Merge tag 'sound-6.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[linux-2.6-microblaze.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "bio.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "dev-replace.h"
33 #include "raid56.h"
34 #include "sysfs.h"
35 #include "qgroup.h"
36 #include "compression.h"
37 #include "tree-checker.h"
38 #include "ref-verify.h"
39 #include "block-group.h"
40 #include "discard.h"
41 #include "space-info.h"
42 #include "zoned.h"
43 #include "subpage.h"
44 #include "fs.h"
45 #include "accessors.h"
46 #include "extent-tree.h"
47 #include "root-tree.h"
48 #include "defrag.h"
49 #include "uuid-tree.h"
50 #include "relocation.h"
51 #include "scrub.h"
52 #include "super.h"
53
54 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
55                                  BTRFS_HEADER_FLAG_RELOC |\
56                                  BTRFS_SUPER_FLAG_ERROR |\
57                                  BTRFS_SUPER_FLAG_SEEDING |\
58                                  BTRFS_SUPER_FLAG_METADUMP |\
59                                  BTRFS_SUPER_FLAG_METADUMP_V2)
60
61 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
62 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
63
64 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
65 {
66         if (fs_info->csum_shash)
67                 crypto_free_shash(fs_info->csum_shash);
68 }
69
70 /*
71  * Compute the csum of a btree block and store the result to provided buffer.
72  */
73 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
74 {
75         struct btrfs_fs_info *fs_info = buf->fs_info;
76         int num_pages;
77         u32 first_page_part;
78         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
79         char *kaddr;
80         int i;
81
82         shash->tfm = fs_info->csum_shash;
83         crypto_shash_init(shash);
84
85         if (buf->addr) {
86                 /* Pages are contiguous, handle them as a big one. */
87                 kaddr = buf->addr;
88                 first_page_part = fs_info->nodesize;
89                 num_pages = 1;
90         } else {
91                 kaddr = folio_address(buf->folios[0]);
92                 first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
93                 num_pages = num_extent_pages(buf);
94         }
95
96         crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
97                             first_page_part - BTRFS_CSUM_SIZE);
98
99         /*
100          * Multiple single-page folios case would reach here.
101          *
102          * nodesize <= PAGE_SIZE and large folio all handled by above
103          * crypto_shash_update() already.
104          */
105         for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
106                 kaddr = folio_address(buf->folios[i]);
107                 crypto_shash_update(shash, kaddr, PAGE_SIZE);
108         }
109         memset(result, 0, BTRFS_CSUM_SIZE);
110         crypto_shash_final(shash, result);
111 }
112
113 /*
114  * we can't consider a given block up to date unless the transid of the
115  * block matches the transid in the parent node's pointer.  This is how we
116  * detect blocks that either didn't get written at all or got written
117  * in the wrong place.
118  */
119 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
120 {
121         if (!extent_buffer_uptodate(eb))
122                 return 0;
123
124         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
125                 return 1;
126
127         if (atomic)
128                 return -EAGAIN;
129
130         if (!extent_buffer_uptodate(eb) ||
131             btrfs_header_generation(eb) != parent_transid) {
132                 btrfs_err_rl(eb->fs_info,
133 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
134                         eb->start, eb->read_mirror,
135                         parent_transid, btrfs_header_generation(eb));
136                 clear_extent_buffer_uptodate(eb);
137                 return 0;
138         }
139         return 1;
140 }
141
142 static bool btrfs_supported_super_csum(u16 csum_type)
143 {
144         switch (csum_type) {
145         case BTRFS_CSUM_TYPE_CRC32:
146         case BTRFS_CSUM_TYPE_XXHASH:
147         case BTRFS_CSUM_TYPE_SHA256:
148         case BTRFS_CSUM_TYPE_BLAKE2:
149                 return true;
150         default:
151                 return false;
152         }
153 }
154
155 /*
156  * Return 0 if the superblock checksum type matches the checksum value of that
157  * algorithm. Pass the raw disk superblock data.
158  */
159 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
160                            const struct btrfs_super_block *disk_sb)
161 {
162         char result[BTRFS_CSUM_SIZE];
163         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
164
165         shash->tfm = fs_info->csum_shash;
166
167         /*
168          * The super_block structure does not span the whole
169          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
170          * filled with zeros and is included in the checksum.
171          */
172         crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
173                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
174
175         if (memcmp(disk_sb->csum, result, fs_info->csum_size))
176                 return 1;
177
178         return 0;
179 }
180
181 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
182                                       int mirror_num)
183 {
184         struct btrfs_fs_info *fs_info = eb->fs_info;
185         int num_folios = num_extent_folios(eb);
186         int ret = 0;
187
188         if (sb_rdonly(fs_info->sb))
189                 return -EROFS;
190
191         for (int i = 0; i < num_folios; i++) {
192                 struct folio *folio = eb->folios[i];
193                 u64 start = max_t(u64, eb->start, folio_pos(folio));
194                 u64 end = min_t(u64, eb->start + eb->len,
195                                 folio_pos(folio) + eb->folio_size);
196                 u32 len = end - start;
197
198                 ret = btrfs_repair_io_failure(fs_info, 0, start, len,
199                                               start, folio, offset_in_folio(folio, start),
200                                               mirror_num);
201                 if (ret)
202                         break;
203         }
204
205         return ret;
206 }
207
208 /*
209  * helper to read a given tree block, doing retries as required when
210  * the checksums don't match and we have alternate mirrors to try.
211  *
212  * @check:              expected tree parentness check, see the comments of the
213  *                      structure for details.
214  */
215 int btrfs_read_extent_buffer(struct extent_buffer *eb,
216                              struct btrfs_tree_parent_check *check)
217 {
218         struct btrfs_fs_info *fs_info = eb->fs_info;
219         int failed = 0;
220         int ret;
221         int num_copies = 0;
222         int mirror_num = 0;
223         int failed_mirror = 0;
224
225         ASSERT(check);
226
227         while (1) {
228                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
229                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
230                 if (!ret)
231                         break;
232
233                 num_copies = btrfs_num_copies(fs_info,
234                                               eb->start, eb->len);
235                 if (num_copies == 1)
236                         break;
237
238                 if (!failed_mirror) {
239                         failed = 1;
240                         failed_mirror = eb->read_mirror;
241                 }
242
243                 mirror_num++;
244                 if (mirror_num == failed_mirror)
245                         mirror_num++;
246
247                 if (mirror_num > num_copies)
248                         break;
249         }
250
251         if (failed && !ret && failed_mirror)
252                 btrfs_repair_eb_io_failure(eb, failed_mirror);
253
254         return ret;
255 }
256
257 /*
258  * Checksum a dirty tree block before IO.
259  */
260 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
261 {
262         struct extent_buffer *eb = bbio->private;
263         struct btrfs_fs_info *fs_info = eb->fs_info;
264         u64 found_start = btrfs_header_bytenr(eb);
265         u64 last_trans;
266         u8 result[BTRFS_CSUM_SIZE];
267         int ret;
268
269         /* Btree blocks are always contiguous on disk. */
270         if (WARN_ON_ONCE(bbio->file_offset != eb->start))
271                 return BLK_STS_IOERR;
272         if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
273                 return BLK_STS_IOERR;
274
275         /*
276          * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
277          * checksum it but zero-out its content. This is done to preserve
278          * ordering of I/O without unnecessarily writing out data.
279          */
280         if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
281                 memzero_extent_buffer(eb, 0, eb->len);
282                 return BLK_STS_OK;
283         }
284
285         if (WARN_ON_ONCE(found_start != eb->start))
286                 return BLK_STS_IOERR;
287         if (WARN_ON(!btrfs_folio_test_uptodate(fs_info, eb->folios[0],
288                                                eb->start, eb->len)))
289                 return BLK_STS_IOERR;
290
291         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
292                                     offsetof(struct btrfs_header, fsid),
293                                     BTRFS_FSID_SIZE) == 0);
294         csum_tree_block(eb, result);
295
296         if (btrfs_header_level(eb))
297                 ret = btrfs_check_node(eb);
298         else
299                 ret = btrfs_check_leaf(eb);
300
301         if (ret < 0)
302                 goto error;
303
304         /*
305          * Also check the generation, the eb reached here must be newer than
306          * last committed. Or something seriously wrong happened.
307          */
308         last_trans = btrfs_get_last_trans_committed(fs_info);
309         if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
310                 ret = -EUCLEAN;
311                 btrfs_err(fs_info,
312                         "block=%llu bad generation, have %llu expect > %llu",
313                           eb->start, btrfs_header_generation(eb), last_trans);
314                 goto error;
315         }
316         write_extent_buffer(eb, result, 0, fs_info->csum_size);
317         return BLK_STS_OK;
318
319 error:
320         btrfs_print_tree(eb, 0);
321         btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
322                   eb->start);
323         /*
324          * Be noisy if this is an extent buffer from a log tree. We don't abort
325          * a transaction in case there's a bad log tree extent buffer, we just
326          * fallback to a transaction commit. Still we want to know when there is
327          * a bad log tree extent buffer, as that may signal a bug somewhere.
328          */
329         WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
330                 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
331         return errno_to_blk_status(ret);
332 }
333
334 static bool check_tree_block_fsid(struct extent_buffer *eb)
335 {
336         struct btrfs_fs_info *fs_info = eb->fs_info;
337         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
338         u8 fsid[BTRFS_FSID_SIZE];
339
340         read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
341                            BTRFS_FSID_SIZE);
342
343         /*
344          * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
345          * This is then overwritten by metadata_uuid if it is present in the
346          * device_list_add(). The same true for a seed device as well. So use of
347          * fs_devices::metadata_uuid is appropriate here.
348          */
349         if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
350                 return false;
351
352         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
353                 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
354                         return false;
355
356         return true;
357 }
358
359 /* Do basic extent buffer checks at read time */
360 int btrfs_validate_extent_buffer(struct extent_buffer *eb,
361                                  struct btrfs_tree_parent_check *check)
362 {
363         struct btrfs_fs_info *fs_info = eb->fs_info;
364         u64 found_start;
365         const u32 csum_size = fs_info->csum_size;
366         u8 found_level;
367         u8 result[BTRFS_CSUM_SIZE];
368         const u8 *header_csum;
369         int ret = 0;
370
371         ASSERT(check);
372
373         found_start = btrfs_header_bytenr(eb);
374         if (found_start != eb->start) {
375                 btrfs_err_rl(fs_info,
376                         "bad tree block start, mirror %u want %llu have %llu",
377                              eb->read_mirror, eb->start, found_start);
378                 ret = -EIO;
379                 goto out;
380         }
381         if (check_tree_block_fsid(eb)) {
382                 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
383                              eb->start, eb->read_mirror);
384                 ret = -EIO;
385                 goto out;
386         }
387         found_level = btrfs_header_level(eb);
388         if (found_level >= BTRFS_MAX_LEVEL) {
389                 btrfs_err(fs_info,
390                         "bad tree block level, mirror %u level %d on logical %llu",
391                         eb->read_mirror, btrfs_header_level(eb), eb->start);
392                 ret = -EIO;
393                 goto out;
394         }
395
396         csum_tree_block(eb, result);
397         header_csum = folio_address(eb->folios[0]) +
398                 get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum));
399
400         if (memcmp(result, header_csum, csum_size) != 0) {
401                 btrfs_warn_rl(fs_info,
402 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
403                               eb->start, eb->read_mirror,
404                               CSUM_FMT_VALUE(csum_size, header_csum),
405                               CSUM_FMT_VALUE(csum_size, result),
406                               btrfs_header_level(eb));
407                 ret = -EUCLEAN;
408                 goto out;
409         }
410
411         if (found_level != check->level) {
412                 btrfs_err(fs_info,
413                 "level verify failed on logical %llu mirror %u wanted %u found %u",
414                           eb->start, eb->read_mirror, check->level, found_level);
415                 ret = -EIO;
416                 goto out;
417         }
418         if (unlikely(check->transid &&
419                      btrfs_header_generation(eb) != check->transid)) {
420                 btrfs_err_rl(eb->fs_info,
421 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
422                                 eb->start, eb->read_mirror, check->transid,
423                                 btrfs_header_generation(eb));
424                 ret = -EIO;
425                 goto out;
426         }
427         if (check->has_first_key) {
428                 struct btrfs_key *expect_key = &check->first_key;
429                 struct btrfs_key found_key;
430
431                 if (found_level)
432                         btrfs_node_key_to_cpu(eb, &found_key, 0);
433                 else
434                         btrfs_item_key_to_cpu(eb, &found_key, 0);
435                 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
436                         btrfs_err(fs_info,
437 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
438                                   eb->start, check->transid,
439                                   expect_key->objectid,
440                                   expect_key->type, expect_key->offset,
441                                   found_key.objectid, found_key.type,
442                                   found_key.offset);
443                         ret = -EUCLEAN;
444                         goto out;
445                 }
446         }
447         if (check->owner_root) {
448                 ret = btrfs_check_eb_owner(eb, check->owner_root);
449                 if (ret < 0)
450                         goto out;
451         }
452
453         /*
454          * If this is a leaf block and it is corrupt, set the corrupt bit so
455          * that we don't try and read the other copies of this block, just
456          * return -EIO.
457          */
458         if (found_level == 0 && btrfs_check_leaf(eb)) {
459                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
460                 ret = -EIO;
461         }
462
463         if (found_level > 0 && btrfs_check_node(eb))
464                 ret = -EIO;
465
466         if (ret)
467                 btrfs_err(fs_info,
468                 "read time tree block corruption detected on logical %llu mirror %u",
469                           eb->start, eb->read_mirror);
470 out:
471         return ret;
472 }
473
474 #ifdef CONFIG_MIGRATION
475 static int btree_migrate_folio(struct address_space *mapping,
476                 struct folio *dst, struct folio *src, enum migrate_mode mode)
477 {
478         /*
479          * we can't safely write a btree page from here,
480          * we haven't done the locking hook
481          */
482         if (folio_test_dirty(src))
483                 return -EAGAIN;
484         /*
485          * Buffers may be managed in a filesystem specific way.
486          * We must have no buffers or drop them.
487          */
488         if (folio_get_private(src) &&
489             !filemap_release_folio(src, GFP_KERNEL))
490                 return -EAGAIN;
491         return migrate_folio(mapping, dst, src, mode);
492 }
493 #else
494 #define btree_migrate_folio NULL
495 #endif
496
497 static int btree_writepages(struct address_space *mapping,
498                             struct writeback_control *wbc)
499 {
500         int ret;
501
502         if (wbc->sync_mode == WB_SYNC_NONE) {
503                 struct btrfs_fs_info *fs_info;
504
505                 if (wbc->for_kupdate)
506                         return 0;
507
508                 fs_info = inode_to_fs_info(mapping->host);
509                 /* this is a bit racy, but that's ok */
510                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
511                                              BTRFS_DIRTY_METADATA_THRESH,
512                                              fs_info->dirty_metadata_batch);
513                 if (ret < 0)
514                         return 0;
515         }
516         return btree_write_cache_pages(mapping, wbc);
517 }
518
519 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
520 {
521         if (folio_test_writeback(folio) || folio_test_dirty(folio))
522                 return false;
523
524         return try_release_extent_buffer(&folio->page);
525 }
526
527 static void btree_invalidate_folio(struct folio *folio, size_t offset,
528                                  size_t length)
529 {
530         struct extent_io_tree *tree;
531
532         tree = &folio_to_inode(folio)->io_tree;
533         extent_invalidate_folio(tree, folio, offset);
534         btree_release_folio(folio, GFP_NOFS);
535         if (folio_get_private(folio)) {
536                 btrfs_warn(folio_to_fs_info(folio),
537                            "folio private not zero on folio %llu",
538                            (unsigned long long)folio_pos(folio));
539                 folio_detach_private(folio);
540         }
541 }
542
543 #ifdef DEBUG
544 static bool btree_dirty_folio(struct address_space *mapping,
545                 struct folio *folio)
546 {
547         struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
548         struct btrfs_subpage_info *spi = fs_info->subpage_info;
549         struct btrfs_subpage *subpage;
550         struct extent_buffer *eb;
551         int cur_bit = 0;
552         u64 page_start = folio_pos(folio);
553
554         if (fs_info->sectorsize == PAGE_SIZE) {
555                 eb = folio_get_private(folio);
556                 BUG_ON(!eb);
557                 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
558                 BUG_ON(!atomic_read(&eb->refs));
559                 btrfs_assert_tree_write_locked(eb);
560                 return filemap_dirty_folio(mapping, folio);
561         }
562
563         ASSERT(spi);
564         subpage = folio_get_private(folio);
565
566         for (cur_bit = spi->dirty_offset;
567              cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
568              cur_bit++) {
569                 unsigned long flags;
570                 u64 cur;
571
572                 spin_lock_irqsave(&subpage->lock, flags);
573                 if (!test_bit(cur_bit, subpage->bitmaps)) {
574                         spin_unlock_irqrestore(&subpage->lock, flags);
575                         continue;
576                 }
577                 spin_unlock_irqrestore(&subpage->lock, flags);
578                 cur = page_start + cur_bit * fs_info->sectorsize;
579
580                 eb = find_extent_buffer(fs_info, cur);
581                 ASSERT(eb);
582                 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
583                 ASSERT(atomic_read(&eb->refs));
584                 btrfs_assert_tree_write_locked(eb);
585                 free_extent_buffer(eb);
586
587                 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
588         }
589         return filemap_dirty_folio(mapping, folio);
590 }
591 #else
592 #define btree_dirty_folio filemap_dirty_folio
593 #endif
594
595 static const struct address_space_operations btree_aops = {
596         .writepages     = btree_writepages,
597         .release_folio  = btree_release_folio,
598         .invalidate_folio = btree_invalidate_folio,
599         .migrate_folio  = btree_migrate_folio,
600         .dirty_folio    = btree_dirty_folio,
601 };
602
603 struct extent_buffer *btrfs_find_create_tree_block(
604                                                 struct btrfs_fs_info *fs_info,
605                                                 u64 bytenr, u64 owner_root,
606                                                 int level)
607 {
608         if (btrfs_is_testing(fs_info))
609                 return alloc_test_extent_buffer(fs_info, bytenr);
610         return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
611 }
612
613 /*
614  * Read tree block at logical address @bytenr and do variant basic but critical
615  * verification.
616  *
617  * @check:              expected tree parentness check, see comments of the
618  *                      structure for details.
619  */
620 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
621                                       struct btrfs_tree_parent_check *check)
622 {
623         struct extent_buffer *buf = NULL;
624         int ret;
625
626         ASSERT(check);
627
628         buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
629                                            check->level);
630         if (IS_ERR(buf))
631                 return buf;
632
633         ret = btrfs_read_extent_buffer(buf, check);
634         if (ret) {
635                 free_extent_buffer_stale(buf);
636                 return ERR_PTR(ret);
637         }
638         if (btrfs_check_eb_owner(buf, check->owner_root)) {
639                 free_extent_buffer_stale(buf);
640                 return ERR_PTR(-EUCLEAN);
641         }
642         return buf;
643
644 }
645
646 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
647                          u64 objectid)
648 {
649         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
650
651         memset(&root->root_key, 0, sizeof(root->root_key));
652         memset(&root->root_item, 0, sizeof(root->root_item));
653         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
654         root->fs_info = fs_info;
655         root->root_key.objectid = objectid;
656         root->node = NULL;
657         root->commit_root = NULL;
658         root->state = 0;
659         RB_CLEAR_NODE(&root->rb_node);
660
661         root->last_trans = 0;
662         root->free_objectid = 0;
663         root->nr_delalloc_inodes = 0;
664         root->nr_ordered_extents = 0;
665         root->inode_tree = RB_ROOT;
666         /* GFP flags are compatible with XA_FLAGS_*. */
667         xa_init_flags(&root->delayed_nodes, GFP_ATOMIC);
668
669         btrfs_init_root_block_rsv(root);
670
671         INIT_LIST_HEAD(&root->dirty_list);
672         INIT_LIST_HEAD(&root->root_list);
673         INIT_LIST_HEAD(&root->delalloc_inodes);
674         INIT_LIST_HEAD(&root->delalloc_root);
675         INIT_LIST_HEAD(&root->ordered_extents);
676         INIT_LIST_HEAD(&root->ordered_root);
677         INIT_LIST_HEAD(&root->reloc_dirty_list);
678         spin_lock_init(&root->inode_lock);
679         spin_lock_init(&root->delalloc_lock);
680         spin_lock_init(&root->ordered_extent_lock);
681         spin_lock_init(&root->accounting_lock);
682         spin_lock_init(&root->qgroup_meta_rsv_lock);
683         mutex_init(&root->objectid_mutex);
684         mutex_init(&root->log_mutex);
685         mutex_init(&root->ordered_extent_mutex);
686         mutex_init(&root->delalloc_mutex);
687         init_waitqueue_head(&root->qgroup_flush_wait);
688         init_waitqueue_head(&root->log_writer_wait);
689         init_waitqueue_head(&root->log_commit_wait[0]);
690         init_waitqueue_head(&root->log_commit_wait[1]);
691         INIT_LIST_HEAD(&root->log_ctxs[0]);
692         INIT_LIST_HEAD(&root->log_ctxs[1]);
693         atomic_set(&root->log_commit[0], 0);
694         atomic_set(&root->log_commit[1], 0);
695         atomic_set(&root->log_writers, 0);
696         atomic_set(&root->log_batch, 0);
697         refcount_set(&root->refs, 1);
698         atomic_set(&root->snapshot_force_cow, 0);
699         atomic_set(&root->nr_swapfiles, 0);
700         btrfs_set_root_log_transid(root, 0);
701         root->log_transid_committed = -1;
702         btrfs_set_root_last_log_commit(root, 0);
703         root->anon_dev = 0;
704         if (!dummy) {
705                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
706                                     IO_TREE_ROOT_DIRTY_LOG_PAGES);
707                 extent_io_tree_init(fs_info, &root->log_csum_range,
708                                     IO_TREE_LOG_CSUM_RANGE);
709         }
710
711         spin_lock_init(&root->root_item_lock);
712         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
713 #ifdef CONFIG_BTRFS_DEBUG
714         INIT_LIST_HEAD(&root->leak_list);
715         spin_lock(&fs_info->fs_roots_radix_lock);
716         list_add_tail(&root->leak_list, &fs_info->allocated_roots);
717         spin_unlock(&fs_info->fs_roots_radix_lock);
718 #endif
719 }
720
721 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
722                                            u64 objectid, gfp_t flags)
723 {
724         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
725         if (root)
726                 __setup_root(root, fs_info, objectid);
727         return root;
728 }
729
730 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
731 /* Should only be used by the testing infrastructure */
732 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
733 {
734         struct btrfs_root *root;
735
736         if (!fs_info)
737                 return ERR_PTR(-EINVAL);
738
739         root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
740         if (!root)
741                 return ERR_PTR(-ENOMEM);
742
743         /* We don't use the stripesize in selftest, set it as sectorsize */
744         root->alloc_bytenr = 0;
745
746         return root;
747 }
748 #endif
749
750 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
751 {
752         const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
753         const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
754
755         return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
756 }
757
758 static int global_root_key_cmp(const void *k, const struct rb_node *node)
759 {
760         const struct btrfs_key *key = k;
761         const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
762
763         return btrfs_comp_cpu_keys(key, &root->root_key);
764 }
765
766 int btrfs_global_root_insert(struct btrfs_root *root)
767 {
768         struct btrfs_fs_info *fs_info = root->fs_info;
769         struct rb_node *tmp;
770         int ret = 0;
771
772         write_lock(&fs_info->global_root_lock);
773         tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
774         write_unlock(&fs_info->global_root_lock);
775
776         if (tmp) {
777                 ret = -EEXIST;
778                 btrfs_warn(fs_info, "global root %llu %llu already exists",
779                                 root->root_key.objectid, root->root_key.offset);
780         }
781         return ret;
782 }
783
784 void btrfs_global_root_delete(struct btrfs_root *root)
785 {
786         struct btrfs_fs_info *fs_info = root->fs_info;
787
788         write_lock(&fs_info->global_root_lock);
789         rb_erase(&root->rb_node, &fs_info->global_root_tree);
790         write_unlock(&fs_info->global_root_lock);
791 }
792
793 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
794                                      struct btrfs_key *key)
795 {
796         struct rb_node *node;
797         struct btrfs_root *root = NULL;
798
799         read_lock(&fs_info->global_root_lock);
800         node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
801         if (node)
802                 root = container_of(node, struct btrfs_root, rb_node);
803         read_unlock(&fs_info->global_root_lock);
804
805         return root;
806 }
807
808 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
809 {
810         struct btrfs_block_group *block_group;
811         u64 ret;
812
813         if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
814                 return 0;
815
816         if (bytenr)
817                 block_group = btrfs_lookup_block_group(fs_info, bytenr);
818         else
819                 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
820         ASSERT(block_group);
821         if (!block_group)
822                 return 0;
823         ret = block_group->global_root_id;
824         btrfs_put_block_group(block_group);
825
826         return ret;
827 }
828
829 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
830 {
831         struct btrfs_key key = {
832                 .objectid = BTRFS_CSUM_TREE_OBJECTID,
833                 .type = BTRFS_ROOT_ITEM_KEY,
834                 .offset = btrfs_global_root_id(fs_info, bytenr),
835         };
836
837         return btrfs_global_root(fs_info, &key);
838 }
839
840 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
841 {
842         struct btrfs_key key = {
843                 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
844                 .type = BTRFS_ROOT_ITEM_KEY,
845                 .offset = btrfs_global_root_id(fs_info, bytenr),
846         };
847
848         return btrfs_global_root(fs_info, &key);
849 }
850
851 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
852 {
853         if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
854                 return fs_info->block_group_root;
855         return btrfs_extent_root(fs_info, 0);
856 }
857
858 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
859                                      u64 objectid)
860 {
861         struct btrfs_fs_info *fs_info = trans->fs_info;
862         struct extent_buffer *leaf;
863         struct btrfs_root *tree_root = fs_info->tree_root;
864         struct btrfs_root *root;
865         struct btrfs_key key;
866         unsigned int nofs_flag;
867         int ret = 0;
868
869         /*
870          * We're holding a transaction handle, so use a NOFS memory allocation
871          * context to avoid deadlock if reclaim happens.
872          */
873         nofs_flag = memalloc_nofs_save();
874         root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
875         memalloc_nofs_restore(nofs_flag);
876         if (!root)
877                 return ERR_PTR(-ENOMEM);
878
879         root->root_key.objectid = objectid;
880         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
881         root->root_key.offset = 0;
882
883         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
884                                       0, BTRFS_NESTING_NORMAL);
885         if (IS_ERR(leaf)) {
886                 ret = PTR_ERR(leaf);
887                 leaf = NULL;
888                 goto fail;
889         }
890
891         root->node = leaf;
892         btrfs_mark_buffer_dirty(trans, leaf);
893
894         root->commit_root = btrfs_root_node(root);
895         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
896
897         btrfs_set_root_flags(&root->root_item, 0);
898         btrfs_set_root_limit(&root->root_item, 0);
899         btrfs_set_root_bytenr(&root->root_item, leaf->start);
900         btrfs_set_root_generation(&root->root_item, trans->transid);
901         btrfs_set_root_level(&root->root_item, 0);
902         btrfs_set_root_refs(&root->root_item, 1);
903         btrfs_set_root_used(&root->root_item, leaf->len);
904         btrfs_set_root_last_snapshot(&root->root_item, 0);
905         btrfs_set_root_dirid(&root->root_item, 0);
906         if (is_fstree(objectid))
907                 generate_random_guid(root->root_item.uuid);
908         else
909                 export_guid(root->root_item.uuid, &guid_null);
910         btrfs_set_root_drop_level(&root->root_item, 0);
911
912         btrfs_tree_unlock(leaf);
913
914         key.objectid = objectid;
915         key.type = BTRFS_ROOT_ITEM_KEY;
916         key.offset = 0;
917         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
918         if (ret)
919                 goto fail;
920
921         return root;
922
923 fail:
924         btrfs_put_root(root);
925
926         return ERR_PTR(ret);
927 }
928
929 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
930                                          struct btrfs_fs_info *fs_info)
931 {
932         struct btrfs_root *root;
933
934         root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
935         if (!root)
936                 return ERR_PTR(-ENOMEM);
937
938         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
939         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
940         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
941
942         return root;
943 }
944
945 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
946                               struct btrfs_root *root)
947 {
948         struct extent_buffer *leaf;
949
950         /*
951          * DON'T set SHAREABLE bit for log trees.
952          *
953          * Log trees are not exposed to user space thus can't be snapshotted,
954          * and they go away before a real commit is actually done.
955          *
956          * They do store pointers to file data extents, and those reference
957          * counts still get updated (along with back refs to the log tree).
958          */
959
960         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
961                         NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
962         if (IS_ERR(leaf))
963                 return PTR_ERR(leaf);
964
965         root->node = leaf;
966
967         btrfs_mark_buffer_dirty(trans, root->node);
968         btrfs_tree_unlock(root->node);
969
970         return 0;
971 }
972
973 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
974                              struct btrfs_fs_info *fs_info)
975 {
976         struct btrfs_root *log_root;
977
978         log_root = alloc_log_tree(trans, fs_info);
979         if (IS_ERR(log_root))
980                 return PTR_ERR(log_root);
981
982         if (!btrfs_is_zoned(fs_info)) {
983                 int ret = btrfs_alloc_log_tree_node(trans, log_root);
984
985                 if (ret) {
986                         btrfs_put_root(log_root);
987                         return ret;
988                 }
989         }
990
991         WARN_ON(fs_info->log_root_tree);
992         fs_info->log_root_tree = log_root;
993         return 0;
994 }
995
996 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
997                        struct btrfs_root *root)
998 {
999         struct btrfs_fs_info *fs_info = root->fs_info;
1000         struct btrfs_root *log_root;
1001         struct btrfs_inode_item *inode_item;
1002         int ret;
1003
1004         log_root = alloc_log_tree(trans, fs_info);
1005         if (IS_ERR(log_root))
1006                 return PTR_ERR(log_root);
1007
1008         ret = btrfs_alloc_log_tree_node(trans, log_root);
1009         if (ret) {
1010                 btrfs_put_root(log_root);
1011                 return ret;
1012         }
1013
1014         log_root->last_trans = trans->transid;
1015         log_root->root_key.offset = root->root_key.objectid;
1016
1017         inode_item = &log_root->root_item.inode;
1018         btrfs_set_stack_inode_generation(inode_item, 1);
1019         btrfs_set_stack_inode_size(inode_item, 3);
1020         btrfs_set_stack_inode_nlink(inode_item, 1);
1021         btrfs_set_stack_inode_nbytes(inode_item,
1022                                      fs_info->nodesize);
1023         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1024
1025         btrfs_set_root_node(&log_root->root_item, log_root->node);
1026
1027         WARN_ON(root->log_root);
1028         root->log_root = log_root;
1029         btrfs_set_root_log_transid(root, 0);
1030         root->log_transid_committed = -1;
1031         btrfs_set_root_last_log_commit(root, 0);
1032         return 0;
1033 }
1034
1035 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1036                                               struct btrfs_path *path,
1037                                               struct btrfs_key *key)
1038 {
1039         struct btrfs_root *root;
1040         struct btrfs_tree_parent_check check = { 0 };
1041         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1042         u64 generation;
1043         int ret;
1044         int level;
1045
1046         root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1047         if (!root)
1048                 return ERR_PTR(-ENOMEM);
1049
1050         ret = btrfs_find_root(tree_root, key, path,
1051                               &root->root_item, &root->root_key);
1052         if (ret) {
1053                 if (ret > 0)
1054                         ret = -ENOENT;
1055                 goto fail;
1056         }
1057
1058         generation = btrfs_root_generation(&root->root_item);
1059         level = btrfs_root_level(&root->root_item);
1060         check.level = level;
1061         check.transid = generation;
1062         check.owner_root = key->objectid;
1063         root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1064                                      &check);
1065         if (IS_ERR(root->node)) {
1066                 ret = PTR_ERR(root->node);
1067                 root->node = NULL;
1068                 goto fail;
1069         }
1070         if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1071                 ret = -EIO;
1072                 goto fail;
1073         }
1074
1075         /*
1076          * For real fs, and not log/reloc trees, root owner must
1077          * match its root node owner
1078          */
1079         if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1080             root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1081             root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1082             root->root_key.objectid != btrfs_header_owner(root->node)) {
1083                 btrfs_crit(fs_info,
1084 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1085                            root->root_key.objectid, root->node->start,
1086                            btrfs_header_owner(root->node),
1087                            root->root_key.objectid);
1088                 ret = -EUCLEAN;
1089                 goto fail;
1090         }
1091         root->commit_root = btrfs_root_node(root);
1092         return root;
1093 fail:
1094         btrfs_put_root(root);
1095         return ERR_PTR(ret);
1096 }
1097
1098 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1099                                         struct btrfs_key *key)
1100 {
1101         struct btrfs_root *root;
1102         struct btrfs_path *path;
1103
1104         path = btrfs_alloc_path();
1105         if (!path)
1106                 return ERR_PTR(-ENOMEM);
1107         root = read_tree_root_path(tree_root, path, key);
1108         btrfs_free_path(path);
1109
1110         return root;
1111 }
1112
1113 /*
1114  * Initialize subvolume root in-memory structure
1115  *
1116  * @anon_dev:   anonymous device to attach to the root, if zero, allocate new
1117  */
1118 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1119 {
1120         int ret;
1121
1122         btrfs_drew_lock_init(&root->snapshot_lock);
1123
1124         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1125             !btrfs_is_data_reloc_root(root) &&
1126             is_fstree(root->root_key.objectid)) {
1127                 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1128                 btrfs_check_and_init_root_item(&root->root_item);
1129         }
1130
1131         /*
1132          * Don't assign anonymous block device to roots that are not exposed to
1133          * userspace, the id pool is limited to 1M
1134          */
1135         if (is_fstree(root->root_key.objectid) &&
1136             btrfs_root_refs(&root->root_item) > 0) {
1137                 if (!anon_dev) {
1138                         ret = get_anon_bdev(&root->anon_dev);
1139                         if (ret)
1140                                 goto fail;
1141                 } else {
1142                         root->anon_dev = anon_dev;
1143                 }
1144         }
1145
1146         mutex_lock(&root->objectid_mutex);
1147         ret = btrfs_init_root_free_objectid(root);
1148         if (ret) {
1149                 mutex_unlock(&root->objectid_mutex);
1150                 goto fail;
1151         }
1152
1153         ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1154
1155         mutex_unlock(&root->objectid_mutex);
1156
1157         return 0;
1158 fail:
1159         /* The caller is responsible to call btrfs_free_fs_root */
1160         return ret;
1161 }
1162
1163 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1164                                                u64 root_id)
1165 {
1166         struct btrfs_root *root;
1167
1168         spin_lock(&fs_info->fs_roots_radix_lock);
1169         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1170                                  (unsigned long)root_id);
1171         root = btrfs_grab_root(root);
1172         spin_unlock(&fs_info->fs_roots_radix_lock);
1173         return root;
1174 }
1175
1176 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1177                                                 u64 objectid)
1178 {
1179         struct btrfs_key key = {
1180                 .objectid = objectid,
1181                 .type = BTRFS_ROOT_ITEM_KEY,
1182                 .offset = 0,
1183         };
1184
1185         switch (objectid) {
1186         case BTRFS_ROOT_TREE_OBJECTID:
1187                 return btrfs_grab_root(fs_info->tree_root);
1188         case BTRFS_EXTENT_TREE_OBJECTID:
1189                 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1190         case BTRFS_CHUNK_TREE_OBJECTID:
1191                 return btrfs_grab_root(fs_info->chunk_root);
1192         case BTRFS_DEV_TREE_OBJECTID:
1193                 return btrfs_grab_root(fs_info->dev_root);
1194         case BTRFS_CSUM_TREE_OBJECTID:
1195                 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1196         case BTRFS_QUOTA_TREE_OBJECTID:
1197                 return btrfs_grab_root(fs_info->quota_root);
1198         case BTRFS_UUID_TREE_OBJECTID:
1199                 return btrfs_grab_root(fs_info->uuid_root);
1200         case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1201                 return btrfs_grab_root(fs_info->block_group_root);
1202         case BTRFS_FREE_SPACE_TREE_OBJECTID:
1203                 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1204         case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1205                 return btrfs_grab_root(fs_info->stripe_root);
1206         default:
1207                 return NULL;
1208         }
1209 }
1210
1211 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1212                          struct btrfs_root *root)
1213 {
1214         int ret;
1215
1216         ret = radix_tree_preload(GFP_NOFS);
1217         if (ret)
1218                 return ret;
1219
1220         spin_lock(&fs_info->fs_roots_radix_lock);
1221         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1222                                 (unsigned long)root->root_key.objectid,
1223                                 root);
1224         if (ret == 0) {
1225                 btrfs_grab_root(root);
1226                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1227         }
1228         spin_unlock(&fs_info->fs_roots_radix_lock);
1229         radix_tree_preload_end();
1230
1231         return ret;
1232 }
1233
1234 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1235 {
1236 #ifdef CONFIG_BTRFS_DEBUG
1237         struct btrfs_root *root;
1238
1239         while (!list_empty(&fs_info->allocated_roots)) {
1240                 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1241
1242                 root = list_first_entry(&fs_info->allocated_roots,
1243                                         struct btrfs_root, leak_list);
1244                 btrfs_err(fs_info, "leaked root %s refcount %d",
1245                           btrfs_root_name(&root->root_key, buf),
1246                           refcount_read(&root->refs));
1247                 WARN_ON_ONCE(1);
1248                 while (refcount_read(&root->refs) > 1)
1249                         btrfs_put_root(root);
1250                 btrfs_put_root(root);
1251         }
1252 #endif
1253 }
1254
1255 static void free_global_roots(struct btrfs_fs_info *fs_info)
1256 {
1257         struct btrfs_root *root;
1258         struct rb_node *node;
1259
1260         while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1261                 root = rb_entry(node, struct btrfs_root, rb_node);
1262                 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1263                 btrfs_put_root(root);
1264         }
1265 }
1266
1267 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1268 {
1269         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1270         percpu_counter_destroy(&fs_info->delalloc_bytes);
1271         percpu_counter_destroy(&fs_info->ordered_bytes);
1272         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1273         btrfs_free_csum_hash(fs_info);
1274         btrfs_free_stripe_hash_table(fs_info);
1275         btrfs_free_ref_cache(fs_info);
1276         kfree(fs_info->balance_ctl);
1277         kfree(fs_info->delayed_root);
1278         free_global_roots(fs_info);
1279         btrfs_put_root(fs_info->tree_root);
1280         btrfs_put_root(fs_info->chunk_root);
1281         btrfs_put_root(fs_info->dev_root);
1282         btrfs_put_root(fs_info->quota_root);
1283         btrfs_put_root(fs_info->uuid_root);
1284         btrfs_put_root(fs_info->fs_root);
1285         btrfs_put_root(fs_info->data_reloc_root);
1286         btrfs_put_root(fs_info->block_group_root);
1287         btrfs_put_root(fs_info->stripe_root);
1288         btrfs_check_leaked_roots(fs_info);
1289         btrfs_extent_buffer_leak_debug_check(fs_info);
1290         kfree(fs_info->super_copy);
1291         kfree(fs_info->super_for_commit);
1292         kfree(fs_info->subpage_info);
1293         kvfree(fs_info);
1294 }
1295
1296
1297 /*
1298  * Get an in-memory reference of a root structure.
1299  *
1300  * For essential trees like root/extent tree, we grab it from fs_info directly.
1301  * For subvolume trees, we check the cached filesystem roots first. If not
1302  * found, then read it from disk and add it to cached fs roots.
1303  *
1304  * Caller should release the root by calling btrfs_put_root() after the usage.
1305  *
1306  * NOTE: Reloc and log trees can't be read by this function as they share the
1307  *       same root objectid.
1308  *
1309  * @objectid:   root id
1310  * @anon_dev:   preallocated anonymous block device number for new roots,
1311  *              pass NULL for a new allocation.
1312  * @check_ref:  whether to check root item references, If true, return -ENOENT
1313  *              for orphan roots
1314  */
1315 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1316                                              u64 objectid, dev_t *anon_dev,
1317                                              bool check_ref)
1318 {
1319         struct btrfs_root *root;
1320         struct btrfs_path *path;
1321         struct btrfs_key key;
1322         int ret;
1323
1324         root = btrfs_get_global_root(fs_info, objectid);
1325         if (root)
1326                 return root;
1327
1328         /*
1329          * If we're called for non-subvolume trees, and above function didn't
1330          * find one, do not try to read it from disk.
1331          *
1332          * This is namely for free-space-tree and quota tree, which can change
1333          * at runtime and should only be grabbed from fs_info.
1334          */
1335         if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1336                 return ERR_PTR(-ENOENT);
1337 again:
1338         root = btrfs_lookup_fs_root(fs_info, objectid);
1339         if (root) {
1340                 /*
1341                  * Some other caller may have read out the newly inserted
1342                  * subvolume already (for things like backref walk etc).  Not
1343                  * that common but still possible.  In that case, we just need
1344                  * to free the anon_dev.
1345                  */
1346                 if (unlikely(anon_dev && *anon_dev)) {
1347                         free_anon_bdev(*anon_dev);
1348                         *anon_dev = 0;
1349                 }
1350
1351                 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1352                         btrfs_put_root(root);
1353                         return ERR_PTR(-ENOENT);
1354                 }
1355                 return root;
1356         }
1357
1358         key.objectid = objectid;
1359         key.type = BTRFS_ROOT_ITEM_KEY;
1360         key.offset = (u64)-1;
1361         root = btrfs_read_tree_root(fs_info->tree_root, &key);
1362         if (IS_ERR(root))
1363                 return root;
1364
1365         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1366                 ret = -ENOENT;
1367                 goto fail;
1368         }
1369
1370         ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
1371         if (ret)
1372                 goto fail;
1373
1374         path = btrfs_alloc_path();
1375         if (!path) {
1376                 ret = -ENOMEM;
1377                 goto fail;
1378         }
1379         key.objectid = BTRFS_ORPHAN_OBJECTID;
1380         key.type = BTRFS_ORPHAN_ITEM_KEY;
1381         key.offset = objectid;
1382
1383         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1384         btrfs_free_path(path);
1385         if (ret < 0)
1386                 goto fail;
1387         if (ret == 0)
1388                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1389
1390         ret = btrfs_insert_fs_root(fs_info, root);
1391         if (ret) {
1392                 if (ret == -EEXIST) {
1393                         btrfs_put_root(root);
1394                         goto again;
1395                 }
1396                 goto fail;
1397         }
1398         return root;
1399 fail:
1400         /*
1401          * If our caller provided us an anonymous device, then it's his
1402          * responsibility to free it in case we fail. So we have to set our
1403          * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1404          * and once again by our caller.
1405          */
1406         if (anon_dev && *anon_dev)
1407                 root->anon_dev = 0;
1408         btrfs_put_root(root);
1409         return ERR_PTR(ret);
1410 }
1411
1412 /*
1413  * Get in-memory reference of a root structure
1414  *
1415  * @objectid:   tree objectid
1416  * @check_ref:  if set, verify that the tree exists and the item has at least
1417  *              one reference
1418  */
1419 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1420                                      u64 objectid, bool check_ref)
1421 {
1422         return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
1423 }
1424
1425 /*
1426  * Get in-memory reference of a root structure, created as new, optionally pass
1427  * the anonymous block device id
1428  *
1429  * @objectid:   tree objectid
1430  * @anon_dev:   if NULL, allocate a new anonymous block device or use the
1431  *              parameter value if not NULL
1432  */
1433 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1434                                          u64 objectid, dev_t *anon_dev)
1435 {
1436         return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1437 }
1438
1439 /*
1440  * Return a root for the given objectid.
1441  *
1442  * @fs_info:    the fs_info
1443  * @objectid:   the objectid we need to lookup
1444  *
1445  * This is exclusively used for backref walking, and exists specifically because
1446  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1447  * creation time, which means we may have to read the tree_root in order to look
1448  * up a fs root that is not in memory.  If the root is not in memory we will
1449  * read the tree root commit root and look up the fs root from there.  This is a
1450  * temporary root, it will not be inserted into the radix tree as it doesn't
1451  * have the most uptodate information, it'll simply be discarded once the
1452  * backref code is finished using the root.
1453  */
1454 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1455                                                  struct btrfs_path *path,
1456                                                  u64 objectid)
1457 {
1458         struct btrfs_root *root;
1459         struct btrfs_key key;
1460
1461         ASSERT(path->search_commit_root && path->skip_locking);
1462
1463         /*
1464          * This can return -ENOENT if we ask for a root that doesn't exist, but
1465          * since this is called via the backref walking code we won't be looking
1466          * up a root that doesn't exist, unless there's corruption.  So if root
1467          * != NULL just return it.
1468          */
1469         root = btrfs_get_global_root(fs_info, objectid);
1470         if (root)
1471                 return root;
1472
1473         root = btrfs_lookup_fs_root(fs_info, objectid);
1474         if (root)
1475                 return root;
1476
1477         key.objectid = objectid;
1478         key.type = BTRFS_ROOT_ITEM_KEY;
1479         key.offset = (u64)-1;
1480         root = read_tree_root_path(fs_info->tree_root, path, &key);
1481         btrfs_release_path(path);
1482
1483         return root;
1484 }
1485
1486 static int cleaner_kthread(void *arg)
1487 {
1488         struct btrfs_fs_info *fs_info = arg;
1489         int again;
1490
1491         while (1) {
1492                 again = 0;
1493
1494                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1495
1496                 /* Make the cleaner go to sleep early. */
1497                 if (btrfs_need_cleaner_sleep(fs_info))
1498                         goto sleep;
1499
1500                 /*
1501                  * Do not do anything if we might cause open_ctree() to block
1502                  * before we have finished mounting the filesystem.
1503                  */
1504                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1505                         goto sleep;
1506
1507                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1508                         goto sleep;
1509
1510                 /*
1511                  * Avoid the problem that we change the status of the fs
1512                  * during the above check and trylock.
1513                  */
1514                 if (btrfs_need_cleaner_sleep(fs_info)) {
1515                         mutex_unlock(&fs_info->cleaner_mutex);
1516                         goto sleep;
1517                 }
1518
1519                 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1520                         btrfs_sysfs_feature_update(fs_info);
1521
1522                 btrfs_run_delayed_iputs(fs_info);
1523
1524                 again = btrfs_clean_one_deleted_snapshot(fs_info);
1525                 mutex_unlock(&fs_info->cleaner_mutex);
1526
1527                 /*
1528                  * The defragger has dealt with the R/O remount and umount,
1529                  * needn't do anything special here.
1530                  */
1531                 btrfs_run_defrag_inodes(fs_info);
1532
1533                 /*
1534                  * Acquires fs_info->reclaim_bgs_lock to avoid racing
1535                  * with relocation (btrfs_relocate_chunk) and relocation
1536                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1537                  * after acquiring fs_info->reclaim_bgs_lock. So we
1538                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1539                  * unused block groups.
1540                  */
1541                 btrfs_delete_unused_bgs(fs_info);
1542
1543                 /*
1544                  * Reclaim block groups in the reclaim_bgs list after we deleted
1545                  * all unused block_groups. This possibly gives us some more free
1546                  * space.
1547                  */
1548                 btrfs_reclaim_bgs(fs_info);
1549 sleep:
1550                 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1551                 if (kthread_should_park())
1552                         kthread_parkme();
1553                 if (kthread_should_stop())
1554                         return 0;
1555                 if (!again) {
1556                         set_current_state(TASK_INTERRUPTIBLE);
1557                         schedule();
1558                         __set_current_state(TASK_RUNNING);
1559                 }
1560         }
1561 }
1562
1563 static int transaction_kthread(void *arg)
1564 {
1565         struct btrfs_root *root = arg;
1566         struct btrfs_fs_info *fs_info = root->fs_info;
1567         struct btrfs_trans_handle *trans;
1568         struct btrfs_transaction *cur;
1569         u64 transid;
1570         time64_t delta;
1571         unsigned long delay;
1572         bool cannot_commit;
1573
1574         do {
1575                 cannot_commit = false;
1576                 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1577                 mutex_lock(&fs_info->transaction_kthread_mutex);
1578
1579                 spin_lock(&fs_info->trans_lock);
1580                 cur = fs_info->running_transaction;
1581                 if (!cur) {
1582                         spin_unlock(&fs_info->trans_lock);
1583                         goto sleep;
1584                 }
1585
1586                 delta = ktime_get_seconds() - cur->start_time;
1587                 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1588                     cur->state < TRANS_STATE_COMMIT_PREP &&
1589                     delta < fs_info->commit_interval) {
1590                         spin_unlock(&fs_info->trans_lock);
1591                         delay -= msecs_to_jiffies((delta - 1) * 1000);
1592                         delay = min(delay,
1593                                     msecs_to_jiffies(fs_info->commit_interval * 1000));
1594                         goto sleep;
1595                 }
1596                 transid = cur->transid;
1597                 spin_unlock(&fs_info->trans_lock);
1598
1599                 /* If the file system is aborted, this will always fail. */
1600                 trans = btrfs_attach_transaction(root);
1601                 if (IS_ERR(trans)) {
1602                         if (PTR_ERR(trans) != -ENOENT)
1603                                 cannot_commit = true;
1604                         goto sleep;
1605                 }
1606                 if (transid == trans->transid) {
1607                         btrfs_commit_transaction(trans);
1608                 } else {
1609                         btrfs_end_transaction(trans);
1610                 }
1611 sleep:
1612                 wake_up_process(fs_info->cleaner_kthread);
1613                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1614
1615                 if (BTRFS_FS_ERROR(fs_info))
1616                         btrfs_cleanup_transaction(fs_info);
1617                 if (!kthread_should_stop() &&
1618                                 (!btrfs_transaction_blocked(fs_info) ||
1619                                  cannot_commit))
1620                         schedule_timeout_interruptible(delay);
1621         } while (!kthread_should_stop());
1622         return 0;
1623 }
1624
1625 /*
1626  * This will find the highest generation in the array of root backups.  The
1627  * index of the highest array is returned, or -EINVAL if we can't find
1628  * anything.
1629  *
1630  * We check to make sure the array is valid by comparing the
1631  * generation of the latest  root in the array with the generation
1632  * in the super block.  If they don't match we pitch it.
1633  */
1634 static int find_newest_super_backup(struct btrfs_fs_info *info)
1635 {
1636         const u64 newest_gen = btrfs_super_generation(info->super_copy);
1637         u64 cur;
1638         struct btrfs_root_backup *root_backup;
1639         int i;
1640
1641         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1642                 root_backup = info->super_copy->super_roots + i;
1643                 cur = btrfs_backup_tree_root_gen(root_backup);
1644                 if (cur == newest_gen)
1645                         return i;
1646         }
1647
1648         return -EINVAL;
1649 }
1650
1651 /*
1652  * copy all the root pointers into the super backup array.
1653  * this will bump the backup pointer by one when it is
1654  * done
1655  */
1656 static void backup_super_roots(struct btrfs_fs_info *info)
1657 {
1658         const int next_backup = info->backup_root_index;
1659         struct btrfs_root_backup *root_backup;
1660
1661         root_backup = info->super_for_commit->super_roots + next_backup;
1662
1663         /*
1664          * make sure all of our padding and empty slots get zero filled
1665          * regardless of which ones we use today
1666          */
1667         memset(root_backup, 0, sizeof(*root_backup));
1668
1669         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1670
1671         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1672         btrfs_set_backup_tree_root_gen(root_backup,
1673                                btrfs_header_generation(info->tree_root->node));
1674
1675         btrfs_set_backup_tree_root_level(root_backup,
1676                                btrfs_header_level(info->tree_root->node));
1677
1678         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1679         btrfs_set_backup_chunk_root_gen(root_backup,
1680                                btrfs_header_generation(info->chunk_root->node));
1681         btrfs_set_backup_chunk_root_level(root_backup,
1682                                btrfs_header_level(info->chunk_root->node));
1683
1684         if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1685                 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1686                 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1687
1688                 btrfs_set_backup_extent_root(root_backup,
1689                                              extent_root->node->start);
1690                 btrfs_set_backup_extent_root_gen(root_backup,
1691                                 btrfs_header_generation(extent_root->node));
1692                 btrfs_set_backup_extent_root_level(root_backup,
1693                                         btrfs_header_level(extent_root->node));
1694
1695                 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1696                 btrfs_set_backup_csum_root_gen(root_backup,
1697                                                btrfs_header_generation(csum_root->node));
1698                 btrfs_set_backup_csum_root_level(root_backup,
1699                                                  btrfs_header_level(csum_root->node));
1700         }
1701
1702         /*
1703          * we might commit during log recovery, which happens before we set
1704          * the fs_root.  Make sure it is valid before we fill it in.
1705          */
1706         if (info->fs_root && info->fs_root->node) {
1707                 btrfs_set_backup_fs_root(root_backup,
1708                                          info->fs_root->node->start);
1709                 btrfs_set_backup_fs_root_gen(root_backup,
1710                                btrfs_header_generation(info->fs_root->node));
1711                 btrfs_set_backup_fs_root_level(root_backup,
1712                                btrfs_header_level(info->fs_root->node));
1713         }
1714
1715         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1716         btrfs_set_backup_dev_root_gen(root_backup,
1717                                btrfs_header_generation(info->dev_root->node));
1718         btrfs_set_backup_dev_root_level(root_backup,
1719                                        btrfs_header_level(info->dev_root->node));
1720
1721         btrfs_set_backup_total_bytes(root_backup,
1722                              btrfs_super_total_bytes(info->super_copy));
1723         btrfs_set_backup_bytes_used(root_backup,
1724                              btrfs_super_bytes_used(info->super_copy));
1725         btrfs_set_backup_num_devices(root_backup,
1726                              btrfs_super_num_devices(info->super_copy));
1727
1728         /*
1729          * if we don't copy this out to the super_copy, it won't get remembered
1730          * for the next commit
1731          */
1732         memcpy(&info->super_copy->super_roots,
1733                &info->super_for_commit->super_roots,
1734                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1735 }
1736
1737 /*
1738  * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1739  * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1740  *
1741  * @fs_info:  filesystem whose backup roots need to be read
1742  * @priority: priority of backup root required
1743  *
1744  * Returns backup root index on success and -EINVAL otherwise.
1745  */
1746 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1747 {
1748         int backup_index = find_newest_super_backup(fs_info);
1749         struct btrfs_super_block *super = fs_info->super_copy;
1750         struct btrfs_root_backup *root_backup;
1751
1752         if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1753                 if (priority == 0)
1754                         return backup_index;
1755
1756                 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1757                 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1758         } else {
1759                 return -EINVAL;
1760         }
1761
1762         root_backup = super->super_roots + backup_index;
1763
1764         btrfs_set_super_generation(super,
1765                                    btrfs_backup_tree_root_gen(root_backup));
1766         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1767         btrfs_set_super_root_level(super,
1768                                    btrfs_backup_tree_root_level(root_backup));
1769         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1770
1771         /*
1772          * Fixme: the total bytes and num_devices need to match or we should
1773          * need a fsck
1774          */
1775         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1776         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1777
1778         return backup_index;
1779 }
1780
1781 /* helper to cleanup workers */
1782 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1783 {
1784         btrfs_destroy_workqueue(fs_info->fixup_workers);
1785         btrfs_destroy_workqueue(fs_info->delalloc_workers);
1786         btrfs_destroy_workqueue(fs_info->workers);
1787         if (fs_info->endio_workers)
1788                 destroy_workqueue(fs_info->endio_workers);
1789         if (fs_info->rmw_workers)
1790                 destroy_workqueue(fs_info->rmw_workers);
1791         if (fs_info->compressed_write_workers)
1792                 destroy_workqueue(fs_info->compressed_write_workers);
1793         btrfs_destroy_workqueue(fs_info->endio_write_workers);
1794         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1795         btrfs_destroy_workqueue(fs_info->delayed_workers);
1796         btrfs_destroy_workqueue(fs_info->caching_workers);
1797         btrfs_destroy_workqueue(fs_info->flush_workers);
1798         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1799         if (fs_info->discard_ctl.discard_workers)
1800                 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1801         /*
1802          * Now that all other work queues are destroyed, we can safely destroy
1803          * the queues used for metadata I/O, since tasks from those other work
1804          * queues can do metadata I/O operations.
1805          */
1806         if (fs_info->endio_meta_workers)
1807                 destroy_workqueue(fs_info->endio_meta_workers);
1808 }
1809
1810 static void free_root_extent_buffers(struct btrfs_root *root)
1811 {
1812         if (root) {
1813                 free_extent_buffer(root->node);
1814                 free_extent_buffer(root->commit_root);
1815                 root->node = NULL;
1816                 root->commit_root = NULL;
1817         }
1818 }
1819
1820 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1821 {
1822         struct btrfs_root *root, *tmp;
1823
1824         rbtree_postorder_for_each_entry_safe(root, tmp,
1825                                              &fs_info->global_root_tree,
1826                                              rb_node)
1827                 free_root_extent_buffers(root);
1828 }
1829
1830 /* helper to cleanup tree roots */
1831 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1832 {
1833         free_root_extent_buffers(info->tree_root);
1834
1835         free_global_root_pointers(info);
1836         free_root_extent_buffers(info->dev_root);
1837         free_root_extent_buffers(info->quota_root);
1838         free_root_extent_buffers(info->uuid_root);
1839         free_root_extent_buffers(info->fs_root);
1840         free_root_extent_buffers(info->data_reloc_root);
1841         free_root_extent_buffers(info->block_group_root);
1842         free_root_extent_buffers(info->stripe_root);
1843         if (free_chunk_root)
1844                 free_root_extent_buffers(info->chunk_root);
1845 }
1846
1847 void btrfs_put_root(struct btrfs_root *root)
1848 {
1849         if (!root)
1850                 return;
1851
1852         if (refcount_dec_and_test(&root->refs)) {
1853                 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1854                 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1855                 if (root->anon_dev)
1856                         free_anon_bdev(root->anon_dev);
1857                 free_root_extent_buffers(root);
1858 #ifdef CONFIG_BTRFS_DEBUG
1859                 spin_lock(&root->fs_info->fs_roots_radix_lock);
1860                 list_del_init(&root->leak_list);
1861                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
1862 #endif
1863                 kfree(root);
1864         }
1865 }
1866
1867 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1868 {
1869         int ret;
1870         struct btrfs_root *gang[8];
1871         int i;
1872
1873         while (!list_empty(&fs_info->dead_roots)) {
1874                 gang[0] = list_entry(fs_info->dead_roots.next,
1875                                      struct btrfs_root, root_list);
1876                 list_del(&gang[0]->root_list);
1877
1878                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1879                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1880                 btrfs_put_root(gang[0]);
1881         }
1882
1883         while (1) {
1884                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1885                                              (void **)gang, 0,
1886                                              ARRAY_SIZE(gang));
1887                 if (!ret)
1888                         break;
1889                 for (i = 0; i < ret; i++)
1890                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1891         }
1892 }
1893
1894 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1895 {
1896         mutex_init(&fs_info->scrub_lock);
1897         atomic_set(&fs_info->scrubs_running, 0);
1898         atomic_set(&fs_info->scrub_pause_req, 0);
1899         atomic_set(&fs_info->scrubs_paused, 0);
1900         atomic_set(&fs_info->scrub_cancel_req, 0);
1901         init_waitqueue_head(&fs_info->scrub_pause_wait);
1902         refcount_set(&fs_info->scrub_workers_refcnt, 0);
1903 }
1904
1905 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1906 {
1907         spin_lock_init(&fs_info->balance_lock);
1908         mutex_init(&fs_info->balance_mutex);
1909         atomic_set(&fs_info->balance_pause_req, 0);
1910         atomic_set(&fs_info->balance_cancel_req, 0);
1911         fs_info->balance_ctl = NULL;
1912         init_waitqueue_head(&fs_info->balance_wait_q);
1913         atomic_set(&fs_info->reloc_cancel_req, 0);
1914 }
1915
1916 static int btrfs_init_btree_inode(struct super_block *sb)
1917 {
1918         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1919         unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1920                                               fs_info->tree_root);
1921         struct inode *inode;
1922
1923         inode = new_inode(sb);
1924         if (!inode)
1925                 return -ENOMEM;
1926
1927         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1928         set_nlink(inode, 1);
1929         /*
1930          * we set the i_size on the btree inode to the max possible int.
1931          * the real end of the address space is determined by all of
1932          * the devices in the system
1933          */
1934         inode->i_size = OFFSET_MAX;
1935         inode->i_mapping->a_ops = &btree_aops;
1936         mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1937
1938         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
1939         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1940                             IO_TREE_BTREE_INODE_IO);
1941         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1942
1943         BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1944         BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
1945         BTRFS_I(inode)->location.type = 0;
1946         BTRFS_I(inode)->location.offset = 0;
1947         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1948         __insert_inode_hash(inode, hash);
1949         fs_info->btree_inode = inode;
1950
1951         return 0;
1952 }
1953
1954 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1955 {
1956         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1957         init_rwsem(&fs_info->dev_replace.rwsem);
1958         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1959 }
1960
1961 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1962 {
1963         spin_lock_init(&fs_info->qgroup_lock);
1964         mutex_init(&fs_info->qgroup_ioctl_lock);
1965         fs_info->qgroup_tree = RB_ROOT;
1966         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1967         fs_info->qgroup_seq = 1;
1968         fs_info->qgroup_ulist = NULL;
1969         fs_info->qgroup_rescan_running = false;
1970         fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
1971         mutex_init(&fs_info->qgroup_rescan_lock);
1972 }
1973
1974 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1975 {
1976         u32 max_active = fs_info->thread_pool_size;
1977         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1978         unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1979
1980         fs_info->workers =
1981                 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1982
1983         fs_info->delalloc_workers =
1984                 btrfs_alloc_workqueue(fs_info, "delalloc",
1985                                       flags, max_active, 2);
1986
1987         fs_info->flush_workers =
1988                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1989                                       flags, max_active, 0);
1990
1991         fs_info->caching_workers =
1992                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1993
1994         fs_info->fixup_workers =
1995                 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1996
1997         fs_info->endio_workers =
1998                 alloc_workqueue("btrfs-endio", flags, max_active);
1999         fs_info->endio_meta_workers =
2000                 alloc_workqueue("btrfs-endio-meta", flags, max_active);
2001         fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2002         fs_info->endio_write_workers =
2003                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2004                                       max_active, 2);
2005         fs_info->compressed_write_workers =
2006                 alloc_workqueue("btrfs-compressed-write", flags, max_active);
2007         fs_info->endio_freespace_worker =
2008                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2009                                       max_active, 0);
2010         fs_info->delayed_workers =
2011                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2012                                       max_active, 0);
2013         fs_info->qgroup_rescan_workers =
2014                 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
2015                                               ordered_flags);
2016         fs_info->discard_ctl.discard_workers =
2017                 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
2018
2019         if (!(fs_info->workers &&
2020               fs_info->delalloc_workers && fs_info->flush_workers &&
2021               fs_info->endio_workers && fs_info->endio_meta_workers &&
2022               fs_info->compressed_write_workers &&
2023               fs_info->endio_write_workers &&
2024               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2025               fs_info->caching_workers && fs_info->fixup_workers &&
2026               fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2027               fs_info->discard_ctl.discard_workers)) {
2028                 return -ENOMEM;
2029         }
2030
2031         return 0;
2032 }
2033
2034 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2035 {
2036         struct crypto_shash *csum_shash;
2037         const char *csum_driver = btrfs_super_csum_driver(csum_type);
2038
2039         csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2040
2041         if (IS_ERR(csum_shash)) {
2042                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2043                           csum_driver);
2044                 return PTR_ERR(csum_shash);
2045         }
2046
2047         fs_info->csum_shash = csum_shash;
2048
2049         /*
2050          * Check if the checksum implementation is a fast accelerated one.
2051          * As-is this is a bit of a hack and should be replaced once the csum
2052          * implementations provide that information themselves.
2053          */
2054         switch (csum_type) {
2055         case BTRFS_CSUM_TYPE_CRC32:
2056                 if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2057                         set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2058                 break;
2059         case BTRFS_CSUM_TYPE_XXHASH:
2060                 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2061                 break;
2062         default:
2063                 break;
2064         }
2065
2066         btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2067                         btrfs_super_csum_name(csum_type),
2068                         crypto_shash_driver_name(csum_shash));
2069         return 0;
2070 }
2071
2072 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2073                             struct btrfs_fs_devices *fs_devices)
2074 {
2075         int ret;
2076         struct btrfs_tree_parent_check check = { 0 };
2077         struct btrfs_root *log_tree_root;
2078         struct btrfs_super_block *disk_super = fs_info->super_copy;
2079         u64 bytenr = btrfs_super_log_root(disk_super);
2080         int level = btrfs_super_log_root_level(disk_super);
2081
2082         if (fs_devices->rw_devices == 0) {
2083                 btrfs_warn(fs_info, "log replay required on RO media");
2084                 return -EIO;
2085         }
2086
2087         log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2088                                          GFP_KERNEL);
2089         if (!log_tree_root)
2090                 return -ENOMEM;
2091
2092         check.level = level;
2093         check.transid = fs_info->generation + 1;
2094         check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2095         log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2096         if (IS_ERR(log_tree_root->node)) {
2097                 btrfs_warn(fs_info, "failed to read log tree");
2098                 ret = PTR_ERR(log_tree_root->node);
2099                 log_tree_root->node = NULL;
2100                 btrfs_put_root(log_tree_root);
2101                 return ret;
2102         }
2103         if (!extent_buffer_uptodate(log_tree_root->node)) {
2104                 btrfs_err(fs_info, "failed to read log tree");
2105                 btrfs_put_root(log_tree_root);
2106                 return -EIO;
2107         }
2108
2109         /* returns with log_tree_root freed on success */
2110         ret = btrfs_recover_log_trees(log_tree_root);
2111         if (ret) {
2112                 btrfs_handle_fs_error(fs_info, ret,
2113                                       "Failed to recover log tree");
2114                 btrfs_put_root(log_tree_root);
2115                 return ret;
2116         }
2117
2118         if (sb_rdonly(fs_info->sb)) {
2119                 ret = btrfs_commit_super(fs_info);
2120                 if (ret)
2121                         return ret;
2122         }
2123
2124         return 0;
2125 }
2126
2127 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2128                                       struct btrfs_path *path, u64 objectid,
2129                                       const char *name)
2130 {
2131         struct btrfs_fs_info *fs_info = tree_root->fs_info;
2132         struct btrfs_root *root;
2133         u64 max_global_id = 0;
2134         int ret;
2135         struct btrfs_key key = {
2136                 .objectid = objectid,
2137                 .type = BTRFS_ROOT_ITEM_KEY,
2138                 .offset = 0,
2139         };
2140         bool found = false;
2141
2142         /* If we have IGNOREDATACSUMS skip loading these roots. */
2143         if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2144             btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2145                 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2146                 return 0;
2147         }
2148
2149         while (1) {
2150                 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2151                 if (ret < 0)
2152                         break;
2153
2154                 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2155                         ret = btrfs_next_leaf(tree_root, path);
2156                         if (ret) {
2157                                 if (ret > 0)
2158                                         ret = 0;
2159                                 break;
2160                         }
2161                 }
2162                 ret = 0;
2163
2164                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2165                 if (key.objectid != objectid)
2166                         break;
2167                 btrfs_release_path(path);
2168
2169                 /*
2170                  * Just worry about this for extent tree, it'll be the same for
2171                  * everybody.
2172                  */
2173                 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2174                         max_global_id = max(max_global_id, key.offset);
2175
2176                 found = true;
2177                 root = read_tree_root_path(tree_root, path, &key);
2178                 if (IS_ERR(root)) {
2179                         if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2180                                 ret = PTR_ERR(root);
2181                         break;
2182                 }
2183                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2184                 ret = btrfs_global_root_insert(root);
2185                 if (ret) {
2186                         btrfs_put_root(root);
2187                         break;
2188                 }
2189                 key.offset++;
2190         }
2191         btrfs_release_path(path);
2192
2193         if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2194                 fs_info->nr_global_roots = max_global_id + 1;
2195
2196         if (!found || ret) {
2197                 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2198                         set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2199
2200                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2201                         ret = ret ? ret : -ENOENT;
2202                 else
2203                         ret = 0;
2204                 btrfs_err(fs_info, "failed to load root %s", name);
2205         }
2206         return ret;
2207 }
2208
2209 static int load_global_roots(struct btrfs_root *tree_root)
2210 {
2211         struct btrfs_path *path;
2212         int ret = 0;
2213
2214         path = btrfs_alloc_path();
2215         if (!path)
2216                 return -ENOMEM;
2217
2218         ret = load_global_roots_objectid(tree_root, path,
2219                                          BTRFS_EXTENT_TREE_OBJECTID, "extent");
2220         if (ret)
2221                 goto out;
2222         ret = load_global_roots_objectid(tree_root, path,
2223                                          BTRFS_CSUM_TREE_OBJECTID, "csum");
2224         if (ret)
2225                 goto out;
2226         if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2227                 goto out;
2228         ret = load_global_roots_objectid(tree_root, path,
2229                                          BTRFS_FREE_SPACE_TREE_OBJECTID,
2230                                          "free space");
2231 out:
2232         btrfs_free_path(path);
2233         return ret;
2234 }
2235
2236 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2237 {
2238         struct btrfs_root *tree_root = fs_info->tree_root;
2239         struct btrfs_root *root;
2240         struct btrfs_key location;
2241         int ret;
2242
2243         ASSERT(fs_info->tree_root);
2244
2245         ret = load_global_roots(tree_root);
2246         if (ret)
2247                 return ret;
2248
2249         location.type = BTRFS_ROOT_ITEM_KEY;
2250         location.offset = 0;
2251
2252         if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2253                 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2254                 root = btrfs_read_tree_root(tree_root, &location);
2255                 if (IS_ERR(root)) {
2256                         if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2257                                 ret = PTR_ERR(root);
2258                                 goto out;
2259                         }
2260                 } else {
2261                         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2262                         fs_info->block_group_root = root;
2263                 }
2264         }
2265
2266         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2267         root = btrfs_read_tree_root(tree_root, &location);
2268         if (IS_ERR(root)) {
2269                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2270                         ret = PTR_ERR(root);
2271                         goto out;
2272                 }
2273         } else {
2274                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2275                 fs_info->dev_root = root;
2276         }
2277         /* Initialize fs_info for all devices in any case */
2278         ret = btrfs_init_devices_late(fs_info);
2279         if (ret)
2280                 goto out;
2281
2282         /*
2283          * This tree can share blocks with some other fs tree during relocation
2284          * and we need a proper setup by btrfs_get_fs_root
2285          */
2286         root = btrfs_get_fs_root(tree_root->fs_info,
2287                                  BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2288         if (IS_ERR(root)) {
2289                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2290                         ret = PTR_ERR(root);
2291                         goto out;
2292                 }
2293         } else {
2294                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2295                 fs_info->data_reloc_root = root;
2296         }
2297
2298         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2299         root = btrfs_read_tree_root(tree_root, &location);
2300         if (!IS_ERR(root)) {
2301                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2302                 fs_info->quota_root = root;
2303         }
2304
2305         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2306         root = btrfs_read_tree_root(tree_root, &location);
2307         if (IS_ERR(root)) {
2308                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2309                         ret = PTR_ERR(root);
2310                         if (ret != -ENOENT)
2311                                 goto out;
2312                 }
2313         } else {
2314                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2315                 fs_info->uuid_root = root;
2316         }
2317
2318         if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2319                 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2320                 root = btrfs_read_tree_root(tree_root, &location);
2321                 if (IS_ERR(root)) {
2322                         if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2323                                 ret = PTR_ERR(root);
2324                                 goto out;
2325                         }
2326                 } else {
2327                         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2328                         fs_info->stripe_root = root;
2329                 }
2330         }
2331
2332         return 0;
2333 out:
2334         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2335                    location.objectid, ret);
2336         return ret;
2337 }
2338
2339 /*
2340  * Real super block validation
2341  * NOTE: super csum type and incompat features will not be checked here.
2342  *
2343  * @sb:         super block to check
2344  * @mirror_num: the super block number to check its bytenr:
2345  *              0       the primary (1st) sb
2346  *              1, 2    2nd and 3rd backup copy
2347  *             -1       skip bytenr check
2348  */
2349 int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2350                          struct btrfs_super_block *sb, int mirror_num)
2351 {
2352         u64 nodesize = btrfs_super_nodesize(sb);
2353         u64 sectorsize = btrfs_super_sectorsize(sb);
2354         int ret = 0;
2355
2356         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2357                 btrfs_err(fs_info, "no valid FS found");
2358                 ret = -EINVAL;
2359         }
2360         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2361                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2362                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2363                 ret = -EINVAL;
2364         }
2365         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2366                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2367                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2368                 ret = -EINVAL;
2369         }
2370         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2371                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2372                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2373                 ret = -EINVAL;
2374         }
2375         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2376                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2377                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2378                 ret = -EINVAL;
2379         }
2380
2381         /*
2382          * Check sectorsize and nodesize first, other check will need it.
2383          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2384          */
2385         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2386             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2387                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2388                 ret = -EINVAL;
2389         }
2390
2391         /*
2392          * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2393          *
2394          * We can support 16K sectorsize with 64K page size without problem,
2395          * but such sectorsize/pagesize combination doesn't make much sense.
2396          * 4K will be our future standard, PAGE_SIZE is supported from the very
2397          * beginning.
2398          */
2399         if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2400                 btrfs_err(fs_info,
2401                         "sectorsize %llu not yet supported for page size %lu",
2402                         sectorsize, PAGE_SIZE);
2403                 ret = -EINVAL;
2404         }
2405
2406         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2407             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2408                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2409                 ret = -EINVAL;
2410         }
2411         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2412                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2413                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2414                 ret = -EINVAL;
2415         }
2416
2417         /* Root alignment check */
2418         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2419                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2420                            btrfs_super_root(sb));
2421                 ret = -EINVAL;
2422         }
2423         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2424                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2425                            btrfs_super_chunk_root(sb));
2426                 ret = -EINVAL;
2427         }
2428         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2429                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2430                            btrfs_super_log_root(sb));
2431                 ret = -EINVAL;
2432         }
2433
2434         if (!fs_info->fs_devices->temp_fsid &&
2435             memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2436                 btrfs_err(fs_info,
2437                 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2438                           sb->fsid, fs_info->fs_devices->fsid);
2439                 ret = -EINVAL;
2440         }
2441
2442         if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2443                    BTRFS_FSID_SIZE) != 0) {
2444                 btrfs_err(fs_info,
2445 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2446                           btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2447                 ret = -EINVAL;
2448         }
2449
2450         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2451                    BTRFS_FSID_SIZE) != 0) {
2452                 btrfs_err(fs_info,
2453                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2454                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2455                 ret = -EINVAL;
2456         }
2457
2458         /*
2459          * Artificial requirement for block-group-tree to force newer features
2460          * (free-space-tree, no-holes) so the test matrix is smaller.
2461          */
2462         if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2463             (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2464              !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2465                 btrfs_err(fs_info,
2466                 "block-group-tree feature requires fres-space-tree and no-holes");
2467                 ret = -EINVAL;
2468         }
2469
2470         /*
2471          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2472          * done later
2473          */
2474         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2475                 btrfs_err(fs_info, "bytes_used is too small %llu",
2476                           btrfs_super_bytes_used(sb));
2477                 ret = -EINVAL;
2478         }
2479         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2480                 btrfs_err(fs_info, "invalid stripesize %u",
2481                           btrfs_super_stripesize(sb));
2482                 ret = -EINVAL;
2483         }
2484         if (btrfs_super_num_devices(sb) > (1UL << 31))
2485                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2486                            btrfs_super_num_devices(sb));
2487         if (btrfs_super_num_devices(sb) == 0) {
2488                 btrfs_err(fs_info, "number of devices is 0");
2489                 ret = -EINVAL;
2490         }
2491
2492         if (mirror_num >= 0 &&
2493             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2494                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2495                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2496                 ret = -EINVAL;
2497         }
2498
2499         /*
2500          * Obvious sys_chunk_array corruptions, it must hold at least one key
2501          * and one chunk
2502          */
2503         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2504                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2505                           btrfs_super_sys_array_size(sb),
2506                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2507                 ret = -EINVAL;
2508         }
2509         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2510                         + sizeof(struct btrfs_chunk)) {
2511                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2512                           btrfs_super_sys_array_size(sb),
2513                           sizeof(struct btrfs_disk_key)
2514                           + sizeof(struct btrfs_chunk));
2515                 ret = -EINVAL;
2516         }
2517
2518         /*
2519          * The generation is a global counter, we'll trust it more than the others
2520          * but it's still possible that it's the one that's wrong.
2521          */
2522         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2523                 btrfs_warn(fs_info,
2524                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2525                         btrfs_super_generation(sb),
2526                         btrfs_super_chunk_root_generation(sb));
2527         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2528             && btrfs_super_cache_generation(sb) != (u64)-1)
2529                 btrfs_warn(fs_info,
2530                         "suspicious: generation < cache_generation: %llu < %llu",
2531                         btrfs_super_generation(sb),
2532                         btrfs_super_cache_generation(sb));
2533
2534         return ret;
2535 }
2536
2537 /*
2538  * Validation of super block at mount time.
2539  * Some checks already done early at mount time, like csum type and incompat
2540  * flags will be skipped.
2541  */
2542 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2543 {
2544         return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2545 }
2546
2547 /*
2548  * Validation of super block at write time.
2549  * Some checks like bytenr check will be skipped as their values will be
2550  * overwritten soon.
2551  * Extra checks like csum type and incompat flags will be done here.
2552  */
2553 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2554                                       struct btrfs_super_block *sb)
2555 {
2556         int ret;
2557
2558         ret = btrfs_validate_super(fs_info, sb, -1);
2559         if (ret < 0)
2560                 goto out;
2561         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2562                 ret = -EUCLEAN;
2563                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2564                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2565                 goto out;
2566         }
2567         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2568                 ret = -EUCLEAN;
2569                 btrfs_err(fs_info,
2570                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2571                           btrfs_super_incompat_flags(sb),
2572                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2573                 goto out;
2574         }
2575 out:
2576         if (ret < 0)
2577                 btrfs_err(fs_info,
2578                 "super block corruption detected before writing it to disk");
2579         return ret;
2580 }
2581
2582 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2583 {
2584         struct btrfs_tree_parent_check check = {
2585                 .level = level,
2586                 .transid = gen,
2587                 .owner_root = root->root_key.objectid
2588         };
2589         int ret = 0;
2590
2591         root->node = read_tree_block(root->fs_info, bytenr, &check);
2592         if (IS_ERR(root->node)) {
2593                 ret = PTR_ERR(root->node);
2594                 root->node = NULL;
2595                 return ret;
2596         }
2597         if (!extent_buffer_uptodate(root->node)) {
2598                 free_extent_buffer(root->node);
2599                 root->node = NULL;
2600                 return -EIO;
2601         }
2602
2603         btrfs_set_root_node(&root->root_item, root->node);
2604         root->commit_root = btrfs_root_node(root);
2605         btrfs_set_root_refs(&root->root_item, 1);
2606         return ret;
2607 }
2608
2609 static int load_important_roots(struct btrfs_fs_info *fs_info)
2610 {
2611         struct btrfs_super_block *sb = fs_info->super_copy;
2612         u64 gen, bytenr;
2613         int level, ret;
2614
2615         bytenr = btrfs_super_root(sb);
2616         gen = btrfs_super_generation(sb);
2617         level = btrfs_super_root_level(sb);
2618         ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2619         if (ret) {
2620                 btrfs_warn(fs_info, "couldn't read tree root");
2621                 return ret;
2622         }
2623         return 0;
2624 }
2625
2626 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2627 {
2628         int backup_index = find_newest_super_backup(fs_info);
2629         struct btrfs_super_block *sb = fs_info->super_copy;
2630         struct btrfs_root *tree_root = fs_info->tree_root;
2631         bool handle_error = false;
2632         int ret = 0;
2633         int i;
2634
2635         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2636                 if (handle_error) {
2637                         if (!IS_ERR(tree_root->node))
2638                                 free_extent_buffer(tree_root->node);
2639                         tree_root->node = NULL;
2640
2641                         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2642                                 break;
2643
2644                         free_root_pointers(fs_info, 0);
2645
2646                         /*
2647                          * Don't use the log in recovery mode, it won't be
2648                          * valid
2649                          */
2650                         btrfs_set_super_log_root(sb, 0);
2651
2652                         btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2653                         ret = read_backup_root(fs_info, i);
2654                         backup_index = ret;
2655                         if (ret < 0)
2656                                 return ret;
2657                 }
2658
2659                 ret = load_important_roots(fs_info);
2660                 if (ret) {
2661                         handle_error = true;
2662                         continue;
2663                 }
2664
2665                 /*
2666                  * No need to hold btrfs_root::objectid_mutex since the fs
2667                  * hasn't been fully initialised and we are the only user
2668                  */
2669                 ret = btrfs_init_root_free_objectid(tree_root);
2670                 if (ret < 0) {
2671                         handle_error = true;
2672                         continue;
2673                 }
2674
2675                 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2676
2677                 ret = btrfs_read_roots(fs_info);
2678                 if (ret < 0) {
2679                         handle_error = true;
2680                         continue;
2681                 }
2682
2683                 /* All successful */
2684                 fs_info->generation = btrfs_header_generation(tree_root->node);
2685                 btrfs_set_last_trans_committed(fs_info, fs_info->generation);
2686                 fs_info->last_reloc_trans = 0;
2687
2688                 /* Always begin writing backup roots after the one being used */
2689                 if (backup_index < 0) {
2690                         fs_info->backup_root_index = 0;
2691                 } else {
2692                         fs_info->backup_root_index = backup_index + 1;
2693                         fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2694                 }
2695                 break;
2696         }
2697
2698         return ret;
2699 }
2700
2701 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2702 {
2703         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2704         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2705         INIT_LIST_HEAD(&fs_info->trans_list);
2706         INIT_LIST_HEAD(&fs_info->dead_roots);
2707         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2708         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2709         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2710         spin_lock_init(&fs_info->delalloc_root_lock);
2711         spin_lock_init(&fs_info->trans_lock);
2712         spin_lock_init(&fs_info->fs_roots_radix_lock);
2713         spin_lock_init(&fs_info->delayed_iput_lock);
2714         spin_lock_init(&fs_info->defrag_inodes_lock);
2715         spin_lock_init(&fs_info->super_lock);
2716         spin_lock_init(&fs_info->buffer_lock);
2717         spin_lock_init(&fs_info->unused_bgs_lock);
2718         spin_lock_init(&fs_info->treelog_bg_lock);
2719         spin_lock_init(&fs_info->zone_active_bgs_lock);
2720         spin_lock_init(&fs_info->relocation_bg_lock);
2721         rwlock_init(&fs_info->tree_mod_log_lock);
2722         rwlock_init(&fs_info->global_root_lock);
2723         mutex_init(&fs_info->unused_bg_unpin_mutex);
2724         mutex_init(&fs_info->reclaim_bgs_lock);
2725         mutex_init(&fs_info->reloc_mutex);
2726         mutex_init(&fs_info->delalloc_root_mutex);
2727         mutex_init(&fs_info->zoned_meta_io_lock);
2728         mutex_init(&fs_info->zoned_data_reloc_io_lock);
2729         seqlock_init(&fs_info->profiles_lock);
2730
2731         btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2732         btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2733         btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2734         btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2735         btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2736                                      BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2737         btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2738                                      BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2739         btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2740                                      BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2741         btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2742                                      BTRFS_LOCKDEP_TRANS_COMPLETED);
2743
2744         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2745         INIT_LIST_HEAD(&fs_info->space_info);
2746         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2747         INIT_LIST_HEAD(&fs_info->unused_bgs);
2748         INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2749         INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2750 #ifdef CONFIG_BTRFS_DEBUG
2751         INIT_LIST_HEAD(&fs_info->allocated_roots);
2752         INIT_LIST_HEAD(&fs_info->allocated_ebs);
2753         spin_lock_init(&fs_info->eb_leak_lock);
2754 #endif
2755         fs_info->mapping_tree = RB_ROOT_CACHED;
2756         rwlock_init(&fs_info->mapping_tree_lock);
2757         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2758                              BTRFS_BLOCK_RSV_GLOBAL);
2759         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2760         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2761         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2762         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2763                              BTRFS_BLOCK_RSV_DELOPS);
2764         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2765                              BTRFS_BLOCK_RSV_DELREFS);
2766
2767         atomic_set(&fs_info->async_delalloc_pages, 0);
2768         atomic_set(&fs_info->defrag_running, 0);
2769         atomic_set(&fs_info->nr_delayed_iputs, 0);
2770         atomic64_set(&fs_info->tree_mod_seq, 0);
2771         fs_info->global_root_tree = RB_ROOT;
2772         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2773         fs_info->metadata_ratio = 0;
2774         fs_info->defrag_inodes = RB_ROOT;
2775         atomic64_set(&fs_info->free_chunk_space, 0);
2776         fs_info->tree_mod_log = RB_ROOT;
2777         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2778         btrfs_init_ref_verify(fs_info);
2779
2780         fs_info->thread_pool_size = min_t(unsigned long,
2781                                           num_online_cpus() + 2, 8);
2782
2783         INIT_LIST_HEAD(&fs_info->ordered_roots);
2784         spin_lock_init(&fs_info->ordered_root_lock);
2785
2786         btrfs_init_scrub(fs_info);
2787         btrfs_init_balance(fs_info);
2788         btrfs_init_async_reclaim_work(fs_info);
2789
2790         rwlock_init(&fs_info->block_group_cache_lock);
2791         fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2792
2793         extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2794                             IO_TREE_FS_EXCLUDED_EXTENTS);
2795
2796         mutex_init(&fs_info->ordered_operations_mutex);
2797         mutex_init(&fs_info->tree_log_mutex);
2798         mutex_init(&fs_info->chunk_mutex);
2799         mutex_init(&fs_info->transaction_kthread_mutex);
2800         mutex_init(&fs_info->cleaner_mutex);
2801         mutex_init(&fs_info->ro_block_group_mutex);
2802         init_rwsem(&fs_info->commit_root_sem);
2803         init_rwsem(&fs_info->cleanup_work_sem);
2804         init_rwsem(&fs_info->subvol_sem);
2805         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2806
2807         btrfs_init_dev_replace_locks(fs_info);
2808         btrfs_init_qgroup(fs_info);
2809         btrfs_discard_init(fs_info);
2810
2811         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2812         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2813
2814         init_waitqueue_head(&fs_info->transaction_throttle);
2815         init_waitqueue_head(&fs_info->transaction_wait);
2816         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2817         init_waitqueue_head(&fs_info->async_submit_wait);
2818         init_waitqueue_head(&fs_info->delayed_iputs_wait);
2819
2820         /* Usable values until the real ones are cached from the superblock */
2821         fs_info->nodesize = 4096;
2822         fs_info->sectorsize = 4096;
2823         fs_info->sectorsize_bits = ilog2(4096);
2824         fs_info->stripesize = 4096;
2825
2826         /* Default compress algorithm when user does -o compress */
2827         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2828
2829         fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2830
2831         spin_lock_init(&fs_info->swapfile_pins_lock);
2832         fs_info->swapfile_pins = RB_ROOT;
2833
2834         fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2835         INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2836 }
2837
2838 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2839 {
2840         int ret;
2841
2842         fs_info->sb = sb;
2843         /* Temporary fixed values for block size until we read the superblock. */
2844         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2845         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2846
2847         ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2848         if (ret)
2849                 return ret;
2850
2851         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2852         if (ret)
2853                 return ret;
2854
2855         fs_info->dirty_metadata_batch = PAGE_SIZE *
2856                                         (1 + ilog2(nr_cpu_ids));
2857
2858         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2859         if (ret)
2860                 return ret;
2861
2862         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2863                         GFP_KERNEL);
2864         if (ret)
2865                 return ret;
2866
2867         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2868                                         GFP_KERNEL);
2869         if (!fs_info->delayed_root)
2870                 return -ENOMEM;
2871         btrfs_init_delayed_root(fs_info->delayed_root);
2872
2873         if (sb_rdonly(sb))
2874                 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2875
2876         return btrfs_alloc_stripe_hash_table(fs_info);
2877 }
2878
2879 static int btrfs_uuid_rescan_kthread(void *data)
2880 {
2881         struct btrfs_fs_info *fs_info = data;
2882         int ret;
2883
2884         /*
2885          * 1st step is to iterate through the existing UUID tree and
2886          * to delete all entries that contain outdated data.
2887          * 2nd step is to add all missing entries to the UUID tree.
2888          */
2889         ret = btrfs_uuid_tree_iterate(fs_info);
2890         if (ret < 0) {
2891                 if (ret != -EINTR)
2892                         btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2893                                    ret);
2894                 up(&fs_info->uuid_tree_rescan_sem);
2895                 return ret;
2896         }
2897         return btrfs_uuid_scan_kthread(data);
2898 }
2899
2900 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2901 {
2902         struct task_struct *task;
2903
2904         down(&fs_info->uuid_tree_rescan_sem);
2905         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2906         if (IS_ERR(task)) {
2907                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2908                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2909                 up(&fs_info->uuid_tree_rescan_sem);
2910                 return PTR_ERR(task);
2911         }
2912
2913         return 0;
2914 }
2915
2916 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2917 {
2918         u64 root_objectid = 0;
2919         struct btrfs_root *gang[8];
2920         int i = 0;
2921         int err = 0;
2922         unsigned int ret = 0;
2923
2924         while (1) {
2925                 spin_lock(&fs_info->fs_roots_radix_lock);
2926                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2927                                              (void **)gang, root_objectid,
2928                                              ARRAY_SIZE(gang));
2929                 if (!ret) {
2930                         spin_unlock(&fs_info->fs_roots_radix_lock);
2931                         break;
2932                 }
2933                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2934
2935                 for (i = 0; i < ret; i++) {
2936                         /* Avoid to grab roots in dead_roots. */
2937                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2938                                 gang[i] = NULL;
2939                                 continue;
2940                         }
2941                         /* Grab all the search result for later use. */
2942                         gang[i] = btrfs_grab_root(gang[i]);
2943                 }
2944                 spin_unlock(&fs_info->fs_roots_radix_lock);
2945
2946                 for (i = 0; i < ret; i++) {
2947                         if (!gang[i])
2948                                 continue;
2949                         root_objectid = gang[i]->root_key.objectid;
2950                         err = btrfs_orphan_cleanup(gang[i]);
2951                         if (err)
2952                                 goto out;
2953                         btrfs_put_root(gang[i]);
2954                 }
2955                 root_objectid++;
2956         }
2957 out:
2958         /* Release the uncleaned roots due to error. */
2959         for (; i < ret; i++) {
2960                 if (gang[i])
2961                         btrfs_put_root(gang[i]);
2962         }
2963         return err;
2964 }
2965
2966 /*
2967  * Mounting logic specific to read-write file systems. Shared by open_ctree
2968  * and btrfs_remount when remounting from read-only to read-write.
2969  */
2970 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2971 {
2972         int ret;
2973         const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2974         bool rebuild_free_space_tree = false;
2975
2976         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2977             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2978                 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2979                         btrfs_warn(fs_info,
2980                                    "'clear_cache' option is ignored with extent tree v2");
2981                 else
2982                         rebuild_free_space_tree = true;
2983         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2984                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2985                 btrfs_warn(fs_info, "free space tree is invalid");
2986                 rebuild_free_space_tree = true;
2987         }
2988
2989         if (rebuild_free_space_tree) {
2990                 btrfs_info(fs_info, "rebuilding free space tree");
2991                 ret = btrfs_rebuild_free_space_tree(fs_info);
2992                 if (ret) {
2993                         btrfs_warn(fs_info,
2994                                    "failed to rebuild free space tree: %d", ret);
2995                         goto out;
2996                 }
2997         }
2998
2999         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3000             !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
3001                 btrfs_info(fs_info, "disabling free space tree");
3002                 ret = btrfs_delete_free_space_tree(fs_info);
3003                 if (ret) {
3004                         btrfs_warn(fs_info,
3005                                    "failed to disable free space tree: %d", ret);
3006                         goto out;
3007                 }
3008         }
3009
3010         /*
3011          * btrfs_find_orphan_roots() is responsible for finding all the dead
3012          * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3013          * them into the fs_info->fs_roots_radix tree. This must be done before
3014          * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3015          * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3016          * item before the root's tree is deleted - this means that if we unmount
3017          * or crash before the deletion completes, on the next mount we will not
3018          * delete what remains of the tree because the orphan item does not
3019          * exists anymore, which is what tells us we have a pending deletion.
3020          */
3021         ret = btrfs_find_orphan_roots(fs_info);
3022         if (ret)
3023                 goto out;
3024
3025         ret = btrfs_cleanup_fs_roots(fs_info);
3026         if (ret)
3027                 goto out;
3028
3029         down_read(&fs_info->cleanup_work_sem);
3030         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3031             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3032                 up_read(&fs_info->cleanup_work_sem);
3033                 goto out;
3034         }
3035         up_read(&fs_info->cleanup_work_sem);
3036
3037         mutex_lock(&fs_info->cleaner_mutex);
3038         ret = btrfs_recover_relocation(fs_info);
3039         mutex_unlock(&fs_info->cleaner_mutex);
3040         if (ret < 0) {
3041                 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3042                 goto out;
3043         }
3044
3045         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3046             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3047                 btrfs_info(fs_info, "creating free space tree");
3048                 ret = btrfs_create_free_space_tree(fs_info);
3049                 if (ret) {
3050                         btrfs_warn(fs_info,
3051                                 "failed to create free space tree: %d", ret);
3052                         goto out;
3053                 }
3054         }
3055
3056         if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3057                 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3058                 if (ret)
3059                         goto out;
3060         }
3061
3062         ret = btrfs_resume_balance_async(fs_info);
3063         if (ret)
3064                 goto out;
3065
3066         ret = btrfs_resume_dev_replace_async(fs_info);
3067         if (ret) {
3068                 btrfs_warn(fs_info, "failed to resume dev_replace");
3069                 goto out;
3070         }
3071
3072         btrfs_qgroup_rescan_resume(fs_info);
3073
3074         if (!fs_info->uuid_root) {
3075                 btrfs_info(fs_info, "creating UUID tree");
3076                 ret = btrfs_create_uuid_tree(fs_info);
3077                 if (ret) {
3078                         btrfs_warn(fs_info,
3079                                    "failed to create the UUID tree %d", ret);
3080                         goto out;
3081                 }
3082         }
3083
3084 out:
3085         return ret;
3086 }
3087
3088 /*
3089  * Do various sanity and dependency checks of different features.
3090  *
3091  * @is_rw_mount:        If the mount is read-write.
3092  *
3093  * This is the place for less strict checks (like for subpage or artificial
3094  * feature dependencies).
3095  *
3096  * For strict checks or possible corruption detection, see
3097  * btrfs_validate_super().
3098  *
3099  * This should be called after btrfs_parse_options(), as some mount options
3100  * (space cache related) can modify on-disk format like free space tree and
3101  * screw up certain feature dependencies.
3102  */
3103 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3104 {
3105         struct btrfs_super_block *disk_super = fs_info->super_copy;
3106         u64 incompat = btrfs_super_incompat_flags(disk_super);
3107         const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3108         const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3109
3110         if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3111                 btrfs_err(fs_info,
3112                 "cannot mount because of unknown incompat features (0x%llx)",
3113                     incompat);
3114                 return -EINVAL;
3115         }
3116
3117         /* Runtime limitation for mixed block groups. */
3118         if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3119             (fs_info->sectorsize != fs_info->nodesize)) {
3120                 btrfs_err(fs_info,
3121 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3122                         fs_info->nodesize, fs_info->sectorsize);
3123                 return -EINVAL;
3124         }
3125
3126         /* Mixed backref is an always-enabled feature. */
3127         incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3128
3129         /* Set compression related flags just in case. */
3130         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3131                 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3132         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3133                 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3134
3135         /*
3136          * An ancient flag, which should really be marked deprecated.
3137          * Such runtime limitation doesn't really need a incompat flag.
3138          */
3139         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3140                 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3141
3142         if (compat_ro_unsupp && is_rw_mount) {
3143                 btrfs_err(fs_info,
3144         "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3145                        compat_ro);
3146                 return -EINVAL;
3147         }
3148
3149         /*
3150          * We have unsupported RO compat features, although RO mounted, we
3151          * should not cause any metadata writes, including log replay.
3152          * Or we could screw up whatever the new feature requires.
3153          */
3154         if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3155             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3156                 btrfs_err(fs_info,
3157 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3158                           compat_ro);
3159                 return -EINVAL;
3160         }
3161
3162         /*
3163          * Artificial limitations for block group tree, to force
3164          * block-group-tree to rely on no-holes and free-space-tree.
3165          */
3166         if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3167             (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3168              !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3169                 btrfs_err(fs_info,
3170 "block-group-tree feature requires no-holes and free-space-tree features");
3171                 return -EINVAL;
3172         }
3173
3174         /*
3175          * Subpage runtime limitation on v1 cache.
3176          *
3177          * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3178          * we're already defaulting to v2 cache, no need to bother v1 as it's
3179          * going to be deprecated anyway.
3180          */
3181         if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3182                 btrfs_warn(fs_info,
3183         "v1 space cache is not supported for page size %lu with sectorsize %u",
3184                            PAGE_SIZE, fs_info->sectorsize);
3185                 return -EINVAL;
3186         }
3187
3188         /* This can be called by remount, we need to protect the super block. */
3189         spin_lock(&fs_info->super_lock);
3190         btrfs_set_super_incompat_flags(disk_super, incompat);
3191         spin_unlock(&fs_info->super_lock);
3192
3193         return 0;
3194 }
3195
3196 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3197                       char *options)
3198 {
3199         u32 sectorsize;
3200         u32 nodesize;
3201         u32 stripesize;
3202         u64 generation;
3203         u16 csum_type;
3204         struct btrfs_super_block *disk_super;
3205         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3206         struct btrfs_root *tree_root;
3207         struct btrfs_root *chunk_root;
3208         int ret;
3209         int level;
3210
3211         ret = init_mount_fs_info(fs_info, sb);
3212         if (ret)
3213                 goto fail;
3214
3215         /* These need to be init'ed before we start creating inodes and such. */
3216         tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3217                                      GFP_KERNEL);
3218         fs_info->tree_root = tree_root;
3219         chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3220                                       GFP_KERNEL);
3221         fs_info->chunk_root = chunk_root;
3222         if (!tree_root || !chunk_root) {
3223                 ret = -ENOMEM;
3224                 goto fail;
3225         }
3226
3227         ret = btrfs_init_btree_inode(sb);
3228         if (ret)
3229                 goto fail;
3230
3231         invalidate_bdev(fs_devices->latest_dev->bdev);
3232
3233         /*
3234          * Read super block and check the signature bytes only
3235          */
3236         disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3237         if (IS_ERR(disk_super)) {
3238                 ret = PTR_ERR(disk_super);
3239                 goto fail_alloc;
3240         }
3241
3242         btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
3243         /*
3244          * Verify the type first, if that or the checksum value are
3245          * corrupted, we'll find out
3246          */
3247         csum_type = btrfs_super_csum_type(disk_super);
3248         if (!btrfs_supported_super_csum(csum_type)) {
3249                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3250                           csum_type);
3251                 ret = -EINVAL;
3252                 btrfs_release_disk_super(disk_super);
3253                 goto fail_alloc;
3254         }
3255
3256         fs_info->csum_size = btrfs_super_csum_size(disk_super);
3257
3258         ret = btrfs_init_csum_hash(fs_info, csum_type);
3259         if (ret) {
3260                 btrfs_release_disk_super(disk_super);
3261                 goto fail_alloc;
3262         }
3263
3264         /*
3265          * We want to check superblock checksum, the type is stored inside.
3266          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3267          */
3268         if (btrfs_check_super_csum(fs_info, disk_super)) {
3269                 btrfs_err(fs_info, "superblock checksum mismatch");
3270                 ret = -EINVAL;
3271                 btrfs_release_disk_super(disk_super);
3272                 goto fail_alloc;
3273         }
3274
3275         /*
3276          * super_copy is zeroed at allocation time and we never touch the
3277          * following bytes up to INFO_SIZE, the checksum is calculated from
3278          * the whole block of INFO_SIZE
3279          */
3280         memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3281         btrfs_release_disk_super(disk_super);
3282
3283         disk_super = fs_info->super_copy;
3284
3285         memcpy(fs_info->super_for_commit, fs_info->super_copy,
3286                sizeof(*fs_info->super_for_commit));
3287
3288         ret = btrfs_validate_mount_super(fs_info);
3289         if (ret) {
3290                 btrfs_err(fs_info, "superblock contains fatal errors");
3291                 ret = -EINVAL;
3292                 goto fail_alloc;
3293         }
3294
3295         if (!btrfs_super_root(disk_super)) {
3296                 btrfs_err(fs_info, "invalid superblock tree root bytenr");
3297                 ret = -EINVAL;
3298                 goto fail_alloc;
3299         }
3300
3301         /* check FS state, whether FS is broken. */
3302         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3303                 WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3304
3305         /* Set up fs_info before parsing mount options */
3306         nodesize = btrfs_super_nodesize(disk_super);
3307         sectorsize = btrfs_super_sectorsize(disk_super);
3308         stripesize = sectorsize;
3309         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3310         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3311
3312         fs_info->nodesize = nodesize;
3313         fs_info->sectorsize = sectorsize;
3314         fs_info->sectorsize_bits = ilog2(sectorsize);
3315         fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3316         fs_info->stripesize = stripesize;
3317
3318         /*
3319          * Handle the space caching options appropriately now that we have the
3320          * super block loaded and validated.
3321          */
3322         btrfs_set_free_space_cache_settings(fs_info);
3323
3324         if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
3325                 ret = -EINVAL;
3326                 goto fail_alloc;
3327         }
3328
3329         ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3330         if (ret < 0)
3331                 goto fail_alloc;
3332
3333         /*
3334          * At this point our mount options are validated, if we set ->max_inline
3335          * to something non-standard make sure we truncate it to sectorsize.
3336          */
3337         fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
3338
3339         if (sectorsize < PAGE_SIZE) {
3340                 struct btrfs_subpage_info *subpage_info;
3341
3342                 btrfs_warn(fs_info,
3343                 "read-write for sector size %u with page size %lu is experimental",
3344                            sectorsize, PAGE_SIZE);
3345                 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3346                 if (!subpage_info) {
3347                         ret = -ENOMEM;
3348                         goto fail_alloc;
3349                 }
3350                 btrfs_init_subpage_info(subpage_info, sectorsize);
3351                 fs_info->subpage_info = subpage_info;
3352         }
3353
3354         ret = btrfs_init_workqueues(fs_info);
3355         if (ret)
3356                 goto fail_sb_buffer;
3357
3358         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3359         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3360
3361         /* Update the values for the current filesystem. */
3362         sb->s_blocksize = sectorsize;
3363         sb->s_blocksize_bits = blksize_bits(sectorsize);
3364         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3365
3366         mutex_lock(&fs_info->chunk_mutex);
3367         ret = btrfs_read_sys_array(fs_info);
3368         mutex_unlock(&fs_info->chunk_mutex);
3369         if (ret) {
3370                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3371                 goto fail_sb_buffer;
3372         }
3373
3374         generation = btrfs_super_chunk_root_generation(disk_super);
3375         level = btrfs_super_chunk_root_level(disk_super);
3376         ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3377                               generation, level);
3378         if (ret) {
3379                 btrfs_err(fs_info, "failed to read chunk root");
3380                 goto fail_tree_roots;
3381         }
3382
3383         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3384                            offsetof(struct btrfs_header, chunk_tree_uuid),
3385                            BTRFS_UUID_SIZE);
3386
3387         ret = btrfs_read_chunk_tree(fs_info);
3388         if (ret) {
3389                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3390                 goto fail_tree_roots;
3391         }
3392
3393         /*
3394          * At this point we know all the devices that make this filesystem,
3395          * including the seed devices but we don't know yet if the replace
3396          * target is required. So free devices that are not part of this
3397          * filesystem but skip the replace target device which is checked
3398          * below in btrfs_init_dev_replace().
3399          */
3400         btrfs_free_extra_devids(fs_devices);
3401         if (!fs_devices->latest_dev->bdev) {
3402                 btrfs_err(fs_info, "failed to read devices");
3403                 ret = -EIO;
3404                 goto fail_tree_roots;
3405         }
3406
3407         ret = init_tree_roots(fs_info);
3408         if (ret)
3409                 goto fail_tree_roots;
3410
3411         /*
3412          * Get zone type information of zoned block devices. This will also
3413          * handle emulation of a zoned filesystem if a regular device has the
3414          * zoned incompat feature flag set.
3415          */
3416         ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3417         if (ret) {
3418                 btrfs_err(fs_info,
3419                           "zoned: failed to read device zone info: %d", ret);
3420                 goto fail_block_groups;
3421         }
3422
3423         /*
3424          * If we have a uuid root and we're not being told to rescan we need to
3425          * check the generation here so we can set the
3426          * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3427          * transaction during a balance or the log replay without updating the
3428          * uuid generation, and then if we crash we would rescan the uuid tree,
3429          * even though it was perfectly fine.
3430          */
3431         if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3432             fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3433                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3434
3435         ret = btrfs_verify_dev_extents(fs_info);
3436         if (ret) {
3437                 btrfs_err(fs_info,
3438                           "failed to verify dev extents against chunks: %d",
3439                           ret);
3440                 goto fail_block_groups;
3441         }
3442         ret = btrfs_recover_balance(fs_info);
3443         if (ret) {
3444                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3445                 goto fail_block_groups;
3446         }
3447
3448         ret = btrfs_init_dev_stats(fs_info);
3449         if (ret) {
3450                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3451                 goto fail_block_groups;
3452         }
3453
3454         ret = btrfs_init_dev_replace(fs_info);
3455         if (ret) {
3456                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3457                 goto fail_block_groups;
3458         }
3459
3460         ret = btrfs_check_zoned_mode(fs_info);
3461         if (ret) {
3462                 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3463                           ret);
3464                 goto fail_block_groups;
3465         }
3466
3467         ret = btrfs_sysfs_add_fsid(fs_devices);
3468         if (ret) {
3469                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3470                                 ret);
3471                 goto fail_block_groups;
3472         }
3473
3474         ret = btrfs_sysfs_add_mounted(fs_info);
3475         if (ret) {
3476                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3477                 goto fail_fsdev_sysfs;
3478         }
3479
3480         ret = btrfs_init_space_info(fs_info);
3481         if (ret) {
3482                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3483                 goto fail_sysfs;
3484         }
3485
3486         ret = btrfs_read_block_groups(fs_info);
3487         if (ret) {
3488                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3489                 goto fail_sysfs;
3490         }
3491
3492         btrfs_free_zone_cache(fs_info);
3493
3494         btrfs_check_active_zone_reservation(fs_info);
3495
3496         if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3497             !btrfs_check_rw_degradable(fs_info, NULL)) {
3498                 btrfs_warn(fs_info,
3499                 "writable mount is not allowed due to too many missing devices");
3500                 ret = -EINVAL;
3501                 goto fail_sysfs;
3502         }
3503
3504         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3505                                                "btrfs-cleaner");
3506         if (IS_ERR(fs_info->cleaner_kthread)) {
3507                 ret = PTR_ERR(fs_info->cleaner_kthread);
3508                 goto fail_sysfs;
3509         }
3510
3511         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3512                                                    tree_root,
3513                                                    "btrfs-transaction");
3514         if (IS_ERR(fs_info->transaction_kthread)) {
3515                 ret = PTR_ERR(fs_info->transaction_kthread);
3516                 goto fail_cleaner;
3517         }
3518
3519         ret = btrfs_read_qgroup_config(fs_info);
3520         if (ret)
3521                 goto fail_trans_kthread;
3522
3523         if (btrfs_build_ref_tree(fs_info))
3524                 btrfs_err(fs_info, "couldn't build ref tree");
3525
3526         /* do not make disk changes in broken FS or nologreplay is given */
3527         if (btrfs_super_log_root(disk_super) != 0 &&
3528             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3529                 btrfs_info(fs_info, "start tree-log replay");
3530                 ret = btrfs_replay_log(fs_info, fs_devices);
3531                 if (ret)
3532                         goto fail_qgroup;
3533         }
3534
3535         fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3536         if (IS_ERR(fs_info->fs_root)) {
3537                 ret = PTR_ERR(fs_info->fs_root);
3538                 btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3539                 fs_info->fs_root = NULL;
3540                 goto fail_qgroup;
3541         }
3542
3543         if (sb_rdonly(sb))
3544                 return 0;
3545
3546         ret = btrfs_start_pre_rw_mount(fs_info);
3547         if (ret) {
3548                 close_ctree(fs_info);
3549                 return ret;
3550         }
3551         btrfs_discard_resume(fs_info);
3552
3553         if (fs_info->uuid_root &&
3554             (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3555              fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3556                 btrfs_info(fs_info, "checking UUID tree");
3557                 ret = btrfs_check_uuid_tree(fs_info);
3558                 if (ret) {
3559                         btrfs_warn(fs_info,
3560                                 "failed to check the UUID tree: %d", ret);
3561                         close_ctree(fs_info);
3562                         return ret;
3563                 }
3564         }
3565
3566         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3567
3568         /* Kick the cleaner thread so it'll start deleting snapshots. */
3569         if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3570                 wake_up_process(fs_info->cleaner_kthread);
3571
3572         return 0;
3573
3574 fail_qgroup:
3575         btrfs_free_qgroup_config(fs_info);
3576 fail_trans_kthread:
3577         kthread_stop(fs_info->transaction_kthread);
3578         btrfs_cleanup_transaction(fs_info);
3579         btrfs_free_fs_roots(fs_info);
3580 fail_cleaner:
3581         kthread_stop(fs_info->cleaner_kthread);
3582
3583         /*
3584          * make sure we're done with the btree inode before we stop our
3585          * kthreads
3586          */
3587         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3588
3589 fail_sysfs:
3590         btrfs_sysfs_remove_mounted(fs_info);
3591
3592 fail_fsdev_sysfs:
3593         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3594
3595 fail_block_groups:
3596         btrfs_put_block_group_cache(fs_info);
3597
3598 fail_tree_roots:
3599         if (fs_info->data_reloc_root)
3600                 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3601         free_root_pointers(fs_info, true);
3602         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3603
3604 fail_sb_buffer:
3605         btrfs_stop_all_workers(fs_info);
3606         btrfs_free_block_groups(fs_info);
3607 fail_alloc:
3608         btrfs_mapping_tree_free(fs_info);
3609
3610         iput(fs_info->btree_inode);
3611 fail:
3612         btrfs_close_devices(fs_info->fs_devices);
3613         ASSERT(ret < 0);
3614         return ret;
3615 }
3616 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3617
3618 static void btrfs_end_super_write(struct bio *bio)
3619 {
3620         struct btrfs_device *device = bio->bi_private;
3621         struct bio_vec *bvec;
3622         struct bvec_iter_all iter_all;
3623         struct page *page;
3624
3625         bio_for_each_segment_all(bvec, bio, iter_all) {
3626                 page = bvec->bv_page;
3627
3628                 if (bio->bi_status) {
3629                         btrfs_warn_rl_in_rcu(device->fs_info,
3630                                 "lost page write due to IO error on %s (%d)",
3631                                 btrfs_dev_name(device),
3632                                 blk_status_to_errno(bio->bi_status));
3633                         ClearPageUptodate(page);
3634                         SetPageError(page);
3635                         btrfs_dev_stat_inc_and_print(device,
3636                                                      BTRFS_DEV_STAT_WRITE_ERRS);
3637                 } else {
3638                         SetPageUptodate(page);
3639                 }
3640
3641                 put_page(page);
3642                 unlock_page(page);
3643         }
3644
3645         bio_put(bio);
3646 }
3647
3648 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3649                                                    int copy_num, bool drop_cache)
3650 {
3651         struct btrfs_super_block *super;
3652         struct page *page;
3653         u64 bytenr, bytenr_orig;
3654         struct address_space *mapping = bdev->bd_inode->i_mapping;
3655         int ret;
3656
3657         bytenr_orig = btrfs_sb_offset(copy_num);
3658         ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3659         if (ret == -ENOENT)
3660                 return ERR_PTR(-EINVAL);
3661         else if (ret)
3662                 return ERR_PTR(ret);
3663
3664         if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3665                 return ERR_PTR(-EINVAL);
3666
3667         if (drop_cache) {
3668                 /* This should only be called with the primary sb. */
3669                 ASSERT(copy_num == 0);
3670
3671                 /*
3672                  * Drop the page of the primary superblock, so later read will
3673                  * always read from the device.
3674                  */
3675                 invalidate_inode_pages2_range(mapping,
3676                                 bytenr >> PAGE_SHIFT,
3677                                 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3678         }
3679
3680         page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3681         if (IS_ERR(page))
3682                 return ERR_CAST(page);
3683
3684         super = page_address(page);
3685         if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3686                 btrfs_release_disk_super(super);
3687                 return ERR_PTR(-ENODATA);
3688         }
3689
3690         if (btrfs_super_bytenr(super) != bytenr_orig) {
3691                 btrfs_release_disk_super(super);
3692                 return ERR_PTR(-EINVAL);
3693         }
3694
3695         return super;
3696 }
3697
3698
3699 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3700 {
3701         struct btrfs_super_block *super, *latest = NULL;
3702         int i;
3703         u64 transid = 0;
3704
3705         /* we would like to check all the supers, but that would make
3706          * a btrfs mount succeed after a mkfs from a different FS.
3707          * So, we need to add a special mount option to scan for
3708          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3709          */
3710         for (i = 0; i < 1; i++) {
3711                 super = btrfs_read_dev_one_super(bdev, i, false);
3712                 if (IS_ERR(super))
3713                         continue;
3714
3715                 if (!latest || btrfs_super_generation(super) > transid) {
3716                         if (latest)
3717                                 btrfs_release_disk_super(super);
3718
3719                         latest = super;
3720                         transid = btrfs_super_generation(super);
3721                 }
3722         }
3723
3724         return super;
3725 }
3726
3727 /*
3728  * Write superblock @sb to the @device. Do not wait for completion, all the
3729  * pages we use for writing are locked.
3730  *
3731  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3732  * the expected device size at commit time. Note that max_mirrors must be
3733  * same for write and wait phases.
3734  *
3735  * Return number of errors when page is not found or submission fails.
3736  */
3737 static int write_dev_supers(struct btrfs_device *device,
3738                             struct btrfs_super_block *sb, int max_mirrors)
3739 {
3740         struct btrfs_fs_info *fs_info = device->fs_info;
3741         struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3742         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3743         int i;
3744         int errors = 0;
3745         int ret;
3746         u64 bytenr, bytenr_orig;
3747
3748         if (max_mirrors == 0)
3749                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3750
3751         shash->tfm = fs_info->csum_shash;
3752
3753         for (i = 0; i < max_mirrors; i++) {
3754                 struct page *page;
3755                 struct bio *bio;
3756                 struct btrfs_super_block *disk_super;
3757
3758                 bytenr_orig = btrfs_sb_offset(i);
3759                 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3760                 if (ret == -ENOENT) {
3761                         continue;
3762                 } else if (ret < 0) {
3763                         btrfs_err(device->fs_info,
3764                                 "couldn't get super block location for mirror %d",
3765                                 i);
3766                         errors++;
3767                         continue;
3768                 }
3769                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3770                     device->commit_total_bytes)
3771                         break;
3772
3773                 btrfs_set_super_bytenr(sb, bytenr_orig);
3774
3775                 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3776                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3777                                     sb->csum);
3778
3779                 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3780                                            GFP_NOFS);
3781                 if (!page) {
3782                         btrfs_err(device->fs_info,
3783                             "couldn't get super block page for bytenr %llu",
3784                             bytenr);
3785                         errors++;
3786                         continue;
3787                 }
3788
3789                 /* Bump the refcount for wait_dev_supers() */
3790                 get_page(page);
3791
3792                 disk_super = page_address(page);
3793                 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3794
3795                 /*
3796                  * Directly use bios here instead of relying on the page cache
3797                  * to do I/O, so we don't lose the ability to do integrity
3798                  * checking.
3799                  */
3800                 bio = bio_alloc(device->bdev, 1,
3801                                 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3802                                 GFP_NOFS);
3803                 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3804                 bio->bi_private = device;
3805                 bio->bi_end_io = btrfs_end_super_write;
3806                 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3807                                offset_in_page(bytenr));
3808
3809                 /*
3810                  * We FUA only the first super block.  The others we allow to
3811                  * go down lazy and there's a short window where the on-disk
3812                  * copies might still contain the older version.
3813                  */
3814                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3815                         bio->bi_opf |= REQ_FUA;
3816                 submit_bio(bio);
3817
3818                 if (btrfs_advance_sb_log(device, i))
3819                         errors++;
3820         }
3821         return errors < i ? 0 : -1;
3822 }
3823
3824 /*
3825  * Wait for write completion of superblocks done by write_dev_supers,
3826  * @max_mirrors same for write and wait phases.
3827  *
3828  * Return number of errors when page is not found or not marked up to
3829  * date.
3830  */
3831 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3832 {
3833         int i;
3834         int errors = 0;
3835         bool primary_failed = false;
3836         int ret;
3837         u64 bytenr;
3838
3839         if (max_mirrors == 0)
3840                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3841
3842         for (i = 0; i < max_mirrors; i++) {
3843                 struct page *page;
3844
3845                 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3846                 if (ret == -ENOENT) {
3847                         break;
3848                 } else if (ret < 0) {
3849                         errors++;
3850                         if (i == 0)
3851                                 primary_failed = true;
3852                         continue;
3853                 }
3854                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3855                     device->commit_total_bytes)
3856                         break;
3857
3858                 page = find_get_page(device->bdev->bd_inode->i_mapping,
3859                                      bytenr >> PAGE_SHIFT);
3860                 if (!page) {
3861                         errors++;
3862                         if (i == 0)
3863                                 primary_failed = true;
3864                         continue;
3865                 }
3866                 /* Page is submitted locked and unlocked once the IO completes */
3867                 wait_on_page_locked(page);
3868                 if (PageError(page)) {
3869                         errors++;
3870                         if (i == 0)
3871                                 primary_failed = true;
3872                 }
3873
3874                 /* Drop our reference */
3875                 put_page(page);
3876
3877                 /* Drop the reference from the writing run */
3878                 put_page(page);
3879         }
3880
3881         /* log error, force error return */
3882         if (primary_failed) {
3883                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3884                           device->devid);
3885                 return -1;
3886         }
3887
3888         return errors < i ? 0 : -1;
3889 }
3890
3891 /*
3892  * endio for the write_dev_flush, this will wake anyone waiting
3893  * for the barrier when it is done
3894  */
3895 static void btrfs_end_empty_barrier(struct bio *bio)
3896 {
3897         bio_uninit(bio);
3898         complete(bio->bi_private);
3899 }
3900
3901 /*
3902  * Submit a flush request to the device if it supports it. Error handling is
3903  * done in the waiting counterpart.
3904  */
3905 static void write_dev_flush(struct btrfs_device *device)
3906 {
3907         struct bio *bio = &device->flush_bio;
3908
3909         device->last_flush_error = BLK_STS_OK;
3910
3911         bio_init(bio, device->bdev, NULL, 0,
3912                  REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3913         bio->bi_end_io = btrfs_end_empty_barrier;
3914         init_completion(&device->flush_wait);
3915         bio->bi_private = &device->flush_wait;
3916         submit_bio(bio);
3917         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3918 }
3919
3920 /*
3921  * If the flush bio has been submitted by write_dev_flush, wait for it.
3922  * Return true for any error, and false otherwise.
3923  */
3924 static bool wait_dev_flush(struct btrfs_device *device)
3925 {
3926         struct bio *bio = &device->flush_bio;
3927
3928         if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3929                 return false;
3930
3931         wait_for_completion_io(&device->flush_wait);
3932
3933         if (bio->bi_status) {
3934                 device->last_flush_error = bio->bi_status;
3935                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3936                 return true;
3937         }
3938
3939         return false;
3940 }
3941
3942 /*
3943  * send an empty flush down to each device in parallel,
3944  * then wait for them
3945  */
3946 static int barrier_all_devices(struct btrfs_fs_info *info)
3947 {
3948         struct list_head *head;
3949         struct btrfs_device *dev;
3950         int errors_wait = 0;
3951
3952         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3953         /* send down all the barriers */
3954         head = &info->fs_devices->devices;
3955         list_for_each_entry(dev, head, dev_list) {
3956                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3957                         continue;
3958                 if (!dev->bdev)
3959                         continue;
3960                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3961                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3962                         continue;
3963
3964                 write_dev_flush(dev);
3965         }
3966
3967         /* wait for all the barriers */
3968         list_for_each_entry(dev, head, dev_list) {
3969                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3970                         continue;
3971                 if (!dev->bdev) {
3972                         errors_wait++;
3973                         continue;
3974                 }
3975                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3976                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3977                         continue;
3978
3979                 if (wait_dev_flush(dev))
3980                         errors_wait++;
3981         }
3982
3983         /*
3984          * Checks last_flush_error of disks in order to determine the device
3985          * state.
3986          */
3987         if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
3988                 return -EIO;
3989
3990         return 0;
3991 }
3992
3993 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3994 {
3995         int raid_type;
3996         int min_tolerated = INT_MAX;
3997
3998         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3999             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4000                 min_tolerated = min_t(int, min_tolerated,
4001                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
4002                                     tolerated_failures);
4003
4004         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4005                 if (raid_type == BTRFS_RAID_SINGLE)
4006                         continue;
4007                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4008                         continue;
4009                 min_tolerated = min_t(int, min_tolerated,
4010                                     btrfs_raid_array[raid_type].
4011                                     tolerated_failures);
4012         }
4013
4014         if (min_tolerated == INT_MAX) {
4015                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
4016                 min_tolerated = 0;
4017         }
4018
4019         return min_tolerated;
4020 }
4021
4022 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4023 {
4024         struct list_head *head;
4025         struct btrfs_device *dev;
4026         struct btrfs_super_block *sb;
4027         struct btrfs_dev_item *dev_item;
4028         int ret;
4029         int do_barriers;
4030         int max_errors;
4031         int total_errors = 0;
4032         u64 flags;
4033
4034         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4035
4036         /*
4037          * max_mirrors == 0 indicates we're from commit_transaction,
4038          * not from fsync where the tree roots in fs_info have not
4039          * been consistent on disk.
4040          */
4041         if (max_mirrors == 0)
4042                 backup_super_roots(fs_info);
4043
4044         sb = fs_info->super_for_commit;
4045         dev_item = &sb->dev_item;
4046
4047         mutex_lock(&fs_info->fs_devices->device_list_mutex);
4048         head = &fs_info->fs_devices->devices;
4049         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4050
4051         if (do_barriers) {
4052                 ret = barrier_all_devices(fs_info);
4053                 if (ret) {
4054                         mutex_unlock(
4055                                 &fs_info->fs_devices->device_list_mutex);
4056                         btrfs_handle_fs_error(fs_info, ret,
4057                                               "errors while submitting device barriers.");
4058                         return ret;
4059                 }
4060         }
4061
4062         list_for_each_entry(dev, head, dev_list) {
4063                 if (!dev->bdev) {
4064                         total_errors++;
4065                         continue;
4066                 }
4067                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4068                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4069                         continue;
4070
4071                 btrfs_set_stack_device_generation(dev_item, 0);
4072                 btrfs_set_stack_device_type(dev_item, dev->type);
4073                 btrfs_set_stack_device_id(dev_item, dev->devid);
4074                 btrfs_set_stack_device_total_bytes(dev_item,
4075                                                    dev->commit_total_bytes);
4076                 btrfs_set_stack_device_bytes_used(dev_item,
4077                                                   dev->commit_bytes_used);
4078                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4079                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4080                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4081                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4082                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4083                        BTRFS_FSID_SIZE);
4084
4085                 flags = btrfs_super_flags(sb);
4086                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4087
4088                 ret = btrfs_validate_write_super(fs_info, sb);
4089                 if (ret < 0) {
4090                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4091                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
4092                                 "unexpected superblock corruption detected");
4093                         return -EUCLEAN;
4094                 }
4095
4096                 ret = write_dev_supers(dev, sb, max_mirrors);
4097                 if (ret)
4098                         total_errors++;
4099         }
4100         if (total_errors > max_errors) {
4101                 btrfs_err(fs_info, "%d errors while writing supers",
4102                           total_errors);
4103                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4104
4105                 /* FUA is masked off if unsupported and can't be the reason */
4106                 btrfs_handle_fs_error(fs_info, -EIO,
4107                                       "%d errors while writing supers",
4108                                       total_errors);
4109                 return -EIO;
4110         }
4111
4112         total_errors = 0;
4113         list_for_each_entry(dev, head, dev_list) {
4114                 if (!dev->bdev)
4115                         continue;
4116                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4117                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4118                         continue;
4119
4120                 ret = wait_dev_supers(dev, max_mirrors);
4121                 if (ret)
4122                         total_errors++;
4123         }
4124         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4125         if (total_errors > max_errors) {
4126                 btrfs_handle_fs_error(fs_info, -EIO,
4127                                       "%d errors while writing supers",
4128                                       total_errors);
4129                 return -EIO;
4130         }
4131         return 0;
4132 }
4133
4134 /* Drop a fs root from the radix tree and free it. */
4135 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4136                                   struct btrfs_root *root)
4137 {
4138         bool drop_ref = false;
4139
4140         spin_lock(&fs_info->fs_roots_radix_lock);
4141         radix_tree_delete(&fs_info->fs_roots_radix,
4142                           (unsigned long)root->root_key.objectid);
4143         if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4144                 drop_ref = true;
4145         spin_unlock(&fs_info->fs_roots_radix_lock);
4146
4147         if (BTRFS_FS_ERROR(fs_info)) {
4148                 ASSERT(root->log_root == NULL);
4149                 if (root->reloc_root) {
4150                         btrfs_put_root(root->reloc_root);
4151                         root->reloc_root = NULL;
4152                 }
4153         }
4154
4155         if (drop_ref)
4156                 btrfs_put_root(root);
4157 }
4158
4159 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4160 {
4161         struct btrfs_root *root = fs_info->tree_root;
4162         struct btrfs_trans_handle *trans;
4163
4164         mutex_lock(&fs_info->cleaner_mutex);
4165         btrfs_run_delayed_iputs(fs_info);
4166         mutex_unlock(&fs_info->cleaner_mutex);
4167         wake_up_process(fs_info->cleaner_kthread);
4168
4169         /* wait until ongoing cleanup work done */
4170         down_write(&fs_info->cleanup_work_sem);
4171         up_write(&fs_info->cleanup_work_sem);
4172
4173         trans = btrfs_join_transaction(root);
4174         if (IS_ERR(trans))
4175                 return PTR_ERR(trans);
4176         return btrfs_commit_transaction(trans);
4177 }
4178
4179 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4180 {
4181         struct btrfs_transaction *trans;
4182         struct btrfs_transaction *tmp;
4183         bool found = false;
4184
4185         if (list_empty(&fs_info->trans_list))
4186                 return;
4187
4188         /*
4189          * This function is only called at the very end of close_ctree(),
4190          * thus no other running transaction, no need to take trans_lock.
4191          */
4192         ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4193         list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4194                 struct extent_state *cached = NULL;
4195                 u64 dirty_bytes = 0;
4196                 u64 cur = 0;
4197                 u64 found_start;
4198                 u64 found_end;
4199
4200                 found = true;
4201                 while (find_first_extent_bit(&trans->dirty_pages, cur,
4202                         &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4203                         dirty_bytes += found_end + 1 - found_start;
4204                         cur = found_end + 1;
4205                 }
4206                 btrfs_warn(fs_info,
4207         "transaction %llu (with %llu dirty metadata bytes) is not committed",
4208                            trans->transid, dirty_bytes);
4209                 btrfs_cleanup_one_transaction(trans, fs_info);
4210
4211                 if (trans == fs_info->running_transaction)
4212                         fs_info->running_transaction = NULL;
4213                 list_del_init(&trans->list);
4214
4215                 btrfs_put_transaction(trans);
4216                 trace_btrfs_transaction_commit(fs_info);
4217         }
4218         ASSERT(!found);
4219 }
4220
4221 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4222 {
4223         int ret;
4224
4225         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4226
4227         /*
4228          * If we had UNFINISHED_DROPS we could still be processing them, so
4229          * clear that bit and wake up relocation so it can stop.
4230          * We must do this before stopping the block group reclaim task, because
4231          * at btrfs_relocate_block_group() we wait for this bit, and after the
4232          * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4233          * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4234          * return 1.
4235          */
4236         btrfs_wake_unfinished_drop(fs_info);
4237
4238         /*
4239          * We may have the reclaim task running and relocating a data block group,
4240          * in which case it may create delayed iputs. So stop it before we park
4241          * the cleaner kthread otherwise we can get new delayed iputs after
4242          * parking the cleaner, and that can make the async reclaim task to hang
4243          * if it's waiting for delayed iputs to complete, since the cleaner is
4244          * parked and can not run delayed iputs - this will make us hang when
4245          * trying to stop the async reclaim task.
4246          */
4247         cancel_work_sync(&fs_info->reclaim_bgs_work);
4248         /*
4249          * We don't want the cleaner to start new transactions, add more delayed
4250          * iputs, etc. while we're closing. We can't use kthread_stop() yet
4251          * because that frees the task_struct, and the transaction kthread might
4252          * still try to wake up the cleaner.
4253          */
4254         kthread_park(fs_info->cleaner_kthread);
4255
4256         /* wait for the qgroup rescan worker to stop */
4257         btrfs_qgroup_wait_for_completion(fs_info, false);
4258
4259         /* wait for the uuid_scan task to finish */
4260         down(&fs_info->uuid_tree_rescan_sem);
4261         /* avoid complains from lockdep et al., set sem back to initial state */
4262         up(&fs_info->uuid_tree_rescan_sem);
4263
4264         /* pause restriper - we want to resume on mount */
4265         btrfs_pause_balance(fs_info);
4266
4267         btrfs_dev_replace_suspend_for_unmount(fs_info);
4268
4269         btrfs_scrub_cancel(fs_info);
4270
4271         /* wait for any defraggers to finish */
4272         wait_event(fs_info->transaction_wait,
4273                    (atomic_read(&fs_info->defrag_running) == 0));
4274
4275         /* clear out the rbtree of defraggable inodes */
4276         btrfs_cleanup_defrag_inodes(fs_info);
4277
4278         /*
4279          * After we parked the cleaner kthread, ordered extents may have
4280          * completed and created new delayed iputs. If one of the async reclaim
4281          * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4282          * can hang forever trying to stop it, because if a delayed iput is
4283          * added after it ran btrfs_run_delayed_iputs() and before it called
4284          * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4285          * no one else to run iputs.
4286          *
4287          * So wait for all ongoing ordered extents to complete and then run
4288          * delayed iputs. This works because once we reach this point no one
4289          * can either create new ordered extents nor create delayed iputs
4290          * through some other means.
4291          *
4292          * Also note that btrfs_wait_ordered_roots() is not safe here, because
4293          * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4294          * but the delayed iput for the respective inode is made only when doing
4295          * the final btrfs_put_ordered_extent() (which must happen at
4296          * btrfs_finish_ordered_io() when we are unmounting).
4297          */
4298         btrfs_flush_workqueue(fs_info->endio_write_workers);
4299         /* Ordered extents for free space inodes. */
4300         btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4301         btrfs_run_delayed_iputs(fs_info);
4302
4303         cancel_work_sync(&fs_info->async_reclaim_work);
4304         cancel_work_sync(&fs_info->async_data_reclaim_work);
4305         cancel_work_sync(&fs_info->preempt_reclaim_work);
4306
4307         /* Cancel or finish ongoing discard work */
4308         btrfs_discard_cleanup(fs_info);
4309
4310         if (!sb_rdonly(fs_info->sb)) {
4311                 /*
4312                  * The cleaner kthread is stopped, so do one final pass over
4313                  * unused block groups.
4314                  */
4315                 btrfs_delete_unused_bgs(fs_info);
4316
4317                 /*
4318                  * There might be existing delayed inode workers still running
4319                  * and holding an empty delayed inode item. We must wait for
4320                  * them to complete first because they can create a transaction.
4321                  * This happens when someone calls btrfs_balance_delayed_items()
4322                  * and then a transaction commit runs the same delayed nodes
4323                  * before any delayed worker has done something with the nodes.
4324                  * We must wait for any worker here and not at transaction
4325                  * commit time since that could cause a deadlock.
4326                  * This is a very rare case.
4327                  */
4328                 btrfs_flush_workqueue(fs_info->delayed_workers);
4329
4330                 ret = btrfs_commit_super(fs_info);
4331                 if (ret)
4332                         btrfs_err(fs_info, "commit super ret %d", ret);
4333         }
4334
4335         if (BTRFS_FS_ERROR(fs_info))
4336                 btrfs_error_commit_super(fs_info);
4337
4338         kthread_stop(fs_info->transaction_kthread);
4339         kthread_stop(fs_info->cleaner_kthread);
4340
4341         ASSERT(list_empty(&fs_info->delayed_iputs));
4342         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4343
4344         if (btrfs_check_quota_leak(fs_info)) {
4345                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4346                 btrfs_err(fs_info, "qgroup reserved space leaked");
4347         }
4348
4349         btrfs_free_qgroup_config(fs_info);
4350         ASSERT(list_empty(&fs_info->delalloc_roots));
4351
4352         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4353                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4354                        percpu_counter_sum(&fs_info->delalloc_bytes));
4355         }
4356
4357         if (percpu_counter_sum(&fs_info->ordered_bytes))
4358                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4359                            percpu_counter_sum(&fs_info->ordered_bytes));
4360
4361         btrfs_sysfs_remove_mounted(fs_info);
4362         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4363
4364         btrfs_put_block_group_cache(fs_info);
4365
4366         /*
4367          * we must make sure there is not any read request to
4368          * submit after we stopping all workers.
4369          */
4370         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4371         btrfs_stop_all_workers(fs_info);
4372
4373         /* We shouldn't have any transaction open at this point */
4374         warn_about_uncommitted_trans(fs_info);
4375
4376         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4377         free_root_pointers(fs_info, true);
4378         btrfs_free_fs_roots(fs_info);
4379
4380         /*
4381          * We must free the block groups after dropping the fs_roots as we could
4382          * have had an IO error and have left over tree log blocks that aren't
4383          * cleaned up until the fs roots are freed.  This makes the block group
4384          * accounting appear to be wrong because there's pending reserved bytes,
4385          * so make sure we do the block group cleanup afterwards.
4386          */
4387         btrfs_free_block_groups(fs_info);
4388
4389         iput(fs_info->btree_inode);
4390
4391         btrfs_mapping_tree_free(fs_info);
4392         btrfs_close_devices(fs_info->fs_devices);
4393 }
4394
4395 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4396                              struct extent_buffer *buf)
4397 {
4398         struct btrfs_fs_info *fs_info = buf->fs_info;
4399         u64 transid = btrfs_header_generation(buf);
4400
4401 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4402         /*
4403          * This is a fast path so only do this check if we have sanity tests
4404          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4405          * outside of the sanity tests.
4406          */
4407         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4408                 return;
4409 #endif
4410         /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4411         ASSERT(trans->transid == fs_info->generation);
4412         btrfs_assert_tree_write_locked(buf);
4413         if (unlikely(transid != fs_info->generation)) {
4414                 btrfs_abort_transaction(trans, -EUCLEAN);
4415                 btrfs_crit(fs_info,
4416 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4417                            buf->start, transid, fs_info->generation);
4418         }
4419         set_extent_buffer_dirty(buf);
4420 }
4421
4422 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4423                                         int flush_delayed)
4424 {
4425         /*
4426          * looks as though older kernels can get into trouble with
4427          * this code, they end up stuck in balance_dirty_pages forever
4428          */
4429         int ret;
4430
4431         if (current->flags & PF_MEMALLOC)
4432                 return;
4433
4434         if (flush_delayed)
4435                 btrfs_balance_delayed_items(fs_info);
4436
4437         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4438                                      BTRFS_DIRTY_METADATA_THRESH,
4439                                      fs_info->dirty_metadata_batch);
4440         if (ret > 0) {
4441                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4442         }
4443 }
4444
4445 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4446 {
4447         __btrfs_btree_balance_dirty(fs_info, 1);
4448 }
4449
4450 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4451 {
4452         __btrfs_btree_balance_dirty(fs_info, 0);
4453 }
4454
4455 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4456 {
4457         /* cleanup FS via transaction */
4458         btrfs_cleanup_transaction(fs_info);
4459
4460         mutex_lock(&fs_info->cleaner_mutex);
4461         btrfs_run_delayed_iputs(fs_info);
4462         mutex_unlock(&fs_info->cleaner_mutex);
4463
4464         down_write(&fs_info->cleanup_work_sem);
4465         up_write(&fs_info->cleanup_work_sem);
4466 }
4467
4468 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4469 {
4470         struct btrfs_root *gang[8];
4471         u64 root_objectid = 0;
4472         int ret;
4473
4474         spin_lock(&fs_info->fs_roots_radix_lock);
4475         while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4476                                              (void **)gang, root_objectid,
4477                                              ARRAY_SIZE(gang))) != 0) {
4478                 int i;
4479
4480                 for (i = 0; i < ret; i++)
4481                         gang[i] = btrfs_grab_root(gang[i]);
4482                 spin_unlock(&fs_info->fs_roots_radix_lock);
4483
4484                 for (i = 0; i < ret; i++) {
4485                         if (!gang[i])
4486                                 continue;
4487                         root_objectid = gang[i]->root_key.objectid;
4488                         btrfs_free_log(NULL, gang[i]);
4489                         btrfs_put_root(gang[i]);
4490                 }
4491                 root_objectid++;
4492                 spin_lock(&fs_info->fs_roots_radix_lock);
4493         }
4494         spin_unlock(&fs_info->fs_roots_radix_lock);
4495         btrfs_free_log_root_tree(NULL, fs_info);
4496 }
4497
4498 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4499 {
4500         struct btrfs_ordered_extent *ordered;
4501
4502         spin_lock(&root->ordered_extent_lock);
4503         /*
4504          * This will just short circuit the ordered completion stuff which will
4505          * make sure the ordered extent gets properly cleaned up.
4506          */
4507         list_for_each_entry(ordered, &root->ordered_extents,
4508                             root_extent_list)
4509                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4510         spin_unlock(&root->ordered_extent_lock);
4511 }
4512
4513 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4514 {
4515         struct btrfs_root *root;
4516         LIST_HEAD(splice);
4517
4518         spin_lock(&fs_info->ordered_root_lock);
4519         list_splice_init(&fs_info->ordered_roots, &splice);
4520         while (!list_empty(&splice)) {
4521                 root = list_first_entry(&splice, struct btrfs_root,
4522                                         ordered_root);
4523                 list_move_tail(&root->ordered_root,
4524                                &fs_info->ordered_roots);
4525
4526                 spin_unlock(&fs_info->ordered_root_lock);
4527                 btrfs_destroy_ordered_extents(root);
4528
4529                 cond_resched();
4530                 spin_lock(&fs_info->ordered_root_lock);
4531         }
4532         spin_unlock(&fs_info->ordered_root_lock);
4533
4534         /*
4535          * We need this here because if we've been flipped read-only we won't
4536          * get sync() from the umount, so we need to make sure any ordered
4537          * extents that haven't had their dirty pages IO start writeout yet
4538          * actually get run and error out properly.
4539          */
4540         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4541 }
4542
4543 static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4544                                        struct btrfs_fs_info *fs_info)
4545 {
4546         struct rb_node *node;
4547         struct btrfs_delayed_ref_root *delayed_refs;
4548         struct btrfs_delayed_ref_node *ref;
4549
4550         delayed_refs = &trans->delayed_refs;
4551
4552         spin_lock(&delayed_refs->lock);
4553         if (atomic_read(&delayed_refs->num_entries) == 0) {
4554                 spin_unlock(&delayed_refs->lock);
4555                 btrfs_debug(fs_info, "delayed_refs has NO entry");
4556                 return;
4557         }
4558
4559         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4560                 struct btrfs_delayed_ref_head *head;
4561                 struct rb_node *n;
4562                 bool pin_bytes = false;
4563
4564                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4565                                 href_node);
4566                 if (btrfs_delayed_ref_lock(delayed_refs, head))
4567                         continue;
4568
4569                 spin_lock(&head->lock);
4570                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4571                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4572                                        ref_node);
4573                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4574                         RB_CLEAR_NODE(&ref->ref_node);
4575                         if (!list_empty(&ref->add_list))
4576                                 list_del(&ref->add_list);
4577                         atomic_dec(&delayed_refs->num_entries);
4578                         btrfs_put_delayed_ref(ref);
4579                         btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
4580                 }
4581                 if (head->must_insert_reserved)
4582                         pin_bytes = true;
4583                 btrfs_free_delayed_extent_op(head->extent_op);
4584                 btrfs_delete_ref_head(delayed_refs, head);
4585                 spin_unlock(&head->lock);
4586                 spin_unlock(&delayed_refs->lock);
4587                 mutex_unlock(&head->mutex);
4588
4589                 if (pin_bytes) {
4590                         struct btrfs_block_group *cache;
4591
4592                         cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4593                         BUG_ON(!cache);
4594
4595                         spin_lock(&cache->space_info->lock);
4596                         spin_lock(&cache->lock);
4597                         cache->pinned += head->num_bytes;
4598                         btrfs_space_info_update_bytes_pinned(fs_info,
4599                                 cache->space_info, head->num_bytes);
4600                         cache->reserved -= head->num_bytes;
4601                         cache->space_info->bytes_reserved -= head->num_bytes;
4602                         spin_unlock(&cache->lock);
4603                         spin_unlock(&cache->space_info->lock);
4604
4605                         btrfs_put_block_group(cache);
4606
4607                         btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4608                                 head->bytenr + head->num_bytes - 1);
4609                 }
4610                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4611                 btrfs_put_delayed_ref_head(head);
4612                 cond_resched();
4613                 spin_lock(&delayed_refs->lock);
4614         }
4615         btrfs_qgroup_destroy_extent_records(trans);
4616
4617         spin_unlock(&delayed_refs->lock);
4618 }
4619
4620 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4621 {
4622         struct btrfs_inode *btrfs_inode;
4623         LIST_HEAD(splice);
4624
4625         spin_lock(&root->delalloc_lock);
4626         list_splice_init(&root->delalloc_inodes, &splice);
4627
4628         while (!list_empty(&splice)) {
4629                 struct inode *inode = NULL;
4630                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4631                                                delalloc_inodes);
4632                 btrfs_del_delalloc_inode(btrfs_inode);
4633                 spin_unlock(&root->delalloc_lock);
4634
4635                 /*
4636                  * Make sure we get a live inode and that it'll not disappear
4637                  * meanwhile.
4638                  */
4639                 inode = igrab(&btrfs_inode->vfs_inode);
4640                 if (inode) {
4641                         unsigned int nofs_flag;
4642
4643                         nofs_flag = memalloc_nofs_save();
4644                         invalidate_inode_pages2(inode->i_mapping);
4645                         memalloc_nofs_restore(nofs_flag);
4646                         iput(inode);
4647                 }
4648                 spin_lock(&root->delalloc_lock);
4649         }
4650         spin_unlock(&root->delalloc_lock);
4651 }
4652
4653 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4654 {
4655         struct btrfs_root *root;
4656         LIST_HEAD(splice);
4657
4658         spin_lock(&fs_info->delalloc_root_lock);
4659         list_splice_init(&fs_info->delalloc_roots, &splice);
4660         while (!list_empty(&splice)) {
4661                 root = list_first_entry(&splice, struct btrfs_root,
4662                                          delalloc_root);
4663                 root = btrfs_grab_root(root);
4664                 BUG_ON(!root);
4665                 spin_unlock(&fs_info->delalloc_root_lock);
4666
4667                 btrfs_destroy_delalloc_inodes(root);
4668                 btrfs_put_root(root);
4669
4670                 spin_lock(&fs_info->delalloc_root_lock);
4671         }
4672         spin_unlock(&fs_info->delalloc_root_lock);
4673 }
4674
4675 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4676                                          struct extent_io_tree *dirty_pages,
4677                                          int mark)
4678 {
4679         struct extent_buffer *eb;
4680         u64 start = 0;
4681         u64 end;
4682
4683         while (find_first_extent_bit(dirty_pages, start, &start, &end,
4684                                      mark, NULL)) {
4685                 clear_extent_bits(dirty_pages, start, end, mark);
4686                 while (start <= end) {
4687                         eb = find_extent_buffer(fs_info, start);
4688                         start += fs_info->nodesize;
4689                         if (!eb)
4690                                 continue;
4691
4692                         btrfs_tree_lock(eb);
4693                         wait_on_extent_buffer_writeback(eb);
4694                         btrfs_clear_buffer_dirty(NULL, eb);
4695                         btrfs_tree_unlock(eb);
4696
4697                         free_extent_buffer_stale(eb);
4698                 }
4699         }
4700 }
4701
4702 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4703                                         struct extent_io_tree *unpin)
4704 {
4705         u64 start;
4706         u64 end;
4707
4708         while (1) {
4709                 struct extent_state *cached_state = NULL;
4710
4711                 /*
4712                  * The btrfs_finish_extent_commit() may get the same range as
4713                  * ours between find_first_extent_bit and clear_extent_dirty.
4714                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4715                  * the same extent range.
4716                  */
4717                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4718                 if (!find_first_extent_bit(unpin, 0, &start, &end,
4719                                            EXTENT_DIRTY, &cached_state)) {
4720                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4721                         break;
4722                 }
4723
4724                 clear_extent_dirty(unpin, start, end, &cached_state);
4725                 free_extent_state(cached_state);
4726                 btrfs_error_unpin_extent_range(fs_info, start, end);
4727                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4728                 cond_resched();
4729         }
4730 }
4731
4732 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4733 {
4734         struct inode *inode;
4735
4736         inode = cache->io_ctl.inode;
4737         if (inode) {
4738                 unsigned int nofs_flag;
4739
4740                 nofs_flag = memalloc_nofs_save();
4741                 invalidate_inode_pages2(inode->i_mapping);
4742                 memalloc_nofs_restore(nofs_flag);
4743
4744                 BTRFS_I(inode)->generation = 0;
4745                 cache->io_ctl.inode = NULL;
4746                 iput(inode);
4747         }
4748         ASSERT(cache->io_ctl.pages == NULL);
4749         btrfs_put_block_group(cache);
4750 }
4751
4752 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4753                              struct btrfs_fs_info *fs_info)
4754 {
4755         struct btrfs_block_group *cache;
4756
4757         spin_lock(&cur_trans->dirty_bgs_lock);
4758         while (!list_empty(&cur_trans->dirty_bgs)) {
4759                 cache = list_first_entry(&cur_trans->dirty_bgs,
4760                                          struct btrfs_block_group,
4761                                          dirty_list);
4762
4763                 if (!list_empty(&cache->io_list)) {
4764                         spin_unlock(&cur_trans->dirty_bgs_lock);
4765                         list_del_init(&cache->io_list);
4766                         btrfs_cleanup_bg_io(cache);
4767                         spin_lock(&cur_trans->dirty_bgs_lock);
4768                 }
4769
4770                 list_del_init(&cache->dirty_list);
4771                 spin_lock(&cache->lock);
4772                 cache->disk_cache_state = BTRFS_DC_ERROR;
4773                 spin_unlock(&cache->lock);
4774
4775                 spin_unlock(&cur_trans->dirty_bgs_lock);
4776                 btrfs_put_block_group(cache);
4777                 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
4778                 spin_lock(&cur_trans->dirty_bgs_lock);
4779         }
4780         spin_unlock(&cur_trans->dirty_bgs_lock);
4781
4782         /*
4783          * Refer to the definition of io_bgs member for details why it's safe
4784          * to use it without any locking
4785          */
4786         while (!list_empty(&cur_trans->io_bgs)) {
4787                 cache = list_first_entry(&cur_trans->io_bgs,
4788                                          struct btrfs_block_group,
4789                                          io_list);
4790
4791                 list_del_init(&cache->io_list);
4792                 spin_lock(&cache->lock);
4793                 cache->disk_cache_state = BTRFS_DC_ERROR;
4794                 spin_unlock(&cache->lock);
4795                 btrfs_cleanup_bg_io(cache);
4796         }
4797 }
4798
4799 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
4800 {
4801         struct btrfs_root *gang[8];
4802         int i;
4803         int ret;
4804
4805         spin_lock(&fs_info->fs_roots_radix_lock);
4806         while (1) {
4807                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4808                                                  (void **)gang, 0,
4809                                                  ARRAY_SIZE(gang),
4810                                                  BTRFS_ROOT_TRANS_TAG);
4811                 if (ret == 0)
4812                         break;
4813                 for (i = 0; i < ret; i++) {
4814                         struct btrfs_root *root = gang[i];
4815
4816                         btrfs_qgroup_free_meta_all_pertrans(root);
4817                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
4818                                         (unsigned long)root->root_key.objectid,
4819                                         BTRFS_ROOT_TRANS_TAG);
4820                 }
4821         }
4822         spin_unlock(&fs_info->fs_roots_radix_lock);
4823 }
4824
4825 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4826                                    struct btrfs_fs_info *fs_info)
4827 {
4828         struct btrfs_device *dev, *tmp;
4829
4830         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4831         ASSERT(list_empty(&cur_trans->dirty_bgs));
4832         ASSERT(list_empty(&cur_trans->io_bgs));
4833
4834         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4835                                  post_commit_list) {
4836                 list_del_init(&dev->post_commit_list);
4837         }
4838
4839         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4840
4841         cur_trans->state = TRANS_STATE_COMMIT_START;
4842         wake_up(&fs_info->transaction_blocked_wait);
4843
4844         cur_trans->state = TRANS_STATE_UNBLOCKED;
4845         wake_up(&fs_info->transaction_wait);
4846
4847         btrfs_destroy_delayed_inodes(fs_info);
4848
4849         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4850                                      EXTENT_DIRTY);
4851         btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4852
4853         btrfs_free_all_qgroup_pertrans(fs_info);
4854
4855         cur_trans->state =TRANS_STATE_COMPLETED;
4856         wake_up(&cur_trans->commit_wait);
4857 }
4858
4859 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4860 {
4861         struct btrfs_transaction *t;
4862
4863         mutex_lock(&fs_info->transaction_kthread_mutex);
4864
4865         spin_lock(&fs_info->trans_lock);
4866         while (!list_empty(&fs_info->trans_list)) {
4867                 t = list_first_entry(&fs_info->trans_list,
4868                                      struct btrfs_transaction, list);
4869                 if (t->state >= TRANS_STATE_COMMIT_PREP) {
4870                         refcount_inc(&t->use_count);
4871                         spin_unlock(&fs_info->trans_lock);
4872                         btrfs_wait_for_commit(fs_info, t->transid);
4873                         btrfs_put_transaction(t);
4874                         spin_lock(&fs_info->trans_lock);
4875                         continue;
4876                 }
4877                 if (t == fs_info->running_transaction) {
4878                         t->state = TRANS_STATE_COMMIT_DOING;
4879                         spin_unlock(&fs_info->trans_lock);
4880                         /*
4881                          * We wait for 0 num_writers since we don't hold a trans
4882                          * handle open currently for this transaction.
4883                          */
4884                         wait_event(t->writer_wait,
4885                                    atomic_read(&t->num_writers) == 0);
4886                 } else {
4887                         spin_unlock(&fs_info->trans_lock);
4888                 }
4889                 btrfs_cleanup_one_transaction(t, fs_info);
4890
4891                 spin_lock(&fs_info->trans_lock);
4892                 if (t == fs_info->running_transaction)
4893                         fs_info->running_transaction = NULL;
4894                 list_del_init(&t->list);
4895                 spin_unlock(&fs_info->trans_lock);
4896
4897                 btrfs_put_transaction(t);
4898                 trace_btrfs_transaction_commit(fs_info);
4899                 spin_lock(&fs_info->trans_lock);
4900         }
4901         spin_unlock(&fs_info->trans_lock);
4902         btrfs_destroy_all_ordered_extents(fs_info);
4903         btrfs_destroy_delayed_inodes(fs_info);
4904         btrfs_assert_delayed_root_empty(fs_info);
4905         btrfs_destroy_all_delalloc_inodes(fs_info);
4906         btrfs_drop_all_logs(fs_info);
4907         mutex_unlock(&fs_info->transaction_kthread_mutex);
4908
4909         return 0;
4910 }
4911
4912 int btrfs_init_root_free_objectid(struct btrfs_root *root)
4913 {
4914         struct btrfs_path *path;
4915         int ret;
4916         struct extent_buffer *l;
4917         struct btrfs_key search_key;
4918         struct btrfs_key found_key;
4919         int slot;
4920
4921         path = btrfs_alloc_path();
4922         if (!path)
4923                 return -ENOMEM;
4924
4925         search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4926         search_key.type = -1;
4927         search_key.offset = (u64)-1;
4928         ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4929         if (ret < 0)
4930                 goto error;
4931         if (ret == 0) {
4932                 /*
4933                  * Key with offset -1 found, there would have to exist a root
4934                  * with such id, but this is out of valid range.
4935                  */
4936                 ret = -EUCLEAN;
4937                 goto error;
4938         }
4939         if (path->slots[0] > 0) {
4940                 slot = path->slots[0] - 1;
4941                 l = path->nodes[0];
4942                 btrfs_item_key_to_cpu(l, &found_key, slot);
4943                 root->free_objectid = max_t(u64, found_key.objectid + 1,
4944                                             BTRFS_FIRST_FREE_OBJECTID);
4945         } else {
4946                 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4947         }
4948         ret = 0;
4949 error:
4950         btrfs_free_path(path);
4951         return ret;
4952 }
4953
4954 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4955 {
4956         int ret;
4957         mutex_lock(&root->objectid_mutex);
4958
4959         if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4960                 btrfs_warn(root->fs_info,
4961                            "the objectid of root %llu reaches its highest value",
4962                            root->root_key.objectid);
4963                 ret = -ENOSPC;
4964                 goto out;
4965         }
4966
4967         *objectid = root->free_objectid++;
4968         ret = 0;
4969 out:
4970         mutex_unlock(&root->objectid_mutex);
4971         return ret;
4972 }