it, even
4099  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4100  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4101  * and msync() need to guarantee that all the data which was dirty at the time
4102  * the call was made get new I/O started against them.  If wbc->sync_mode is
4103  * WB_SYNC_ALL then we were called for data integrity and we must wait for
4104  * existing IO to complete.
4105  */
4106 static int extent_write_cache_pages(struct address_space *mapping,
4107                              struct writeback_control *wbc,
4108                              struct extent_page_data *epd)
4109 {
4110         struct inode *inode = mapping->host;
4111         int ret = 0;
4112         int done = 0;
4113         int nr_to_write_done = 0;
4114         struct pagevec pvec;
4115         int nr_pages;
4116         pgoff_t index;
4117         pgoff_t end;            /* Inclusive */
4118         pgoff_t done_index;
4119         int range_whole = 0;
4120         int scanned = 0;
4121         xa_mark_t tag;
4122
4123         /*
4124          * We have to hold onto the inode so that ordered extents can do their
4125          * work when the IO finishes.  The alternative to this is failing to add
4126          * an ordered extent if the igrab() fails there and that is a huge pain
4127          * to deal with, so instead just hold onto the inode throughout the
4128          * writepages operation.  If it fails here we are freeing up the inode
4129          * anyway and we'd rather not waste our time writing out stuff that is
4130          * going to be truncated anyway.
4131          */
4132         if (!igrab(inode))
4133                 return 0;
4134
4135         pagevec_init(&pvec);
4136         if (wbc->range_cyclic) {
4137                 index = mapping->writeback_index; /* Start from prev offset */
4138                 end = -1;
4139                 /*
4140                  * Start from the beginning does not need to cycle over the
4141                  * range, mark it as scanned.
4142                  */
4143                 scanned = (index == 0);
4144         } else {
4145                 index = wbc->range_start >> PAGE_SHIFT;
4146                 end = wbc->range_end >> PAGE_SHIFT;
4147                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4148                         range_whole = 1;
4149                 scanned = 1;
4150         }
4151
4152         /*
4153          * We do the tagged writepage as long as the snapshot flush bit is set
4154          * and we are the first one who do the filemap_flush() on this inode.
4155          *
4156          * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4157          * not race in and drop the bit.
4158          */
4159         if (range_whole && wbc->nr_to_write == LONG_MAX &&
4160             test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4161                                &BTRFS_I(inode)->runtime_flags))
4162                 wbc->tagged_writepages = 1;
4163
4164         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4165                 tag = PAGECACHE_TAG_TOWRITE;
4166         else
4167                 tag = PAGECACHE_TAG_DIRTY;
4168 retry:
4169         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4170                 tag_pages_for_writeback(mapping, index, end);
4171         done_index = index;
4172         while (!done && !nr_to_write_done && (index <= end) &&
4173                         (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4174                                                 &index, end, tag))) {
4175                 unsigned i;
4176
4177                 for (i = 0; i < nr_pages; i++) {
4178                         struct page *page = pvec.pages[i];
4179
4180                         done_index = page->index + 1;
4181                         /*
4182                          * At this point we hold neither the i_pages lock nor
4183                          * the page lock: the page may be truncated or
4184                          * invalidated (changing page->mapping to NULL),
4185                          * or even swizzled back from swapper_space to
4186                          * tmpfs file mapping
4187                          */
4188                         if (!trylock_page(page)) {
4189                                 ret = flush_write_bio(epd);
4190                                 BUG_ON(ret < 0);
4191                                 lock_page(page);
4192                         }
4193
4194                         if (unlikely(page->mapping != mapping)) {
4195                                 unlock_page(page);
4196                                 continue;
4197                         }
4198
4199                         if (wbc->sync_mode != WB_SYNC_NONE) {
4200                                 if (PageWriteback(page)) {
4201                                         ret = flush_write_bio(epd);
4202                                         BUG_ON(ret < 0);
4203                                 }
4204                                 wait_on_page_writeback(page);
4205                         }
4206
4207                         if (PageWriteback(page) ||
4208                             !clear_page_dirty_for_io(page)) {
4209                                 unlock_page(page);
4210                                 continue;
4211                         }
4212
4213                         ret = __extent_writepage(page, wbc, epd);
4214                         if (ret < 0) {
4215                                 done = 1;
4216                                 break;
4217                         }
4218
4219                         /*
4220                          * the filesystem may choose to bump up nr_to_write.
4221                          * We have to make sure to honor the new nr_to_write
4222                          * at any time
4223                          */
4224                         nr_to_write_done = wbc->nr_to_write <= 0;
4225                 }
4226                 pagevec_release(&pvec);
4227                 cond_resched();
4228         }
4229         if (!scanned && !done) {
4230                 /*
4231                  * We hit the last page and there is more work to be done: wrap
4232                  * back to the start of the file
4233                  */
4234                 scanned = 1;
4235                 index = 0;
4236
4237                 /*
4238                  * If we're looping we could run into a page that is locked by a
4239                  * writer and that writer could be waiting on writeback for a
4240                  * page in our current bio, and thus deadlock, so flush the
4241                  * write bio here.
4242                  */
4243                 ret = flush_write_bio(epd);
4244                 if (!ret)
4245                         goto retry;
4246         }
4247
4248         if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4249                 mapping->writeback_index = done_index;
4250
4251         btrfs_add_delayed_iput(inode);
4252         return ret;
4253 }
4254
4255 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4256 {
4257         int ret;
4258         struct extent_page_data epd = {
4259                 .bio = NULL,
4260                 .extent_locked = 0,
4261                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4262         };
4263
4264         ret = __extent_writepage(page, wbc, &epd);
4265         ASSERT(ret <= 0);
4266         if (ret < 0) {
4267                 end_write_bio(&epd, ret);
4268                 return ret;
4269         }
4270
4271         ret = flush_write_bio(&epd);
4272         ASSERT(ret <= 0);
4273         return ret;
4274 }
4275
4276 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4277                               int mode)
4278 {
4279         int ret = 0;
4280         struct address_space *mapping = inode->i_mapping;
4281         struct page *page;
4282         unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4283                 PAGE_SHIFT;
4284
4285         struct extent_page_data epd = {
4286                 .bio = NULL,
4287                 .extent_locked = 1,
4288                 .sync_io = mode == WB_SYNC_ALL,
4289         };
4290         struct writeback_control wbc_writepages = {
4291                 .sync_mode      = mode,
4292                 .nr_to_write    = nr_pages * 2,
4293                 .range_start    = start,
4294                 .range_end      = end + 1,
4295                 /* We're called from an async helper function */
4296                 .punt_to_cgroup = 1,
4297                 .no_cgroup_owner = 1,
4298         };
4299
4300         wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4301         while (start <= end) {
4302                 page = find_get_page(mapping, start >> PAGE_SHIFT);
4303                 if (clear_page_dirty_for_io(page))
4304                         ret = __extent_writepage(page, &wbc_writepages, &epd);
4305                 else {
4306                         btrfs_writepage_endio_finish_ordered(page, start,
4307                                                     start + PAGE_SIZE - 1, 1);
4308                         unlock_page(page);
4309                 }
4310                 put_page(page);
4311                 start += PAGE_SIZE;
4312         }
4313
4314         ASSERT(ret <= 0);
4315         if (ret == 0)
4316                 ret = flush_write_bio(&epd);
4317         else
4318                 end_write_bio(&epd, ret);
4319
4320         wbc_detach_inode(&wbc_writepages);
4321         return ret;
4322 }
4323
4324 int extent_writepages(struct address_space *mapping,
4325                       struct writeback_control *wbc)
4326 {
4327         int ret = 0;
4328         struct extent_page_data epd = {
4329                 .bio = NULL,
4330                 .extent_locked = 0,
4331                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4332         };
4333
4334         ret = extent_write_cache_pages(mapping, wbc, &epd);
4335         ASSERT(ret <= 0);
4336         if (ret < 0) {
4337                 end_write_bio(&epd, ret);
4338                 return ret;
4339         }
4340         ret = flush_write_bio(&epd);
4341         return ret;
4342 }
4343
4344 void extent_readahead(struct readahead_control *rac)
4345 {
4346         struct bio *bio = NULL;
4347         unsigned long bio_flags = 0;
4348         struct page *pagepool[16];
4349         struct extent_map *em_cached = NULL;
4350         u64 prev_em_start = (u64)-1;
4351         int nr;
4352
4353         while ((nr = readahead_page_batch(rac, pagepool))) {
4354                 u64 contig_start = page_offset(pagepool[0]);
4355                 u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1;
4356
4357                 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4358
4359                 contiguous_readpages(pagepool, nr, contig_start, contig_end,
4360                                 &em_cached, &bio, &bio_flags, &prev_em_start);
4361         }
4362
4363         if (em_cached)
4364                 free_extent_map(em_cached);
4365
4366         if (bio) {
4367                 if (submit_one_bio(bio, 0, bio_flags))
4368                         return;
4369         }
4370 }
4371
4372 /*
4373  * basic invalidatepage code, this waits on any locked or writeback
4374  * ranges corresponding to the page, and then deletes any extent state
4375  * records from the tree
4376  */
4377 int extent_invalidatepage(struct extent_io_tree *tree,
4378                           struct page *page, unsigned long offset)
4379 {
4380         struct extent_state *cached_state = NULL;
4381         u64 start = page_offset(page);
4382         u64 end = start + PAGE_SIZE - 1;
4383         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4384
4385         start += ALIGN(offset, blocksize);
4386         if (start > end)
4387                 return 0;
4388
4389         lock_extent_bits(tree, start, end, &cached_state);
4390         wait_on_page_writeback(page);
4391         clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4392                          EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
4393         return 0;
4394 }
4395
4396 /*
4397  * a helper for releasepage, this tests for areas of the page that
4398  * are locked or under IO and drops the related state bits if it is safe
4399  * to drop the page.
4400  */
4401 static int try_release_extent_state(struct extent_io_tree *tree,
4402                                     struct page *page, gfp_t mask)
4403 {
4404         u64 start = page_offset(page);
4405         u64 end = start + PAGE_SIZE - 1;
4406         int ret = 1;
4407
4408         if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4409                 ret = 0;
4410         } else {
4411                 /*
4412                  * at this point we can safely clear everything except the
4413                  * locked bit and the nodatasum bit
4414                  */
4415                 ret = __clear_extent_bit(tree, start, end,
4416                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4417                                  0, 0, NULL, mask, NULL);
4418
4419                 /* if clear_extent_bit failed for enomem reasons,
4420                  * we can't allow the release to continue.
4421                  */
4422                 if (ret < 0)
4423                         ret = 0;
4424                 else
4425                         ret = 1;
4426         }
4427         return ret;
4428 }
4429
4430 /*
4431  * a helper for releasepage.  As long as there are no locked extents
4432  * in the range corresponding to the page, both state records and extent
4433  * map records are removed
4434  */
4435 int try_release_extent_mapping(struct page *page, gfp_t mask)
4436 {
4437         struct extent_map *em;
4438         u64 start = page_offset(page);
4439         u64 end = start + PAGE_SIZE - 1;
4440         struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4441         struct extent_io_tree *tree = &btrfs_inode->io_tree;
4442         struct extent_map_tree *map = &btrfs_inode->extent_tree;
4443
4444         if (gfpflags_allow_blocking(mask) &&
4445             page->mapping->host->i_size > SZ_16M) {
4446                 u64 len;
4447                 while (start <= end) {
4448                         struct btrfs_fs_info *fs_info;
4449                         u64 cur_gen;
4450
4451                         len = end - start + 1;
4452                         write_lock(&map->lock);
4453                         em = lookup_extent_mapping(map, start, len);
4454                         if (!em) {
4455                                 write_unlock(&map->lock);
4456                                 break;
4457                         }
4458                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4459                             em->start != start) {
4460                                 write_unlock(&map->lock);
4461                                 free_extent_map(em);
4462                                 break;
4463                         }
4464                         if (test_range_bit(tree, em->start,
4465                                            extent_map_end(em) - 1,
4466                                            EXTENT_LOCKED, 0, NULL))
4467                                 goto next;
4468                         /*
4469                          * If it's not in the list of modified extents, used
4470                          * by a fast fsync, we can remove it. If it's being
4471                          * logged we can safely remove it since fsync took an
4472                          * extra reference on the em.
4473                          */
4474                         if (list_empty(&em->list) ||
4475                             test_bit(EXTENT_FLAG_LOGGING, &em->flags))
4476                                 goto remove_em;
4477                         /*
4478                          * If it's in the list of modified extents, remove it
4479                          * only if its generation is older then the current one,
4480                          * in which case we don't need it for a fast fsync.
4481                          * Otherwise don't remove it, we could be racing with an
4482                          * ongoing fast fsync that could miss the new extent.
4483                          */
4484                         fs_info = btrfs_inode->root->fs_info;
4485                         spin_lock(&fs_info->trans_lock);
4486                         cur_gen = fs_info->generation;
4487                         spin_unlock(&fs_info->trans_lock);
4488                         if (em->generation >= cur_gen)
4489                                 goto next;
4490 remove_em:
4491                         /*
4492                          * We only remove extent maps that are not in the list of
4493                          * modified extents or that are in the list but with a
4494                          * generation lower then the current generation, so there
4495                          * is no need to set the full fsync flag on the inode (it
4496                          * hurts the fsync performance for workloads with a data
4497                          * size that exceeds or is close to the system's memory).
4498                          */
4499                         remove_extent_mapping(map, em);
4500                         /* once for the rb tree */
4501                         free_extent_map(em);
4502 next:
4503                         start = extent_map_end(em);
4504                         write_unlock(&map->lock);
4505
4506                         /* once for us */
4507                         free_extent_map(em);
4508
4509                         cond_resched(); /* Allow large-extent preemption. */
4510                 }
4511         }
4512         return try_release_extent_state(tree, page, mask);
4513 }
4514
4515 /*
4516  * helper function for fiemap, which doesn't want to see any holes.
4517  * This maps until we find something past 'last'
4518  */
4519 static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
4520                                                 u64 offset, u64 last)
4521 {
4522         u64 sectorsize = btrfs_inode_sectorsize(inode);
4523         struct extent_map *em;
4524         u64 len;
4525
4526         if (offset >= last)
4527                 return NULL;
4528
4529         while (1) {
4530                 len = last - offset;
4531                 if (len == 0)
4532                         break;
4533                 len = ALIGN(len, sectorsize);
4534                 em = btrfs_get_extent_fiemap(inode, offset, len);
4535                 if (IS_ERR_OR_NULL(em))
4536                         return em;
4537
4538                 /* if this isn't a hole return it */
4539                 if (em->block_start != EXTENT_MAP_HOLE)
4540                         return em;
4541
4542                 /* this is a hole, advance to the next extent */
4543                 offset = extent_map_end(em);
4544                 free_extent_map(em);
4545                 if (offset >= last)
4546                         break;
4547         }
4548         return NULL;
4549 }
4550
4551 /*
4552  * To cache previous fiemap extent
4553  *
4554  * Will be used for merging fiemap extent
4555  */
4556 struct fiemap_cache {
4557         u64 offset;
4558         u64 phys;
4559         u64 len;
4560         u32 flags;
4561         bool cached;
4562 };
4563
4564 /*
4565  * Helper to submit fiemap extent.
4566  *
4567  * Will try to merge current fiemap extent specified by @offset, @phys,
4568  * @len and @flags with cached one.
4569  * And only when we fails to merge, cached one will be submitted as
4570  * fiemap extent.
4571  *
4572  * Return value is the same as fiemap_fill_next_extent().
4573  */
4574 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4575                                 struct fiemap_cache *cache,
4576                                 u64 offset, u64 phys, u64 len, u32 flags)
4577 {
4578         int ret = 0;
4579
4580         if (!cache->cached)
4581                 goto assign;
4582
4583         /*
4584          * Sanity check, extent_fiemap() should have ensured that new
4585          * fiemap extent won't overlap with cached one.
4586          * Not recoverable.
4587          *
4588          * NOTE: Physical address can overlap, due to compression
4589          */
4590         if (cache->offset + cache->len > offset) {
4591                 WARN_ON(1);
4592                 return -EINVAL;
4593         }
4594
4595         /*
4596          * Only merges fiemap extents if
4597          * 1) Their logical addresses are continuous
4598          *
4599          * 2) Their physical addresses are continuous
4600          *    So truly compressed (physical size smaller than logical size)
4601          *    extents won't get merged with each other
4602          *
4603          * 3) Share same flags except FIEMAP_EXTENT_LAST
4604          *    So regular extent won't get merged with prealloc extent
4605          */
4606         if (cache->offset + cache->len  == offset &&
4607             cache->phys + cache->len == phys  &&
4608             (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4609                         (flags & ~FIEMAP_EXTENT_LAST)) {
4610                 cache->len += len;
4611                 cache->flags |= flags;
4612                 goto try_submit_last;
4613         }
4614
4615         /* Not mergeable, need to submit cached one */
4616         ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4617                                       cache->len, cache->flags);
4618         cache->cached = false;
4619         if (ret)
4620                 return ret;
4621 assign:
4622         cache->cached = true;
4623         cache->offset = offset;
4624         cache->phys = phys;
4625         cache->len = len;
4626         cache->flags = flags;
4627 try_submit_last:
4628         if (cache->flags & FIEMAP_EXTENT_LAST) {
4629                 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4630                                 cache->phys, cache->len, cache->flags);
4631                 cache->cached = false;
4632         }
4633         return ret;
4634 }
4635
4636 /*
4637  * Emit last fiemap cache
4638  *
4639  * The last fiemap cache may still be cached in the following case:
4640  * 0                  4k                    8k
4641  * |<- Fiemap range ->|
4642  * |<------------  First extent ----------->|
4643  *
4644  * In this case, the first extent range will be cached but not emitted.
4645  * So we must emit it before ending extent_fiemap().
4646  */
4647 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4648                                   struct fiemap_cache *cache)
4649 {
4650         int ret;
4651
4652         if (!cache->cached)
4653                 return 0;
4654
4655         ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4656                                       cache->len, cache->flags);
4657         cache->cached = false;
4658         if (ret > 0)
4659                 ret = 0;
4660         return ret;
4661 }
4662
4663 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
4664                   u64 start, u64 len)
4665 {
4666         int ret = 0;
4667         u64 off = start;
4668         u64 max = start + len;
4669         u32 flags = 0;
4670         u32 found_type;
4671         u64 last;
4672         u64 last_for_get_extent = 0;
4673         u64 disko = 0;
4674         u64 isize = i_size_read(&inode->vfs_inode);
4675         struct btrfs_key found_key;
4676         struct extent_map *em = NULL;
4677         struct extent_state *cached_state = NULL;
4678         struct btrfs_path *path;
4679         struct btrfs_root *root = inode->root;
4680         struct fiemap_cache cache = { 0 };
4681         struct ulist *roots;
4682         struct ulist *tmp_ulist;
4683         int end = 0;
4684         u64 em_start = 0;
4685         u64 em_len = 0;
4686         u64 em_end = 0;
4687
4688         if (len == 0)
4689                 return -EINVAL;
4690
4691         path = btrfs_alloc_path();
4692         if (!path)
4693                 return -ENOMEM;
4694         path->leave_spinning = 1;
4695
4696         roots = ulist_alloc(GFP_KERNEL);
4697         tmp_ulist = ulist_alloc(GFP_KERNEL);
4698         if (!roots || !tmp_ulist) {
4699                 ret = -ENOMEM;
4700                 goto out_free_ulist;
4701         }
4702
4703         start = round_down(start, btrfs_inode_sectorsize(inode));
4704         len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4705
4706         /*
4707          * lookup the last file extent.  We're not using i_size here
4708          * because there might be preallocation past i_size
4709          */
4710         ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4711                                        0);
4712         if (ret < 0) {
4713                 goto out_free_ulist;
4714         } else {
4715                 WARN_ON(!ret);
4716                 if (ret == 1)
4717                         ret = 0;
4718         }
4719
4720         path->slots[0]--;
4721         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4722         found_type = found_key.type;
4723
4724         /* No extents, but there might be delalloc bits */
4725         if (found_key.objectid != btrfs_ino(inode) ||
4726             found_type != BTRFS_EXTENT_DATA_KEY) {
4727                 /* have to trust i_size as the end */
4728                 last = (u64)-1;
4729                 last_for_get_extent = isize;
4730         } else {
4731                 /*
4732                  * remember the start of the last extent.  There are a
4733                  * bunch of different factors that go into the length of the
4734                  * extent, so its much less complex to remember where it started
4735                  */
4736                 last = found_key.offset;
4737                 last_for_get_extent = last + 1;
4738         }
4739         btrfs_release_path(path);
4740
4741         /*
4742          * we might have some extents allocated but more delalloc past those
4743          * extents.  so, we trust isize unless the start of the last extent is
4744          * beyond isize
4745          */
4746         if (last < isize) {
4747                 last = (u64)-1;
4748                 last_for_get_extent = isize;
4749         }
4750
4751         lock_extent_bits(&inode->io_tree, start, start + len - 1,
4752                          &cached_state);
4753
4754         em = get_extent_skip_holes(inode, start, last_for_get_extent);
4755         if (!em)
4756                 goto out;
4757         if (IS_ERR(em)) {
4758                 ret = PTR_ERR(em);
4759                 goto out;
4760         }
4761
4762         while (!end) {
4763                 u64 offset_in_extent = 0;
4764
4765                 /* break if the extent we found is outside the range */
4766                 if (em->start >= max || extent_map_end(em) < off)
4767                         break;
4768
4769                 /*
4770                  * get_extent may return an extent that starts before our
4771                  * requested range.  We have to make sure the ranges
4772                  * we return to fiemap always move forward and don't
4773                  * overlap, so adjust the offsets here
4774                  */
4775                 em_start = max(em->start, off);
4776
4777                 /*
4778                  * record the offset from the start of the extent
4779                  * for adjusting the disk offset below.  Only do this if the
4780                  * extent isn't compressed since our in ram offset may be past
4781                  * what we have actually allocated on disk.
4782                  */
4783                 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4784                         offset_in_extent = em_start - em->start;
4785                 em_end = extent_map_end(em);
4786                 em_len = em_end - em_start;
4787                 flags = 0;
4788                 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4789                         disko = em->block_start + offset_in_extent;
4790                 else
4791                         disko = 0;
4792
4793                 /*
4794                  * bump off for our next call to get_extent
4795                  */
4796                 off = extent_map_end(em);
4797                 if (off >= max)
4798                         end = 1;
4799
4800                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4801                         end = 1;
4802                         flags |= FIEMAP_EXTENT_LAST;
4803                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4804                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4805                                   FIEMAP_EXTENT_NOT_ALIGNED);
4806                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4807                         flags |= (FIEMAP_EXTENT_DELALLOC |
4808                                   FIEMAP_EXTENT_UNKNOWN);
4809                 } else if (fieinfo->fi_extents_max) {
4810                         u64 bytenr = em->block_start -
4811                                 (em->start - em->orig_start);
4812
4813                         /*
4814                          * As btrfs supports shared space, this information
4815                          * can be exported to userspace tools via
4816                          * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4817                          * then we're just getting a count and we can skip the
4818                          * lookup stuff.
4819                          */
4820                         ret = btrfs_check_shared(root, btrfs_ino(inode),
4821                                                  bytenr, roots, tmp_ulist);
4822                         if (ret < 0)
4823                                 goto out_free;
4824                         if (ret)
4825                                 flags |= FIEMAP_EXTENT_SHARED;
4826                         ret = 0;
4827                 }
4828                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4829                         flags |= FIEMAP_EXTENT_ENCODED;
4830                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4831                         flags |= FIEMAP_EXTENT_UNWRITTEN;
4832
4833                 free_extent_map(em);
4834                 em = NULL;
4835                 if ((em_start >= last) || em_len == (u64)-1 ||
4836                    (last == (u64)-1 && isize <= em_end)) {
4837                         flags |= FIEMAP_EXTENT_LAST;
4838                         end = 1;
4839                 }
4840
4841                 /* now scan forward to see if this is really the last extent. */
4842                 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4843                 if (IS_ERR(em)) {
4844                         ret = PTR_ERR(em);
4845                         goto out;
4846                 }
4847                 if (!em) {
4848                         flags |= FIEMAP_EXTENT_LAST;
4849                         end = 1;
4850                 }
4851                 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4852                                            em_len, flags);
4853                 if (ret) {
4854                         if (ret == 1)
4855                                 ret = 0;
4856                         goto out_free;
4857                 }
4858         }
4859 out_free:
4860         if (!ret)
4861                 ret = emit_last_fiemap_cache(fieinfo, &cache);
4862         free_extent_map(em);
4863 out:
4864         unlock_extent_cached(&inode->io_tree, start, start + len - 1,
4865                              &cached_state);
4866
4867 out_free_ulist:
4868         btrfs_free_path(path);
4869         ulist_free(roots);
4870         ulist_free(tmp_ulist);
4871         return ret;
4872 }
4873
4874 static void __free_extent_buffer(struct extent_buffer *eb)
4875 {
4876         kmem_cache_free(extent_buffer_cache, eb);
4877 }
4878
4879 int extent_buffer_under_io(const struct extent_buffer *eb)
4880 {
4881         return (atomic_read(&eb->io_pages) ||
4882                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4883                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4884 }
4885
4886 /*
4887  * Release all pages attached to the extent buffer.
4888  */
4889 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4890 {
4891         int i;
4892         int num_pages;
4893         int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4894
4895         BUG_ON(extent_buffer_under_io(eb));
4896
4897         num_pages = num_extent_pages(eb);
4898         for (i = 0; i < num_pages; i++) {
4899                 struct page *page = eb->pages[i];
4900
4901                 if (!page)
4902                         continue;
4903                 if (mapped)
4904                         spin_lock(&page->mapping->private_lock);
4905                 /*
4906                  * We do this since we'll remove the pages after we've
4907                  * removed the eb from the radix tree, so we could race
4908                  * and have this page now attached to the new eb.  So
4909                  * only clear page_private if it's still connected to
4910                  * this eb.
4911                  */
4912                 if (PagePrivate(page) &&
4913                     page->private == (unsigned long)eb) {
4914                         BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4915                         BUG_ON(PageDirty(page));
4916                         BUG_ON(PageWriteback(page));
4917                         /*
4918                          * We need to make sure we haven't be attached
4919                          * to a new eb.
4920                          */
4921                         detach_page_private(page);
4922                 }
4923
4924                 if (mapped)
4925                         spin_unlock(&page->mapping->private_lock);
4926
4927                 /* One for when we allocated the page */
4928                 put_page(page);
4929         }
4930 }
4931
4932 /*
4933  * Helper for releasing the extent buffer.
4934  */
4935 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4936 {
4937         btrfs_release_extent_buffer_pages(eb);
4938         btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
4939         __free_extent_buffer(eb);
4940 }
4941
4942 static struct extent_buffer *
4943 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4944                       unsigned long len)
4945 {
4946         struct extent_buffer *eb = NULL;
4947
4948         eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4949         eb->start = start;
4950         eb->len = len;
4951         eb->fs_info = fs_info;
4952         eb->bflags = 0;
4953         rwlock_init(&eb->lock);
4954         atomic_set(&eb->blocking_readers, 0);
4955         eb->blocking_writers = 0;
4956         eb->lock_recursed = false;
4957         init_waitqueue_head(&eb->write_lock_wq);
4958         init_waitqueue_head(&eb->read_lock_wq);
4959
4960         btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
4961                              &fs_info->allocated_ebs);
4962
4963         spin_lock_init(&eb->refs_lock);
4964         atomic_set(&eb->refs, 1);
4965         atomic_set(&eb->io_pages, 0);
4966
4967         /*
4968          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4969          */
4970         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4971                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4972         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4973
4974 #ifdef CONFIG_BTRFS_DEBUG
4975         eb->spinning_writers = 0;
4976         atomic_set(&eb->spinning_readers, 0);
4977         atomic_set(&eb->read_locks, 0);
4978         eb->write_locks = 0;
4979 #endif
4980
4981         return eb;
4982 }
4983
4984 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
4985 {
4986         int i;
4987         struct page *p;
4988         struct extent_buffer *new;
4989         int num_pages = num_extent_pages(src);
4990
4991         new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4992         if (new == NULL)
4993                 return NULL;
4994
4995         for (i = 0; i < num_pages; i++) {
4996                 p = alloc_page(GFP_NOFS);
4997                 if (!p) {
4998                         btrfs_release_extent_buffer(new);
4999                         return NULL;
5000                 }
5001                 attach_extent_buffer_page(new, p);
5002                 WARN_ON(PageDirty(p));
5003                 SetPageUptodate(p);
5004                 new->pages[i] = p;
5005                 copy_page(page_address(p), page_address(src->pages[i]));
5006         }
5007
5008         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
5009         set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5010
5011         return new;
5012 }
5013
5014 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5015                                                   u64 start, unsigned long len)
5016 {
5017         struct extent_buffer *eb;
5018         int num_pages;
5019         int i;
5020
5021         eb = __alloc_extent_buffer(fs_info, start, len);
5022         if (!eb)
5023                 return NULL;
5024
5025         num_pages = num_extent_pages(eb);
5026         for (i = 0; i < num_pages; i++) {
5027                 eb->pages[i] = alloc_page(GFP_NOFS);
5028                 if (!eb->pages[i])
5029                         goto err;
5030         }
5031         set_extent_buffer_uptodate(eb);
5032         btrfs_set_header_nritems(eb, 0);
5033         set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5034
5035         return eb;
5036 err:
5037         for (; i > 0; i--)
5038                 __free_page(eb->pages[i - 1]);
5039         __free_extent_buffer(eb);
5040         return NULL;
5041 }
5042
5043 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5044                                                 u64 start)
5045 {
5046         return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5047 }
5048
5049 static void check_buffer_tree_ref(struct extent_buffer *eb)
5050 {
5051         int refs;
5052         /*
5053          * The TREE_REF bit is first set when the extent_buffer is added
5054          * to the radix tree. It is also reset, if unset, when a new reference
5055          * is created by find_extent_buffer.
5056          *
5057          * It is only cleared in two cases: freeing the last non-tree
5058          * reference to the extent_buffer when its STALE bit is set or
5059          * calling releasepage when the tree reference is the only reference.
5060          *
5061          * In both cases, care is taken to ensure that the extent_buffer's
5062          * pages are not under io. However, releasepage can be concurrently
5063          * called with creating new references, which is prone to race
5064          * conditions between the calls to check_buffer_tree_ref in those
5065          * codepaths and clearing TREE_REF in try_release_extent_buffer.
5066          *
5067          * The actual lifetime of the extent_buffer in the radix tree is
5068          * adequately protected by the refcount, but the TREE_REF bit and
5069          * its corresponding reference are not. To protect against this
5070          * class of races, we call check_buffer_tree_ref from the codepaths
5071          * which trigger io after they set eb->io_pages. Note that once io is
5072          * initiated, TREE_REF can no longer be cleared, so that is the
5073          * moment at which any such race is best fixed.
5074          */
5075         refs = atomic_read(&eb->refs);
5076         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5077                 return;
5078
5079         spin_lock(&eb->refs_lock);
5080         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5081                 atomic_inc(&eb->refs);
5082         spin_unlock(&eb->refs_lock);
5083 }
5084
5085 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5086                 struct page *accessed)
5087 {
5088         int num_pages, i;
5089
5090         check_buffer_tree_ref(eb);
5091
5092         num_pages = num_extent_pages(eb);
5093         for (i = 0; i < num_pages; i++) {
5094                 struct page *p = eb->pages[i];
5095
5096                 if (p != accessed)
5097                         mark_page_accessed(p);
5098         }
5099 }
5100
5101 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5102                                          u64 start)
5103 {
5104         struct extent_buffer *eb;
5105
5106         rcu_read_lock();
5107         eb = radix_tree_lookup(&fs_info->buffer_radix,
5108                                start >> PAGE_SHIFT);
5109         if (eb && atomic_inc_not_zero(&eb->refs)) {
5110                 rcu_read_unlock();
5111                 /*
5112                  * Lock our eb's refs_lock to avoid races with
5113                  * free_extent_buffer. When we get our eb it might be flagged
5114                  * with EXTENT_BUFFER_STALE and another task running
5115                  * free_extent_buffer might have seen that flag set,
5116                  * eb->refs == 2, that the buffer isn't under IO (dirty and
5117                  * writeback flags not set) and it's still in the tree (flag
5118                  * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5119                  * of decrementing the extent buffer's reference count twice.
5120                  * So here we could race and increment the eb's reference count,
5121                  * clear its stale flag, mark it as dirty and drop our reference
5122                  * before the other task finishes executing free_extent_buffer,
5123                  * which would later result in an attempt to free an extent
5124                  * buffer that is dirty.
5125                  */
5126                 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5127                         spin_lock(&eb->refs_lock);
5128                         spin_unlock(&eb->refs_lock);
5129                 }
5130                 mark_extent_buffer_accessed(eb, NULL);
5131                 return eb;
5132         }
5133         rcu_read_unlock();
5134
5135         return NULL;
5136 }
5137
5138 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5139 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5140                                         u64 start)
5141 {
5142         struct extent_buffer *eb, *exists = NULL;
5143         int ret;
5144
5145         eb = find_extent_buffer(fs_info, start);
5146         if (eb)
5147                 return eb;
5148         eb = alloc_dummy_extent_buffer(fs_info, start);
5149         if (!eb)
5150                 return ERR_PTR(-ENOMEM);
5151         eb->fs_info = fs_info;
5152 again:
5153         ret = radix_tree_preload(GFP_NOFS);
5154         if (ret) {
5155                 exists = ERR_PTR(ret);
5156                 goto free_eb;
5157         }
5158         spin_lock(&fs_info->buffer_lock);
5159         ret = radix_tree_insert(&fs_info->buffer_radix,
5160                                 start >> PAGE_SHIFT, eb);
5161         spin_unlock(&fs_info->buffer_lock);
5162         radix_tree_preload_end();
5163         if (ret == -EEXIST) {
5164                 exists = find_extent_buffer(fs_info, start);
5165                 if (exists)
5166                         goto free_eb;
5167                 else
5168                         goto again;
5169         }
5170         check_buffer_tree_ref(eb);
5171         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5172
5173         return eb;
5174 free_eb:
5175         btrfs_release_extent_buffer(eb);
5176         return exists;
5177 }
5178 #endif
5179
5180 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5181                                           u64 start)
5182 {
5183         unsigned long len = fs_info->nodesize;
5184         int num_pages;
5185         int i;
5186         unsigned long index = start >> PAGE_SHIFT;
5187         struct extent_buffer *eb;
5188         struct extent_buffer *exists = NULL;
5189         struct page *p;
5190         struct address_space *mapping = fs_info->btree_inode->i_mapping;
5191         int uptodate = 1;
5192         int ret;
5193
5194         if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5195                 btrfs_err(fs_info, "bad tree block start %llu", start);
5196                 return ERR_PTR(-EINVAL);
5197         }
5198
5199         eb = find_extent_buffer(fs_info, start);
5200         if (eb)
5201                 return eb;
5202
5203         eb = __alloc_extent_buffer(fs_info, start, len);
5204         if (!eb)
5205                 return ERR_PTR(-ENOMEM);
5206
5207         num_pages = num_extent_pages(eb);
5208         for (i = 0; i < num_pages; i++, index++) {
5209                 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5210                 if (!p) {
5211                         exists = ERR_PTR(-ENOMEM);
5212                         goto free_eb;
5213                 }
5214
5215                 spin_lock(&mapping->private_lock);
5216                 if (PagePrivate(p)) {
5217                         /*
5218                          * We could have already allocated an eb for this page
5219                          * and attached one so lets see if we can get a ref on
5220                          * the existing eb, and if we can we know it's good and
5221                          * we can just return that one, else we know we can just
5222                          * overwrite page->private.
5223                          */
5224                         exists = (struct extent_buffer *)p->private;
5225                         if (atomic_inc_not_zero(&exists->refs)) {
5226                                 spin_unlock(&mapping->private_lock);
5227                                 unlock_page(p);
5228                                 put_page(p);
5229                                 mark_extent_buffer_accessed(exists, p);
5230                                 goto free_eb;
5231                         }
5232                         exists = NULL;
5233
5234                         /*
5235                          * Do this so attach doesn't complain and we need to
5236                          * drop the ref the old guy had.
5237                          */
5238                         ClearPagePrivate(p);
5239                         WARN_ON(PageDirty(p));
5240                         put_page(p);
5241                 }
5242                 attach_extent_buffer_page(eb, p);
5243                 spin_unlock(&mapping->private_lock);
5244                 WARN_ON(PageDirty(p));
5245                 eb->pages[i] = p;
5246                 if (!PageUptodate(p))
5247                         uptodate = 0;
5248
5249                 /*
5250                  * We can't unlock the pages just yet since the extent buffer
5251                  * hasn't been properly inserted in the radix tree, this
5252                  * opens a race with btree_releasepage which can free a page
5253                  * while we are still filling in all pages for the buffer and
5254                  * we could crash.
5255                  */
5256         }
5257         if (uptodate)
5258                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5259 again:
5260         ret = radix_tree_preload(GFP_NOFS);
5261         if (ret) {
5262                 exists = ERR_PTR(ret);
5263                 goto free_eb;
5264         }
5265
5266         spin_lock(&fs_info->buffer_lock);
5267         ret = radix_tree_insert(&fs_info->buffer_radix,
5268                                 start >> PAGE_SHIFT, eb);
5269         spin_unlock(&fs_info->buffer_lock);
5270         radix_tree_preload_end();
5271         if (ret == -EEXIST) {
5272                 exists = find_extent_buffer(fs_info, start);
5273                 if (exists)
5274                         goto free_eb;
5275                 else
5276                         goto again;
5277         }
5278         /* add one reference for the tree */
5279         check_buffer_tree_ref(eb);
5280         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5281
5282         /*
5283          * Now it's safe to unlock the pages because any calls to
5284          * btree_releasepage will correctly detect that a page belongs to a
5285          * live buffer and won't free them prematurely.
5286          */
5287         for (i = 0; i < num_pages; i++)
5288                 unlock_page(eb->pages[i]);
5289         return eb;
5290
5291 free_eb:
5292         WARN_ON(!atomic_dec_and_test(&eb->refs));
5293         for (i = 0; i < num_pages; i++) {
5294                 if (eb->pages[i])
5295                         unlock_page(eb->pages[i]);
5296         }
5297
5298         btrfs_release_extent_buffer(eb);
5299         return exists;
5300 }
5301
5302 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5303 {
5304         struct extent_buffer *eb =
5305                         container_of(head, struct extent_buffer, rcu_head);
5306
5307         __free_extent_buffer(eb);
5308 }
5309
5310 static int release_extent_buffer(struct extent_buffer *eb)
5311         __releases(&eb->refs_lock)
5312 {
5313         lockdep_assert_held(&eb->refs_lock);
5314
5315         WARN_ON(atomic_read(&eb->refs) == 0);
5316         if (atomic_dec_and_test(&eb->refs)) {
5317                 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5318                         struct btrfs_fs_info *fs_info = eb->fs_info;
5319
5320                         spin_unlock(&eb->refs_lock);
5321
5322                         spin_lock(&fs_info->buffer_lock);
5323                         radix_tree_delete(&fs_info->buffer_radix,
5324                                           eb->start >> PAGE_SHIFT);
5325                         spin_unlock(&fs_info->buffer_lock);
5326                 } else {
5327                         spin_unlock(&eb->refs_lock);
5328                 }
5329
5330                 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5331                 /* Should be safe to release our pages at this point */
5332                 btrfs_release_extent_buffer_pages(eb);
5333 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5334                 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5335                         __free_extent_buffer(eb);
5336                         return 1;
5337                 }
5338 #endif
5339                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5340                 return 1;
5341         }
5342         spin_unlock(&eb->refs_lock);
5343
5344         return 0;
5345 }
5346
5347 void free_extent_buffer(struct extent_buffer *eb)
5348 {
5349         int refs;
5350         int old;
5351         if (!eb)
5352                 return;
5353
5354         while (1) {
5355                 refs = atomic_read(&eb->refs);
5356                 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5357                     || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5358                         refs == 1))
5359                         break;
5360                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5361                 if (old == refs)
5362                         return;
5363         }
5364
5365         spin_lock(&eb->refs_lock);
5366         if (atomic_read(&eb->refs) == 2 &&
5367             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5368             !extent_buffer_under_io(eb) &&
5369             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5370                 atomic_dec(&eb->refs);
5371
5372         /*
5373          * I know this is terrible, but it's temporary until we stop tracking
5374          * the uptodate bits and such for the extent buffers.
5375          */
5376         release_extent_buffer(eb);
5377 }
5378
5379 void free_extent_buffer_stale(struct extent_buffer *eb)
5380 {
5381         if (!eb)
5382                 return;
5383
5384         spin_lock(&eb->refs_lock);
5385         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5386
5387         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5388             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5389                 atomic_dec(&eb->refs);
5390         release_extent_buffer(eb);
5391 }
5392
5393 void clear_extent_buffer_dirty(const struct extent_buffer *eb)
5394 {
5395         int i;
5396         int num_pages;
5397         struct page *page;
5398
5399         num_pages = num_extent_pages(eb);
5400
5401         for (i = 0; i < num_pages; i++) {
5402                 page = eb->pages[i];
5403                 if (!PageDirty(page))
5404                         continue;
5405
5406                 lock_page(page);
5407                 WARN_ON(!PagePrivate(page));
5408
5409                 clear_page_dirty_for_io(page);
5410                 xa_lock_irq(&page->mapping->i_pages);
5411                 if (!PageDirty(page))
5412                         __xa_clear_mark(&page->mapping->i_pages,
5413                                         page_index(page), PAGECACHE_TAG_DIRTY);
5414                 xa_unlock_irq(&page->mapping->i_pages);
5415                 ClearPageError(page);
5416                 unlock_page(page);
5417         }
5418         WARN_ON(atomic_read(&eb->refs) == 0);
5419 }
5420
5421 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5422 {
5423         int i;
5424         int num_pages;
5425         bool was_dirty;
5426
5427         check_buffer_tree_ref(eb);
5428
5429         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5430
5431         num_pages = num_extent_pages(eb);
5432         WARN_ON(atomic_read(&eb->refs) == 0);
5433         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5434
5435         if (!was_dirty)
5436                 for (i = 0; i < num_pages; i++)
5437                         set_page_dirty(eb->pages[i]);
5438
5439 #ifdef CONFIG_BTRFS_DEBUG
5440         for (i = 0; i < num_pages; i++)
5441                 ASSERT(PageDirty(eb->pages[i]));
5442 #endif
5443
5444         return was_dirty;
5445 }
5446
5447 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5448 {
5449         int i;
5450         struct page *page;
5451         int num_pages;
5452
5453         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5454         num_pages = num_extent_pages(eb);
5455         for (i = 0; i < num_pages; i++) {
5456                 page = eb->pages[i];
5457                 if (page)
5458                         ClearPageUptodate(page);
5459         }
5460 }
5461
5462 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5463 {
5464         int i;
5465         struct page *page;
5466         int num_pages;
5467
5468         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5469         num_pages = num_extent_pages(eb);
5470         for (i = 0; i < num_pages; i++) {
5471                 page = eb->pages[i];
5472                 SetPageUptodate(page);
5473         }
5474 }
5475
5476 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5477 {
5478         int i;
5479         struct page *page;
5480         int err;
5481         int ret = 0;
5482         int locked_pages = 0;
5483         int all_uptodate = 1;
5484         int num_pages;
5485         unsigned long num_reads = 0;
5486         struct bio *bio = NULL;
5487         unsigned long bio_flags = 0;
5488
5489         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5490                 return 0;
5491
5492         num_pages = num_extent_pages(eb);
5493         for (i = 0; i < num_pages; i++) {
5494                 page = eb->pages[i];
5495                 if (wait == WAIT_NONE) {
5496                         if (!trylock_page(page))
5497                                 goto unlock_exit;
5498                 } else {
5499                         lock_page(page);
5500                 }
5501                 locked_pages++;
5502         }
5503         /*
5504          * We need to firstly lock all pages to make sure that
5505          * the uptodate bit of our pages won't be affected by
5506          * clear_extent_buffer_uptodate().
5507          */
5508         for (i = 0; i < num_pages; i++) {
5509                 page = eb->pages[i];
5510                 if (!PageUptodate(page)) {
5511                         num_reads++;
5512                         all_uptodate = 0;
5513                 }
5514         }
5515
5516         if (all_uptodate) {
5517                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5518                 goto unlock_exit;
5519         }
5520
5521         clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5522         eb->read_mirror = 0;
5523         atomic_set(&eb->io_pages, num_reads);
5524         /*
5525          * It is possible for releasepage to clear the TREE_REF bit before we
5526          * set io_pages. See check_buffer_tree_ref for a more detailed comment.
5527          */
5528         check_buffer_tree_ref(eb);
5529         for (i = 0; i < num_pages; i++) {
5530                 page = eb->pages[i];
5531
5532                 if (!PageUptodate(page)) {
5533                         if (ret) {
5534                                 atomic_dec(&eb->io_pages);
5535                                 unlock_page(page);
5536                                 continue;
5537                         }
5538
5539                         ClearPageError(page);
5540                         err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
5541                                          page, page_offset(page), PAGE_SIZE, 0,
5542                                          &bio, end_bio_extent_readpage,
5543                                          mirror_num, 0, 0, false);
5544                         if (err) {
5545                                 /*
5546                                  * We failed to submit the bio so it's the
5547                                  * caller's responsibility to perform cleanup
5548                                  * i.e unlock page/set error bit.
5549                                  */
5550                                 ret = err;
5551                                 SetPageError(page);
5552                                 unlock_page(page);
5553                                 atomic_dec(&eb->io_pages);
5554                         }
5555                 } else {
5556                         unlock_page(page);
5557                 }
5558         }
5559
5560         if (bio) {
5561                 err = submit_one_bio(bio, mirror_num, bio_flags);
5562                 if (err)
5563                         return err;
5564         }
5565
5566         if (ret || wait != WAIT_COMPLETE)
5567                 return ret;
5568
5569         for (i = 0; i < num_pages; i++) {
5570                 page = eb->pages[i];
5571                 wait_on_page_locked(page);
5572                 if (!PageUptodate(page))
5573                         ret = -EIO;
5574         }
5575
5576         return ret;
5577
5578 unlock_exit:
5579         while (locked_pages > 0) {
5580                 locked_pages--;
5581                 page = eb->pages[locked_pages];
5582                 unlock_page(page);
5583         }
5584         return ret;
5585 }
5586
5587 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
5588                             unsigned long len)
5589 {
5590         btrfs_warn(eb->fs_info,
5591                 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
5592                 eb->start, eb->len, start, len);
5593         WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5594
5595         return true;
5596 }
5597
5598 /*
5599  * Check if the [start, start + len) range is valid before reading/writing
5600  * the eb.
5601  * NOTE: @start and @len are offset inside the eb, not logical address.
5602  *
5603  * Caller should not touch the dst/src memory if this function returns error.
5604  */
5605 static inline int check_eb_range(const struct extent_buffer *eb,
5606                                  unsigned long start, unsigned long len)
5607 {
5608         unsigned long offset;
5609
5610         /* start, start + len should not go beyond eb->len nor overflow */
5611         if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
5612                 return report_eb_range(eb, start, len);
5613
5614         return false;
5615 }
5616
5617 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5618                         unsigned long start, unsigned long len)
5619 {
5620         size_t cur;
5621         size_t offset;
5622         struct page *page;
5623         char *kaddr;
5624         char *dst = (char *)dstv;
5625         unsigned long i = start >> PAGE_SHIFT;
5626
5627         if (check_eb_range(eb, start, len))
5628                 return;
5629
5630         offset = offset_in_page(start);
5631
5632         while (len > 0) {
5633                 page = eb->pages[i];
5634
5635                 cur = min(len, (PAGE_SIZE - offset));
5636                 kaddr = page_address(page);
5637                 memcpy(dst, kaddr + offset, cur);
5638
5639                 dst += cur;
5640                 len -= cur;
5641                 offset = 0;
5642                 i++;
5643         }
5644 }
5645
5646 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
5647                                        void __user *dstv,
5648                                        unsigned long start, unsigned long len)
5649 {
5650         size_t cur;
5651         size_t offset;
5652         struct page *page;
5653         char *kaddr;
5654         char __user *dst = (char __user *)dstv;
5655         unsigned long i = start >> PAGE_SHIFT;
5656         int ret = 0;
5657
5658         WARN_ON(start > eb->len);
5659         WARN_ON(start + len > eb->start + eb->len);
5660
5661         offset = offset_in_page(start);
5662
5663         while (len > 0) {
5664                 page = eb->pages[i];
5665
5666                 cur = min(len, (PAGE_SIZE - offset));
5667                 kaddr = page_address(page);
5668                 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
5669                         ret = -EFAULT;
5670                         break;
5671                 }
5672
5673                 dst += cur;
5674                 len -= cur;
5675                 offset = 0;
5676                 i++;
5677         }
5678
5679         return ret;
5680 }
5681
5682 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5683                          unsigned long start, unsigned long len)
5684 {
5685         size_t cur;
5686         size_t offset;
5687         struct page *page;
5688         char *kaddr;
5689         char *ptr = (char *)ptrv;
5690         unsigned long i = start >> PAGE_SHIFT;
5691         int ret = 0;
5692
5693         if (check_eb_range(eb, start, len))
5694                 return -EINVAL;
5695
5696         offset = offset_in_page(start);
5697
5698         while (len > 0) {
5699                 page = eb->pages[i];
5700
5701                 cur = min(len, (PAGE_SIZE - offset));
5702
5703                 kaddr = page_address(page);
5704                 ret = memcmp(ptr, kaddr + offset, cur);
5705                 if (ret)
5706                         break;
5707
5708                 ptr += cur;
5709                 len -= cur;
5710                 offset = 0;
5711                 i++;
5712         }
5713         return ret;
5714 }
5715
5716 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
5717                 const void *srcv)
5718 {
5719         char *kaddr;
5720
5721         WARN_ON(!PageUptodate(eb->pages[0]));
5722         kaddr = page_address(eb->pages[0]);
5723         memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5724                         BTRFS_FSID_SIZE);
5725 }
5726
5727 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
5728 {
5729         char *kaddr;
5730
5731         WARN_ON(!PageUptodate(eb->pages[0]));
5732         kaddr = page_address(eb->pages[0]);
5733         memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5734                         BTRFS_FSID_SIZE);
5735 }
5736
5737 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
5738                          unsigned long start, unsigned long len)
5739 {
5740         size_t cur;
5741         size_t offset;
5742         struct page *page;
5743         char *kaddr;
5744         char *src = (char *)srcv;
5745         unsigned long i = start >> PAGE_SHIFT;
5746
5747         if (check_eb_range(eb, start, len))
5748                 return;
5749
5750         offset = offset_in_page(start);
5751
5752         while (len > 0) {
5753                 page = eb->pages[i];
5754                 WARN_ON(!PageUptodate(page));
5755
5756                 cur = min(len, PAGE_SIZE - offset);
5757                 kaddr = page_address(page);
5758                 memcpy(kaddr + offset, src, cur);
5759
5760                 src += cur;
5761                 len -= cur;
5762                 offset = 0;
5763                 i++;
5764         }
5765 }
5766
5767 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
5768                 unsigned long len)
5769 {
5770         size_t cur;
5771         size_t offset;
5772         struct page *page;
5773         char *kaddr;
5774         unsigned long i = start >> PAGE_SHIFT;
5775
5776         if (check_eb_range(eb, start, len))
5777                 return;
5778
5779         offset = offset_in_page(start);
5780
5781         while (len > 0) {
5782                 page = eb->pages[i];
5783                 WARN_ON(!PageUptodate(page));
5784
5785                 cur = min(len, PAGE_SIZE - offset);
5786                 kaddr = page_address(page);
5787                 memset(kaddr + offset, 0, cur);
5788
5789                 len -= cur;
5790                 offset = 0;
5791                 i++;
5792         }
5793 }
5794
5795 void copy_extent_buffer_full(const struct extent_buffer *dst,
5796                              const struct extent_buffer *src)
5797 {
5798         int i;
5799         int num_pages;
5800
5801         ASSERT(dst->len == src->len);
5802
5803         num_pages = num_extent_pages(dst);
5804         for (i = 0; i < num_pages; i++)
5805                 copy_page(page_address(dst->pages[i]),
5806                                 page_address(src->pages[i]));
5807 }
5808
5809 void copy_extent_buffer(const struct extent_buffer *dst,
5810                         const struct extent_buffer *src,
5811                         unsigned long dst_offset, unsigned long src_offset,
5812                         unsigned long len)
5813 {
5814         u64 dst_len = dst->len;
5815         size_t cur;
5816         size_t offset;
5817         struct page *page;
5818         char *kaddr;
5819         unsigned long i = dst_offset >> PAGE_SHIFT;
5820
5821         if (check_eb_range(dst, dst_offset, len) ||
5822             check_eb_range(src, src_offset, len))
5823                 return;
5824
5825         WARN_ON(src->len != dst_len);
5826
5827         offset = offset_in_page(dst_offset);
5828
5829         while (len > 0) {
5830                 page = dst->pages[i];
5831                 WARN_ON(!PageUptodate(page));
5832
5833                 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5834
5835                 kaddr = page_address(page);
5836                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5837
5838                 src_offset += cur;
5839                 len -= cur;
5840                 offset = 0;
5841                 i++;
5842         }
5843 }
5844
5845 /*
5846  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5847  * given bit number
5848  * @eb: the extent buffer
5849  * @start: offset of the bitmap item in the extent buffer
5850  * @nr: bit number
5851  * @page_index: return index of the page in the extent buffer that contains the
5852  * given bit number
5853  * @page_offset: return offset into the page given by page_index
5854  *
5855  * This helper hides the ugliness of finding the byte in an extent buffer which
5856  * contains a given bit.
5857  */
5858 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
5859                                     unsigned long start, unsigned long nr,
5860                                     unsigned long *page_index,
5861                                     size_t *page_offset)
5862 {
5863         size_t byte_offset = BIT_BYTE(nr);
5864         size_t offset;
5865
5866         /*
5867          * The byte we want is the offset of the extent buffer + the offset of
5868          * the bitmap item in the extent buffer + the offset of the byte in the
5869          * bitmap item.
5870          */
5871         offset = start + byte_offset;
5872
5873         *page_index = offset >> PAGE_SHIFT;
5874         *page_offset = offset_in_page(offset);
5875 }
5876
5877 /**
5878  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5879  * @eb: the extent buffer
5880  * @start: offset of the bitmap item in the extent buffer
5881  * @nr: bit number to test
5882  */
5883 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
5884                            unsigned long nr)
5885 {
5886         u8 *kaddr;
5887         struct page *page;
5888         unsigned long i;
5889         size_t offset;
5890
5891         eb_bitmap_offset(eb, start, nr, &i, &offset);
5892         page = eb->pages[i];
5893         WARN_ON(!PageUptodate(page));
5894         kaddr = page_address(page);
5895         return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5896 }
5897
5898 /**
5899  * extent_buffer_bitmap_set - set an area of a bitmap
5900  * @eb: the extent buffer
5901  * @start: offset of the bitmap item in the extent buffer
5902  * @pos: bit number of the first bit
5903  * @len: number of bits to set
5904  */
5905 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
5906                               unsigned long pos, unsigned long len)
5907 {
5908         u8 *kaddr;
5909         struct page *page;
5910         unsigned long i;
5911         size_t offset;
5912         const unsigned int size = pos + len;
5913         int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5914         u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5915
5916         eb_bitmap_offset(eb, start, pos, &i, &offset);
5917         page = eb->pages[i];
5918         WARN_ON(!PageUptodate(page));
5919         kaddr = page_address(page);
5920
5921         while (len >= bits_to_set) {
5922                 kaddr[offset] |= mask_to_set;
5923                 len -= bits_to_set;
5924                 bits_to_set = BITS_PER_BYTE;
5925                 mask_to_set = ~0;
5926                 if (++offset >= PAGE_SIZE && len > 0) {
5927                         offset = 0;
5928                         page = eb->pages[++i];
5929                         WARN_ON(!PageUptodate(page));
5930                         kaddr = page_address(page);
5931                 }
5932         }
5933         if (len) {
5934                 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5935                 kaddr[offset] |= mask_to_set;
5936         }
5937 }
5938
5939
5940 /**
5941  * extent_buffer_bitmap_clear - clear an area of a bitmap
5942  * @eb: the extent buffer
5943  * @start: offset of the bitmap item in the extent buffer
5944  * @pos: bit number of the first bit
5945  * @len: number of bits to clear
5946  */
5947 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
5948                                 unsigned long start, unsigned long pos,
5949                                 unsigned long len)
5950 {
5951         u8 *kaddr;
5952         struct page *page;
5953         unsigned long i;
5954         size_t offset;
5955         const unsigned int size = pos + len;
5956         int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5957         u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5958
5959         eb_bitmap_offset(eb, start, pos, &i, &offset);
5960         page = eb->pages[i];
5961         WARN_ON(!PageUptodate(page));
5962         kaddr = page_address(page);
5963
5964         while (len >= bits_to_clear) {
5965                 kaddr[offset] &= ~mask_to_clear;
5966                 len -= bits_to_clear;
5967                 bits_to_clear = BITS_PER_BYTE;
5968                 mask_to_clear = ~0;
5969                 if (++offset >= PAGE_SIZE && len > 0) {
5970                         offset = 0;
5971                         page = eb->pages[++i];
5972                         WARN_ON(!PageUptodate(page));
5973                         kaddr = page_address(page);
5974                 }
5975         }
5976         if (len) {
5977                 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5978                 kaddr[offset] &= ~mask_to_clear;
5979         }
5980 }
5981
5982 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5983 {
5984         unsigned long distance = (src > dst) ? src - dst : dst - src;
5985         return distance < len;
5986 }
5987
5988 static void copy_pages(struct page *dst_page, struct page *src_page,
5989                        unsigned long dst_off, unsigned long src_off,
5990                        unsigned long len)
5991 {
5992         char *dst_kaddr = page_address(dst_page);
5993         char *src_kaddr;
5994         int must_memmove = 0;
5995
5996         if (dst_page != src_page) {
5997                 src_kaddr = page_address(src_page);
5998         } else {
5999                 src_kaddr = dst_kaddr;
6000                 if (areas_overlap(src_off, dst_off, len))
6001                         must_memmove = 1;
6002         }
6003
6004         if (must_memmove)
6005                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
6006         else
6007                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6008 }
6009
6010 void memcpy_extent_buffer(const struct extent_buffer *dst,
6011                           unsigned long dst_offset, unsigned long src_offset,
6012                           unsigned long len)
6013 {
6014         size_t cur;
6015         size_t dst_off_in_page;
6016         size_t src_off_in_page;
6017         unsigned long dst_i;
6018         unsigned long src_i;
6019
6020         if (check_eb_range(dst, dst_offset, len) ||
6021             check_eb_range(dst, src_offset, len))
6022                 return;
6023
6024         while (len > 0) {
6025                 dst_off_in_page = offset_in_page(dst_offset);
6026                 src_off_in_page = offset_in_page(src_offset);
6027
6028                 dst_i = dst_offset >> PAGE_SHIFT;
6029                 src_i = src_offset >> PAGE_SHIFT;
6030
6031                 cur = min(len, (unsigned long)(PAGE_SIZE -
6032                                                src_off_in_page));
6033                 cur = min_t(unsigned long, cur,
6034                         (unsigned long)(PAGE_SIZE - dst_off_in_page));
6035
6036                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6037                            dst_off_in_page, src_off_in_page, cur);
6038
6039                 src_offset += cur;
6040                 dst_offset += cur;
6041                 len -= cur;
6042         }
6043 }
6044
6045 void memmove_extent_buffer(const struct extent_buffer *dst,
6046                            unsigned long dst_offset, unsigned long src_offset,
6047                            unsigned long len)
6048 {
6049         size_t cur;
6050         size_t dst_off_in_page;
6051         size_t src_off_in_page;
6052         unsigned long dst_end = dst_offset + len - 1;
6053         unsigned long src_end = src_offset + len - 1;
6054         unsigned long dst_i;
6055         unsigned long src_i;
6056
6057         if (check_eb_range(dst, dst_offset, len) ||
6058             check_eb_range(dst, src_offset, len))
6059                 return;
6060         if (dst_offset < src_offset) {
6061                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6062                 return;
6063         }
6064         while (len > 0) {
6065                 dst_i = dst_end >> PAGE_SHIFT;
6066                 src_i = src_end >> PAGE_SHIFT;
6067
6068                 dst_off_in_page = offset_in_page(dst_end);
6069                 src_off_in_page = offset_in_page(src_end);
6070
6071                 cur = min_t(unsigned long, len, src_off_in_page + 1);
6072                 cur = min(cur, dst_off_in_page + 1);
6073                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6074                            dst_off_in_page - cur + 1,
6075                            src_off_in_page - cur + 1, cur);
6076
6077                 dst_end -= cur;
6078                 src_end -= cur;
6079                 len -= cur;
6080         }
6081 }
6082
6083 int try_release_extent_buffer(struct page *page)
6084 {
6085         struct extent_buffer *eb;
6086
6087         /*
6088          * We need to make sure nobody is attaching this page to an eb right
6089          * now.
6090          */
6091         spin_lock(&page->mapping->private_lock);
6092         if (!PagePrivate(page)) {
6093                 spin_unlock(&page->mapping->private_lock);
6094                 return 1;
6095         }
6096
6097         eb = (struct extent_buffer *)page->private;
6098         BUG_ON(!eb);
6099
6100         /*
6101          * This is a little awful but should be ok, we need to make sure that
6102          * the eb doesn't disappear out from under us while we're looking at
6103          * this page.
6104          */
6105         spin_lock(&eb->refs_lock);
6106         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6107                 spin_unlock(&eb->refs_lock);
6108                 spin_unlock(&page->mapping->private_lock);
6109                 return 0;
6110         }
6111         spin_unlock(&page->mapping->private_lock);
6112
6113         /*
6114          * If tree ref isn't set then we know the ref on this eb is a real ref,
6115          * so just return, this page will likely be freed soon anyway.
6116          */
6117         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6118                 spin_unlock(&eb->refs_lock);
6119                 return 0;
6120         }
6121
6122         return release_extent_buffer(eb);
6123 }