1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
21 #include "print-tree.h"
25 #include "free-space-cache.h"
26 #include "free-space-tree.h"
30 #include "ref-verify.h"
32 #undef SCRAMBLE_DELAYED_REFS
35 * control flags for do_chunk_alloc's force field
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
49 CHUNK_ALLOC_NO_FORCE = 0,
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
54 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
55 struct btrfs_delayed_ref_node *node, u64 parent,
56 u64 root_objectid, u64 owner_objectid,
57 u64 owner_offset, int refs_to_drop,
58 struct btrfs_delayed_extent_op *extra_op);
59 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
60 struct extent_buffer *leaf,
61 struct btrfs_extent_item *ei);
62 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
63 u64 parent, u64 root_objectid,
64 u64 flags, u64 owner, u64 offset,
65 struct btrfs_key *ins, int ref_mod);
66 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
67 struct btrfs_delayed_ref_node *node,
68 struct btrfs_delayed_extent_op *extent_op);
69 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
71 static int find_next_key(struct btrfs_path *path, int level,
72 struct btrfs_key *key);
73 static void dump_space_info(struct btrfs_fs_info *fs_info,
74 struct btrfs_space_info *info, u64 bytes,
75 int dump_block_groups);
76 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
78 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
79 struct btrfs_space_info *space_info,
81 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
82 struct btrfs_space_info *space_info,
86 block_group_cache_done(struct btrfs_block_group_cache *cache)
89 return cache->cached == BTRFS_CACHE_FINISHED ||
90 cache->cached == BTRFS_CACHE_ERROR;
93 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
95 return (cache->flags & bits) == bits;
98 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
100 atomic_inc(&cache->count);
103 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
105 if (atomic_dec_and_test(&cache->count)) {
106 WARN_ON(cache->pinned > 0);
107 WARN_ON(cache->reserved > 0);
110 * If not empty, someone is still holding mutex of
111 * full_stripe_lock, which can only be released by caller.
112 * And it will definitely cause use-after-free when caller
113 * tries to release full stripe lock.
115 * No better way to resolve, but only to warn.
117 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
118 kfree(cache->free_space_ctl);
124 * this adds the block group to the fs_info rb tree for the block group
127 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
128 struct btrfs_block_group_cache *block_group)
131 struct rb_node *parent = NULL;
132 struct btrfs_block_group_cache *cache;
134 spin_lock(&info->block_group_cache_lock);
135 p = &info->block_group_cache_tree.rb_node;
139 cache = rb_entry(parent, struct btrfs_block_group_cache,
141 if (block_group->key.objectid < cache->key.objectid) {
143 } else if (block_group->key.objectid > cache->key.objectid) {
146 spin_unlock(&info->block_group_cache_lock);
151 rb_link_node(&block_group->cache_node, parent, p);
152 rb_insert_color(&block_group->cache_node,
153 &info->block_group_cache_tree);
155 if (info->first_logical_byte > block_group->key.objectid)
156 info->first_logical_byte = block_group->key.objectid;
158 spin_unlock(&info->block_group_cache_lock);
164 * This will return the block group at or after bytenr if contains is 0, else
165 * it will return the block group that contains the bytenr
167 static struct btrfs_block_group_cache *
168 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
171 struct btrfs_block_group_cache *cache, *ret = NULL;
175 spin_lock(&info->block_group_cache_lock);
176 n = info->block_group_cache_tree.rb_node;
179 cache = rb_entry(n, struct btrfs_block_group_cache,
181 end = cache->key.objectid + cache->key.offset - 1;
182 start = cache->key.objectid;
184 if (bytenr < start) {
185 if (!contains && (!ret || start < ret->key.objectid))
188 } else if (bytenr > start) {
189 if (contains && bytenr <= end) {
200 btrfs_get_block_group(ret);
201 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
202 info->first_logical_byte = ret->key.objectid;
204 spin_unlock(&info->block_group_cache_lock);
209 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
210 u64 start, u64 num_bytes)
212 u64 end = start + num_bytes - 1;
213 set_extent_bits(&fs_info->freed_extents[0],
214 start, end, EXTENT_UPTODATE);
215 set_extent_bits(&fs_info->freed_extents[1],
216 start, end, EXTENT_UPTODATE);
220 static void free_excluded_extents(struct btrfs_block_group_cache *cache)
222 struct btrfs_fs_info *fs_info = cache->fs_info;
225 start = cache->key.objectid;
226 end = start + cache->key.offset - 1;
228 clear_extent_bits(&fs_info->freed_extents[0],
229 start, end, EXTENT_UPTODATE);
230 clear_extent_bits(&fs_info->freed_extents[1],
231 start, end, EXTENT_UPTODATE);
234 static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
236 struct btrfs_fs_info *fs_info = cache->fs_info;
242 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
243 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
244 cache->bytes_super += stripe_len;
245 ret = add_excluded_extent(fs_info, cache->key.objectid,
251 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
252 bytenr = btrfs_sb_offset(i);
253 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
254 bytenr, &logical, &nr, &stripe_len);
261 if (logical[nr] > cache->key.objectid +
265 if (logical[nr] + stripe_len <= cache->key.objectid)
269 if (start < cache->key.objectid) {
270 start = cache->key.objectid;
271 len = (logical[nr] + stripe_len) - start;
273 len = min_t(u64, stripe_len,
274 cache->key.objectid +
275 cache->key.offset - start);
278 cache->bytes_super += len;
279 ret = add_excluded_extent(fs_info, start, len);
291 static struct btrfs_caching_control *
292 get_caching_control(struct btrfs_block_group_cache *cache)
294 struct btrfs_caching_control *ctl;
296 spin_lock(&cache->lock);
297 if (!cache->caching_ctl) {
298 spin_unlock(&cache->lock);
302 ctl = cache->caching_ctl;
303 refcount_inc(&ctl->count);
304 spin_unlock(&cache->lock);
308 static void put_caching_control(struct btrfs_caching_control *ctl)
310 if (refcount_dec_and_test(&ctl->count))
314 #ifdef CONFIG_BTRFS_DEBUG
315 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
317 struct btrfs_fs_info *fs_info = block_group->fs_info;
318 u64 start = block_group->key.objectid;
319 u64 len = block_group->key.offset;
320 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
321 fs_info->nodesize : fs_info->sectorsize;
322 u64 step = chunk << 1;
324 while (len > chunk) {
325 btrfs_remove_free_space(block_group, start, chunk);
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
340 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
343 struct btrfs_fs_info *info = block_group->fs_info;
344 u64 extent_start, extent_end, size, total_added = 0;
347 while (start < end) {
348 ret = find_first_extent_bit(info->pinned_extents, start,
349 &extent_start, &extent_end,
350 EXTENT_DIRTY | EXTENT_UPTODATE,
355 if (extent_start <= start) {
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
360 ret = btrfs_add_free_space(block_group, start,
362 BUG_ON(ret); /* -ENOMEM or logic error */
363 start = extent_end + 1;
372 ret = btrfs_add_free_space(block_group, start, size);
373 BUG_ON(ret); /* -ENOMEM or logic error */
379 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
381 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
382 struct btrfs_fs_info *fs_info = block_group->fs_info;
383 struct btrfs_root *extent_root = fs_info->extent_root;
384 struct btrfs_path *path;
385 struct extent_buffer *leaf;
386 struct btrfs_key key;
393 path = btrfs_alloc_path();
397 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
399 #ifdef CONFIG_BTRFS_DEBUG
401 * If we're fragmenting we don't want to make anybody think we can
402 * allocate from this block group until we've had a chance to fragment
405 if (btrfs_should_fragment_free_space(block_group))
409 * We don't want to deadlock with somebody trying to allocate a new
410 * extent for the extent root while also trying to search the extent
411 * root to add free space. So we skip locking and search the commit
412 * root, since its read-only
414 path->skip_locking = 1;
415 path->search_commit_root = 1;
416 path->reada = READA_FORWARD;
420 key.type = BTRFS_EXTENT_ITEM_KEY;
423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
427 leaf = path->nodes[0];
428 nritems = btrfs_header_nritems(leaf);
431 if (btrfs_fs_closing(fs_info) > 1) {
436 if (path->slots[0] < nritems) {
437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
439 ret = find_next_key(path, 0, &key);
443 if (need_resched() ||
444 rwsem_is_contended(&fs_info->commit_root_sem)) {
446 caching_ctl->progress = last;
447 btrfs_release_path(path);
448 up_read(&fs_info->commit_root_sem);
449 mutex_unlock(&caching_ctl->mutex);
451 mutex_lock(&caching_ctl->mutex);
452 down_read(&fs_info->commit_root_sem);
456 ret = btrfs_next_leaf(extent_root, path);
461 leaf = path->nodes[0];
462 nritems = btrfs_header_nritems(leaf);
466 if (key.objectid < last) {
469 key.type = BTRFS_EXTENT_ITEM_KEY;
472 caching_ctl->progress = last;
473 btrfs_release_path(path);
477 if (key.objectid < block_group->key.objectid) {
482 if (key.objectid >= block_group->key.objectid +
483 block_group->key.offset)
486 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
487 key.type == BTRFS_METADATA_ITEM_KEY) {
488 total_found += add_new_free_space(block_group, last,
490 if (key.type == BTRFS_METADATA_ITEM_KEY)
491 last = key.objectid +
494 last = key.objectid + key.offset;
496 if (total_found > CACHING_CTL_WAKE_UP) {
499 wake_up(&caching_ctl->wait);
506 total_found += add_new_free_space(block_group, last,
507 block_group->key.objectid +
508 block_group->key.offset);
509 caching_ctl->progress = (u64)-1;
512 btrfs_free_path(path);
516 static noinline void caching_thread(struct btrfs_work *work)
518 struct btrfs_block_group_cache *block_group;
519 struct btrfs_fs_info *fs_info;
520 struct btrfs_caching_control *caching_ctl;
523 caching_ctl = container_of(work, struct btrfs_caching_control, work);
524 block_group = caching_ctl->block_group;
525 fs_info = block_group->fs_info;
527 mutex_lock(&caching_ctl->mutex);
528 down_read(&fs_info->commit_root_sem);
530 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
531 ret = load_free_space_tree(caching_ctl);
533 ret = load_extent_tree_free(caching_ctl);
535 spin_lock(&block_group->lock);
536 block_group->caching_ctl = NULL;
537 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
538 spin_unlock(&block_group->lock);
540 #ifdef CONFIG_BTRFS_DEBUG
541 if (btrfs_should_fragment_free_space(block_group)) {
544 spin_lock(&block_group->space_info->lock);
545 spin_lock(&block_group->lock);
546 bytes_used = block_group->key.offset -
547 btrfs_block_group_used(&block_group->item);
548 block_group->space_info->bytes_used += bytes_used >> 1;
549 spin_unlock(&block_group->lock);
550 spin_unlock(&block_group->space_info->lock);
551 fragment_free_space(block_group);
555 caching_ctl->progress = (u64)-1;
557 up_read(&fs_info->commit_root_sem);
558 free_excluded_extents(block_group);
559 mutex_unlock(&caching_ctl->mutex);
561 wake_up(&caching_ctl->wait);
563 put_caching_control(caching_ctl);
564 btrfs_put_block_group(block_group);
567 static int cache_block_group(struct btrfs_block_group_cache *cache,
571 struct btrfs_fs_info *fs_info = cache->fs_info;
572 struct btrfs_caching_control *caching_ctl;
575 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
579 INIT_LIST_HEAD(&caching_ctl->list);
580 mutex_init(&caching_ctl->mutex);
581 init_waitqueue_head(&caching_ctl->wait);
582 caching_ctl->block_group = cache;
583 caching_ctl->progress = cache->key.objectid;
584 refcount_set(&caching_ctl->count, 1);
585 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
586 caching_thread, NULL, NULL);
588 spin_lock(&cache->lock);
590 * This should be a rare occasion, but this could happen I think in the
591 * case where one thread starts to load the space cache info, and then
592 * some other thread starts a transaction commit which tries to do an
593 * allocation while the other thread is still loading the space cache
594 * info. The previous loop should have kept us from choosing this block
595 * group, but if we've moved to the state where we will wait on caching
596 * block groups we need to first check if we're doing a fast load here,
597 * so we can wait for it to finish, otherwise we could end up allocating
598 * from a block group who's cache gets evicted for one reason or
601 while (cache->cached == BTRFS_CACHE_FAST) {
602 struct btrfs_caching_control *ctl;
604 ctl = cache->caching_ctl;
605 refcount_inc(&ctl->count);
606 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
607 spin_unlock(&cache->lock);
611 finish_wait(&ctl->wait, &wait);
612 put_caching_control(ctl);
613 spin_lock(&cache->lock);
616 if (cache->cached != BTRFS_CACHE_NO) {
617 spin_unlock(&cache->lock);
621 WARN_ON(cache->caching_ctl);
622 cache->caching_ctl = caching_ctl;
623 cache->cached = BTRFS_CACHE_FAST;
624 spin_unlock(&cache->lock);
626 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
627 mutex_lock(&caching_ctl->mutex);
628 ret = load_free_space_cache(fs_info, cache);
630 spin_lock(&cache->lock);
632 cache->caching_ctl = NULL;
633 cache->cached = BTRFS_CACHE_FINISHED;
634 cache->last_byte_to_unpin = (u64)-1;
635 caching_ctl->progress = (u64)-1;
637 if (load_cache_only) {
638 cache->caching_ctl = NULL;
639 cache->cached = BTRFS_CACHE_NO;
641 cache->cached = BTRFS_CACHE_STARTED;
642 cache->has_caching_ctl = 1;
645 spin_unlock(&cache->lock);
646 #ifdef CONFIG_BTRFS_DEBUG
648 btrfs_should_fragment_free_space(cache)) {
651 spin_lock(&cache->space_info->lock);
652 spin_lock(&cache->lock);
653 bytes_used = cache->key.offset -
654 btrfs_block_group_used(&cache->item);
655 cache->space_info->bytes_used += bytes_used >> 1;
656 spin_unlock(&cache->lock);
657 spin_unlock(&cache->space_info->lock);
658 fragment_free_space(cache);
661 mutex_unlock(&caching_ctl->mutex);
663 wake_up(&caching_ctl->wait);
665 put_caching_control(caching_ctl);
666 free_excluded_extents(cache);
671 * We're either using the free space tree or no caching at all.
672 * Set cached to the appropriate value and wakeup any waiters.
674 spin_lock(&cache->lock);
675 if (load_cache_only) {
676 cache->caching_ctl = NULL;
677 cache->cached = BTRFS_CACHE_NO;
679 cache->cached = BTRFS_CACHE_STARTED;
680 cache->has_caching_ctl = 1;
682 spin_unlock(&cache->lock);
683 wake_up(&caching_ctl->wait);
686 if (load_cache_only) {
687 put_caching_control(caching_ctl);
691 down_write(&fs_info->commit_root_sem);
692 refcount_inc(&caching_ctl->count);
693 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
694 up_write(&fs_info->commit_root_sem);
696 btrfs_get_block_group(cache);
698 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
704 * return the block group that starts at or after bytenr
706 static struct btrfs_block_group_cache *
707 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
709 return block_group_cache_tree_search(info, bytenr, 0);
713 * return the block group that contains the given bytenr
715 struct btrfs_block_group_cache *btrfs_lookup_block_group(
716 struct btrfs_fs_info *info,
719 return block_group_cache_tree_search(info, bytenr, 1);
722 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
725 struct list_head *head = &info->space_info;
726 struct btrfs_space_info *found;
728 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
731 list_for_each_entry_rcu(found, head, list) {
732 if (found->flags & flags) {
741 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
742 bool metadata, u64 root_objectid)
744 struct btrfs_space_info *space_info;
748 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
749 flags = BTRFS_BLOCK_GROUP_SYSTEM;
751 flags = BTRFS_BLOCK_GROUP_METADATA;
753 flags = BTRFS_BLOCK_GROUP_DATA;
756 space_info = __find_space_info(fs_info, flags);
758 percpu_counter_add_batch(&space_info->total_bytes_pinned, num_bytes,
759 BTRFS_TOTAL_BYTES_PINNED_BATCH);
763 * after adding space to the filesystem, we need to clear the full flags
764 * on all the space infos.
766 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
768 struct list_head *head = &info->space_info;
769 struct btrfs_space_info *found;
772 list_for_each_entry_rcu(found, head, list)
777 /* simple helper to search for an existing data extent at a given offset */
778 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
781 struct btrfs_key key;
782 struct btrfs_path *path;
784 path = btrfs_alloc_path();
788 key.objectid = start;
790 key.type = BTRFS_EXTENT_ITEM_KEY;
791 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
792 btrfs_free_path(path);
797 * helper function to lookup reference count and flags of a tree block.
799 * the head node for delayed ref is used to store the sum of all the
800 * reference count modifications queued up in the rbtree. the head
801 * node may also store the extent flags to set. This way you can check
802 * to see what the reference count and extent flags would be if all of
803 * the delayed refs are not processed.
805 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
806 struct btrfs_fs_info *fs_info, u64 bytenr,
807 u64 offset, int metadata, u64 *refs, u64 *flags)
809 struct btrfs_delayed_ref_head *head;
810 struct btrfs_delayed_ref_root *delayed_refs;
811 struct btrfs_path *path;
812 struct btrfs_extent_item *ei;
813 struct extent_buffer *leaf;
814 struct btrfs_key key;
821 * If we don't have skinny metadata, don't bother doing anything
824 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
825 offset = fs_info->nodesize;
829 path = btrfs_alloc_path();
834 path->skip_locking = 1;
835 path->search_commit_root = 1;
839 key.objectid = bytenr;
842 key.type = BTRFS_METADATA_ITEM_KEY;
844 key.type = BTRFS_EXTENT_ITEM_KEY;
846 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
850 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
851 if (path->slots[0]) {
853 btrfs_item_key_to_cpu(path->nodes[0], &key,
855 if (key.objectid == bytenr &&
856 key.type == BTRFS_EXTENT_ITEM_KEY &&
857 key.offset == fs_info->nodesize)
863 leaf = path->nodes[0];
864 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
865 if (item_size >= sizeof(*ei)) {
866 ei = btrfs_item_ptr(leaf, path->slots[0],
867 struct btrfs_extent_item);
868 num_refs = btrfs_extent_refs(leaf, ei);
869 extent_flags = btrfs_extent_flags(leaf, ei);
872 btrfs_print_v0_err(fs_info);
874 btrfs_abort_transaction(trans, ret);
876 btrfs_handle_fs_error(fs_info, ret, NULL);
881 BUG_ON(num_refs == 0);
891 delayed_refs = &trans->transaction->delayed_refs;
892 spin_lock(&delayed_refs->lock);
893 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
895 if (!mutex_trylock(&head->mutex)) {
896 refcount_inc(&head->refs);
897 spin_unlock(&delayed_refs->lock);
899 btrfs_release_path(path);
902 * Mutex was contended, block until it's released and try
905 mutex_lock(&head->mutex);
906 mutex_unlock(&head->mutex);
907 btrfs_put_delayed_ref_head(head);
910 spin_lock(&head->lock);
911 if (head->extent_op && head->extent_op->update_flags)
912 extent_flags |= head->extent_op->flags_to_set;
914 BUG_ON(num_refs == 0);
916 num_refs += head->ref_mod;
917 spin_unlock(&head->lock);
918 mutex_unlock(&head->mutex);
920 spin_unlock(&delayed_refs->lock);
922 WARN_ON(num_refs == 0);
926 *flags = extent_flags;
928 btrfs_free_path(path);
933 * Back reference rules. Back refs have three main goals:
935 * 1) differentiate between all holders of references to an extent so that
936 * when a reference is dropped we can make sure it was a valid reference
937 * before freeing the extent.
939 * 2) Provide enough information to quickly find the holders of an extent
940 * if we notice a given block is corrupted or bad.
942 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
943 * maintenance. This is actually the same as #2, but with a slightly
944 * different use case.
946 * There are two kinds of back refs. The implicit back refs is optimized
947 * for pointers in non-shared tree blocks. For a given pointer in a block,
948 * back refs of this kind provide information about the block's owner tree
949 * and the pointer's key. These information allow us to find the block by
950 * b-tree searching. The full back refs is for pointers in tree blocks not
951 * referenced by their owner trees. The location of tree block is recorded
952 * in the back refs. Actually the full back refs is generic, and can be
953 * used in all cases the implicit back refs is used. The major shortcoming
954 * of the full back refs is its overhead. Every time a tree block gets
955 * COWed, we have to update back refs entry for all pointers in it.
957 * For a newly allocated tree block, we use implicit back refs for
958 * pointers in it. This means most tree related operations only involve
959 * implicit back refs. For a tree block created in old transaction, the
960 * only way to drop a reference to it is COW it. So we can detect the
961 * event that tree block loses its owner tree's reference and do the
962 * back refs conversion.
964 * When a tree block is COWed through a tree, there are four cases:
966 * The reference count of the block is one and the tree is the block's
967 * owner tree. Nothing to do in this case.
969 * The reference count of the block is one and the tree is not the
970 * block's owner tree. In this case, full back refs is used for pointers
971 * in the block. Remove these full back refs, add implicit back refs for
972 * every pointers in the new block.
974 * The reference count of the block is greater than one and the tree is
975 * the block's owner tree. In this case, implicit back refs is used for
976 * pointers in the block. Add full back refs for every pointers in the
977 * block, increase lower level extents' reference counts. The original
978 * implicit back refs are entailed to the new block.
980 * The reference count of the block is greater than one and the tree is
981 * not the block's owner tree. Add implicit back refs for every pointer in
982 * the new block, increase lower level extents' reference count.
984 * Back Reference Key composing:
986 * The key objectid corresponds to the first byte in the extent,
987 * The key type is used to differentiate between types of back refs.
988 * There are different meanings of the key offset for different types
991 * File extents can be referenced by:
993 * - multiple snapshots, subvolumes, or different generations in one subvol
994 * - different files inside a single subvolume
995 * - different offsets inside a file (bookend extents in file.c)
997 * The extent ref structure for the implicit back refs has fields for:
999 * - Objectid of the subvolume root
1000 * - objectid of the file holding the reference
1001 * - original offset in the file
1002 * - how many bookend extents
1004 * The key offset for the implicit back refs is hash of the first
1007 * The extent ref structure for the full back refs has field for:
1009 * - number of pointers in the tree leaf
1011 * The key offset for the implicit back refs is the first byte of
1014 * When a file extent is allocated, The implicit back refs is used.
1015 * the fields are filled in:
1017 * (root_key.objectid, inode objectid, offset in file, 1)
1019 * When a file extent is removed file truncation, we find the
1020 * corresponding implicit back refs and check the following fields:
1022 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1024 * Btree extents can be referenced by:
1026 * - Different subvolumes
1028 * Both the implicit back refs and the full back refs for tree blocks
1029 * only consist of key. The key offset for the implicit back refs is
1030 * objectid of block's owner tree. The key offset for the full back refs
1031 * is the first byte of parent block.
1033 * When implicit back refs is used, information about the lowest key and
1034 * level of the tree block are required. These information are stored in
1035 * tree block info structure.
1039 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1040 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1041 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1043 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1044 struct btrfs_extent_inline_ref *iref,
1045 enum btrfs_inline_ref_type is_data)
1047 int type = btrfs_extent_inline_ref_type(eb, iref);
1048 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1050 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1051 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1052 type == BTRFS_SHARED_DATA_REF_KEY ||
1053 type == BTRFS_EXTENT_DATA_REF_KEY) {
1054 if (is_data == BTRFS_REF_TYPE_BLOCK) {
1055 if (type == BTRFS_TREE_BLOCK_REF_KEY)
1057 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1058 ASSERT(eb->fs_info);
1060 * Every shared one has parent tree
1061 * block, which must be aligned to
1065 IS_ALIGNED(offset, eb->fs_info->nodesize))
1068 } else if (is_data == BTRFS_REF_TYPE_DATA) {
1069 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1071 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1072 ASSERT(eb->fs_info);
1074 * Every shared one has parent tree
1075 * block, which must be aligned to
1079 IS_ALIGNED(offset, eb->fs_info->nodesize))
1083 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1088 btrfs_print_leaf((struct extent_buffer *)eb);
1089 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1093 return BTRFS_REF_TYPE_INVALID;
1096 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1098 u32 high_crc = ~(u32)0;
1099 u32 low_crc = ~(u32)0;
1102 lenum = cpu_to_le64(root_objectid);
1103 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1104 lenum = cpu_to_le64(owner);
1105 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1106 lenum = cpu_to_le64(offset);
1107 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1109 return ((u64)high_crc << 31) ^ (u64)low_crc;
1112 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1113 struct btrfs_extent_data_ref *ref)
1115 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1116 btrfs_extent_data_ref_objectid(leaf, ref),
1117 btrfs_extent_data_ref_offset(leaf, ref));
1120 static int match_extent_data_ref(struct extent_buffer *leaf,
1121 struct btrfs_extent_data_ref *ref,
1122 u64 root_objectid, u64 owner, u64 offset)
1124 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1125 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1126 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1131 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1132 struct btrfs_path *path,
1133 u64 bytenr, u64 parent,
1135 u64 owner, u64 offset)
1137 struct btrfs_root *root = trans->fs_info->extent_root;
1138 struct btrfs_key key;
1139 struct btrfs_extent_data_ref *ref;
1140 struct extent_buffer *leaf;
1146 key.objectid = bytenr;
1148 key.type = BTRFS_SHARED_DATA_REF_KEY;
1149 key.offset = parent;
1151 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1152 key.offset = hash_extent_data_ref(root_objectid,
1157 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1169 leaf = path->nodes[0];
1170 nritems = btrfs_header_nritems(leaf);
1172 if (path->slots[0] >= nritems) {
1173 ret = btrfs_next_leaf(root, path);
1179 leaf = path->nodes[0];
1180 nritems = btrfs_header_nritems(leaf);
1184 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1185 if (key.objectid != bytenr ||
1186 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1189 ref = btrfs_item_ptr(leaf, path->slots[0],
1190 struct btrfs_extent_data_ref);
1192 if (match_extent_data_ref(leaf, ref, root_objectid,
1195 btrfs_release_path(path);
1207 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1208 struct btrfs_path *path,
1209 u64 bytenr, u64 parent,
1210 u64 root_objectid, u64 owner,
1211 u64 offset, int refs_to_add)
1213 struct btrfs_root *root = trans->fs_info->extent_root;
1214 struct btrfs_key key;
1215 struct extent_buffer *leaf;
1220 key.objectid = bytenr;
1222 key.type = BTRFS_SHARED_DATA_REF_KEY;
1223 key.offset = parent;
1224 size = sizeof(struct btrfs_shared_data_ref);
1226 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1227 key.offset = hash_extent_data_ref(root_objectid,
1229 size = sizeof(struct btrfs_extent_data_ref);
1232 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1233 if (ret && ret != -EEXIST)
1236 leaf = path->nodes[0];
1238 struct btrfs_shared_data_ref *ref;
1239 ref = btrfs_item_ptr(leaf, path->slots[0],
1240 struct btrfs_shared_data_ref);
1242 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1244 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1245 num_refs += refs_to_add;
1246 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1249 struct btrfs_extent_data_ref *ref;
1250 while (ret == -EEXIST) {
1251 ref = btrfs_item_ptr(leaf, path->slots[0],
1252 struct btrfs_extent_data_ref);
1253 if (match_extent_data_ref(leaf, ref, root_objectid,
1256 btrfs_release_path(path);
1258 ret = btrfs_insert_empty_item(trans, root, path, &key,
1260 if (ret && ret != -EEXIST)
1263 leaf = path->nodes[0];
1265 ref = btrfs_item_ptr(leaf, path->slots[0],
1266 struct btrfs_extent_data_ref);
1268 btrfs_set_extent_data_ref_root(leaf, ref,
1270 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1271 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1272 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1274 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1275 num_refs += refs_to_add;
1276 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1279 btrfs_mark_buffer_dirty(leaf);
1282 btrfs_release_path(path);
1286 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1287 struct btrfs_path *path,
1288 int refs_to_drop, int *last_ref)
1290 struct btrfs_key key;
1291 struct btrfs_extent_data_ref *ref1 = NULL;
1292 struct btrfs_shared_data_ref *ref2 = NULL;
1293 struct extent_buffer *leaf;
1297 leaf = path->nodes[0];
1298 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1300 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1301 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1302 struct btrfs_extent_data_ref);
1303 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1304 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1305 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1306 struct btrfs_shared_data_ref);
1307 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1308 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
1309 btrfs_print_v0_err(trans->fs_info);
1310 btrfs_abort_transaction(trans, -EINVAL);
1316 BUG_ON(num_refs < refs_to_drop);
1317 num_refs -= refs_to_drop;
1319 if (num_refs == 0) {
1320 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1323 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1324 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1325 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1326 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1327 btrfs_mark_buffer_dirty(leaf);
1332 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1333 struct btrfs_extent_inline_ref *iref)
1335 struct btrfs_key key;
1336 struct extent_buffer *leaf;
1337 struct btrfs_extent_data_ref *ref1;
1338 struct btrfs_shared_data_ref *ref2;
1342 leaf = path->nodes[0];
1343 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1345 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
1348 * If type is invalid, we should have bailed out earlier than
1351 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1352 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1353 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1354 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1355 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1357 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1358 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1360 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1361 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1362 struct btrfs_extent_data_ref);
1363 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1364 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1365 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1366 struct btrfs_shared_data_ref);
1367 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1374 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1375 struct btrfs_path *path,
1376 u64 bytenr, u64 parent,
1379 struct btrfs_root *root = trans->fs_info->extent_root;
1380 struct btrfs_key key;
1383 key.objectid = bytenr;
1385 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1386 key.offset = parent;
1388 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1389 key.offset = root_objectid;
1392 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1398 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1399 struct btrfs_path *path,
1400 u64 bytenr, u64 parent,
1403 struct btrfs_key key;
1406 key.objectid = bytenr;
1408 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1409 key.offset = parent;
1411 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1412 key.offset = root_objectid;
1415 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
1417 btrfs_release_path(path);
1421 static inline int extent_ref_type(u64 parent, u64 owner)
1424 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1426 type = BTRFS_SHARED_BLOCK_REF_KEY;
1428 type = BTRFS_TREE_BLOCK_REF_KEY;
1431 type = BTRFS_SHARED_DATA_REF_KEY;
1433 type = BTRFS_EXTENT_DATA_REF_KEY;
1438 static int find_next_key(struct btrfs_path *path, int level,
1439 struct btrfs_key *key)
1442 for (; level < BTRFS_MAX_LEVEL; level++) {
1443 if (!path->nodes[level])
1445 if (path->slots[level] + 1 >=
1446 btrfs_header_nritems(path->nodes[level]))
1449 btrfs_item_key_to_cpu(path->nodes[level], key,
1450 path->slots[level] + 1);
1452 btrfs_node_key_to_cpu(path->nodes[level], key,
1453 path->slots[level] + 1);
1460 * look for inline back ref. if back ref is found, *ref_ret is set
1461 * to the address of inline back ref, and 0 is returned.
1463 * if back ref isn't found, *ref_ret is set to the address where it
1464 * should be inserted, and -ENOENT is returned.
1466 * if insert is true and there are too many inline back refs, the path
1467 * points to the extent item, and -EAGAIN is returned.
1469 * NOTE: inline back refs are ordered in the same way that back ref
1470 * items in the tree are ordered.
1472 static noinline_for_stack
1473 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1474 struct btrfs_path *path,
1475 struct btrfs_extent_inline_ref **ref_ret,
1476 u64 bytenr, u64 num_bytes,
1477 u64 parent, u64 root_objectid,
1478 u64 owner, u64 offset, int insert)
1480 struct btrfs_fs_info *fs_info = trans->fs_info;
1481 struct btrfs_root *root = fs_info->extent_root;
1482 struct btrfs_key key;
1483 struct extent_buffer *leaf;
1484 struct btrfs_extent_item *ei;
1485 struct btrfs_extent_inline_ref *iref;
1495 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1498 key.objectid = bytenr;
1499 key.type = BTRFS_EXTENT_ITEM_KEY;
1500 key.offset = num_bytes;
1502 want = extent_ref_type(parent, owner);
1504 extra_size = btrfs_extent_inline_ref_size(want);
1505 path->keep_locks = 1;
1510 * Owner is our level, so we can just add one to get the level for the
1511 * block we are interested in.
1513 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1514 key.type = BTRFS_METADATA_ITEM_KEY;
1519 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1526 * We may be a newly converted file system which still has the old fat
1527 * extent entries for metadata, so try and see if we have one of those.
1529 if (ret > 0 && skinny_metadata) {
1530 skinny_metadata = false;
1531 if (path->slots[0]) {
1533 btrfs_item_key_to_cpu(path->nodes[0], &key,
1535 if (key.objectid == bytenr &&
1536 key.type == BTRFS_EXTENT_ITEM_KEY &&
1537 key.offset == num_bytes)
1541 key.objectid = bytenr;
1542 key.type = BTRFS_EXTENT_ITEM_KEY;
1543 key.offset = num_bytes;
1544 btrfs_release_path(path);
1549 if (ret && !insert) {
1552 } else if (WARN_ON(ret)) {
1557 leaf = path->nodes[0];
1558 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1559 if (unlikely(item_size < sizeof(*ei))) {
1561 btrfs_print_v0_err(fs_info);
1562 btrfs_abort_transaction(trans, err);
1566 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1567 flags = btrfs_extent_flags(leaf, ei);
1569 ptr = (unsigned long)(ei + 1);
1570 end = (unsigned long)ei + item_size;
1572 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1573 ptr += sizeof(struct btrfs_tree_block_info);
1577 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1578 needed = BTRFS_REF_TYPE_DATA;
1580 needed = BTRFS_REF_TYPE_BLOCK;
1588 iref = (struct btrfs_extent_inline_ref *)ptr;
1589 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1590 if (type == BTRFS_REF_TYPE_INVALID) {
1598 ptr += btrfs_extent_inline_ref_size(type);
1602 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1603 struct btrfs_extent_data_ref *dref;
1604 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1605 if (match_extent_data_ref(leaf, dref, root_objectid,
1610 if (hash_extent_data_ref_item(leaf, dref) <
1611 hash_extent_data_ref(root_objectid, owner, offset))
1615 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1617 if (parent == ref_offset) {
1621 if (ref_offset < parent)
1624 if (root_objectid == ref_offset) {
1628 if (ref_offset < root_objectid)
1632 ptr += btrfs_extent_inline_ref_size(type);
1634 if (err == -ENOENT && insert) {
1635 if (item_size + extra_size >=
1636 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1641 * To add new inline back ref, we have to make sure
1642 * there is no corresponding back ref item.
1643 * For simplicity, we just do not add new inline back
1644 * ref if there is any kind of item for this block
1646 if (find_next_key(path, 0, &key) == 0 &&
1647 key.objectid == bytenr &&
1648 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1653 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1656 path->keep_locks = 0;
1657 btrfs_unlock_up_safe(path, 1);
1663 * helper to add new inline back ref
1665 static noinline_for_stack
1666 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1667 struct btrfs_path *path,
1668 struct btrfs_extent_inline_ref *iref,
1669 u64 parent, u64 root_objectid,
1670 u64 owner, u64 offset, int refs_to_add,
1671 struct btrfs_delayed_extent_op *extent_op)
1673 struct extent_buffer *leaf;
1674 struct btrfs_extent_item *ei;
1677 unsigned long item_offset;
1682 leaf = path->nodes[0];
1683 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1684 item_offset = (unsigned long)iref - (unsigned long)ei;
1686 type = extent_ref_type(parent, owner);
1687 size = btrfs_extent_inline_ref_size(type);
1689 btrfs_extend_item(fs_info, path, size);
1691 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1692 refs = btrfs_extent_refs(leaf, ei);
1693 refs += refs_to_add;
1694 btrfs_set_extent_refs(leaf, ei, refs);
1696 __run_delayed_extent_op(extent_op, leaf, ei);
1698 ptr = (unsigned long)ei + item_offset;
1699 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1700 if (ptr < end - size)
1701 memmove_extent_buffer(leaf, ptr + size, ptr,
1704 iref = (struct btrfs_extent_inline_ref *)ptr;
1705 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1706 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1707 struct btrfs_extent_data_ref *dref;
1708 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1709 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1710 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1711 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1712 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1713 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1714 struct btrfs_shared_data_ref *sref;
1715 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1716 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1717 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1718 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1719 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1721 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1723 btrfs_mark_buffer_dirty(leaf);
1726 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1727 struct btrfs_path *path,
1728 struct btrfs_extent_inline_ref **ref_ret,
1729 u64 bytenr, u64 num_bytes, u64 parent,
1730 u64 root_objectid, u64 owner, u64 offset)
1734 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1735 num_bytes, parent, root_objectid,
1740 btrfs_release_path(path);
1743 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1744 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1747 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1748 root_objectid, owner, offset);
1754 * helper to update/remove inline back ref
1756 static noinline_for_stack
1757 void update_inline_extent_backref(struct btrfs_path *path,
1758 struct btrfs_extent_inline_ref *iref,
1760 struct btrfs_delayed_extent_op *extent_op,
1763 struct extent_buffer *leaf = path->nodes[0];
1764 struct btrfs_fs_info *fs_info = leaf->fs_info;
1765 struct btrfs_extent_item *ei;
1766 struct btrfs_extent_data_ref *dref = NULL;
1767 struct btrfs_shared_data_ref *sref = NULL;
1775 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1776 refs = btrfs_extent_refs(leaf, ei);
1777 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1778 refs += refs_to_mod;
1779 btrfs_set_extent_refs(leaf, ei, refs);
1781 __run_delayed_extent_op(extent_op, leaf, ei);
1784 * If type is invalid, we should have bailed out after
1785 * lookup_inline_extent_backref().
1787 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1788 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1790 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1791 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1792 refs = btrfs_extent_data_ref_count(leaf, dref);
1793 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1794 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1795 refs = btrfs_shared_data_ref_count(leaf, sref);
1798 BUG_ON(refs_to_mod != -1);
1801 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1802 refs += refs_to_mod;
1805 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1806 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1808 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1811 size = btrfs_extent_inline_ref_size(type);
1812 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1813 ptr = (unsigned long)iref;
1814 end = (unsigned long)ei + item_size;
1815 if (ptr + size < end)
1816 memmove_extent_buffer(leaf, ptr, ptr + size,
1819 btrfs_truncate_item(fs_info, path, item_size, 1);
1821 btrfs_mark_buffer_dirty(leaf);
1824 static noinline_for_stack
1825 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1826 struct btrfs_path *path,
1827 u64 bytenr, u64 num_bytes, u64 parent,
1828 u64 root_objectid, u64 owner,
1829 u64 offset, int refs_to_add,
1830 struct btrfs_delayed_extent_op *extent_op)
1832 struct btrfs_extent_inline_ref *iref;
1835 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1836 num_bytes, parent, root_objectid,
1839 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1840 update_inline_extent_backref(path, iref, refs_to_add,
1842 } else if (ret == -ENOENT) {
1843 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1844 root_objectid, owner, offset,
1845 refs_to_add, extent_op);
1851 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1852 struct btrfs_path *path,
1853 u64 bytenr, u64 parent, u64 root_objectid,
1854 u64 owner, u64 offset, int refs_to_add)
1857 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1858 BUG_ON(refs_to_add != 1);
1859 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1862 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1863 root_objectid, owner, offset,
1869 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1870 struct btrfs_path *path,
1871 struct btrfs_extent_inline_ref *iref,
1872 int refs_to_drop, int is_data, int *last_ref)
1876 BUG_ON(!is_data && refs_to_drop != 1);
1878 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1880 } else if (is_data) {
1881 ret = remove_extent_data_ref(trans, path, refs_to_drop,
1885 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1890 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1891 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1892 u64 *discarded_bytes)
1895 u64 bytes_left, end;
1896 u64 aligned_start = ALIGN(start, 1 << 9);
1898 if (WARN_ON(start != aligned_start)) {
1899 len -= aligned_start - start;
1900 len = round_down(len, 1 << 9);
1901 start = aligned_start;
1904 *discarded_bytes = 0;
1912 /* Skip any superblocks on this device. */
1913 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1914 u64 sb_start = btrfs_sb_offset(j);
1915 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1916 u64 size = sb_start - start;
1918 if (!in_range(sb_start, start, bytes_left) &&
1919 !in_range(sb_end, start, bytes_left) &&
1920 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1924 * Superblock spans beginning of range. Adjust start and
1927 if (sb_start <= start) {
1928 start += sb_end - start;
1933 bytes_left = end - start;
1938 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1941 *discarded_bytes += size;
1942 else if (ret != -EOPNOTSUPP)
1951 bytes_left = end - start;
1955 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1958 *discarded_bytes += bytes_left;
1963 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1964 u64 num_bytes, u64 *actual_bytes)
1967 u64 discarded_bytes = 0;
1968 struct btrfs_bio *bbio = NULL;
1972 * Avoid races with device replace and make sure our bbio has devices
1973 * associated to its stripes that don't go away while we are discarding.
1975 btrfs_bio_counter_inc_blocked(fs_info);
1976 /* Tell the block device(s) that the sectors can be discarded */
1977 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1979 /* Error condition is -ENOMEM */
1981 struct btrfs_bio_stripe *stripe = bbio->stripes;
1985 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1987 struct request_queue *req_q;
1989 if (!stripe->dev->bdev) {
1990 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1993 req_q = bdev_get_queue(stripe->dev->bdev);
1994 if (!blk_queue_discard(req_q))
1997 ret = btrfs_issue_discard(stripe->dev->bdev,
2002 discarded_bytes += bytes;
2003 else if (ret != -EOPNOTSUPP)
2004 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2007 * Just in case we get back EOPNOTSUPP for some reason,
2008 * just ignore the return value so we don't screw up
2009 * people calling discard_extent.
2013 btrfs_put_bbio(bbio);
2015 btrfs_bio_counter_dec(fs_info);
2018 *actual_bytes = discarded_bytes;
2021 if (ret == -EOPNOTSUPP)
2026 /* Can return -ENOMEM */
2027 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2028 struct btrfs_root *root,
2029 u64 bytenr, u64 num_bytes, u64 parent,
2030 u64 root_objectid, u64 owner, u64 offset)
2032 struct btrfs_fs_info *fs_info = root->fs_info;
2033 int old_ref_mod, new_ref_mod;
2036 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2037 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2039 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2040 owner, offset, BTRFS_ADD_DELAYED_REF);
2042 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2043 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
2045 root_objectid, (int)owner,
2046 BTRFS_ADD_DELAYED_REF, NULL,
2047 &old_ref_mod, &new_ref_mod);
2049 ret = btrfs_add_delayed_data_ref(trans, bytenr,
2051 root_objectid, owner, offset,
2052 0, BTRFS_ADD_DELAYED_REF,
2053 &old_ref_mod, &new_ref_mod);
2056 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2057 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2059 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2066 * __btrfs_inc_extent_ref - insert backreference for a given extent
2068 * @trans: Handle of transaction
2070 * @node: The delayed ref node used to get the bytenr/length for
2071 * extent whose references are incremented.
2073 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2074 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2075 * bytenr of the parent block. Since new extents are always
2076 * created with indirect references, this will only be the case
2077 * when relocating a shared extent. In that case, root_objectid
2078 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2081 * @root_objectid: The id of the root where this modification has originated,
2082 * this can be either one of the well-known metadata trees or
2083 * the subvolume id which references this extent.
2085 * @owner: For data extents it is the inode number of the owning file.
2086 * For metadata extents this parameter holds the level in the
2087 * tree of the extent.
2089 * @offset: For metadata extents the offset is ignored and is currently
2090 * always passed as 0. For data extents it is the fileoffset
2091 * this extent belongs to.
2093 * @refs_to_add Number of references to add
2095 * @extent_op Pointer to a structure, holding information necessary when
2096 * updating a tree block's flags
2099 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2100 struct btrfs_delayed_ref_node *node,
2101 u64 parent, u64 root_objectid,
2102 u64 owner, u64 offset, int refs_to_add,
2103 struct btrfs_delayed_extent_op *extent_op)
2105 struct btrfs_path *path;
2106 struct extent_buffer *leaf;
2107 struct btrfs_extent_item *item;
2108 struct btrfs_key key;
2109 u64 bytenr = node->bytenr;
2110 u64 num_bytes = node->num_bytes;
2114 path = btrfs_alloc_path();
2118 path->reada = READA_FORWARD;
2119 path->leave_spinning = 1;
2120 /* this will setup the path even if it fails to insert the back ref */
2121 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
2122 parent, root_objectid, owner,
2123 offset, refs_to_add, extent_op);
2124 if ((ret < 0 && ret != -EAGAIN) || !ret)
2128 * Ok we had -EAGAIN which means we didn't have space to insert and
2129 * inline extent ref, so just update the reference count and add a
2132 leaf = path->nodes[0];
2133 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2134 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2135 refs = btrfs_extent_refs(leaf, item);
2136 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2138 __run_delayed_extent_op(extent_op, leaf, item);
2140 btrfs_mark_buffer_dirty(leaf);
2141 btrfs_release_path(path);
2143 path->reada = READA_FORWARD;
2144 path->leave_spinning = 1;
2145 /* now insert the actual backref */
2146 ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2147 owner, offset, refs_to_add);
2149 btrfs_abort_transaction(trans, ret);
2151 btrfs_free_path(path);
2155 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2156 struct btrfs_delayed_ref_node *node,
2157 struct btrfs_delayed_extent_op *extent_op,
2158 int insert_reserved)
2161 struct btrfs_delayed_data_ref *ref;
2162 struct btrfs_key ins;
2167 ins.objectid = node->bytenr;
2168 ins.offset = node->num_bytes;
2169 ins.type = BTRFS_EXTENT_ITEM_KEY;
2171 ref = btrfs_delayed_node_to_data_ref(node);
2172 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
2174 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2175 parent = ref->parent;
2176 ref_root = ref->root;
2178 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2180 flags |= extent_op->flags_to_set;
2181 ret = alloc_reserved_file_extent(trans, parent, ref_root,
2182 flags, ref->objectid,
2185 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2186 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2187 ref->objectid, ref->offset,
2188 node->ref_mod, extent_op);
2189 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2190 ret = __btrfs_free_extent(trans, node, parent,
2191 ref_root, ref->objectid,
2192 ref->offset, node->ref_mod,
2200 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2201 struct extent_buffer *leaf,
2202 struct btrfs_extent_item *ei)
2204 u64 flags = btrfs_extent_flags(leaf, ei);
2205 if (extent_op->update_flags) {
2206 flags |= extent_op->flags_to_set;
2207 btrfs_set_extent_flags(leaf, ei, flags);
2210 if (extent_op->update_key) {
2211 struct btrfs_tree_block_info *bi;
2212 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2213 bi = (struct btrfs_tree_block_info *)(ei + 1);
2214 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2218 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2219 struct btrfs_delayed_ref_head *head,
2220 struct btrfs_delayed_extent_op *extent_op)
2222 struct btrfs_fs_info *fs_info = trans->fs_info;
2223 struct btrfs_key key;
2224 struct btrfs_path *path;
2225 struct btrfs_extent_item *ei;
2226 struct extent_buffer *leaf;
2230 int metadata = !extent_op->is_data;
2235 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2238 path = btrfs_alloc_path();
2242 key.objectid = head->bytenr;
2245 key.type = BTRFS_METADATA_ITEM_KEY;
2246 key.offset = extent_op->level;
2248 key.type = BTRFS_EXTENT_ITEM_KEY;
2249 key.offset = head->num_bytes;
2253 path->reada = READA_FORWARD;
2254 path->leave_spinning = 1;
2255 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2262 if (path->slots[0] > 0) {
2264 btrfs_item_key_to_cpu(path->nodes[0], &key,
2266 if (key.objectid == head->bytenr &&
2267 key.type == BTRFS_EXTENT_ITEM_KEY &&
2268 key.offset == head->num_bytes)
2272 btrfs_release_path(path);
2275 key.objectid = head->bytenr;
2276 key.offset = head->num_bytes;
2277 key.type = BTRFS_EXTENT_ITEM_KEY;
2286 leaf = path->nodes[0];
2287 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2289 if (unlikely(item_size < sizeof(*ei))) {
2291 btrfs_print_v0_err(fs_info);
2292 btrfs_abort_transaction(trans, err);
2296 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2297 __run_delayed_extent_op(extent_op, leaf, ei);
2299 btrfs_mark_buffer_dirty(leaf);
2301 btrfs_free_path(path);
2305 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2306 struct btrfs_delayed_ref_node *node,
2307 struct btrfs_delayed_extent_op *extent_op,
2308 int insert_reserved)
2311 struct btrfs_delayed_tree_ref *ref;
2315 ref = btrfs_delayed_node_to_tree_ref(node);
2316 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
2318 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2319 parent = ref->parent;
2320 ref_root = ref->root;
2322 if (node->ref_mod != 1) {
2323 btrfs_err(trans->fs_info,
2324 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2325 node->bytenr, node->ref_mod, node->action, ref_root,
2329 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2330 BUG_ON(!extent_op || !extent_op->update_flags);
2331 ret = alloc_reserved_tree_block(trans, node, extent_op);
2332 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2333 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2334 ref->level, 0, 1, extent_op);
2335 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2336 ret = __btrfs_free_extent(trans, node, parent, ref_root,
2337 ref->level, 0, 1, extent_op);
2344 /* helper function to actually process a single delayed ref entry */
2345 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2346 struct btrfs_delayed_ref_node *node,
2347 struct btrfs_delayed_extent_op *extent_op,
2348 int insert_reserved)
2352 if (trans->aborted) {
2353 if (insert_reserved)
2354 btrfs_pin_extent(trans->fs_info, node->bytenr,
2355 node->num_bytes, 1);
2359 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2360 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2361 ret = run_delayed_tree_ref(trans, node, extent_op,
2363 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2364 node->type == BTRFS_SHARED_DATA_REF_KEY)
2365 ret = run_delayed_data_ref(trans, node, extent_op,
2372 static inline struct btrfs_delayed_ref_node *
2373 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2375 struct btrfs_delayed_ref_node *ref;
2377 if (RB_EMPTY_ROOT(&head->ref_tree))
2381 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2382 * This is to prevent a ref count from going down to zero, which deletes
2383 * the extent item from the extent tree, when there still are references
2384 * to add, which would fail because they would not find the extent item.
2386 if (!list_empty(&head->ref_add_list))
2387 return list_first_entry(&head->ref_add_list,
2388 struct btrfs_delayed_ref_node, add_list);
2390 ref = rb_entry(rb_first(&head->ref_tree),
2391 struct btrfs_delayed_ref_node, ref_node);
2392 ASSERT(list_empty(&ref->add_list));
2396 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2397 struct btrfs_delayed_ref_head *head)
2399 spin_lock(&delayed_refs->lock);
2400 head->processing = 0;
2401 delayed_refs->num_heads_ready++;
2402 spin_unlock(&delayed_refs->lock);
2403 btrfs_delayed_ref_unlock(head);
2406 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2407 struct btrfs_delayed_ref_head *head)
2409 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2414 head->extent_op = NULL;
2415 if (head->must_insert_reserved) {
2416 btrfs_free_delayed_extent_op(extent_op);
2419 spin_unlock(&head->lock);
2420 ret = run_delayed_extent_op(trans, head, extent_op);
2421 btrfs_free_delayed_extent_op(extent_op);
2422 return ret ? ret : 1;
2425 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2426 struct btrfs_delayed_ref_head *head)
2429 struct btrfs_fs_info *fs_info = trans->fs_info;
2430 struct btrfs_delayed_ref_root *delayed_refs;
2433 delayed_refs = &trans->transaction->delayed_refs;
2435 ret = cleanup_extent_op(trans, head);
2437 unselect_delayed_ref_head(delayed_refs, head);
2438 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2445 * Need to drop our head ref lock and re-acquire the delayed ref lock
2446 * and then re-check to make sure nobody got added.
2448 spin_unlock(&head->lock);
2449 spin_lock(&delayed_refs->lock);
2450 spin_lock(&head->lock);
2451 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2452 spin_unlock(&head->lock);
2453 spin_unlock(&delayed_refs->lock);
2456 delayed_refs->num_heads--;
2457 rb_erase(&head->href_node, &delayed_refs->href_root);
2458 RB_CLEAR_NODE(&head->href_node);
2459 spin_unlock(&head->lock);
2460 spin_unlock(&delayed_refs->lock);
2461 atomic_dec(&delayed_refs->num_entries);
2463 trace_run_delayed_ref_head(fs_info, head, 0);
2465 if (head->total_ref_mod < 0) {
2466 struct btrfs_space_info *space_info;
2470 flags = BTRFS_BLOCK_GROUP_DATA;
2471 else if (head->is_system)
2472 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2474 flags = BTRFS_BLOCK_GROUP_METADATA;
2475 space_info = __find_space_info(fs_info, flags);
2477 percpu_counter_add_batch(&space_info->total_bytes_pinned,
2479 BTRFS_TOTAL_BYTES_PINNED_BATCH);
2481 if (head->is_data) {
2482 spin_lock(&delayed_refs->lock);
2483 delayed_refs->pending_csums -= head->num_bytes;
2484 spin_unlock(&delayed_refs->lock);
2488 if (head->must_insert_reserved) {
2489 btrfs_pin_extent(fs_info, head->bytenr,
2490 head->num_bytes, 1);
2491 if (head->is_data) {
2492 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2497 /* Also free its reserved qgroup space */
2498 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2499 head->qgroup_reserved);
2500 btrfs_delayed_ref_unlock(head);
2501 btrfs_put_delayed_ref_head(head);
2506 * Returns 0 on success or if called with an already aborted transaction.
2507 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2509 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2512 struct btrfs_fs_info *fs_info = trans->fs_info;
2513 struct btrfs_delayed_ref_root *delayed_refs;
2514 struct btrfs_delayed_ref_node *ref;
2515 struct btrfs_delayed_ref_head *locked_ref = NULL;
2516 struct btrfs_delayed_extent_op *extent_op;
2517 ktime_t start = ktime_get();
2519 unsigned long count = 0;
2520 unsigned long actual_count = 0;
2521 int must_insert_reserved = 0;
2523 delayed_refs = &trans->transaction->delayed_refs;
2529 spin_lock(&delayed_refs->lock);
2530 locked_ref = btrfs_select_ref_head(trans);
2532 spin_unlock(&delayed_refs->lock);
2536 /* grab the lock that says we are going to process
2537 * all the refs for this head */
2538 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2539 spin_unlock(&delayed_refs->lock);
2541 * we may have dropped the spin lock to get the head
2542 * mutex lock, and that might have given someone else
2543 * time to free the head. If that's true, it has been
2544 * removed from our list and we can move on.
2546 if (ret == -EAGAIN) {
2554 * We need to try and merge add/drops of the same ref since we
2555 * can run into issues with relocate dropping the implicit ref
2556 * and then it being added back again before the drop can
2557 * finish. If we merged anything we need to re-loop so we can
2559 * Or we can get node references of the same type that weren't
2560 * merged when created due to bumps in the tree mod seq, and
2561 * we need to merge them to prevent adding an inline extent
2562 * backref before dropping it (triggering a BUG_ON at
2563 * insert_inline_extent_backref()).
2565 spin_lock(&locked_ref->lock);
2566 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2568 ref = select_delayed_ref(locked_ref);
2570 if (ref && ref->seq &&
2571 btrfs_check_delayed_seq(fs_info, ref->seq)) {
2572 spin_unlock(&locked_ref->lock);
2573 unselect_delayed_ref_head(delayed_refs, locked_ref);
2581 * We're done processing refs in this ref_head, clean everything
2582 * up and move on to the next ref_head.
2585 ret = cleanup_ref_head(trans, locked_ref);
2587 /* We dropped our lock, we need to loop. */
2600 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2601 RB_CLEAR_NODE(&ref->ref_node);
2602 if (!list_empty(&ref->add_list))
2603 list_del(&ref->add_list);
2605 * When we play the delayed ref, also correct the ref_mod on
2608 switch (ref->action) {
2609 case BTRFS_ADD_DELAYED_REF:
2610 case BTRFS_ADD_DELAYED_EXTENT:
2611 locked_ref->ref_mod -= ref->ref_mod;
2613 case BTRFS_DROP_DELAYED_REF:
2614 locked_ref->ref_mod += ref->ref_mod;
2619 atomic_dec(&delayed_refs->num_entries);
2622 * Record the must-insert_reserved flag before we drop the spin
2625 must_insert_reserved = locked_ref->must_insert_reserved;
2626 locked_ref->must_insert_reserved = 0;
2628 extent_op = locked_ref->extent_op;
2629 locked_ref->extent_op = NULL;
2630 spin_unlock(&locked_ref->lock);
2632 ret = run_one_delayed_ref(trans, ref, extent_op,
2633 must_insert_reserved);
2635 btrfs_free_delayed_extent_op(extent_op);
2637 unselect_delayed_ref_head(delayed_refs, locked_ref);
2638 btrfs_put_delayed_ref(ref);
2639 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2644 btrfs_put_delayed_ref(ref);
2650 * We don't want to include ref heads since we can have empty ref heads
2651 * and those will drastically skew our runtime down since we just do
2652 * accounting, no actual extent tree updates.
2654 if (actual_count > 0) {
2655 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2659 * We weigh the current average higher than our current runtime
2660 * to avoid large swings in the average.
2662 spin_lock(&delayed_refs->lock);
2663 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2664 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2665 spin_unlock(&delayed_refs->lock);
2670 #ifdef SCRAMBLE_DELAYED_REFS
2672 * Normally delayed refs get processed in ascending bytenr order. This
2673 * correlates in most cases to the order added. To expose dependencies on this
2674 * order, we start to process the tree in the middle instead of the beginning
2676 static u64 find_middle(struct rb_root *root)
2678 struct rb_node *n = root->rb_node;
2679 struct btrfs_delayed_ref_node *entry;
2682 u64 first = 0, last = 0;
2686 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2687 first = entry->bytenr;
2691 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2692 last = entry->bytenr;
2697 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2698 WARN_ON(!entry->in_tree);
2700 middle = entry->bytenr;
2713 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2717 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2718 sizeof(struct btrfs_extent_inline_ref));
2719 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2720 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2723 * We don't ever fill up leaves all the way so multiply by 2 just to be
2724 * closer to what we're really going to want to use.
2726 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2730 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2731 * would require to store the csums for that many bytes.
2733 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2736 u64 num_csums_per_leaf;
2739 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2740 num_csums_per_leaf = div64_u64(csum_size,
2741 (u64)btrfs_super_csum_size(fs_info->super_copy));
2742 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2743 num_csums += num_csums_per_leaf - 1;
2744 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2748 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2749 struct btrfs_fs_info *fs_info)
2751 struct btrfs_block_rsv *global_rsv;
2752 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2753 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2754 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
2755 u64 num_bytes, num_dirty_bgs_bytes;
2758 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2759 num_heads = heads_to_leaves(fs_info, num_heads);
2761 num_bytes += (num_heads - 1) * fs_info->nodesize;
2763 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2765 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2767 global_rsv = &fs_info->global_block_rsv;
2770 * If we can't allocate any more chunks lets make sure we have _lots_ of
2771 * wiggle room since running delayed refs can create more delayed refs.
2773 if (global_rsv->space_info->full) {
2774 num_dirty_bgs_bytes <<= 1;
2778 spin_lock(&global_rsv->lock);
2779 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2781 spin_unlock(&global_rsv->lock);
2785 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2786 struct btrfs_fs_info *fs_info)
2789 atomic_read(&trans->transaction->delayed_refs.num_entries);
2794 avg_runtime = fs_info->avg_delayed_ref_runtime;
2795 val = num_entries * avg_runtime;
2796 if (val >= NSEC_PER_SEC)
2798 if (val >= NSEC_PER_SEC / 2)
2801 return btrfs_check_space_for_delayed_refs(trans, fs_info);
2804 struct async_delayed_refs {
2805 struct btrfs_root *root;
2810 struct completion wait;
2811 struct btrfs_work work;
2814 static inline struct async_delayed_refs *
2815 to_async_delayed_refs(struct btrfs_work *work)
2817 return container_of(work, struct async_delayed_refs, work);
2820 static void delayed_ref_async_start(struct btrfs_work *work)
2822 struct async_delayed_refs *async = to_async_delayed_refs(work);
2823 struct btrfs_trans_handle *trans;
2824 struct btrfs_fs_info *fs_info = async->root->fs_info;
2827 /* if the commit is already started, we don't need to wait here */
2828 if (btrfs_transaction_blocked(fs_info))
2831 trans = btrfs_join_transaction(async->root);
2832 if (IS_ERR(trans)) {
2833 async->error = PTR_ERR(trans);
2838 * trans->sync means that when we call end_transaction, we won't
2839 * wait on delayed refs
2843 /* Don't bother flushing if we got into a different transaction */
2844 if (trans->transid > async->transid)
2847 ret = btrfs_run_delayed_refs(trans, async->count);
2851 ret = btrfs_end_transaction(trans);
2852 if (ret && !async->error)
2856 complete(&async->wait);
2861 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2862 unsigned long count, u64 transid, int wait)
2864 struct async_delayed_refs *async;
2867 async = kmalloc(sizeof(*async), GFP_NOFS);
2871 async->root = fs_info->tree_root;
2872 async->count = count;
2874 async->transid = transid;
2879 init_completion(&async->wait);
2881 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2882 delayed_ref_async_start, NULL, NULL);
2884 btrfs_queue_work(fs_info->extent_workers, &async->work);
2887 wait_for_completion(&async->wait);
2896 * this starts processing the delayed reference count updates and
2897 * extent insertions we have queued up so far. count can be
2898 * 0, which means to process everything in the tree at the start
2899 * of the run (but not newly added entries), or it can be some target
2900 * number you'd like to process.
2902 * Returns 0 on success or if called with an aborted transaction
2903 * Returns <0 on error and aborts the transaction
2905 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2906 unsigned long count)
2908 struct btrfs_fs_info *fs_info = trans->fs_info;
2909 struct rb_node *node;
2910 struct btrfs_delayed_ref_root *delayed_refs;
2911 struct btrfs_delayed_ref_head *head;
2913 int run_all = count == (unsigned long)-1;
2914 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2916 /* We'll clean this up in btrfs_cleanup_transaction */
2920 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2923 delayed_refs = &trans->transaction->delayed_refs;
2925 count = atomic_read(&delayed_refs->num_entries) * 2;
2928 #ifdef SCRAMBLE_DELAYED_REFS
2929 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2931 trans->can_flush_pending_bgs = false;
2932 ret = __btrfs_run_delayed_refs(trans, count);
2934 btrfs_abort_transaction(trans, ret);
2939 if (!list_empty(&trans->new_bgs))
2940 btrfs_create_pending_block_groups(trans);
2942 spin_lock(&delayed_refs->lock);
2943 node = rb_first(&delayed_refs->href_root);
2945 spin_unlock(&delayed_refs->lock);
2948 head = rb_entry(node, struct btrfs_delayed_ref_head,
2950 refcount_inc(&head->refs);
2951 spin_unlock(&delayed_refs->lock);
2953 /* Mutex was contended, block until it's released and retry. */
2954 mutex_lock(&head->mutex);
2955 mutex_unlock(&head->mutex);
2957 btrfs_put_delayed_ref_head(head);
2962 trans->can_flush_pending_bgs = can_flush_pending_bgs;
2966 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2967 struct btrfs_fs_info *fs_info,
2968 u64 bytenr, u64 num_bytes, u64 flags,
2969 int level, int is_data)
2971 struct btrfs_delayed_extent_op *extent_op;
2974 extent_op = btrfs_alloc_delayed_extent_op();
2978 extent_op->flags_to_set = flags;
2979 extent_op->update_flags = true;
2980 extent_op->update_key = false;
2981 extent_op->is_data = is_data ? true : false;
2982 extent_op->level = level;
2984 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
2985 num_bytes, extent_op);
2987 btrfs_free_delayed_extent_op(extent_op);
2991 static noinline int check_delayed_ref(struct btrfs_root *root,
2992 struct btrfs_path *path,
2993 u64 objectid, u64 offset, u64 bytenr)
2995 struct btrfs_delayed_ref_head *head;
2996 struct btrfs_delayed_ref_node *ref;
2997 struct btrfs_delayed_data_ref *data_ref;
2998 struct btrfs_delayed_ref_root *delayed_refs;
2999 struct btrfs_transaction *cur_trans;
3000 struct rb_node *node;
3003 spin_lock(&root->fs_info->trans_lock);
3004 cur_trans = root->fs_info->running_transaction;
3006 refcount_inc(&cur_trans->use_count);
3007 spin_unlock(&root->fs_info->trans_lock);
3011 delayed_refs = &cur_trans->delayed_refs;
3012 spin_lock(&delayed_refs->lock);
3013 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3015 spin_unlock(&delayed_refs->lock);
3016 btrfs_put_transaction(cur_trans);
3020 if (!mutex_trylock(&head->mutex)) {
3021 refcount_inc(&head->refs);
3022 spin_unlock(&delayed_refs->lock);
3024 btrfs_release_path(path);
3027 * Mutex was contended, block until it's released and let
3030 mutex_lock(&head->mutex);
3031 mutex_unlock(&head->mutex);
3032 btrfs_put_delayed_ref_head(head);
3033 btrfs_put_transaction(cur_trans);
3036 spin_unlock(&delayed_refs->lock);
3038 spin_lock(&head->lock);
3040 * XXX: We should replace this with a proper search function in the
3043 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3044 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3045 /* If it's a shared ref we know a cross reference exists */
3046 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3051 data_ref = btrfs_delayed_node_to_data_ref(ref);
3054 * If our ref doesn't match the one we're currently looking at
3055 * then we have a cross reference.
3057 if (data_ref->root != root->root_key.objectid ||
3058 data_ref->objectid != objectid ||
3059 data_ref->offset != offset) {
3064 spin_unlock(&head->lock);
3065 mutex_unlock(&head->mutex);
3066 btrfs_put_transaction(cur_trans);
3070 static noinline int check_committed_ref(struct btrfs_root *root,
3071 struct btrfs_path *path,
3072 u64 objectid, u64 offset, u64 bytenr)
3074 struct btrfs_fs_info *fs_info = root->fs_info;
3075 struct btrfs_root *extent_root = fs_info->extent_root;
3076 struct extent_buffer *leaf;
3077 struct btrfs_extent_data_ref *ref;
3078 struct btrfs_extent_inline_ref *iref;
3079 struct btrfs_extent_item *ei;
3080 struct btrfs_key key;
3085 key.objectid = bytenr;
3086 key.offset = (u64)-1;
3087 key.type = BTRFS_EXTENT_ITEM_KEY;
3089 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3092 BUG_ON(ret == 0); /* Corruption */
3095 if (path->slots[0] == 0)
3099 leaf = path->nodes[0];
3100 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3102 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3106 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3107 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3109 if (item_size != sizeof(*ei) +
3110 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3113 if (btrfs_extent_generation(leaf, ei) <=
3114 btrfs_root_last_snapshot(&root->root_item))
3117 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3119 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3120 if (type != BTRFS_EXTENT_DATA_REF_KEY)
3123 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3124 if (btrfs_extent_refs(leaf, ei) !=
3125 btrfs_extent_data_ref_count(leaf, ref) ||
3126 btrfs_extent_data_ref_root(leaf, ref) !=
3127 root->root_key.objectid ||
3128 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3129 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3137 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3140 struct btrfs_path *path;
3143 path = btrfs_alloc_path();
3148 ret = check_committed_ref(root, path, objectid,
3150 if (ret && ret != -ENOENT)
3153 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
3154 } while (ret == -EAGAIN);
3157 btrfs_free_path(path);
3158 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3163 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3164 struct btrfs_root *root,
3165 struct extent_buffer *buf,
3166 int full_backref, int inc)
3168 struct btrfs_fs_info *fs_info = root->fs_info;
3174 struct btrfs_key key;
3175 struct btrfs_file_extent_item *fi;
3179 int (*process_func)(struct btrfs_trans_handle *,
3180 struct btrfs_root *,
3181 u64, u64, u64, u64, u64, u64);
3184 if (btrfs_is_testing(fs_info))
3187 ref_root = btrfs_header_owner(buf);
3188 nritems = btrfs_header_nritems(buf);
3189 level = btrfs_header_level(buf);
3191 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3195 process_func = btrfs_inc_extent_ref;
3197 process_func = btrfs_free_extent;
3200 parent = buf->start;
3204 for (i = 0; i < nritems; i++) {
3206 btrfs_item_key_to_cpu(buf, &key, i);
3207 if (key.type != BTRFS_EXTENT_DATA_KEY)
3209 fi = btrfs_item_ptr(buf, i,
3210 struct btrfs_file_extent_item);
3211 if (btrfs_file_extent_type(buf, fi) ==
3212 BTRFS_FILE_EXTENT_INLINE)
3214 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3218 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3219 key.offset -= btrfs_file_extent_offset(buf, fi);
3220 ret = process_func(trans, root, bytenr, num_bytes,
3221 parent, ref_root, key.objectid,
3226 bytenr = btrfs_node_blockptr(buf, i);
3227 num_bytes = fs_info->nodesize;
3228 ret = process_func(trans, root, bytenr, num_bytes,
3229 parent, ref_root, level - 1, 0);
3239 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3240 struct extent_buffer *buf, int full_backref)
3242 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3245 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3246 struct extent_buffer *buf, int full_backref)
3248 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3251 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3252 struct btrfs_fs_info *fs_info,
3253 struct btrfs_path *path,
3254 struct btrfs_block_group_cache *cache)
3257 struct btrfs_root *extent_root = fs_info->extent_root;
3259 struct extent_buffer *leaf;
3261 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3268 leaf = path->nodes[0];
3269 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3270 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3271 btrfs_mark_buffer_dirty(leaf);
3273 btrfs_release_path(path);
3278 static struct btrfs_block_group_cache *
3279 next_block_group(struct btrfs_fs_info *fs_info,
3280 struct btrfs_block_group_cache *cache)
3282 struct rb_node *node;
3284 spin_lock(&fs_info->block_group_cache_lock);
3286 /* If our block group was removed, we need a full search. */
3287 if (RB_EMPTY_NODE(&cache->cache_node)) {
3288 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3290 spin_unlock(&fs_info->block_group_cache_lock);
3291 btrfs_put_block_group(cache);
3292 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3294 node = rb_next(&cache->cache_node);
3295 btrfs_put_block_group(cache);
3297 cache = rb_entry(node, struct btrfs_block_group_cache,
3299 btrfs_get_block_group(cache);
3302 spin_unlock(&fs_info->block_group_cache_lock);
3306 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3307 struct btrfs_trans_handle *trans,
3308 struct btrfs_path *path)
3310 struct btrfs_fs_info *fs_info = block_group->fs_info;
3311 struct btrfs_root *root = fs_info->tree_root;
3312 struct inode *inode = NULL;
3313 struct extent_changeset *data_reserved = NULL;
3315 int dcs = BTRFS_DC_ERROR;
3321 * If this block group is smaller than 100 megs don't bother caching the
3324 if (block_group->key.offset < (100 * SZ_1M)) {
3325 spin_lock(&block_group->lock);
3326 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3327 spin_unlock(&block_group->lock);
3334 inode = lookup_free_space_inode(fs_info, block_group, path);
3335 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3336 ret = PTR_ERR(inode);
3337 btrfs_release_path(path);
3341 if (IS_ERR(inode)) {
3345 if (block_group->ro)
3348 ret = create_free_space_inode(fs_info, trans, block_group,
3356 * We want to set the generation to 0, that way if anything goes wrong
3357 * from here on out we know not to trust this cache when we load up next
3360 BTRFS_I(inode)->generation = 0;
3361 ret = btrfs_update_inode(trans, root, inode);
3364 * So theoretically we could recover from this, simply set the
3365 * super cache generation to 0 so we know to invalidate the
3366 * cache, but then we'd have to keep track of the block groups
3367 * that fail this way so we know we _have_ to reset this cache
3368 * before the next commit or risk reading stale cache. So to
3369 * limit our exposure to horrible edge cases lets just abort the
3370 * transaction, this only happens in really bad situations
3373 btrfs_abort_transaction(trans, ret);
3378 /* We've already setup this transaction, go ahead and exit */
3379 if (block_group->cache_generation == trans->transid &&
3380 i_size_read(inode)) {
3381 dcs = BTRFS_DC_SETUP;
3385 if (i_size_read(inode) > 0) {
3386 ret = btrfs_check_trunc_cache_free_space(fs_info,
3387 &fs_info->global_block_rsv);
3391 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3396 spin_lock(&block_group->lock);
3397 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3398 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3400 * don't bother trying to write stuff out _if_
3401 * a) we're not cached,
3402 * b) we're with nospace_cache mount option,
3403 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3405 dcs = BTRFS_DC_WRITTEN;
3406 spin_unlock(&block_group->lock);
3409 spin_unlock(&block_group->lock);
3412 * We hit an ENOSPC when setting up the cache in this transaction, just
3413 * skip doing the setup, we've already cleared the cache so we're safe.
3415 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3421 * Try to preallocate enough space based on how big the block group is.
3422 * Keep in mind this has to include any pinned space which could end up
3423 * taking up quite a bit since it's not folded into the other space
3426 num_pages = div_u64(block_group->key.offset, SZ_256M);
3431 num_pages *= PAGE_SIZE;
3433 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3437 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3438 num_pages, num_pages,
3441 * Our cache requires contiguous chunks so that we don't modify a bunch
3442 * of metadata or split extents when writing the cache out, which means
3443 * we can enospc if we are heavily fragmented in addition to just normal
3444 * out of space conditions. So if we hit this just skip setting up any
3445 * other block groups for this transaction, maybe we'll unpin enough
3446 * space the next time around.
3449 dcs = BTRFS_DC_SETUP;
3450 else if (ret == -ENOSPC)
3451 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3456 btrfs_release_path(path);
3458 spin_lock(&block_group->lock);
3459 if (!ret && dcs == BTRFS_DC_SETUP)
3460 block_group->cache_generation = trans->transid;
3461 block_group->disk_cache_state = dcs;
3462 spin_unlock(&block_group->lock);
3464 extent_changeset_free(data_reserved);
3468 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3469 struct btrfs_fs_info *fs_info)
3471 struct btrfs_block_group_cache *cache, *tmp;
3472 struct btrfs_transaction *cur_trans = trans->transaction;
3473 struct btrfs_path *path;
3475 if (list_empty(&cur_trans->dirty_bgs) ||
3476 !btrfs_test_opt(fs_info, SPACE_CACHE))
3479 path = btrfs_alloc_path();
3483 /* Could add new block groups, use _safe just in case */
3484 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3486 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3487 cache_save_setup(cache, trans, path);
3490 btrfs_free_path(path);
3495 * transaction commit does final block group cache writeback during a
3496 * critical section where nothing is allowed to change the FS. This is
3497 * required in order for the cache to actually match the block group,
3498 * but can introduce a lot of latency into the commit.
3500 * So, btrfs_start_dirty_block_groups is here to kick off block group
3501 * cache IO. There's a chance we'll have to redo some of it if the
3502 * block group changes again during the commit, but it greatly reduces
3503 * the commit latency by getting rid of the easy block groups while
3504 * we're still allowing others to join the commit.
3506 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3508 struct btrfs_fs_info *fs_info = trans->fs_info;
3509 struct btrfs_block_group_cache *cache;
3510 struct btrfs_transaction *cur_trans = trans->transaction;
3513 struct btrfs_path *path = NULL;
3515 struct list_head *io = &cur_trans->io_bgs;
3516 int num_started = 0;
3519 spin_lock(&cur_trans->dirty_bgs_lock);
3520 if (list_empty(&cur_trans->dirty_bgs)) {
3521 spin_unlock(&cur_trans->dirty_bgs_lock);
3524 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3525 spin_unlock(&cur_trans->dirty_bgs_lock);
3529 * make sure all the block groups on our dirty list actually
3532 btrfs_create_pending_block_groups(trans);
3535 path = btrfs_alloc_path();
3541 * cache_write_mutex is here only to save us from balance or automatic
3542 * removal of empty block groups deleting this block group while we are
3543 * writing out the cache
3545 mutex_lock(&trans->transaction->cache_write_mutex);
3546 while (!list_empty(&dirty)) {
3547 cache = list_first_entry(&dirty,
3548 struct btrfs_block_group_cache,
3551 * this can happen if something re-dirties a block
3552 * group that is already under IO. Just wait for it to
3553 * finish and then do it all again
3555 if (!list_empty(&cache->io_list)) {
3556 list_del_init(&cache->io_list);
3557 btrfs_wait_cache_io(trans, cache, path);
3558 btrfs_put_block_group(cache);
3563 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3564 * if it should update the cache_state. Don't delete
3565 * until after we wait.
3567 * Since we're not running in the commit critical section
3568 * we need the dirty_bgs_lock to protect from update_block_group
3570 spin_lock(&cur_trans->dirty_bgs_lock);
3571 list_del_init(&cache->dirty_list);
3572 spin_unlock(&cur_trans->dirty_bgs_lock);
3576 cache_save_setup(cache, trans, path);
3578 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3579 cache->io_ctl.inode = NULL;
3580 ret = btrfs_write_out_cache(fs_info, trans,
3582 if (ret == 0 && cache->io_ctl.inode) {
3587 * The cache_write_mutex is protecting the
3588 * io_list, also refer to the definition of
3589 * btrfs_transaction::io_bgs for more details
3591 list_add_tail(&cache->io_list, io);
3594 * if we failed to write the cache, the
3595 * generation will be bad and life goes on
3601 ret = write_one_cache_group(trans, fs_info,
3604 * Our block group might still be attached to the list
3605 * of new block groups in the transaction handle of some
3606 * other task (struct btrfs_trans_handle->new_bgs). This
3607 * means its block group item isn't yet in the extent
3608 * tree. If this happens ignore the error, as we will
3609 * try again later in the critical section of the
3610 * transaction commit.
3612 if (ret == -ENOENT) {
3614 spin_lock(&cur_trans->dirty_bgs_lock);
3615 if (list_empty(&cache->dirty_list)) {
3616 list_add_tail(&cache->dirty_list,
3617 &cur_trans->dirty_bgs);
3618 btrfs_get_block_group(cache);
3620 spin_unlock(&cur_trans->dirty_bgs_lock);
3622 btrfs_abort_transaction(trans, ret);
3626 /* if its not on the io list, we need to put the block group */
3628 btrfs_put_block_group(cache);
3634 * Avoid blocking other tasks for too long. It might even save
3635 * us from writing caches for block groups that are going to be
3638 mutex_unlock(&trans->transaction->cache_write_mutex);
3639 mutex_lock(&trans->transaction->cache_write_mutex);
3641 mutex_unlock(&trans->transaction->cache_write_mutex);
3644 * go through delayed refs for all the stuff we've just kicked off
3645 * and then loop back (just once)
3647 ret = btrfs_run_delayed_refs(trans, 0);
3648 if (!ret && loops == 0) {
3650 spin_lock(&cur_trans->dirty_bgs_lock);
3651 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3653 * dirty_bgs_lock protects us from concurrent block group
3654 * deletes too (not just cache_write_mutex).
3656 if (!list_empty(&dirty)) {
3657 spin_unlock(&cur_trans->dirty_bgs_lock);
3660 spin_unlock(&cur_trans->dirty_bgs_lock);
3661 } else if (ret < 0) {
3662 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3665 btrfs_free_path(path);
3669 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3670 struct btrfs_fs_info *fs_info)
3672 struct btrfs_block_group_cache *cache;
3673 struct btrfs_transaction *cur_trans = trans->transaction;
3676 struct btrfs_path *path;
3677 struct list_head *io = &cur_trans->io_bgs;
3678 int num_started = 0;
3680 path = btrfs_alloc_path();
3685 * Even though we are in the critical section of the transaction commit,
3686 * we can still have concurrent tasks adding elements to this
3687 * transaction's list of dirty block groups. These tasks correspond to
3688 * endio free space workers started when writeback finishes for a
3689 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3690 * allocate new block groups as a result of COWing nodes of the root
3691 * tree when updating the free space inode. The writeback for the space
3692 * caches is triggered by an earlier call to
3693 * btrfs_start_dirty_block_groups() and iterations of the following
3695 * Also we want to do the cache_save_setup first and then run the
3696 * delayed refs to make sure we have the best chance at doing this all
3699 spin_lock(&cur_trans->dirty_bgs_lock);
3700 while (!list_empty(&cur_trans->dirty_bgs)) {
3701 cache = list_first_entry(&cur_trans->dirty_bgs,
3702 struct btrfs_block_group_cache,
3706 * this can happen if cache_save_setup re-dirties a block
3707 * group that is already under IO. Just wait for it to
3708 * finish and then do it all again
3710 if (!list_empty(&cache->io_list)) {
3711 spin_unlock(&cur_trans->dirty_bgs_lock);
3712 list_del_init(&cache->io_list);
3713 btrfs_wait_cache_io(trans, cache, path);
3714 btrfs_put_block_group(cache);
3715 spin_lock(&cur_trans->dirty_bgs_lock);
3719 * don't remove from the dirty list until after we've waited
3722 list_del_init(&cache->dirty_list);
3723 spin_unlock(&cur_trans->dirty_bgs_lock);
3726 cache_save_setup(cache, trans, path);
3729 ret = btrfs_run_delayed_refs(trans,
3730 (unsigned long) -1);
3732 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3733 cache->io_ctl.inode = NULL;
3734 ret = btrfs_write_out_cache(fs_info, trans,
3736 if (ret == 0 && cache->io_ctl.inode) {
3739 list_add_tail(&cache->io_list, io);
3742 * if we failed to write the cache, the
3743 * generation will be bad and life goes on
3749 ret = write_one_cache_group(trans, fs_info,
3752 * One of the free space endio workers might have
3753 * created a new block group while updating a free space
3754 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3755 * and hasn't released its transaction handle yet, in
3756 * which case the new block group is still attached to
3757 * its transaction handle and its creation has not
3758 * finished yet (no block group item in the extent tree
3759 * yet, etc). If this is the case, wait for all free
3760 * space endio workers to finish and retry. This is a
3761 * a very rare case so no need for a more efficient and
3764 if (ret == -ENOENT) {
3765 wait_event(cur_trans->writer_wait,
3766 atomic_read(&cur_trans->num_writers) == 1);
3767 ret = write_one_cache_group(trans, fs_info,
3771 btrfs_abort_transaction(trans, ret);
3774 /* if its not on the io list, we need to put the block group */
3776 btrfs_put_block_group(cache);
3777 spin_lock(&cur_trans->dirty_bgs_lock);
3779 spin_unlock(&cur_trans->dirty_bgs_lock);
3782 * Refer to the definition of io_bgs member for details why it's safe
3783 * to use it without any locking
3785 while (!list_empty(io)) {
3786 cache = list_first_entry(io, struct btrfs_block_group_cache,
3788 list_del_init(&cache->io_list);
3789 btrfs_wait_cache_io(trans, cache, path);
3790 btrfs_put_block_group(cache);
3793 btrfs_free_path(path);
3797 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3799 struct btrfs_block_group_cache *block_group;
3802 block_group = btrfs_lookup_block_group(fs_info, bytenr);
3803 if (!block_group || block_group->ro)
3806 btrfs_put_block_group(block_group);
3810 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3812 struct btrfs_block_group_cache *bg;
3815 bg = btrfs_lookup_block_group(fs_info, bytenr);
3819 spin_lock(&bg->lock);
3823 atomic_inc(&bg->nocow_writers);
3824 spin_unlock(&bg->lock);
3826 /* no put on block group, done by btrfs_dec_nocow_writers */
3828 btrfs_put_block_group(bg);
3834 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3836 struct btrfs_block_group_cache *bg;
3838 bg = btrfs_lookup_block_group(fs_info, bytenr);
3840 if (atomic_dec_and_test(&bg->nocow_writers))
3841 wake_up_var(&bg->nocow_writers);
3843 * Once for our lookup and once for the lookup done by a previous call
3844 * to btrfs_inc_nocow_writers()
3846 btrfs_put_block_group(bg);
3847 btrfs_put_block_group(bg);
3850 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3852 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
3855 static const char *alloc_name(u64 flags)
3858 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3860 case BTRFS_BLOCK_GROUP_METADATA:
3862 case BTRFS_BLOCK_GROUP_DATA:
3864 case BTRFS_BLOCK_GROUP_SYSTEM:
3868 return "invalid-combination";
3872 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
3875 struct btrfs_space_info *space_info;
3879 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3883 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3890 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3891 INIT_LIST_HEAD(&space_info->block_groups[i]);
3892 init_rwsem(&space_info->groups_sem);
3893 spin_lock_init(&space_info->lock);
3894 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3895 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3896 init_waitqueue_head(&space_info->wait);
3897 INIT_LIST_HEAD(&space_info->ro_bgs);
3898 INIT_LIST_HEAD(&space_info->tickets);
3899 INIT_LIST_HEAD(&space_info->priority_tickets);
3901 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3902 info->space_info_kobj, "%s",
3903 alloc_name(space_info->flags));
3905 percpu_counter_destroy(&space_info->total_bytes_pinned);
3910 list_add_rcu(&space_info->list, &info->space_info);
3911 if (flags & BTRFS_BLOCK_GROUP_DATA)
3912 info->data_sinfo = space_info;
3917 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
3918 u64 total_bytes, u64 bytes_used,
3920 struct btrfs_space_info **space_info)
3922 struct btrfs_space_info *found;
3925 factor = btrfs_bg_type_to_factor(flags);
3927 found = __find_space_info(info, flags);
3929 spin_lock(&found->lock);
3930 found->total_bytes += total_bytes;
3931 found->disk_total += total_bytes * factor;
3932 found->bytes_used += bytes_used;
3933 found->disk_used += bytes_used * factor;
3934 found->bytes_readonly += bytes_readonly;
3935 if (total_bytes > 0)
3937 space_info_add_new_bytes(info, found, total_bytes -
3938 bytes_used - bytes_readonly);
3939 spin_unlock(&found->lock);
3940 *space_info = found;
3943 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3945 u64 extra_flags = chunk_to_extended(flags) &
3946 BTRFS_EXTENDED_PROFILE_MASK;
3948 write_seqlock(&fs_info->profiles_lock);
3949 if (flags & BTRFS_BLOCK_GROUP_DATA)
3950 fs_info->avail_data_alloc_bits |= extra_flags;
3951 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3952 fs_info->avail_metadata_alloc_bits |= extra_flags;
3953 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3954 fs_info->avail_system_alloc_bits |= extra_flags;
3955 write_sequnlock(&fs_info->profiles_lock);
3959 * returns target flags in extended format or 0 if restripe for this
3960 * chunk_type is not in progress
3962 * should be called with balance_lock held
3964 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3966 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3972 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3973 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3974 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3975 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3976 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3977 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3978 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3979 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3980 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3987 * @flags: available profiles in extended format (see ctree.h)
3989 * Returns reduced profile in chunk format. If profile changing is in
3990 * progress (either running or paused) picks the target profile (if it's
3991 * already available), otherwise falls back to plain reducing.
3993 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
3995 u64 num_devices = fs_info->fs_devices->rw_devices;
4001 * see if restripe for this chunk_type is in progress, if so
4002 * try to reduce to the target profile
4004 spin_lock(&fs_info->balance_lock);
4005 target = get_restripe_target(fs_info, flags);
4007 /* pick target profile only if it's already available */
4008 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4009 spin_unlock(&fs_info->balance_lock);
4010 return extended_to_chunk(target);
4013 spin_unlock(&fs_info->balance_lock);
4015 /* First, mask out the RAID levels which aren't possible */
4016 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4017 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4018 allowed |= btrfs_raid_array[raid_type].bg_flag;
4022 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4023 allowed = BTRFS_BLOCK_GROUP_RAID6;
4024 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4025 allowed = BTRFS_BLOCK_GROUP_RAID5;
4026 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4027 allowed = BTRFS_BLOCK_GROUP_RAID10;
4028 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4029 allowed = BTRFS_BLOCK_GROUP_RAID1;
4030 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4031 allowed = BTRFS_BLOCK_GROUP_RAID0;
4033 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4035 return extended_to_chunk(flags | allowed);
4038 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4045 seq = read_seqbegin(&fs_info->profiles_lock);
4047 if (flags & BTRFS_BLOCK_GROUP_DATA)
4048 flags |= fs_info->avail_data_alloc_bits;
4049 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4050 flags |= fs_info->avail_system_alloc_bits;
4051 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4052 flags |= fs_info->avail_metadata_alloc_bits;
4053 } while (read_seqretry(&fs_info->profiles_lock, seq));
4055 return btrfs_reduce_alloc_profile(fs_info, flags);
4058 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4060 struct btrfs_fs_info *fs_info = root->fs_info;
4065 flags = BTRFS_BLOCK_GROUP_DATA;
4066 else if (root == fs_info->chunk_root)
4067 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4069 flags = BTRFS_BLOCK_GROUP_METADATA;
4071 ret = get_alloc_profile(fs_info, flags);
4075 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4077 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4080 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4082 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4085 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4087 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4090 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4091 bool may_use_included)
4094 return s_info->bytes_used + s_info->bytes_reserved +
4095 s_info->bytes_pinned + s_info->bytes_readonly +
4096 (may_use_included ? s_info->bytes_may_use : 0);
4099 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4101 struct btrfs_root *root = inode->root;
4102 struct btrfs_fs_info *fs_info = root->fs_info;
4103 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4106 int need_commit = 2;
4107 int have_pinned_space;
4109 /* make sure bytes are sectorsize aligned */
4110 bytes = ALIGN(bytes, fs_info->sectorsize);
4112 if (btrfs_is_free_space_inode(inode)) {
4114 ASSERT(current->journal_info);
4118 /* make sure we have enough space to handle the data first */
4119 spin_lock(&data_sinfo->lock);
4120 used = btrfs_space_info_used(data_sinfo, true);
4122 if (used + bytes > data_sinfo->total_bytes) {
4123 struct btrfs_trans_handle *trans;
4126 * if we don't have enough free bytes in this space then we need
4127 * to alloc a new chunk.
4129 if (!data_sinfo->full) {
4132 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4133 spin_unlock(&data_sinfo->lock);
4135 alloc_target = btrfs_data_alloc_profile(fs_info);
4137 * It is ugly that we don't call nolock join
4138 * transaction for the free space inode case here.
4139 * But it is safe because we only do the data space
4140 * reservation for the free space cache in the
4141 * transaction context, the common join transaction
4142 * just increase the counter of the current transaction
4143 * handler, doesn't try to acquire the trans_lock of
4146 trans = btrfs_join_transaction(root);
4148 return PTR_ERR(trans);
4150 ret = do_chunk_alloc(trans, alloc_target,
4151 CHUNK_ALLOC_NO_FORCE);
4152 btrfs_end_transaction(trans);
4157 have_pinned_space = 1;
4166 * If we don't have enough pinned space to deal with this
4167 * allocation, and no removed chunk in current transaction,
4168 * don't bother committing the transaction.
4170 have_pinned_space = __percpu_counter_compare(
4171 &data_sinfo->total_bytes_pinned,
4172 used + bytes - data_sinfo->total_bytes,
4173 BTRFS_TOTAL_BYTES_PINNED_BATCH);
4174 spin_unlock(&data_sinfo->lock);
4176 /* commit the current transaction and try again */
4181 if (need_commit > 0) {
4182 btrfs_start_delalloc_roots(fs_info, -1);
4183 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4187 trans = btrfs_join_transaction(root);
4189 return PTR_ERR(trans);
4190 if (have_pinned_space >= 0 ||
4191 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4192 &trans->transaction->flags) ||
4194 ret = btrfs_commit_transaction(trans);
4198 * The cleaner kthread might still be doing iput
4199 * operations. Wait for it to finish so that
4200 * more space is released.
4202 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4203 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4206 btrfs_end_transaction(trans);
4210 trace_btrfs_space_reservation(fs_info,
4211 "space_info:enospc",
4212 data_sinfo->flags, bytes, 1);
4215 data_sinfo->bytes_may_use += bytes;
4216 trace_btrfs_space_reservation(fs_info, "space_info",
4217 data_sinfo->flags, bytes, 1);
4218 spin_unlock(&data_sinfo->lock);
4223 int btrfs_check_data_free_space(struct inode *inode,
4224 struct extent_changeset **reserved, u64 start, u64 len)
4226 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4229 /* align the range */
4230 len = round_up(start + len, fs_info->sectorsize) -
4231 round_down(start, fs_info->sectorsize);
4232 start = round_down(start, fs_info->sectorsize);
4234 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4238 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4239 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4241 btrfs_free_reserved_data_space_noquota(inode, start, len);
4248 * Called if we need to clear a data reservation for this inode
4249 * Normally in a error case.
4251 * This one will *NOT* use accurate qgroup reserved space API, just for case
4252 * which we can't sleep and is sure it won't affect qgroup reserved space.
4253 * Like clear_bit_hook().
4255 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4258 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4259 struct btrfs_space_info *data_sinfo;
4261 /* Make sure the range is aligned to sectorsize */
4262 len = round_up(start + len, fs_info->sectorsize) -
4263 round_down(start, fs_info->sectorsize);
4264 start = round_down(start, fs_info->sectorsize);
4266 data_sinfo = fs_info->data_sinfo;
4267 spin_lock(&data_sinfo->lock);
4268 if (WARN_ON(data_sinfo->bytes_may_use < len))
4269 data_sinfo->bytes_may_use = 0;
4271 data_sinfo->bytes_may_use -= len;
4272 trace_btrfs_space_reservation(fs_info, "space_info",
4273 data_sinfo->flags, len, 0);
4274 spin_unlock(&data_sinfo->lock);
4278 * Called if we need to clear a data reservation for this inode
4279 * Normally in a error case.
4281 * This one will handle the per-inode data rsv map for accurate reserved
4284 void btrfs_free_reserved_data_space(struct inode *inode,
4285 struct extent_changeset *reserved, u64 start, u64 len)
4287 struct btrfs_root *root = BTRFS_I(inode)->root;
4289 /* Make sure the range is aligned to sectorsize */
4290 len = round_up(start + len, root->fs_info->sectorsize) -
4291 round_down(start, root->fs_info->sectorsize);
4292 start = round_down(start, root->fs_info->sectorsize);
4294 btrfs_free_reserved_data_space_noquota(inode, start, len);
4295 btrfs_qgroup_free_data(inode, reserved, start, len);
4298 static void force_metadata_allocation(struct btrfs_fs_info *info)
4300 struct list_head *head = &info->space_info;
4301 struct btrfs_space_info *found;
4304 list_for_each_entry_rcu(found, head, list) {
4305 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4306 found->force_alloc = CHUNK_ALLOC_FORCE;
4311 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4313 return (global->size << 1);
4316 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4317 struct btrfs_space_info *sinfo, int force)
4319 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4320 u64 bytes_used = btrfs_space_info_used(sinfo, false);
4323 if (force == CHUNK_ALLOC_FORCE)
4327 * We need to take into account the global rsv because for all intents
4328 * and purposes it's used space. Don't worry about locking the
4329 * global_rsv, it doesn't change except when the transaction commits.
4331 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4332 bytes_used += calc_global_rsv_need_space(global_rsv);
4335 * in limited mode, we want to have some free space up to
4336 * about 1% of the FS size.
4338 if (force == CHUNK_ALLOC_LIMITED) {
4339 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4340 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4342 if (sinfo->total_bytes - bytes_used < thresh)
4346 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4351 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4355 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4356 BTRFS_BLOCK_GROUP_RAID0 |
4357 BTRFS_BLOCK_GROUP_RAID5 |
4358 BTRFS_BLOCK_GROUP_RAID6))
4359 num_dev = fs_info->fs_devices->rw_devices;
4360 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4363 num_dev = 1; /* DUP or single */
4369 * If @is_allocation is true, reserve space in the system space info necessary
4370 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4373 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4375 struct btrfs_fs_info *fs_info = trans->fs_info;
4376 struct btrfs_space_info *info;
4383 * Needed because we can end up allocating a system chunk and for an
4384 * atomic and race free space reservation in the chunk block reserve.
4386 lockdep_assert_held(&fs_info->chunk_mutex);
4388 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4389 spin_lock(&info->lock);
4390 left = info->total_bytes - btrfs_space_info_used(info, true);
4391 spin_unlock(&info->lock);
4393 num_devs = get_profile_num_devs(fs_info, type);
4395 /* num_devs device items to update and 1 chunk item to add or remove */
4396 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4397 btrfs_calc_trans_metadata_size(fs_info, 1);
4399 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4400 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4401 left, thresh, type);
4402 dump_space_info(fs_info, info, 0, 0);
4405 if (left < thresh) {
4406 u64 flags = btrfs_system_alloc_profile(fs_info);
4409 * Ignore failure to create system chunk. We might end up not
4410 * needing it, as we might not need to COW all nodes/leafs from
4411 * the paths we visit in the chunk tree (they were already COWed
4412 * or created in the current transaction for example).
4414 ret = btrfs_alloc_chunk(trans, flags);
4418 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4419 &fs_info->chunk_block_rsv,
4420 thresh, BTRFS_RESERVE_NO_FLUSH);
4422 trans->chunk_bytes_reserved += thresh;
4427 * If force is CHUNK_ALLOC_FORCE:
4428 * - return 1 if it successfully allocates a chunk,
4429 * - return errors including -ENOSPC otherwise.
4430 * If force is NOT CHUNK_ALLOC_FORCE:
4431 * - return 0 if it doesn't need to allocate a new chunk,
4432 * - return 1 if it successfully allocates a chunk,
4433 * - return errors including -ENOSPC otherwise.
4435 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4438 struct btrfs_fs_info *fs_info = trans->fs_info;
4439 struct btrfs_space_info *space_info;
4440 bool wait_for_alloc = false;
4441 bool should_alloc = false;
4444 /* Don't re-enter if we're already allocating a chunk */
4445 if (trans->allocating_chunk)
4448 space_info = __find_space_info(fs_info, flags);
4452 spin_lock(&space_info->lock);
4453 if (force < space_info->force_alloc)
4454 force = space_info->force_alloc;
4455 should_alloc = should_alloc_chunk(fs_info, space_info, force);
4456 if (space_info->full) {
4457 /* No more free physical space */
4462 spin_unlock(&space_info->lock);
4464 } else if (!should_alloc) {
4465 spin_unlock(&space_info->lock);
4467 } else if (space_info->chunk_alloc) {
4469 * Someone is already allocating, so we need to block
4470 * until this someone is finished and then loop to
4471 * recheck if we should continue with our allocation
4474 wait_for_alloc = true;
4475 spin_unlock(&space_info->lock);
4476 mutex_lock(&fs_info->chunk_mutex);
4477 mutex_unlock(&fs_info->chunk_mutex);
4479 /* Proceed with allocation */
4480 space_info->chunk_alloc = 1;
4481 wait_for_alloc = false;
4482 spin_unlock(&space_info->lock);
4486 } while (wait_for_alloc);
4488 mutex_lock(&fs_info->chunk_mutex);
4489 trans->allocating_chunk = true;
4492 * If we have mixed data/metadata chunks we want to make sure we keep
4493 * allocating mixed chunks instead of individual chunks.
4495 if (btrfs_mixed_space_info(space_info))
4496 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4499 * if we're doing a data chunk, go ahead and make sure that
4500 * we keep a reasonable number of metadata chunks allocated in the
4503 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4504 fs_info->data_chunk_allocations++;
4505 if (!(fs_info->data_chunk_allocations %
4506 fs_info->metadata_ratio))
4507 force_metadata_allocation(fs_info);
4511 * Check if we have enough space in SYSTEM chunk because we may need
4512 * to update devices.
4514 check_system_chunk(trans, flags);
4516 ret = btrfs_alloc_chunk(trans, flags);
4517 trans->allocating_chunk = false;
4519 spin_lock(&space_info->lock);
4522 space_info->full = 1;
4529 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4531 space_info->chunk_alloc = 0;
4532 spin_unlock(&space_info->lock);
4533 mutex_unlock(&fs_info->chunk_mutex);
4535 * When we allocate a new chunk we reserve space in the chunk block
4536 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4537 * add new nodes/leafs to it if we end up needing to do it when
4538 * inserting the chunk item and updating device items as part of the
4539 * second phase of chunk allocation, performed by
4540 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4541 * large number of new block groups to create in our transaction
4542 * handle's new_bgs list to avoid exhausting the chunk block reserve
4543 * in extreme cases - like having a single transaction create many new
4544 * block groups when starting to write out the free space caches of all
4545 * the block groups that were made dirty during the lifetime of the
4548 if (trans->can_flush_pending_bgs &&
4549 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4550 btrfs_create_pending_block_groups(trans);
4551 btrfs_trans_release_chunk_metadata(trans);
4556 static int can_overcommit(struct btrfs_fs_info *fs_info,
4557 struct btrfs_space_info *space_info, u64 bytes,
4558 enum btrfs_reserve_flush_enum flush,
4561 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4568 /* Don't overcommit when in mixed mode. */
4569 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4573 profile = btrfs_system_alloc_profile(fs_info);
4575 profile = btrfs_metadata_alloc_profile(fs_info);
4577 used = btrfs_space_info_used(space_info, false);
4580 * We only want to allow over committing if we have lots of actual space
4581 * free, but if we don't have enough space to handle the global reserve
4582 * space then we could end up having a real enospc problem when trying
4583 * to allocate a chunk or some other such important allocation.
4585 spin_lock(&global_rsv->lock);
4586 space_size = calc_global_rsv_need_space(global_rsv);
4587 spin_unlock(&global_rsv->lock);
4588 if (used + space_size >= space_info->total_bytes)
4591 used += space_info->bytes_may_use;
4593 avail = atomic64_read(&fs_info->free_chunk_space);
4596 * If we have dup, raid1 or raid10 then only half of the free
4597 * space is actually useable. For raid56, the space info used
4598 * doesn't include the parity drive, so we don't have to
4601 factor = btrfs_bg_type_to_factor(profile);
4602 avail = div_u64(avail, factor);
4605 * If we aren't flushing all things, let us overcommit up to
4606 * 1/2th of the space. If we can flush, don't let us overcommit
4607 * too much, let it overcommit up to 1/8 of the space.
4609 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4614 if (used + bytes < space_info->total_bytes + avail)
4619 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4620 unsigned long nr_pages, int nr_items)
4622 struct super_block *sb = fs_info->sb;
4624 if (down_read_trylock(&sb->s_umount)) {
4625 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4626 up_read(&sb->s_umount);
4629 * We needn't worry the filesystem going from r/w to r/o though
4630 * we don't acquire ->s_umount mutex, because the filesystem
4631 * should guarantee the delalloc inodes list be empty after
4632 * the filesystem is readonly(all dirty pages are written to
4635 btrfs_start_delalloc_roots(fs_info, nr_items);
4636 if (!current->journal_info)
4637 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4641 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4647 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4648 nr = div64_u64(to_reclaim, bytes);
4654 #define EXTENT_SIZE_PER_ITEM SZ_256K
4657 * shrink metadata reservation for delalloc
4659 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4660 u64 orig, bool wait_ordered)
4662 struct btrfs_space_info *space_info;
4663 struct btrfs_trans_handle *trans;
4668 unsigned long nr_pages;
4671 /* Calc the number of the pages we need flush for space reservation */
4672 items = calc_reclaim_items_nr(fs_info, to_reclaim);
4673 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4675 trans = (struct btrfs_trans_handle *)current->journal_info;
4676 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4678 delalloc_bytes = percpu_counter_sum_positive(
4679 &fs_info->delalloc_bytes);
4680 if (delalloc_bytes == 0) {
4684 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4689 while (delalloc_bytes && loops < 3) {
4690 max_reclaim = min(delalloc_bytes, to_reclaim);
4691 nr_pages = max_reclaim >> PAGE_SHIFT;
4692 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4694 * We need to wait for the async pages to actually start before
4697 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4701 if (max_reclaim <= nr_pages)
4704 max_reclaim -= nr_pages;
4706 wait_event(fs_info->async_submit_wait,
4707 atomic_read(&fs_info->async_delalloc_pages) <=
4710 spin_lock(&space_info->lock);
4711 if (list_empty(&space_info->tickets) &&
4712 list_empty(&space_info->priority_tickets)) {
4713 spin_unlock(&space_info->lock);
4716 spin_unlock(&space_info->lock);
4719 if (wait_ordered && !trans) {
4720 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4722 time_left = schedule_timeout_killable(1);
4726 delalloc_bytes = percpu_counter_sum_positive(
4727 &fs_info->delalloc_bytes);
4731 struct reserve_ticket {
4734 struct list_head list;
4735 wait_queue_head_t wait;
4739 * maybe_commit_transaction - possibly commit the transaction if its ok to
4740 * @root - the root we're allocating for
4741 * @bytes - the number of bytes we want to reserve
4742 * @force - force the commit
4744 * This will check to make sure that committing the transaction will actually
4745 * get us somewhere and then commit the transaction if it does. Otherwise it
4746 * will return -ENOSPC.
4748 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4749 struct btrfs_space_info *space_info)
4751 struct reserve_ticket *ticket = NULL;
4752 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4753 struct btrfs_trans_handle *trans;
4756 trans = (struct btrfs_trans_handle *)current->journal_info;
4760 spin_lock(&space_info->lock);
4761 if (!list_empty(&space_info->priority_tickets))
4762 ticket = list_first_entry(&space_info->priority_tickets,
4763 struct reserve_ticket, list);
4764 else if (!list_empty(&space_info->tickets))
4765 ticket = list_first_entry(&space_info->tickets,
4766 struct reserve_ticket, list);
4767 bytes = (ticket) ? ticket->bytes : 0;
4768 spin_unlock(&space_info->lock);
4773 /* See if there is enough pinned space to make this reservation */
4774 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4776 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
4780 * See if there is some space in the delayed insertion reservation for
4783 if (space_info != delayed_rsv->space_info)
4786 spin_lock(&delayed_rsv->lock);
4787 if (delayed_rsv->size > bytes)
4790 bytes -= delayed_rsv->size;
4791 spin_unlock(&delayed_rsv->lock);
4793 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4795 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0) {
4800 trans = btrfs_join_transaction(fs_info->extent_root);
4804 return btrfs_commit_transaction(trans);
4808 * Try to flush some data based on policy set by @state. This is only advisory
4809 * and may fail for various reasons. The caller is supposed to examine the
4810 * state of @space_info to detect the outcome.
4812 static void flush_space(struct btrfs_fs_info *fs_info,
4813 struct btrfs_space_info *space_info, u64 num_bytes,
4816 struct btrfs_root *root = fs_info->extent_root;
4817 struct btrfs_trans_handle *trans;
4822 case FLUSH_DELAYED_ITEMS_NR:
4823 case FLUSH_DELAYED_ITEMS:
4824 if (state == FLUSH_DELAYED_ITEMS_NR)
4825 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4829 trans = btrfs_join_transaction(root);
4830 if (IS_ERR(trans)) {
4831 ret = PTR_ERR(trans);
4834 ret = btrfs_run_delayed_items_nr(trans, nr);
4835 btrfs_end_transaction(trans);
4837 case FLUSH_DELALLOC:
4838 case FLUSH_DELALLOC_WAIT:
4839 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
4840 state == FLUSH_DELALLOC_WAIT);
4843 trans = btrfs_join_transaction(root);
4844 if (IS_ERR(trans)) {
4845 ret = PTR_ERR(trans);
4848 ret = do_chunk_alloc(trans,
4849 btrfs_metadata_alloc_profile(fs_info),
4850 CHUNK_ALLOC_NO_FORCE);
4851 btrfs_end_transaction(trans);
4852 if (ret > 0 || ret == -ENOSPC)
4856 ret = may_commit_transaction(fs_info, space_info);
4863 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
4869 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4870 struct btrfs_space_info *space_info,
4873 struct reserve_ticket *ticket;
4878 list_for_each_entry(ticket, &space_info->tickets, list)
4879 to_reclaim += ticket->bytes;
4880 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4881 to_reclaim += ticket->bytes;
4885 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4886 if (can_overcommit(fs_info, space_info, to_reclaim,
4887 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4890 used = btrfs_space_info_used(space_info, true);
4892 if (can_overcommit(fs_info, space_info, SZ_1M,
4893 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4894 expected = div_factor_fine(space_info->total_bytes, 95);
4896 expected = div_factor_fine(space_info->total_bytes, 90);
4898 if (used > expected)
4899 to_reclaim = used - expected;
4902 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4903 space_info->bytes_reserved);
4907 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
4908 struct btrfs_space_info *space_info,
4909 u64 used, bool system_chunk)
4911 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4913 /* If we're just plain full then async reclaim just slows us down. */
4914 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4917 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4921 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4922 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4925 static void wake_all_tickets(struct list_head *head)
4927 struct reserve_ticket *ticket;
4929 while (!list_empty(head)) {
4930 ticket = list_first_entry(head, struct reserve_ticket, list);
4931 list_del_init(&ticket->list);
4932 ticket->error = -ENOSPC;
4933 wake_up(&ticket->wait);
4938 * This is for normal flushers, we can wait all goddamned day if we want to. We
4939 * will loop and continuously try to flush as long as we are making progress.
4940 * We count progress as clearing off tickets each time we have to loop.
4942 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4944 struct btrfs_fs_info *fs_info;
4945 struct btrfs_space_info *space_info;
4948 int commit_cycles = 0;
4949 u64 last_tickets_id;
4951 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4952 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4954 spin_lock(&space_info->lock);
4955 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4958 space_info->flush = 0;
4959 spin_unlock(&space_info->lock);
4962 last_tickets_id = space_info->tickets_id;
4963 spin_unlock(&space_info->lock);
4965 flush_state = FLUSH_DELAYED_ITEMS_NR;
4967 flush_space(fs_info, space_info, to_reclaim, flush_state);
4968 spin_lock(&space_info->lock);
4969 if (list_empty(&space_info->tickets)) {
4970 space_info->flush = 0;
4971 spin_unlock(&space_info->lock);
4974 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
4977 if (last_tickets_id == space_info->tickets_id) {
4980 last_tickets_id = space_info->tickets_id;
4981 flush_state = FLUSH_DELAYED_ITEMS_NR;
4986 if (flush_state > COMMIT_TRANS) {
4988 if (commit_cycles > 2) {
4989 wake_all_tickets(&space_info->tickets);
4990 space_info->flush = 0;
4992 flush_state = FLUSH_DELAYED_ITEMS_NR;
4995 spin_unlock(&space_info->lock);
4996 } while (flush_state <= COMMIT_TRANS);
4999 void btrfs_init_async_reclaim_work(struct work_struct *work)
5001 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5004 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5005 struct btrfs_space_info *space_info,
5006 struct reserve_ticket *ticket)
5009 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5011 spin_lock(&space_info->lock);
5012 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5015 spin_unlock(&space_info->lock);
5018 spin_unlock(&space_info->lock);
5021 flush_space(fs_info, space_info, to_reclaim, flush_state);
5023 spin_lock(&space_info->lock);
5024 if (ticket->bytes == 0) {
5025 spin_unlock(&space_info->lock);
5028 spin_unlock(&space_info->lock);
5031 * Priority flushers can't wait on delalloc without
5034 if (flush_state == FLUSH_DELALLOC ||
5035 flush_state == FLUSH_DELALLOC_WAIT)
5036 flush_state = ALLOC_CHUNK;
5037 } while (flush_state < COMMIT_TRANS);
5040 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5041 struct btrfs_space_info *space_info,
5042 struct reserve_ticket *ticket, u64 orig_bytes)
5048 spin_lock(&space_info->lock);
5049 while (ticket->bytes > 0 && ticket->error == 0) {
5050 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5055 spin_unlock(&space_info->lock);
5059 finish_wait(&ticket->wait, &wait);
5060 spin_lock(&space_info->lock);
5063 ret = ticket->error;
5064 if (!list_empty(&ticket->list))
5065 list_del_init(&ticket->list);
5066 if (ticket->bytes && ticket->bytes < orig_bytes) {
5067 u64 num_bytes = orig_bytes - ticket->bytes;
5068 space_info->bytes_may_use -= num_bytes;
5069 trace_btrfs_space_reservation(fs_info, "space_info",
5070 space_info->flags, num_bytes, 0);
5072 spin_unlock(&space_info->lock);
5078 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5079 * @root - the root we're allocating for
5080 * @space_info - the space info we want to allocate from
5081 * @orig_bytes - the number of bytes we want
5082 * @flush - whether or not we can flush to make our reservation
5084 * This will reserve orig_bytes number of bytes from the space info associated
5085 * with the block_rsv. If there is not enough space it will make an attempt to
5086 * flush out space to make room. It will do this by flushing delalloc if
5087 * possible or committing the transaction. If flush is 0 then no attempts to
5088 * regain reservations will be made and this will fail if there is not enough
5091 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5092 struct btrfs_space_info *space_info,
5094 enum btrfs_reserve_flush_enum flush,
5097 struct reserve_ticket ticket;
5102 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5104 spin_lock(&space_info->lock);
5106 used = btrfs_space_info_used(space_info, true);
5109 * If we have enough space then hooray, make our reservation and carry
5110 * on. If not see if we can overcommit, and if we can, hooray carry on.
5111 * If not things get more complicated.
5113 if (used + orig_bytes <= space_info->total_bytes) {
5114 space_info->bytes_may_use += orig_bytes;
5115 trace_btrfs_space_reservation(fs_info, "space_info",
5116 space_info->flags, orig_bytes, 1);
5118 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5120 space_info->bytes_may_use += orig_bytes;
5121 trace_btrfs_space_reservation(fs_info, "space_info",
5122 space_info->flags, orig_bytes, 1);
5127 * If we couldn't make a reservation then setup our reservation ticket
5128 * and kick the async worker if it's not already running.
5130 * If we are a priority flusher then we just need to add our ticket to
5131 * the list and we will do our own flushing further down.
5133 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5134 ticket.bytes = orig_bytes;
5136 init_waitqueue_head(&ticket.wait);
5137 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5138 list_add_tail(&ticket.list, &space_info->tickets);
5139 if (!space_info->flush) {
5140 space_info->flush = 1;
5141 trace_btrfs_trigger_flush(fs_info,
5145 queue_work(system_unbound_wq,
5146 &fs_info->async_reclaim_work);
5149 list_add_tail(&ticket.list,
5150 &space_info->priority_tickets);
5152 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5155 * We will do the space reservation dance during log replay,
5156 * which means we won't have fs_info->fs_root set, so don't do
5157 * the async reclaim as we will panic.
5159 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5160 need_do_async_reclaim(fs_info, space_info,
5161 used, system_chunk) &&
5162 !work_busy(&fs_info->async_reclaim_work)) {
5163 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5164 orig_bytes, flush, "preempt");
5165 queue_work(system_unbound_wq,
5166 &fs_info->async_reclaim_work);
5169 spin_unlock(&space_info->lock);
5170 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5173 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5174 return wait_reserve_ticket(fs_info, space_info, &ticket,
5178 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5179 spin_lock(&space_info->lock);
5181 if (ticket.bytes < orig_bytes) {
5182 u64 num_bytes = orig_bytes - ticket.bytes;
5183 space_info->bytes_may_use -= num_bytes;
5184 trace_btrfs_space_reservation(fs_info, "space_info",
5189 list_del_init(&ticket.list);
5192 spin_unlock(&space_info->lock);
5193 ASSERT(list_empty(&ticket.list));
5198 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5199 * @root - the root we're allocating for
5200 * @block_rsv - the block_rsv we're allocating for
5201 * @orig_bytes - the number of bytes we want
5202 * @flush - whether or not we can flush to make our reservation
5204 * This will reserve orgi_bytes number of bytes from the space info associated
5205 * with the block_rsv. If there is not enough space it will make an attempt to
5206 * flush out space to make room. It will do this by flushing delalloc if
5207 * possible or committing the transaction. If flush is 0 then no attempts to
5208 * regain reservations will be made and this will fail if there is not enough
5211 static int reserve_metadata_bytes(struct btrfs_root *root,
5212 struct btrfs_block_rsv *block_rsv,
5214 enum btrfs_reserve_flush_enum flush)
5216 struct btrfs_fs_info *fs_info = root->fs_info;
5217 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5219 bool system_chunk = (root == fs_info->chunk_root);
5221 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5222 orig_bytes, flush, system_chunk);
5223 if (ret == -ENOSPC &&
5224 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5225 if (block_rsv != global_rsv &&
5226 !block_rsv_use_bytes(global_rsv, orig_bytes))
5229 if (ret == -ENOSPC) {
5230 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5231 block_rsv->space_info->flags,
5234 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5235 dump_space_info(fs_info, block_rsv->space_info,
5241 static struct btrfs_block_rsv *get_block_rsv(
5242 const struct btrfs_trans_handle *trans,
5243 const struct btrfs_root *root)
5245 struct btrfs_fs_info *fs_info = root->fs_info;
5246 struct btrfs_block_rsv *block_rsv = NULL;
5248 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5249 (root == fs_info->csum_root && trans->adding_csums) ||
5250 (root == fs_info->uuid_root))
5251 block_rsv = trans->block_rsv;
5254 block_rsv = root->block_rsv;
5257 block_rsv = &fs_info->empty_block_rsv;
5262 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5266 spin_lock(&block_rsv->lock);
5267 if (block_rsv->reserved >= num_bytes) {
5268 block_rsv->reserved -= num_bytes;
5269 if (block_rsv->reserved < block_rsv->size)
5270 block_rsv->full = 0;
5273 spin_unlock(&block_rsv->lock);
5277 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5278 u64 num_bytes, bool update_size)
5280 spin_lock(&block_rsv->lock);
5281 block_rsv->reserved += num_bytes;
5283 block_rsv->size += num_bytes;
5284 else if (block_rsv->reserved >= block_rsv->size)
5285 block_rsv->full = 1;
5286 spin_unlock(&block_rsv->lock);
5289 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5290 struct btrfs_block_rsv *dest, u64 num_bytes,
5293 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5296 if (global_rsv->space_info != dest->space_info)
5299 spin_lock(&global_rsv->lock);
5300 min_bytes = div_factor(global_rsv->size, min_factor);
5301 if (global_rsv->reserved < min_bytes + num_bytes) {
5302 spin_unlock(&global_rsv->lock);
5305 global_rsv->reserved -= num_bytes;
5306 if (global_rsv->reserved < global_rsv->size)
5307 global_rsv->full = 0;
5308 spin_unlock(&global_rsv->lock);
5310 block_rsv_add_bytes(dest, num_bytes, true);
5315 * This is for space we already have accounted in space_info->bytes_may_use, so
5316 * basically when we're returning space from block_rsv's.
5318 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5319 struct btrfs_space_info *space_info,
5322 struct reserve_ticket *ticket;
5323 struct list_head *head;
5325 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5326 bool check_overcommit = false;
5328 spin_lock(&space_info->lock);
5329 head = &space_info->priority_tickets;
5332 * If we are over our limit then we need to check and see if we can
5333 * overcommit, and if we can't then we just need to free up our space
5334 * and not satisfy any requests.
5336 used = btrfs_space_info_used(space_info, true);
5337 if (used - num_bytes >= space_info->total_bytes)
5338 check_overcommit = true;
5340 while (!list_empty(head) && num_bytes) {
5341 ticket = list_first_entry(head, struct reserve_ticket,
5344 * We use 0 bytes because this space is already reserved, so
5345 * adding the ticket space would be a double count.
5347 if (check_overcommit &&
5348 !can_overcommit(fs_info, space_info, 0, flush, false))
5350 if (num_bytes >= ticket->bytes) {
5351 list_del_init(&ticket->list);
5352 num_bytes -= ticket->bytes;
5354 space_info->tickets_id++;
5355 wake_up(&ticket->wait);
5357 ticket->bytes -= num_bytes;
5362 if (num_bytes && head == &space_info->priority_tickets) {
5363 head = &space_info->tickets;
5364 flush = BTRFS_RESERVE_FLUSH_ALL;
5367 space_info->bytes_may_use -= num_bytes;
5368 trace_btrfs_space_reservation(fs_info, "space_info",
5369 space_info->flags, num_bytes, 0);
5370 spin_unlock(&space_info->lock);
5374 * This is for newly allocated space that isn't accounted in
5375 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5376 * we use this helper.
5378 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5379 struct btrfs_space_info *space_info,
5382 struct reserve_ticket *ticket;
5383 struct list_head *head = &space_info->priority_tickets;
5386 while (!list_empty(head) && num_bytes) {
5387 ticket = list_first_entry(head, struct reserve_ticket,
5389 if (num_bytes >= ticket->bytes) {
5390 trace_btrfs_space_reservation(fs_info, "space_info",
5393 list_del_init(&ticket->list);
5394 num_bytes -= ticket->bytes;
5395 space_info->bytes_may_use += ticket->bytes;
5397 space_info->tickets_id++;
5398 wake_up(&ticket->wait);
5400 trace_btrfs_space_reservation(fs_info, "space_info",
5403 space_info->bytes_may_use += num_bytes;
5404 ticket->bytes -= num_bytes;
5409 if (num_bytes && head == &space_info->priority_tickets) {
5410 head = &space_info->tickets;
5415 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5416 struct btrfs_block_rsv *block_rsv,
5417 struct btrfs_block_rsv *dest, u64 num_bytes,
5418 u64 *qgroup_to_release_ret)
5420 struct btrfs_space_info *space_info = block_rsv->space_info;
5421 u64 qgroup_to_release = 0;
5424 spin_lock(&block_rsv->lock);
5425 if (num_bytes == (u64)-1) {
5426 num_bytes = block_rsv->size;
5427 qgroup_to_release = block_rsv->qgroup_rsv_size;
5429 block_rsv->size -= num_bytes;
5430 if (block_rsv->reserved >= block_rsv->size) {
5431 num_bytes = block_rsv->reserved - block_rsv->size;
5432 block_rsv->reserved = block_rsv->size;
5433 block_rsv->full = 1;
5437 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5438 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5439 block_rsv->qgroup_rsv_size;
5440 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5442 qgroup_to_release = 0;
5444 spin_unlock(&block_rsv->lock);
5447 if (num_bytes > 0) {
5449 spin_lock(&dest->lock);
5453 bytes_to_add = dest->size - dest->reserved;
5454 bytes_to_add = min(num_bytes, bytes_to_add);
5455 dest->reserved += bytes_to_add;
5456 if (dest->reserved >= dest->size)
5458 num_bytes -= bytes_to_add;
5460 spin_unlock(&dest->lock);
5463 space_info_add_old_bytes(fs_info, space_info,
5466 if (qgroup_to_release_ret)
5467 *qgroup_to_release_ret = qgroup_to_release;
5471 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5472 struct btrfs_block_rsv *dst, u64 num_bytes,
5477 ret = block_rsv_use_bytes(src, num_bytes);
5481 block_rsv_add_bytes(dst, num_bytes, update_size);
5485 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5487 memset(rsv, 0, sizeof(*rsv));
5488 spin_lock_init(&rsv->lock);
5492 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5493 struct btrfs_block_rsv *rsv,
5494 unsigned short type)
5496 btrfs_init_block_rsv(rsv, type);
5497 rsv->space_info = __find_space_info(fs_info,
5498 BTRFS_BLOCK_GROUP_METADATA);
5501 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5502 unsigned short type)
5504 struct btrfs_block_rsv *block_rsv;
5506 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5510 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5514 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5515 struct btrfs_block_rsv *rsv)
5519 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5523 int btrfs_block_rsv_add(struct btrfs_root *root,
5524 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5525 enum btrfs_reserve_flush_enum flush)
5532 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5534 block_rsv_add_bytes(block_rsv, num_bytes, true);
5539 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5547 spin_lock(&block_rsv->lock);
5548 num_bytes = div_factor(block_rsv->size, min_factor);
5549 if (block_rsv->reserved >= num_bytes)
5551 spin_unlock(&block_rsv->lock);
5556 int btrfs_block_rsv_refill(struct btrfs_root *root,
5557 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5558 enum btrfs_reserve_flush_enum flush)
5566 spin_lock(&block_rsv->lock);
5567 num_bytes = min_reserved;
5568 if (block_rsv->reserved >= num_bytes)
5571 num_bytes -= block_rsv->reserved;
5572 spin_unlock(&block_rsv->lock);
5577 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5579 block_rsv_add_bytes(block_rsv, num_bytes, false);
5587 * btrfs_inode_rsv_refill - refill the inode block rsv.
5588 * @inode - the inode we are refilling.
5589 * @flush - the flusing restriction.
5591 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5592 * block_rsv->size as the minimum size. We'll either refill the missing amount
5593 * or return if we already have enough space. This will also handle the resreve
5594 * tracepoint for the reserved amount.
5596 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5597 enum btrfs_reserve_flush_enum flush)
5599 struct btrfs_root *root = inode->root;
5600 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5602 u64 qgroup_num_bytes = 0;
5605 spin_lock(&block_rsv->lock);
5606 if (block_rsv->reserved < block_rsv->size)
5607 num_bytes = block_rsv->size - block_rsv->reserved;
5608 if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5609 qgroup_num_bytes = block_rsv->qgroup_rsv_size -
5610 block_rsv->qgroup_rsv_reserved;
5611 spin_unlock(&block_rsv->lock);
5616 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true);
5619 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5621 block_rsv_add_bytes(block_rsv, num_bytes, false);
5622 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5623 btrfs_ino(inode), num_bytes, 1);
5625 /* Don't forget to increase qgroup_rsv_reserved */
5626 spin_lock(&block_rsv->lock);
5627 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5628 spin_unlock(&block_rsv->lock);
5630 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5635 * btrfs_inode_rsv_release - release any excessive reservation.
5636 * @inode - the inode we need to release from.
5637 * @qgroup_free - free or convert qgroup meta.
5638 * Unlike normal operation, qgroup meta reservation needs to know if we are
5639 * freeing qgroup reservation or just converting it into per-trans. Normally
5640 * @qgroup_free is true for error handling, and false for normal release.
5642 * This is the same as btrfs_block_rsv_release, except that it handles the
5643 * tracepoint for the reservation.
5645 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
5647 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5648 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5649 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5651 u64 qgroup_to_release = 0;
5654 * Since we statically set the block_rsv->size we just want to say we
5655 * are releasing 0 bytes, and then we'll just get the reservation over
5658 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0,
5659 &qgroup_to_release);
5661 trace_btrfs_space_reservation(fs_info, "delalloc",
5662 btrfs_ino(inode), released, 0);
5664 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
5666 btrfs_qgroup_convert_reserved_meta(inode->root,
5670 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5671 struct btrfs_block_rsv *block_rsv,
5674 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5676 if (global_rsv == block_rsv ||
5677 block_rsv->space_info != global_rsv->space_info)
5679 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL);
5682 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5684 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5685 struct btrfs_space_info *sinfo = block_rsv->space_info;
5689 * The global block rsv is based on the size of the extent tree, the
5690 * checksum tree and the root tree. If the fs is empty we want to set
5691 * it to a minimal amount for safety.
5693 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5694 btrfs_root_used(&fs_info->csum_root->root_item) +
5695 btrfs_root_used(&fs_info->tree_root->root_item);
5696 num_bytes = max_t(u64, num_bytes, SZ_16M);
5698 spin_lock(&sinfo->lock);
5699 spin_lock(&block_rsv->lock);
5701 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5703 if (block_rsv->reserved < block_rsv->size) {
5704 num_bytes = btrfs_space_info_used(sinfo, true);
5705 if (sinfo->total_bytes > num_bytes) {
5706 num_bytes = sinfo->total_bytes - num_bytes;
5707 num_bytes = min(num_bytes,
5708 block_rsv->size - block_rsv->reserved);
5709 block_rsv->reserved += num_bytes;
5710 sinfo->bytes_may_use += num_bytes;
5711 trace_btrfs_space_reservation(fs_info, "space_info",
5712 sinfo->flags, num_bytes,
5715 } else if (block_rsv->reserved > block_rsv->size) {
5716 num_bytes = block_rsv->reserved - block_rsv->size;
5717 sinfo->bytes_may_use -= num_bytes;
5718 trace_btrfs_space_reservation(fs_info, "space_info",
5719 sinfo->flags, num_bytes, 0);
5720 block_rsv->reserved = block_rsv->size;
5723 if (block_rsv->reserved == block_rsv->size)
5724 block_rsv->full = 1;
5726 block_rsv->full = 0;
5728 spin_unlock(&block_rsv->lock);
5729 spin_unlock(&sinfo->lock);
5732 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5734 struct btrfs_space_info *space_info;
5736 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5737 fs_info->chunk_block_rsv.space_info = space_info;
5739 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5740 fs_info->global_block_rsv.space_info = space_info;
5741 fs_info->trans_block_rsv.space_info = space_info;
5742 fs_info->empty_block_rsv.space_info = space_info;
5743 fs_info->delayed_block_rsv.space_info = space_info;
5745 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5746 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5747 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5748 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5749 if (fs_info->quota_root)
5750 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5751 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5753 update_global_block_rsv(fs_info);
5756 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5758 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5760 WARN_ON(fs_info->trans_block_rsv.size > 0);
5761 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5762 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5763 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5764 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5765 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5770 * To be called after all the new block groups attached to the transaction
5771 * handle have been created (btrfs_create_pending_block_groups()).
5773 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5775 struct btrfs_fs_info *fs_info = trans->fs_info;
5777 if (!trans->chunk_bytes_reserved)
5780 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5782 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5783 trans->chunk_bytes_reserved, NULL);
5784 trans->chunk_bytes_reserved = 0;
5788 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5789 * root: the root of the parent directory
5790 * rsv: block reservation
5791 * items: the number of items that we need do reservation
5792 * use_global_rsv: allow fallback to the global block reservation
5794 * This function is used to reserve the space for snapshot/subvolume
5795 * creation and deletion. Those operations are different with the
5796 * common file/directory operations, they change two fs/file trees
5797 * and root tree, the number of items that the qgroup reserves is
5798 * different with the free space reservation. So we can not use
5799 * the space reservation mechanism in start_transaction().
5801 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5802 struct btrfs_block_rsv *rsv, int items,
5803 bool use_global_rsv)
5805 u64 qgroup_num_bytes = 0;
5808 struct btrfs_fs_info *fs_info = root->fs_info;
5809 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5811 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5812 /* One for parent inode, two for dir entries */
5813 qgroup_num_bytes = 3 * fs_info->nodesize;
5814 ret = btrfs_qgroup_reserve_meta_prealloc(root,
5815 qgroup_num_bytes, true);
5820 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5821 rsv->space_info = __find_space_info(fs_info,
5822 BTRFS_BLOCK_GROUP_METADATA);
5823 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5824 BTRFS_RESERVE_FLUSH_ALL);
5826 if (ret == -ENOSPC && use_global_rsv)
5827 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
5829 if (ret && qgroup_num_bytes)
5830 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5835 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
5836 struct btrfs_block_rsv *rsv)
5838 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5841 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
5842 struct btrfs_inode *inode)
5844 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5845 u64 reserve_size = 0;
5846 u64 qgroup_rsv_size = 0;
5848 unsigned outstanding_extents;
5850 lockdep_assert_held(&inode->lock);
5851 outstanding_extents = inode->outstanding_extents;
5852 if (outstanding_extents)
5853 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
5854 outstanding_extents + 1);
5855 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
5857 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
5860 * For qgroup rsv, the calculation is very simple:
5861 * account one nodesize for each outstanding extent
5863 * This is overestimating in most cases.
5865 qgroup_rsv_size = outstanding_extents * fs_info->nodesize;
5867 spin_lock(&block_rsv->lock);
5868 block_rsv->size = reserve_size;
5869 block_rsv->qgroup_rsv_size = qgroup_rsv_size;
5870 spin_unlock(&block_rsv->lock);
5873 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
5875 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5876 unsigned nr_extents;
5877 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5879 bool delalloc_lock = true;
5881 /* If we are a free space inode we need to not flush since we will be in
5882 * the middle of a transaction commit. We also don't need the delalloc
5883 * mutex since we won't race with anybody. We need this mostly to make
5884 * lockdep shut its filthy mouth.
5886 * If we have a transaction open (can happen if we call truncate_block
5887 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5889 if (btrfs_is_free_space_inode(inode)) {
5890 flush = BTRFS_RESERVE_NO_FLUSH;
5891 delalloc_lock = false;
5893 if (current->journal_info)
5894 flush = BTRFS_RESERVE_FLUSH_LIMIT;
5896 if (btrfs_transaction_in_commit(fs_info))
5897 schedule_timeout(1);
5901 mutex_lock(&inode->delalloc_mutex);
5903 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
5905 /* Add our new extents and calculate the new rsv size. */
5906 spin_lock(&inode->lock);
5907 nr_extents = count_max_extents(num_bytes);
5908 btrfs_mod_outstanding_extents(inode, nr_extents);
5909 inode->csum_bytes += num_bytes;
5910 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5911 spin_unlock(&inode->lock);
5913 ret = btrfs_inode_rsv_refill(inode, flush);
5918 mutex_unlock(&inode->delalloc_mutex);
5922 spin_lock(&inode->lock);
5923 nr_extents = count_max_extents(num_bytes);
5924 btrfs_mod_outstanding_extents(inode, -nr_extents);
5925 inode->csum_bytes -= num_bytes;
5926 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5927 spin_unlock(&inode->lock);
5929 btrfs_inode_rsv_release(inode, true);
5931 mutex_unlock(&inode->delalloc_mutex);
5936 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5937 * @inode: the inode to release the reservation for.
5938 * @num_bytes: the number of bytes we are releasing.
5939 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
5941 * This will release the metadata reservation for an inode. This can be called
5942 * once we complete IO for a given set of bytes to release their metadata
5943 * reservations, or on error for the same reason.
5945 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
5948 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5950 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
5951 spin_lock(&inode->lock);
5952 inode->csum_bytes -= num_bytes;
5953 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5954 spin_unlock(&inode->lock);
5956 if (btrfs_is_testing(fs_info))
5959 btrfs_inode_rsv_release(inode, qgroup_free);
5963 * btrfs_delalloc_release_extents - release our outstanding_extents
5964 * @inode: the inode to balance the reservation for.
5965 * @num_bytes: the number of bytes we originally reserved with
5966 * @qgroup_free: do we need to free qgroup meta reservation or convert them.
5968 * When we reserve space we increase outstanding_extents for the extents we may
5969 * add. Once we've set the range as delalloc or created our ordered extents we
5970 * have outstanding_extents to track the real usage, so we use this to free our
5971 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
5972 * with btrfs_delalloc_reserve_metadata.
5974 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
5977 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5978 unsigned num_extents;
5980 spin_lock(&inode->lock);
5981 num_extents = count_max_extents(num_bytes);
5982 btrfs_mod_outstanding_extents(inode, -num_extents);
5983 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5984 spin_unlock(&inode->lock);
5986 if (btrfs_is_testing(fs_info))
5989 btrfs_inode_rsv_release(inode, qgroup_free);
5993 * btrfs_delalloc_reserve_space - reserve data and metadata space for
5995 * @inode: inode we're writing to
5996 * @start: start range we are writing to
5997 * @len: how long the range we are writing to
5998 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
5999 * current reservation.
6001 * This will do the following things
6003 * o reserve space in data space info for num bytes
6004 * and reserve precious corresponding qgroup space
6005 * (Done in check_data_free_space)
6007 * o reserve space for metadata space, based on the number of outstanding
6008 * extents and how much csums will be needed
6009 * also reserve metadata space in a per root over-reserve method.
6010 * o add to the inodes->delalloc_bytes
6011 * o add it to the fs_info's delalloc inodes list.
6012 * (Above 3 all done in delalloc_reserve_metadata)
6014 * Return 0 for success
6015 * Return <0 for error(-ENOSPC or -EQUOT)
6017 int btrfs_delalloc_reserve_space(struct inode *inode,
6018 struct extent_changeset **reserved, u64 start, u64 len)
6022 ret = btrfs_check_data_free_space(inode, reserved, start, len);
6025 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6027 btrfs_free_reserved_data_space(inode, *reserved, start, len);
6032 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6033 * @inode: inode we're releasing space for
6034 * @start: start position of the space already reserved
6035 * @len: the len of the space already reserved
6036 * @release_bytes: the len of the space we consumed or didn't use
6038 * This function will release the metadata space that was not used and will
6039 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6040 * list if there are no delalloc bytes left.
6041 * Also it will handle the qgroup reserved space.
6043 void btrfs_delalloc_release_space(struct inode *inode,
6044 struct extent_changeset *reserved,
6045 u64 start, u64 len, bool qgroup_free)
6047 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
6048 btrfs_free_reserved_data_space(inode, reserved, start, len);
6051 static int update_block_group(struct btrfs_trans_handle *trans,
6052 struct btrfs_fs_info *info, u64 bytenr,
6053 u64 num_bytes, int alloc)
6055 struct btrfs_block_group_cache *cache = NULL;
6056 u64 total = num_bytes;
6061 /* block accounting for super block */
6062 spin_lock(&info->delalloc_root_lock);
6063 old_val = btrfs_super_bytes_used(info->super_copy);
6065 old_val += num_bytes;
6067 old_val -= num_bytes;
6068 btrfs_set_super_bytes_used(info->super_copy, old_val);
6069 spin_unlock(&info->delalloc_root_lock);
6072 cache = btrfs_lookup_block_group(info, bytenr);
6075 factor = btrfs_bg_type_to_factor(cache->flags);
6078 * If this block group has free space cache written out, we
6079 * need to make sure to load it if we are removing space. This
6080 * is because we need the unpinning stage to actually add the
6081 * space back to the block group, otherwise we will leak space.
6083 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6084 cache_block_group(cache, 1);
6086 byte_in_group = bytenr - cache->key.objectid;
6087 WARN_ON(byte_in_group > cache->key.offset);
6089 spin_lock(&cache->space_info->lock);
6090 spin_lock(&cache->lock);
6092 if (btrfs_test_opt(info, SPACE_CACHE) &&
6093 cache->disk_cache_state < BTRFS_DC_CLEAR)
6094 cache->disk_cache_state = BTRFS_DC_CLEAR;
6096 old_val = btrfs_block_group_used(&cache->item);
6097 num_bytes = min(total, cache->key.offset - byte_in_group);
6099 old_val += num_bytes;
6100 btrfs_set_block_group_used(&cache->item, old_val);
6101 cache->reserved -= num_bytes;
6102 cache->space_info->bytes_reserved -= num_bytes;
6103 cache->space_info->bytes_used += num_bytes;
6104 cache->space_info->disk_used += num_bytes * factor;
6105 spin_unlock(&cache->lock);
6106 spin_unlock(&cache->space_info->lock);
6108 old_val -= num_bytes;
6109 btrfs_set_block_group_used(&cache->item, old_val);
6110 cache->pinned += num_bytes;
6111 cache->space_info->bytes_pinned += num_bytes;
6112 cache->space_info->bytes_used -= num_bytes;
6113 cache->space_info->disk_used -= num_bytes * factor;
6114 spin_unlock(&cache->lock);
6115 spin_unlock(&cache->space_info->lock);
6117 trace_btrfs_space_reservation(info, "pinned",
6118 cache->space_info->flags,
6120 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6122 BTRFS_TOTAL_BYTES_PINNED_BATCH);
6123 set_extent_dirty(info->pinned_extents,
6124 bytenr, bytenr + num_bytes - 1,
6125 GFP_NOFS | __GFP_NOFAIL);
6128 spin_lock(&trans->transaction->dirty_bgs_lock);
6129 if (list_empty(&cache->dirty_list)) {
6130 list_add_tail(&cache->dirty_list,
6131 &trans->transaction->dirty_bgs);
6132 trans->transaction->num_dirty_bgs++;
6133 btrfs_get_block_group(cache);
6135 spin_unlock(&trans->transaction->dirty_bgs_lock);
6138 * No longer have used bytes in this block group, queue it for
6139 * deletion. We do this after adding the block group to the
6140 * dirty list to avoid races between cleaner kthread and space
6143 if (!alloc && old_val == 0)
6144 btrfs_mark_bg_unused(cache);
6146 btrfs_put_block_group(cache);
6148 bytenr += num_bytes;
6153 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6155 struct btrfs_block_group_cache *cache;
6158 spin_lock(&fs_info->block_group_cache_lock);
6159 bytenr = fs_info->first_logical_byte;
6160 spin_unlock(&fs_info->block_group_cache_lock);
6162 if (bytenr < (u64)-1)
6165 cache = btrfs_lookup_first_block_group(fs_info, search_start);
6169 bytenr = cache->key.objectid;
6170 btrfs_put_block_group(cache);
6175 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6176 struct btrfs_block_group_cache *cache,
6177 u64 bytenr, u64 num_bytes, int reserved)
6179 spin_lock(&cache->space_info->lock);
6180 spin_lock(&cache->lock);
6181 cache->pinned += num_bytes;
6182 cache->space_info->bytes_pinned += num_bytes;
6184 cache->reserved -= num_bytes;
6185 cache->space_info->bytes_reserved -= num_bytes;
6187 spin_unlock(&cache->lock);
6188 spin_unlock(&cache->space_info->lock);
6190 trace_btrfs_space_reservation(fs_info, "pinned",
6191 cache->space_info->flags, num_bytes, 1);
6192 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6193 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
6194 set_extent_dirty(fs_info->pinned_extents, bytenr,
6195 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6200 * this function must be called within transaction
6202 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6203 u64 bytenr, u64 num_bytes, int reserved)
6205 struct btrfs_block_group_cache *cache;
6207 cache = btrfs_lookup_block_group(fs_info, bytenr);
6208 BUG_ON(!cache); /* Logic error */
6210 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6212 btrfs_put_block_group(cache);
6217 * this function must be called within transaction
6219 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6220 u64 bytenr, u64 num_bytes)
6222 struct btrfs_block_group_cache *cache;
6225 cache = btrfs_lookup_block_group(fs_info, bytenr);
6230 * pull in the free space cache (if any) so that our pin
6231 * removes the free space from the cache. We have load_only set
6232 * to one because the slow code to read in the free extents does check
6233 * the pinned extents.
6235 cache_block_group(cache, 1);
6237 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6239 /* remove us from the free space cache (if we're there at all) */
6240 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6241 btrfs_put_block_group(cache);
6245 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6246 u64 start, u64 num_bytes)
6249 struct btrfs_block_group_cache *block_group;
6250 struct btrfs_caching_control *caching_ctl;
6252 block_group = btrfs_lookup_block_group(fs_info, start);
6256 cache_block_group(block_group, 0);
6257 caching_ctl = get_caching_control(block_group);
6261 BUG_ON(!block_group_cache_done(block_group));
6262 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6264 mutex_lock(&caching_ctl->mutex);
6266 if (start >= caching_ctl->progress) {
6267 ret = add_excluded_extent(fs_info, start, num_bytes);
6268 } else if (start + num_bytes <= caching_ctl->progress) {
6269 ret = btrfs_remove_free_space(block_group,
6272 num_bytes = caching_ctl->progress - start;
6273 ret = btrfs_remove_free_space(block_group,
6278 num_bytes = (start + num_bytes) -
6279 caching_ctl->progress;
6280 start = caching_ctl->progress;
6281 ret = add_excluded_extent(fs_info, start, num_bytes);
6284 mutex_unlock(&caching_ctl->mutex);
6285 put_caching_control(caching_ctl);
6287 btrfs_put_block_group(block_group);
6291 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6292 struct extent_buffer *eb)
6294 struct btrfs_file_extent_item *item;
6295 struct btrfs_key key;
6300 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6303 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6304 btrfs_item_key_to_cpu(eb, &key, i);
6305 if (key.type != BTRFS_EXTENT_DATA_KEY)
6307 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6308 found_type = btrfs_file_extent_type(eb, item);
6309 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6311 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6313 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6314 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6315 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
6324 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6326 atomic_inc(&bg->reservations);
6329 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6332 struct btrfs_block_group_cache *bg;
6334 bg = btrfs_lookup_block_group(fs_info, start);
6336 if (atomic_dec_and_test(&bg->reservations))
6337 wake_up_var(&bg->reservations);
6338 btrfs_put_block_group(bg);
6341 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6343 struct btrfs_space_info *space_info = bg->space_info;
6347 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6351 * Our block group is read only but before we set it to read only,
6352 * some task might have had allocated an extent from it already, but it
6353 * has not yet created a respective ordered extent (and added it to a
6354 * root's list of ordered extents).
6355 * Therefore wait for any task currently allocating extents, since the
6356 * block group's reservations counter is incremented while a read lock
6357 * on the groups' semaphore is held and decremented after releasing
6358 * the read access on that semaphore and creating the ordered extent.
6360 down_write(&space_info->groups_sem);
6361 up_write(&space_info->groups_sem);
6363 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
6367 * btrfs_add_reserved_bytes - update the block_group and space info counters
6368 * @cache: The cache we are manipulating
6369 * @ram_bytes: The number of bytes of file content, and will be same to
6370 * @num_bytes except for the compress path.
6371 * @num_bytes: The number of bytes in question
6372 * @delalloc: The blocks are allocated for the delalloc write
6374 * This is called by the allocator when it reserves space. If this is a
6375 * reservation and the block group has become read only we cannot make the
6376 * reservation and return -EAGAIN, otherwise this function always succeeds.
6378 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6379 u64 ram_bytes, u64 num_bytes, int delalloc)
6381 struct btrfs_space_info *space_info = cache->space_info;
6384 spin_lock(&space_info->lock);
6385 spin_lock(&cache->lock);
6389 cache->reserved += num_bytes;
6390 space_info->bytes_reserved += num_bytes;
6391 space_info->bytes_may_use -= ram_bytes;
6393 cache->delalloc_bytes += num_bytes;
6395 spin_unlock(&cache->lock);
6396 spin_unlock(&space_info->lock);
6401 * btrfs_free_reserved_bytes - update the block_group and space info counters
6402 * @cache: The cache we are manipulating
6403 * @num_bytes: The number of bytes in question
6404 * @delalloc: The blocks are allocated for the delalloc write
6406 * This is called by somebody who is freeing space that was never actually used
6407 * on disk. For example if you reserve some space for a new leaf in transaction
6408 * A and before transaction A commits you free that leaf, you call this with
6409 * reserve set to 0 in order to clear the reservation.
6412 static void btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6413 u64 num_bytes, int delalloc)
6415 struct btrfs_space_info *space_info = cache->space_info;
6417 spin_lock(&space_info->lock);
6418 spin_lock(&cache->lock);
6420 space_info->bytes_readonly += num_bytes;
6421 cache->reserved -= num_bytes;
6422 space_info->bytes_reserved -= num_bytes;
6425 cache->delalloc_bytes -= num_bytes;
6426 spin_unlock(&cache->lock);
6427 spin_unlock(&space_info->lock);
6429 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6431 struct btrfs_caching_control *next;
6432 struct btrfs_caching_control *caching_ctl;
6433 struct btrfs_block_group_cache *cache;
6435 down_write(&fs_info->commit_root_sem);
6437 list_for_each_entry_safe(caching_ctl, next,
6438 &fs_info->caching_block_groups, list) {
6439 cache = caching_ctl->block_group;
6440 if (block_group_cache_done(cache)) {
6441 cache->last_byte_to_unpin = (u64)-1;
6442 list_del_init(&caching_ctl->list);
6443 put_caching_control(caching_ctl);
6445 cache->last_byte_to_unpin = caching_ctl->progress;
6449 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6450 fs_info->pinned_extents = &fs_info->freed_extents[1];
6452 fs_info->pinned_extents = &fs_info->freed_extents[0];
6454 up_write(&fs_info->commit_root_sem);
6456 update_global_block_rsv(fs_info);
6460 * Returns the free cluster for the given space info and sets empty_cluster to
6461 * what it should be based on the mount options.
6463 static struct btrfs_free_cluster *
6464 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6465 struct btrfs_space_info *space_info, u64 *empty_cluster)
6467 struct btrfs_free_cluster *ret = NULL;
6470 if (btrfs_mixed_space_info(space_info))
6473 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6474 ret = &fs_info->meta_alloc_cluster;
6475 if (btrfs_test_opt(fs_info, SSD))
6476 *empty_cluster = SZ_2M;
6478 *empty_cluster = SZ_64K;
6479 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6480 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6481 *empty_cluster = SZ_2M;
6482 ret = &fs_info->data_alloc_cluster;
6488 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6490 const bool return_free_space)
6492 struct btrfs_block_group_cache *cache = NULL;
6493 struct btrfs_space_info *space_info;
6494 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6495 struct btrfs_free_cluster *cluster = NULL;
6497 u64 total_unpinned = 0;
6498 u64 empty_cluster = 0;
6501 while (start <= end) {
6504 start >= cache->key.objectid + cache->key.offset) {
6506 btrfs_put_block_group(cache);
6508 cache = btrfs_lookup_block_group(fs_info, start);
6509 BUG_ON(!cache); /* Logic error */
6511 cluster = fetch_cluster_info(fs_info,
6514 empty_cluster <<= 1;
6517 len = cache->key.objectid + cache->key.offset - start;
6518 len = min(len, end + 1 - start);
6520 if (start < cache->last_byte_to_unpin) {
6521 len = min(len, cache->last_byte_to_unpin - start);
6522 if (return_free_space)
6523 btrfs_add_free_space(cache, start, len);
6527 total_unpinned += len;
6528 space_info = cache->space_info;
6531 * If this space cluster has been marked as fragmented and we've
6532 * unpinned enough in this block group to potentially allow a
6533 * cluster to be created inside of it go ahead and clear the
6536 if (cluster && cluster->fragmented &&
6537 total_unpinned > empty_cluster) {
6538 spin_lock(&cluster->lock);
6539 cluster->fragmented = 0;
6540 spin_unlock(&cluster->lock);
6543 spin_lock(&space_info->lock);
6544 spin_lock(&cache->lock);
6545 cache->pinned -= len;
6546 space_info->bytes_pinned -= len;
6548 trace_btrfs_space_reservation(fs_info, "pinned",
6549 space_info->flags, len, 0);
6550 space_info->max_extent_size = 0;
6551 percpu_counter_add_batch(&space_info->total_bytes_pinned,
6552 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
6554 space_info->bytes_readonly += len;
6557 spin_unlock(&cache->lock);
6558 if (!readonly && return_free_space &&
6559 global_rsv->space_info == space_info) {
6562 spin_lock(&global_rsv->lock);
6563 if (!global_rsv->full) {
6564 to_add = min(len, global_rsv->size -
6565 global_rsv->reserved);
6566 global_rsv->reserved += to_add;
6567 space_info->bytes_may_use += to_add;
6568 if (global_rsv->reserved >= global_rsv->size)
6569 global_rsv->full = 1;
6570 trace_btrfs_space_reservation(fs_info,
6576 spin_unlock(&global_rsv->lock);
6577 /* Add to any tickets we may have */
6579 space_info_add_new_bytes(fs_info, space_info,
6582 spin_unlock(&space_info->lock);
6586 btrfs_put_block_group(cache);
6590 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
6592 struct btrfs_fs_info *fs_info = trans->fs_info;
6593 struct btrfs_block_group_cache *block_group, *tmp;
6594 struct list_head *deleted_bgs;
6595 struct extent_io_tree *unpin;
6600 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6601 unpin = &fs_info->freed_extents[1];
6603 unpin = &fs_info->freed_extents[0];
6605 while (!trans->aborted) {
6606 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6607 ret = find_first_extent_bit(unpin, 0, &start, &end,
6608 EXTENT_DIRTY, NULL);
6610 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6614 if (btrfs_test_opt(fs_info, DISCARD))
6615 ret = btrfs_discard_extent(fs_info, start,
6616 end + 1 - start, NULL);
6618 clear_extent_dirty(unpin, start, end);
6619 unpin_extent_range(fs_info, start, end, true);
6620 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6625 * Transaction is finished. We don't need the lock anymore. We
6626 * do need to clean up the block groups in case of a transaction
6629 deleted_bgs = &trans->transaction->deleted_bgs;
6630 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6634 if (!trans->aborted)
6635 ret = btrfs_discard_extent(fs_info,
6636 block_group->key.objectid,
6637 block_group->key.offset,
6640 list_del_init(&block_group->bg_list);
6641 btrfs_put_block_group_trimming(block_group);
6642 btrfs_put_block_group(block_group);
6645 const char *errstr = btrfs_decode_error(ret);
6647 "discard failed while removing blockgroup: errno=%d %s",
6655 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6656 struct btrfs_delayed_ref_node *node, u64 parent,
6657 u64 root_objectid, u64 owner_objectid,
6658 u64 owner_offset, int refs_to_drop,
6659 struct btrfs_delayed_extent_op *extent_op)
6661 struct btrfs_fs_info *info = trans->fs_info;
6662 struct btrfs_key key;
6663 struct btrfs_path *path;
6664 struct btrfs_root *extent_root = info->extent_root;
6665 struct extent_buffer *leaf;
6666 struct btrfs_extent_item *ei;
6667 struct btrfs_extent_inline_ref *iref;
6670 int extent_slot = 0;
6671 int found_extent = 0;
6675 u64 bytenr = node->bytenr;
6676 u64 num_bytes = node->num_bytes;
6678 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6680 path = btrfs_alloc_path();
6684 path->reada = READA_FORWARD;
6685 path->leave_spinning = 1;
6687 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6688 BUG_ON(!is_data && refs_to_drop != 1);
6691 skinny_metadata = false;
6693 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
6694 parent, root_objectid, owner_objectid,
6697 extent_slot = path->slots[0];
6698 while (extent_slot >= 0) {
6699 btrfs_item_key_to_cpu(path->nodes[0], &key,
6701 if (key.objectid != bytenr)
6703 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6704 key.offset == num_bytes) {
6708 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6709 key.offset == owner_objectid) {
6713 if (path->slots[0] - extent_slot > 5)
6718 if (!found_extent) {
6720 ret = remove_extent_backref(trans, path, NULL,
6722 is_data, &last_ref);
6724 btrfs_abort_transaction(trans, ret);
6727 btrfs_release_path(path);
6728 path->leave_spinning = 1;
6730 key.objectid = bytenr;
6731 key.type = BTRFS_EXTENT_ITEM_KEY;
6732 key.offset = num_bytes;
6734 if (!is_data && skinny_metadata) {
6735 key.type = BTRFS_METADATA_ITEM_KEY;
6736 key.offset = owner_objectid;
6739 ret = btrfs_search_slot(trans, extent_root,
6741 if (ret > 0 && skinny_metadata && path->slots[0]) {
6743 * Couldn't find our skinny metadata item,
6744 * see if we have ye olde extent item.
6747 btrfs_item_key_to_cpu(path->nodes[0], &key,
6749 if (key.objectid == bytenr &&
6750 key.type == BTRFS_EXTENT_ITEM_KEY &&
6751 key.offset == num_bytes)
6755 if (ret > 0 && skinny_metadata) {
6756 skinny_metadata = false;
6757 key.objectid = bytenr;
6758 key.type = BTRFS_EXTENT_ITEM_KEY;
6759 key.offset = num_bytes;
6760 btrfs_release_path(path);
6761 ret = btrfs_search_slot(trans, extent_root,
6767 "umm, got %d back from search, was looking for %llu",
6770 btrfs_print_leaf(path->nodes[0]);
6773 btrfs_abort_transaction(trans, ret);
6776 extent_slot = path->slots[0];
6778 } else if (WARN_ON(ret == -ENOENT)) {
6779 btrfs_print_leaf(path->nodes[0]);
6781 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6782 bytenr, parent, root_objectid, owner_objectid,
6784 btrfs_abort_transaction(trans, ret);
6787 btrfs_abort_transaction(trans, ret);
6791 leaf = path->nodes[0];
6792 item_size = btrfs_item_size_nr(leaf, extent_slot);
6793 if (unlikely(item_size < sizeof(*ei))) {
6795 btrfs_print_v0_err(info);
6796 btrfs_abort_transaction(trans, ret);
6799 ei = btrfs_item_ptr(leaf, extent_slot,
6800 struct btrfs_extent_item);
6801 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6802 key.type == BTRFS_EXTENT_ITEM_KEY) {
6803 struct btrfs_tree_block_info *bi;
6804 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6805 bi = (struct btrfs_tree_block_info *)(ei + 1);
6806 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6809 refs = btrfs_extent_refs(leaf, ei);
6810 if (refs < refs_to_drop) {
6812 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
6813 refs_to_drop, refs, bytenr);
6815 btrfs_abort_transaction(trans, ret);
6818 refs -= refs_to_drop;
6822 __run_delayed_extent_op(extent_op, leaf, ei);
6824 * In the case of inline back ref, reference count will
6825 * be updated by remove_extent_backref
6828 BUG_ON(!found_extent);
6830 btrfs_set_extent_refs(leaf, ei, refs);
6831 btrfs_mark_buffer_dirty(leaf);
6834 ret = remove_extent_backref(trans, path, iref,
6835 refs_to_drop, is_data,
6838 btrfs_abort_transaction(trans, ret);
6844 BUG_ON(is_data && refs_to_drop !=
6845 extent_data_ref_count(path, iref));
6847 BUG_ON(path->slots[0] != extent_slot);
6849 BUG_ON(path->slots[0] != extent_slot + 1);
6850 path->slots[0] = extent_slot;
6856 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6859 btrfs_abort_transaction(trans, ret);
6862 btrfs_release_path(path);
6865 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
6867 btrfs_abort_transaction(trans, ret);
6872 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
6874 btrfs_abort_transaction(trans, ret);
6878 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
6880 btrfs_abort_transaction(trans, ret);
6884 btrfs_release_path(path);
6887 btrfs_free_path(path);
6892 * when we free an block, it is possible (and likely) that we free the last
6893 * delayed ref for that extent as well. This searches the delayed ref tree for
6894 * a given extent, and if there are no other delayed refs to be processed, it
6895 * removes it from the tree.
6897 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6900 struct btrfs_delayed_ref_head *head;
6901 struct btrfs_delayed_ref_root *delayed_refs;
6904 delayed_refs = &trans->transaction->delayed_refs;
6905 spin_lock(&delayed_refs->lock);
6906 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
6908 goto out_delayed_unlock;
6910 spin_lock(&head->lock);
6911 if (!RB_EMPTY_ROOT(&head->ref_tree))
6914 if (head->extent_op) {
6915 if (!head->must_insert_reserved)
6917 btrfs_free_delayed_extent_op(head->extent_op);
6918 head->extent_op = NULL;
6922 * waiting for the lock here would deadlock. If someone else has it
6923 * locked they are already in the process of dropping it anyway
6925 if (!mutex_trylock(&head->mutex))
6929 * at this point we have a head with no other entries. Go
6930 * ahead and process it.
6932 rb_erase(&head->href_node, &delayed_refs->href_root);
6933 RB_CLEAR_NODE(&head->href_node);
6934 atomic_dec(&delayed_refs->num_entries);
6937 * we don't take a ref on the node because we're removing it from the
6938 * tree, so we just steal the ref the tree was holding.
6940 delayed_refs->num_heads--;
6941 if (head->processing == 0)
6942 delayed_refs->num_heads_ready--;
6943 head->processing = 0;
6944 spin_unlock(&head->lock);
6945 spin_unlock(&delayed_refs->lock);
6947 BUG_ON(head->extent_op);
6948 if (head->must_insert_reserved)
6951 mutex_unlock(&head->mutex);
6952 btrfs_put_delayed_ref_head(head);
6955 spin_unlock(&head->lock);
6958 spin_unlock(&delayed_refs->lock);
6962 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6963 struct btrfs_root *root,
6964 struct extent_buffer *buf,
6965 u64 parent, int last_ref)
6967 struct btrfs_fs_info *fs_info = root->fs_info;
6971 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6972 int old_ref_mod, new_ref_mod;
6974 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
6975 root->root_key.objectid,
6976 btrfs_header_level(buf), 0,
6977 BTRFS_DROP_DELAYED_REF);
6978 ret = btrfs_add_delayed_tree_ref(trans, buf->start,
6980 root->root_key.objectid,
6981 btrfs_header_level(buf),
6982 BTRFS_DROP_DELAYED_REF, NULL,
6983 &old_ref_mod, &new_ref_mod);
6984 BUG_ON(ret); /* -ENOMEM */
6985 pin = old_ref_mod >= 0 && new_ref_mod < 0;
6988 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
6989 struct btrfs_block_group_cache *cache;
6991 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6992 ret = check_ref_cleanup(trans, buf->start);
6998 cache = btrfs_lookup_block_group(fs_info, buf->start);
7000 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7001 pin_down_extent(fs_info, cache, buf->start,
7003 btrfs_put_block_group(cache);
7007 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7009 btrfs_add_free_space(cache, buf->start, buf->len);
7010 btrfs_free_reserved_bytes(cache, buf->len, 0);
7011 btrfs_put_block_group(cache);
7012 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7016 add_pinned_bytes(fs_info, buf->len, true,
7017 root->root_key.objectid);
7021 * Deleting the buffer, clear the corrupt flag since it doesn't
7024 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7028 /* Can return -ENOMEM */
7029 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7030 struct btrfs_root *root,
7031 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7032 u64 owner, u64 offset)
7034 struct btrfs_fs_info *fs_info = root->fs_info;
7035 int old_ref_mod, new_ref_mod;
7038 if (btrfs_is_testing(fs_info))
7041 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7042 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7043 root_objectid, owner, offset,
7044 BTRFS_DROP_DELAYED_REF);
7047 * tree log blocks never actually go into the extent allocation
7048 * tree, just update pinning info and exit early.
7050 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7051 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7052 /* unlocks the pinned mutex */
7053 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7054 old_ref_mod = new_ref_mod = 0;
7056 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7057 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
7059 root_objectid, (int)owner,
7060 BTRFS_DROP_DELAYED_REF, NULL,
7061 &old_ref_mod, &new_ref_mod);
7063 ret = btrfs_add_delayed_data_ref(trans, bytenr,
7065 root_objectid, owner, offset,
7066 0, BTRFS_DROP_DELAYED_REF,
7067 &old_ref_mod, &new_ref_mod);
7070 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) {
7071 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
7073 add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid);
7080 * when we wait for progress in the block group caching, its because
7081 * our allocation attempt failed at least once. So, we must sleep
7082 * and let some progress happen before we try again.
7084 * This function will sleep at least once waiting for new free space to
7085 * show up, and then it will check the block group free space numbers
7086 * for our min num_bytes. Another option is to have it go ahead
7087 * and look in the rbtree for a free extent of a given size, but this
7090 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7091 * any of the information in this block group.
7093 static noinline void
7094 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7097 struct btrfs_caching_control *caching_ctl;
7099 caching_ctl = get_caching_control(cache);
7103 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7104 (cache->free_space_ctl->free_space >= num_bytes));
7106 put_caching_control(caching_ctl);
7110 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7112 struct btrfs_caching_control *caching_ctl;
7115 caching_ctl = get_caching_control(cache);
7117 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7119 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7120 if (cache->cached == BTRFS_CACHE_ERROR)
7122 put_caching_control(caching_ctl);
7126 enum btrfs_loop_type {
7127 LOOP_CACHING_NOWAIT = 0,
7128 LOOP_CACHING_WAIT = 1,
7129 LOOP_ALLOC_CHUNK = 2,
7130 LOOP_NO_EMPTY_SIZE = 3,
7134 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7138 down_read(&cache->data_rwsem);
7142 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7145 btrfs_get_block_group(cache);
7147 down_read(&cache->data_rwsem);
7150 static struct btrfs_block_group_cache *
7151 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7152 struct btrfs_free_cluster *cluster,
7155 struct btrfs_block_group_cache *used_bg = NULL;
7157 spin_lock(&cluster->refill_lock);
7159 used_bg = cluster->block_group;
7163 if (used_bg == block_group)
7166 btrfs_get_block_group(used_bg);
7171 if (down_read_trylock(&used_bg->data_rwsem))
7174 spin_unlock(&cluster->refill_lock);
7176 /* We should only have one-level nested. */
7177 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7179 spin_lock(&cluster->refill_lock);
7180 if (used_bg == cluster->block_group)
7183 up_read(&used_bg->data_rwsem);
7184 btrfs_put_block_group(used_bg);
7189 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7193 up_read(&cache->data_rwsem);
7194 btrfs_put_block_group(cache);
7198 * walks the btree of allocated extents and find a hole of a given size.
7199 * The key ins is changed to record the hole:
7200 * ins->objectid == start position
7201 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7202 * ins->offset == the size of the hole.
7203 * Any available blocks before search_start are skipped.
7205 * If there is no suitable free space, we will record the max size of
7206 * the free space extent currently.
7208 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7209 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7210 u64 hint_byte, struct btrfs_key *ins,
7211 u64 flags, int delalloc)
7214 struct btrfs_root *root = fs_info->extent_root;
7215 struct btrfs_free_cluster *last_ptr = NULL;
7216 struct btrfs_block_group_cache *block_group = NULL;
7217 u64 search_start = 0;
7218 u64 max_extent_size = 0;
7219 u64 empty_cluster = 0;
7220 struct btrfs_space_info *space_info;
7222 int index = btrfs_bg_flags_to_raid_index(flags);
7223 bool failed_cluster_refill = false;
7224 bool failed_alloc = false;
7225 bool use_cluster = true;
7226 bool have_caching_bg = false;
7227 bool orig_have_caching_bg = false;
7228 bool full_search = false;
7230 WARN_ON(num_bytes < fs_info->sectorsize);
7231 ins->type = BTRFS_EXTENT_ITEM_KEY;
7235 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7237 space_info = __find_space_info(fs_info, flags);
7239 btrfs_err(fs_info, "No space info for %llu", flags);
7244 * If our free space is heavily fragmented we may not be able to make
7245 * big contiguous allocations, so instead of doing the expensive search
7246 * for free space, simply return ENOSPC with our max_extent_size so we
7247 * can go ahead and search for a more manageable chunk.
7249 * If our max_extent_size is large enough for our allocation simply
7250 * disable clustering since we will likely not be able to find enough
7251 * space to create a cluster and induce latency trying.
7253 if (unlikely(space_info->max_extent_size)) {
7254 spin_lock(&space_info->lock);
7255 if (space_info->max_extent_size &&
7256 num_bytes > space_info->max_extent_size) {
7257 ins->offset = space_info->max_extent_size;
7258 spin_unlock(&space_info->lock);
7260 } else if (space_info->max_extent_size) {
7261 use_cluster = false;
7263 spin_unlock(&space_info->lock);
7266 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7268 spin_lock(&last_ptr->lock);
7269 if (last_ptr->block_group)
7270 hint_byte = last_ptr->window_start;
7271 if (last_ptr->fragmented) {
7273 * We still set window_start so we can keep track of the
7274 * last place we found an allocation to try and save
7277 hint_byte = last_ptr->window_start;
7278 use_cluster = false;
7280 spin_unlock(&last_ptr->lock);
7283 search_start = max(search_start, first_logical_byte(fs_info, 0));
7284 search_start = max(search_start, hint_byte);
7285 if (search_start == hint_byte) {
7286 block_group = btrfs_lookup_block_group(fs_info, search_start);
7288 * we don't want to use the block group if it doesn't match our
7289 * allocation bits, or if its not cached.
7291 * However if we are re-searching with an ideal block group
7292 * picked out then we don't care that the block group is cached.
7294 if (block_group && block_group_bits(block_group, flags) &&
7295 block_group->cached != BTRFS_CACHE_NO) {
7296 down_read(&space_info->groups_sem);
7297 if (list_empty(&block_group->list) ||
7300 * someone is removing this block group,
7301 * we can't jump into the have_block_group
7302 * target because our list pointers are not
7305 btrfs_put_block_group(block_group);
7306 up_read(&space_info->groups_sem);
7308 index = btrfs_bg_flags_to_raid_index(
7309 block_group->flags);
7310 btrfs_lock_block_group(block_group, delalloc);
7311 goto have_block_group;
7313 } else if (block_group) {
7314 btrfs_put_block_group(block_group);
7318 have_caching_bg = false;
7319 if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags))
7321 down_read(&space_info->groups_sem);
7322 list_for_each_entry(block_group, &space_info->block_groups[index],
7327 /* If the block group is read-only, we can skip it entirely. */
7328 if (unlikely(block_group->ro))
7331 btrfs_grab_block_group(block_group, delalloc);
7332 search_start = block_group->key.objectid;
7335 * this can happen if we end up cycling through all the
7336 * raid types, but we want to make sure we only allocate
7337 * for the proper type.
7339 if (!block_group_bits(block_group, flags)) {
7340 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7341 BTRFS_BLOCK_GROUP_RAID1 |
7342 BTRFS_BLOCK_GROUP_RAID5 |
7343 BTRFS_BLOCK_GROUP_RAID6 |
7344 BTRFS_BLOCK_GROUP_RAID10;
7347 * if they asked for extra copies and this block group
7348 * doesn't provide them, bail. This does allow us to
7349 * fill raid0 from raid1.
7351 if ((flags & extra) && !(block_group->flags & extra))
7356 cached = block_group_cache_done(block_group);
7357 if (unlikely(!cached)) {
7358 have_caching_bg = true;
7359 ret = cache_block_group(block_group, 0);
7364 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7368 * Ok we want to try and use the cluster allocator, so
7371 if (last_ptr && use_cluster) {
7372 struct btrfs_block_group_cache *used_block_group;
7373 unsigned long aligned_cluster;
7375 * the refill lock keeps out other
7376 * people trying to start a new cluster
7378 used_block_group = btrfs_lock_cluster(block_group,
7381 if (!used_block_group)
7382 goto refill_cluster;
7384 if (used_block_group != block_group &&
7385 (used_block_group->ro ||
7386 !block_group_bits(used_block_group, flags)))
7387 goto release_cluster;
7389 offset = btrfs_alloc_from_cluster(used_block_group,
7392 used_block_group->key.objectid,
7395 /* we have a block, we're done */
7396 spin_unlock(&last_ptr->refill_lock);
7397 trace_btrfs_reserve_extent_cluster(
7399 search_start, num_bytes);
7400 if (used_block_group != block_group) {
7401 btrfs_release_block_group(block_group,
7403 block_group = used_block_group;
7408 WARN_ON(last_ptr->block_group != used_block_group);
7410 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7411 * set up a new clusters, so lets just skip it
7412 * and let the allocator find whatever block
7413 * it can find. If we reach this point, we
7414 * will have tried the cluster allocator
7415 * plenty of times and not have found
7416 * anything, so we are likely way too
7417 * fragmented for the clustering stuff to find
7420 * However, if the cluster is taken from the
7421 * current block group, release the cluster
7422 * first, so that we stand a better chance of
7423 * succeeding in the unclustered
7425 if (loop >= LOOP_NO_EMPTY_SIZE &&
7426 used_block_group != block_group) {
7427 spin_unlock(&last_ptr->refill_lock);
7428 btrfs_release_block_group(used_block_group,
7430 goto unclustered_alloc;
7434 * this cluster didn't work out, free it and
7437 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7439 if (used_block_group != block_group)
7440 btrfs_release_block_group(used_block_group,
7443 if (loop >= LOOP_NO_EMPTY_SIZE) {
7444 spin_unlock(&last_ptr->refill_lock);
7445 goto unclustered_alloc;
7448 aligned_cluster = max_t(unsigned long,
7449 empty_cluster + empty_size,
7450 block_group->full_stripe_len);
7452 /* allocate a cluster in this block group */
7453 ret = btrfs_find_space_cluster(fs_info, block_group,
7454 last_ptr, search_start,
7459 * now pull our allocation out of this
7462 offset = btrfs_alloc_from_cluster(block_group,
7468 /* we found one, proceed */
7469 spin_unlock(&last_ptr->refill_lock);
7470 trace_btrfs_reserve_extent_cluster(
7471 block_group, search_start,
7475 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7476 && !failed_cluster_refill) {
7477 spin_unlock(&last_ptr->refill_lock);
7479 failed_cluster_refill = true;
7480 wait_block_group_cache_progress(block_group,
7481 num_bytes + empty_cluster + empty_size);
7482 goto have_block_group;
7486 * at this point we either didn't find a cluster
7487 * or we weren't able to allocate a block from our
7488 * cluster. Free the cluster we've been trying
7489 * to use, and go to the next block group
7491 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7492 spin_unlock(&last_ptr->refill_lock);
7498 * We are doing an unclustered alloc, set the fragmented flag so
7499 * we don't bother trying to setup a cluster again until we get
7502 if (unlikely(last_ptr)) {
7503 spin_lock(&last_ptr->lock);
7504 last_ptr->fragmented = 1;
7505 spin_unlock(&last_ptr->lock);
7508 struct btrfs_free_space_ctl *ctl =
7509 block_group->free_space_ctl;
7511 spin_lock(&ctl->tree_lock);
7512 if (ctl->free_space <
7513 num_bytes + empty_cluster + empty_size) {
7514 if (ctl->free_space > max_extent_size)
7515 max_extent_size = ctl->free_space;
7516 spin_unlock(&ctl->tree_lock);
7519 spin_unlock(&ctl->tree_lock);
7522 offset = btrfs_find_space_for_alloc(block_group, search_start,
7523 num_bytes, empty_size,
7526 * If we didn't find a chunk, and we haven't failed on this
7527 * block group before, and this block group is in the middle of
7528 * caching and we are ok with waiting, then go ahead and wait
7529 * for progress to be made, and set failed_alloc to true.
7531 * If failed_alloc is true then we've already waited on this
7532 * block group once and should move on to the next block group.
7534 if (!offset && !failed_alloc && !cached &&
7535 loop > LOOP_CACHING_NOWAIT) {
7536 wait_block_group_cache_progress(block_group,
7537 num_bytes + empty_size);
7538 failed_alloc = true;
7539 goto have_block_group;
7540 } else if (!offset) {
7544 search_start = round_up(offset, fs_info->stripesize);
7546 /* move on to the next group */
7547 if (search_start + num_bytes >
7548 block_group->key.objectid + block_group->key.offset) {
7549 btrfs_add_free_space(block_group, offset, num_bytes);
7553 if (offset < search_start)
7554 btrfs_add_free_space(block_group, offset,
7555 search_start - offset);
7557 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7558 num_bytes, delalloc);
7559 if (ret == -EAGAIN) {
7560 btrfs_add_free_space(block_group, offset, num_bytes);
7563 btrfs_inc_block_group_reservations(block_group);
7565 /* we are all good, lets return */
7566 ins->objectid = search_start;
7567 ins->offset = num_bytes;
7569 trace_btrfs_reserve_extent(block_group, search_start, num_bytes);
7570 btrfs_release_block_group(block_group, delalloc);
7573 failed_cluster_refill = false;
7574 failed_alloc = false;
7575 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7577 btrfs_release_block_group(block_group, delalloc);
7580 up_read(&space_info->groups_sem);
7582 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7583 && !orig_have_caching_bg)
7584 orig_have_caching_bg = true;
7586 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7589 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7593 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7594 * caching kthreads as we move along
7595 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7596 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7597 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7600 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7602 if (loop == LOOP_CACHING_NOWAIT) {
7604 * We want to skip the LOOP_CACHING_WAIT step if we
7605 * don't have any uncached bgs and we've already done a
7606 * full search through.
7608 if (orig_have_caching_bg || !full_search)
7609 loop = LOOP_CACHING_WAIT;
7611 loop = LOOP_ALLOC_CHUNK;
7616 if (loop == LOOP_ALLOC_CHUNK) {
7617 struct btrfs_trans_handle *trans;
7620 trans = current->journal_info;
7624 trans = btrfs_join_transaction(root);
7626 if (IS_ERR(trans)) {
7627 ret = PTR_ERR(trans);
7631 ret = do_chunk_alloc(trans, flags, CHUNK_ALLOC_FORCE);
7634 * If we can't allocate a new chunk we've already looped
7635 * through at least once, move on to the NO_EMPTY_SIZE
7639 loop = LOOP_NO_EMPTY_SIZE;
7642 * Do not bail out on ENOSPC since we
7643 * can do more things.
7645 if (ret < 0 && ret != -ENOSPC)
7646 btrfs_abort_transaction(trans, ret);
7650 btrfs_end_transaction(trans);
7655 if (loop == LOOP_NO_EMPTY_SIZE) {
7657 * Don't loop again if we already have no empty_size and
7660 if (empty_size == 0 &&
7661 empty_cluster == 0) {
7670 } else if (!ins->objectid) {
7672 } else if (ins->objectid) {
7673 if (!use_cluster && last_ptr) {
7674 spin_lock(&last_ptr->lock);
7675 last_ptr->window_start = ins->objectid;
7676 spin_unlock(&last_ptr->lock);
7681 if (ret == -ENOSPC) {
7682 spin_lock(&space_info->lock);
7683 space_info->max_extent_size = max_extent_size;
7684 spin_unlock(&space_info->lock);
7685 ins->offset = max_extent_size;
7690 static void dump_space_info(struct btrfs_fs_info *fs_info,
7691 struct btrfs_space_info *info, u64 bytes,
7692 int dump_block_groups)
7694 struct btrfs_block_group_cache *cache;
7697 spin_lock(&info->lock);
7698 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7700 info->total_bytes - btrfs_space_info_used(info, true),
7701 info->full ? "" : "not ");
7703 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7704 info->total_bytes, info->bytes_used, info->bytes_pinned,
7705 info->bytes_reserved, info->bytes_may_use,
7706 info->bytes_readonly);
7707 spin_unlock(&info->lock);
7709 if (!dump_block_groups)
7712 down_read(&info->groups_sem);
7714 list_for_each_entry(cache, &info->block_groups[index], list) {
7715 spin_lock(&cache->lock);
7717 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7718 cache->key.objectid, cache->key.offset,
7719 btrfs_block_group_used(&cache->item), cache->pinned,
7720 cache->reserved, cache->ro ? "[readonly]" : "");
7721 btrfs_dump_free_space(cache, bytes);
7722 spin_unlock(&cache->lock);
7724 if (++index < BTRFS_NR_RAID_TYPES)
7726 up_read(&info->groups_sem);
7730 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
7731 * hole that is at least as big as @num_bytes.
7733 * @root - The root that will contain this extent
7735 * @ram_bytes - The amount of space in ram that @num_bytes take. This
7736 * is used for accounting purposes. This value differs
7737 * from @num_bytes only in the case of compressed extents.
7739 * @num_bytes - Number of bytes to allocate on-disk.
7741 * @min_alloc_size - Indicates the minimum amount of space that the
7742 * allocator should try to satisfy. In some cases
7743 * @num_bytes may be larger than what is required and if
7744 * the filesystem is fragmented then allocation fails.
7745 * However, the presence of @min_alloc_size gives a
7746 * chance to try and satisfy the smaller allocation.
7748 * @empty_size - A hint that you plan on doing more COW. This is the
7749 * size in bytes the allocator should try to find free
7750 * next to the block it returns. This is just a hint and
7751 * may be ignored by the allocator.
7753 * @hint_byte - Hint to the allocator to start searching above the byte
7754 * address passed. It might be ignored.
7756 * @ins - This key is modified to record the found hole. It will
7757 * have the following values:
7758 * ins->objectid == start position
7759 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7760 * ins->offset == the size of the hole.
7762 * @is_data - Boolean flag indicating whether an extent is
7763 * allocated for data (true) or metadata (false)
7765 * @delalloc - Boolean flag indicating whether this allocation is for
7766 * delalloc or not. If 'true' data_rwsem of block groups
7767 * is going to be acquired.
7770 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
7771 * case -ENOSPC is returned then @ins->offset will contain the size of the
7772 * largest available hole the allocator managed to find.
7774 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7775 u64 num_bytes, u64 min_alloc_size,
7776 u64 empty_size, u64 hint_byte,
7777 struct btrfs_key *ins, int is_data, int delalloc)
7779 struct btrfs_fs_info *fs_info = root->fs_info;
7780 bool final_tried = num_bytes == min_alloc_size;
7784 flags = get_alloc_profile_by_root(root, is_data);
7786 WARN_ON(num_bytes < fs_info->sectorsize);
7787 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
7788 hint_byte, ins, flags, delalloc);
7789 if (!ret && !is_data) {
7790 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
7791 } else if (ret == -ENOSPC) {
7792 if (!final_tried && ins->offset) {
7793 num_bytes = min(num_bytes >> 1, ins->offset);
7794 num_bytes = round_down(num_bytes,
7795 fs_info->sectorsize);
7796 num_bytes = max(num_bytes, min_alloc_size);
7797 ram_bytes = num_bytes;
7798 if (num_bytes == min_alloc_size)
7801 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
7802 struct btrfs_space_info *sinfo;
7804 sinfo = __find_space_info(fs_info, flags);
7806 "allocation failed flags %llu, wanted %llu",
7809 dump_space_info(fs_info, sinfo, num_bytes, 1);
7816 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
7818 int pin, int delalloc)
7820 struct btrfs_block_group_cache *cache;
7823 cache = btrfs_lookup_block_group(fs_info, start);
7825 btrfs_err(fs_info, "Unable to find block group for %llu",
7831 pin_down_extent(fs_info, cache, start, len, 1);
7833 if (btrfs_test_opt(fs_info, DISCARD))
7834 ret = btrfs_discard_extent(fs_info, start, len, NULL);
7835 btrfs_add_free_space(cache, start, len);
7836 btrfs_free_reserved_bytes(cache, len, delalloc);
7837 trace_btrfs_reserved_extent_free(fs_info, start, len);
7840 btrfs_put_block_group(cache);
7844 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
7845 u64 start, u64 len, int delalloc)
7847 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
7850 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
7853 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
7856 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7857 u64 parent, u64 root_objectid,
7858 u64 flags, u64 owner, u64 offset,
7859 struct btrfs_key *ins, int ref_mod)
7861 struct btrfs_fs_info *fs_info = trans->fs_info;
7863 struct btrfs_extent_item *extent_item;
7864 struct btrfs_extent_inline_ref *iref;
7865 struct btrfs_path *path;
7866 struct extent_buffer *leaf;
7871 type = BTRFS_SHARED_DATA_REF_KEY;
7873 type = BTRFS_EXTENT_DATA_REF_KEY;
7875 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7877 path = btrfs_alloc_path();
7881 path->leave_spinning = 1;
7882 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7885 btrfs_free_path(path);
7889 leaf = path->nodes[0];
7890 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7891 struct btrfs_extent_item);
7892 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7893 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7894 btrfs_set_extent_flags(leaf, extent_item,
7895 flags | BTRFS_EXTENT_FLAG_DATA);
7897 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7898 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7900 struct btrfs_shared_data_ref *ref;
7901 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7902 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7903 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7905 struct btrfs_extent_data_ref *ref;
7906 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7907 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7908 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7909 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7910 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7913 btrfs_mark_buffer_dirty(path->nodes[0]);
7914 btrfs_free_path(path);
7916 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
7920 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
7921 if (ret) { /* -ENOENT, logic error */
7922 btrfs_err(fs_info, "update block group failed for %llu %llu",
7923 ins->objectid, ins->offset);
7926 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
7930 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7931 struct btrfs_delayed_ref_node *node,
7932 struct btrfs_delayed_extent_op *extent_op)
7934 struct btrfs_fs_info *fs_info = trans->fs_info;
7936 struct btrfs_extent_item *extent_item;
7937 struct btrfs_key extent_key;
7938 struct btrfs_tree_block_info *block_info;
7939 struct btrfs_extent_inline_ref *iref;
7940 struct btrfs_path *path;
7941 struct extent_buffer *leaf;
7942 struct btrfs_delayed_tree_ref *ref;
7943 u32 size = sizeof(*extent_item) + sizeof(*iref);
7945 u64 flags = extent_op->flags_to_set;
7946 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
7948 ref = btrfs_delayed_node_to_tree_ref(node);
7950 extent_key.objectid = node->bytenr;
7951 if (skinny_metadata) {
7952 extent_key.offset = ref->level;
7953 extent_key.type = BTRFS_METADATA_ITEM_KEY;
7954 num_bytes = fs_info->nodesize;
7956 extent_key.offset = node->num_bytes;
7957 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
7958 size += sizeof(*block_info);
7959 num_bytes = node->num_bytes;
7962 path = btrfs_alloc_path();
7964 btrfs_free_and_pin_reserved_extent(fs_info,
7965 extent_key.objectid,
7970 path->leave_spinning = 1;
7971 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7974 btrfs_free_path(path);
7975 btrfs_free_and_pin_reserved_extent(fs_info,
7976 extent_key.objectid,
7981 leaf = path->nodes[0];
7982 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7983 struct btrfs_extent_item);
7984 btrfs_set_extent_refs(leaf, extent_item, 1);
7985 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7986 btrfs_set_extent_flags(leaf, extent_item,
7987 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7989 if (skinny_metadata) {
7990 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7992 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7993 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
7994 btrfs_set_tree_block_level(leaf, block_info, ref->level);
7995 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7998 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
7999 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8000 btrfs_set_extent_inline_ref_type(leaf, iref,
8001 BTRFS_SHARED_BLOCK_REF_KEY);
8002 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
8004 btrfs_set_extent_inline_ref_type(leaf, iref,
8005 BTRFS_TREE_BLOCK_REF_KEY);
8006 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
8009 btrfs_mark_buffer_dirty(leaf);
8010 btrfs_free_path(path);
8012 ret = remove_from_free_space_tree(trans, extent_key.objectid,
8017 ret = update_block_group(trans, fs_info, extent_key.objectid,
8018 fs_info->nodesize, 1);
8019 if (ret) { /* -ENOENT, logic error */
8020 btrfs_err(fs_info, "update block group failed for %llu %llu",
8021 extent_key.objectid, extent_key.offset);
8025 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
8030 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8031 struct btrfs_root *root, u64 owner,
8032 u64 offset, u64 ram_bytes,
8033 struct btrfs_key *ins)
8037 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8039 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8040 root->root_key.objectid, owner, offset,
8041 BTRFS_ADD_DELAYED_EXTENT);
8043 ret = btrfs_add_delayed_data_ref(trans, ins->objectid,
8045 root->root_key.objectid, owner,
8047 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8052 * this is used by the tree logging recovery code. It records that
8053 * an extent has been allocated and makes sure to clear the free
8054 * space cache bits as well
8056 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8057 u64 root_objectid, u64 owner, u64 offset,
8058 struct btrfs_key *ins)
8060 struct btrfs_fs_info *fs_info = trans->fs_info;
8062 struct btrfs_block_group_cache *block_group;
8063 struct btrfs_space_info *space_info;
8066 * Mixed block groups will exclude before processing the log so we only
8067 * need to do the exclude dance if this fs isn't mixed.
8069 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8070 ret = __exclude_logged_extent(fs_info, ins->objectid,
8076 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8080 space_info = block_group->space_info;
8081 spin_lock(&space_info->lock);
8082 spin_lock(&block_group->lock);
8083 space_info->bytes_reserved += ins->offset;
8084 block_group->reserved += ins->offset;
8085 spin_unlock(&block_group->lock);
8086 spin_unlock(&space_info->lock);
8088 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
8090 btrfs_put_block_group(block_group);
8094 static struct extent_buffer *
8095 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8096 u64 bytenr, int level, u64 owner)
8098 struct btrfs_fs_info *fs_info = root->fs_info;
8099 struct extent_buffer *buf;
8101 buf = btrfs_find_create_tree_block(fs_info, bytenr);
8106 * Extra safety check in case the extent tree is corrupted and extent
8107 * allocator chooses to use a tree block which is already used and
8110 if (buf->lock_owner == current->pid) {
8111 btrfs_err_rl(fs_info,
8112 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
8113 buf->start, btrfs_header_owner(buf), current->pid);
8114 free_extent_buffer(buf);
8115 return ERR_PTR(-EUCLEAN);
8118 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8119 btrfs_tree_lock(buf);
8120 clean_tree_block(fs_info, buf);
8121 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8123 btrfs_set_lock_blocking(buf);
8124 set_extent_buffer_uptodate(buf);
8126 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
8127 btrfs_set_header_level(buf, level);
8128 btrfs_set_header_bytenr(buf, buf->start);
8129 btrfs_set_header_generation(buf, trans->transid);
8130 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
8131 btrfs_set_header_owner(buf, owner);
8132 write_extent_buffer_fsid(buf, fs_info->fsid);
8133 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
8134 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8135 buf->log_index = root->log_transid % 2;
8137 * we allow two log transactions at a time, use different
8138 * EXENT bit to differentiate dirty pages.
8140 if (buf->log_index == 0)
8141 set_extent_dirty(&root->dirty_log_pages, buf->start,
8142 buf->start + buf->len - 1, GFP_NOFS);
8144 set_extent_new(&root->dirty_log_pages, buf->start,
8145 buf->start + buf->len - 1);
8147 buf->log_index = -1;
8148 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8149 buf->start + buf->len - 1, GFP_NOFS);
8151 trans->dirty = true;
8152 /* this returns a buffer locked for blocking */
8156 static struct btrfs_block_rsv *
8157 use_block_rsv(struct btrfs_trans_handle *trans,
8158 struct btrfs_root *root, u32 blocksize)
8160 struct btrfs_fs_info *fs_info = root->fs_info;
8161 struct btrfs_block_rsv *block_rsv;
8162 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8164 bool global_updated = false;
8166 block_rsv = get_block_rsv(trans, root);
8168 if (unlikely(block_rsv->size == 0))
8171 ret = block_rsv_use_bytes(block_rsv, blocksize);
8175 if (block_rsv->failfast)
8176 return ERR_PTR(ret);
8178 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8179 global_updated = true;
8180 update_global_block_rsv(fs_info);
8184 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8185 static DEFINE_RATELIMIT_STATE(_rs,
8186 DEFAULT_RATELIMIT_INTERVAL * 10,
8187 /*DEFAULT_RATELIMIT_BURST*/ 1);
8188 if (__ratelimit(&_rs))
8190 "BTRFS: block rsv returned %d\n", ret);
8193 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8194 BTRFS_RESERVE_NO_FLUSH);
8198 * If we couldn't reserve metadata bytes try and use some from
8199 * the global reserve if its space type is the same as the global
8202 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8203 block_rsv->space_info == global_rsv->space_info) {
8204 ret = block_rsv_use_bytes(global_rsv, blocksize);
8208 return ERR_PTR(ret);
8211 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8212 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8214 block_rsv_add_bytes(block_rsv, blocksize, false);
8215 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
8219 * finds a free extent and does all the dirty work required for allocation
8220 * returns the tree buffer or an ERR_PTR on error.
8222 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8223 struct btrfs_root *root,
8224 u64 parent, u64 root_objectid,
8225 const struct btrfs_disk_key *key,
8226 int level, u64 hint,
8229 struct btrfs_fs_info *fs_info = root->fs_info;
8230 struct btrfs_key ins;
8231 struct btrfs_block_rsv *block_rsv;
8232 struct extent_buffer *buf;
8233 struct btrfs_delayed_extent_op *extent_op;
8236 u32 blocksize = fs_info->nodesize;
8237 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8239 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8240 if (btrfs_is_testing(fs_info)) {
8241 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8242 level, root_objectid);
8244 root->alloc_bytenr += blocksize;
8249 block_rsv = use_block_rsv(trans, root, blocksize);
8250 if (IS_ERR(block_rsv))
8251 return ERR_CAST(block_rsv);
8253 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8254 empty_size, hint, &ins, 0, 0);
8258 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
8262 goto out_free_reserved;
8265 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8267 parent = ins.objectid;
8268 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8272 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8273 extent_op = btrfs_alloc_delayed_extent_op();
8279 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8281 memset(&extent_op->key, 0, sizeof(extent_op->key));
8282 extent_op->flags_to_set = flags;
8283 extent_op->update_key = skinny_metadata ? false : true;
8284 extent_op->update_flags = true;
8285 extent_op->is_data = false;
8286 extent_op->level = level;
8288 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8289 root_objectid, level, 0,
8290 BTRFS_ADD_DELAYED_EXTENT);
8291 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
8293 root_objectid, level,
8294 BTRFS_ADD_DELAYED_EXTENT,
8295 extent_op, NULL, NULL);
8297 goto out_free_delayed;
8302 btrfs_free_delayed_extent_op(extent_op);
8304 free_extent_buffer(buf);
8306 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8308 unuse_block_rsv(fs_info, block_rsv, blocksize);
8309 return ERR_PTR(ret);
8312 struct walk_control {
8313 u64 refs[BTRFS_MAX_LEVEL];
8314 u64 flags[BTRFS_MAX_LEVEL];
8315 struct btrfs_key update_progress;
8325 #define DROP_REFERENCE 1
8326 #define UPDATE_BACKREF 2
8328 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8329 struct btrfs_root *root,
8330 struct walk_control *wc,
8331 struct btrfs_path *path)
8333 struct btrfs_fs_info *fs_info = root->fs_info;
8339 struct btrfs_key key;
8340 struct extent_buffer *eb;
8345 if (path->slots[wc->level] < wc->reada_slot) {
8346 wc->reada_count = wc->reada_count * 2 / 3;
8347 wc->reada_count = max(wc->reada_count, 2);
8349 wc->reada_count = wc->reada_count * 3 / 2;
8350 wc->reada_count = min_t(int, wc->reada_count,
8351 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8354 eb = path->nodes[wc->level];
8355 nritems = btrfs_header_nritems(eb);
8357 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8358 if (nread >= wc->reada_count)
8362 bytenr = btrfs_node_blockptr(eb, slot);
8363 generation = btrfs_node_ptr_generation(eb, slot);
8365 if (slot == path->slots[wc->level])
8368 if (wc->stage == UPDATE_BACKREF &&
8369 generation <= root->root_key.offset)
8372 /* We don't lock the tree block, it's OK to be racy here */
8373 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8374 wc->level - 1, 1, &refs,
8376 /* We don't care about errors in readahead. */
8381 if (wc->stage == DROP_REFERENCE) {
8385 if (wc->level == 1 &&
8386 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8388 if (!wc->update_ref ||
8389 generation <= root->root_key.offset)
8391 btrfs_node_key_to_cpu(eb, &key, slot);
8392 ret = btrfs_comp_cpu_keys(&key,
8393 &wc->update_progress);
8397 if (wc->level == 1 &&
8398 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8402 readahead_tree_block(fs_info, bytenr);
8405 wc->reada_slot = slot;
8409 * helper to process tree block while walking down the tree.
8411 * when wc->stage == UPDATE_BACKREF, this function updates
8412 * back refs for pointers in the block.
8414 * NOTE: return value 1 means we should stop walking down.
8416 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8417 struct btrfs_root *root,
8418 struct btrfs_path *path,
8419 struct walk_control *wc, int lookup_info)
8421 struct btrfs_fs_info *fs_info = root->fs_info;
8422 int level = wc->level;
8423 struct extent_buffer *eb = path->nodes[level];
8424 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8427 if (wc->stage == UPDATE_BACKREF &&
8428 btrfs_header_owner(eb) != root->root_key.objectid)
8432 * when reference count of tree block is 1, it won't increase
8433 * again. once full backref flag is set, we never clear it.
8436 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8437 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8438 BUG_ON(!path->locks[level]);
8439 ret = btrfs_lookup_extent_info(trans, fs_info,
8440 eb->start, level, 1,
8443 BUG_ON(ret == -ENOMEM);
8446 BUG_ON(wc->refs[level] == 0);
8449 if (wc->stage == DROP_REFERENCE) {
8450 if (wc->refs[level] > 1)
8453 if (path->locks[level] && !wc->keep_locks) {
8454 btrfs_tree_unlock_rw(eb, path->locks[level]);
8455 path->locks[level] = 0;
8460 /* wc->stage == UPDATE_BACKREF */
8461 if (!(wc->flags[level] & flag)) {
8462 BUG_ON(!path->locks[level]);
8463 ret = btrfs_inc_ref(trans, root, eb, 1);
8464 BUG_ON(ret); /* -ENOMEM */
8465 ret = btrfs_dec_ref(trans, root, eb, 0);
8466 BUG_ON(ret); /* -ENOMEM */
8467 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8469 btrfs_header_level(eb), 0);
8470 BUG_ON(ret); /* -ENOMEM */
8471 wc->flags[level] |= flag;
8475 * the block is shared by multiple trees, so it's not good to
8476 * keep the tree lock
8478 if (path->locks[level] && level > 0) {
8479 btrfs_tree_unlock_rw(eb, path->locks[level]);
8480 path->locks[level] = 0;
8486 * helper to process tree block pointer.
8488 * when wc->stage == DROP_REFERENCE, this function checks
8489 * reference count of the block pointed to. if the block
8490 * is shared and we need update back refs for the subtree
8491 * rooted at the block, this function changes wc->stage to
8492 * UPDATE_BACKREF. if the block is shared and there is no
8493 * need to update back, this function drops the reference
8496 * NOTE: return value 1 means we should stop walking down.
8498 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8499 struct btrfs_root *root,
8500 struct btrfs_path *path,
8501 struct walk_control *wc, int *lookup_info)
8503 struct btrfs_fs_info *fs_info = root->fs_info;
8508 struct btrfs_key key;
8509 struct btrfs_key first_key;
8510 struct extent_buffer *next;
8511 int level = wc->level;
8514 bool need_account = false;
8516 generation = btrfs_node_ptr_generation(path->nodes[level],
8517 path->slots[level]);
8519 * if the lower level block was created before the snapshot
8520 * was created, we know there is no need to update back refs
8523 if (wc->stage == UPDATE_BACKREF &&
8524 generation <= root->root_key.offset) {
8529 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8530 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8531 path->slots[level]);
8532 blocksize = fs_info->nodesize;
8534 next = find_extent_buffer(fs_info, bytenr);
8536 next = btrfs_find_create_tree_block(fs_info, bytenr);
8538 return PTR_ERR(next);
8540 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8544 btrfs_tree_lock(next);
8545 btrfs_set_lock_blocking(next);
8547 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8548 &wc->refs[level - 1],
8549 &wc->flags[level - 1]);
8553 if (unlikely(wc->refs[level - 1] == 0)) {
8554 btrfs_err(fs_info, "Missing references.");
8560 if (wc->stage == DROP_REFERENCE) {
8561 if (wc->refs[level - 1] > 1) {
8562 need_account = true;
8564 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8567 if (!wc->update_ref ||
8568 generation <= root->root_key.offset)
8571 btrfs_node_key_to_cpu(path->nodes[level], &key,
8572 path->slots[level]);
8573 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8577 wc->stage = UPDATE_BACKREF;
8578 wc->shared_level = level - 1;
8582 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8586 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8587 btrfs_tree_unlock(next);
8588 free_extent_buffer(next);
8594 if (reada && level == 1)
8595 reada_walk_down(trans, root, wc, path);
8596 next = read_tree_block(fs_info, bytenr, generation, level - 1,
8599 return PTR_ERR(next);
8600 } else if (!extent_buffer_uptodate(next)) {
8601 free_extent_buffer(next);
8604 btrfs_tree_lock(next);
8605 btrfs_set_lock_blocking(next);
8609 ASSERT(level == btrfs_header_level(next));
8610 if (level != btrfs_header_level(next)) {
8611 btrfs_err(root->fs_info, "mismatched level");
8615 path->nodes[level] = next;
8616 path->slots[level] = 0;
8617 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8623 wc->refs[level - 1] = 0;
8624 wc->flags[level - 1] = 0;
8625 if (wc->stage == DROP_REFERENCE) {
8626 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8627 parent = path->nodes[level]->start;
8629 ASSERT(root->root_key.objectid ==
8630 btrfs_header_owner(path->nodes[level]));
8631 if (root->root_key.objectid !=
8632 btrfs_header_owner(path->nodes[level])) {
8633 btrfs_err(root->fs_info,
8634 "mismatched block owner");
8642 ret = btrfs_qgroup_trace_subtree(trans, next,
8643 generation, level - 1);
8645 btrfs_err_rl(fs_info,
8646 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8650 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
8651 parent, root->root_key.objectid,
8661 btrfs_tree_unlock(next);
8662 free_extent_buffer(next);
8668 * helper to process tree block while walking up the tree.
8670 * when wc->stage == DROP_REFERENCE, this function drops
8671 * reference count on the block.
8673 * when wc->stage == UPDATE_BACKREF, this function changes
8674 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8675 * to UPDATE_BACKREF previously while processing the block.
8677 * NOTE: return value 1 means we should stop walking up.
8679 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8680 struct btrfs_root *root,
8681 struct btrfs_path *path,
8682 struct walk_control *wc)
8684 struct btrfs_fs_info *fs_info = root->fs_info;
8686 int level = wc->level;
8687 struct extent_buffer *eb = path->nodes[level];
8690 if (wc->stage == UPDATE_BACKREF) {
8691 BUG_ON(wc->shared_level < level);
8692 if (level < wc->shared_level)
8695 ret = find_next_key(path, level + 1, &wc->update_progress);
8699 wc->stage = DROP_REFERENCE;
8700 wc->shared_level = -1;
8701 path->slots[level] = 0;
8704 * check reference count again if the block isn't locked.
8705 * we should start walking down the tree again if reference
8708 if (!path->locks[level]) {
8710 btrfs_tree_lock(eb);
8711 btrfs_set_lock_blocking(eb);
8712 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8714 ret = btrfs_lookup_extent_info(trans, fs_info,
8715 eb->start, level, 1,
8719 btrfs_tree_unlock_rw(eb, path->locks[level]);
8720 path->locks[level] = 0;
8723 BUG_ON(wc->refs[level] == 0);
8724 if (wc->refs[level] == 1) {
8725 btrfs_tree_unlock_rw(eb, path->locks[level]);
8726 path->locks[level] = 0;
8732 /* wc->stage == DROP_REFERENCE */
8733 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8735 if (wc->refs[level] == 1) {
8737 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8738 ret = btrfs_dec_ref(trans, root, eb, 1);
8740 ret = btrfs_dec_ref(trans, root, eb, 0);
8741 BUG_ON(ret); /* -ENOMEM */
8742 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
8744 btrfs_err_rl(fs_info,
8745 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8749 /* make block locked assertion in clean_tree_block happy */
8750 if (!path->locks[level] &&
8751 btrfs_header_generation(eb) == trans->transid) {
8752 btrfs_tree_lock(eb);
8753 btrfs_set_lock_blocking(eb);
8754 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8756 clean_tree_block(fs_info, eb);
8759 if (eb == root->node) {
8760 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8762 else if (root->root_key.objectid != btrfs_header_owner(eb))
8763 goto owner_mismatch;
8765 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8766 parent = path->nodes[level + 1]->start;
8767 else if (root->root_key.objectid !=
8768 btrfs_header_owner(path->nodes[level + 1]))
8769 goto owner_mismatch;
8772 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8774 wc->refs[level] = 0;
8775 wc->flags[level] = 0;
8779 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
8780 btrfs_header_owner(eb), root->root_key.objectid);
8784 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8785 struct btrfs_root *root,
8786 struct btrfs_path *path,
8787 struct walk_control *wc)
8789 int level = wc->level;
8790 int lookup_info = 1;
8793 while (level >= 0) {
8794 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8801 if (path->slots[level] >=
8802 btrfs_header_nritems(path->nodes[level]))
8805 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8807 path->slots[level]++;
8816 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8817 struct btrfs_root *root,
8818 struct btrfs_path *path,
8819 struct walk_control *wc, int max_level)
8821 int level = wc->level;
8824 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8825 while (level < max_level && path->nodes[level]) {
8827 if (path->slots[level] + 1 <
8828 btrfs_header_nritems(path->nodes[level])) {
8829 path->slots[level]++;
8832 ret = walk_up_proc(trans, root, path, wc);
8838 if (path->locks[level]) {
8839 btrfs_tree_unlock_rw(path->nodes[level],
8840 path->locks[level]);
8841 path->locks[level] = 0;
8843 free_extent_buffer(path->nodes[level]);
8844 path->nodes[level] = NULL;
8852 * drop a subvolume tree.
8854 * this function traverses the tree freeing any blocks that only
8855 * referenced by the tree.
8857 * when a shared tree block is found. this function decreases its
8858 * reference count by one. if update_ref is true, this function
8859 * also make sure backrefs for the shared block and all lower level
8860 * blocks are properly updated.
8862 * If called with for_reloc == 0, may exit early with -EAGAIN
8864 int btrfs_drop_snapshot(struct btrfs_root *root,
8865 struct btrfs_block_rsv *block_rsv, int update_ref,
8868 struct btrfs_fs_info *fs_info = root->fs_info;
8869 struct btrfs_path *path;
8870 struct btrfs_trans_handle *trans;
8871 struct btrfs_root *tree_root = fs_info->tree_root;
8872 struct btrfs_root_item *root_item = &root->root_item;
8873 struct walk_control *wc;
8874 struct btrfs_key key;
8878 bool root_dropped = false;
8880 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
8882 path = btrfs_alloc_path();
8888 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8890 btrfs_free_path(path);
8895 trans = btrfs_start_transaction(tree_root, 0);
8896 if (IS_ERR(trans)) {
8897 err = PTR_ERR(trans);
8902 trans->block_rsv = block_rsv;
8904 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8905 level = btrfs_header_level(root->node);
8906 path->nodes[level] = btrfs_lock_root_node(root);
8907 btrfs_set_lock_blocking(path->nodes[level]);
8908 path->slots[level] = 0;
8909 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8910 memset(&wc->update_progress, 0,
8911 sizeof(wc->update_progress));
8913 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8914 memcpy(&wc->update_progress, &key,
8915 sizeof(wc->update_progress));
8917 level = root_item->drop_level;
8919 path->lowest_level = level;
8920 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8921 path->lowest_level = 0;
8929 * unlock our path, this is safe because only this
8930 * function is allowed to delete this snapshot
8932 btrfs_unlock_up_safe(path, 0);
8934 level = btrfs_header_level(root->node);
8936 btrfs_tree_lock(path->nodes[level]);
8937 btrfs_set_lock_blocking(path->nodes[level]);
8938 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8940 ret = btrfs_lookup_extent_info(trans, fs_info,
8941 path->nodes[level]->start,
8942 level, 1, &wc->refs[level],
8948 BUG_ON(wc->refs[level] == 0);
8950 if (level == root_item->drop_level)
8953 btrfs_tree_unlock(path->nodes[level]);
8954 path->locks[level] = 0;
8955 WARN_ON(wc->refs[level] != 1);
8961 wc->shared_level = -1;
8962 wc->stage = DROP_REFERENCE;
8963 wc->update_ref = update_ref;
8965 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
8969 ret = walk_down_tree(trans, root, path, wc);
8975 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8982 BUG_ON(wc->stage != DROP_REFERENCE);
8986 if (wc->stage == DROP_REFERENCE) {
8988 btrfs_node_key(path->nodes[level],
8989 &root_item->drop_progress,
8990 path->slots[level]);
8991 root_item->drop_level = level;
8994 BUG_ON(wc->level == 0);
8995 if (btrfs_should_end_transaction(trans) ||
8996 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
8997 ret = btrfs_update_root(trans, tree_root,
9001 btrfs_abort_transaction(trans, ret);
9006 btrfs_end_transaction_throttle(trans);
9007 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9008 btrfs_debug(fs_info,
9009 "drop snapshot early exit");
9014 trans = btrfs_start_transaction(tree_root, 0);
9015 if (IS_ERR(trans)) {
9016 err = PTR_ERR(trans);
9020 trans->block_rsv = block_rsv;
9023 btrfs_release_path(path);
9027 ret = btrfs_del_root(trans, &root->root_key);
9029 btrfs_abort_transaction(trans, ret);
9034 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9035 ret = btrfs_find_root(tree_root, &root->root_key, path,
9038 btrfs_abort_transaction(trans, ret);
9041 } else if (ret > 0) {
9042 /* if we fail to delete the orphan item this time
9043 * around, it'll get picked up the next time.
9045 * The most common failure here is just -ENOENT.
9047 btrfs_del_orphan_item(trans, tree_root,
9048 root->root_key.objectid);
9052 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9053 btrfs_add_dropped_root(trans, root);
9055 free_extent_buffer(root->node);
9056 free_extent_buffer(root->commit_root);
9057 btrfs_put_fs_root(root);
9059 root_dropped = true;
9061 btrfs_end_transaction_throttle(trans);
9064 btrfs_free_path(path);
9067 * So if we need to stop dropping the snapshot for whatever reason we
9068 * need to make sure to add it back to the dead root list so that we
9069 * keep trying to do the work later. This also cleans up roots if we
9070 * don't have it in the radix (like when we recover after a power fail
9071 * or unmount) so we don't leak memory.
9073 if (!for_reloc && !root_dropped)
9074 btrfs_add_dead_root(root);
9075 if (err && err != -EAGAIN)
9076 btrfs_handle_fs_error(fs_info, err, NULL);
9081 * drop subtree rooted at tree block 'node'.
9083 * NOTE: this function will unlock and release tree block 'node'
9084 * only used by relocation code
9086 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9087 struct btrfs_root *root,
9088 struct extent_buffer *node,
9089 struct extent_buffer *parent)
9091 struct btrfs_fs_info *fs_info = root->fs_info;
9092 struct btrfs_path *path;
9093 struct walk_control *wc;
9099 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9101 path = btrfs_alloc_path();
9105 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9107 btrfs_free_path(path);
9111 btrfs_assert_tree_locked(parent);
9112 parent_level = btrfs_header_level(parent);
9113 extent_buffer_get(parent);
9114 path->nodes[parent_level] = parent;
9115 path->slots[parent_level] = btrfs_header_nritems(parent);
9117 btrfs_assert_tree_locked(node);
9118 level = btrfs_header_level(node);
9119 path->nodes[level] = node;
9120 path->slots[level] = 0;
9121 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9123 wc->refs[parent_level] = 1;
9124 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9126 wc->shared_level = -1;
9127 wc->stage = DROP_REFERENCE;
9130 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9133 wret = walk_down_tree(trans, root, path, wc);
9139 wret = walk_up_tree(trans, root, path, wc, parent_level);
9147 btrfs_free_path(path);
9151 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9157 * if restripe for this chunk_type is on pick target profile and
9158 * return, otherwise do the usual balance
9160 stripped = get_restripe_target(fs_info, flags);
9162 return extended_to_chunk(stripped);
9164 num_devices = fs_info->fs_devices->rw_devices;
9166 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9167 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9168 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9170 if (num_devices == 1) {
9171 stripped |= BTRFS_BLOCK_GROUP_DUP;
9172 stripped = flags & ~stripped;
9174 /* turn raid0 into single device chunks */
9175 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9178 /* turn mirroring into duplication */
9179 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9180 BTRFS_BLOCK_GROUP_RAID10))
9181 return stripped | BTRFS_BLOCK_GROUP_DUP;
9183 /* they already had raid on here, just return */
9184 if (flags & stripped)
9187 stripped |= BTRFS_BLOCK_GROUP_DUP;
9188 stripped = flags & ~stripped;
9190 /* switch duplicated blocks with raid1 */
9191 if (flags & BTRFS_BLOCK_GROUP_DUP)
9192 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9194 /* this is drive concat, leave it alone */
9200 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9202 struct btrfs_space_info *sinfo = cache->space_info;
9204 u64 min_allocable_bytes;
9208 * We need some metadata space and system metadata space for
9209 * allocating chunks in some corner cases until we force to set
9210 * it to be readonly.
9213 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9215 min_allocable_bytes = SZ_1M;
9217 min_allocable_bytes = 0;
9219 spin_lock(&sinfo->lock);
9220 spin_lock(&cache->lock);
9228 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9229 cache->bytes_super - btrfs_block_group_used(&cache->item);
9231 if (btrfs_space_info_used(sinfo, true) + num_bytes +
9232 min_allocable_bytes <= sinfo->total_bytes) {
9233 sinfo->bytes_readonly += num_bytes;
9235 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9239 spin_unlock(&cache->lock);
9240 spin_unlock(&sinfo->lock);
9244 int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
9247 struct btrfs_fs_info *fs_info = cache->fs_info;
9248 struct btrfs_trans_handle *trans;
9253 trans = btrfs_join_transaction(fs_info->extent_root);
9255 return PTR_ERR(trans);
9258 * we're not allowed to set block groups readonly after the dirty
9259 * block groups cache has started writing. If it already started,
9260 * back off and let this transaction commit
9262 mutex_lock(&fs_info->ro_block_group_mutex);
9263 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9264 u64 transid = trans->transid;
9266 mutex_unlock(&fs_info->ro_block_group_mutex);
9267 btrfs_end_transaction(trans);
9269 ret = btrfs_wait_for_commit(fs_info, transid);
9276 * if we are changing raid levels, try to allocate a corresponding
9277 * block group with the new raid level.
9279 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9280 if (alloc_flags != cache->flags) {
9281 ret = do_chunk_alloc(trans, alloc_flags,
9284 * ENOSPC is allowed here, we may have enough space
9285 * already allocated at the new raid level to
9294 ret = inc_block_group_ro(cache, 0);
9297 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9298 ret = do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
9301 ret = inc_block_group_ro(cache, 0);
9303 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9304 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9305 mutex_lock(&fs_info->chunk_mutex);
9306 check_system_chunk(trans, alloc_flags);
9307 mutex_unlock(&fs_info->chunk_mutex);
9309 mutex_unlock(&fs_info->ro_block_group_mutex);
9311 btrfs_end_transaction(trans);
9315 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
9317 u64 alloc_flags = get_alloc_profile(trans->fs_info, type);
9319 return do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
9323 * helper to account the unused space of all the readonly block group in the
9324 * space_info. takes mirrors into account.
9326 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9328 struct btrfs_block_group_cache *block_group;
9332 /* It's df, we don't care if it's racy */
9333 if (list_empty(&sinfo->ro_bgs))
9336 spin_lock(&sinfo->lock);
9337 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9338 spin_lock(&block_group->lock);
9340 if (!block_group->ro) {
9341 spin_unlock(&block_group->lock);
9345 factor = btrfs_bg_type_to_factor(block_group->flags);
9346 free_bytes += (block_group->key.offset -
9347 btrfs_block_group_used(&block_group->item)) *
9350 spin_unlock(&block_group->lock);
9352 spin_unlock(&sinfo->lock);
9357 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9359 struct btrfs_space_info *sinfo = cache->space_info;
9364 spin_lock(&sinfo->lock);
9365 spin_lock(&cache->lock);
9367 num_bytes = cache->key.offset - cache->reserved -
9368 cache->pinned - cache->bytes_super -
9369 btrfs_block_group_used(&cache->item);
9370 sinfo->bytes_readonly -= num_bytes;
9371 list_del_init(&cache->ro_list);
9373 spin_unlock(&cache->lock);
9374 spin_unlock(&sinfo->lock);
9378 * checks to see if its even possible to relocate this block group.
9380 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9381 * ok to go ahead and try.
9383 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9385 struct btrfs_root *root = fs_info->extent_root;
9386 struct btrfs_block_group_cache *block_group;
9387 struct btrfs_space_info *space_info;
9388 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9389 struct btrfs_device *device;
9390 struct btrfs_trans_handle *trans;
9400 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9402 block_group = btrfs_lookup_block_group(fs_info, bytenr);
9404 /* odd, couldn't find the block group, leave it alone */
9408 "can't find block group for bytenr %llu",
9413 min_free = btrfs_block_group_used(&block_group->item);
9415 /* no bytes used, we're good */
9419 space_info = block_group->space_info;
9420 spin_lock(&space_info->lock);
9422 full = space_info->full;
9425 * if this is the last block group we have in this space, we can't
9426 * relocate it unless we're able to allocate a new chunk below.
9428 * Otherwise, we need to make sure we have room in the space to handle
9429 * all of the extents from this block group. If we can, we're good
9431 if ((space_info->total_bytes != block_group->key.offset) &&
9432 (btrfs_space_info_used(space_info, false) + min_free <
9433 space_info->total_bytes)) {
9434 spin_unlock(&space_info->lock);
9437 spin_unlock(&space_info->lock);
9440 * ok we don't have enough space, but maybe we have free space on our
9441 * devices to allocate new chunks for relocation, so loop through our
9442 * alloc devices and guess if we have enough space. if this block
9443 * group is going to be restriped, run checks against the target
9444 * profile instead of the current one.
9456 target = get_restripe_target(fs_info, block_group->flags);
9458 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
9461 * this is just a balance, so if we were marked as full
9462 * we know there is no space for a new chunk
9467 "no space to alloc new chunk for block group %llu",
9468 block_group->key.objectid);
9472 index = btrfs_bg_flags_to_raid_index(block_group->flags);
9475 if (index == BTRFS_RAID_RAID10) {
9479 } else if (index == BTRFS_RAID_RAID1) {
9481 } else if (index == BTRFS_RAID_DUP) {
9484 } else if (index == BTRFS_RAID_RAID0) {
9485 dev_min = fs_devices->rw_devices;
9486 min_free = div64_u64(min_free, dev_min);
9489 /* We need to do this so that we can look at pending chunks */
9490 trans = btrfs_join_transaction(root);
9491 if (IS_ERR(trans)) {
9492 ret = PTR_ERR(trans);
9496 mutex_lock(&fs_info->chunk_mutex);
9497 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9501 * check to make sure we can actually find a chunk with enough
9502 * space to fit our block group in.
9504 if (device->total_bytes > device->bytes_used + min_free &&
9505 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9506 ret = find_free_dev_extent(trans, device, min_free,
9511 if (dev_nr >= dev_min)
9517 if (debug && ret == -1)
9519 "no space to allocate a new chunk for block group %llu",
9520 block_group->key.objectid);
9521 mutex_unlock(&fs_info->chunk_mutex);
9522 btrfs_end_transaction(trans);
9524 btrfs_put_block_group(block_group);
9528 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9529 struct btrfs_path *path,
9530 struct btrfs_key *key)
9532 struct btrfs_root *root = fs_info->extent_root;
9534 struct btrfs_key found_key;
9535 struct extent_buffer *leaf;
9536 struct btrfs_block_group_item bg;
9540 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9545 slot = path->slots[0];
9546 leaf = path->nodes[0];
9547 if (slot >= btrfs_header_nritems(leaf)) {
9548 ret = btrfs_next_leaf(root, path);
9555 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9557 if (found_key.objectid >= key->objectid &&
9558 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9559 struct extent_map_tree *em_tree;
9560 struct extent_map *em;
9562 em_tree = &root->fs_info->mapping_tree.map_tree;
9563 read_lock(&em_tree->lock);
9564 em = lookup_extent_mapping(em_tree, found_key.objectid,
9566 read_unlock(&em_tree->lock);
9569 "logical %llu len %llu found bg but no related chunk",
9570 found_key.objectid, found_key.offset);
9572 } else if (em->start != found_key.objectid ||
9573 em->len != found_key.offset) {
9575 "block group %llu len %llu mismatch with chunk %llu len %llu",
9576 found_key.objectid, found_key.offset,
9577 em->start, em->len);
9580 read_extent_buffer(leaf, &bg,
9581 btrfs_item_ptr_offset(leaf, slot),
9583 flags = btrfs_block_group_flags(&bg) &
9584 BTRFS_BLOCK_GROUP_TYPE_MASK;
9586 if (flags != (em->map_lookup->type &
9587 BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9589 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
9591 found_key.offset, flags,
9592 (BTRFS_BLOCK_GROUP_TYPE_MASK &
9593 em->map_lookup->type));
9599 free_extent_map(em);
9608 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9610 struct btrfs_block_group_cache *block_group;
9614 struct inode *inode;
9616 block_group = btrfs_lookup_first_block_group(info, last);
9617 while (block_group) {
9618 spin_lock(&block_group->lock);
9619 if (block_group->iref)
9621 spin_unlock(&block_group->lock);
9622 block_group = next_block_group(info, block_group);
9631 inode = block_group->inode;
9632 block_group->iref = 0;
9633 block_group->inode = NULL;
9634 spin_unlock(&block_group->lock);
9635 ASSERT(block_group->io_ctl.inode == NULL);
9637 last = block_group->key.objectid + block_group->key.offset;
9638 btrfs_put_block_group(block_group);
9643 * Must be called only after stopping all workers, since we could have block
9644 * group caching kthreads running, and therefore they could race with us if we
9645 * freed the block groups before stopping them.
9647 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9649 struct btrfs_block_group_cache *block_group;
9650 struct btrfs_space_info *space_info;
9651 struct btrfs_caching_control *caching_ctl;
9654 down_write(&info->commit_root_sem);
9655 while (!list_empty(&info->caching_block_groups)) {
9656 caching_ctl = list_entry(info->caching_block_groups.next,
9657 struct btrfs_caching_control, list);
9658 list_del(&caching_ctl->list);
9659 put_caching_control(caching_ctl);
9661 up_write(&info->commit_root_sem);
9663 spin_lock(&info->unused_bgs_lock);
9664 while (!list_empty(&info->unused_bgs)) {
9665 block_group = list_first_entry(&info->unused_bgs,
9666 struct btrfs_block_group_cache,
9668 list_del_init(&block_group->bg_list);
9669 btrfs_put_block_group(block_group);
9671 spin_unlock(&info->unused_bgs_lock);
9673 spin_lock(&info->block_group_cache_lock);
9674 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9675 block_group = rb_entry(n, struct btrfs_block_group_cache,
9677 rb_erase(&block_group->cache_node,
9678 &info->block_group_cache_tree);
9679 RB_CLEAR_NODE(&block_group->cache_node);
9680 spin_unlock(&info->block_group_cache_lock);
9682 down_write(&block_group->space_info->groups_sem);
9683 list_del(&block_group->list);
9684 up_write(&block_group->space_info->groups_sem);
9687 * We haven't cached this block group, which means we could
9688 * possibly have excluded extents on this block group.
9690 if (block_group->cached == BTRFS_CACHE_NO ||
9691 block_group->cached == BTRFS_CACHE_ERROR)
9692 free_excluded_extents(block_group);
9694 btrfs_remove_free_space_cache(block_group);
9695 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9696 ASSERT(list_empty(&block_group->dirty_list));
9697 ASSERT(list_empty(&block_group->io_list));
9698 ASSERT(list_empty(&block_group->bg_list));
9699 ASSERT(atomic_read(&block_group->count) == 1);
9700 btrfs_put_block_group(block_group);
9702 spin_lock(&info->block_group_cache_lock);
9704 spin_unlock(&info->block_group_cache_lock);
9706 /* now that all the block groups are freed, go through and
9707 * free all the space_info structs. This is only called during
9708 * the final stages of unmount, and so we know nobody is
9709 * using them. We call synchronize_rcu() once before we start,
9710 * just to be on the safe side.
9714 release_global_block_rsv(info);
9716 while (!list_empty(&info->space_info)) {
9719 space_info = list_entry(info->space_info.next,
9720 struct btrfs_space_info,
9724 * Do not hide this behind enospc_debug, this is actually
9725 * important and indicates a real bug if this happens.
9727 if (WARN_ON(space_info->bytes_pinned > 0 ||
9728 space_info->bytes_reserved > 0 ||
9729 space_info->bytes_may_use > 0))
9730 dump_space_info(info, space_info, 0, 0);
9731 list_del(&space_info->list);
9732 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9733 struct kobject *kobj;
9734 kobj = space_info->block_group_kobjs[i];
9735 space_info->block_group_kobjs[i] = NULL;
9741 kobject_del(&space_info->kobj);
9742 kobject_put(&space_info->kobj);
9747 /* link_block_group will queue up kobjects to add when we're reclaim-safe */
9748 void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
9750 struct btrfs_space_info *space_info;
9751 struct raid_kobject *rkobj;
9756 spin_lock(&fs_info->pending_raid_kobjs_lock);
9757 list_splice_init(&fs_info->pending_raid_kobjs, &list);
9758 spin_unlock(&fs_info->pending_raid_kobjs_lock);
9760 list_for_each_entry(rkobj, &list, list) {
9761 space_info = __find_space_info(fs_info, rkobj->flags);
9762 index = btrfs_bg_flags_to_raid_index(rkobj->flags);
9764 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9765 "%s", get_raid_name(index));
9767 kobject_put(&rkobj->kobj);
9773 "failed to add kobject for block cache, ignoring");
9776 static void link_block_group(struct btrfs_block_group_cache *cache)
9778 struct btrfs_space_info *space_info = cache->space_info;
9779 struct btrfs_fs_info *fs_info = cache->fs_info;
9780 int index = btrfs_bg_flags_to_raid_index(cache->flags);
9783 down_write(&space_info->groups_sem);
9784 if (list_empty(&space_info->block_groups[index]))
9786 list_add_tail(&cache->list, &space_info->block_groups[index]);
9787 up_write(&space_info->groups_sem);
9790 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9792 btrfs_warn(cache->fs_info,
9793 "couldn't alloc memory for raid level kobject");
9796 rkobj->flags = cache->flags;
9797 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9799 spin_lock(&fs_info->pending_raid_kobjs_lock);
9800 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
9801 spin_unlock(&fs_info->pending_raid_kobjs_lock);
9802 space_info->block_group_kobjs[index] = &rkobj->kobj;
9806 static struct btrfs_block_group_cache *
9807 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9808 u64 start, u64 size)
9810 struct btrfs_block_group_cache *cache;
9812 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9816 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9818 if (!cache->free_space_ctl) {
9823 cache->key.objectid = start;
9824 cache->key.offset = size;
9825 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9827 cache->fs_info = fs_info;
9828 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
9829 set_free_space_tree_thresholds(cache);
9831 atomic_set(&cache->count, 1);
9832 spin_lock_init(&cache->lock);
9833 init_rwsem(&cache->data_rwsem);
9834 INIT_LIST_HEAD(&cache->list);
9835 INIT_LIST_HEAD(&cache->cluster_list);
9836 INIT_LIST_HEAD(&cache->bg_list);
9837 INIT_LIST_HEAD(&cache->ro_list);
9838 INIT_LIST_HEAD(&cache->dirty_list);
9839 INIT_LIST_HEAD(&cache->io_list);
9840 btrfs_init_free_space_ctl(cache);
9841 atomic_set(&cache->trimming, 0);
9842 mutex_init(&cache->free_space_lock);
9843 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9850 * Iterate all chunks and verify that each of them has the corresponding block
9853 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
9855 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
9856 struct extent_map *em;
9857 struct btrfs_block_group_cache *bg;
9862 read_lock(&map_tree->map_tree.lock);
9864 * lookup_extent_mapping will return the first extent map
9865 * intersecting the range, so setting @len to 1 is enough to
9866 * get the first chunk.
9868 em = lookup_extent_mapping(&map_tree->map_tree, start, 1);
9869 read_unlock(&map_tree->map_tree.lock);
9873 bg = btrfs_lookup_block_group(fs_info, em->start);
9876 "chunk start=%llu len=%llu doesn't have corresponding block group",
9877 em->start, em->len);
9879 free_extent_map(em);
9882 if (bg->key.objectid != em->start ||
9883 bg->key.offset != em->len ||
9884 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
9885 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9887 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
9889 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
9890 bg->key.objectid, bg->key.offset,
9891 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
9893 free_extent_map(em);
9894 btrfs_put_block_group(bg);
9897 start = em->start + em->len;
9898 free_extent_map(em);
9899 btrfs_put_block_group(bg);
9904 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9906 struct btrfs_path *path;
9908 struct btrfs_block_group_cache *cache;
9909 struct btrfs_space_info *space_info;
9910 struct btrfs_key key;
9911 struct btrfs_key found_key;
9912 struct extent_buffer *leaf;
9918 feature = btrfs_super_incompat_flags(info->super_copy);
9919 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
9923 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9924 path = btrfs_alloc_path();
9927 path->reada = READA_FORWARD;
9929 cache_gen = btrfs_super_cache_generation(info->super_copy);
9930 if (btrfs_test_opt(info, SPACE_CACHE) &&
9931 btrfs_super_generation(info->super_copy) != cache_gen)
9933 if (btrfs_test_opt(info, CLEAR_CACHE))
9937 ret = find_first_block_group(info, path, &key);
9943 leaf = path->nodes[0];
9944 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9946 cache = btrfs_create_block_group_cache(info, found_key.objectid,
9955 * When we mount with old space cache, we need to
9956 * set BTRFS_DC_CLEAR and set dirty flag.
9958 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9959 * truncate the old free space cache inode and
9961 * b) Setting 'dirty flag' makes sure that we flush
9962 * the new space cache info onto disk.
9964 if (btrfs_test_opt(info, SPACE_CACHE))
9965 cache->disk_cache_state = BTRFS_DC_CLEAR;
9968 read_extent_buffer(leaf, &cache->item,
9969 btrfs_item_ptr_offset(leaf, path->slots[0]),
9970 sizeof(cache->item));
9971 cache->flags = btrfs_block_group_flags(&cache->item);
9973 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
9974 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
9976 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
9977 cache->key.objectid);
9982 key.objectid = found_key.objectid + found_key.offset;
9983 btrfs_release_path(path);
9986 * We need to exclude the super stripes now so that the space
9987 * info has super bytes accounted for, otherwise we'll think
9988 * we have more space than we actually do.
9990 ret = exclude_super_stripes(cache);
9993 * We may have excluded something, so call this just in
9996 free_excluded_extents(cache);
9997 btrfs_put_block_group(cache);
10002 * check for two cases, either we are full, and therefore
10003 * don't need to bother with the caching work since we won't
10004 * find any space, or we are empty, and we can just add all
10005 * the space in and be done with it. This saves us _alot_ of
10006 * time, particularly in the full case.
10008 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10009 cache->last_byte_to_unpin = (u64)-1;
10010 cache->cached = BTRFS_CACHE_FINISHED;
10011 free_excluded_extents(cache);
10012 } else if (btrfs_block_group_used(&cache->item) == 0) {
10013 cache->last_byte_to_unpin = (u64)-1;
10014 cache->cached = BTRFS_CACHE_FINISHED;
10015 add_new_free_space(cache, found_key.objectid,
10016 found_key.objectid +
10018 free_excluded_extents(cache);
10021 ret = btrfs_add_block_group_cache(info, cache);
10023 btrfs_remove_free_space_cache(cache);
10024 btrfs_put_block_group(cache);
10028 trace_btrfs_add_block_group(info, cache, 0);
10029 update_space_info(info, cache->flags, found_key.offset,
10030 btrfs_block_group_used(&cache->item),
10031 cache->bytes_super, &space_info);
10033 cache->space_info = space_info;
10035 link_block_group(cache);
10037 set_avail_alloc_bits(info, cache->flags);
10038 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10039 inc_block_group_ro(cache, 1);
10040 } else if (btrfs_block_group_used(&cache->item) == 0) {
10041 ASSERT(list_empty(&cache->bg_list));
10042 btrfs_mark_bg_unused(cache);
10046 list_for_each_entry_rcu(space_info, &info->space_info, list) {
10047 if (!(get_alloc_profile(info, space_info->flags) &
10048 (BTRFS_BLOCK_GROUP_RAID10 |
10049 BTRFS_BLOCK_GROUP_RAID1 |
10050 BTRFS_BLOCK_GROUP_RAID5 |
10051 BTRFS_BLOCK_GROUP_RAID6 |
10052 BTRFS_BLOCK_GROUP_DUP)))
10055 * avoid allocating from un-mirrored block group if there are
10056 * mirrored block groups.
10058 list_for_each_entry(cache,
10059 &space_info->block_groups[BTRFS_RAID_RAID0],
10061 inc_block_group_ro(cache, 1);
10062 list_for_each_entry(cache,
10063 &space_info->block_groups[BTRFS_RAID_SINGLE],
10065 inc_block_group_ro(cache, 1);
10068 btrfs_add_raid_kobjects(info);
10069 init_global_block_rsv(info);
10070 ret = check_chunk_block_group_mappings(info);
10072 btrfs_free_path(path);
10076 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
10078 struct btrfs_fs_info *fs_info = trans->fs_info;
10079 struct btrfs_block_group_cache *block_group, *tmp;
10080 struct btrfs_root *extent_root = fs_info->extent_root;
10081 struct btrfs_block_group_item item;
10082 struct btrfs_key key;
10084 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10086 trans->can_flush_pending_bgs = false;
10087 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10091 spin_lock(&block_group->lock);
10092 memcpy(&item, &block_group->item, sizeof(item));
10093 memcpy(&key, &block_group->key, sizeof(key));
10094 spin_unlock(&block_group->lock);
10096 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10099 btrfs_abort_transaction(trans, ret);
10100 ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
10102 btrfs_abort_transaction(trans, ret);
10103 add_block_group_free_space(trans, block_group);
10104 /* already aborted the transaction if it failed. */
10106 list_del_init(&block_group->bg_list);
10108 trans->can_flush_pending_bgs = can_flush_pending_bgs;
10111 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
10112 u64 type, u64 chunk_offset, u64 size)
10114 struct btrfs_fs_info *fs_info = trans->fs_info;
10115 struct btrfs_block_group_cache *cache;
10118 btrfs_set_log_full_commit(fs_info, trans);
10120 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10124 btrfs_set_block_group_used(&cache->item, bytes_used);
10125 btrfs_set_block_group_chunk_objectid(&cache->item,
10126 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10127 btrfs_set_block_group_flags(&cache->item, type);
10129 cache->flags = type;
10130 cache->last_byte_to_unpin = (u64)-1;
10131 cache->cached = BTRFS_CACHE_FINISHED;
10132 cache->needs_free_space = 1;
10133 ret = exclude_super_stripes(cache);
10136 * We may have excluded something, so call this just in
10139 free_excluded_extents(cache);
10140 btrfs_put_block_group(cache);
10144 add_new_free_space(cache, chunk_offset, chunk_offset + size);
10146 free_excluded_extents(cache);
10148 #ifdef CONFIG_BTRFS_DEBUG
10149 if (btrfs_should_fragment_free_space(cache)) {
10150 u64 new_bytes_used = size - bytes_used;
10152 bytes_used += new_bytes_used >> 1;
10153 fragment_free_space(cache);
10157 * Ensure the corresponding space_info object is created and
10158 * assigned to our block group. We want our bg to be added to the rbtree
10159 * with its ->space_info set.
10161 cache->space_info = __find_space_info(fs_info, cache->flags);
10162 ASSERT(cache->space_info);
10164 ret = btrfs_add_block_group_cache(fs_info, cache);
10166 btrfs_remove_free_space_cache(cache);
10167 btrfs_put_block_group(cache);
10172 * Now that our block group has its ->space_info set and is inserted in
10173 * the rbtree, update the space info's counters.
10175 trace_btrfs_add_block_group(fs_info, cache, 1);
10176 update_space_info(fs_info, cache->flags, size, bytes_used,
10177 cache->bytes_super, &cache->space_info);
10178 update_global_block_rsv(fs_info);
10180 link_block_group(cache);
10182 list_add_tail(&cache->bg_list, &trans->new_bgs);
10184 set_avail_alloc_bits(fs_info, type);
10188 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10190 u64 extra_flags = chunk_to_extended(flags) &
10191 BTRFS_EXTENDED_PROFILE_MASK;
10193 write_seqlock(&fs_info->profiles_lock);
10194 if (flags & BTRFS_BLOCK_GROUP_DATA)
10195 fs_info->avail_data_alloc_bits &= ~extra_flags;
10196 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10197 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10198 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10199 fs_info->avail_system_alloc_bits &= ~extra_flags;
10200 write_sequnlock(&fs_info->profiles_lock);
10203 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10204 u64 group_start, struct extent_map *em)
10206 struct btrfs_fs_info *fs_info = trans->fs_info;
10207 struct btrfs_root *root = fs_info->extent_root;
10208 struct btrfs_path *path;
10209 struct btrfs_block_group_cache *block_group;
10210 struct btrfs_free_cluster *cluster;
10211 struct btrfs_root *tree_root = fs_info->tree_root;
10212 struct btrfs_key key;
10213 struct inode *inode;
10214 struct kobject *kobj = NULL;
10218 struct btrfs_caching_control *caching_ctl = NULL;
10221 block_group = btrfs_lookup_block_group(fs_info, group_start);
10222 BUG_ON(!block_group);
10223 BUG_ON(!block_group->ro);
10225 trace_btrfs_remove_block_group(block_group);
10227 * Free the reserved super bytes from this block group before
10230 free_excluded_extents(block_group);
10231 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10232 block_group->key.offset);
10234 memcpy(&key, &block_group->key, sizeof(key));
10235 index = btrfs_bg_flags_to_raid_index(block_group->flags);
10236 factor = btrfs_bg_type_to_factor(block_group->flags);
10238 /* make sure this block group isn't part of an allocation cluster */
10239 cluster = &fs_info->data_alloc_cluster;
10240 spin_lock(&cluster->refill_lock);
10241 btrfs_return_cluster_to_free_space(block_group, cluster);
10242 spin_unlock(&cluster->refill_lock);
10245 * make sure this block group isn't part of a metadata
10246 * allocation cluster
10248 cluster = &fs_info->meta_alloc_cluster;
10249 spin_lock(&cluster->refill_lock);
10250 btrfs_return_cluster_to_free_space(block_group, cluster);
10251 spin_unlock(&cluster->refill_lock);
10253 path = btrfs_alloc_path();
10260 * get the inode first so any iput calls done for the io_list
10261 * aren't the final iput (no unlinks allowed now)
10263 inode = lookup_free_space_inode(fs_info, block_group, path);
10265 mutex_lock(&trans->transaction->cache_write_mutex);
10267 * make sure our free spache cache IO is done before remove the
10270 spin_lock(&trans->transaction->dirty_bgs_lock);
10271 if (!list_empty(&block_group->io_list)) {
10272 list_del_init(&block_group->io_list);
10274 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10276 spin_unlock(&trans->transaction->dirty_bgs_lock);
10277 btrfs_wait_cache_io(trans, block_group, path);
10278 btrfs_put_block_group(block_group);
10279 spin_lock(&trans->transaction->dirty_bgs_lock);
10282 if (!list_empty(&block_group->dirty_list)) {
10283 list_del_init(&block_group->dirty_list);
10284 btrfs_put_block_group(block_group);
10286 spin_unlock(&trans->transaction->dirty_bgs_lock);
10287 mutex_unlock(&trans->transaction->cache_write_mutex);
10289 if (!IS_ERR(inode)) {
10290 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10292 btrfs_add_delayed_iput(inode);
10295 clear_nlink(inode);
10296 /* One for the block groups ref */
10297 spin_lock(&block_group->lock);
10298 if (block_group->iref) {
10299 block_group->iref = 0;
10300 block_group->inode = NULL;
10301 spin_unlock(&block_group->lock);
10304 spin_unlock(&block_group->lock);
10306 /* One for our lookup ref */
10307 btrfs_add_delayed_iput(inode);
10310 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10311 key.offset = block_group->key.objectid;
10314 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10318 btrfs_release_path(path);
10320 ret = btrfs_del_item(trans, tree_root, path);
10323 btrfs_release_path(path);
10326 spin_lock(&fs_info->block_group_cache_lock);
10327 rb_erase(&block_group->cache_node,
10328 &fs_info->block_group_cache_tree);
10329 RB_CLEAR_NODE(&block_group->cache_node);
10331 if (fs_info->first_logical_byte == block_group->key.objectid)
10332 fs_info->first_logical_byte = (u64)-1;
10333 spin_unlock(&fs_info->block_group_cache_lock);
10335 down_write(&block_group->space_info->groups_sem);
10337 * we must use list_del_init so people can check to see if they
10338 * are still on the list after taking the semaphore
10340 list_del_init(&block_group->list);
10341 if (list_empty(&block_group->space_info->block_groups[index])) {
10342 kobj = block_group->space_info->block_group_kobjs[index];
10343 block_group->space_info->block_group_kobjs[index] = NULL;
10344 clear_avail_alloc_bits(fs_info, block_group->flags);
10346 up_write(&block_group->space_info->groups_sem);
10352 if (block_group->has_caching_ctl)
10353 caching_ctl = get_caching_control(block_group);
10354 if (block_group->cached == BTRFS_CACHE_STARTED)
10355 wait_block_group_cache_done(block_group);
10356 if (block_group->has_caching_ctl) {
10357 down_write(&fs_info->commit_root_sem);
10358 if (!caching_ctl) {
10359 struct btrfs_caching_control *ctl;
10361 list_for_each_entry(ctl,
10362 &fs_info->caching_block_groups, list)
10363 if (ctl->block_group == block_group) {
10365 refcount_inc(&caching_ctl->count);
10370 list_del_init(&caching_ctl->list);
10371 up_write(&fs_info->commit_root_sem);
10373 /* Once for the caching bgs list and once for us. */
10374 put_caching_control(caching_ctl);
10375 put_caching_control(caching_ctl);
10379 spin_lock(&trans->transaction->dirty_bgs_lock);
10380 if (!list_empty(&block_group->dirty_list)) {
10383 if (!list_empty(&block_group->io_list)) {
10386 spin_unlock(&trans->transaction->dirty_bgs_lock);
10387 btrfs_remove_free_space_cache(block_group);
10389 spin_lock(&block_group->space_info->lock);
10390 list_del_init(&block_group->ro_list);
10392 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10393 WARN_ON(block_group->space_info->total_bytes
10394 < block_group->key.offset);
10395 WARN_ON(block_group->space_info->bytes_readonly
10396 < block_group->key.offset);
10397 WARN_ON(block_group->space_info->disk_total
10398 < block_group->key.offset * factor);
10400 block_group->space_info->total_bytes -= block_group->key.offset;
10401 block_group->space_info->bytes_readonly -= block_group->key.offset;
10402 block_group->space_info->disk_total -= block_group->key.offset * factor;
10404 spin_unlock(&block_group->space_info->lock);
10406 memcpy(&key, &block_group->key, sizeof(key));
10408 mutex_lock(&fs_info->chunk_mutex);
10409 if (!list_empty(&em->list)) {
10410 /* We're in the transaction->pending_chunks list. */
10411 free_extent_map(em);
10413 spin_lock(&block_group->lock);
10414 block_group->removed = 1;
10416 * At this point trimming can't start on this block group, because we
10417 * removed the block group from the tree fs_info->block_group_cache_tree
10418 * so no one can't find it anymore and even if someone already got this
10419 * block group before we removed it from the rbtree, they have already
10420 * incremented block_group->trimming - if they didn't, they won't find
10421 * any free space entries because we already removed them all when we
10422 * called btrfs_remove_free_space_cache().
10424 * And we must not remove the extent map from the fs_info->mapping_tree
10425 * to prevent the same logical address range and physical device space
10426 * ranges from being reused for a new block group. This is because our
10427 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10428 * completely transactionless, so while it is trimming a range the
10429 * currently running transaction might finish and a new one start,
10430 * allowing for new block groups to be created that can reuse the same
10431 * physical device locations unless we take this special care.
10433 * There may also be an implicit trim operation if the file system
10434 * is mounted with -odiscard. The same protections must remain
10435 * in place until the extents have been discarded completely when
10436 * the transaction commit has completed.
10438 remove_em = (atomic_read(&block_group->trimming) == 0);
10440 * Make sure a trimmer task always sees the em in the pinned_chunks list
10441 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10442 * before checking block_group->removed).
10446 * Our em might be in trans->transaction->pending_chunks which
10447 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10448 * and so is the fs_info->pinned_chunks list.
10450 * So at this point we must be holding the chunk_mutex to avoid
10451 * any races with chunk allocation (more specifically at
10452 * volumes.c:contains_pending_extent()), to ensure it always
10453 * sees the em, either in the pending_chunks list or in the
10454 * pinned_chunks list.
10456 list_move_tail(&em->list, &fs_info->pinned_chunks);
10458 spin_unlock(&block_group->lock);
10461 struct extent_map_tree *em_tree;
10463 em_tree = &fs_info->mapping_tree.map_tree;
10464 write_lock(&em_tree->lock);
10466 * The em might be in the pending_chunks list, so make sure the
10467 * chunk mutex is locked, since remove_extent_mapping() will
10468 * delete us from that list.
10470 remove_extent_mapping(em_tree, em);
10471 write_unlock(&em_tree->lock);
10472 /* once for the tree */
10473 free_extent_map(em);
10476 mutex_unlock(&fs_info->chunk_mutex);
10478 ret = remove_block_group_free_space(trans, block_group);
10482 btrfs_put_block_group(block_group);
10483 btrfs_put_block_group(block_group);
10485 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10491 ret = btrfs_del_item(trans, root, path);
10493 btrfs_free_path(path);
10497 struct btrfs_trans_handle *
10498 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10499 const u64 chunk_offset)
10501 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10502 struct extent_map *em;
10503 struct map_lookup *map;
10504 unsigned int num_items;
10506 read_lock(&em_tree->lock);
10507 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10508 read_unlock(&em_tree->lock);
10509 ASSERT(em && em->start == chunk_offset);
10512 * We need to reserve 3 + N units from the metadata space info in order
10513 * to remove a block group (done at btrfs_remove_chunk() and at
10514 * btrfs_remove_block_group()), which are used for:
10516 * 1 unit for adding the free space inode's orphan (located in the tree
10518 * 1 unit for deleting the block group item (located in the extent
10520 * 1 unit for deleting the free space item (located in tree of tree
10522 * N units for deleting N device extent items corresponding to each
10523 * stripe (located in the device tree).
10525 * In order to remove a block group we also need to reserve units in the
10526 * system space info in order to update the chunk tree (update one or
10527 * more device items and remove one chunk item), but this is done at
10528 * btrfs_remove_chunk() through a call to check_system_chunk().
10530 map = em->map_lookup;
10531 num_items = 3 + map->num_stripes;
10532 free_extent_map(em);
10534 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10539 * Process the unused_bgs list and remove any that don't have any allocated
10540 * space inside of them.
10542 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10544 struct btrfs_block_group_cache *block_group;
10545 struct btrfs_space_info *space_info;
10546 struct btrfs_trans_handle *trans;
10549 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10552 spin_lock(&fs_info->unused_bgs_lock);
10553 while (!list_empty(&fs_info->unused_bgs)) {
10557 block_group = list_first_entry(&fs_info->unused_bgs,
10558 struct btrfs_block_group_cache,
10560 list_del_init(&block_group->bg_list);
10562 space_info = block_group->space_info;
10564 if (ret || btrfs_mixed_space_info(space_info)) {
10565 btrfs_put_block_group(block_group);
10568 spin_unlock(&fs_info->unused_bgs_lock);
10570 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10572 /* Don't want to race with allocators so take the groups_sem */
10573 down_write(&space_info->groups_sem);
10574 spin_lock(&block_group->lock);
10575 if (block_group->reserved || block_group->pinned ||
10576 btrfs_block_group_used(&block_group->item) ||
10578 list_is_singular(&block_group->list)) {
10580 * We want to bail if we made new allocations or have
10581 * outstanding allocations in this block group. We do
10582 * the ro check in case balance is currently acting on
10583 * this block group.
10585 trace_btrfs_skip_unused_block_group(block_group);
10586 spin_unlock(&block_group->lock);
10587 up_write(&space_info->groups_sem);
10590 spin_unlock(&block_group->lock);
10592 /* We don't want to force the issue, only flip if it's ok. */
10593 ret = inc_block_group_ro(block_group, 0);
10594 up_write(&space_info->groups_sem);
10601 * Want to do this before we do anything else so we can recover
10602 * properly if we fail to join the transaction.
10604 trans = btrfs_start_trans_remove_block_group(fs_info,
10605 block_group->key.objectid);
10606 if (IS_ERR(trans)) {
10607 btrfs_dec_block_group_ro(block_group);
10608 ret = PTR_ERR(trans);
10613 * We could have pending pinned extents for this block group,
10614 * just delete them, we don't care about them anymore.
10616 start = block_group->key.objectid;
10617 end = start + block_group->key.offset - 1;
10619 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10620 * btrfs_finish_extent_commit(). If we are at transaction N,
10621 * another task might be running finish_extent_commit() for the
10622 * previous transaction N - 1, and have seen a range belonging
10623 * to the block group in freed_extents[] before we were able to
10624 * clear the whole block group range from freed_extents[]. This
10625 * means that task can lookup for the block group after we
10626 * unpinned it from freed_extents[] and removed it, leading to
10627 * a BUG_ON() at btrfs_unpin_extent_range().
10629 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10630 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10633 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10634 btrfs_dec_block_group_ro(block_group);
10637 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10640 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10641 btrfs_dec_block_group_ro(block_group);
10644 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10646 /* Reset pinned so btrfs_put_block_group doesn't complain */
10647 spin_lock(&space_info->lock);
10648 spin_lock(&block_group->lock);
10650 space_info->bytes_pinned -= block_group->pinned;
10651 space_info->bytes_readonly += block_group->pinned;
10652 percpu_counter_add_batch(&space_info->total_bytes_pinned,
10653 -block_group->pinned,
10654 BTRFS_TOTAL_BYTES_PINNED_BATCH);
10655 block_group->pinned = 0;
10657 spin_unlock(&block_group->lock);
10658 spin_unlock(&space_info->lock);
10660 /* DISCARD can flip during remount */
10661 trimming = btrfs_test_opt(fs_info, DISCARD);
10663 /* Implicit trim during transaction commit. */
10665 btrfs_get_block_group_trimming(block_group);
10668 * Btrfs_remove_chunk will abort the transaction if things go
10671 ret = btrfs_remove_chunk(trans, block_group->key.objectid);
10675 btrfs_put_block_group_trimming(block_group);
10680 * If we're not mounted with -odiscard, we can just forget
10681 * about this block group. Otherwise we'll need to wait
10682 * until transaction commit to do the actual discard.
10685 spin_lock(&fs_info->unused_bgs_lock);
10687 * A concurrent scrub might have added us to the list
10688 * fs_info->unused_bgs, so use a list_move operation
10689 * to add the block group to the deleted_bgs list.
10691 list_move(&block_group->bg_list,
10692 &trans->transaction->deleted_bgs);
10693 spin_unlock(&fs_info->unused_bgs_lock);
10694 btrfs_get_block_group(block_group);
10697 btrfs_end_transaction(trans);
10699 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10700 btrfs_put_block_group(block_group);
10701 spin_lock(&fs_info->unused_bgs_lock);
10703 spin_unlock(&fs_info->unused_bgs_lock);
10706 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10708 struct btrfs_super_block *disk_super;
10714 disk_super = fs_info->super_copy;
10715 if (!btrfs_super_root(disk_super))
10718 features = btrfs_super_incompat_flags(disk_super);
10719 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10722 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10723 ret = create_space_info(fs_info, flags);
10728 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10729 ret = create_space_info(fs_info, flags);
10731 flags = BTRFS_BLOCK_GROUP_METADATA;
10732 ret = create_space_info(fs_info, flags);
10736 flags = BTRFS_BLOCK_GROUP_DATA;
10737 ret = create_space_info(fs_info, flags);
10743 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10744 u64 start, u64 end)
10746 return unpin_extent_range(fs_info, start, end, false);
10750 * It used to be that old block groups would be left around forever.
10751 * Iterating over them would be enough to trim unused space. Since we
10752 * now automatically remove them, we also need to iterate over unallocated
10755 * We don't want a transaction for this since the discard may take a
10756 * substantial amount of time. We don't require that a transaction be
10757 * running, but we do need to take a running transaction into account
10758 * to ensure that we're not discarding chunks that were released in
10759 * the current transaction.
10761 * Holding the chunks lock will prevent other threads from allocating
10762 * or releasing chunks, but it won't prevent a running transaction
10763 * from committing and releasing the memory that the pending chunks
10764 * list head uses. For that, we need to take a reference to the
10767 static int btrfs_trim_free_extents(struct btrfs_device *device,
10768 u64 minlen, u64 *trimmed)
10770 u64 start = 0, len = 0;
10775 /* Not writeable = nothing to do. */
10776 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
10779 /* No free space = nothing to do. */
10780 if (device->total_bytes <= device->bytes_used)
10786 struct btrfs_fs_info *fs_info = device->fs_info;
10787 struct btrfs_transaction *trans;
10790 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10794 down_read(&fs_info->commit_root_sem);
10796 spin_lock(&fs_info->trans_lock);
10797 trans = fs_info->running_transaction;
10799 refcount_inc(&trans->use_count);
10800 spin_unlock(&fs_info->trans_lock);
10802 ret = find_free_dev_extent_start(trans, device, minlen, start,
10805 btrfs_put_transaction(trans);
10808 up_read(&fs_info->commit_root_sem);
10809 mutex_unlock(&fs_info->chunk_mutex);
10810 if (ret == -ENOSPC)
10815 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10816 up_read(&fs_info->commit_root_sem);
10817 mutex_unlock(&fs_info->chunk_mutex);
10825 if (fatal_signal_pending(current)) {
10826 ret = -ERESTARTSYS;
10837 * Trim the whole filesystem by:
10838 * 1) trimming the free space in each block group
10839 * 2) trimming the unallocated space on each device
10841 * This will also continue trimming even if a block group or device encounters
10842 * an error. The return value will be the last error, or 0 if nothing bad
10845 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10847 struct btrfs_block_group_cache *cache = NULL;
10848 struct btrfs_device *device;
10849 struct list_head *devices;
10855 u64 dev_failed = 0;
10860 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10861 for (; cache; cache = next_block_group(fs_info, cache)) {
10862 if (cache->key.objectid >= (range->start + range->len)) {
10863 btrfs_put_block_group(cache);
10867 start = max(range->start, cache->key.objectid);
10868 end = min(range->start + range->len,
10869 cache->key.objectid + cache->key.offset);
10871 if (end - start >= range->minlen) {
10872 if (!block_group_cache_done(cache)) {
10873 ret = cache_block_group(cache, 0);
10879 ret = wait_block_group_cache_done(cache);
10886 ret = btrfs_trim_block_group(cache,
10892 trimmed += group_trimmed;
10902 btrfs_warn(fs_info,
10903 "failed to trim %llu block group(s), last error %d",
10904 bg_failed, bg_ret);
10905 mutex_lock(&fs_info->fs_devices->device_list_mutex);
10906 devices = &fs_info->fs_devices->devices;
10907 list_for_each_entry(device, devices, dev_list) {
10908 ret = btrfs_trim_free_extents(device, range->minlen,
10916 trimmed += group_trimmed;
10918 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
10921 btrfs_warn(fs_info,
10922 "failed to trim %llu device(s), last error %d",
10923 dev_failed, dev_ret);
10924 range->len = trimmed;
10931 * btrfs_{start,end}_write_no_snapshotting() are similar to
10932 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10933 * data into the page cache through nocow before the subvolume is snapshoted,
10934 * but flush the data into disk after the snapshot creation, or to prevent
10935 * operations while snapshotting is ongoing and that cause the snapshot to be
10936 * inconsistent (writes followed by expanding truncates for example).
10938 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
10940 percpu_counter_dec(&root->subv_writers->counter);
10941 cond_wake_up(&root->subv_writers->wait);
10944 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
10946 if (atomic_read(&root->will_be_snapshotted))
10949 percpu_counter_inc(&root->subv_writers->counter);
10951 * Make sure counter is updated before we check for snapshot creation.
10954 if (atomic_read(&root->will_be_snapshotted)) {
10955 btrfs_end_write_no_snapshotting(root);
10961 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
10966 ret = btrfs_start_write_no_snapshotting(root);
10969 wait_var_event(&root->will_be_snapshotted,
10970 !atomic_read(&root->will_be_snapshotted));
10974 void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
10976 struct btrfs_fs_info *fs_info = bg->fs_info;
10978 spin_lock(&fs_info->unused_bgs_lock);
10979 if (list_empty(&bg->bg_list)) {
10980 btrfs_get_block_group(bg);
10981 trace_btrfs_add_unused_block_group(bg);
10982 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
10984 spin_unlock(&fs_info->unused_bgs_lock);