btrfs: make buffer_radix take sector size units
[linux-2.6-microblaze.git] / fs / btrfs / extent_io.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent-io-tree.h"
18 #include "extent_map.h"
19 #include "ctree.h"
20 #include "btrfs_inode.h"
21 #include "volumes.h"
22 #include "check-integrity.h"
23 #include "locking.h"
24 #include "rcu-string.h"
25 #include "backref.h"
26 #include "disk-io.h"
27
28 static struct kmem_cache *extent_state_cache;
29 static struct kmem_cache *extent_buffer_cache;
30 static struct bio_set btrfs_bioset;
31
32 static inline bool extent_state_in_tree(const struct extent_state *state)
33 {
34         return !RB_EMPTY_NODE(&state->rb_node);
35 }
36
37 #ifdef CONFIG_BTRFS_DEBUG
38 static LIST_HEAD(states);
39 static DEFINE_SPINLOCK(leak_lock);
40
41 static inline void btrfs_leak_debug_add(spinlock_t *lock,
42                                         struct list_head *new,
43                                         struct list_head *head)
44 {
45         unsigned long flags;
46
47         spin_lock_irqsave(lock, flags);
48         list_add(new, head);
49         spin_unlock_irqrestore(lock, flags);
50 }
51
52 static inline void btrfs_leak_debug_del(spinlock_t *lock,
53                                         struct list_head *entry)
54 {
55         unsigned long flags;
56
57         spin_lock_irqsave(lock, flags);
58         list_del(entry);
59         spin_unlock_irqrestore(lock, flags);
60 }
61
62 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
63 {
64         struct extent_buffer *eb;
65         unsigned long flags;
66
67         /*
68          * If we didn't get into open_ctree our allocated_ebs will not be
69          * initialized, so just skip this.
70          */
71         if (!fs_info->allocated_ebs.next)
72                 return;
73
74         spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75         while (!list_empty(&fs_info->allocated_ebs)) {
76                 eb = list_first_entry(&fs_info->allocated_ebs,
77                                       struct extent_buffer, leak_list);
78                 pr_err(
79         "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
80                        eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81                        btrfs_header_owner(eb));
82                 list_del(&eb->leak_list);
83                 kmem_cache_free(extent_buffer_cache, eb);
84         }
85         spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
86 }
87
88 static inline void btrfs_extent_state_leak_debug_check(void)
89 {
90         struct extent_state *state;
91
92         while (!list_empty(&states)) {
93                 state = list_entry(states.next, struct extent_state, leak_list);
94                 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
95                        state->start, state->end, state->state,
96                        extent_state_in_tree(state),
97                        refcount_read(&state->refs));
98                 list_del(&state->leak_list);
99                 kmem_cache_free(extent_state_cache, state);
100         }
101 }
102
103 #define btrfs_debug_check_extent_io_range(tree, start, end)             \
104         __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
105 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
106                 struct extent_io_tree *tree, u64 start, u64 end)
107 {
108         struct inode *inode = tree->private_data;
109         u64 isize;
110
111         if (!inode || !is_data_inode(inode))
112                 return;
113
114         isize = i_size_read(inode);
115         if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
116                 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
117                     "%s: ino %llu isize %llu odd range [%llu,%llu]",
118                         caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
119         }
120 }
121 #else
122 #define btrfs_leak_debug_add(lock, new, head)   do {} while (0)
123 #define btrfs_leak_debug_del(lock, entry)       do {} while (0)
124 #define btrfs_extent_state_leak_debug_check()   do {} while (0)
125 #define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
126 #endif
127
128 struct tree_entry {
129         u64 start;
130         u64 end;
131         struct rb_node rb_node;
132 };
133
134 struct extent_page_data {
135         struct bio *bio;
136         /* tells writepage not to lock the state bits for this range
137          * it still does the unlocking
138          */
139         unsigned int extent_locked:1;
140
141         /* tells the submit_bio code to use REQ_SYNC */
142         unsigned int sync_io:1;
143 };
144
145 static int add_extent_changeset(struct extent_state *state, unsigned bits,
146                                  struct extent_changeset *changeset,
147                                  int set)
148 {
149         int ret;
150
151         if (!changeset)
152                 return 0;
153         if (set && (state->state & bits) == bits)
154                 return 0;
155         if (!set && (state->state & bits) == 0)
156                 return 0;
157         changeset->bytes_changed += state->end - state->start + 1;
158         ret = ulist_add(&changeset->range_changed, state->start, state->end,
159                         GFP_ATOMIC);
160         return ret;
161 }
162
163 int __must_check submit_one_bio(struct bio *bio, int mirror_num,
164                                 unsigned long bio_flags)
165 {
166         blk_status_t ret = 0;
167         struct extent_io_tree *tree = bio->bi_private;
168
169         bio->bi_private = NULL;
170
171         if (is_data_inode(tree->private_data))
172                 ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
173                                             bio_flags);
174         else
175                 ret = btrfs_submit_metadata_bio(tree->private_data, bio,
176                                                 mirror_num, bio_flags);
177
178         return blk_status_to_errno(ret);
179 }
180
181 /* Cleanup unsubmitted bios */
182 static void end_write_bio(struct extent_page_data *epd, int ret)
183 {
184         if (epd->bio) {
185                 epd->bio->bi_status = errno_to_blk_status(ret);
186                 bio_endio(epd->bio);
187                 epd->bio = NULL;
188         }
189 }
190
191 /*
192  * Submit bio from extent page data via submit_one_bio
193  *
194  * Return 0 if everything is OK.
195  * Return <0 for error.
196  */
197 static int __must_check flush_write_bio(struct extent_page_data *epd)
198 {
199         int ret = 0;
200
201         if (epd->bio) {
202                 ret = submit_one_bio(epd->bio, 0, 0);
203                 /*
204                  * Clean up of epd->bio is handled by its endio function.
205                  * And endio is either triggered by successful bio execution
206                  * or the error handler of submit bio hook.
207                  * So at this point, no matter what happened, we don't need
208                  * to clean up epd->bio.
209                  */
210                 epd->bio = NULL;
211         }
212         return ret;
213 }
214
215 int __init extent_state_cache_init(void)
216 {
217         extent_state_cache = kmem_cache_create("btrfs_extent_state",
218                         sizeof(struct extent_state), 0,
219                         SLAB_MEM_SPREAD, NULL);
220         if (!extent_state_cache)
221                 return -ENOMEM;
222         return 0;
223 }
224
225 int __init extent_io_init(void)
226 {
227         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
228                         sizeof(struct extent_buffer), 0,
229                         SLAB_MEM_SPREAD, NULL);
230         if (!extent_buffer_cache)
231                 return -ENOMEM;
232
233         if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
234                         offsetof(struct btrfs_io_bio, bio),
235                         BIOSET_NEED_BVECS))
236                 goto free_buffer_cache;
237
238         if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
239                 goto free_bioset;
240
241         return 0;
242
243 free_bioset:
244         bioset_exit(&btrfs_bioset);
245
246 free_buffer_cache:
247         kmem_cache_destroy(extent_buffer_cache);
248         extent_buffer_cache = NULL;
249         return -ENOMEM;
250 }
251
252 void __cold extent_state_cache_exit(void)
253 {
254         btrfs_extent_state_leak_debug_check();
255         kmem_cache_destroy(extent_state_cache);
256 }
257
258 void __cold extent_io_exit(void)
259 {
260         /*
261          * Make sure all delayed rcu free are flushed before we
262          * destroy caches.
263          */
264         rcu_barrier();
265         kmem_cache_destroy(extent_buffer_cache);
266         bioset_exit(&btrfs_bioset);
267 }
268
269 /*
270  * For the file_extent_tree, we want to hold the inode lock when we lookup and
271  * update the disk_i_size, but lockdep will complain because our io_tree we hold
272  * the tree lock and get the inode lock when setting delalloc.  These two things
273  * are unrelated, so make a class for the file_extent_tree so we don't get the
274  * two locking patterns mixed up.
275  */
276 static struct lock_class_key file_extent_tree_class;
277
278 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
279                          struct extent_io_tree *tree, unsigned int owner,
280                          void *private_data)
281 {
282         tree->fs_info = fs_info;
283         tree->state = RB_ROOT;
284         tree->dirty_bytes = 0;
285         spin_lock_init(&tree->lock);
286         tree->private_data = private_data;
287         tree->owner = owner;
288         if (owner == IO_TREE_INODE_FILE_EXTENT)
289                 lockdep_set_class(&tree->lock, &file_extent_tree_class);
290 }
291
292 void extent_io_tree_release(struct extent_io_tree *tree)
293 {
294         spin_lock(&tree->lock);
295         /*
296          * Do a single barrier for the waitqueue_active check here, the state
297          * of the waitqueue should not change once extent_io_tree_release is
298          * called.
299          */
300         smp_mb();
301         while (!RB_EMPTY_ROOT(&tree->state)) {
302                 struct rb_node *node;
303                 struct extent_state *state;
304
305                 node = rb_first(&tree->state);
306                 state = rb_entry(node, struct extent_state, rb_node);
307                 rb_erase(&state->rb_node, &tree->state);
308                 RB_CLEAR_NODE(&state->rb_node);
309                 /*
310                  * btree io trees aren't supposed to have tasks waiting for
311                  * changes in the flags of extent states ever.
312                  */
313                 ASSERT(!waitqueue_active(&state->wq));
314                 free_extent_state(state);
315
316                 cond_resched_lock(&tree->lock);
317         }
318         spin_unlock(&tree->lock);
319 }
320
321 static struct extent_state *alloc_extent_state(gfp_t mask)
322 {
323         struct extent_state *state;
324
325         /*
326          * The given mask might be not appropriate for the slab allocator,
327          * drop the unsupported bits
328          */
329         mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
330         state = kmem_cache_alloc(extent_state_cache, mask);
331         if (!state)
332                 return state;
333         state->state = 0;
334         state->failrec = NULL;
335         RB_CLEAR_NODE(&state->rb_node);
336         btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
337         refcount_set(&state->refs, 1);
338         init_waitqueue_head(&state->wq);
339         trace_alloc_extent_state(state, mask, _RET_IP_);
340         return state;
341 }
342
343 void free_extent_state(struct extent_state *state)
344 {
345         if (!state)
346                 return;
347         if (refcount_dec_and_test(&state->refs)) {
348                 WARN_ON(extent_state_in_tree(state));
349                 btrfs_leak_debug_del(&leak_lock, &state->leak_list);
350                 trace_free_extent_state(state, _RET_IP_);
351                 kmem_cache_free(extent_state_cache, state);
352         }
353 }
354
355 static struct rb_node *tree_insert(struct rb_root *root,
356                                    struct rb_node *search_start,
357                                    u64 offset,
358                                    struct rb_node *node,
359                                    struct rb_node ***p_in,
360                                    struct rb_node **parent_in)
361 {
362         struct rb_node **p;
363         struct rb_node *parent = NULL;
364         struct tree_entry *entry;
365
366         if (p_in && parent_in) {
367                 p = *p_in;
368                 parent = *parent_in;
369                 goto do_insert;
370         }
371
372         p = search_start ? &search_start : &root->rb_node;
373         while (*p) {
374                 parent = *p;
375                 entry = rb_entry(parent, struct tree_entry, rb_node);
376
377                 if (offset < entry->start)
378                         p = &(*p)->rb_left;
379                 else if (offset > entry->end)
380                         p = &(*p)->rb_right;
381                 else
382                         return parent;
383         }
384
385 do_insert:
386         rb_link_node(node, parent, p);
387         rb_insert_color(node, root);
388         return NULL;
389 }
390
391 /**
392  * __etree_search - searche @tree for an entry that contains @offset. Such
393  * entry would have entry->start <= offset && entry->end >= offset.
394  *
395  * @tree - the tree to search
396  * @offset - offset that should fall within an entry in @tree
397  * @next_ret - pointer to the first entry whose range ends after @offset
398  * @prev - pointer to the first entry whose range begins before @offset
399  * @p_ret - pointer where new node should be anchored (used when inserting an
400  *          entry in the tree)
401  * @parent_ret - points to entry which would have been the parent of the entry,
402  *               containing @offset
403  *
404  * This function returns a pointer to the entry that contains @offset byte
405  * address. If no such entry exists, then NULL is returned and the other
406  * pointer arguments to the function are filled, otherwise the found entry is
407  * returned and other pointers are left untouched.
408  */
409 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
410                                       struct rb_node **next_ret,
411                                       struct rb_node **prev_ret,
412                                       struct rb_node ***p_ret,
413                                       struct rb_node **parent_ret)
414 {
415         struct rb_root *root = &tree->state;
416         struct rb_node **n = &root->rb_node;
417         struct rb_node *prev = NULL;
418         struct rb_node *orig_prev = NULL;
419         struct tree_entry *entry;
420         struct tree_entry *prev_entry = NULL;
421
422         while (*n) {
423                 prev = *n;
424                 entry = rb_entry(prev, struct tree_entry, rb_node);
425                 prev_entry = entry;
426
427                 if (offset < entry->start)
428                         n = &(*n)->rb_left;
429                 else if (offset > entry->end)
430                         n = &(*n)->rb_right;
431                 else
432                         return *n;
433         }
434
435         if (p_ret)
436                 *p_ret = n;
437         if (parent_ret)
438                 *parent_ret = prev;
439
440         if (next_ret) {
441                 orig_prev = prev;
442                 while (prev && offset > prev_entry->end) {
443                         prev = rb_next(prev);
444                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
445                 }
446                 *next_ret = prev;
447                 prev = orig_prev;
448         }
449
450         if (prev_ret) {
451                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
452                 while (prev && offset < prev_entry->start) {
453                         prev = rb_prev(prev);
454                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
455                 }
456                 *prev_ret = prev;
457         }
458         return NULL;
459 }
460
461 static inline struct rb_node *
462 tree_search_for_insert(struct extent_io_tree *tree,
463                        u64 offset,
464                        struct rb_node ***p_ret,
465                        struct rb_node **parent_ret)
466 {
467         struct rb_node *next= NULL;
468         struct rb_node *ret;
469
470         ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
471         if (!ret)
472                 return next;
473         return ret;
474 }
475
476 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
477                                           u64 offset)
478 {
479         return tree_search_for_insert(tree, offset, NULL, NULL);
480 }
481
482 /*
483  * utility function to look for merge candidates inside a given range.
484  * Any extents with matching state are merged together into a single
485  * extent in the tree.  Extents with EXTENT_IO in their state field
486  * are not merged because the end_io handlers need to be able to do
487  * operations on them without sleeping (or doing allocations/splits).
488  *
489  * This should be called with the tree lock held.
490  */
491 static void merge_state(struct extent_io_tree *tree,
492                         struct extent_state *state)
493 {
494         struct extent_state *other;
495         struct rb_node *other_node;
496
497         if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
498                 return;
499
500         other_node = rb_prev(&state->rb_node);
501         if (other_node) {
502                 other = rb_entry(other_node, struct extent_state, rb_node);
503                 if (other->end == state->start - 1 &&
504                     other->state == state->state) {
505                         if (tree->private_data &&
506                             is_data_inode(tree->private_data))
507                                 btrfs_merge_delalloc_extent(tree->private_data,
508                                                             state, other);
509                         state->start = other->start;
510                         rb_erase(&other->rb_node, &tree->state);
511                         RB_CLEAR_NODE(&other->rb_node);
512                         free_extent_state(other);
513                 }
514         }
515         other_node = rb_next(&state->rb_node);
516         if (other_node) {
517                 other = rb_entry(other_node, struct extent_state, rb_node);
518                 if (other->start == state->end + 1 &&
519                     other->state == state->state) {
520                         if (tree->private_data &&
521                             is_data_inode(tree->private_data))
522                                 btrfs_merge_delalloc_extent(tree->private_data,
523                                                             state, other);
524                         state->end = other->end;
525                         rb_erase(&other->rb_node, &tree->state);
526                         RB_CLEAR_NODE(&other->rb_node);
527                         free_extent_state(other);
528                 }
529         }
530 }
531
532 static void set_state_bits(struct extent_io_tree *tree,
533                            struct extent_state *state, unsigned *bits,
534                            struct extent_changeset *changeset);
535
536 /*
537  * insert an extent_state struct into the tree.  'bits' are set on the
538  * struct before it is inserted.
539  *
540  * This may return -EEXIST if the extent is already there, in which case the
541  * state struct is freed.
542  *
543  * The tree lock is not taken internally.  This is a utility function and
544  * probably isn't what you want to call (see set/clear_extent_bit).
545  */
546 static int insert_state(struct extent_io_tree *tree,
547                         struct extent_state *state, u64 start, u64 end,
548                         struct rb_node ***p,
549                         struct rb_node **parent,
550                         unsigned *bits, struct extent_changeset *changeset)
551 {
552         struct rb_node *node;
553
554         if (end < start) {
555                 btrfs_err(tree->fs_info,
556                         "insert state: end < start %llu %llu", end, start);
557                 WARN_ON(1);
558         }
559         state->start = start;
560         state->end = end;
561
562         set_state_bits(tree, state, bits, changeset);
563
564         node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
565         if (node) {
566                 struct extent_state *found;
567                 found = rb_entry(node, struct extent_state, rb_node);
568                 btrfs_err(tree->fs_info,
569                        "found node %llu %llu on insert of %llu %llu",
570                        found->start, found->end, start, end);
571                 return -EEXIST;
572         }
573         merge_state(tree, state);
574         return 0;
575 }
576
577 /*
578  * split a given extent state struct in two, inserting the preallocated
579  * struct 'prealloc' as the newly created second half.  'split' indicates an
580  * offset inside 'orig' where it should be split.
581  *
582  * Before calling,
583  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
584  * are two extent state structs in the tree:
585  * prealloc: [orig->start, split - 1]
586  * orig: [ split, orig->end ]
587  *
588  * The tree locks are not taken by this function. They need to be held
589  * by the caller.
590  */
591 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
592                        struct extent_state *prealloc, u64 split)
593 {
594         struct rb_node *node;
595
596         if (tree->private_data && is_data_inode(tree->private_data))
597                 btrfs_split_delalloc_extent(tree->private_data, orig, split);
598
599         prealloc->start = orig->start;
600         prealloc->end = split - 1;
601         prealloc->state = orig->state;
602         orig->start = split;
603
604         node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
605                            &prealloc->rb_node, NULL, NULL);
606         if (node) {
607                 free_extent_state(prealloc);
608                 return -EEXIST;
609         }
610         return 0;
611 }
612
613 static struct extent_state *next_state(struct extent_state *state)
614 {
615         struct rb_node *next = rb_next(&state->rb_node);
616         if (next)
617                 return rb_entry(next, struct extent_state, rb_node);
618         else
619                 return NULL;
620 }
621
622 /*
623  * utility function to clear some bits in an extent state struct.
624  * it will optionally wake up anyone waiting on this state (wake == 1).
625  *
626  * If no bits are set on the state struct after clearing things, the
627  * struct is freed and removed from the tree
628  */
629 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
630                                             struct extent_state *state,
631                                             unsigned *bits, int wake,
632                                             struct extent_changeset *changeset)
633 {
634         struct extent_state *next;
635         unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
636         int ret;
637
638         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
639                 u64 range = state->end - state->start + 1;
640                 WARN_ON(range > tree->dirty_bytes);
641                 tree->dirty_bytes -= range;
642         }
643
644         if (tree->private_data && is_data_inode(tree->private_data))
645                 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
646
647         ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
648         BUG_ON(ret < 0);
649         state->state &= ~bits_to_clear;
650         if (wake)
651                 wake_up(&state->wq);
652         if (state->state == 0) {
653                 next = next_state(state);
654                 if (extent_state_in_tree(state)) {
655                         rb_erase(&state->rb_node, &tree->state);
656                         RB_CLEAR_NODE(&state->rb_node);
657                         free_extent_state(state);
658                 } else {
659                         WARN_ON(1);
660                 }
661         } else {
662                 merge_state(tree, state);
663                 next = next_state(state);
664         }
665         return next;
666 }
667
668 static struct extent_state *
669 alloc_extent_state_atomic(struct extent_state *prealloc)
670 {
671         if (!prealloc)
672                 prealloc = alloc_extent_state(GFP_ATOMIC);
673
674         return prealloc;
675 }
676
677 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
678 {
679         struct inode *inode = tree->private_data;
680
681         btrfs_panic(btrfs_sb(inode->i_sb), err,
682         "locking error: extent tree was modified by another thread while locked");
683 }
684
685 /*
686  * clear some bits on a range in the tree.  This may require splitting
687  * or inserting elements in the tree, so the gfp mask is used to
688  * indicate which allocations or sleeping are allowed.
689  *
690  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
691  * the given range from the tree regardless of state (ie for truncate).
692  *
693  * the range [start, end] is inclusive.
694  *
695  * This takes the tree lock, and returns 0 on success and < 0 on error.
696  */
697 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
698                               unsigned bits, int wake, int delete,
699                               struct extent_state **cached_state,
700                               gfp_t mask, struct extent_changeset *changeset)
701 {
702         struct extent_state *state;
703         struct extent_state *cached;
704         struct extent_state *prealloc = NULL;
705         struct rb_node *node;
706         u64 last_end;
707         int err;
708         int clear = 0;
709
710         btrfs_debug_check_extent_io_range(tree, start, end);
711         trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
712
713         if (bits & EXTENT_DELALLOC)
714                 bits |= EXTENT_NORESERVE;
715
716         if (delete)
717                 bits |= ~EXTENT_CTLBITS;
718
719         if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
720                 clear = 1;
721 again:
722         if (!prealloc && gfpflags_allow_blocking(mask)) {
723                 /*
724                  * Don't care for allocation failure here because we might end
725                  * up not needing the pre-allocated extent state at all, which
726                  * is the case if we only have in the tree extent states that
727                  * cover our input range and don't cover too any other range.
728                  * If we end up needing a new extent state we allocate it later.
729                  */
730                 prealloc = alloc_extent_state(mask);
731         }
732
733         spin_lock(&tree->lock);
734         if (cached_state) {
735                 cached = *cached_state;
736
737                 if (clear) {
738                         *cached_state = NULL;
739                         cached_state = NULL;
740                 }
741
742                 if (cached && extent_state_in_tree(cached) &&
743                     cached->start <= start && cached->end > start) {
744                         if (clear)
745                                 refcount_dec(&cached->refs);
746                         state = cached;
747                         goto hit_next;
748                 }
749                 if (clear)
750                         free_extent_state(cached);
751         }
752         /*
753          * this search will find the extents that end after
754          * our range starts
755          */
756         node = tree_search(tree, start);
757         if (!node)
758                 goto out;
759         state = rb_entry(node, struct extent_state, rb_node);
760 hit_next:
761         if (state->start > end)
762                 goto out;
763         WARN_ON(state->end < start);
764         last_end = state->end;
765
766         /* the state doesn't have the wanted bits, go ahead */
767         if (!(state->state & bits)) {
768                 state = next_state(state);
769                 goto next;
770         }
771
772         /*
773          *     | ---- desired range ---- |
774          *  | state | or
775          *  | ------------- state -------------- |
776          *
777          * We need to split the extent we found, and may flip
778          * bits on second half.
779          *
780          * If the extent we found extends past our range, we
781          * just split and search again.  It'll get split again
782          * the next time though.
783          *
784          * If the extent we found is inside our range, we clear
785          * the desired bit on it.
786          */
787
788         if (state->start < start) {
789                 prealloc = alloc_extent_state_atomic(prealloc);
790                 BUG_ON(!prealloc);
791                 err = split_state(tree, state, prealloc, start);
792                 if (err)
793                         extent_io_tree_panic(tree, err);
794
795                 prealloc = NULL;
796                 if (err)
797                         goto out;
798                 if (state->end <= end) {
799                         state = clear_state_bit(tree, state, &bits, wake,
800                                                 changeset);
801                         goto next;
802                 }
803                 goto search_again;
804         }
805         /*
806          * | ---- desired range ---- |
807          *                        | state |
808          * We need to split the extent, and clear the bit
809          * on the first half
810          */
811         if (state->start <= end && state->end > end) {
812                 prealloc = alloc_extent_state_atomic(prealloc);
813                 BUG_ON(!prealloc);
814                 err = split_state(tree, state, prealloc, end + 1);
815                 if (err)
816                         extent_io_tree_panic(tree, err);
817
818                 if (wake)
819                         wake_up(&state->wq);
820
821                 clear_state_bit(tree, prealloc, &bits, wake, changeset);
822
823                 prealloc = NULL;
824                 goto out;
825         }
826
827         state = clear_state_bit(tree, state, &bits, wake, changeset);
828 next:
829         if (last_end == (u64)-1)
830                 goto out;
831         start = last_end + 1;
832         if (start <= end && state && !need_resched())
833                 goto hit_next;
834
835 search_again:
836         if (start > end)
837                 goto out;
838         spin_unlock(&tree->lock);
839         if (gfpflags_allow_blocking(mask))
840                 cond_resched();
841         goto again;
842
843 out:
844         spin_unlock(&tree->lock);
845         if (prealloc)
846                 free_extent_state(prealloc);
847
848         return 0;
849
850 }
851
852 static void wait_on_state(struct extent_io_tree *tree,
853                           struct extent_state *state)
854                 __releases(tree->lock)
855                 __acquires(tree->lock)
856 {
857         DEFINE_WAIT(wait);
858         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
859         spin_unlock(&tree->lock);
860         schedule();
861         spin_lock(&tree->lock);
862         finish_wait(&state->wq, &wait);
863 }
864
865 /*
866  * waits for one or more bits to clear on a range in the state tree.
867  * The range [start, end] is inclusive.
868  * The tree lock is taken by this function
869  */
870 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
871                             unsigned long bits)
872 {
873         struct extent_state *state;
874         struct rb_node *node;
875
876         btrfs_debug_check_extent_io_range(tree, start, end);
877
878         spin_lock(&tree->lock);
879 again:
880         while (1) {
881                 /*
882                  * this search will find all the extents that end after
883                  * our range starts
884                  */
885                 node = tree_search(tree, start);
886 process_node:
887                 if (!node)
888                         break;
889
890                 state = rb_entry(node, struct extent_state, rb_node);
891
892                 if (state->start > end)
893                         goto out;
894
895                 if (state->state & bits) {
896                         start = state->start;
897                         refcount_inc(&state->refs);
898                         wait_on_state(tree, state);
899                         free_extent_state(state);
900                         goto again;
901                 }
902                 start = state->end + 1;
903
904                 if (start > end)
905                         break;
906
907                 if (!cond_resched_lock(&tree->lock)) {
908                         node = rb_next(node);
909                         goto process_node;
910                 }
911         }
912 out:
913         spin_unlock(&tree->lock);
914 }
915
916 static void set_state_bits(struct extent_io_tree *tree,
917                            struct extent_state *state,
918                            unsigned *bits, struct extent_changeset *changeset)
919 {
920         unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
921         int ret;
922
923         if (tree->private_data && is_data_inode(tree->private_data))
924                 btrfs_set_delalloc_extent(tree->private_data, state, bits);
925
926         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
927                 u64 range = state->end - state->start + 1;
928                 tree->dirty_bytes += range;
929         }
930         ret = add_extent_changeset(state, bits_to_set, changeset, 1);
931         BUG_ON(ret < 0);
932         state->state |= bits_to_set;
933 }
934
935 static void cache_state_if_flags(struct extent_state *state,
936                                  struct extent_state **cached_ptr,
937                                  unsigned flags)
938 {
939         if (cached_ptr && !(*cached_ptr)) {
940                 if (!flags || (state->state & flags)) {
941                         *cached_ptr = state;
942                         refcount_inc(&state->refs);
943                 }
944         }
945 }
946
947 static void cache_state(struct extent_state *state,
948                         struct extent_state **cached_ptr)
949 {
950         return cache_state_if_flags(state, cached_ptr,
951                                     EXTENT_LOCKED | EXTENT_BOUNDARY);
952 }
953
954 /*
955  * set some bits on a range in the tree.  This may require allocations or
956  * sleeping, so the gfp mask is used to indicate what is allowed.
957  *
958  * If any of the exclusive bits are set, this will fail with -EEXIST if some
959  * part of the range already has the desired bits set.  The start of the
960  * existing range is returned in failed_start in this case.
961  *
962  * [start, end] is inclusive This takes the tree lock.
963  */
964
965 static int __must_check
966 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
967                  unsigned bits, unsigned exclusive_bits,
968                  u64 *failed_start, struct extent_state **cached_state,
969                  gfp_t mask, struct extent_changeset *changeset)
970 {
971         struct extent_state *state;
972         struct extent_state *prealloc = NULL;
973         struct rb_node *node;
974         struct rb_node **p;
975         struct rb_node *parent;
976         int err = 0;
977         u64 last_start;
978         u64 last_end;
979
980         btrfs_debug_check_extent_io_range(tree, start, end);
981         trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
982
983         if (exclusive_bits)
984                 ASSERT(failed_start);
985         else
986                 ASSERT(failed_start == NULL);
987 again:
988         if (!prealloc && gfpflags_allow_blocking(mask)) {
989                 /*
990                  * Don't care for allocation failure here because we might end
991                  * up not needing the pre-allocated extent state at all, which
992                  * is the case if we only have in the tree extent states that
993                  * cover our input range and don't cover too any other range.
994                  * If we end up needing a new extent state we allocate it later.
995                  */
996                 prealloc = alloc_extent_state(mask);
997         }
998
999         spin_lock(&tree->lock);
1000         if (cached_state && *cached_state) {
1001                 state = *cached_state;
1002                 if (state->start <= start && state->end > start &&
1003                     extent_state_in_tree(state)) {
1004                         node = &state->rb_node;
1005                         goto hit_next;
1006                 }
1007         }
1008         /*
1009          * this search will find all the extents that end after
1010          * our range starts.
1011          */
1012         node = tree_search_for_insert(tree, start, &p, &parent);
1013         if (!node) {
1014                 prealloc = alloc_extent_state_atomic(prealloc);
1015                 BUG_ON(!prealloc);
1016                 err = insert_state(tree, prealloc, start, end,
1017                                    &p, &parent, &bits, changeset);
1018                 if (err)
1019                         extent_io_tree_panic(tree, err);
1020
1021                 cache_state(prealloc, cached_state);
1022                 prealloc = NULL;
1023                 goto out;
1024         }
1025         state = rb_entry(node, struct extent_state, rb_node);
1026 hit_next:
1027         last_start = state->start;
1028         last_end = state->end;
1029
1030         /*
1031          * | ---- desired range ---- |
1032          * | state |
1033          *
1034          * Just lock what we found and keep going
1035          */
1036         if (state->start == start && state->end <= end) {
1037                 if (state->state & exclusive_bits) {
1038                         *failed_start = state->start;
1039                         err = -EEXIST;
1040                         goto out;
1041                 }
1042
1043                 set_state_bits(tree, state, &bits, changeset);
1044                 cache_state(state, cached_state);
1045                 merge_state(tree, state);
1046                 if (last_end == (u64)-1)
1047                         goto out;
1048                 start = last_end + 1;
1049                 state = next_state(state);
1050                 if (start < end && state && state->start == start &&
1051                     !need_resched())
1052                         goto hit_next;
1053                 goto search_again;
1054         }
1055
1056         /*
1057          *     | ---- desired range ---- |
1058          * | state |
1059          *   or
1060          * | ------------- state -------------- |
1061          *
1062          * We need to split the extent we found, and may flip bits on
1063          * second half.
1064          *
1065          * If the extent we found extends past our
1066          * range, we just split and search again.  It'll get split
1067          * again the next time though.
1068          *
1069          * If the extent we found is inside our range, we set the
1070          * desired bit on it.
1071          */
1072         if (state->start < start) {
1073                 if (state->state & exclusive_bits) {
1074                         *failed_start = start;
1075                         err = -EEXIST;
1076                         goto out;
1077                 }
1078
1079                 /*
1080                  * If this extent already has all the bits we want set, then
1081                  * skip it, not necessary to split it or do anything with it.
1082                  */
1083                 if ((state->state & bits) == bits) {
1084                         start = state->end + 1;
1085                         cache_state(state, cached_state);
1086                         goto search_again;
1087                 }
1088
1089                 prealloc = alloc_extent_state_atomic(prealloc);
1090                 BUG_ON(!prealloc);
1091                 err = split_state(tree, state, prealloc, start);
1092                 if (err)
1093                         extent_io_tree_panic(tree, err);
1094
1095                 prealloc = NULL;
1096                 if (err)
1097                         goto out;
1098                 if (state->end <= end) {
1099                         set_state_bits(tree, state, &bits, changeset);
1100                         cache_state(state, cached_state);
1101                         merge_state(tree, state);
1102                         if (last_end == (u64)-1)
1103                                 goto out;
1104                         start = last_end + 1;
1105                         state = next_state(state);
1106                         if (start < end && state && state->start == start &&
1107                             !need_resched())
1108                                 goto hit_next;
1109                 }
1110                 goto search_again;
1111         }
1112         /*
1113          * | ---- desired range ---- |
1114          *     | state | or               | state |
1115          *
1116          * There's a hole, we need to insert something in it and
1117          * ignore the extent we found.
1118          */
1119         if (state->start > start) {
1120                 u64 this_end;
1121                 if (end < last_start)
1122                         this_end = end;
1123                 else
1124                         this_end = last_start - 1;
1125
1126                 prealloc = alloc_extent_state_atomic(prealloc);
1127                 BUG_ON(!prealloc);
1128
1129                 /*
1130                  * Avoid to free 'prealloc' if it can be merged with
1131                  * the later extent.
1132                  */
1133                 err = insert_state(tree, prealloc, start, this_end,
1134                                    NULL, NULL, &bits, changeset);
1135                 if (err)
1136                         extent_io_tree_panic(tree, err);
1137
1138                 cache_state(prealloc, cached_state);
1139                 prealloc = NULL;
1140                 start = this_end + 1;
1141                 goto search_again;
1142         }
1143         /*
1144          * | ---- desired range ---- |
1145          *                        | state |
1146          * We need to split the extent, and set the bit
1147          * on the first half
1148          */
1149         if (state->start <= end && state->end > end) {
1150                 if (state->state & exclusive_bits) {
1151                         *failed_start = start;
1152                         err = -EEXIST;
1153                         goto out;
1154                 }
1155
1156                 prealloc = alloc_extent_state_atomic(prealloc);
1157                 BUG_ON(!prealloc);
1158                 err = split_state(tree, state, prealloc, end + 1);
1159                 if (err)
1160                         extent_io_tree_panic(tree, err);
1161
1162                 set_state_bits(tree, prealloc, &bits, changeset);
1163                 cache_state(prealloc, cached_state);
1164                 merge_state(tree, prealloc);
1165                 prealloc = NULL;
1166                 goto out;
1167         }
1168
1169 search_again:
1170         if (start > end)
1171                 goto out;
1172         spin_unlock(&tree->lock);
1173         if (gfpflags_allow_blocking(mask))
1174                 cond_resched();
1175         goto again;
1176
1177 out:
1178         spin_unlock(&tree->lock);
1179         if (prealloc)
1180                 free_extent_state(prealloc);
1181
1182         return err;
1183
1184 }
1185
1186 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1187                    unsigned bits, struct extent_state **cached_state, gfp_t mask)
1188 {
1189         return __set_extent_bit(tree, start, end, bits, 0, NULL, cached_state,
1190                                 mask, NULL);
1191 }
1192
1193
1194 /**
1195  * convert_extent_bit - convert all bits in a given range from one bit to
1196  *                      another
1197  * @tree:       the io tree to search
1198  * @start:      the start offset in bytes
1199  * @end:        the end offset in bytes (inclusive)
1200  * @bits:       the bits to set in this range
1201  * @clear_bits: the bits to clear in this range
1202  * @cached_state:       state that we're going to cache
1203  *
1204  * This will go through and set bits for the given range.  If any states exist
1205  * already in this range they are set with the given bit and cleared of the
1206  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1207  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1208  * boundary bits like LOCK.
1209  *
1210  * All allocations are done with GFP_NOFS.
1211  */
1212 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1213                        unsigned bits, unsigned clear_bits,
1214                        struct extent_state **cached_state)
1215 {
1216         struct extent_state *state;
1217         struct extent_state *prealloc = NULL;
1218         struct rb_node *node;
1219         struct rb_node **p;
1220         struct rb_node *parent;
1221         int err = 0;
1222         u64 last_start;
1223         u64 last_end;
1224         bool first_iteration = true;
1225
1226         btrfs_debug_check_extent_io_range(tree, start, end);
1227         trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1228                                        clear_bits);
1229
1230 again:
1231         if (!prealloc) {
1232                 /*
1233                  * Best effort, don't worry if extent state allocation fails
1234                  * here for the first iteration. We might have a cached state
1235                  * that matches exactly the target range, in which case no
1236                  * extent state allocations are needed. We'll only know this
1237                  * after locking the tree.
1238                  */
1239                 prealloc = alloc_extent_state(GFP_NOFS);
1240                 if (!prealloc && !first_iteration)
1241                         return -ENOMEM;
1242         }
1243
1244         spin_lock(&tree->lock);
1245         if (cached_state && *cached_state) {
1246                 state = *cached_state;
1247                 if (state->start <= start && state->end > start &&
1248                     extent_state_in_tree(state)) {
1249                         node = &state->rb_node;
1250                         goto hit_next;
1251                 }
1252         }
1253
1254         /*
1255          * this search will find all the extents that end after
1256          * our range starts.
1257          */
1258         node = tree_search_for_insert(tree, start, &p, &parent);
1259         if (!node) {
1260                 prealloc = alloc_extent_state_atomic(prealloc);
1261                 if (!prealloc) {
1262                         err = -ENOMEM;
1263                         goto out;
1264                 }
1265                 err = insert_state(tree, prealloc, start, end,
1266                                    &p, &parent, &bits, NULL);
1267                 if (err)
1268                         extent_io_tree_panic(tree, err);
1269                 cache_state(prealloc, cached_state);
1270                 prealloc = NULL;
1271                 goto out;
1272         }
1273         state = rb_entry(node, struct extent_state, rb_node);
1274 hit_next:
1275         last_start = state->start;
1276         last_end = state->end;
1277
1278         /*
1279          * | ---- desired range ---- |
1280          * | state |
1281          *
1282          * Just lock what we found and keep going
1283          */
1284         if (state->start == start && state->end <= end) {
1285                 set_state_bits(tree, state, &bits, NULL);
1286                 cache_state(state, cached_state);
1287                 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1288                 if (last_end == (u64)-1)
1289                         goto out;
1290                 start = last_end + 1;
1291                 if (start < end && state && state->start == start &&
1292                     !need_resched())
1293                         goto hit_next;
1294                 goto search_again;
1295         }
1296
1297         /*
1298          *     | ---- desired range ---- |
1299          * | state |
1300          *   or
1301          * | ------------- state -------------- |
1302          *
1303          * We need to split the extent we found, and may flip bits on
1304          * second half.
1305          *
1306          * If the extent we found extends past our
1307          * range, we just split and search again.  It'll get split
1308          * again the next time though.
1309          *
1310          * If the extent we found is inside our range, we set the
1311          * desired bit on it.
1312          */
1313         if (state->start < start) {
1314                 prealloc = alloc_extent_state_atomic(prealloc);
1315                 if (!prealloc) {
1316                         err = -ENOMEM;
1317                         goto out;
1318                 }
1319                 err = split_state(tree, state, prealloc, start);
1320                 if (err)
1321                         extent_io_tree_panic(tree, err);
1322                 prealloc = NULL;
1323                 if (err)
1324                         goto out;
1325                 if (state->end <= end) {
1326                         set_state_bits(tree, state, &bits, NULL);
1327                         cache_state(state, cached_state);
1328                         state = clear_state_bit(tree, state, &clear_bits, 0,
1329                                                 NULL);
1330                         if (last_end == (u64)-1)
1331                                 goto out;
1332                         start = last_end + 1;
1333                         if (start < end && state && state->start == start &&
1334                             !need_resched())
1335                                 goto hit_next;
1336                 }
1337                 goto search_again;
1338         }
1339         /*
1340          * | ---- desired range ---- |
1341          *     | state | or               | state |
1342          *
1343          * There's a hole, we need to insert something in it and
1344          * ignore the extent we found.
1345          */
1346         if (state->start > start) {
1347                 u64 this_end;
1348                 if (end < last_start)
1349                         this_end = end;
1350                 else
1351                         this_end = last_start - 1;
1352
1353                 prealloc = alloc_extent_state_atomic(prealloc);
1354                 if (!prealloc) {
1355                         err = -ENOMEM;
1356                         goto out;
1357                 }
1358
1359                 /*
1360                  * Avoid to free 'prealloc' if it can be merged with
1361                  * the later extent.
1362                  */
1363                 err = insert_state(tree, prealloc, start, this_end,
1364                                    NULL, NULL, &bits, NULL);
1365                 if (err)
1366                         extent_io_tree_panic(tree, err);
1367                 cache_state(prealloc, cached_state);
1368                 prealloc = NULL;
1369                 start = this_end + 1;
1370                 goto search_again;
1371         }
1372         /*
1373          * | ---- desired range ---- |
1374          *                        | state |
1375          * We need to split the extent, and set the bit
1376          * on the first half
1377          */
1378         if (state->start <= end && state->end > end) {
1379                 prealloc = alloc_extent_state_atomic(prealloc);
1380                 if (!prealloc) {
1381                         err = -ENOMEM;
1382                         goto out;
1383                 }
1384
1385                 err = split_state(tree, state, prealloc, end + 1);
1386                 if (err)
1387                         extent_io_tree_panic(tree, err);
1388
1389                 set_state_bits(tree, prealloc, &bits, NULL);
1390                 cache_state(prealloc, cached_state);
1391                 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1392                 prealloc = NULL;
1393                 goto out;
1394         }
1395
1396 search_again:
1397         if (start > end)
1398                 goto out;
1399         spin_unlock(&tree->lock);
1400         cond_resched();
1401         first_iteration = false;
1402         goto again;
1403
1404 out:
1405         spin_unlock(&tree->lock);
1406         if (prealloc)
1407                 free_extent_state(prealloc);
1408
1409         return err;
1410 }
1411
1412 /* wrappers around set/clear extent bit */
1413 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1414                            unsigned bits, struct extent_changeset *changeset)
1415 {
1416         /*
1417          * We don't support EXTENT_LOCKED yet, as current changeset will
1418          * record any bits changed, so for EXTENT_LOCKED case, it will
1419          * either fail with -EEXIST or changeset will record the whole
1420          * range.
1421          */
1422         BUG_ON(bits & EXTENT_LOCKED);
1423
1424         return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1425                                 changeset);
1426 }
1427
1428 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1429                            unsigned bits)
1430 {
1431         return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1432                                 GFP_NOWAIT, NULL);
1433 }
1434
1435 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1436                      unsigned bits, int wake, int delete,
1437                      struct extent_state **cached)
1438 {
1439         return __clear_extent_bit(tree, start, end, bits, wake, delete,
1440                                   cached, GFP_NOFS, NULL);
1441 }
1442
1443 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1444                 unsigned bits, struct extent_changeset *changeset)
1445 {
1446         /*
1447          * Don't support EXTENT_LOCKED case, same reason as
1448          * set_record_extent_bits().
1449          */
1450         BUG_ON(bits & EXTENT_LOCKED);
1451
1452         return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1453                                   changeset);
1454 }
1455
1456 /*
1457  * either insert or lock state struct between start and end use mask to tell
1458  * us if waiting is desired.
1459  */
1460 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1461                      struct extent_state **cached_state)
1462 {
1463         int err;
1464         u64 failed_start;
1465
1466         while (1) {
1467                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1468                                        EXTENT_LOCKED, &failed_start,
1469                                        cached_state, GFP_NOFS, NULL);
1470                 if (err == -EEXIST) {
1471                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1472                         start = failed_start;
1473                 } else
1474                         break;
1475                 WARN_ON(start > end);
1476         }
1477         return err;
1478 }
1479
1480 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1481 {
1482         int err;
1483         u64 failed_start;
1484
1485         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1486                                &failed_start, NULL, GFP_NOFS, NULL);
1487         if (err == -EEXIST) {
1488                 if (failed_start > start)
1489                         clear_extent_bit(tree, start, failed_start - 1,
1490                                          EXTENT_LOCKED, 1, 0, NULL);
1491                 return 0;
1492         }
1493         return 1;
1494 }
1495
1496 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1497 {
1498         unsigned long index = start >> PAGE_SHIFT;
1499         unsigned long end_index = end >> PAGE_SHIFT;
1500         struct page *page;
1501
1502         while (index <= end_index) {
1503                 page = find_get_page(inode->i_mapping, index);
1504                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1505                 clear_page_dirty_for_io(page);
1506                 put_page(page);
1507                 index++;
1508         }
1509 }
1510
1511 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1512 {
1513         unsigned long index = start >> PAGE_SHIFT;
1514         unsigned long end_index = end >> PAGE_SHIFT;
1515         struct page *page;
1516
1517         while (index <= end_index) {
1518                 page = find_get_page(inode->i_mapping, index);
1519                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1520                 __set_page_dirty_nobuffers(page);
1521                 account_page_redirty(page);
1522                 put_page(page);
1523                 index++;
1524         }
1525 }
1526
1527 /* find the first state struct with 'bits' set after 'start', and
1528  * return it.  tree->lock must be held.  NULL will returned if
1529  * nothing was found after 'start'
1530  */
1531 static struct extent_state *
1532 find_first_extent_bit_state(struct extent_io_tree *tree,
1533                             u64 start, unsigned bits)
1534 {
1535         struct rb_node *node;
1536         struct extent_state *state;
1537
1538         /*
1539          * this search will find all the extents that end after
1540          * our range starts.
1541          */
1542         node = tree_search(tree, start);
1543         if (!node)
1544                 goto out;
1545
1546         while (1) {
1547                 state = rb_entry(node, struct extent_state, rb_node);
1548                 if (state->end >= start && (state->state & bits))
1549                         return state;
1550
1551                 node = rb_next(node);
1552                 if (!node)
1553                         break;
1554         }
1555 out:
1556         return NULL;
1557 }
1558
1559 /*
1560  * Find the first offset in the io tree with one or more @bits set.
1561  *
1562  * Note: If there are multiple bits set in @bits, any of them will match.
1563  *
1564  * Return 0 if we find something, and update @start_ret and @end_ret.
1565  * Return 1 if we found nothing.
1566  */
1567 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1568                           u64 *start_ret, u64 *end_ret, unsigned bits,
1569                           struct extent_state **cached_state)
1570 {
1571         struct extent_state *state;
1572         int ret = 1;
1573
1574         spin_lock(&tree->lock);
1575         if (cached_state && *cached_state) {
1576                 state = *cached_state;
1577                 if (state->end == start - 1 && extent_state_in_tree(state)) {
1578                         while ((state = next_state(state)) != NULL) {
1579                                 if (state->state & bits)
1580                                         goto got_it;
1581                         }
1582                         free_extent_state(*cached_state);
1583                         *cached_state = NULL;
1584                         goto out;
1585                 }
1586                 free_extent_state(*cached_state);
1587                 *cached_state = NULL;
1588         }
1589
1590         state = find_first_extent_bit_state(tree, start, bits);
1591 got_it:
1592         if (state) {
1593                 cache_state_if_flags(state, cached_state, 0);
1594                 *start_ret = state->start;
1595                 *end_ret = state->end;
1596                 ret = 0;
1597         }
1598 out:
1599         spin_unlock(&tree->lock);
1600         return ret;
1601 }
1602
1603 /**
1604  * find_contiguous_extent_bit: find a contiguous area of bits
1605  * @tree - io tree to check
1606  * @start - offset to start the search from
1607  * @start_ret - the first offset we found with the bits set
1608  * @end_ret - the final contiguous range of the bits that were set
1609  * @bits - bits to look for
1610  *
1611  * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1612  * to set bits appropriately, and then merge them again.  During this time it
1613  * will drop the tree->lock, so use this helper if you want to find the actual
1614  * contiguous area for given bits.  We will search to the first bit we find, and
1615  * then walk down the tree until we find a non-contiguous area.  The area
1616  * returned will be the full contiguous area with the bits set.
1617  */
1618 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1619                                u64 *start_ret, u64 *end_ret, unsigned bits)
1620 {
1621         struct extent_state *state;
1622         int ret = 1;
1623
1624         spin_lock(&tree->lock);
1625         state = find_first_extent_bit_state(tree, start, bits);
1626         if (state) {
1627                 *start_ret = state->start;
1628                 *end_ret = state->end;
1629                 while ((state = next_state(state)) != NULL) {
1630                         if (state->start > (*end_ret + 1))
1631                                 break;
1632                         *end_ret = state->end;
1633                 }
1634                 ret = 0;
1635         }
1636         spin_unlock(&tree->lock);
1637         return ret;
1638 }
1639
1640 /**
1641  * find_first_clear_extent_bit - find the first range that has @bits not set.
1642  * This range could start before @start.
1643  *
1644  * @tree - the tree to search
1645  * @start - the offset at/after which the found extent should start
1646  * @start_ret - records the beginning of the range
1647  * @end_ret - records the end of the range (inclusive)
1648  * @bits - the set of bits which must be unset
1649  *
1650  * Since unallocated range is also considered one which doesn't have the bits
1651  * set it's possible that @end_ret contains -1, this happens in case the range
1652  * spans (last_range_end, end of device]. In this case it's up to the caller to
1653  * trim @end_ret to the appropriate size.
1654  */
1655 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1656                                  u64 *start_ret, u64 *end_ret, unsigned bits)
1657 {
1658         struct extent_state *state;
1659         struct rb_node *node, *prev = NULL, *next;
1660
1661         spin_lock(&tree->lock);
1662
1663         /* Find first extent with bits cleared */
1664         while (1) {
1665                 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1666                 if (!node && !next && !prev) {
1667                         /*
1668                          * Tree is completely empty, send full range and let
1669                          * caller deal with it
1670                          */
1671                         *start_ret = 0;
1672                         *end_ret = -1;
1673                         goto out;
1674                 } else if (!node && !next) {
1675                         /*
1676                          * We are past the last allocated chunk, set start at
1677                          * the end of the last extent.
1678                          */
1679                         state = rb_entry(prev, struct extent_state, rb_node);
1680                         *start_ret = state->end + 1;
1681                         *end_ret = -1;
1682                         goto out;
1683                 } else if (!node) {
1684                         node = next;
1685                 }
1686                 /*
1687                  * At this point 'node' either contains 'start' or start is
1688                  * before 'node'
1689                  */
1690                 state = rb_entry(node, struct extent_state, rb_node);
1691
1692                 if (in_range(start, state->start, state->end - state->start + 1)) {
1693                         if (state->state & bits) {
1694                                 /*
1695                                  * |--range with bits sets--|
1696                                  *    |
1697                                  *    start
1698                                  */
1699                                 start = state->end + 1;
1700                         } else {
1701                                 /*
1702                                  * 'start' falls within a range that doesn't
1703                                  * have the bits set, so take its start as
1704                                  * the beginning of the desired range
1705                                  *
1706                                  * |--range with bits cleared----|
1707                                  *      |
1708                                  *      start
1709                                  */
1710                                 *start_ret = state->start;
1711                                 break;
1712                         }
1713                 } else {
1714                         /*
1715                          * |---prev range---|---hole/unset---|---node range---|
1716                          *                          |
1717                          *                        start
1718                          *
1719                          *                        or
1720                          *
1721                          * |---hole/unset--||--first node--|
1722                          * 0   |
1723                          *    start
1724                          */
1725                         if (prev) {
1726                                 state = rb_entry(prev, struct extent_state,
1727                                                  rb_node);
1728                                 *start_ret = state->end + 1;
1729                         } else {
1730                                 *start_ret = 0;
1731                         }
1732                         break;
1733                 }
1734         }
1735
1736         /*
1737          * Find the longest stretch from start until an entry which has the
1738          * bits set
1739          */
1740         while (1) {
1741                 state = rb_entry(node, struct extent_state, rb_node);
1742                 if (state->end >= start && !(state->state & bits)) {
1743                         *end_ret = state->end;
1744                 } else {
1745                         *end_ret = state->start - 1;
1746                         break;
1747                 }
1748
1749                 node = rb_next(node);
1750                 if (!node)
1751                         break;
1752         }
1753 out:
1754         spin_unlock(&tree->lock);
1755 }
1756
1757 /*
1758  * find a contiguous range of bytes in the file marked as delalloc, not
1759  * more than 'max_bytes'.  start and end are used to return the range,
1760  *
1761  * true is returned if we find something, false if nothing was in the tree
1762  */
1763 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1764                                u64 *end, u64 max_bytes,
1765                                struct extent_state **cached_state)
1766 {
1767         struct rb_node *node;
1768         struct extent_state *state;
1769         u64 cur_start = *start;
1770         bool found = false;
1771         u64 total_bytes = 0;
1772
1773         spin_lock(&tree->lock);
1774
1775         /*
1776          * this search will find all the extents that end after
1777          * our range starts.
1778          */
1779         node = tree_search(tree, cur_start);
1780         if (!node) {
1781                 *end = (u64)-1;
1782                 goto out;
1783         }
1784
1785         while (1) {
1786                 state = rb_entry(node, struct extent_state, rb_node);
1787                 if (found && (state->start != cur_start ||
1788                               (state->state & EXTENT_BOUNDARY))) {
1789                         goto out;
1790                 }
1791                 if (!(state->state & EXTENT_DELALLOC)) {
1792                         if (!found)
1793                                 *end = state->end;
1794                         goto out;
1795                 }
1796                 if (!found) {
1797                         *start = state->start;
1798                         *cached_state = state;
1799                         refcount_inc(&state->refs);
1800                 }
1801                 found = true;
1802                 *end = state->end;
1803                 cur_start = state->end + 1;
1804                 node = rb_next(node);
1805                 total_bytes += state->end - state->start + 1;
1806                 if (total_bytes >= max_bytes)
1807                         break;
1808                 if (!node)
1809                         break;
1810         }
1811 out:
1812         spin_unlock(&tree->lock);
1813         return found;
1814 }
1815
1816 static int __process_pages_contig(struct address_space *mapping,
1817                                   struct page *locked_page,
1818                                   pgoff_t start_index, pgoff_t end_index,
1819                                   unsigned long page_ops, pgoff_t *index_ret);
1820
1821 static noinline void __unlock_for_delalloc(struct inode *inode,
1822                                            struct page *locked_page,
1823                                            u64 start, u64 end)
1824 {
1825         unsigned long index = start >> PAGE_SHIFT;
1826         unsigned long end_index = end >> PAGE_SHIFT;
1827
1828         ASSERT(locked_page);
1829         if (index == locked_page->index && end_index == index)
1830                 return;
1831
1832         __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1833                                PAGE_UNLOCK, NULL);
1834 }
1835
1836 static noinline int lock_delalloc_pages(struct inode *inode,
1837                                         struct page *locked_page,
1838                                         u64 delalloc_start,
1839                                         u64 delalloc_end)
1840 {
1841         unsigned long index = delalloc_start >> PAGE_SHIFT;
1842         unsigned long index_ret = index;
1843         unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1844         int ret;
1845
1846         ASSERT(locked_page);
1847         if (index == locked_page->index && index == end_index)
1848                 return 0;
1849
1850         ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1851                                      end_index, PAGE_LOCK, &index_ret);
1852         if (ret == -EAGAIN)
1853                 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1854                                       (u64)index_ret << PAGE_SHIFT);
1855         return ret;
1856 }
1857
1858 /*
1859  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1860  * more than @max_bytes.  @Start and @end are used to return the range,
1861  *
1862  * Return: true if we find something
1863  *         false if nothing was in the tree
1864  */
1865 EXPORT_FOR_TESTS
1866 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1867                                     struct page *locked_page, u64 *start,
1868                                     u64 *end)
1869 {
1870         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1871         u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1872         u64 delalloc_start;
1873         u64 delalloc_end;
1874         bool found;
1875         struct extent_state *cached_state = NULL;
1876         int ret;
1877         int loops = 0;
1878
1879 again:
1880         /* step one, find a bunch of delalloc bytes starting at start */
1881         delalloc_start = *start;
1882         delalloc_end = 0;
1883         found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1884                                           max_bytes, &cached_state);
1885         if (!found || delalloc_end <= *start) {
1886                 *start = delalloc_start;
1887                 *end = delalloc_end;
1888                 free_extent_state(cached_state);
1889                 return false;
1890         }
1891
1892         /*
1893          * start comes from the offset of locked_page.  We have to lock
1894          * pages in order, so we can't process delalloc bytes before
1895          * locked_page
1896          */
1897         if (delalloc_start < *start)
1898                 delalloc_start = *start;
1899
1900         /*
1901          * make sure to limit the number of pages we try to lock down
1902          */
1903         if (delalloc_end + 1 - delalloc_start > max_bytes)
1904                 delalloc_end = delalloc_start + max_bytes - 1;
1905
1906         /* step two, lock all the pages after the page that has start */
1907         ret = lock_delalloc_pages(inode, locked_page,
1908                                   delalloc_start, delalloc_end);
1909         ASSERT(!ret || ret == -EAGAIN);
1910         if (ret == -EAGAIN) {
1911                 /* some of the pages are gone, lets avoid looping by
1912                  * shortening the size of the delalloc range we're searching
1913                  */
1914                 free_extent_state(cached_state);
1915                 cached_state = NULL;
1916                 if (!loops) {
1917                         max_bytes = PAGE_SIZE;
1918                         loops = 1;
1919                         goto again;
1920                 } else {
1921                         found = false;
1922                         goto out_failed;
1923                 }
1924         }
1925
1926         /* step three, lock the state bits for the whole range */
1927         lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1928
1929         /* then test to make sure it is all still delalloc */
1930         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1931                              EXTENT_DELALLOC, 1, cached_state);
1932         if (!ret) {
1933                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1934                                      &cached_state);
1935                 __unlock_for_delalloc(inode, locked_page,
1936                               delalloc_start, delalloc_end);
1937                 cond_resched();
1938                 goto again;
1939         }
1940         free_extent_state(cached_state);
1941         *start = delalloc_start;
1942         *end = delalloc_end;
1943 out_failed:
1944         return found;
1945 }
1946
1947 static int __process_pages_contig(struct address_space *mapping,
1948                                   struct page *locked_page,
1949                                   pgoff_t start_index, pgoff_t end_index,
1950                                   unsigned long page_ops, pgoff_t *index_ret)
1951 {
1952         unsigned long nr_pages = end_index - start_index + 1;
1953         unsigned long pages_processed = 0;
1954         pgoff_t index = start_index;
1955         struct page *pages[16];
1956         unsigned ret;
1957         int err = 0;
1958         int i;
1959
1960         if (page_ops & PAGE_LOCK) {
1961                 ASSERT(page_ops == PAGE_LOCK);
1962                 ASSERT(index_ret && *index_ret == start_index);
1963         }
1964
1965         if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1966                 mapping_set_error(mapping, -EIO);
1967
1968         while (nr_pages > 0) {
1969                 ret = find_get_pages_contig(mapping, index,
1970                                      min_t(unsigned long,
1971                                      nr_pages, ARRAY_SIZE(pages)), pages);
1972                 if (ret == 0) {
1973                         /*
1974                          * Only if we're going to lock these pages,
1975                          * can we find nothing at @index.
1976                          */
1977                         ASSERT(page_ops & PAGE_LOCK);
1978                         err = -EAGAIN;
1979                         goto out;
1980                 }
1981
1982                 for (i = 0; i < ret; i++) {
1983                         if (page_ops & PAGE_SET_PRIVATE2)
1984                                 SetPagePrivate2(pages[i]);
1985
1986                         if (locked_page && pages[i] == locked_page) {
1987                                 put_page(pages[i]);
1988                                 pages_processed++;
1989                                 continue;
1990                         }
1991                         if (page_ops & PAGE_CLEAR_DIRTY)
1992                                 clear_page_dirty_for_io(pages[i]);
1993                         if (page_ops & PAGE_SET_WRITEBACK)
1994                                 set_page_writeback(pages[i]);
1995                         if (page_ops & PAGE_SET_ERROR)
1996                                 SetPageError(pages[i]);
1997                         if (page_ops & PAGE_END_WRITEBACK)
1998                                 end_page_writeback(pages[i]);
1999                         if (page_ops & PAGE_UNLOCK)
2000                                 unlock_page(pages[i]);
2001                         if (page_ops & PAGE_LOCK) {
2002                                 lock_page(pages[i]);
2003                                 if (!PageDirty(pages[i]) ||
2004                                     pages[i]->mapping != mapping) {
2005                                         unlock_page(pages[i]);
2006                                         for (; i < ret; i++)
2007                                                 put_page(pages[i]);
2008                                         err = -EAGAIN;
2009                                         goto out;
2010                                 }
2011                         }
2012                         put_page(pages[i]);
2013                         pages_processed++;
2014                 }
2015                 nr_pages -= ret;
2016                 index += ret;
2017                 cond_resched();
2018         }
2019 out:
2020         if (err && index_ret)
2021                 *index_ret = start_index + pages_processed - 1;
2022         return err;
2023 }
2024
2025 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2026                                   struct page *locked_page,
2027                                   unsigned clear_bits,
2028                                   unsigned long page_ops)
2029 {
2030         clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2031
2032         __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2033                                start >> PAGE_SHIFT, end >> PAGE_SHIFT,
2034                                page_ops, NULL);
2035 }
2036
2037 /*
2038  * count the number of bytes in the tree that have a given bit(s)
2039  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
2040  * cached.  The total number found is returned.
2041  */
2042 u64 count_range_bits(struct extent_io_tree *tree,
2043                      u64 *start, u64 search_end, u64 max_bytes,
2044                      unsigned bits, int contig)
2045 {
2046         struct rb_node *node;
2047         struct extent_state *state;
2048         u64 cur_start = *start;
2049         u64 total_bytes = 0;
2050         u64 last = 0;
2051         int found = 0;
2052
2053         if (WARN_ON(search_end <= cur_start))
2054                 return 0;
2055
2056         spin_lock(&tree->lock);
2057         if (cur_start == 0 && bits == EXTENT_DIRTY) {
2058                 total_bytes = tree->dirty_bytes;
2059                 goto out;
2060         }
2061         /*
2062          * this search will find all the extents that end after
2063          * our range starts.
2064          */
2065         node = tree_search(tree, cur_start);
2066         if (!node)
2067                 goto out;
2068
2069         while (1) {
2070                 state = rb_entry(node, struct extent_state, rb_node);
2071                 if (state->start > search_end)
2072                         break;
2073                 if (contig && found && state->start > last + 1)
2074                         break;
2075                 if (state->end >= cur_start && (state->state & bits) == bits) {
2076                         total_bytes += min(search_end, state->end) + 1 -
2077                                        max(cur_start, state->start);
2078                         if (total_bytes >= max_bytes)
2079                                 break;
2080                         if (!found) {
2081                                 *start = max(cur_start, state->start);
2082                                 found = 1;
2083                         }
2084                         last = state->end;
2085                 } else if (contig && found) {
2086                         break;
2087                 }
2088                 node = rb_next(node);
2089                 if (!node)
2090                         break;
2091         }
2092 out:
2093         spin_unlock(&tree->lock);
2094         return total_bytes;
2095 }
2096
2097 /*
2098  * set the private field for a given byte offset in the tree.  If there isn't
2099  * an extent_state there already, this does nothing.
2100  */
2101 int set_state_failrec(struct extent_io_tree *tree, u64 start,
2102                       struct io_failure_record *failrec)
2103 {
2104         struct rb_node *node;
2105         struct extent_state *state;
2106         int ret = 0;
2107
2108         spin_lock(&tree->lock);
2109         /*
2110          * this search will find all the extents that end after
2111          * our range starts.
2112          */
2113         node = tree_search(tree, start);
2114         if (!node) {
2115                 ret = -ENOENT;
2116                 goto out;
2117         }
2118         state = rb_entry(node, struct extent_state, rb_node);
2119         if (state->start != start) {
2120                 ret = -ENOENT;
2121                 goto out;
2122         }
2123         state->failrec = failrec;
2124 out:
2125         spin_unlock(&tree->lock);
2126         return ret;
2127 }
2128
2129 struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2130 {
2131         struct rb_node *node;
2132         struct extent_state *state;
2133         struct io_failure_record *failrec;
2134
2135         spin_lock(&tree->lock);
2136         /*
2137          * this search will find all the extents that end after
2138          * our range starts.
2139          */
2140         node = tree_search(tree, start);
2141         if (!node) {
2142                 failrec = ERR_PTR(-ENOENT);
2143                 goto out;
2144         }
2145         state = rb_entry(node, struct extent_state, rb_node);
2146         if (state->start != start) {
2147                 failrec = ERR_PTR(-ENOENT);
2148                 goto out;
2149         }
2150
2151         failrec = state->failrec;
2152 out:
2153         spin_unlock(&tree->lock);
2154         return failrec;
2155 }
2156
2157 /*
2158  * searches a range in the state tree for a given mask.
2159  * If 'filled' == 1, this returns 1 only if every extent in the tree
2160  * has the bits set.  Otherwise, 1 is returned if any bit in the
2161  * range is found set.
2162  */
2163 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2164                    unsigned bits, int filled, struct extent_state *cached)
2165 {
2166         struct extent_state *state = NULL;
2167         struct rb_node *node;
2168         int bitset = 0;
2169
2170         spin_lock(&tree->lock);
2171         if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2172             cached->end > start)
2173                 node = &cached->rb_node;
2174         else
2175                 node = tree_search(tree, start);
2176         while (node && start <= end) {
2177                 state = rb_entry(node, struct extent_state, rb_node);
2178
2179                 if (filled && state->start > start) {
2180                         bitset = 0;
2181                         break;
2182                 }
2183
2184                 if (state->start > end)
2185                         break;
2186
2187                 if (state->state & bits) {
2188                         bitset = 1;
2189                         if (!filled)
2190                                 break;
2191                 } else if (filled) {
2192                         bitset = 0;
2193                         break;
2194                 }
2195
2196                 if (state->end == (u64)-1)
2197                         break;
2198
2199                 start = state->end + 1;
2200                 if (start > end)
2201                         break;
2202                 node = rb_next(node);
2203                 if (!node) {
2204                         if (filled)
2205                                 bitset = 0;
2206                         break;
2207                 }
2208         }
2209         spin_unlock(&tree->lock);
2210         return bitset;
2211 }
2212
2213 /*
2214  * helper function to set a given page up to date if all the
2215  * extents in the tree for that page are up to date
2216  */
2217 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2218 {
2219         u64 start = page_offset(page);
2220         u64 end = start + PAGE_SIZE - 1;
2221         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2222                 SetPageUptodate(page);
2223 }
2224
2225 int free_io_failure(struct extent_io_tree *failure_tree,
2226                     struct extent_io_tree *io_tree,
2227                     struct io_failure_record *rec)
2228 {
2229         int ret;
2230         int err = 0;
2231
2232         set_state_failrec(failure_tree, rec->start, NULL);
2233         ret = clear_extent_bits(failure_tree, rec->start,
2234                                 rec->start + rec->len - 1,
2235                                 EXTENT_LOCKED | EXTENT_DIRTY);
2236         if (ret)
2237                 err = ret;
2238
2239         ret = clear_extent_bits(io_tree, rec->start,
2240                                 rec->start + rec->len - 1,
2241                                 EXTENT_DAMAGED);
2242         if (ret && !err)
2243                 err = ret;
2244
2245         kfree(rec);
2246         return err;
2247 }
2248
2249 /*
2250  * this bypasses the standard btrfs submit functions deliberately, as
2251  * the standard behavior is to write all copies in a raid setup. here we only
2252  * want to write the one bad copy. so we do the mapping for ourselves and issue
2253  * submit_bio directly.
2254  * to avoid any synchronization issues, wait for the data after writing, which
2255  * actually prevents the read that triggered the error from finishing.
2256  * currently, there can be no more than two copies of every data bit. thus,
2257  * exactly one rewrite is required.
2258  */
2259 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2260                       u64 length, u64 logical, struct page *page,
2261                       unsigned int pg_offset, int mirror_num)
2262 {
2263         struct bio *bio;
2264         struct btrfs_device *dev;
2265         u64 map_length = 0;
2266         u64 sector;
2267         struct btrfs_bio *bbio = NULL;
2268         int ret;
2269
2270         ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2271         BUG_ON(!mirror_num);
2272
2273         bio = btrfs_io_bio_alloc(1);
2274         bio->bi_iter.bi_size = 0;
2275         map_length = length;
2276
2277         /*
2278          * Avoid races with device replace and make sure our bbio has devices
2279          * associated to its stripes that don't go away while we are doing the
2280          * read repair operation.
2281          */
2282         btrfs_bio_counter_inc_blocked(fs_info);
2283         if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2284                 /*
2285                  * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2286                  * to update all raid stripes, but here we just want to correct
2287                  * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2288                  * stripe's dev and sector.
2289                  */
2290                 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2291                                       &map_length, &bbio, 0);
2292                 if (ret) {
2293                         btrfs_bio_counter_dec(fs_info);
2294                         bio_put(bio);
2295                         return -EIO;
2296                 }
2297                 ASSERT(bbio->mirror_num == 1);
2298         } else {
2299                 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2300                                       &map_length, &bbio, mirror_num);
2301                 if (ret) {
2302                         btrfs_bio_counter_dec(fs_info);
2303                         bio_put(bio);
2304                         return -EIO;
2305                 }
2306                 BUG_ON(mirror_num != bbio->mirror_num);
2307         }
2308
2309         sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2310         bio->bi_iter.bi_sector = sector;
2311         dev = bbio->stripes[bbio->mirror_num - 1].dev;
2312         btrfs_put_bbio(bbio);
2313         if (!dev || !dev->bdev ||
2314             !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2315                 btrfs_bio_counter_dec(fs_info);
2316                 bio_put(bio);
2317                 return -EIO;
2318         }
2319         bio_set_dev(bio, dev->bdev);
2320         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2321         bio_add_page(bio, page, length, pg_offset);
2322
2323         if (btrfsic_submit_bio_wait(bio)) {
2324                 /* try to remap that extent elsewhere? */
2325                 btrfs_bio_counter_dec(fs_info);
2326                 bio_put(bio);
2327                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2328                 return -EIO;
2329         }
2330
2331         btrfs_info_rl_in_rcu(fs_info,
2332                 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2333                                   ino, start,
2334                                   rcu_str_deref(dev->name), sector);
2335         btrfs_bio_counter_dec(fs_info);
2336         bio_put(bio);
2337         return 0;
2338 }
2339
2340 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2341 {
2342         struct btrfs_fs_info *fs_info = eb->fs_info;
2343         u64 start = eb->start;
2344         int i, num_pages = num_extent_pages(eb);
2345         int ret = 0;
2346
2347         if (sb_rdonly(fs_info->sb))
2348                 return -EROFS;
2349
2350         for (i = 0; i < num_pages; i++) {
2351                 struct page *p = eb->pages[i];
2352
2353                 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2354                                         start - page_offset(p), mirror_num);
2355                 if (ret)
2356                         break;
2357                 start += PAGE_SIZE;
2358         }
2359
2360         return ret;
2361 }
2362
2363 /*
2364  * each time an IO finishes, we do a fast check in the IO failure tree
2365  * to see if we need to process or clean up an io_failure_record
2366  */
2367 int clean_io_failure(struct btrfs_fs_info *fs_info,
2368                      struct extent_io_tree *failure_tree,
2369                      struct extent_io_tree *io_tree, u64 start,
2370                      struct page *page, u64 ino, unsigned int pg_offset)
2371 {
2372         u64 private;
2373         struct io_failure_record *failrec;
2374         struct extent_state *state;
2375         int num_copies;
2376         int ret;
2377
2378         private = 0;
2379         ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2380                                EXTENT_DIRTY, 0);
2381         if (!ret)
2382                 return 0;
2383
2384         failrec = get_state_failrec(failure_tree, start);
2385         if (IS_ERR(failrec))
2386                 return 0;
2387
2388         BUG_ON(!failrec->this_mirror);
2389
2390         if (failrec->in_validation) {
2391                 /* there was no real error, just free the record */
2392                 btrfs_debug(fs_info,
2393                         "clean_io_failure: freeing dummy error at %llu",
2394                         failrec->start);
2395                 goto out;
2396         }
2397         if (sb_rdonly(fs_info->sb))
2398                 goto out;
2399
2400         spin_lock(&io_tree->lock);
2401         state = find_first_extent_bit_state(io_tree,
2402                                             failrec->start,
2403                                             EXTENT_LOCKED);
2404         spin_unlock(&io_tree->lock);
2405
2406         if (state && state->start <= failrec->start &&
2407             state->end >= failrec->start + failrec->len - 1) {
2408                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2409                                               failrec->len);
2410                 if (num_copies > 1)  {
2411                         repair_io_failure(fs_info, ino, start, failrec->len,
2412                                           failrec->logical, page, pg_offset,
2413                                           failrec->failed_mirror);
2414                 }
2415         }
2416
2417 out:
2418         free_io_failure(failure_tree, io_tree, failrec);
2419
2420         return 0;
2421 }
2422
2423 /*
2424  * Can be called when
2425  * - hold extent lock
2426  * - under ordered extent
2427  * - the inode is freeing
2428  */
2429 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2430 {
2431         struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2432         struct io_failure_record *failrec;
2433         struct extent_state *state, *next;
2434
2435         if (RB_EMPTY_ROOT(&failure_tree->state))
2436                 return;
2437
2438         spin_lock(&failure_tree->lock);
2439         state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2440         while (state) {
2441                 if (state->start > end)
2442                         break;
2443
2444                 ASSERT(state->end <= end);
2445
2446                 next = next_state(state);
2447
2448                 failrec = state->failrec;
2449                 free_extent_state(state);
2450                 kfree(failrec);
2451
2452                 state = next;
2453         }
2454         spin_unlock(&failure_tree->lock);
2455 }
2456
2457 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2458                                                              u64 start, u64 end)
2459 {
2460         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2461         struct io_failure_record *failrec;
2462         struct extent_map *em;
2463         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2464         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2465         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2466         int ret;
2467         u64 logical;
2468
2469         failrec = get_state_failrec(failure_tree, start);
2470         if (!IS_ERR(failrec)) {
2471                 btrfs_debug(fs_info,
2472                         "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2473                         failrec->logical, failrec->start, failrec->len,
2474                         failrec->in_validation);
2475                 /*
2476                  * when data can be on disk more than twice, add to failrec here
2477                  * (e.g. with a list for failed_mirror) to make
2478                  * clean_io_failure() clean all those errors at once.
2479                  */
2480
2481                 return failrec;
2482         }
2483
2484         failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2485         if (!failrec)
2486                 return ERR_PTR(-ENOMEM);
2487
2488         failrec->start = start;
2489         failrec->len = end - start + 1;
2490         failrec->this_mirror = 0;
2491         failrec->bio_flags = 0;
2492         failrec->in_validation = 0;
2493
2494         read_lock(&em_tree->lock);
2495         em = lookup_extent_mapping(em_tree, start, failrec->len);
2496         if (!em) {
2497                 read_unlock(&em_tree->lock);
2498                 kfree(failrec);
2499                 return ERR_PTR(-EIO);
2500         }
2501
2502         if (em->start > start || em->start + em->len <= start) {
2503                 free_extent_map(em);
2504                 em = NULL;
2505         }
2506         read_unlock(&em_tree->lock);
2507         if (!em) {
2508                 kfree(failrec);
2509                 return ERR_PTR(-EIO);
2510         }
2511
2512         logical = start - em->start;
2513         logical = em->block_start + logical;
2514         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2515                 logical = em->block_start;
2516                 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2517                 extent_set_compress_type(&failrec->bio_flags, em->compress_type);
2518         }
2519
2520         btrfs_debug(fs_info,
2521                     "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2522                     logical, start, failrec->len);
2523
2524         failrec->logical = logical;
2525         free_extent_map(em);
2526
2527         /* Set the bits in the private failure tree */
2528         ret = set_extent_bits(failure_tree, start, end,
2529                               EXTENT_LOCKED | EXTENT_DIRTY);
2530         if (ret >= 0) {
2531                 ret = set_state_failrec(failure_tree, start, failrec);
2532                 /* Set the bits in the inode's tree */
2533                 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2534         } else if (ret < 0) {
2535                 kfree(failrec);
2536                 return ERR_PTR(ret);
2537         }
2538
2539         return failrec;
2540 }
2541
2542 static bool btrfs_check_repairable(struct inode *inode, bool needs_validation,
2543                                    struct io_failure_record *failrec,
2544                                    int failed_mirror)
2545 {
2546         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2547         int num_copies;
2548
2549         num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2550         if (num_copies == 1) {
2551                 /*
2552                  * we only have a single copy of the data, so don't bother with
2553                  * all the retry and error correction code that follows. no
2554                  * matter what the error is, it is very likely to persist.
2555                  */
2556                 btrfs_debug(fs_info,
2557                         "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2558                         num_copies, failrec->this_mirror, failed_mirror);
2559                 return false;
2560         }
2561
2562         /*
2563          * there are two premises:
2564          *      a) deliver good data to the caller
2565          *      b) correct the bad sectors on disk
2566          */
2567         if (needs_validation) {
2568                 /*
2569                  * to fulfill b), we need to know the exact failing sectors, as
2570                  * we don't want to rewrite any more than the failed ones. thus,
2571                  * we need separate read requests for the failed bio
2572                  *
2573                  * if the following BUG_ON triggers, our validation request got
2574                  * merged. we need separate requests for our algorithm to work.
2575                  */
2576                 BUG_ON(failrec->in_validation);
2577                 failrec->in_validation = 1;
2578                 failrec->this_mirror = failed_mirror;
2579         } else {
2580                 /*
2581                  * we're ready to fulfill a) and b) alongside. get a good copy
2582                  * of the failed sector and if we succeed, we have setup
2583                  * everything for repair_io_failure to do the rest for us.
2584                  */
2585                 if (failrec->in_validation) {
2586                         BUG_ON(failrec->this_mirror != failed_mirror);
2587                         failrec->in_validation = 0;
2588                         failrec->this_mirror = 0;
2589                 }
2590                 failrec->failed_mirror = failed_mirror;
2591                 failrec->this_mirror++;
2592                 if (failrec->this_mirror == failed_mirror)
2593                         failrec->this_mirror++;
2594         }
2595
2596         if (failrec->this_mirror > num_copies) {
2597                 btrfs_debug(fs_info,
2598                         "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2599                         num_copies, failrec->this_mirror, failed_mirror);
2600                 return false;
2601         }
2602
2603         return true;
2604 }
2605
2606 static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio)
2607 {
2608         u64 len = 0;
2609         const u32 blocksize = inode->i_sb->s_blocksize;
2610
2611         /*
2612          * If bi_status is BLK_STS_OK, then this was a checksum error, not an
2613          * I/O error. In this case, we already know exactly which sector was
2614          * bad, so we don't need to validate.
2615          */
2616         if (bio->bi_status == BLK_STS_OK)
2617                 return false;
2618
2619         /*
2620          * We need to validate each sector individually if the failed I/O was
2621          * for multiple sectors.
2622          *
2623          * There are a few possible bios that can end up here:
2624          * 1. A buffered read bio, which is not cloned.
2625          * 2. A direct I/O read bio, which is cloned.
2626          * 3. A (buffered or direct) repair bio, which is not cloned.
2627          *
2628          * For cloned bios (case 2), we can get the size from
2629          * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get
2630          * it from the bvecs.
2631          */
2632         if (bio_flagged(bio, BIO_CLONED)) {
2633                 if (btrfs_io_bio(bio)->iter.bi_size > blocksize)
2634                         return true;
2635         } else {
2636                 struct bio_vec *bvec;
2637                 int i;
2638
2639                 bio_for_each_bvec_all(bvec, bio, i) {
2640                         len += bvec->bv_len;
2641                         if (len > blocksize)
2642                                 return true;
2643                 }
2644         }
2645         return false;
2646 }
2647
2648 blk_status_t btrfs_submit_read_repair(struct inode *inode,
2649                                       struct bio *failed_bio, u64 phy_offset,
2650                                       struct page *page, unsigned int pgoff,
2651                                       u64 start, u64 end, int failed_mirror,
2652                                       submit_bio_hook_t *submit_bio_hook)
2653 {
2654         struct io_failure_record *failrec;
2655         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2656         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2657         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2658         struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2659         const int icsum = phy_offset >> fs_info->sectorsize_bits;
2660         bool need_validation;
2661         struct bio *repair_bio;
2662         struct btrfs_io_bio *repair_io_bio;
2663         blk_status_t status;
2664
2665         btrfs_debug(fs_info,
2666                    "repair read error: read error at %llu", start);
2667
2668         BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2669
2670         failrec = btrfs_get_io_failure_record(inode, start, end);
2671         if (IS_ERR(failrec))
2672                 return errno_to_blk_status(PTR_ERR(failrec));
2673
2674         need_validation = btrfs_io_needs_validation(inode, failed_bio);
2675
2676         if (!btrfs_check_repairable(inode, need_validation, failrec,
2677                                     failed_mirror)) {
2678                 free_io_failure(failure_tree, tree, failrec);
2679                 return BLK_STS_IOERR;
2680         }
2681
2682         repair_bio = btrfs_io_bio_alloc(1);
2683         repair_io_bio = btrfs_io_bio(repair_bio);
2684         repair_bio->bi_opf = REQ_OP_READ;
2685         if (need_validation)
2686                 repair_bio->bi_opf |= REQ_FAILFAST_DEV;
2687         repair_bio->bi_end_io = failed_bio->bi_end_io;
2688         repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2689         repair_bio->bi_private = failed_bio->bi_private;
2690
2691         if (failed_io_bio->csum) {
2692                 const u32 csum_size = fs_info->csum_size;
2693
2694                 repair_io_bio->csum = repair_io_bio->csum_inline;
2695                 memcpy(repair_io_bio->csum,
2696                        failed_io_bio->csum + csum_size * icsum, csum_size);
2697         }
2698
2699         bio_add_page(repair_bio, page, failrec->len, pgoff);
2700         repair_io_bio->logical = failrec->start;
2701         repair_io_bio->iter = repair_bio->bi_iter;
2702
2703         btrfs_debug(btrfs_sb(inode->i_sb),
2704 "repair read error: submitting new read to mirror %d, in_validation=%d",
2705                     failrec->this_mirror, failrec->in_validation);
2706
2707         status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2708                                  failrec->bio_flags);
2709         if (status) {
2710                 free_io_failure(failure_tree, tree, failrec);
2711                 bio_put(repair_bio);
2712         }
2713         return status;
2714 }
2715
2716 /* lots and lots of room for performance fixes in the end_bio funcs */
2717
2718 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2719 {
2720         int uptodate = (err == 0);
2721         int ret = 0;
2722
2723         btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2724
2725         if (!uptodate) {
2726                 ClearPageUptodate(page);
2727                 SetPageError(page);
2728                 ret = err < 0 ? err : -EIO;
2729                 mapping_set_error(page->mapping, ret);
2730         }
2731 }
2732
2733 /*
2734  * after a writepage IO is done, we need to:
2735  * clear the uptodate bits on error
2736  * clear the writeback bits in the extent tree for this IO
2737  * end_page_writeback if the page has no more pending IO
2738  *
2739  * Scheduling is not allowed, so the extent state tree is expected
2740  * to have one and only one object corresponding to this IO.
2741  */
2742 static void end_bio_extent_writepage(struct bio *bio)
2743 {
2744         int error = blk_status_to_errno(bio->bi_status);
2745         struct bio_vec *bvec;
2746         u64 start;
2747         u64 end;
2748         struct bvec_iter_all iter_all;
2749
2750         ASSERT(!bio_flagged(bio, BIO_CLONED));
2751         bio_for_each_segment_all(bvec, bio, iter_all) {
2752                 struct page *page = bvec->bv_page;
2753                 struct inode *inode = page->mapping->host;
2754                 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2755
2756                 /* We always issue full-page reads, but if some block
2757                  * in a page fails to read, blk_update_request() will
2758                  * advance bv_offset and adjust bv_len to compensate.
2759                  * Print a warning for nonzero offsets, and an error
2760                  * if they don't add up to a full page.  */
2761                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2762                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2763                                 btrfs_err(fs_info,
2764                                    "partial page write in btrfs with offset %u and length %u",
2765                                         bvec->bv_offset, bvec->bv_len);
2766                         else
2767                                 btrfs_info(fs_info,
2768                                    "incomplete page write in btrfs with offset %u and length %u",
2769                                         bvec->bv_offset, bvec->bv_len);
2770                 }
2771
2772                 start = page_offset(page);
2773                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2774
2775                 end_extent_writepage(page, error, start, end);
2776                 end_page_writeback(page);
2777         }
2778
2779         bio_put(bio);
2780 }
2781
2782 static void
2783 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2784                               int uptodate)
2785 {
2786         struct extent_state *cached = NULL;
2787         u64 end = start + len - 1;
2788
2789         if (uptodate && tree->track_uptodate)
2790                 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2791         unlock_extent_cached_atomic(tree, start, end, &cached);
2792 }
2793
2794 /*
2795  * after a readpage IO is done, we need to:
2796  * clear the uptodate bits on error
2797  * set the uptodate bits if things worked
2798  * set the page up to date if all extents in the tree are uptodate
2799  * clear the lock bit in the extent tree
2800  * unlock the page if there are no other extents locked for it
2801  *
2802  * Scheduling is not allowed, so the extent state tree is expected
2803  * to have one and only one object corresponding to this IO.
2804  */
2805 static void end_bio_extent_readpage(struct bio *bio)
2806 {
2807         struct bio_vec *bvec;
2808         int uptodate = !bio->bi_status;
2809         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2810         struct extent_io_tree *tree, *failure_tree;
2811         u64 offset = 0;
2812         u64 start;
2813         u64 end;
2814         u64 len;
2815         u64 extent_start = 0;
2816         u64 extent_len = 0;
2817         int mirror;
2818         int ret;
2819         struct bvec_iter_all iter_all;
2820
2821         ASSERT(!bio_flagged(bio, BIO_CLONED));
2822         bio_for_each_segment_all(bvec, bio, iter_all) {
2823                 struct page *page = bvec->bv_page;
2824                 struct inode *inode = page->mapping->host;
2825                 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2826                 u32 sectorsize = fs_info->sectorsize;
2827
2828                 btrfs_debug(fs_info,
2829                         "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2830                         (u64)bio->bi_iter.bi_sector, bio->bi_status,
2831                         io_bio->mirror_num);
2832                 tree = &BTRFS_I(inode)->io_tree;
2833                 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2834
2835                 /*
2836                  * We always issue full-sector reads, but if some block in a
2837                  * page fails to read, blk_update_request() will advance
2838                  * bv_offset and adjust bv_len to compensate.  Print a warning
2839                  * for unaligned offsets, and an error if they don't add up to
2840                  * a full sector.
2841                  */
2842                 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
2843                         btrfs_err(fs_info,
2844                 "partial page read in btrfs with offset %u and length %u",
2845                                   bvec->bv_offset, bvec->bv_len);
2846                 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
2847                                      sectorsize))
2848                         btrfs_info(fs_info,
2849                 "incomplete page read with offset %u and length %u",
2850                                    bvec->bv_offset, bvec->bv_len);
2851
2852                 start = page_offset(page) + bvec->bv_offset;
2853                 end = start + bvec->bv_len - 1;
2854                 len = bvec->bv_len;
2855
2856                 mirror = io_bio->mirror_num;
2857                 if (likely(uptodate)) {
2858                         if (is_data_inode(inode))
2859                                 ret = btrfs_verify_data_csum(io_bio, offset, page,
2860                                                              start, end, mirror);
2861                         else
2862                                 ret = btrfs_validate_metadata_buffer(io_bio,
2863                                         offset, page, start, end, mirror);
2864                         if (ret)
2865                                 uptodate = 0;
2866                         else
2867                                 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2868                                                  failure_tree, tree, start,
2869                                                  page,
2870                                                  btrfs_ino(BTRFS_I(inode)), 0);
2871                 }
2872
2873                 if (likely(uptodate))
2874                         goto readpage_ok;
2875
2876                 if (is_data_inode(inode)) {
2877
2878                         /*
2879                          * The generic bio_readpage_error handles errors the
2880                          * following way: If possible, new read requests are
2881                          * created and submitted and will end up in
2882                          * end_bio_extent_readpage as well (if we're lucky,
2883                          * not in the !uptodate case). In that case it returns
2884                          * 0 and we just go on with the next page in our bio.
2885                          * If it can't handle the error it will return -EIO and
2886                          * we remain responsible for that page.
2887                          */
2888                         if (!btrfs_submit_read_repair(inode, bio, offset, page,
2889                                                 start - page_offset(page),
2890                                                 start, end, mirror,
2891                                                 btrfs_submit_data_bio)) {
2892                                 uptodate = !bio->bi_status;
2893                                 offset += len;
2894                                 continue;
2895                         }
2896                 } else {
2897                         struct extent_buffer *eb;
2898
2899                         eb = (struct extent_buffer *)page->private;
2900                         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2901                         eb->read_mirror = mirror;
2902                         atomic_dec(&eb->io_pages);
2903                         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2904                                                &eb->bflags))
2905                                 btree_readahead_hook(eb, -EIO);
2906                 }
2907 readpage_ok:
2908                 if (likely(uptodate)) {
2909                         loff_t i_size = i_size_read(inode);
2910                         pgoff_t end_index = i_size >> PAGE_SHIFT;
2911                         unsigned off;
2912
2913                         /* Zero out the end if this page straddles i_size */
2914                         off = offset_in_page(i_size);
2915                         if (page->index == end_index && off)
2916                                 zero_user_segment(page, off, PAGE_SIZE);
2917                         SetPageUptodate(page);
2918                 } else {
2919                         ClearPageUptodate(page);
2920                         SetPageError(page);
2921                 }
2922                 unlock_page(page);
2923                 offset += len;
2924
2925                 if (unlikely(!uptodate)) {
2926                         if (extent_len) {
2927                                 endio_readpage_release_extent(tree,
2928                                                               extent_start,
2929                                                               extent_len, 1);
2930                                 extent_start = 0;
2931                                 extent_len = 0;
2932                         }
2933                         endio_readpage_release_extent(tree, start,
2934                                                       end - start + 1, 0);
2935                 } else if (!extent_len) {
2936                         extent_start = start;
2937                         extent_len = end + 1 - start;
2938                 } else if (extent_start + extent_len == start) {
2939                         extent_len += end + 1 - start;
2940                 } else {
2941                         endio_readpage_release_extent(tree, extent_start,
2942                                                       extent_len, uptodate);
2943                         extent_start = start;
2944                         extent_len = end + 1 - start;
2945                 }
2946         }
2947
2948         if (extent_len)
2949                 endio_readpage_release_extent(tree, extent_start, extent_len,
2950                                               uptodate);
2951         btrfs_io_bio_free_csum(io_bio);
2952         bio_put(bio);
2953 }
2954
2955 /*
2956  * Initialize the members up to but not including 'bio'. Use after allocating a
2957  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2958  * 'bio' because use of __GFP_ZERO is not supported.
2959  */
2960 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2961 {
2962         memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2963 }
2964
2965 /*
2966  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2967  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2968  * for the appropriate container_of magic
2969  */
2970 struct bio *btrfs_bio_alloc(u64 first_byte)
2971 {
2972         struct bio *bio;
2973
2974         bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2975         bio->bi_iter.bi_sector = first_byte >> 9;
2976         btrfs_io_bio_init(btrfs_io_bio(bio));
2977         return bio;
2978 }
2979
2980 struct bio *btrfs_bio_clone(struct bio *bio)
2981 {
2982         struct btrfs_io_bio *btrfs_bio;
2983         struct bio *new;
2984
2985         /* Bio allocation backed by a bioset does not fail */
2986         new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2987         btrfs_bio = btrfs_io_bio(new);
2988         btrfs_io_bio_init(btrfs_bio);
2989         btrfs_bio->iter = bio->bi_iter;
2990         return new;
2991 }
2992
2993 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2994 {
2995         struct bio *bio;
2996
2997         /* Bio allocation backed by a bioset does not fail */
2998         bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2999         btrfs_io_bio_init(btrfs_io_bio(bio));
3000         return bio;
3001 }
3002
3003 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
3004 {
3005         struct bio *bio;
3006         struct btrfs_io_bio *btrfs_bio;
3007
3008         /* this will never fail when it's backed by a bioset */
3009         bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3010         ASSERT(bio);
3011
3012         btrfs_bio = btrfs_io_bio(bio);
3013         btrfs_io_bio_init(btrfs_bio);
3014
3015         bio_trim(bio, offset >> 9, size >> 9);
3016         btrfs_bio->iter = bio->bi_iter;
3017         return bio;
3018 }
3019
3020 /*
3021  * @opf:        bio REQ_OP_* and REQ_* flags as one value
3022  * @wbc:        optional writeback control for io accounting
3023  * @page:       page to add to the bio
3024  * @pg_offset:  offset of the new bio or to check whether we are adding
3025  *              a contiguous page to the previous one
3026  * @size:       portion of page that we want to write
3027  * @offset:     starting offset in the page
3028  * @bio_ret:    must be valid pointer, newly allocated bio will be stored there
3029  * @end_io_func:     end_io callback for new bio
3030  * @mirror_num:      desired mirror to read/write
3031  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3032  * @bio_flags:  flags of the current bio to see if we can merge them
3033  */
3034 static int submit_extent_page(unsigned int opf,
3035                               struct writeback_control *wbc,
3036                               struct page *page, u64 offset,
3037                               size_t size, unsigned long pg_offset,
3038                               struct bio **bio_ret,
3039                               bio_end_io_t end_io_func,
3040                               int mirror_num,
3041                               unsigned long prev_bio_flags,
3042                               unsigned long bio_flags,
3043                               bool force_bio_submit)
3044 {
3045         int ret = 0;
3046         struct bio *bio;
3047         size_t io_size = min_t(size_t, size, PAGE_SIZE);
3048         sector_t sector = offset >> 9;
3049         struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree;
3050
3051         ASSERT(bio_ret);
3052
3053         if (*bio_ret) {
3054                 bool contig;
3055                 bool can_merge = true;
3056
3057                 bio = *bio_ret;
3058                 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
3059                         contig = bio->bi_iter.bi_sector == sector;
3060                 else
3061                         contig = bio_end_sector(bio) == sector;
3062
3063                 if (btrfs_bio_fits_in_stripe(page, io_size, bio, bio_flags))
3064                         can_merge = false;
3065
3066                 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
3067                     force_bio_submit ||
3068                     bio_add_page(bio, page, io_size, pg_offset) < io_size) {
3069                         ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
3070                         if (ret < 0) {
3071                                 *bio_ret = NULL;
3072                                 return ret;
3073                         }
3074                         bio = NULL;
3075                 } else {
3076                         if (wbc)
3077                                 wbc_account_cgroup_owner(wbc, page, io_size);
3078                         return 0;
3079                 }
3080         }
3081
3082         bio = btrfs_bio_alloc(offset);
3083         bio_add_page(bio, page, io_size, pg_offset);
3084         bio->bi_end_io = end_io_func;
3085         bio->bi_private = tree;
3086         bio->bi_write_hint = page->mapping->host->i_write_hint;
3087         bio->bi_opf = opf;
3088         if (wbc) {
3089                 struct block_device *bdev;
3090
3091                 bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
3092                 bio_set_dev(bio, bdev);
3093                 wbc_init_bio(wbc, bio);
3094                 wbc_account_cgroup_owner(wbc, page, io_size);
3095         }
3096
3097         *bio_ret = bio;
3098
3099         return ret;
3100 }
3101
3102 static void attach_extent_buffer_page(struct extent_buffer *eb,
3103                                       struct page *page)
3104 {
3105         /*
3106          * If the page is mapped to btree inode, we should hold the private
3107          * lock to prevent race.
3108          * For cloned or dummy extent buffers, their pages are not mapped and
3109          * will not race with any other ebs.
3110          */
3111         if (page->mapping)
3112                 lockdep_assert_held(&page->mapping->private_lock);
3113
3114         if (!PagePrivate(page))
3115                 attach_page_private(page, eb);
3116         else
3117                 WARN_ON(page->private != (unsigned long)eb);
3118 }
3119
3120 void set_page_extent_mapped(struct page *page)
3121 {
3122         if (!PagePrivate(page))
3123                 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3124 }
3125
3126 static struct extent_map *
3127 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3128                  u64 start, u64 len, struct extent_map **em_cached)
3129 {
3130         struct extent_map *em;
3131
3132         if (em_cached && *em_cached) {
3133                 em = *em_cached;
3134                 if (extent_map_in_tree(em) && start >= em->start &&
3135                     start < extent_map_end(em)) {
3136                         refcount_inc(&em->refs);
3137                         return em;
3138                 }
3139
3140                 free_extent_map(em);
3141                 *em_cached = NULL;
3142         }
3143
3144         em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3145         if (em_cached && !IS_ERR_OR_NULL(em)) {
3146                 BUG_ON(*em_cached);
3147                 refcount_inc(&em->refs);
3148                 *em_cached = em;
3149         }
3150         return em;
3151 }
3152 /*
3153  * basic readpage implementation.  Locked extent state structs are inserted
3154  * into the tree that are removed when the IO is done (by the end_io
3155  * handlers)
3156  * XXX JDM: This needs looking at to ensure proper page locking
3157  * return 0 on success, otherwise return error
3158  */
3159 int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3160                       struct bio **bio, unsigned long *bio_flags,
3161                       unsigned int read_flags, u64 *prev_em_start)
3162 {
3163         struct inode *inode = page->mapping->host;
3164         u64 start = page_offset(page);
3165         const u64 end = start + PAGE_SIZE - 1;
3166         u64 cur = start;
3167         u64 extent_offset;
3168         u64 last_byte = i_size_read(inode);
3169         u64 block_start;
3170         u64 cur_end;
3171         struct extent_map *em;
3172         int ret = 0;
3173         int nr = 0;
3174         size_t pg_offset = 0;
3175         size_t iosize;
3176         size_t blocksize = inode->i_sb->s_blocksize;
3177         unsigned long this_bio_flag = 0;
3178         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3179
3180         set_page_extent_mapped(page);
3181
3182         if (!PageUptodate(page)) {
3183                 if (cleancache_get_page(page) == 0) {
3184                         BUG_ON(blocksize != PAGE_SIZE);
3185                         unlock_extent(tree, start, end);
3186                         goto out;
3187                 }
3188         }
3189
3190         if (page->index == last_byte >> PAGE_SHIFT) {
3191                 char *userpage;
3192                 size_t zero_offset = offset_in_page(last_byte);
3193
3194                 if (zero_offset) {
3195                         iosize = PAGE_SIZE - zero_offset;
3196                         userpage = kmap_atomic(page);
3197                         memset(userpage + zero_offset, 0, iosize);
3198                         flush_dcache_page(page);
3199                         kunmap_atomic(userpage);
3200                 }
3201         }
3202         while (cur <= end) {
3203                 bool force_bio_submit = false;
3204                 u64 offset;
3205
3206                 if (cur >= last_byte) {
3207                         char *userpage;
3208                         struct extent_state *cached = NULL;
3209
3210                         iosize = PAGE_SIZE - pg_offset;
3211                         userpage = kmap_atomic(page);
3212                         memset(userpage + pg_offset, 0, iosize);
3213                         flush_dcache_page(page);
3214                         kunmap_atomic(userpage);
3215                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3216                                             &cached, GFP_NOFS);
3217                         unlock_extent_cached(tree, cur,
3218                                              cur + iosize - 1, &cached);
3219                         break;
3220                 }
3221                 em = __get_extent_map(inode, page, pg_offset, cur,
3222                                       end - cur + 1, em_cached);
3223                 if (IS_ERR_OR_NULL(em)) {
3224                         SetPageError(page);
3225                         unlock_extent(tree, cur, end);
3226                         break;
3227                 }
3228                 extent_offset = cur - em->start;
3229                 BUG_ON(extent_map_end(em) <= cur);
3230                 BUG_ON(end < cur);
3231
3232                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3233                         this_bio_flag |= EXTENT_BIO_COMPRESSED;
3234                         extent_set_compress_type(&this_bio_flag,
3235                                                  em->compress_type);
3236                 }
3237
3238                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3239                 cur_end = min(extent_map_end(em) - 1, end);
3240                 iosize = ALIGN(iosize, blocksize);
3241                 if (this_bio_flag & EXTENT_BIO_COMPRESSED)
3242                         offset = em->block_start;
3243                 else
3244                         offset = em->block_start + extent_offset;
3245                 block_start = em->block_start;
3246                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3247                         block_start = EXTENT_MAP_HOLE;
3248
3249                 /*
3250                  * If we have a file range that points to a compressed extent
3251                  * and it's followed by a consecutive file range that points
3252                  * to the same compressed extent (possibly with a different
3253                  * offset and/or length, so it either points to the whole extent
3254                  * or only part of it), we must make sure we do not submit a
3255                  * single bio to populate the pages for the 2 ranges because
3256                  * this makes the compressed extent read zero out the pages
3257                  * belonging to the 2nd range. Imagine the following scenario:
3258                  *
3259                  *  File layout
3260                  *  [0 - 8K]                     [8K - 24K]
3261                  *    |                               |
3262                  *    |                               |
3263                  * points to extent X,         points to extent X,
3264                  * offset 4K, length of 8K     offset 0, length 16K
3265                  *
3266                  * [extent X, compressed length = 4K uncompressed length = 16K]
3267                  *
3268                  * If the bio to read the compressed extent covers both ranges,
3269                  * it will decompress extent X into the pages belonging to the
3270                  * first range and then it will stop, zeroing out the remaining
3271                  * pages that belong to the other range that points to extent X.
3272                  * So here we make sure we submit 2 bios, one for the first
3273                  * range and another one for the third range. Both will target
3274                  * the same physical extent from disk, but we can't currently
3275                  * make the compressed bio endio callback populate the pages
3276                  * for both ranges because each compressed bio is tightly
3277                  * coupled with a single extent map, and each range can have
3278                  * an extent map with a different offset value relative to the
3279                  * uncompressed data of our extent and different lengths. This
3280                  * is a corner case so we prioritize correctness over
3281                  * non-optimal behavior (submitting 2 bios for the same extent).
3282                  */
3283                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3284                     prev_em_start && *prev_em_start != (u64)-1 &&
3285                     *prev_em_start != em->start)
3286                         force_bio_submit = true;
3287
3288                 if (prev_em_start)
3289                         *prev_em_start = em->start;
3290
3291                 free_extent_map(em);
3292                 em = NULL;
3293
3294                 /* we've found a hole, just zero and go on */
3295                 if (block_start == EXTENT_MAP_HOLE) {
3296                         char *userpage;
3297                         struct extent_state *cached = NULL;
3298
3299                         userpage = kmap_atomic(page);
3300                         memset(userpage + pg_offset, 0, iosize);
3301                         flush_dcache_page(page);
3302                         kunmap_atomic(userpage);
3303
3304                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3305                                             &cached, GFP_NOFS);
3306                         unlock_extent_cached(tree, cur,
3307                                              cur + iosize - 1, &cached);
3308                         cur = cur + iosize;
3309                         pg_offset += iosize;
3310                         continue;
3311                 }
3312                 /* the get_extent function already copied into the page */
3313                 if (test_range_bit(tree, cur, cur_end,
3314                                    EXTENT_UPTODATE, 1, NULL)) {
3315                         check_page_uptodate(tree, page);
3316                         unlock_extent(tree, cur, cur + iosize - 1);
3317                         cur = cur + iosize;
3318                         pg_offset += iosize;
3319                         continue;
3320                 }
3321                 /* we have an inline extent but it didn't get marked up
3322                  * to date.  Error out
3323                  */
3324                 if (block_start == EXTENT_MAP_INLINE) {
3325                         SetPageError(page);
3326                         unlock_extent(tree, cur, cur + iosize - 1);
3327                         cur = cur + iosize;
3328                         pg_offset += iosize;
3329                         continue;
3330                 }
3331
3332                 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3333                                          page, offset, iosize,
3334                                          pg_offset, bio,
3335                                          end_bio_extent_readpage, 0,
3336                                          *bio_flags,
3337                                          this_bio_flag,
3338                                          force_bio_submit);
3339                 if (!ret) {
3340                         nr++;
3341                         *bio_flags = this_bio_flag;
3342                 } else {
3343                         SetPageError(page);
3344                         unlock_extent(tree, cur, cur + iosize - 1);
3345                         goto out;
3346                 }
3347                 cur = cur + iosize;
3348                 pg_offset += iosize;
3349         }
3350 out:
3351         if (!nr) {
3352                 if (!PageError(page))
3353                         SetPageUptodate(page);
3354                 unlock_page(page);
3355         }
3356         return ret;
3357 }
3358
3359 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3360                                              u64 start, u64 end,
3361                                              struct extent_map **em_cached,
3362                                              struct bio **bio,
3363                                              unsigned long *bio_flags,
3364                                              u64 *prev_em_start)
3365 {
3366         struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3367         int index;
3368
3369         btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3370
3371         for (index = 0; index < nr_pages; index++) {
3372                 btrfs_do_readpage(pages[index], em_cached, bio, bio_flags,
3373                                   REQ_RAHEAD, prev_em_start);
3374                 put_page(pages[index]);
3375         }
3376 }
3377
3378 static void update_nr_written(struct writeback_control *wbc,
3379                               unsigned long nr_written)
3380 {
3381         wbc->nr_to_write -= nr_written;
3382 }
3383
3384 /*
3385  * helper for __extent_writepage, doing all of the delayed allocation setup.
3386  *
3387  * This returns 1 if btrfs_run_delalloc_range function did all the work required
3388  * to write the page (copy into inline extent).  In this case the IO has
3389  * been started and the page is already unlocked.
3390  *
3391  * This returns 0 if all went well (page still locked)
3392  * This returns < 0 if there were errors (page still locked)
3393  */
3394 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3395                 struct page *page, struct writeback_control *wbc,
3396                 u64 delalloc_start, unsigned long *nr_written)
3397 {
3398         u64 page_end = delalloc_start + PAGE_SIZE - 1;
3399         bool found;
3400         u64 delalloc_to_write = 0;
3401         u64 delalloc_end = 0;
3402         int ret;
3403         int page_started = 0;
3404
3405
3406         while (delalloc_end < page_end) {
3407                 found = find_lock_delalloc_range(&inode->vfs_inode, page,
3408                                                &delalloc_start,
3409                                                &delalloc_end);
3410                 if (!found) {
3411                         delalloc_start = delalloc_end + 1;
3412                         continue;
3413                 }
3414                 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3415                                 delalloc_end, &page_started, nr_written, wbc);
3416                 if (ret) {
3417                         SetPageError(page);
3418                         /*
3419                          * btrfs_run_delalloc_range should return < 0 for error
3420                          * but just in case, we use > 0 here meaning the IO is
3421                          * started, so we don't want to return > 0 unless
3422                          * things are going well.
3423                          */
3424                         return ret < 0 ? ret : -EIO;
3425                 }
3426                 /*
3427                  * delalloc_end is already one less than the total length, so
3428                  * we don't subtract one from PAGE_SIZE
3429                  */
3430                 delalloc_to_write += (delalloc_end - delalloc_start +
3431                                       PAGE_SIZE) >> PAGE_SHIFT;
3432                 delalloc_start = delalloc_end + 1;
3433         }
3434         if (wbc->nr_to_write < delalloc_to_write) {
3435                 int thresh = 8192;
3436
3437                 if (delalloc_to_write < thresh * 2)
3438                         thresh = delalloc_to_write;
3439                 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3440                                          thresh);
3441         }
3442
3443         /* did the fill delalloc function already unlock and start
3444          * the IO?
3445          */
3446         if (page_started) {
3447                 /*
3448                  * we've unlocked the page, so we can't update
3449                  * the mapping's writeback index, just update
3450                  * nr_to_write.
3451                  */
3452                 wbc->nr_to_write -= *nr_written;
3453                 return 1;
3454         }
3455
3456         return 0;
3457 }
3458
3459 /*
3460  * helper for __extent_writepage.  This calls the writepage start hooks,
3461  * and does the loop to map the page into extents and bios.
3462  *
3463  * We return 1 if the IO is started and the page is unlocked,
3464  * 0 if all went well (page still locked)
3465  * < 0 if there were errors (page still locked)
3466  */
3467 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3468                                  struct page *page,
3469                                  struct writeback_control *wbc,
3470                                  struct extent_page_data *epd,
3471                                  loff_t i_size,
3472                                  unsigned long nr_written,
3473                                  int *nr_ret)
3474 {
3475         struct extent_io_tree *tree = &inode->io_tree;
3476         u64 start = page_offset(page);
3477         u64 page_end = start + PAGE_SIZE - 1;
3478         u64 end;
3479         u64 cur = start;
3480         u64 extent_offset;
3481         u64 block_start;
3482         u64 iosize;
3483         struct extent_map *em;
3484         size_t pg_offset = 0;
3485         size_t blocksize;
3486         int ret = 0;
3487         int nr = 0;
3488         const unsigned int write_flags = wbc_to_write_flags(wbc);
3489         bool compressed;
3490
3491         ret = btrfs_writepage_cow_fixup(page, start, page_end);
3492         if (ret) {
3493                 /* Fixup worker will requeue */
3494                 redirty_page_for_writepage(wbc, page);
3495                 update_nr_written(wbc, nr_written);
3496                 unlock_page(page);
3497                 return 1;
3498         }
3499
3500         /*
3501          * we don't want to touch the inode after unlocking the page,
3502          * so we update the mapping writeback index now
3503          */
3504         update_nr_written(wbc, nr_written + 1);
3505
3506         end = page_end;
3507         blocksize = inode->vfs_inode.i_sb->s_blocksize;
3508
3509         while (cur <= end) {
3510                 u64 em_end;
3511                 u64 offset;
3512
3513                 if (cur >= i_size) {
3514                         btrfs_writepage_endio_finish_ordered(page, cur,
3515                                                              page_end, 1);
3516                         break;
3517                 }
3518                 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3519                 if (IS_ERR_OR_NULL(em)) {
3520                         SetPageError(page);
3521                         ret = PTR_ERR_OR_ZERO(em);
3522                         break;
3523                 }
3524
3525                 extent_offset = cur - em->start;
3526                 em_end = extent_map_end(em);
3527                 BUG_ON(em_end <= cur);
3528                 BUG_ON(end < cur);
3529                 iosize = min(em_end - cur, end - cur + 1);
3530                 iosize = ALIGN(iosize, blocksize);
3531                 offset = em->block_start + extent_offset;
3532                 block_start = em->block_start;
3533                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3534                 free_extent_map(em);
3535                 em = NULL;
3536
3537                 /*
3538                  * compressed and inline extents are written through other
3539                  * paths in the FS
3540                  */
3541                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3542                     block_start == EXTENT_MAP_INLINE) {
3543                         if (compressed)
3544                                 nr++;
3545                         else
3546                                 btrfs_writepage_endio_finish_ordered(page, cur,
3547                                                         cur + iosize - 1, 1);
3548                         cur += iosize;
3549                         pg_offset += iosize;
3550                         continue;
3551                 }
3552
3553                 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3554                 if (!PageWriteback(page)) {
3555                         btrfs_err(inode->root->fs_info,
3556                                    "page %lu not writeback, cur %llu end %llu",
3557                                page->index, cur, end);
3558                 }
3559
3560                 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3561                                          page, offset, iosize, pg_offset,
3562                                          &epd->bio,
3563                                          end_bio_extent_writepage,
3564                                          0, 0, 0, false);
3565                 if (ret) {
3566                         SetPageError(page);
3567                         if (PageWriteback(page))
3568                                 end_page_writeback(page);
3569                 }
3570
3571                 cur = cur + iosize;
3572                 pg_offset += iosize;
3573                 nr++;
3574         }
3575         *nr_ret = nr;
3576         return ret;
3577 }
3578
3579 /*
3580  * the writepage semantics are similar to regular writepage.  extent
3581  * records are inserted to lock ranges in the tree, and as dirty areas
3582  * are found, they are marked writeback.  Then the lock bits are removed
3583  * and the end_io handler clears the writeback ranges
3584  *
3585  * Return 0 if everything goes well.
3586  * Return <0 for error.
3587  */
3588 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3589                               struct extent_page_data *epd)
3590 {
3591         struct inode *inode = page->mapping->host;
3592         u64 start = page_offset(page);
3593         u64 page_end = start + PAGE_SIZE - 1;
3594         int ret;
3595         int nr = 0;
3596         size_t pg_offset;
3597         loff_t i_size = i_size_read(inode);
3598         unsigned long end_index = i_size >> PAGE_SHIFT;
3599         unsigned long nr_written = 0;
3600
3601         trace___extent_writepage(page, inode, wbc);
3602
3603         WARN_ON(!PageLocked(page));
3604
3605         ClearPageError(page);
3606
3607         pg_offset = offset_in_page(i_size);
3608         if (page->index > end_index ||
3609            (page->index == end_index && !pg_offset)) {
3610                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3611                 unlock_page(page);
3612                 return 0;
3613         }
3614
3615         if (page->index == end_index) {
3616                 char *userpage;
3617
3618                 userpage = kmap_atomic(page);
3619                 memset(userpage + pg_offset, 0,
3620                        PAGE_SIZE - pg_offset);
3621                 kunmap_atomic(userpage);
3622                 flush_dcache_page(page);
3623         }
3624
3625         set_page_extent_mapped(page);
3626
3627         if (!epd->extent_locked) {
3628                 ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
3629                                          &nr_written);
3630                 if (ret == 1)
3631                         return 0;
3632                 if (ret)
3633                         goto done;
3634         }
3635
3636         ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
3637                                     nr_written, &nr);
3638         if (ret == 1)
3639                 return 0;
3640
3641 done:
3642         if (nr == 0) {
3643                 /* make sure the mapping tag for page dirty gets cleared */
3644                 set_page_writeback(page);
3645                 end_page_writeback(page);
3646         }
3647         if (PageError(page)) {
3648                 ret = ret < 0 ? ret : -EIO;
3649                 end_extent_writepage(page, ret, start, page_end);
3650         }
3651         unlock_page(page);
3652         ASSERT(ret <= 0);
3653         return ret;
3654 }
3655
3656 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3657 {
3658         wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3659                        TASK_UNINTERRUPTIBLE);
3660 }
3661
3662 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3663 {
3664         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3665         smp_mb__after_atomic();
3666         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3667 }
3668
3669 /*
3670  * Lock extent buffer status and pages for writeback.
3671  *
3672  * May try to flush write bio if we can't get the lock.
3673  *
3674  * Return  0 if the extent buffer doesn't need to be submitted.
3675  *           (E.g. the extent buffer is not dirty)
3676  * Return >0 is the extent buffer is submitted to bio.
3677  * Return <0 if something went wrong, no page is locked.
3678  */
3679 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3680                           struct extent_page_data *epd)
3681 {
3682         struct btrfs_fs_info *fs_info = eb->fs_info;
3683         int i, num_pages, failed_page_nr;
3684         int flush = 0;
3685         int ret = 0;
3686
3687         if (!btrfs_try_tree_write_lock(eb)) {
3688                 ret = flush_write_bio(epd);
3689                 if (ret < 0)
3690                         return ret;
3691                 flush = 1;
3692                 btrfs_tree_lock(eb);
3693         }
3694
3695         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3696                 btrfs_tree_unlock(eb);
3697                 if (!epd->sync_io)
3698                         return 0;
3699                 if (!flush) {
3700                         ret = flush_write_bio(epd);
3701                         if (ret < 0)
3702                                 return ret;
3703                         flush = 1;
3704                 }
3705                 while (1) {
3706                         wait_on_extent_buffer_writeback(eb);
3707                         btrfs_tree_lock(eb);
3708                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3709                                 break;
3710                         btrfs_tree_unlock(eb);
3711                 }
3712         }
3713
3714         /*
3715          * We need to do this to prevent races in people who check if the eb is
3716          * under IO since we can end up having no IO bits set for a short period
3717          * of time.
3718          */
3719         spin_lock(&eb->refs_lock);
3720         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3721                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3722                 spin_unlock(&eb->refs_lock);
3723                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3724                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3725                                          -eb->len,
3726                                          fs_info->dirty_metadata_batch);
3727                 ret = 1;
3728         } else {
3729                 spin_unlock(&eb->refs_lock);
3730         }
3731
3732         btrfs_tree_unlock(eb);
3733
3734         if (!ret)
3735                 return ret;
3736
3737         num_pages = num_extent_pages(eb);
3738         for (i = 0; i < num_pages; i++) {
3739                 struct page *p = eb->pages[i];
3740
3741                 if (!trylock_page(p)) {
3742                         if (!flush) {
3743                                 int err;
3744
3745                                 err = flush_write_bio(epd);
3746                                 if (err < 0) {
3747                                         ret = err;
3748                                         failed_page_nr = i;
3749                                         goto err_unlock;
3750                                 }
3751                                 flush = 1;
3752                         }
3753                         lock_page(p);
3754                 }
3755         }
3756
3757         return ret;
3758 err_unlock:
3759         /* Unlock already locked pages */
3760         for (i = 0; i < failed_page_nr; i++)
3761                 unlock_page(eb->pages[i]);
3762         /*
3763          * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3764          * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3765          * be made and undo everything done before.
3766          */
3767         btrfs_tree_lock(eb);
3768         spin_lock(&eb->refs_lock);
3769         set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3770         end_extent_buffer_writeback(eb);
3771         spin_unlock(&eb->refs_lock);
3772         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3773                                  fs_info->dirty_metadata_batch);
3774         btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3775         btrfs_tree_unlock(eb);
3776         return ret;
3777 }
3778
3779 static void set_btree_ioerr(struct page *page)
3780 {
3781         struct extent_buffer *eb = (struct extent_buffer *)page->private;
3782         struct btrfs_fs_info *fs_info;
3783
3784         SetPageError(page);
3785         if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3786                 return;
3787
3788         /*
3789          * If we error out, we should add back the dirty_metadata_bytes
3790          * to make it consistent.
3791          */
3792         fs_info = eb->fs_info;
3793         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3794                                  eb->len, fs_info->dirty_metadata_batch);
3795
3796         /*
3797          * If writeback for a btree extent that doesn't belong to a log tree
3798          * failed, increment the counter transaction->eb_write_errors.
3799          * We do this because while the transaction is running and before it's
3800          * committing (when we call filemap_fdata[write|wait]_range against
3801          * the btree inode), we might have
3802          * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3803          * returns an error or an error happens during writeback, when we're
3804          * committing the transaction we wouldn't know about it, since the pages
3805          * can be no longer dirty nor marked anymore for writeback (if a
3806          * subsequent modification to the extent buffer didn't happen before the
3807          * transaction commit), which makes filemap_fdata[write|wait]_range not
3808          * able to find the pages tagged with SetPageError at transaction
3809          * commit time. So if this happens we must abort the transaction,
3810          * otherwise we commit a super block with btree roots that point to
3811          * btree nodes/leafs whose content on disk is invalid - either garbage
3812          * or the content of some node/leaf from a past generation that got
3813          * cowed or deleted and is no longer valid.
3814          *
3815          * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3816          * not be enough - we need to distinguish between log tree extents vs
3817          * non-log tree extents, and the next filemap_fdatawait_range() call
3818          * will catch and clear such errors in the mapping - and that call might
3819          * be from a log sync and not from a transaction commit. Also, checking
3820          * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3821          * not done and would not be reliable - the eb might have been released
3822          * from memory and reading it back again means that flag would not be
3823          * set (since it's a runtime flag, not persisted on disk).
3824          *
3825          * Using the flags below in the btree inode also makes us achieve the
3826          * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3827          * writeback for all dirty pages and before filemap_fdatawait_range()
3828          * is called, the writeback for all dirty pages had already finished
3829          * with errors - because we were not using AS_EIO/AS_ENOSPC,
3830          * filemap_fdatawait_range() would return success, as it could not know
3831          * that writeback errors happened (the pages were no longer tagged for
3832          * writeback).
3833          */
3834         switch (eb->log_index) {
3835         case -1:
3836                 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3837                 break;
3838         case 0:
3839                 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3840                 break;
3841         case 1:
3842                 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3843                 break;
3844         default:
3845                 BUG(); /* unexpected, logic error */
3846         }
3847 }
3848
3849 static void end_bio_extent_buffer_writepage(struct bio *bio)
3850 {
3851         struct bio_vec *bvec;
3852         struct extent_buffer *eb;
3853         int done;
3854         struct bvec_iter_all iter_all;
3855
3856         ASSERT(!bio_flagged(bio, BIO_CLONED));
3857         bio_for_each_segment_all(bvec, bio, iter_all) {
3858                 struct page *page = bvec->bv_page;
3859
3860                 eb = (struct extent_buffer *)page->private;
3861                 BUG_ON(!eb);
3862                 done = atomic_dec_and_test(&eb->io_pages);
3863
3864                 if (bio->bi_status ||
3865                     test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3866                         ClearPageUptodate(page);
3867                         set_btree_ioerr(page);
3868                 }
3869
3870                 end_page_writeback(page);
3871
3872                 if (!done)
3873                         continue;
3874
3875                 end_extent_buffer_writeback(eb);
3876         }
3877
3878         bio_put(bio);
3879 }
3880
3881 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3882                         struct writeback_control *wbc,
3883                         struct extent_page_data *epd)
3884 {
3885         u64 offset = eb->start;
3886         u32 nritems;
3887         int i, num_pages;
3888         unsigned long start, end;
3889         unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3890         int ret = 0;
3891
3892         clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3893         num_pages = num_extent_pages(eb);
3894         atomic_set(&eb->io_pages, num_pages);
3895
3896         /* set btree blocks beyond nritems with 0 to avoid stale content. */
3897         nritems = btrfs_header_nritems(eb);
3898         if (btrfs_header_level(eb) > 0) {
3899                 end = btrfs_node_key_ptr_offset(nritems);
3900
3901                 memzero_extent_buffer(eb, end, eb->len - end);
3902         } else {
3903                 /*
3904                  * leaf:
3905                  * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3906                  */
3907                 start = btrfs_item_nr_offset(nritems);
3908                 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3909                 memzero_extent_buffer(eb, start, end - start);
3910         }
3911
3912         for (i = 0; i < num_pages; i++) {
3913                 struct page *p = eb->pages[i];
3914
3915                 clear_page_dirty_for_io(p);
3916                 set_page_writeback(p);
3917                 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3918                                          p, offset, PAGE_SIZE, 0,
3919                                          &epd->bio,
3920                                          end_bio_extent_buffer_writepage,
3921                                          0, 0, 0, false);
3922                 if (ret) {
3923                         set_btree_ioerr(p);
3924                         if (PageWriteback(p))
3925                                 end_page_writeback(p);
3926                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3927                                 end_extent_buffer_writeback(eb);
3928                         ret = -EIO;
3929                         break;
3930                 }
3931                 offset += PAGE_SIZE;
3932                 update_nr_written(wbc, 1);
3933                 unlock_page(p);
3934         }
3935
3936         if (unlikely(ret)) {
3937                 for (; i < num_pages; i++) {
3938                         struct page *p = eb->pages[i];
3939                         clear_page_dirty_for_io(p);
3940                         unlock_page(p);
3941                 }
3942         }
3943
3944         return ret;
3945 }
3946
3947 int btree_write_cache_pages(struct address_space *mapping,
3948                                    struct writeback_control *wbc)
3949 {
3950         struct extent_buffer *eb, *prev_eb = NULL;
3951         struct extent_page_data epd = {
3952                 .bio = NULL,
3953                 .extent_locked = 0,
3954                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3955         };
3956         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3957         int ret = 0;
3958         int done = 0;
3959         int nr_to_write_done = 0;
3960         struct pagevec pvec;
3961         int nr_pages;
3962         pgoff_t index;
3963         pgoff_t end;            /* Inclusive */
3964         int scanned = 0;
3965         xa_mark_t tag;
3966
3967         pagevec_init(&pvec);
3968         if (wbc->range_cyclic) {
3969                 index = mapping->writeback_index; /* Start from prev offset */
3970                 end = -1;
3971                 /*
3972                  * Start from the beginning does not need to cycle over the
3973                  * range, mark it as scanned.
3974                  */
3975                 scanned = (index == 0);
3976         } else {
3977                 index = wbc->range_start >> PAGE_SHIFT;
3978                 end = wbc->range_end >> PAGE_SHIFT;
3979                 scanned = 1;
3980         }
3981         if (wbc->sync_mode == WB_SYNC_ALL)
3982                 tag = PAGECACHE_TAG_TOWRITE;
3983         else
3984                 tag = PAGECACHE_TAG_DIRTY;
3985 retry:
3986         if (wbc->sync_mode == WB_SYNC_ALL)
3987                 tag_pages_for_writeback(mapping, index, end);
3988         while (!done && !nr_to_write_done && (index <= end) &&
3989                (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3990                         tag))) {
3991                 unsigned i;
3992
3993                 for (i = 0; i < nr_pages; i++) {
3994                         struct page *page = pvec.pages[i];
3995
3996                         if (!PagePrivate(page))
3997                                 continue;
3998
3999                         spin_lock(&mapping->private_lock);
4000                         if (!PagePrivate(page)) {
4001                                 spin_unlock(&mapping->private_lock);
4002                                 continue;
4003                         }
4004
4005                         eb = (struct extent_buffer *)page->private;
4006
4007                         /*
4008                          * Shouldn't happen and normally this would be a BUG_ON
4009                          * but no sense in crashing the users box for something
4010                          * we can survive anyway.
4011                          */
4012                         if (WARN_ON(!eb)) {
4013                                 spin_unlock(&mapping->private_lock);
4014                                 continue;
4015                         }
4016
4017                         if (eb == prev_eb) {
4018                                 spin_unlock(&mapping->private_lock);
4019                                 continue;
4020                         }
4021
4022                         ret = atomic_inc_not_zero(&eb->refs);
4023                         spin_unlock(&mapping->private_lock);
4024                         if (!ret)
4025                                 continue;
4026
4027                         prev_eb = eb;
4028                         ret = lock_extent_buffer_for_io(eb, &epd);
4029                         if (!ret) {
4030                                 free_extent_buffer(eb);
4031                                 continue;
4032                         } else if (ret < 0) {
4033                                 done = 1;
4034                                 free_extent_buffer(eb);
4035                                 break;
4036                         }
4037
4038                         ret = write_one_eb(eb, wbc, &epd);
4039                         if (ret) {
4040                                 done = 1;
4041                                 free_extent_buffer(eb);
4042                                 break;
4043                         }
4044                         free_extent_buffer(eb);
4045
4046                         /*
4047                          * the filesystem may choose to bump up nr_to_write.
4048                          * We have to make sure to honor the new nr_to_write
4049                          * at any time
4050                          */
4051                         nr_to_write_done = wbc->nr_to_write <= 0;
4052                 }
4053                 pagevec_release(&pvec);
4054                 cond_resched();
4055         }
4056         if (!scanned && !done) {
4057                 /*
4058                  * We hit the last page and there is more work to be done: wrap
4059                  * back to the start of the file
4060                  */
4061                 scanned = 1;
4062                 index = 0;
4063                 goto retry;
4064         }
4065         ASSERT(ret <= 0);
4066         if (ret < 0) {
4067                 end_write_bio(&epd, ret);
4068                 return ret;
4069         }
4070         /*
4071          * If something went wrong, don't allow any metadata write bio to be
4072          * submitted.
4073          *
4074          * This would prevent use-after-free if we had dirty pages not
4075          * cleaned up, which can still happen by fuzzed images.
4076          *
4077          * - Bad extent tree
4078          *   Allowing existing tree block to be allocated for other trees.
4079          *
4080          * - Log tree operations
4081          *   Exiting tree blocks get allocated to log tree, bumps its
4082          *   generation, then get cleaned in tree re-balance.
4083          *   Such tree block will not be written back, since it's clean,
4084          *   thus no WRITTEN flag set.
4085          *   And after log writes back, this tree block is not traced by
4086          *   any dirty extent_io_tree.
4087          *
4088          * - Offending tree block gets re-dirtied from its original owner
4089          *   Since it has bumped generation, no WRITTEN flag, it can be
4090          *   reused without COWing. This tree block will not be traced
4091          *   by btrfs_transaction::dirty_pages.
4092          *
4093          *   Now such dirty tree block will not be cleaned by any dirty
4094          *   extent io tree. Thus we don't want to submit such wild eb
4095          *   if the fs already has error.
4096          */
4097         if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4098                 ret = flush_write_bio(&epd);
4099         } else {
4100                 ret = -EROFS;
4101                 end_write_bio(&epd, ret);
4102         }
4103         return ret;
4104 }
4105
4106 /**
4107  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4108  * @mapping: address space structure to write
4109  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4110  * @data: data passed to __extent_writepage function
4111  *
4112  * If a page is already under I/O, write_cache_pages() skips it, even
4113  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4114  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4115  * and msync() need to guarantee that all the data which was dirty at the time
4116  * the call was made get new I/O started against them.  If wbc->sync_mode is
4117  * WB_SYNC_ALL then we were called for data integrity and we must wait for
4118  * existing IO to complete.
4119  */
4120 static int extent_write_cache_pages(struct address_space *mapping,
4121                              struct writeback_control *wbc,
4122                              struct extent_page_data *epd)
4123 {
4124         struct inode *inode = mapping->host;
4125         int ret = 0;
4126         int done = 0;
4127         int nr_to_write_done = 0;
4128         struct pagevec pvec;
4129         int nr_pages;
4130         pgoff_t index;
4131         pgoff_t end;            /* Inclusive */
4132         pgoff_t done_index;
4133         int range_whole = 0;
4134         int scanned = 0;
4135         xa_mark_t tag;
4136
4137         /*
4138          * We have to hold onto the inode so that ordered extents can do their
4139          * work when the IO finishes.  The alternative to this is failing to add
4140          * an ordered extent if the igrab() fails there and that is a huge pain
4141          * to deal with, so instead just hold onto the inode throughout the
4142          * writepages operation.  If it fails here we are freeing up the inode
4143          * anyway and we'd rather not waste our time writing out stuff that is
4144          * going to be truncated anyway.
4145          */
4146         if (!igrab(inode))
4147                 return 0;
4148
4149         pagevec_init(&pvec);
4150         if (wbc->range_cyclic) {
4151                 index = mapping->writeback_index; /* Start from prev offset */
4152                 end = -1;
4153                 /*
4154                  * Start from the beginning does not need to cycle over the
4155                  * range, mark it as scanned.
4156                  */
4157                 scanned = (index == 0);
4158         } else {
4159                 index = wbc->range_start >> PAGE_SHIFT;
4160                 end = wbc->range_end >> PAGE_SHIFT;
4161                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4162                         range_whole = 1;
4163                 scanned = 1;
4164         }
4165
4166         /*
4167          * We do the tagged writepage as long as the snapshot flush bit is set
4168          * and we are the first one who do the filemap_flush() on this inode.
4169          *
4170          * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4171          * not race in and drop the bit.
4172          */
4173         if (range_whole && wbc->nr_to_write == LONG_MAX &&
4174             test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4175                                &BTRFS_I(inode)->runtime_flags))
4176                 wbc->tagged_writepages = 1;
4177
4178         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4179                 tag = PAGECACHE_TAG_TOWRITE;
4180         else
4181                 tag = PAGECACHE_TAG_DIRTY;
4182 retry:
4183         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4184                 tag_pages_for_writeback(mapping, index, end);
4185         done_index = index;
4186         while (!done && !nr_to_write_done && (index <= end) &&
4187                         (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4188                                                 &index, end, tag))) {
4189                 unsigned i;
4190
4191                 for (i = 0; i < nr_pages; i++) {
4192                         struct page *page = pvec.pages[i];
4193
4194                         done_index = page->index + 1;
4195                         /*
4196                          * At this point we hold neither the i_pages lock nor
4197                          * the page lock: the page may be truncated or
4198                          * invalidated (changing page->mapping to NULL),
4199                          * or even swizzled back from swapper_space to
4200                          * tmpfs file mapping
4201                          */
4202                         if (!trylock_page(page)) {
4203                                 ret = flush_write_bio(epd);
4204                                 BUG_ON(ret < 0);
4205                                 lock_page(page);
4206                         }
4207
4208                         if (unlikely(page->mapping != mapping)) {
4209                                 unlock_page(page);
4210                                 continue;
4211                         }
4212
4213                         if (wbc->sync_mode != WB_SYNC_NONE) {
4214                                 if (PageWriteback(page)) {
4215                                         ret = flush_write_bio(epd);
4216                                         BUG_ON(ret < 0);
4217                                 }
4218                                 wait_on_page_writeback(page);
4219                         }
4220
4221                         if (PageWriteback(page) ||
4222                             !clear_page_dirty_for_io(page)) {
4223                                 unlock_page(page);
4224                                 continue;
4225                         }
4226
4227                         ret = __extent_writepage(page, wbc, epd);
4228                         if (ret < 0) {
4229                                 done = 1;
4230                                 break;
4231                         }
4232
4233                         /*
4234                          * the filesystem may choose to bump up nr_to_write.
4235                          * We have to make sure to honor the new nr_to_write
4236                          * at any time
4237                          */
4238                         nr_to_write_done = wbc->nr_to_write <= 0;
4239                 }
4240                 pagevec_release(&pvec);
4241                 cond_resched();
4242         }
4243         if (!scanned && !done) {
4244                 /*
4245                  * We hit the last page and there is more work to be done: wrap
4246                  * back to the start of the file
4247                  */
4248                 scanned = 1;
4249                 index = 0;
4250
4251                 /*
4252                  * If we're looping we could run into a page that is locked by a
4253                  * writer and that writer could be waiting on writeback for a
4254                  * page in our current bio, and thus deadlock, so flush the
4255                  * write bio here.
4256                  */
4257                 ret = flush_write_bio(epd);
4258                 if (!ret)
4259                         goto retry;
4260         }
4261
4262         if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4263                 mapping->writeback_index = done_index;
4264
4265         btrfs_add_delayed_iput(inode);
4266         return ret;
4267 }
4268
4269 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4270 {
4271         int ret;
4272         struct extent_page_data epd = {
4273                 .bio = NULL,
4274                 .extent_locked = 0,
4275                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4276         };
4277
4278         ret = __extent_writepage(page, wbc, &epd);
4279         ASSERT(ret <= 0);
4280         if (ret < 0) {
4281                 end_write_bio(&epd, ret);
4282                 return ret;
4283         }
4284
4285         ret = flush_write_bio(&epd);
4286         ASSERT(ret <= 0);
4287         return ret;
4288 }
4289
4290 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4291                               int mode)
4292 {
4293         int ret = 0;
4294         struct address_space *mapping = inode->i_mapping;
4295         struct page *page;
4296         unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4297                 PAGE_SHIFT;
4298
4299         struct extent_page_data epd = {
4300                 .bio = NULL,
4301                 .extent_locked = 1,
4302                 .sync_io = mode == WB_SYNC_ALL,
4303         };
4304         struct writeback_control wbc_writepages = {
4305                 .sync_mode      = mode,
4306                 .nr_to_write    = nr_pages * 2,
4307                 .range_start    = start,
4308                 .range_end      = end + 1,
4309                 /* We're called from an async helper function */
4310                 .punt_to_cgroup = 1,
4311                 .no_cgroup_owner = 1,
4312         };
4313
4314         wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4315         while (start <= end) {
4316                 page = find_get_page(mapping, start >> PAGE_SHIFT);
4317                 if (clear_page_dirty_for_io(page))
4318                         ret = __extent_writepage(page, &wbc_writepages, &epd);
4319                 else {
4320                         btrfs_writepage_endio_finish_ordered(page, start,
4321                                                     start + PAGE_SIZE - 1, 1);
4322                         unlock_page(page);
4323                 }
4324                 put_page(page);
4325                 start += PAGE_SIZE;
4326         }
4327
4328         ASSERT(ret <= 0);
4329         if (ret == 0)
4330                 ret = flush_write_bio(&epd);
4331         else
4332                 end_write_bio(&epd, ret);
4333
4334         wbc_detach_inode(&wbc_writepages);
4335         return ret;
4336 }
4337
4338 int extent_writepages(struct address_space *mapping,
4339                       struct writeback_control *wbc)
4340 {
4341         int ret = 0;
4342         struct extent_page_data epd = {
4343                 .bio = NULL,
4344                 .extent_locked = 0,
4345                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4346         };
4347
4348         ret = extent_write_cache_pages(mapping, wbc, &epd);
4349         ASSERT(ret <= 0);
4350         if (ret < 0) {
4351                 end_write_bio(&epd, ret);
4352                 return ret;
4353         }
4354         ret = flush_write_bio(&epd);
4355         return ret;
4356 }
4357
4358 void extent_readahead(struct readahead_control *rac)
4359 {
4360         struct bio *bio = NULL;
4361         unsigned long bio_flags = 0;
4362         struct page *pagepool[16];
4363         struct extent_map *em_cached = NULL;
4364         u64 prev_em_start = (u64)-1;
4365         int nr;
4366
4367         while ((nr = readahead_page_batch(rac, pagepool))) {
4368                 u64 contig_start = page_offset(pagepool[0]);
4369                 u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1;
4370
4371                 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4372
4373                 contiguous_readpages(pagepool, nr, contig_start, contig_end,
4374                                 &em_cached, &bio, &bio_flags, &prev_em_start);
4375         }
4376
4377         if (em_cached)
4378                 free_extent_map(em_cached);
4379
4380         if (bio) {
4381                 if (submit_one_bio(bio, 0, bio_flags))
4382                         return;
4383         }
4384 }
4385
4386 /*
4387  * basic invalidatepage code, this waits on any locked or writeback
4388  * ranges corresponding to the page, and then deletes any extent state
4389  * records from the tree
4390  */
4391 int extent_invalidatepage(struct extent_io_tree *tree,
4392                           struct page *page, unsigned long offset)
4393 {
4394         struct extent_state *cached_state = NULL;
4395         u64 start = page_offset(page);
4396         u64 end = start + PAGE_SIZE - 1;
4397         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4398
4399         start += ALIGN(offset, blocksize);
4400         if (start > end)
4401                 return 0;
4402
4403         lock_extent_bits(tree, start, end, &cached_state);
4404         wait_on_page_writeback(page);
4405         clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4406                          EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
4407         return 0;
4408 }
4409
4410 /*
4411  * a helper for releasepage, this tests for areas of the page that
4412  * are locked or under IO and drops the related state bits if it is safe
4413  * to drop the page.
4414  */
4415 static int try_release_extent_state(struct extent_io_tree *tree,
4416                                     struct page *page, gfp_t mask)
4417 {
4418         u64 start = page_offset(page);
4419         u64 end = start + PAGE_SIZE - 1;
4420         int ret = 1;
4421
4422         if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4423                 ret = 0;
4424         } else {
4425                 /*
4426                  * at this point we can safely clear everything except the
4427                  * locked bit and the nodatasum bit
4428                  */
4429                 ret = __clear_extent_bit(tree, start, end,
4430                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4431                                  0, 0, NULL, mask, NULL);
4432
4433                 /* if clear_extent_bit failed for enomem reasons,
4434                  * we can't allow the release to continue.
4435                  */
4436                 if (ret < 0)
4437                         ret = 0;
4438                 else
4439                         ret = 1;
4440         }
4441         return ret;
4442 }
4443
4444 /*
4445  * a helper for releasepage.  As long as there are no locked extents
4446  * in the range corresponding to the page, both state records and extent
4447  * map records are removed
4448  */
4449 int try_release_extent_mapping(struct page *page, gfp_t mask)
4450 {
4451         struct extent_map *em;
4452         u64 start = page_offset(page);
4453         u64 end = start + PAGE_SIZE - 1;
4454         struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4455         struct extent_io_tree *tree = &btrfs_inode->io_tree;
4456         struct extent_map_tree *map = &btrfs_inode->extent_tree;
4457
4458         if (gfpflags_allow_blocking(mask) &&
4459             page->mapping->host->i_size > SZ_16M) {
4460                 u64 len;
4461                 while (start <= end) {
4462                         struct btrfs_fs_info *fs_info;
4463                         u64 cur_gen;
4464
4465                         len = end - start + 1;
4466                         write_lock(&map->lock);
4467                         em = lookup_extent_mapping(map, start, len);
4468                         if (!em) {
4469                                 write_unlock(&map->lock);
4470                                 break;
4471                         }
4472                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4473                             em->start != start) {
4474                                 write_unlock(&map->lock);
4475                                 free_extent_map(em);
4476                                 break;
4477                         }
4478                         if (test_range_bit(tree, em->start,
4479                                            extent_map_end(em) - 1,
4480                                            EXTENT_LOCKED, 0, NULL))
4481                                 goto next;
4482                         /*
4483                          * If it's not in the list of modified extents, used
4484                          * by a fast fsync, we can remove it. If it's being
4485                          * logged we can safely remove it since fsync took an
4486                          * extra reference on the em.
4487                          */
4488                         if (list_empty(&em->list) ||
4489                             test_bit(EXTENT_FLAG_LOGGING, &em->flags))
4490                                 goto remove_em;
4491                         /*
4492                          * If it's in the list of modified extents, remove it
4493                          * only if its generation is older then the current one,
4494                          * in which case we don't need it for a fast fsync.
4495                          * Otherwise don't remove it, we could be racing with an
4496                          * ongoing fast fsync that could miss the new extent.
4497                          */
4498                         fs_info = btrfs_inode->root->fs_info;
4499                         spin_lock(&fs_info->trans_lock);
4500                         cur_gen = fs_info->generation;
4501                         spin_unlock(&fs_info->trans_lock);
4502                         if (em->generation >= cur_gen)
4503                                 goto next;
4504 remove_em:
4505                         /*
4506                          * We only remove extent maps that are not in the list of
4507                          * modified extents or that are in the list but with a
4508                          * generation lower then the current generation, so there
4509                          * is no need to set the full fsync flag on the inode (it
4510                          * hurts the fsync performance for workloads with a data
4511                          * size that exceeds or is close to the system's memory).
4512                          */
4513                         remove_extent_mapping(map, em);
4514                         /* once for the rb tree */
4515                         free_extent_map(em);
4516 next:
4517                         start = extent_map_end(em);
4518                         write_unlock(&map->lock);
4519
4520                         /* once for us */
4521                         free_extent_map(em);
4522
4523                         cond_resched(); /* Allow large-extent preemption. */
4524                 }
4525         }
4526         return try_release_extent_state(tree, page, mask);
4527 }
4528
4529 /*
4530  * helper function for fiemap, which doesn't want to see any holes.
4531  * This maps until we find something past 'last'
4532  */
4533 static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
4534                                                 u64 offset, u64 last)
4535 {
4536         u64 sectorsize = btrfs_inode_sectorsize(inode);
4537         struct extent_map *em;
4538         u64 len;
4539
4540         if (offset >= last)
4541                 return NULL;
4542
4543         while (1) {
4544                 len = last - offset;
4545                 if (len == 0)
4546                         break;
4547                 len = ALIGN(len, sectorsize);
4548                 em = btrfs_get_extent_fiemap(inode, offset, len);
4549                 if (IS_ERR_OR_NULL(em))
4550                         return em;
4551
4552                 /* if this isn't a hole return it */
4553                 if (em->block_start != EXTENT_MAP_HOLE)
4554                         return em;
4555
4556                 /* this is a hole, advance to the next extent */
4557                 offset = extent_map_end(em);
4558                 free_extent_map(em);
4559                 if (offset >= last)
4560                         break;
4561         }
4562         return NULL;
4563 }
4564
4565 /*
4566  * To cache previous fiemap extent
4567  *
4568  * Will be used for merging fiemap extent
4569  */
4570 struct fiemap_cache {
4571         u64 offset;
4572         u64 phys;
4573         u64 len;
4574         u32 flags;
4575         bool cached;
4576 };
4577
4578 /*
4579  * Helper to submit fiemap extent.
4580  *
4581  * Will try to merge current fiemap extent specified by @offset, @phys,
4582  * @len and @flags with cached one.
4583  * And only when we fails to merge, cached one will be submitted as
4584  * fiemap extent.
4585  *
4586  * Return value is the same as fiemap_fill_next_extent().
4587  */
4588 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4589                                 struct fiemap_cache *cache,
4590                                 u64 offset, u64 phys, u64 len, u32 flags)
4591 {
4592         int ret = 0;
4593
4594         if (!cache->cached)
4595                 goto assign;
4596
4597         /*
4598          * Sanity check, extent_fiemap() should have ensured that new
4599          * fiemap extent won't overlap with cached one.
4600          * Not recoverable.
4601          *
4602          * NOTE: Physical address can overlap, due to compression
4603          */
4604         if (cache->offset + cache->len > offset) {
4605                 WARN_ON(1);
4606                 return -EINVAL;
4607         }
4608
4609         /*
4610          * Only merges fiemap extents if
4611          * 1) Their logical addresses are continuous
4612          *
4613          * 2) Their physical addresses are continuous
4614          *    So truly compressed (physical size smaller than logical size)
4615          *    extents won't get merged with each other
4616          *
4617          * 3) Share same flags except FIEMAP_EXTENT_LAST
4618          *    So regular extent won't get merged with prealloc extent
4619          */
4620         if (cache->offset + cache->len  == offset &&
4621             cache->phys + cache->len == phys  &&
4622             (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4623                         (flags & ~FIEMAP_EXTENT_LAST)) {
4624                 cache->len += len;
4625                 cache->flags |= flags;
4626                 goto try_submit_last;
4627         }
4628
4629         /* Not mergeable, need to submit cached one */
4630         ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4631                                       cache->len, cache->flags);
4632         cache->cached = false;
4633         if (ret)
4634                 return ret;
4635 assign:
4636         cache->cached = true;
4637         cache->offset = offset;
4638         cache->phys = phys;
4639         cache->len = len;
4640         cache->flags = flags;
4641 try_submit_last:
4642         if (cache->flags & FIEMAP_EXTENT_LAST) {
4643                 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4644                                 cache->phys, cache->len, cache->flags);
4645                 cache->cached = false;
4646         }
4647         return ret;
4648 }
4649
4650 /*
4651  * Emit last fiemap cache
4652  *
4653  * The last fiemap cache may still be cached in the following case:
4654  * 0                  4k                    8k
4655  * |<- Fiemap range ->|
4656  * |<------------  First extent ----------->|
4657  *
4658  * In this case, the first extent range will be cached but not emitted.
4659  * So we must emit it before ending extent_fiemap().
4660  */
4661 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4662                                   struct fiemap_cache *cache)
4663 {
4664         int ret;
4665
4666         if (!cache->cached)
4667                 return 0;
4668
4669         ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4670                                       cache->len, cache->flags);
4671         cache->cached = false;
4672         if (ret > 0)
4673                 ret = 0;
4674         return ret;
4675 }
4676
4677 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
4678                   u64 start, u64 len)
4679 {
4680         int ret = 0;
4681         u64 off = start;
4682         u64 max = start + len;
4683         u32 flags = 0;
4684         u32 found_type;
4685         u64 last;
4686         u64 last_for_get_extent = 0;
4687         u64 disko = 0;
4688         u64 isize = i_size_read(&inode->vfs_inode);
4689         struct btrfs_key found_key;
4690         struct extent_map *em = NULL;
4691         struct extent_state *cached_state = NULL;
4692         struct btrfs_path *path;
4693         struct btrfs_root *root = inode->root;
4694         struct fiemap_cache cache = { 0 };
4695         struct ulist *roots;
4696         struct ulist *tmp_ulist;
4697         int end = 0;
4698         u64 em_start = 0;
4699         u64 em_len = 0;
4700         u64 em_end = 0;
4701
4702         if (len == 0)
4703                 return -EINVAL;
4704
4705         path = btrfs_alloc_path();
4706         if (!path)
4707                 return -ENOMEM;
4708
4709         roots = ulist_alloc(GFP_KERNEL);
4710         tmp_ulist = ulist_alloc(GFP_KERNEL);
4711         if (!roots || !tmp_ulist) {
4712                 ret = -ENOMEM;
4713                 goto out_free_ulist;
4714         }
4715
4716         start = round_down(start, btrfs_inode_sectorsize(inode));
4717         len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4718
4719         /*
4720          * lookup the last file extent.  We're not using i_size here
4721          * because there might be preallocation past i_size
4722          */
4723         ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4724                                        0);
4725         if (ret < 0) {
4726                 goto out_free_ulist;
4727         } else {
4728                 WARN_ON(!ret);
4729                 if (ret == 1)
4730                         ret = 0;
4731         }
4732
4733         path->slots[0]--;
4734         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4735         found_type = found_key.type;
4736
4737         /* No extents, but there might be delalloc bits */
4738         if (found_key.objectid != btrfs_ino(inode) ||
4739             found_type != BTRFS_EXTENT_DATA_KEY) {
4740                 /* have to trust i_size as the end */
4741                 last = (u64)-1;
4742                 last_for_get_extent = isize;
4743         } else {
4744                 /*
4745                  * remember the start of the last extent.  There are a
4746                  * bunch of different factors that go into the length of the
4747                  * extent, so its much less complex to remember where it started
4748                  */
4749                 last = found_key.offset;
4750                 last_for_get_extent = last + 1;
4751         }
4752         btrfs_release_path(path);
4753
4754         /*
4755          * we might have some extents allocated but more delalloc past those
4756          * extents.  so, we trust isize unless the start of the last extent is
4757          * beyond isize
4758          */
4759         if (last < isize) {
4760                 last = (u64)-1;
4761                 last_for_get_extent = isize;
4762         }
4763
4764         lock_extent_bits(&inode->io_tree, start, start + len - 1,
4765                          &cached_state);
4766
4767         em = get_extent_skip_holes(inode, start, last_for_get_extent);
4768         if (!em)
4769                 goto out;
4770         if (IS_ERR(em)) {
4771                 ret = PTR_ERR(em);
4772                 goto out;
4773         }
4774
4775         while (!end) {
4776                 u64 offset_in_extent = 0;
4777
4778                 /* break if the extent we found is outside the range */
4779                 if (em->start >= max || extent_map_end(em) < off)
4780                         break;
4781
4782                 /*
4783                  * get_extent may return an extent that starts before our
4784                  * requested range.  We have to make sure the ranges
4785                  * we return to fiemap always move forward and don't
4786                  * overlap, so adjust the offsets here
4787                  */
4788                 em_start = max(em->start, off);
4789
4790                 /*
4791                  * record the offset from the start of the extent
4792                  * for adjusting the disk offset below.  Only do this if the
4793                  * extent isn't compressed since our in ram offset may be past
4794                  * what we have actually allocated on disk.
4795                  */
4796                 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4797                         offset_in_extent = em_start - em->start;
4798                 em_end = extent_map_end(em);
4799                 em_len = em_end - em_start;
4800                 flags = 0;
4801                 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4802                         disko = em->block_start + offset_in_extent;
4803                 else
4804                         disko = 0;
4805
4806                 /*
4807                  * bump off for our next call to get_extent
4808                  */
4809                 off = extent_map_end(em);
4810                 if (off >= max)
4811                         end = 1;
4812
4813                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4814                         end = 1;
4815                         flags |= FIEMAP_EXTENT_LAST;
4816                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4817                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4818                                   FIEMAP_EXTENT_NOT_ALIGNED);
4819                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4820                         flags |= (FIEMAP_EXTENT_DELALLOC |
4821                                   FIEMAP_EXTENT_UNKNOWN);
4822                 } else if (fieinfo->fi_extents_max) {
4823                         u64 bytenr = em->block_start -
4824                                 (em->start - em->orig_start);
4825
4826                         /*
4827                          * As btrfs supports shared space, this information
4828                          * can be exported to userspace tools via
4829                          * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4830                          * then we're just getting a count and we can skip the
4831                          * lookup stuff.
4832                          */
4833                         ret = btrfs_check_shared(root, btrfs_ino(inode),
4834                                                  bytenr, roots, tmp_ulist);
4835                         if (ret < 0)
4836                                 goto out_free;
4837                         if (ret)
4838                                 flags |= FIEMAP_EXTENT_SHARED;
4839                         ret = 0;
4840                 }
4841                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4842                         flags |= FIEMAP_EXTENT_ENCODED;
4843                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4844                         flags |= FIEMAP_EXTENT_UNWRITTEN;
4845
4846                 free_extent_map(em);
4847                 em = NULL;
4848                 if ((em_start >= last) || em_len == (u64)-1 ||
4849                    (last == (u64)-1 && isize <= em_end)) {
4850                         flags |= FIEMAP_EXTENT_LAST;
4851                         end = 1;
4852                 }
4853
4854                 /* now scan forward to see if this is really the last extent. */
4855                 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4856                 if (IS_ERR(em)) {
4857                         ret = PTR_ERR(em);
4858                         goto out;
4859                 }
4860                 if (!em) {
4861                         flags |= FIEMAP_EXTENT_LAST;
4862                         end = 1;
4863                 }
4864                 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4865                                            em_len, flags);
4866                 if (ret) {
4867                         if (ret == 1)
4868                                 ret = 0;
4869                         goto out_free;
4870                 }
4871         }
4872 out_free:
4873         if (!ret)
4874                 ret = emit_last_fiemap_cache(fieinfo, &cache);
4875         free_extent_map(em);
4876 out:
4877         unlock_extent_cached(&inode->io_tree, start, start + len - 1,
4878                              &cached_state);
4879
4880 out_free_ulist:
4881         btrfs_free_path(path);
4882         ulist_free(roots);
4883         ulist_free(tmp_ulist);
4884         return ret;
4885 }
4886
4887 static void __free_extent_buffer(struct extent_buffer *eb)
4888 {
4889         kmem_cache_free(extent_buffer_cache, eb);
4890 }
4891
4892 int extent_buffer_under_io(const struct extent_buffer *eb)
4893 {
4894         return (atomic_read(&eb->io_pages) ||
4895                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4896                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4897 }
4898
4899 /*
4900  * Release all pages attached to the extent buffer.
4901  */
4902 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4903 {
4904         int i;
4905         int num_pages;
4906         int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4907
4908         BUG_ON(extent_buffer_under_io(eb));
4909
4910         num_pages = num_extent_pages(eb);
4911         for (i = 0; i < num_pages; i++) {
4912                 struct page *page = eb->pages[i];
4913
4914                 if (!page)
4915                         continue;
4916                 if (mapped)
4917                         spin_lock(&page->mapping->private_lock);
4918                 /*
4919                  * We do this since we'll remove the pages after we've
4920                  * removed the eb from the radix tree, so we could race
4921                  * and have this page now attached to the new eb.  So
4922                  * only clear page_private if it's still connected to
4923                  * this eb.
4924                  */
4925                 if (PagePrivate(page) &&
4926                     page->private == (unsigned long)eb) {
4927                         BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4928                         BUG_ON(PageDirty(page));
4929                         BUG_ON(PageWriteback(page));
4930                         /*
4931                          * We need to make sure we haven't be attached
4932                          * to a new eb.
4933                          */
4934                         detach_page_private(page);
4935                 }
4936
4937                 if (mapped)
4938                         spin_unlock(&page->mapping->private_lock);
4939
4940                 /* One for when we allocated the page */
4941                 put_page(page);
4942         }
4943 }
4944
4945 /*
4946  * Helper for releasing the extent buffer.
4947  */
4948 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4949 {
4950         btrfs_release_extent_buffer_pages(eb);
4951         btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
4952         __free_extent_buffer(eb);
4953 }
4954
4955 static struct extent_buffer *
4956 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4957                       unsigned long len)
4958 {
4959         struct extent_buffer *eb = NULL;
4960
4961         eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4962         eb->start = start;
4963         eb->len = len;
4964         eb->fs_info = fs_info;
4965         eb->bflags = 0;
4966         init_rwsem(&eb->lock);
4967         eb->lock_recursed = false;
4968
4969         btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
4970                              &fs_info->allocated_ebs);
4971
4972         spin_lock_init(&eb->refs_lock);
4973         atomic_set(&eb->refs, 1);
4974         atomic_set(&eb->io_pages, 0);
4975
4976         /*
4977          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4978          */
4979         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4980                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4981         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4982
4983         return eb;
4984 }
4985
4986 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
4987 {
4988         int i;
4989         struct page *p;
4990         struct extent_buffer *new;
4991         int num_pages = num_extent_pages(src);
4992
4993         new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4994         if (new == NULL)
4995                 return NULL;
4996
4997         for (i = 0; i < num_pages; i++) {
4998                 p = alloc_page(GFP_NOFS);
4999                 if (!p) {
5000                         btrfs_release_extent_buffer(new);
5001                         return NULL;
5002                 }
5003                 attach_extent_buffer_page(new, p);
5004                 WARN_ON(PageDirty(p));
5005                 SetPageUptodate(p);
5006                 new->pages[i] = p;
5007                 copy_page(page_address(p), page_address(src->pages[i]));
5008         }
5009
5010         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
5011         set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5012
5013         return new;
5014 }
5015
5016 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5017                                                   u64 start, unsigned long len)
5018 {
5019         struct extent_buffer *eb;
5020         int num_pages;
5021         int i;
5022
5023         eb = __alloc_extent_buffer(fs_info, start, len);
5024         if (!eb)
5025                 return NULL;
5026
5027         num_pages = num_extent_pages(eb);
5028         for (i = 0; i < num_pages; i++) {
5029                 eb->pages[i] = alloc_page(GFP_NOFS);
5030                 if (!eb->pages[i])
5031                         goto err;
5032         }
5033         set_extent_buffer_uptodate(eb);
5034         btrfs_set_header_nritems(eb, 0);
5035         set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5036
5037         return eb;
5038 err:
5039         for (; i > 0; i--)
5040                 __free_page(eb->pages[i - 1]);
5041         __free_extent_buffer(eb);
5042         return NULL;
5043 }
5044
5045 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5046                                                 u64 start)
5047 {
5048         return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5049 }
5050
5051 static void check_buffer_tree_ref(struct extent_buffer *eb)
5052 {
5053         int refs;
5054         /*
5055          * The TREE_REF bit is first set when the extent_buffer is added
5056          * to the radix tree. It is also reset, if unset, when a new reference
5057          * is created by find_extent_buffer.
5058          *
5059          * It is only cleared in two cases: freeing the last non-tree
5060          * reference to the extent_buffer when its STALE bit is set or
5061          * calling releasepage when the tree reference is the only reference.
5062          *
5063          * In both cases, care is taken to ensure that the extent_buffer's
5064          * pages are not under io. However, releasepage can be concurrently
5065          * called with creating new references, which is prone to race
5066          * conditions between the calls to check_buffer_tree_ref in those
5067          * codepaths and clearing TREE_REF in try_release_extent_buffer.
5068          *
5069          * The actual lifetime of the extent_buffer in the radix tree is
5070          * adequately protected by the refcount, but the TREE_REF bit and
5071          * its corresponding reference are not. To protect against this
5072          * class of races, we call check_buffer_tree_ref from the codepaths
5073          * which trigger io after they set eb->io_pages. Note that once io is
5074          * initiated, TREE_REF can no longer be cleared, so that is the
5075          * moment at which any such race is best fixed.
5076          */
5077         refs = atomic_read(&eb->refs);
5078         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5079                 return;
5080
5081         spin_lock(&eb->refs_lock);
5082         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5083                 atomic_inc(&eb->refs);
5084         spin_unlock(&eb->refs_lock);
5085 }
5086
5087 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5088                 struct page *accessed)
5089 {
5090         int num_pages, i;
5091
5092         check_buffer_tree_ref(eb);
5093
5094         num_pages = num_extent_pages(eb);
5095         for (i = 0; i < num_pages; i++) {
5096                 struct page *p = eb->pages[i];
5097
5098                 if (p != accessed)
5099                         mark_page_accessed(p);
5100         }
5101 }
5102
5103 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5104                                          u64 start)
5105 {
5106         struct extent_buffer *eb;
5107
5108         rcu_read_lock();
5109         eb = radix_tree_lookup(&fs_info->buffer_radix,
5110                                start >> fs_info->sectorsize_bits);
5111         if (eb && atomic_inc_not_zero(&eb->refs)) {
5112                 rcu_read_unlock();
5113                 /*
5114                  * Lock our eb's refs_lock to avoid races with
5115                  * free_extent_buffer. When we get our eb it might be flagged
5116                  * with EXTENT_BUFFER_STALE and another task running
5117                  * free_extent_buffer might have seen that flag set,
5118                  * eb->refs == 2, that the buffer isn't under IO (dirty and
5119                  * writeback flags not set) and it's still in the tree (flag
5120                  * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5121                  * of decrementing the extent buffer's reference count twice.
5122                  * So here we could race and increment the eb's reference count,
5123                  * clear its stale flag, mark it as dirty and drop our reference
5124                  * before the other task finishes executing free_extent_buffer,
5125                  * which would later result in an attempt to free an extent
5126                  * buffer that is dirty.
5127                  */
5128                 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5129                         spin_lock(&eb->refs_lock);
5130                         spin_unlock(&eb->refs_lock);
5131                 }
5132                 mark_extent_buffer_accessed(eb, NULL);
5133                 return eb;
5134         }
5135         rcu_read_unlock();
5136
5137         return NULL;
5138 }
5139
5140 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5141 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5142                                         u64 start)
5143 {
5144         struct extent_buffer *eb, *exists = NULL;
5145         int ret;
5146
5147         eb = find_extent_buffer(fs_info, start);
5148         if (eb)
5149                 return eb;
5150         eb = alloc_dummy_extent_buffer(fs_info, start);
5151         if (!eb)
5152                 return ERR_PTR(-ENOMEM);
5153         eb->fs_info = fs_info;
5154 again:
5155         ret = radix_tree_preload(GFP_NOFS);
5156         if (ret) {
5157                 exists = ERR_PTR(ret);
5158                 goto free_eb;
5159         }
5160         spin_lock(&fs_info->buffer_lock);
5161         ret = radix_tree_insert(&fs_info->buffer_radix,
5162                                 start >> fs_info->sectorsize_bits, eb);
5163         spin_unlock(&fs_info->buffer_lock);
5164         radix_tree_preload_end();
5165         if (ret == -EEXIST) {
5166                 exists = find_extent_buffer(fs_info, start);
5167                 if (exists)
5168                         goto free_eb;
5169                 else
5170                         goto again;
5171         }
5172         check_buffer_tree_ref(eb);
5173         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5174
5175         return eb;
5176 free_eb:
5177         btrfs_release_extent_buffer(eb);
5178         return exists;
5179 }
5180 #endif
5181
5182 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5183                                           u64 start)
5184 {
5185         unsigned long len = fs_info->nodesize;
5186         int num_pages;
5187         int i;
5188         unsigned long index = start >> PAGE_SHIFT;
5189         struct extent_buffer *eb;
5190         struct extent_buffer *exists = NULL;
5191         struct page *p;
5192         struct address_space *mapping = fs_info->btree_inode->i_mapping;
5193         int uptodate = 1;
5194         int ret;
5195
5196         if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5197                 btrfs_err(fs_info, "bad tree block start %llu", start);
5198                 return ERR_PTR(-EINVAL);
5199         }
5200
5201         eb = find_extent_buffer(fs_info, start);
5202         if (eb)
5203                 return eb;
5204
5205         eb = __alloc_extent_buffer(fs_info, start, len);
5206         if (!eb)
5207                 return ERR_PTR(-ENOMEM);
5208
5209         num_pages = num_extent_pages(eb);
5210         for (i = 0; i < num_pages; i++, index++) {
5211                 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5212                 if (!p) {
5213                         exists = ERR_PTR(-ENOMEM);
5214                         goto free_eb;
5215                 }
5216
5217                 spin_lock(&mapping->private_lock);
5218                 if (PagePrivate(p)) {
5219                         /*
5220                          * We could have already allocated an eb for this page
5221                          * and attached one so lets see if we can get a ref on
5222                          * the existing eb, and if we can we know it's good and
5223                          * we can just return that one, else we know we can just
5224                          * overwrite page->private.
5225                          */
5226                         exists = (struct extent_buffer *)p->private;
5227                         if (atomic_inc_not_zero(&exists->refs)) {
5228                                 spin_unlock(&mapping->private_lock);
5229                                 unlock_page(p);
5230                                 put_page(p);
5231                                 mark_extent_buffer_accessed(exists, p);
5232                                 goto free_eb;
5233                         }
5234                         exists = NULL;
5235
5236                         /*
5237                          * Do this so attach doesn't complain and we need to
5238                          * drop the ref the old guy had.
5239                          */
5240                         ClearPagePrivate(p);
5241                         WARN_ON(PageDirty(p));
5242                         put_page(p);
5243                 }
5244                 attach_extent_buffer_page(eb, p);
5245                 spin_unlock(&mapping->private_lock);
5246                 WARN_ON(PageDirty(p));
5247                 eb->pages[i] = p;
5248                 if (!PageUptodate(p))
5249                         uptodate = 0;
5250
5251                 /*
5252                  * We can't unlock the pages just yet since the extent buffer
5253                  * hasn't been properly inserted in the radix tree, this
5254                  * opens a race with btree_releasepage which can free a page
5255                  * while we are still filling in all pages for the buffer and
5256                  * we could crash.
5257                  */
5258         }
5259         if (uptodate)
5260                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5261 again:
5262         ret = radix_tree_preload(GFP_NOFS);
5263         if (ret) {
5264                 exists = ERR_PTR(ret);
5265                 goto free_eb;
5266         }
5267
5268         spin_lock(&fs_info->buffer_lock);
5269         ret = radix_tree_insert(&fs_info->buffer_radix,
5270                                 start >> fs_info->sectorsize_bits, eb);
5271         spin_unlock(&fs_info->buffer_lock);
5272         radix_tree_preload_end();
5273         if (ret == -EEXIST) {
5274                 exists = find_extent_buffer(fs_info, start);
5275                 if (exists)
5276                         goto free_eb;
5277                 else
5278                         goto again;
5279         }
5280         /* add one reference for the tree */
5281         check_buffer_tree_ref(eb);
5282         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5283
5284         /*
5285          * Now it's safe to unlock the pages because any calls to
5286          * btree_releasepage will correctly detect that a page belongs to a
5287          * live buffer and won't free them prematurely.
5288          */
5289         for (i = 0; i < num_pages; i++)
5290                 unlock_page(eb->pages[i]);
5291         return eb;
5292
5293 free_eb:
5294         WARN_ON(!atomic_dec_and_test(&eb->refs));
5295         for (i = 0; i < num_pages; i++) {
5296                 if (eb->pages[i])
5297                         unlock_page(eb->pages[i]);
5298         }
5299
5300         btrfs_release_extent_buffer(eb);
5301         return exists;
5302 }
5303
5304 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5305 {
5306         struct extent_buffer *eb =
5307                         container_of(head, struct extent_buffer, rcu_head);
5308
5309         __free_extent_buffer(eb);
5310 }
5311
5312 static int release_extent_buffer(struct extent_buffer *eb)
5313         __releases(&eb->refs_lock)
5314 {
5315         lockdep_assert_held(&eb->refs_lock);
5316
5317         WARN_ON(atomic_read(&eb->refs) == 0);
5318         if (atomic_dec_and_test(&eb->refs)) {
5319                 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5320                         struct btrfs_fs_info *fs_info = eb->fs_info;
5321
5322                         spin_unlock(&eb->refs_lock);
5323
5324                         spin_lock(&fs_info->buffer_lock);
5325                         radix_tree_delete(&fs_info->buffer_radix,
5326                                           eb->start >> fs_info->sectorsize_bits);
5327                         spin_unlock(&fs_info->buffer_lock);
5328                 } else {
5329                         spin_unlock(&eb->refs_lock);
5330                 }
5331
5332                 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5333                 /* Should be safe to release our pages at this point */
5334                 btrfs_release_extent_buffer_pages(eb);
5335 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5336                 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5337                         __free_extent_buffer(eb);
5338                         return 1;
5339                 }
5340 #endif
5341                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5342                 return 1;
5343         }
5344         spin_unlock(&eb->refs_lock);
5345
5346         return 0;
5347 }
5348
5349 void free_extent_buffer(struct extent_buffer *eb)
5350 {
5351         int refs;
5352         int old;
5353         if (!eb)
5354                 return;
5355
5356         while (1) {
5357                 refs = atomic_read(&eb->refs);
5358                 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5359                     || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5360                         refs == 1))
5361                         break;
5362                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5363                 if (old == refs)
5364                         return;
5365         }
5366
5367         spin_lock(&eb->refs_lock);
5368         if (atomic_read(&eb->refs) == 2 &&
5369             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5370             !extent_buffer_under_io(eb) &&
5371             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5372                 atomic_dec(&eb->refs);
5373
5374         /*
5375          * I know this is terrible, but it's temporary until we stop tracking
5376          * the uptodate bits and such for the extent buffers.
5377          */
5378         release_extent_buffer(eb);
5379 }
5380
5381 void free_extent_buffer_stale(struct extent_buffer *eb)
5382 {
5383         if (!eb)
5384                 return;
5385
5386         spin_lock(&eb->refs_lock);
5387         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5388
5389         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5390             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5391                 atomic_dec(&eb->refs);
5392         release_extent_buffer(eb);
5393 }
5394
5395 void clear_extent_buffer_dirty(const struct extent_buffer *eb)
5396 {
5397         int i;
5398         int num_pages;
5399         struct page *page;
5400
5401         num_pages = num_extent_pages(eb);
5402
5403         for (i = 0; i < num_pages; i++) {
5404                 page = eb->pages[i];
5405                 if (!PageDirty(page))
5406                         continue;
5407
5408                 lock_page(page);
5409                 WARN_ON(!PagePrivate(page));
5410
5411                 clear_page_dirty_for_io(page);
5412                 xa_lock_irq(&page->mapping->i_pages);
5413                 if (!PageDirty(page))
5414                         __xa_clear_mark(&page->mapping->i_pages,
5415                                         page_index(page), PAGECACHE_TAG_DIRTY);
5416                 xa_unlock_irq(&page->mapping->i_pages);
5417                 ClearPageError(page);
5418                 unlock_page(page);
5419         }
5420         WARN_ON(atomic_read(&eb->refs) == 0);
5421 }
5422
5423 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5424 {
5425         int i;
5426         int num_pages;
5427         bool was_dirty;
5428
5429         check_buffer_tree_ref(eb);
5430
5431         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5432
5433         num_pages = num_extent_pages(eb);
5434         WARN_ON(atomic_read(&eb->refs) == 0);
5435         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5436
5437         if (!was_dirty)
5438                 for (i = 0; i < num_pages; i++)
5439                         set_page_dirty(eb->pages[i]);
5440
5441 #ifdef CONFIG_BTRFS_DEBUG
5442         for (i = 0; i < num_pages; i++)
5443                 ASSERT(PageDirty(eb->pages[i]));
5444 #endif
5445
5446         return was_dirty;
5447 }
5448
5449 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5450 {
5451         int i;
5452         struct page *page;
5453         int num_pages;
5454
5455         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5456         num_pages = num_extent_pages(eb);
5457         for (i = 0; i < num_pages; i++) {
5458                 page = eb->pages[i];
5459                 if (page)
5460                         ClearPageUptodate(page);
5461         }
5462 }
5463
5464 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5465 {
5466         int i;
5467         struct page *page;
5468         int num_pages;
5469
5470         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5471         num_pages = num_extent_pages(eb);
5472         for (i = 0; i < num_pages; i++) {
5473                 page = eb->pages[i];
5474                 SetPageUptodate(page);
5475         }
5476 }
5477
5478 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5479 {
5480         int i;
5481         struct page *page;
5482         int err;
5483         int ret = 0;
5484         int locked_pages = 0;
5485         int all_uptodate = 1;
5486         int num_pages;
5487         unsigned long num_reads = 0;
5488         struct bio *bio = NULL;
5489         unsigned long bio_flags = 0;
5490
5491         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5492                 return 0;
5493
5494         num_pages = num_extent_pages(eb);
5495         for (i = 0; i < num_pages; i++) {
5496                 page = eb->pages[i];
5497                 if (wait == WAIT_NONE) {
5498                         if (!trylock_page(page))
5499                                 goto unlock_exit;
5500                 } else {
5501                         lock_page(page);
5502                 }
5503                 locked_pages++;
5504         }
5505         /*
5506          * We need to firstly lock all pages to make sure that
5507          * the uptodate bit of our pages won't be affected by
5508          * clear_extent_buffer_uptodate().
5509          */
5510         for (i = 0; i < num_pages; i++) {
5511                 page = eb->pages[i];
5512                 if (!PageUptodate(page)) {
5513                         num_reads++;
5514                         all_uptodate = 0;
5515                 }
5516         }
5517
5518         if (all_uptodate) {
5519                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5520                 goto unlock_exit;
5521         }
5522
5523         clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5524         eb->read_mirror = 0;
5525         atomic_set(&eb->io_pages, num_reads);
5526         /*
5527          * It is possible for releasepage to clear the TREE_REF bit before we
5528          * set io_pages. See check_buffer_tree_ref for a more detailed comment.
5529          */
5530         check_buffer_tree_ref(eb);
5531         for (i = 0; i < num_pages; i++) {
5532                 page = eb->pages[i];
5533
5534                 if (!PageUptodate(page)) {
5535                         if (ret) {
5536                                 atomic_dec(&eb->io_pages);
5537                                 unlock_page(page);
5538                                 continue;
5539                         }
5540
5541                         ClearPageError(page);
5542                         err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
5543                                          page, page_offset(page), PAGE_SIZE, 0,
5544                                          &bio, end_bio_extent_readpage,
5545                                          mirror_num, 0, 0, false);
5546                         if (err) {
5547                                 /*
5548                                  * We failed to submit the bio so it's the
5549                                  * caller's responsibility to perform cleanup
5550                                  * i.e unlock page/set error bit.
5551                                  */
5552                                 ret = err;
5553                                 SetPageError(page);
5554                                 unlock_page(page);
5555                                 atomic_dec(&eb->io_pages);
5556                         }
5557                 } else {
5558                         unlock_page(page);
5559                 }
5560         }
5561
5562         if (bio) {
5563                 err = submit_one_bio(bio, mirror_num, bio_flags);
5564                 if (err)
5565                         return err;
5566         }
5567
5568         if (ret || wait != WAIT_COMPLETE)
5569                 return ret;
5570
5571         for (i = 0; i < num_pages; i++) {
5572                 page = eb->pages[i];
5573                 wait_on_page_locked(page);
5574                 if (!PageUptodate(page))
5575                         ret = -EIO;
5576         }
5577
5578         return ret;
5579
5580 unlock_exit:
5581         while (locked_pages > 0) {
5582                 locked_pages--;
5583                 page = eb->pages[locked_pages];
5584                 unlock_page(page);
5585         }
5586         return ret;
5587 }
5588
5589 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
5590                             unsigned long len)
5591 {
5592         btrfs_warn(eb->fs_info,
5593                 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
5594                 eb->start, eb->len, start, len);
5595         WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5596
5597         return true;
5598 }
5599
5600 /*
5601  * Check if the [start, start + len) range is valid before reading/writing
5602  * the eb.
5603  * NOTE: @start and @len are offset inside the eb, not logical address.
5604  *
5605  * Caller should not touch the dst/src memory if this function returns error.
5606  */
5607 static inline int check_eb_range(const struct extent_buffer *eb,
5608                                  unsigned long start, unsigned long len)
5609 {
5610         unsigned long offset;
5611
5612         /* start, start + len should not go beyond eb->len nor overflow */
5613         if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
5614                 return report_eb_range(eb, start, len);
5615
5616         return false;
5617 }
5618
5619 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5620                         unsigned long start, unsigned long len)
5621 {
5622         size_t cur;
5623         size_t offset;
5624         struct page *page;
5625         char *kaddr;
5626         char *dst = (char *)dstv;
5627         unsigned long i = start >> PAGE_SHIFT;
5628
5629         if (check_eb_range(eb, start, len))
5630                 return;
5631
5632         offset = offset_in_page(start);
5633
5634         while (len > 0) {
5635                 page = eb->pages[i];
5636
5637                 cur = min(len, (PAGE_SIZE - offset));
5638                 kaddr = page_address(page);
5639                 memcpy(dst, kaddr + offset, cur);
5640
5641                 dst += cur;
5642                 len -= cur;
5643                 offset = 0;
5644                 i++;
5645         }
5646 }
5647
5648 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
5649                                        void __user *dstv,
5650                                        unsigned long start, unsigned long len)
5651 {
5652         size_t cur;
5653         size_t offset;
5654         struct page *page;
5655         char *kaddr;
5656         char __user *dst = (char __user *)dstv;
5657         unsigned long i = start >> PAGE_SHIFT;
5658         int ret = 0;
5659
5660         WARN_ON(start > eb->len);
5661         WARN_ON(start + len > eb->start + eb->len);
5662
5663         offset = offset_in_page(start);
5664
5665         while (len > 0) {
5666                 page = eb->pages[i];
5667
5668                 cur = min(len, (PAGE_SIZE - offset));
5669                 kaddr = page_address(page);
5670                 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
5671                         ret = -EFAULT;
5672                         break;
5673                 }
5674
5675                 dst += cur;
5676                 len -= cur;
5677                 offset = 0;
5678                 i++;
5679         }
5680
5681         return ret;
5682 }
5683
5684 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5685                          unsigned long start, unsigned long len)
5686 {
5687         size_t cur;
5688         size_t offset;
5689         struct page *page;
5690         char *kaddr;
5691         char *ptr = (char *)ptrv;
5692         unsigned long i = start >> PAGE_SHIFT;
5693         int ret = 0;
5694
5695         if (check_eb_range(eb, start, len))
5696                 return -EINVAL;
5697
5698         offset = offset_in_page(start);
5699
5700         while (len > 0) {
5701                 page = eb->pages[i];
5702
5703                 cur = min(len, (PAGE_SIZE - offset));
5704
5705                 kaddr = page_address(page);
5706                 ret = memcmp(ptr, kaddr + offset, cur);
5707                 if (ret)
5708                         break;
5709
5710                 ptr += cur;
5711                 len -= cur;
5712                 offset = 0;
5713                 i++;
5714         }
5715         return ret;
5716 }
5717
5718 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
5719                 const void *srcv)
5720 {
5721         char *kaddr;
5722
5723         WARN_ON(!PageUptodate(eb->pages[0]));
5724         kaddr = page_address(eb->pages[0]);
5725         memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5726                         BTRFS_FSID_SIZE);
5727 }
5728
5729 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
5730 {
5731         char *kaddr;
5732
5733         WARN_ON(!PageUptodate(eb->pages[0]));
5734         kaddr = page_address(eb->pages[0]);
5735         memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5736                         BTRFS_FSID_SIZE);
5737 }
5738
5739 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
5740                          unsigned long start, unsigned long len)
5741 {
5742         size_t cur;
5743         size_t offset;
5744         struct page *page;
5745         char *kaddr;
5746         char *src = (char *)srcv;
5747         unsigned long i = start >> PAGE_SHIFT;
5748
5749         if (check_eb_range(eb, start, len))
5750                 return;
5751
5752         offset = offset_in_page(start);
5753
5754         while (len > 0) {
5755                 page = eb->pages[i];
5756                 WARN_ON(!PageUptodate(page));
5757
5758                 cur = min(len, PAGE_SIZE - offset);
5759                 kaddr = page_address(page);
5760                 memcpy(kaddr + offset, src, cur);
5761
5762                 src += cur;
5763                 len -= cur;
5764                 offset = 0;
5765                 i++;
5766         }
5767 }
5768
5769 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
5770                 unsigned long len)
5771 {
5772         size_t cur;
5773         size_t offset;
5774         struct page *page;
5775         char *kaddr;
5776         unsigned long i = start >> PAGE_SHIFT;
5777
5778         if (check_eb_range(eb, start, len))
5779                 return;
5780
5781         offset = offset_in_page(start);
5782
5783         while (len > 0) {
5784                 page = eb->pages[i];
5785                 WARN_ON(!PageUptodate(page));
5786
5787                 cur = min(len, PAGE_SIZE - offset);
5788                 kaddr = page_address(page);
5789                 memset(kaddr + offset, 0, cur);
5790
5791                 len -= cur;
5792                 offset = 0;
5793                 i++;
5794         }
5795 }
5796
5797 void copy_extent_buffer_full(const struct extent_buffer *dst,
5798                              const struct extent_buffer *src)
5799 {
5800         int i;
5801         int num_pages;
5802
5803         ASSERT(dst->len == src->len);
5804
5805         num_pages = num_extent_pages(dst);
5806         for (i = 0; i < num_pages; i++)
5807                 copy_page(page_address(dst->pages[i]),
5808                                 page_address(src->pages[i]));
5809 }
5810
5811 void copy_extent_buffer(const struct extent_buffer *dst,
5812                         const struct extent_buffer *src,
5813                         unsigned long dst_offset, unsigned long src_offset,
5814                         unsigned long len)
5815 {
5816         u64 dst_len = dst->len;
5817         size_t cur;
5818         size_t offset;
5819         struct page *page;
5820         char *kaddr;
5821         unsigned long i = dst_offset >> PAGE_SHIFT;
5822
5823         if (check_eb_range(dst, dst_offset, len) ||
5824             check_eb_range(src, src_offset, len))
5825                 return;
5826
5827         WARN_ON(src->len != dst_len);
5828
5829         offset = offset_in_page(dst_offset);
5830
5831         while (len > 0) {
5832                 page = dst->pages[i];
5833                 WARN_ON(!PageUptodate(page));
5834
5835                 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5836
5837                 kaddr = page_address(page);
5838                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5839
5840                 src_offset += cur;
5841                 len -= cur;
5842                 offset = 0;
5843                 i++;
5844         }
5845 }
5846
5847 /*
5848  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5849  * given bit number
5850  * @eb: the extent buffer
5851  * @start: offset of the bitmap item in the extent buffer
5852  * @nr: bit number
5853  * @page_index: return index of the page in the extent buffer that contains the
5854  * given bit number
5855  * @page_offset: return offset into the page given by page_index
5856  *
5857  * This helper hides the ugliness of finding the byte in an extent buffer which
5858  * contains a given bit.
5859  */
5860 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
5861                                     unsigned long start, unsigned long nr,
5862                                     unsigned long *page_index,
5863                                     size_t *page_offset)
5864 {
5865         size_t byte_offset = BIT_BYTE(nr);
5866         size_t offset;
5867
5868         /*
5869          * The byte we want is the offset of the extent buffer + the offset of
5870          * the bitmap item in the extent buffer + the offset of the byte in the
5871          * bitmap item.
5872          */
5873         offset = start + byte_offset;
5874
5875         *page_index = offset >> PAGE_SHIFT;
5876         *page_offset = offset_in_page(offset);
5877 }
5878
5879 /**
5880  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5881  * @eb: the extent buffer
5882  * @start: offset of the bitmap item in the extent buffer
5883  * @nr: bit number to test
5884  */
5885 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
5886                            unsigned long nr)
5887 {
5888         u8 *kaddr;
5889         struct page *page;
5890         unsigned long i;
5891         size_t offset;
5892
5893         eb_bitmap_offset(eb, start, nr, &i, &offset);
5894         page = eb->pages[i];
5895         WARN_ON(!PageUptodate(page));
5896         kaddr = page_address(page);
5897         return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5898 }
5899
5900 /**
5901  * extent_buffer_bitmap_set - set an area of a bitmap
5902  * @eb: the extent buffer
5903  * @start: offset of the bitmap item in the extent buffer
5904  * @pos: bit number of the first bit
5905  * @len: number of bits to set
5906  */
5907 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
5908                               unsigned long pos, unsigned long len)
5909 {
5910         u8 *kaddr;
5911         struct page *page;
5912         unsigned long i;
5913         size_t offset;
5914         const unsigned int size = pos + len;
5915         int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5916         u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5917
5918         eb_bitmap_offset(eb, start, pos, &i, &offset);
5919         page = eb->pages[i];
5920         WARN_ON(!PageUptodate(page));
5921         kaddr = page_address(page);
5922
5923         while (len >= bits_to_set) {
5924                 kaddr[offset] |= mask_to_set;
5925                 len -= bits_to_set;
5926                 bits_to_set = BITS_PER_BYTE;
5927                 mask_to_set = ~0;
5928                 if (++offset >= PAGE_SIZE && len > 0) {
5929                         offset = 0;
5930                         page = eb->pages[++i];
5931                         WARN_ON(!PageUptodate(page));
5932                         kaddr = page_address(page);
5933                 }
5934         }
5935         if (len) {
5936                 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5937                 kaddr[offset] |= mask_to_set;
5938         }
5939 }
5940
5941
5942 /**
5943  * extent_buffer_bitmap_clear - clear an area of a bitmap
5944  * @eb: the extent buffer
5945  * @start: offset of the bitmap item in the extent buffer
5946  * @pos: bit number of the first bit
5947  * @len: number of bits to clear
5948  */
5949 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
5950                                 unsigned long start, unsigned long pos,
5951                                 unsigned long len)
5952 {
5953         u8 *kaddr;
5954         struct page *page;
5955         unsigned long i;
5956         size_t offset;
5957         const unsigned int size = pos + len;
5958         int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5959         u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5960
5961         eb_bitmap_offset(eb, start, pos, &i, &offset);
5962         page = eb->pages[i];
5963         WARN_ON(!PageUptodate(page));
5964         kaddr = page_address(page);
5965
5966         while (len >= bits_to_clear) {
5967                 kaddr[offset] &= ~mask_to_clear;
5968                 len -= bits_to_clear;
5969                 bits_to_clear = BITS_PER_BYTE;
5970                 mask_to_clear = ~0;
5971                 if (++offset >= PAGE_SIZE && len > 0) {
5972                         offset = 0;
5973                         page = eb->pages[++i];
5974                         WARN_ON(!PageUptodate(page));
5975                         kaddr = page_address(page);
5976                 }
5977         }
5978         if (len) {
5979                 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5980                 kaddr[offset] &= ~mask_to_clear;
5981         }
5982 }
5983
5984 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5985 {
5986         unsigned long distance = (src > dst) ? src - dst : dst - src;
5987         return distance < len;
5988 }
5989
5990 static void copy_pages(struct page *dst_page, struct page *src_page,
5991                        unsigned long dst_off, unsigned long src_off,
5992                        unsigned long len)
5993 {
5994         char *dst_kaddr = page_address(dst_page);
5995         char *src_kaddr;
5996         int must_memmove = 0;
5997
5998         if (dst_page != src_page) {
5999                 src_kaddr = page_address(src_page);
6000         } else {
6001                 src_kaddr = dst_kaddr;
6002                 if (areas_overlap(src_off, dst_off, len))
6003                         must_memmove = 1;
6004         }
6005
6006         if (must_memmove)
6007                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
6008         else
6009                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6010 }
6011
6012 void memcpy_extent_buffer(const struct extent_buffer *dst,
6013                           unsigned long dst_offset, unsigned long src_offset,
6014                           unsigned long len)
6015 {
6016         size_t cur;
6017         size_t dst_off_in_page;
6018         size_t src_off_in_page;
6019         unsigned long dst_i;
6020         unsigned long src_i;
6021
6022         if (check_eb_range(dst, dst_offset, len) ||
6023             check_eb_range(dst, src_offset, len))
6024                 return;
6025
6026         while (len > 0) {
6027                 dst_off_in_page = offset_in_page(dst_offset);
6028                 src_off_in_page = offset_in_page(src_offset);
6029
6030                 dst_i = dst_offset >> PAGE_SHIFT;
6031                 src_i = src_offset >> PAGE_SHIFT;
6032
6033                 cur = min(len, (unsigned long)(PAGE_SIZE -
6034                                                src_off_in_page));
6035                 cur = min_t(unsigned long, cur,
6036                         (unsigned long)(PAGE_SIZE - dst_off_in_page));
6037
6038                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6039                            dst_off_in_page, src_off_in_page, cur);
6040
6041                 src_offset += cur;
6042                 dst_offset += cur;
6043                 len -= cur;
6044         }
6045 }
6046
6047 void memmove_extent_buffer(const struct extent_buffer *dst,
6048                            unsigned long dst_offset, unsigned long src_offset,
6049                            unsigned long len)
6050 {
6051         size_t cur;
6052         size_t dst_off_in_page;
6053         size_t src_off_in_page;
6054         unsigned long dst_end = dst_offset + len - 1;
6055         unsigned long src_end = src_offset + len - 1;
6056         unsigned long dst_i;
6057         unsigned long src_i;
6058
6059         if (check_eb_range(dst, dst_offset, len) ||
6060             check_eb_range(dst, src_offset, len))
6061                 return;
6062         if (dst_offset < src_offset) {
6063                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6064                 return;
6065         }
6066         while (len > 0) {
6067                 dst_i = dst_end >> PAGE_SHIFT;
6068                 src_i = src_end >> PAGE_SHIFT;
6069
6070                 dst_off_in_page = offset_in_page(dst_end);
6071                 src_off_in_page = offset_in_page(src_end);
6072
6073                 cur = min_t(unsigned long, len, src_off_in_page + 1);
6074                 cur = min(cur, dst_off_in_page + 1);
6075                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6076                            dst_off_in_page - cur + 1,
6077                            src_off_in_page - cur + 1, cur);
6078
6079                 dst_end -= cur;
6080                 src_end -= cur;
6081                 len -= cur;
6082         }
6083 }
6084
6085 int try_release_extent_buffer(struct page *page)
6086 {
6087         struct extent_buffer *eb;
6088
6089         /*
6090          * We need to make sure nobody is attaching this page to an eb right
6091          * now.
6092          */
6093         spin_lock(&page->mapping->private_lock);
6094         if (!PagePrivate(page)) {
6095                 spin_unlock(&page->mapping->private_lock);
6096                 return 1;
6097         }
6098
6099         eb = (struct extent_buffer *)page->private;
6100         BUG_ON(!eb);
6101
6102         /*
6103          * This is a little awful but should be ok, we need to make sure that
6104          * the eb doesn't disappear out from under us while we're looking at
6105          * this page.
6106          */
6107         spin_lock(&eb->refs_lock);
6108         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6109                 spin_unlock(&eb->refs_lock);
6110                 spin_unlock(&page->mapping->private_lock);
6111                 return 0;
6112         }
6113         spin_unlock(&page->mapping->private_lock);
6114
6115         /*
6116          * If tree ref isn't set then we know the ref on this eb is a real ref,
6117          * so just return, this page will likely be freed soon anyway.
6118          */
6119         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6120                 spin_unlock(&eb->refs_lock);
6121                 return 0;
6122         }
6123
6124         return release_extent_buffer(eb);
6125 }