Merge tag 'hyperv-next-signed' of git://git.kernel.org/pub/scm/linux/kernel/git/hyper...
[linux-2.6-microblaze.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
36 #include "raid56.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 #include "block-group.h"
43 #include "discard.h"
44 #include "space-info.h"
45
46 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
47                                  BTRFS_HEADER_FLAG_RELOC |\
48                                  BTRFS_SUPER_FLAG_ERROR |\
49                                  BTRFS_SUPER_FLAG_SEEDING |\
50                                  BTRFS_SUPER_FLAG_METADUMP |\
51                                  BTRFS_SUPER_FLAG_METADUMP_V2)
52
53 static const struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57                                       struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60                                         struct extent_io_tree *dirty_pages,
61                                         int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63                                        struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66
67 /*
68  * btrfs_end_io_wq structs are used to do processing in task context when an IO
69  * is complete.  This is used during reads to verify checksums, and it is used
70  * by writes to insert metadata for new file extents after IO is complete.
71  */
72 struct btrfs_end_io_wq {
73         struct bio *bio;
74         bio_end_io_t *end_io;
75         void *private;
76         struct btrfs_fs_info *info;
77         blk_status_t status;
78         enum btrfs_wq_endio_type metadata;
79         struct btrfs_work work;
80 };
81
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83
84 int __init btrfs_end_io_wq_init(void)
85 {
86         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87                                         sizeof(struct btrfs_end_io_wq),
88                                         0,
89                                         SLAB_MEM_SPREAD,
90                                         NULL);
91         if (!btrfs_end_io_wq_cache)
92                 return -ENOMEM;
93         return 0;
94 }
95
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98         kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100
101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102 {
103         if (fs_info->csum_shash)
104                 crypto_free_shash(fs_info->csum_shash);
105 }
106
107 /*
108  * async submit bios are used to offload expensive checksumming
109  * onto the worker threads.  They checksum file and metadata bios
110  * just before they are sent down the IO stack.
111  */
112 struct async_submit_bio {
113         void *private_data;
114         struct bio *bio;
115         extent_submit_bio_start_t *submit_bio_start;
116         int mirror_num;
117         /*
118          * bio_offset is optional, can be used if the pages in the bio
119          * can't tell us where in the file the bio should go
120          */
121         u64 bio_offset;
122         struct btrfs_work work;
123         blk_status_t status;
124 };
125
126 /*
127  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
128  * eb, the lockdep key is determined by the btrfs_root it belongs to and
129  * the level the eb occupies in the tree.
130  *
131  * Different roots are used for different purposes and may nest inside each
132  * other and they require separate keysets.  As lockdep keys should be
133  * static, assign keysets according to the purpose of the root as indicated
134  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
135  * roots have separate keysets.
136  *
137  * Lock-nesting across peer nodes is always done with the immediate parent
138  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
139  * subclass to avoid triggering lockdep warning in such cases.
140  *
141  * The key is set by the readpage_end_io_hook after the buffer has passed
142  * csum validation but before the pages are unlocked.  It is also set by
143  * btrfs_init_new_buffer on freshly allocated blocks.
144  *
145  * We also add a check to make sure the highest level of the tree is the
146  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
147  * needs update as well.
148  */
149 #ifdef CONFIG_DEBUG_LOCK_ALLOC
150 # if BTRFS_MAX_LEVEL != 8
151 #  error
152 # endif
153
154 static struct btrfs_lockdep_keyset {
155         u64                     id;             /* root objectid */
156         const char              *name_stem;     /* lock name stem */
157         char                    names[BTRFS_MAX_LEVEL + 1][20];
158         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
159 } btrfs_lockdep_keysets[] = {
160         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
161         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
162         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
163         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
164         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
165         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
166         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
167         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
168         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
169         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
170         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
171         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
172         { .id = 0,                              .name_stem = "tree"     },
173 };
174
175 void __init btrfs_init_lockdep(void)
176 {
177         int i, j;
178
179         /* initialize lockdep class names */
180         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
181                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
182
183                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
184                         snprintf(ks->names[j], sizeof(ks->names[j]),
185                                  "btrfs-%s-%02d", ks->name_stem, j);
186         }
187 }
188
189 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190                                     int level)
191 {
192         struct btrfs_lockdep_keyset *ks;
193
194         BUG_ON(level >= ARRAY_SIZE(ks->keys));
195
196         /* find the matching keyset, id 0 is the default entry */
197         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198                 if (ks->id == objectid)
199                         break;
200
201         lockdep_set_class_and_name(&eb->lock,
202                                    &ks->keys[level], ks->names[level]);
203 }
204
205 #endif
206
207 /*
208  * extents on the btree inode are pretty simple, there's one extent
209  * that covers the entire device
210  */
211 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
212                                     struct page *page, size_t pg_offset,
213                                     u64 start, u64 len)
214 {
215         struct extent_map_tree *em_tree = &inode->extent_tree;
216         struct extent_map *em;
217         int ret;
218
219         read_lock(&em_tree->lock);
220         em = lookup_extent_mapping(em_tree, start, len);
221         if (em) {
222                 read_unlock(&em_tree->lock);
223                 goto out;
224         }
225         read_unlock(&em_tree->lock);
226
227         em = alloc_extent_map();
228         if (!em) {
229                 em = ERR_PTR(-ENOMEM);
230                 goto out;
231         }
232         em->start = 0;
233         em->len = (u64)-1;
234         em->block_len = (u64)-1;
235         em->block_start = 0;
236
237         write_lock(&em_tree->lock);
238         ret = add_extent_mapping(em_tree, em, 0);
239         if (ret == -EEXIST) {
240                 free_extent_map(em);
241                 em = lookup_extent_mapping(em_tree, start, len);
242                 if (!em)
243                         em = ERR_PTR(-EIO);
244         } else if (ret) {
245                 free_extent_map(em);
246                 em = ERR_PTR(ret);
247         }
248         write_unlock(&em_tree->lock);
249
250 out:
251         return em;
252 }
253
254 /*
255  * Compute the csum of a btree block and store the result to provided buffer.
256  */
257 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
258 {
259         struct btrfs_fs_info *fs_info = buf->fs_info;
260         const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
261         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
262         char *kaddr;
263         int i;
264
265         shash->tfm = fs_info->csum_shash;
266         crypto_shash_init(shash);
267         kaddr = page_address(buf->pages[0]);
268         crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
269                             PAGE_SIZE - BTRFS_CSUM_SIZE);
270
271         for (i = 1; i < num_pages; i++) {
272                 kaddr = page_address(buf->pages[i]);
273                 crypto_shash_update(shash, kaddr, PAGE_SIZE);
274         }
275         memset(result, 0, BTRFS_CSUM_SIZE);
276         crypto_shash_final(shash, result);
277 }
278
279 /*
280  * we can't consider a given block up to date unless the transid of the
281  * block matches the transid in the parent node's pointer.  This is how we
282  * detect blocks that either didn't get written at all or got written
283  * in the wrong place.
284  */
285 static int verify_parent_transid(struct extent_io_tree *io_tree,
286                                  struct extent_buffer *eb, u64 parent_transid,
287                                  int atomic)
288 {
289         struct extent_state *cached_state = NULL;
290         int ret;
291         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
292
293         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
294                 return 0;
295
296         if (atomic)
297                 return -EAGAIN;
298
299         if (need_lock) {
300                 btrfs_tree_read_lock(eb);
301                 btrfs_set_lock_blocking_read(eb);
302         }
303
304         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
305                          &cached_state);
306         if (extent_buffer_uptodate(eb) &&
307             btrfs_header_generation(eb) == parent_transid) {
308                 ret = 0;
309                 goto out;
310         }
311         btrfs_err_rl(eb->fs_info,
312                 "parent transid verify failed on %llu wanted %llu found %llu",
313                         eb->start,
314                         parent_transid, btrfs_header_generation(eb));
315         ret = 1;
316
317         /*
318          * Things reading via commit roots that don't have normal protection,
319          * like send, can have a really old block in cache that may point at a
320          * block that has been freed and re-allocated.  So don't clear uptodate
321          * if we find an eb that is under IO (dirty/writeback) because we could
322          * end up reading in the stale data and then writing it back out and
323          * making everybody very sad.
324          */
325         if (!extent_buffer_under_io(eb))
326                 clear_extent_buffer_uptodate(eb);
327 out:
328         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
329                              &cached_state);
330         if (need_lock)
331                 btrfs_tree_read_unlock_blocking(eb);
332         return ret;
333 }
334
335 static bool btrfs_supported_super_csum(u16 csum_type)
336 {
337         switch (csum_type) {
338         case BTRFS_CSUM_TYPE_CRC32:
339         case BTRFS_CSUM_TYPE_XXHASH:
340         case BTRFS_CSUM_TYPE_SHA256:
341         case BTRFS_CSUM_TYPE_BLAKE2:
342                 return true;
343         default:
344                 return false;
345         }
346 }
347
348 /*
349  * Return 0 if the superblock checksum type matches the checksum value of that
350  * algorithm. Pass the raw disk superblock data.
351  */
352 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
353                                   char *raw_disk_sb)
354 {
355         struct btrfs_super_block *disk_sb =
356                 (struct btrfs_super_block *)raw_disk_sb;
357         char result[BTRFS_CSUM_SIZE];
358         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
359
360         shash->tfm = fs_info->csum_shash;
361
362         /*
363          * The super_block structure does not span the whole
364          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
365          * filled with zeros and is included in the checksum.
366          */
367         crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
368                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
369
370         if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
371                 return 1;
372
373         return 0;
374 }
375
376 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
377                            struct btrfs_key *first_key, u64 parent_transid)
378 {
379         struct btrfs_fs_info *fs_info = eb->fs_info;
380         int found_level;
381         struct btrfs_key found_key;
382         int ret;
383
384         found_level = btrfs_header_level(eb);
385         if (found_level != level) {
386                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
387                      KERN_ERR "BTRFS: tree level check failed\n");
388                 btrfs_err(fs_info,
389 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
390                           eb->start, level, found_level);
391                 return -EIO;
392         }
393
394         if (!first_key)
395                 return 0;
396
397         /*
398          * For live tree block (new tree blocks in current transaction),
399          * we need proper lock context to avoid race, which is impossible here.
400          * So we only checks tree blocks which is read from disk, whose
401          * generation <= fs_info->last_trans_committed.
402          */
403         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
404                 return 0;
405
406         /* We have @first_key, so this @eb must have at least one item */
407         if (btrfs_header_nritems(eb) == 0) {
408                 btrfs_err(fs_info,
409                 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
410                           eb->start);
411                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
412                 return -EUCLEAN;
413         }
414
415         if (found_level)
416                 btrfs_node_key_to_cpu(eb, &found_key, 0);
417         else
418                 btrfs_item_key_to_cpu(eb, &found_key, 0);
419         ret = btrfs_comp_cpu_keys(first_key, &found_key);
420
421         if (ret) {
422                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
423                      KERN_ERR "BTRFS: tree first key check failed\n");
424                 btrfs_err(fs_info,
425 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
426                           eb->start, parent_transid, first_key->objectid,
427                           first_key->type, first_key->offset,
428                           found_key.objectid, found_key.type,
429                           found_key.offset);
430         }
431         return ret;
432 }
433
434 /*
435  * helper to read a given tree block, doing retries as required when
436  * the checksums don't match and we have alternate mirrors to try.
437  *
438  * @parent_transid:     expected transid, skip check if 0
439  * @level:              expected level, mandatory check
440  * @first_key:          expected key of first slot, skip check if NULL
441  */
442 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
443                                           u64 parent_transid, int level,
444                                           struct btrfs_key *first_key)
445 {
446         struct btrfs_fs_info *fs_info = eb->fs_info;
447         struct extent_io_tree *io_tree;
448         int failed = 0;
449         int ret;
450         int num_copies = 0;
451         int mirror_num = 0;
452         int failed_mirror = 0;
453
454         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
455         while (1) {
456                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
457                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
458                 if (!ret) {
459                         if (verify_parent_transid(io_tree, eb,
460                                                    parent_transid, 0))
461                                 ret = -EIO;
462                         else if (btrfs_verify_level_key(eb, level,
463                                                 first_key, parent_transid))
464                                 ret = -EUCLEAN;
465                         else
466                                 break;
467                 }
468
469                 num_copies = btrfs_num_copies(fs_info,
470                                               eb->start, eb->len);
471                 if (num_copies == 1)
472                         break;
473
474                 if (!failed_mirror) {
475                         failed = 1;
476                         failed_mirror = eb->read_mirror;
477                 }
478
479                 mirror_num++;
480                 if (mirror_num == failed_mirror)
481                         mirror_num++;
482
483                 if (mirror_num > num_copies)
484                         break;
485         }
486
487         if (failed && !ret && failed_mirror)
488                 btrfs_repair_eb_io_failure(eb, failed_mirror);
489
490         return ret;
491 }
492
493 /*
494  * checksum a dirty tree block before IO.  This has extra checks to make sure
495  * we only fill in the checksum field in the first page of a multi-page block
496  */
497
498 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
499 {
500         u64 start = page_offset(page);
501         u64 found_start;
502         u8 result[BTRFS_CSUM_SIZE];
503         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
504         struct extent_buffer *eb;
505         int ret;
506
507         eb = (struct extent_buffer *)page->private;
508         if (page != eb->pages[0])
509                 return 0;
510
511         found_start = btrfs_header_bytenr(eb);
512         /*
513          * Please do not consolidate these warnings into a single if.
514          * It is useful to know what went wrong.
515          */
516         if (WARN_ON(found_start != start))
517                 return -EUCLEAN;
518         if (WARN_ON(!PageUptodate(page)))
519                 return -EUCLEAN;
520
521         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
522                                     offsetof(struct btrfs_header, fsid),
523                                     BTRFS_FSID_SIZE) == 0);
524
525         csum_tree_block(eb, result);
526
527         if (btrfs_header_level(eb))
528                 ret = btrfs_check_node(eb);
529         else
530                 ret = btrfs_check_leaf_full(eb);
531
532         if (ret < 0) {
533                 btrfs_print_tree(eb, 0);
534                 btrfs_err(fs_info,
535                 "block=%llu write time tree block corruption detected",
536                           eb->start);
537                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
538                 return ret;
539         }
540         write_extent_buffer(eb, result, 0, csum_size);
541
542         return 0;
543 }
544
545 static int check_tree_block_fsid(struct extent_buffer *eb)
546 {
547         struct btrfs_fs_info *fs_info = eb->fs_info;
548         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
549         u8 fsid[BTRFS_FSID_SIZE];
550         int ret = 1;
551
552         read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
553                            BTRFS_FSID_SIZE);
554         while (fs_devices) {
555                 u8 *metadata_uuid;
556
557                 /*
558                  * Checking the incompat flag is only valid for the current
559                  * fs. For seed devices it's forbidden to have their uuid
560                  * changed so reading ->fsid in this case is fine
561                  */
562                 if (fs_devices == fs_info->fs_devices &&
563                     btrfs_fs_incompat(fs_info, METADATA_UUID))
564                         metadata_uuid = fs_devices->metadata_uuid;
565                 else
566                         metadata_uuid = fs_devices->fsid;
567
568                 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
569                         ret = 0;
570                         break;
571                 }
572                 fs_devices = fs_devices->seed;
573         }
574         return ret;
575 }
576
577 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
578                                       u64 phy_offset, struct page *page,
579                                       u64 start, u64 end, int mirror)
580 {
581         u64 found_start;
582         int found_level;
583         struct extent_buffer *eb;
584         struct btrfs_fs_info *fs_info;
585         u16 csum_size;
586         int ret = 0;
587         u8 result[BTRFS_CSUM_SIZE];
588         int reads_done;
589
590         if (!page->private)
591                 goto out;
592
593         eb = (struct extent_buffer *)page->private;
594         fs_info = eb->fs_info;
595         csum_size = btrfs_super_csum_size(fs_info->super_copy);
596
597         /* the pending IO might have been the only thing that kept this buffer
598          * in memory.  Make sure we have a ref for all this other checks
599          */
600         atomic_inc(&eb->refs);
601
602         reads_done = atomic_dec_and_test(&eb->io_pages);
603         if (!reads_done)
604                 goto err;
605
606         eb->read_mirror = mirror;
607         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
608                 ret = -EIO;
609                 goto err;
610         }
611
612         found_start = btrfs_header_bytenr(eb);
613         if (found_start != eb->start) {
614                 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
615                              eb->start, found_start);
616                 ret = -EIO;
617                 goto err;
618         }
619         if (check_tree_block_fsid(eb)) {
620                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
621                              eb->start);
622                 ret = -EIO;
623                 goto err;
624         }
625         found_level = btrfs_header_level(eb);
626         if (found_level >= BTRFS_MAX_LEVEL) {
627                 btrfs_err(fs_info, "bad tree block level %d on %llu",
628                           (int)btrfs_header_level(eb), eb->start);
629                 ret = -EIO;
630                 goto err;
631         }
632
633         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
634                                        eb, found_level);
635
636         csum_tree_block(eb, result);
637
638         if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
639                 u32 val;
640                 u32 found = 0;
641
642                 memcpy(&found, result, csum_size);
643
644                 read_extent_buffer(eb, &val, 0, csum_size);
645                 btrfs_warn_rl(fs_info,
646                 "%s checksum verify failed on %llu wanted %x found %x level %d",
647                               fs_info->sb->s_id, eb->start,
648                               val, found, btrfs_header_level(eb));
649                 ret = -EUCLEAN;
650                 goto err;
651         }
652
653         /*
654          * If this is a leaf block and it is corrupt, set the corrupt bit so
655          * that we don't try and read the other copies of this block, just
656          * return -EIO.
657          */
658         if (found_level == 0 && btrfs_check_leaf_full(eb)) {
659                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
660                 ret = -EIO;
661         }
662
663         if (found_level > 0 && btrfs_check_node(eb))
664                 ret = -EIO;
665
666         if (!ret)
667                 set_extent_buffer_uptodate(eb);
668         else
669                 btrfs_err(fs_info,
670                           "block=%llu read time tree block corruption detected",
671                           eb->start);
672 err:
673         if (reads_done &&
674             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
675                 btree_readahead_hook(eb, ret);
676
677         if (ret) {
678                 /*
679                  * our io error hook is going to dec the io pages
680                  * again, we have to make sure it has something
681                  * to decrement
682                  */
683                 atomic_inc(&eb->io_pages);
684                 clear_extent_buffer_uptodate(eb);
685         }
686         free_extent_buffer(eb);
687 out:
688         return ret;
689 }
690
691 static void end_workqueue_bio(struct bio *bio)
692 {
693         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
694         struct btrfs_fs_info *fs_info;
695         struct btrfs_workqueue *wq;
696
697         fs_info = end_io_wq->info;
698         end_io_wq->status = bio->bi_status;
699
700         if (bio_op(bio) == REQ_OP_WRITE) {
701                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
702                         wq = fs_info->endio_meta_write_workers;
703                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
704                         wq = fs_info->endio_freespace_worker;
705                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
706                         wq = fs_info->endio_raid56_workers;
707                 else
708                         wq = fs_info->endio_write_workers;
709         } else {
710                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
711                         wq = fs_info->endio_raid56_workers;
712                 else if (end_io_wq->metadata)
713                         wq = fs_info->endio_meta_workers;
714                 else
715                         wq = fs_info->endio_workers;
716         }
717
718         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
719         btrfs_queue_work(wq, &end_io_wq->work);
720 }
721
722 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
723                         enum btrfs_wq_endio_type metadata)
724 {
725         struct btrfs_end_io_wq *end_io_wq;
726
727         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
728         if (!end_io_wq)
729                 return BLK_STS_RESOURCE;
730
731         end_io_wq->private = bio->bi_private;
732         end_io_wq->end_io = bio->bi_end_io;
733         end_io_wq->info = info;
734         end_io_wq->status = 0;
735         end_io_wq->bio = bio;
736         end_io_wq->metadata = metadata;
737
738         bio->bi_private = end_io_wq;
739         bio->bi_end_io = end_workqueue_bio;
740         return 0;
741 }
742
743 static void run_one_async_start(struct btrfs_work *work)
744 {
745         struct async_submit_bio *async;
746         blk_status_t ret;
747
748         async = container_of(work, struct  async_submit_bio, work);
749         ret = async->submit_bio_start(async->private_data, async->bio,
750                                       async->bio_offset);
751         if (ret)
752                 async->status = ret;
753 }
754
755 /*
756  * In order to insert checksums into the metadata in large chunks, we wait
757  * until bio submission time.   All the pages in the bio are checksummed and
758  * sums are attached onto the ordered extent record.
759  *
760  * At IO completion time the csums attached on the ordered extent record are
761  * inserted into the tree.
762  */
763 static void run_one_async_done(struct btrfs_work *work)
764 {
765         struct async_submit_bio *async;
766         struct inode *inode;
767         blk_status_t ret;
768
769         async = container_of(work, struct  async_submit_bio, work);
770         inode = async->private_data;
771
772         /* If an error occurred we just want to clean up the bio and move on */
773         if (async->status) {
774                 async->bio->bi_status = async->status;
775                 bio_endio(async->bio);
776                 return;
777         }
778
779         /*
780          * All of the bios that pass through here are from async helpers.
781          * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
782          * This changes nothing when cgroups aren't in use.
783          */
784         async->bio->bi_opf |= REQ_CGROUP_PUNT;
785         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
786         if (ret) {
787                 async->bio->bi_status = ret;
788                 bio_endio(async->bio);
789         }
790 }
791
792 static void run_one_async_free(struct btrfs_work *work)
793 {
794         struct async_submit_bio *async;
795
796         async = container_of(work, struct  async_submit_bio, work);
797         kfree(async);
798 }
799
800 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
801                                  int mirror_num, unsigned long bio_flags,
802                                  u64 bio_offset, void *private_data,
803                                  extent_submit_bio_start_t *submit_bio_start)
804 {
805         struct async_submit_bio *async;
806
807         async = kmalloc(sizeof(*async), GFP_NOFS);
808         if (!async)
809                 return BLK_STS_RESOURCE;
810
811         async->private_data = private_data;
812         async->bio = bio;
813         async->mirror_num = mirror_num;
814         async->submit_bio_start = submit_bio_start;
815
816         btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
817                         run_one_async_free);
818
819         async->bio_offset = bio_offset;
820
821         async->status = 0;
822
823         if (op_is_sync(bio->bi_opf))
824                 btrfs_set_work_high_priority(&async->work);
825
826         btrfs_queue_work(fs_info->workers, &async->work);
827         return 0;
828 }
829
830 static blk_status_t btree_csum_one_bio(struct bio *bio)
831 {
832         struct bio_vec *bvec;
833         struct btrfs_root *root;
834         int ret = 0;
835         struct bvec_iter_all iter_all;
836
837         ASSERT(!bio_flagged(bio, BIO_CLONED));
838         bio_for_each_segment_all(bvec, bio, iter_all) {
839                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
840                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
841                 if (ret)
842                         break;
843         }
844
845         return errno_to_blk_status(ret);
846 }
847
848 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
849                                              u64 bio_offset)
850 {
851         /*
852          * when we're called for a write, we're already in the async
853          * submission context.  Just jump into btrfs_map_bio
854          */
855         return btree_csum_one_bio(bio);
856 }
857
858 static int check_async_write(struct btrfs_fs_info *fs_info,
859                              struct btrfs_inode *bi)
860 {
861         if (atomic_read(&bi->sync_writers))
862                 return 0;
863         if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
864                 return 0;
865         return 1;
866 }
867
868 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
869                                           int mirror_num,
870                                           unsigned long bio_flags)
871 {
872         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
873         int async = check_async_write(fs_info, BTRFS_I(inode));
874         blk_status_t ret;
875
876         if (bio_op(bio) != REQ_OP_WRITE) {
877                 /*
878                  * called for a read, do the setup so that checksum validation
879                  * can happen in the async kernel threads
880                  */
881                 ret = btrfs_bio_wq_end_io(fs_info, bio,
882                                           BTRFS_WQ_ENDIO_METADATA);
883                 if (ret)
884                         goto out_w_error;
885                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
886         } else if (!async) {
887                 ret = btree_csum_one_bio(bio);
888                 if (ret)
889                         goto out_w_error;
890                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
891         } else {
892                 /*
893                  * kthread helpers are used to submit writes so that
894                  * checksumming can happen in parallel across all CPUs
895                  */
896                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
897                                           0, inode, btree_submit_bio_start);
898         }
899
900         if (ret)
901                 goto out_w_error;
902         return 0;
903
904 out_w_error:
905         bio->bi_status = ret;
906         bio_endio(bio);
907         return ret;
908 }
909
910 #ifdef CONFIG_MIGRATION
911 static int btree_migratepage(struct address_space *mapping,
912                         struct page *newpage, struct page *page,
913                         enum migrate_mode mode)
914 {
915         /*
916          * we can't safely write a btree page from here,
917          * we haven't done the locking hook
918          */
919         if (PageDirty(page))
920                 return -EAGAIN;
921         /*
922          * Buffers may be managed in a filesystem specific way.
923          * We must have no buffers or drop them.
924          */
925         if (page_has_private(page) &&
926             !try_to_release_page(page, GFP_KERNEL))
927                 return -EAGAIN;
928         return migrate_page(mapping, newpage, page, mode);
929 }
930 #endif
931
932
933 static int btree_writepages(struct address_space *mapping,
934                             struct writeback_control *wbc)
935 {
936         struct btrfs_fs_info *fs_info;
937         int ret;
938
939         if (wbc->sync_mode == WB_SYNC_NONE) {
940
941                 if (wbc->for_kupdate)
942                         return 0;
943
944                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
945                 /* this is a bit racy, but that's ok */
946                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
947                                              BTRFS_DIRTY_METADATA_THRESH,
948                                              fs_info->dirty_metadata_batch);
949                 if (ret < 0)
950                         return 0;
951         }
952         return btree_write_cache_pages(mapping, wbc);
953 }
954
955 static int btree_readpage(struct file *file, struct page *page)
956 {
957         return extent_read_full_page(page, btree_get_extent, 0);
958 }
959
960 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
961 {
962         if (PageWriteback(page) || PageDirty(page))
963                 return 0;
964
965         return try_release_extent_buffer(page);
966 }
967
968 static void btree_invalidatepage(struct page *page, unsigned int offset,
969                                  unsigned int length)
970 {
971         struct extent_io_tree *tree;
972         tree = &BTRFS_I(page->mapping->host)->io_tree;
973         extent_invalidatepage(tree, page, offset);
974         btree_releasepage(page, GFP_NOFS);
975         if (PagePrivate(page)) {
976                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
977                            "page private not zero on page %llu",
978                            (unsigned long long)page_offset(page));
979                 detach_page_private(page);
980         }
981 }
982
983 static int btree_set_page_dirty(struct page *page)
984 {
985 #ifdef DEBUG
986         struct extent_buffer *eb;
987
988         BUG_ON(!PagePrivate(page));
989         eb = (struct extent_buffer *)page->private;
990         BUG_ON(!eb);
991         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
992         BUG_ON(!atomic_read(&eb->refs));
993         btrfs_assert_tree_locked(eb);
994 #endif
995         return __set_page_dirty_nobuffers(page);
996 }
997
998 static const struct address_space_operations btree_aops = {
999         .readpage       = btree_readpage,
1000         .writepages     = btree_writepages,
1001         .releasepage    = btree_releasepage,
1002         .invalidatepage = btree_invalidatepage,
1003 #ifdef CONFIG_MIGRATION
1004         .migratepage    = btree_migratepage,
1005 #endif
1006         .set_page_dirty = btree_set_page_dirty,
1007 };
1008
1009 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1010 {
1011         struct extent_buffer *buf = NULL;
1012         int ret;
1013
1014         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1015         if (IS_ERR(buf))
1016                 return;
1017
1018         ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1019         if (ret < 0)
1020                 free_extent_buffer_stale(buf);
1021         else
1022                 free_extent_buffer(buf);
1023 }
1024
1025 struct extent_buffer *btrfs_find_create_tree_block(
1026                                                 struct btrfs_fs_info *fs_info,
1027                                                 u64 bytenr)
1028 {
1029         if (btrfs_is_testing(fs_info))
1030                 return alloc_test_extent_buffer(fs_info, bytenr);
1031         return alloc_extent_buffer(fs_info, bytenr);
1032 }
1033
1034 /*
1035  * Read tree block at logical address @bytenr and do variant basic but critical
1036  * verification.
1037  *
1038  * @parent_transid:     expected transid of this tree block, skip check if 0
1039  * @level:              expected level, mandatory check
1040  * @first_key:          expected key in slot 0, skip check if NULL
1041  */
1042 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1043                                       u64 parent_transid, int level,
1044                                       struct btrfs_key *first_key)
1045 {
1046         struct extent_buffer *buf = NULL;
1047         int ret;
1048
1049         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1050         if (IS_ERR(buf))
1051                 return buf;
1052
1053         ret = btree_read_extent_buffer_pages(buf, parent_transid,
1054                                              level, first_key);
1055         if (ret) {
1056                 free_extent_buffer_stale(buf);
1057                 return ERR_PTR(ret);
1058         }
1059         return buf;
1060
1061 }
1062
1063 void btrfs_clean_tree_block(struct extent_buffer *buf)
1064 {
1065         struct btrfs_fs_info *fs_info = buf->fs_info;
1066         if (btrfs_header_generation(buf) ==
1067             fs_info->running_transaction->transid) {
1068                 btrfs_assert_tree_locked(buf);
1069
1070                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1071                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1072                                                  -buf->len,
1073                                                  fs_info->dirty_metadata_batch);
1074                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1075                         btrfs_set_lock_blocking_write(buf);
1076                         clear_extent_buffer_dirty(buf);
1077                 }
1078         }
1079 }
1080
1081 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1082                          u64 objectid)
1083 {
1084         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1085         root->fs_info = fs_info;
1086         root->node = NULL;
1087         root->commit_root = NULL;
1088         root->state = 0;
1089         root->orphan_cleanup_state = 0;
1090
1091         root->last_trans = 0;
1092         root->highest_objectid = 0;
1093         root->nr_delalloc_inodes = 0;
1094         root->nr_ordered_extents = 0;
1095         root->inode_tree = RB_ROOT;
1096         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1097         root->block_rsv = NULL;
1098
1099         INIT_LIST_HEAD(&root->dirty_list);
1100         INIT_LIST_HEAD(&root->root_list);
1101         INIT_LIST_HEAD(&root->delalloc_inodes);
1102         INIT_LIST_HEAD(&root->delalloc_root);
1103         INIT_LIST_HEAD(&root->ordered_extents);
1104         INIT_LIST_HEAD(&root->ordered_root);
1105         INIT_LIST_HEAD(&root->reloc_dirty_list);
1106         INIT_LIST_HEAD(&root->logged_list[0]);
1107         INIT_LIST_HEAD(&root->logged_list[1]);
1108         spin_lock_init(&root->inode_lock);
1109         spin_lock_init(&root->delalloc_lock);
1110         spin_lock_init(&root->ordered_extent_lock);
1111         spin_lock_init(&root->accounting_lock);
1112         spin_lock_init(&root->log_extents_lock[0]);
1113         spin_lock_init(&root->log_extents_lock[1]);
1114         spin_lock_init(&root->qgroup_meta_rsv_lock);
1115         mutex_init(&root->objectid_mutex);
1116         mutex_init(&root->log_mutex);
1117         mutex_init(&root->ordered_extent_mutex);
1118         mutex_init(&root->delalloc_mutex);
1119         init_waitqueue_head(&root->qgroup_flush_wait);
1120         init_waitqueue_head(&root->log_writer_wait);
1121         init_waitqueue_head(&root->log_commit_wait[0]);
1122         init_waitqueue_head(&root->log_commit_wait[1]);
1123         INIT_LIST_HEAD(&root->log_ctxs[0]);
1124         INIT_LIST_HEAD(&root->log_ctxs[1]);
1125         atomic_set(&root->log_commit[0], 0);
1126         atomic_set(&root->log_commit[1], 0);
1127         atomic_set(&root->log_writers, 0);
1128         atomic_set(&root->log_batch, 0);
1129         refcount_set(&root->refs, 1);
1130         atomic_set(&root->snapshot_force_cow, 0);
1131         atomic_set(&root->nr_swapfiles, 0);
1132         root->log_transid = 0;
1133         root->log_transid_committed = -1;
1134         root->last_log_commit = 0;
1135         if (!dummy) {
1136                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1137                                     IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1138                 extent_io_tree_init(fs_info, &root->log_csum_range,
1139                                     IO_TREE_LOG_CSUM_RANGE, NULL);
1140         }
1141
1142         memset(&root->root_key, 0, sizeof(root->root_key));
1143         memset(&root->root_item, 0, sizeof(root->root_item));
1144         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1145         root->root_key.objectid = objectid;
1146         root->anon_dev = 0;
1147
1148         spin_lock_init(&root->root_item_lock);
1149         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1150 #ifdef CONFIG_BTRFS_DEBUG
1151         INIT_LIST_HEAD(&root->leak_list);
1152         spin_lock(&fs_info->fs_roots_radix_lock);
1153         list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1154         spin_unlock(&fs_info->fs_roots_radix_lock);
1155 #endif
1156 }
1157
1158 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1159                                            u64 objectid, gfp_t flags)
1160 {
1161         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1162         if (root)
1163                 __setup_root(root, fs_info, objectid);
1164         return root;
1165 }
1166
1167 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1168 /* Should only be used by the testing infrastructure */
1169 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1170 {
1171         struct btrfs_root *root;
1172
1173         if (!fs_info)
1174                 return ERR_PTR(-EINVAL);
1175
1176         root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1177         if (!root)
1178                 return ERR_PTR(-ENOMEM);
1179
1180         /* We don't use the stripesize in selftest, set it as sectorsize */
1181         root->alloc_bytenr = 0;
1182
1183         return root;
1184 }
1185 #endif
1186
1187 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1188                                      u64 objectid)
1189 {
1190         struct btrfs_fs_info *fs_info = trans->fs_info;
1191         struct extent_buffer *leaf;
1192         struct btrfs_root *tree_root = fs_info->tree_root;
1193         struct btrfs_root *root;
1194         struct btrfs_key key;
1195         unsigned int nofs_flag;
1196         int ret = 0;
1197
1198         /*
1199          * We're holding a transaction handle, so use a NOFS memory allocation
1200          * context to avoid deadlock if reclaim happens.
1201          */
1202         nofs_flag = memalloc_nofs_save();
1203         root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1204         memalloc_nofs_restore(nofs_flag);
1205         if (!root)
1206                 return ERR_PTR(-ENOMEM);
1207
1208         root->root_key.objectid = objectid;
1209         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1210         root->root_key.offset = 0;
1211
1212         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1213         if (IS_ERR(leaf)) {
1214                 ret = PTR_ERR(leaf);
1215                 leaf = NULL;
1216                 goto fail;
1217         }
1218
1219         root->node = leaf;
1220         btrfs_mark_buffer_dirty(leaf);
1221
1222         root->commit_root = btrfs_root_node(root);
1223         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1224
1225         root->root_item.flags = 0;
1226         root->root_item.byte_limit = 0;
1227         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1228         btrfs_set_root_generation(&root->root_item, trans->transid);
1229         btrfs_set_root_level(&root->root_item, 0);
1230         btrfs_set_root_refs(&root->root_item, 1);
1231         btrfs_set_root_used(&root->root_item, leaf->len);
1232         btrfs_set_root_last_snapshot(&root->root_item, 0);
1233         btrfs_set_root_dirid(&root->root_item, 0);
1234         if (is_fstree(objectid))
1235                 generate_random_guid(root->root_item.uuid);
1236         else
1237                 export_guid(root->root_item.uuid, &guid_null);
1238         root->root_item.drop_level = 0;
1239
1240         key.objectid = objectid;
1241         key.type = BTRFS_ROOT_ITEM_KEY;
1242         key.offset = 0;
1243         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1244         if (ret)
1245                 goto fail;
1246
1247         btrfs_tree_unlock(leaf);
1248
1249         return root;
1250
1251 fail:
1252         if (leaf)
1253                 btrfs_tree_unlock(leaf);
1254         btrfs_put_root(root);
1255
1256         return ERR_PTR(ret);
1257 }
1258
1259 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1260                                          struct btrfs_fs_info *fs_info)
1261 {
1262         struct btrfs_root *root;
1263         struct extent_buffer *leaf;
1264
1265         root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1266         if (!root)
1267                 return ERR_PTR(-ENOMEM);
1268
1269         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1270         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1271         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1272
1273         /*
1274          * DON'T set SHAREABLE bit for log trees.
1275          *
1276          * Log trees are not exposed to user space thus can't be snapshotted,
1277          * and they go away before a real commit is actually done.
1278          *
1279          * They do store pointers to file data extents, and those reference
1280          * counts still get updated (along with back refs to the log tree).
1281          */
1282
1283         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1284                         NULL, 0, 0, 0);
1285         if (IS_ERR(leaf)) {
1286                 btrfs_put_root(root);
1287                 return ERR_CAST(leaf);
1288         }
1289
1290         root->node = leaf;
1291
1292         btrfs_mark_buffer_dirty(root->node);
1293         btrfs_tree_unlock(root->node);
1294         return root;
1295 }
1296
1297 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1298                              struct btrfs_fs_info *fs_info)
1299 {
1300         struct btrfs_root *log_root;
1301
1302         log_root = alloc_log_tree(trans, fs_info);
1303         if (IS_ERR(log_root))
1304                 return PTR_ERR(log_root);
1305         WARN_ON(fs_info->log_root_tree);
1306         fs_info->log_root_tree = log_root;
1307         return 0;
1308 }
1309
1310 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1311                        struct btrfs_root *root)
1312 {
1313         struct btrfs_fs_info *fs_info = root->fs_info;
1314         struct btrfs_root *log_root;
1315         struct btrfs_inode_item *inode_item;
1316
1317         log_root = alloc_log_tree(trans, fs_info);
1318         if (IS_ERR(log_root))
1319                 return PTR_ERR(log_root);
1320
1321         log_root->last_trans = trans->transid;
1322         log_root->root_key.offset = root->root_key.objectid;
1323
1324         inode_item = &log_root->root_item.inode;
1325         btrfs_set_stack_inode_generation(inode_item, 1);
1326         btrfs_set_stack_inode_size(inode_item, 3);
1327         btrfs_set_stack_inode_nlink(inode_item, 1);
1328         btrfs_set_stack_inode_nbytes(inode_item,
1329                                      fs_info->nodesize);
1330         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1331
1332         btrfs_set_root_node(&log_root->root_item, log_root->node);
1333
1334         WARN_ON(root->log_root);
1335         root->log_root = log_root;
1336         root->log_transid = 0;
1337         root->log_transid_committed = -1;
1338         root->last_log_commit = 0;
1339         return 0;
1340 }
1341
1342 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1343                                         struct btrfs_key *key)
1344 {
1345         struct btrfs_root *root;
1346         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1347         struct btrfs_path *path;
1348         u64 generation;
1349         int ret;
1350         int level;
1351
1352         path = btrfs_alloc_path();
1353         if (!path)
1354                 return ERR_PTR(-ENOMEM);
1355
1356         root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1357         if (!root) {
1358                 ret = -ENOMEM;
1359                 goto alloc_fail;
1360         }
1361
1362         ret = btrfs_find_root(tree_root, key, path,
1363                               &root->root_item, &root->root_key);
1364         if (ret) {
1365                 if (ret > 0)
1366                         ret = -ENOENT;
1367                 goto find_fail;
1368         }
1369
1370         generation = btrfs_root_generation(&root->root_item);
1371         level = btrfs_root_level(&root->root_item);
1372         root->node = read_tree_block(fs_info,
1373                                      btrfs_root_bytenr(&root->root_item),
1374                                      generation, level, NULL);
1375         if (IS_ERR(root->node)) {
1376                 ret = PTR_ERR(root->node);
1377                 root->node = NULL;
1378                 goto find_fail;
1379         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1380                 ret = -EIO;
1381                 goto find_fail;
1382         }
1383         root->commit_root = btrfs_root_node(root);
1384 out:
1385         btrfs_free_path(path);
1386         return root;
1387
1388 find_fail:
1389         btrfs_put_root(root);
1390 alloc_fail:
1391         root = ERR_PTR(ret);
1392         goto out;
1393 }
1394
1395 /*
1396  * Initialize subvolume root in-memory structure
1397  *
1398  * @anon_dev:   anonymous device to attach to the root, if zero, allocate new
1399  */
1400 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1401 {
1402         int ret;
1403         unsigned int nofs_flag;
1404
1405         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1406         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1407                                         GFP_NOFS);
1408         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1409                 ret = -ENOMEM;
1410                 goto fail;
1411         }
1412
1413         /*
1414          * We might be called under a transaction (e.g. indirect backref
1415          * resolution) which could deadlock if it triggers memory reclaim
1416          */
1417         nofs_flag = memalloc_nofs_save();
1418         ret = btrfs_drew_lock_init(&root->snapshot_lock);
1419         memalloc_nofs_restore(nofs_flag);
1420         if (ret)
1421                 goto fail;
1422
1423         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1424             root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1425                 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1426                 btrfs_check_and_init_root_item(&root->root_item);
1427         }
1428
1429         btrfs_init_free_ino_ctl(root);
1430         spin_lock_init(&root->ino_cache_lock);
1431         init_waitqueue_head(&root->ino_cache_wait);
1432
1433         /*
1434          * Don't assign anonymous block device to roots that are not exposed to
1435          * userspace, the id pool is limited to 1M
1436          */
1437         if (is_fstree(root->root_key.objectid) &&
1438             btrfs_root_refs(&root->root_item) > 0) {
1439                 if (!anon_dev) {
1440                         ret = get_anon_bdev(&root->anon_dev);
1441                         if (ret)
1442                                 goto fail;
1443                 } else {
1444                         root->anon_dev = anon_dev;
1445                 }
1446         }
1447
1448         mutex_lock(&root->objectid_mutex);
1449         ret = btrfs_find_highest_objectid(root,
1450                                         &root->highest_objectid);
1451         if (ret) {
1452                 mutex_unlock(&root->objectid_mutex);
1453                 goto fail;
1454         }
1455
1456         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1457
1458         mutex_unlock(&root->objectid_mutex);
1459
1460         return 0;
1461 fail:
1462         /* The caller is responsible to call btrfs_free_fs_root */
1463         return ret;
1464 }
1465
1466 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1467                                                u64 root_id)
1468 {
1469         struct btrfs_root *root;
1470
1471         spin_lock(&fs_info->fs_roots_radix_lock);
1472         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1473                                  (unsigned long)root_id);
1474         if (root)
1475                 root = btrfs_grab_root(root);
1476         spin_unlock(&fs_info->fs_roots_radix_lock);
1477         return root;
1478 }
1479
1480 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1481                          struct btrfs_root *root)
1482 {
1483         int ret;
1484
1485         ret = radix_tree_preload(GFP_NOFS);
1486         if (ret)
1487                 return ret;
1488
1489         spin_lock(&fs_info->fs_roots_radix_lock);
1490         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1491                                 (unsigned long)root->root_key.objectid,
1492                                 root);
1493         if (ret == 0) {
1494                 btrfs_grab_root(root);
1495                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1496         }
1497         spin_unlock(&fs_info->fs_roots_radix_lock);
1498         radix_tree_preload_end();
1499
1500         return ret;
1501 }
1502
1503 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1504 {
1505 #ifdef CONFIG_BTRFS_DEBUG
1506         struct btrfs_root *root;
1507
1508         while (!list_empty(&fs_info->allocated_roots)) {
1509                 root = list_first_entry(&fs_info->allocated_roots,
1510                                         struct btrfs_root, leak_list);
1511                 btrfs_err(fs_info, "leaked root %llu-%llu refcount %d",
1512                           root->root_key.objectid, root->root_key.offset,
1513                           refcount_read(&root->refs));
1514                 while (refcount_read(&root->refs) > 1)
1515                         btrfs_put_root(root);
1516                 btrfs_put_root(root);
1517         }
1518 #endif
1519 }
1520
1521 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1522 {
1523         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1524         percpu_counter_destroy(&fs_info->delalloc_bytes);
1525         percpu_counter_destroy(&fs_info->dio_bytes);
1526         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1527         btrfs_free_csum_hash(fs_info);
1528         btrfs_free_stripe_hash_table(fs_info);
1529         btrfs_free_ref_cache(fs_info);
1530         kfree(fs_info->balance_ctl);
1531         kfree(fs_info->delayed_root);
1532         btrfs_put_root(fs_info->extent_root);
1533         btrfs_put_root(fs_info->tree_root);
1534         btrfs_put_root(fs_info->chunk_root);
1535         btrfs_put_root(fs_info->dev_root);
1536         btrfs_put_root(fs_info->csum_root);
1537         btrfs_put_root(fs_info->quota_root);
1538         btrfs_put_root(fs_info->uuid_root);
1539         btrfs_put_root(fs_info->free_space_root);
1540         btrfs_put_root(fs_info->fs_root);
1541         btrfs_put_root(fs_info->data_reloc_root);
1542         btrfs_check_leaked_roots(fs_info);
1543         btrfs_extent_buffer_leak_debug_check(fs_info);
1544         kfree(fs_info->super_copy);
1545         kfree(fs_info->super_for_commit);
1546         kvfree(fs_info);
1547 }
1548
1549
1550 /*
1551  * Get an in-memory reference of a root structure.
1552  *
1553  * For essential trees like root/extent tree, we grab it from fs_info directly.
1554  * For subvolume trees, we check the cached filesystem roots first. If not
1555  * found, then read it from disk and add it to cached fs roots.
1556  *
1557  * Caller should release the root by calling btrfs_put_root() after the usage.
1558  *
1559  * NOTE: Reloc and log trees can't be read by this function as they share the
1560  *       same root objectid.
1561  *
1562  * @objectid:   root id
1563  * @anon_dev:   preallocated anonymous block device number for new roots,
1564  *              pass 0 for new allocation.
1565  * @check_ref:  whether to check root item references, If true, return -ENOENT
1566  *              for orphan roots
1567  */
1568 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1569                                              u64 objectid, dev_t anon_dev,
1570                                              bool check_ref)
1571 {
1572         struct btrfs_root *root;
1573         struct btrfs_path *path;
1574         struct btrfs_key key;
1575         int ret;
1576
1577         if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1578                 return btrfs_grab_root(fs_info->tree_root);
1579         if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1580                 return btrfs_grab_root(fs_info->extent_root);
1581         if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1582                 return btrfs_grab_root(fs_info->chunk_root);
1583         if (objectid == BTRFS_DEV_TREE_OBJECTID)
1584                 return btrfs_grab_root(fs_info->dev_root);
1585         if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1586                 return btrfs_grab_root(fs_info->csum_root);
1587         if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1588                 return btrfs_grab_root(fs_info->quota_root) ?
1589                         fs_info->quota_root : ERR_PTR(-ENOENT);
1590         if (objectid == BTRFS_UUID_TREE_OBJECTID)
1591                 return btrfs_grab_root(fs_info->uuid_root) ?
1592                         fs_info->uuid_root : ERR_PTR(-ENOENT);
1593         if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1594                 return btrfs_grab_root(fs_info->free_space_root) ?
1595                         fs_info->free_space_root : ERR_PTR(-ENOENT);
1596 again:
1597         root = btrfs_lookup_fs_root(fs_info, objectid);
1598         if (root) {
1599                 /* Shouldn't get preallocated anon_dev for cached roots */
1600                 ASSERT(!anon_dev);
1601                 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1602                         btrfs_put_root(root);
1603                         return ERR_PTR(-ENOENT);
1604                 }
1605                 return root;
1606         }
1607
1608         key.objectid = objectid;
1609         key.type = BTRFS_ROOT_ITEM_KEY;
1610         key.offset = (u64)-1;
1611         root = btrfs_read_tree_root(fs_info->tree_root, &key);
1612         if (IS_ERR(root))
1613                 return root;
1614
1615         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1616                 ret = -ENOENT;
1617                 goto fail;
1618         }
1619
1620         ret = btrfs_init_fs_root(root, anon_dev);
1621         if (ret)
1622                 goto fail;
1623
1624         path = btrfs_alloc_path();
1625         if (!path) {
1626                 ret = -ENOMEM;
1627                 goto fail;
1628         }
1629         key.objectid = BTRFS_ORPHAN_OBJECTID;
1630         key.type = BTRFS_ORPHAN_ITEM_KEY;
1631         key.offset = objectid;
1632
1633         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1634         btrfs_free_path(path);
1635         if (ret < 0)
1636                 goto fail;
1637         if (ret == 0)
1638                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1639
1640         ret = btrfs_insert_fs_root(fs_info, root);
1641         if (ret) {
1642                 btrfs_put_root(root);
1643                 if (ret == -EEXIST)
1644                         goto again;
1645                 goto fail;
1646         }
1647         return root;
1648 fail:
1649         btrfs_put_root(root);
1650         return ERR_PTR(ret);
1651 }
1652
1653 /*
1654  * Get in-memory reference of a root structure
1655  *
1656  * @objectid:   tree objectid
1657  * @check_ref:  if set, verify that the tree exists and the item has at least
1658  *              one reference
1659  */
1660 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1661                                      u64 objectid, bool check_ref)
1662 {
1663         return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1664 }
1665
1666 /*
1667  * Get in-memory reference of a root structure, created as new, optionally pass
1668  * the anonymous block device id
1669  *
1670  * @objectid:   tree objectid
1671  * @anon_dev:   if zero, allocate a new anonymous block device or use the
1672  *              parameter value
1673  */
1674 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1675                                          u64 objectid, dev_t anon_dev)
1676 {
1677         return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1678 }
1679
1680 /*
1681  * called by the kthread helper functions to finally call the bio end_io
1682  * functions.  This is where read checksum verification actually happens
1683  */
1684 static void end_workqueue_fn(struct btrfs_work *work)
1685 {
1686         struct bio *bio;
1687         struct btrfs_end_io_wq *end_io_wq;
1688
1689         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1690         bio = end_io_wq->bio;
1691
1692         bio->bi_status = end_io_wq->status;
1693         bio->bi_private = end_io_wq->private;
1694         bio->bi_end_io = end_io_wq->end_io;
1695         bio_endio(bio);
1696         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1697 }
1698
1699 static int cleaner_kthread(void *arg)
1700 {
1701         struct btrfs_root *root = arg;
1702         struct btrfs_fs_info *fs_info = root->fs_info;
1703         int again;
1704
1705         while (1) {
1706                 again = 0;
1707
1708                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1709
1710                 /* Make the cleaner go to sleep early. */
1711                 if (btrfs_need_cleaner_sleep(fs_info))
1712                         goto sleep;
1713
1714                 /*
1715                  * Do not do anything if we might cause open_ctree() to block
1716                  * before we have finished mounting the filesystem.
1717                  */
1718                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1719                         goto sleep;
1720
1721                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1722                         goto sleep;
1723
1724                 /*
1725                  * Avoid the problem that we change the status of the fs
1726                  * during the above check and trylock.
1727                  */
1728                 if (btrfs_need_cleaner_sleep(fs_info)) {
1729                         mutex_unlock(&fs_info->cleaner_mutex);
1730                         goto sleep;
1731                 }
1732
1733                 btrfs_run_delayed_iputs(fs_info);
1734
1735                 again = btrfs_clean_one_deleted_snapshot(root);
1736                 mutex_unlock(&fs_info->cleaner_mutex);
1737
1738                 /*
1739                  * The defragger has dealt with the R/O remount and umount,
1740                  * needn't do anything special here.
1741                  */
1742                 btrfs_run_defrag_inodes(fs_info);
1743
1744                 /*
1745                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1746                  * with relocation (btrfs_relocate_chunk) and relocation
1747                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1748                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1749                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1750                  * unused block groups.
1751                  */
1752                 btrfs_delete_unused_bgs(fs_info);
1753 sleep:
1754                 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1755                 if (kthread_should_park())
1756                         kthread_parkme();
1757                 if (kthread_should_stop())
1758                         return 0;
1759                 if (!again) {
1760                         set_current_state(TASK_INTERRUPTIBLE);
1761                         schedule();
1762                         __set_current_state(TASK_RUNNING);
1763                 }
1764         }
1765 }
1766
1767 static int transaction_kthread(void *arg)
1768 {
1769         struct btrfs_root *root = arg;
1770         struct btrfs_fs_info *fs_info = root->fs_info;
1771         struct btrfs_trans_handle *trans;
1772         struct btrfs_transaction *cur;
1773         u64 transid;
1774         time64_t now;
1775         unsigned long delay;
1776         bool cannot_commit;
1777
1778         do {
1779                 cannot_commit = false;
1780                 delay = HZ * fs_info->commit_interval;
1781                 mutex_lock(&fs_info->transaction_kthread_mutex);
1782
1783                 spin_lock(&fs_info->trans_lock);
1784                 cur = fs_info->running_transaction;
1785                 if (!cur) {
1786                         spin_unlock(&fs_info->trans_lock);
1787                         goto sleep;
1788                 }
1789
1790                 now = ktime_get_seconds();
1791                 if (cur->state < TRANS_STATE_COMMIT_START &&
1792                     (now < cur->start_time ||
1793                      now - cur->start_time < fs_info->commit_interval)) {
1794                         spin_unlock(&fs_info->trans_lock);
1795                         delay = HZ * 5;
1796                         goto sleep;
1797                 }
1798                 transid = cur->transid;
1799                 spin_unlock(&fs_info->trans_lock);
1800
1801                 /* If the file system is aborted, this will always fail. */
1802                 trans = btrfs_attach_transaction(root);
1803                 if (IS_ERR(trans)) {
1804                         if (PTR_ERR(trans) != -ENOENT)
1805                                 cannot_commit = true;
1806                         goto sleep;
1807                 }
1808                 if (transid == trans->transid) {
1809                         btrfs_commit_transaction(trans);
1810                 } else {
1811                         btrfs_end_transaction(trans);
1812                 }
1813 sleep:
1814                 wake_up_process(fs_info->cleaner_kthread);
1815                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1816
1817                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1818                                       &fs_info->fs_state)))
1819                         btrfs_cleanup_transaction(fs_info);
1820                 if (!kthread_should_stop() &&
1821                                 (!btrfs_transaction_blocked(fs_info) ||
1822                                  cannot_commit))
1823                         schedule_timeout_interruptible(delay);
1824         } while (!kthread_should_stop());
1825         return 0;
1826 }
1827
1828 /*
1829  * This will find the highest generation in the array of root backups.  The
1830  * index of the highest array is returned, or -EINVAL if we can't find
1831  * anything.
1832  *
1833  * We check to make sure the array is valid by comparing the
1834  * generation of the latest  root in the array with the generation
1835  * in the super block.  If they don't match we pitch it.
1836  */
1837 static int find_newest_super_backup(struct btrfs_fs_info *info)
1838 {
1839         const u64 newest_gen = btrfs_super_generation(info->super_copy);
1840         u64 cur;
1841         struct btrfs_root_backup *root_backup;
1842         int i;
1843
1844         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1845                 root_backup = info->super_copy->super_roots + i;
1846                 cur = btrfs_backup_tree_root_gen(root_backup);
1847                 if (cur == newest_gen)
1848                         return i;
1849         }
1850
1851         return -EINVAL;
1852 }
1853
1854 /*
1855  * copy all the root pointers into the super backup array.
1856  * this will bump the backup pointer by one when it is
1857  * done
1858  */
1859 static void backup_super_roots(struct btrfs_fs_info *info)
1860 {
1861         const int next_backup = info->backup_root_index;
1862         struct btrfs_root_backup *root_backup;
1863
1864         root_backup = info->super_for_commit->super_roots + next_backup;
1865
1866         /*
1867          * make sure all of our padding and empty slots get zero filled
1868          * regardless of which ones we use today
1869          */
1870         memset(root_backup, 0, sizeof(*root_backup));
1871
1872         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1873
1874         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1875         btrfs_set_backup_tree_root_gen(root_backup,
1876                                btrfs_header_generation(info->tree_root->node));
1877
1878         btrfs_set_backup_tree_root_level(root_backup,
1879                                btrfs_header_level(info->tree_root->node));
1880
1881         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1882         btrfs_set_backup_chunk_root_gen(root_backup,
1883                                btrfs_header_generation(info->chunk_root->node));
1884         btrfs_set_backup_chunk_root_level(root_backup,
1885                                btrfs_header_level(info->chunk_root->node));
1886
1887         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1888         btrfs_set_backup_extent_root_gen(root_backup,
1889                                btrfs_header_generation(info->extent_root->node));
1890         btrfs_set_backup_extent_root_level(root_backup,
1891                                btrfs_header_level(info->extent_root->node));
1892
1893         /*
1894          * we might commit during log recovery, which happens before we set
1895          * the fs_root.  Make sure it is valid before we fill it in.
1896          */
1897         if (info->fs_root && info->fs_root->node) {
1898                 btrfs_set_backup_fs_root(root_backup,
1899                                          info->fs_root->node->start);
1900                 btrfs_set_backup_fs_root_gen(root_backup,
1901                                btrfs_header_generation(info->fs_root->node));
1902                 btrfs_set_backup_fs_root_level(root_backup,
1903                                btrfs_header_level(info->fs_root->node));
1904         }
1905
1906         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1907         btrfs_set_backup_dev_root_gen(root_backup,
1908                                btrfs_header_generation(info->dev_root->node));
1909         btrfs_set_backup_dev_root_level(root_backup,
1910                                        btrfs_header_level(info->dev_root->node));
1911
1912         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1913         btrfs_set_backup_csum_root_gen(root_backup,
1914                                btrfs_header_generation(info->csum_root->node));
1915         btrfs_set_backup_csum_root_level(root_backup,
1916                                btrfs_header_level(info->csum_root->node));
1917
1918         btrfs_set_backup_total_bytes(root_backup,
1919                              btrfs_super_total_bytes(info->super_copy));
1920         btrfs_set_backup_bytes_used(root_backup,
1921                              btrfs_super_bytes_used(info->super_copy));
1922         btrfs_set_backup_num_devices(root_backup,
1923                              btrfs_super_num_devices(info->super_copy));
1924
1925         /*
1926          * if we don't copy this out to the super_copy, it won't get remembered
1927          * for the next commit
1928          */
1929         memcpy(&info->super_copy->super_roots,
1930                &info->super_for_commit->super_roots,
1931                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1932 }
1933
1934 /*
1935  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1936  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1937  *
1938  * fs_info - filesystem whose backup roots need to be read
1939  * priority - priority of backup root required
1940  *
1941  * Returns backup root index on success and -EINVAL otherwise.
1942  */
1943 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1944 {
1945         int backup_index = find_newest_super_backup(fs_info);
1946         struct btrfs_super_block *super = fs_info->super_copy;
1947         struct btrfs_root_backup *root_backup;
1948
1949         if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1950                 if (priority == 0)
1951                         return backup_index;
1952
1953                 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1954                 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1955         } else {
1956                 return -EINVAL;
1957         }
1958
1959         root_backup = super->super_roots + backup_index;
1960
1961         btrfs_set_super_generation(super,
1962                                    btrfs_backup_tree_root_gen(root_backup));
1963         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1964         btrfs_set_super_root_level(super,
1965                                    btrfs_backup_tree_root_level(root_backup));
1966         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1967
1968         /*
1969          * Fixme: the total bytes and num_devices need to match or we should
1970          * need a fsck
1971          */
1972         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1973         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1974
1975         return backup_index;
1976 }
1977
1978 /* helper to cleanup workers */
1979 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1980 {
1981         btrfs_destroy_workqueue(fs_info->fixup_workers);
1982         btrfs_destroy_workqueue(fs_info->delalloc_workers);
1983         btrfs_destroy_workqueue(fs_info->workers);
1984         btrfs_destroy_workqueue(fs_info->endio_workers);
1985         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1986         btrfs_destroy_workqueue(fs_info->rmw_workers);
1987         btrfs_destroy_workqueue(fs_info->endio_write_workers);
1988         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1989         btrfs_destroy_workqueue(fs_info->delayed_workers);
1990         btrfs_destroy_workqueue(fs_info->caching_workers);
1991         btrfs_destroy_workqueue(fs_info->readahead_workers);
1992         btrfs_destroy_workqueue(fs_info->flush_workers);
1993         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1994         if (fs_info->discard_ctl.discard_workers)
1995                 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1996         /*
1997          * Now that all other work queues are destroyed, we can safely destroy
1998          * the queues used for metadata I/O, since tasks from those other work
1999          * queues can do metadata I/O operations.
2000          */
2001         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2002         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2003 }
2004
2005 static void free_root_extent_buffers(struct btrfs_root *root)
2006 {
2007         if (root) {
2008                 free_extent_buffer(root->node);
2009                 free_extent_buffer(root->commit_root);
2010                 root->node = NULL;
2011                 root->commit_root = NULL;
2012         }
2013 }
2014
2015 /* helper to cleanup tree roots */
2016 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2017 {
2018         free_root_extent_buffers(info->tree_root);
2019
2020         free_root_extent_buffers(info->dev_root);
2021         free_root_extent_buffers(info->extent_root);
2022         free_root_extent_buffers(info->csum_root);
2023         free_root_extent_buffers(info->quota_root);
2024         free_root_extent_buffers(info->uuid_root);
2025         free_root_extent_buffers(info->fs_root);
2026         free_root_extent_buffers(info->data_reloc_root);
2027         if (free_chunk_root)
2028                 free_root_extent_buffers(info->chunk_root);
2029         free_root_extent_buffers(info->free_space_root);
2030 }
2031
2032 void btrfs_put_root(struct btrfs_root *root)
2033 {
2034         if (!root)
2035                 return;
2036
2037         if (refcount_dec_and_test(&root->refs)) {
2038                 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2039                 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2040                 if (root->anon_dev)
2041                         free_anon_bdev(root->anon_dev);
2042                 btrfs_drew_lock_destroy(&root->snapshot_lock);
2043                 free_root_extent_buffers(root);
2044                 kfree(root->free_ino_ctl);
2045                 kfree(root->free_ino_pinned);
2046 #ifdef CONFIG_BTRFS_DEBUG
2047                 spin_lock(&root->fs_info->fs_roots_radix_lock);
2048                 list_del_init(&root->leak_list);
2049                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2050 #endif
2051                 kfree(root);
2052         }
2053 }
2054
2055 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2056 {
2057         int ret;
2058         struct btrfs_root *gang[8];
2059         int i;
2060
2061         while (!list_empty(&fs_info->dead_roots)) {
2062                 gang[0] = list_entry(fs_info->dead_roots.next,
2063                                      struct btrfs_root, root_list);
2064                 list_del(&gang[0]->root_list);
2065
2066                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2067                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2068                 btrfs_put_root(gang[0]);
2069         }
2070
2071         while (1) {
2072                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2073                                              (void **)gang, 0,
2074                                              ARRAY_SIZE(gang));
2075                 if (!ret)
2076                         break;
2077                 for (i = 0; i < ret; i++)
2078                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2079         }
2080 }
2081
2082 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2083 {
2084         mutex_init(&fs_info->scrub_lock);
2085         atomic_set(&fs_info->scrubs_running, 0);
2086         atomic_set(&fs_info->scrub_pause_req, 0);
2087         atomic_set(&fs_info->scrubs_paused, 0);
2088         atomic_set(&fs_info->scrub_cancel_req, 0);
2089         init_waitqueue_head(&fs_info->scrub_pause_wait);
2090         refcount_set(&fs_info->scrub_workers_refcnt, 0);
2091 }
2092
2093 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2094 {
2095         spin_lock_init(&fs_info->balance_lock);
2096         mutex_init(&fs_info->balance_mutex);
2097         atomic_set(&fs_info->balance_pause_req, 0);
2098         atomic_set(&fs_info->balance_cancel_req, 0);
2099         fs_info->balance_ctl = NULL;
2100         init_waitqueue_head(&fs_info->balance_wait_q);
2101 }
2102
2103 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2104 {
2105         struct inode *inode = fs_info->btree_inode;
2106
2107         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2108         set_nlink(inode, 1);
2109         /*
2110          * we set the i_size on the btree inode to the max possible int.
2111          * the real end of the address space is determined by all of
2112          * the devices in the system
2113          */
2114         inode->i_size = OFFSET_MAX;
2115         inode->i_mapping->a_ops = &btree_aops;
2116
2117         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2118         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2119                             IO_TREE_INODE_IO, inode);
2120         BTRFS_I(inode)->io_tree.track_uptodate = false;
2121         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2122
2123         BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2124
2125         BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2126         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2127         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2128         btrfs_insert_inode_hash(inode);
2129 }
2130
2131 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2132 {
2133         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2134         init_rwsem(&fs_info->dev_replace.rwsem);
2135         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2136 }
2137
2138 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2139 {
2140         spin_lock_init(&fs_info->qgroup_lock);
2141         mutex_init(&fs_info->qgroup_ioctl_lock);
2142         fs_info->qgroup_tree = RB_ROOT;
2143         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2144         fs_info->qgroup_seq = 1;
2145         fs_info->qgroup_ulist = NULL;
2146         fs_info->qgroup_rescan_running = false;
2147         mutex_init(&fs_info->qgroup_rescan_lock);
2148 }
2149
2150 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2151                 struct btrfs_fs_devices *fs_devices)
2152 {
2153         u32 max_active = fs_info->thread_pool_size;
2154         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2155
2156         fs_info->workers =
2157                 btrfs_alloc_workqueue(fs_info, "worker",
2158                                       flags | WQ_HIGHPRI, max_active, 16);
2159
2160         fs_info->delalloc_workers =
2161                 btrfs_alloc_workqueue(fs_info, "delalloc",
2162                                       flags, max_active, 2);
2163
2164         fs_info->flush_workers =
2165                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2166                                       flags, max_active, 0);
2167
2168         fs_info->caching_workers =
2169                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2170
2171         fs_info->fixup_workers =
2172                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2173
2174         /*
2175          * endios are largely parallel and should have a very
2176          * low idle thresh
2177          */
2178         fs_info->endio_workers =
2179                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2180         fs_info->endio_meta_workers =
2181                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2182                                       max_active, 4);
2183         fs_info->endio_meta_write_workers =
2184                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2185                                       max_active, 2);
2186         fs_info->endio_raid56_workers =
2187                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2188                                       max_active, 4);
2189         fs_info->rmw_workers =
2190                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2191         fs_info->endio_write_workers =
2192                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2193                                       max_active, 2);
2194         fs_info->endio_freespace_worker =
2195                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2196                                       max_active, 0);
2197         fs_info->delayed_workers =
2198                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2199                                       max_active, 0);
2200         fs_info->readahead_workers =
2201                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2202                                       max_active, 2);
2203         fs_info->qgroup_rescan_workers =
2204                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2205         fs_info->discard_ctl.discard_workers =
2206                 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2207
2208         if (!(fs_info->workers && fs_info->delalloc_workers &&
2209               fs_info->flush_workers &&
2210               fs_info->endio_workers && fs_info->endio_meta_workers &&
2211               fs_info->endio_meta_write_workers &&
2212               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2213               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2214               fs_info->caching_workers && fs_info->readahead_workers &&
2215               fs_info->fixup_workers && fs_info->delayed_workers &&
2216               fs_info->qgroup_rescan_workers &&
2217               fs_info->discard_ctl.discard_workers)) {
2218                 return -ENOMEM;
2219         }
2220
2221         return 0;
2222 }
2223
2224 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2225 {
2226         struct crypto_shash *csum_shash;
2227         const char *csum_driver = btrfs_super_csum_driver(csum_type);
2228
2229         csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2230
2231         if (IS_ERR(csum_shash)) {
2232                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2233                           csum_driver);
2234                 return PTR_ERR(csum_shash);
2235         }
2236
2237         fs_info->csum_shash = csum_shash;
2238
2239         return 0;
2240 }
2241
2242 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2243                             struct btrfs_fs_devices *fs_devices)
2244 {
2245         int ret;
2246         struct btrfs_root *log_tree_root;
2247         struct btrfs_super_block *disk_super = fs_info->super_copy;
2248         u64 bytenr = btrfs_super_log_root(disk_super);
2249         int level = btrfs_super_log_root_level(disk_super);
2250
2251         if (fs_devices->rw_devices == 0) {
2252                 btrfs_warn(fs_info, "log replay required on RO media");
2253                 return -EIO;
2254         }
2255
2256         log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2257                                          GFP_KERNEL);
2258         if (!log_tree_root)
2259                 return -ENOMEM;
2260
2261         log_tree_root->node = read_tree_block(fs_info, bytenr,
2262                                               fs_info->generation + 1,
2263                                               level, NULL);
2264         if (IS_ERR(log_tree_root->node)) {
2265                 btrfs_warn(fs_info, "failed to read log tree");
2266                 ret = PTR_ERR(log_tree_root->node);
2267                 log_tree_root->node = NULL;
2268                 btrfs_put_root(log_tree_root);
2269                 return ret;
2270         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2271                 btrfs_err(fs_info, "failed to read log tree");
2272                 btrfs_put_root(log_tree_root);
2273                 return -EIO;
2274         }
2275         /* returns with log_tree_root freed on success */
2276         ret = btrfs_recover_log_trees(log_tree_root);
2277         if (ret) {
2278                 btrfs_handle_fs_error(fs_info, ret,
2279                                       "Failed to recover log tree");
2280                 btrfs_put_root(log_tree_root);
2281                 return ret;
2282         }
2283
2284         if (sb_rdonly(fs_info->sb)) {
2285                 ret = btrfs_commit_super(fs_info);
2286                 if (ret)
2287                         return ret;
2288         }
2289
2290         return 0;
2291 }
2292
2293 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2294 {
2295         struct btrfs_root *tree_root = fs_info->tree_root;
2296         struct btrfs_root *root;
2297         struct btrfs_key location;
2298         int ret;
2299
2300         BUG_ON(!fs_info->tree_root);
2301
2302         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2303         location.type = BTRFS_ROOT_ITEM_KEY;
2304         location.offset = 0;
2305
2306         root = btrfs_read_tree_root(tree_root, &location);
2307         if (IS_ERR(root)) {
2308                 ret = PTR_ERR(root);
2309                 goto out;
2310         }
2311         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2312         fs_info->extent_root = root;
2313
2314         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2315         root = btrfs_read_tree_root(tree_root, &location);
2316         if (IS_ERR(root)) {
2317                 ret = PTR_ERR(root);
2318                 goto out;
2319         }
2320         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2321         fs_info->dev_root = root;
2322         btrfs_init_devices_late(fs_info);
2323
2324         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2325         root = btrfs_read_tree_root(tree_root, &location);
2326         if (IS_ERR(root)) {
2327                 ret = PTR_ERR(root);
2328                 goto out;
2329         }
2330         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2331         fs_info->csum_root = root;
2332
2333         /*
2334          * This tree can share blocks with some other fs tree during relocation
2335          * and we need a proper setup by btrfs_get_fs_root
2336          */
2337         root = btrfs_get_fs_root(tree_root->fs_info,
2338                                  BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2339         if (IS_ERR(root)) {
2340                 ret = PTR_ERR(root);
2341                 goto out;
2342         }
2343         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2344         fs_info->data_reloc_root = root;
2345
2346         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2347         root = btrfs_read_tree_root(tree_root, &location);
2348         if (!IS_ERR(root)) {
2349                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2350                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2351                 fs_info->quota_root = root;
2352         }
2353
2354         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2355         root = btrfs_read_tree_root(tree_root, &location);
2356         if (IS_ERR(root)) {
2357                 ret = PTR_ERR(root);
2358                 if (ret != -ENOENT)
2359                         goto out;
2360         } else {
2361                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2362                 fs_info->uuid_root = root;
2363         }
2364
2365         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2366                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2367                 root = btrfs_read_tree_root(tree_root, &location);
2368                 if (IS_ERR(root)) {
2369                         ret = PTR_ERR(root);
2370                         goto out;
2371                 }
2372                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2373                 fs_info->free_space_root = root;
2374         }
2375
2376         return 0;
2377 out:
2378         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2379                    location.objectid, ret);
2380         return ret;
2381 }
2382
2383 /*
2384  * Real super block validation
2385  * NOTE: super csum type and incompat features will not be checked here.
2386  *
2387  * @sb:         super block to check
2388  * @mirror_num: the super block number to check its bytenr:
2389  *              0       the primary (1st) sb
2390  *              1, 2    2nd and 3rd backup copy
2391  *             -1       skip bytenr check
2392  */
2393 static int validate_super(struct btrfs_fs_info *fs_info,
2394                             struct btrfs_super_block *sb, int mirror_num)
2395 {
2396         u64 nodesize = btrfs_super_nodesize(sb);
2397         u64 sectorsize = btrfs_super_sectorsize(sb);
2398         int ret = 0;
2399
2400         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2401                 btrfs_err(fs_info, "no valid FS found");
2402                 ret = -EINVAL;
2403         }
2404         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2405                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2406                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2407                 ret = -EINVAL;
2408         }
2409         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2410                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2411                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2412                 ret = -EINVAL;
2413         }
2414         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2415                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2416                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2417                 ret = -EINVAL;
2418         }
2419         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2420                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2421                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2422                 ret = -EINVAL;
2423         }
2424
2425         /*
2426          * Check sectorsize and nodesize first, other check will need it.
2427          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2428          */
2429         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2430             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2431                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2432                 ret = -EINVAL;
2433         }
2434         /* Only PAGE SIZE is supported yet */
2435         if (sectorsize != PAGE_SIZE) {
2436                 btrfs_err(fs_info,
2437                         "sectorsize %llu not supported yet, only support %lu",
2438                         sectorsize, PAGE_SIZE);
2439                 ret = -EINVAL;
2440         }
2441         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2442             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2443                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2444                 ret = -EINVAL;
2445         }
2446         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2447                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2448                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2449                 ret = -EINVAL;
2450         }
2451
2452         /* Root alignment check */
2453         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2454                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2455                            btrfs_super_root(sb));
2456                 ret = -EINVAL;
2457         }
2458         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2459                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2460                            btrfs_super_chunk_root(sb));
2461                 ret = -EINVAL;
2462         }
2463         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2464                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2465                            btrfs_super_log_root(sb));
2466                 ret = -EINVAL;
2467         }
2468
2469         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2470                    BTRFS_FSID_SIZE) != 0) {
2471                 btrfs_err(fs_info,
2472                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2473                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2474                 ret = -EINVAL;
2475         }
2476
2477         /*
2478          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2479          * done later
2480          */
2481         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2482                 btrfs_err(fs_info, "bytes_used is too small %llu",
2483                           btrfs_super_bytes_used(sb));
2484                 ret = -EINVAL;
2485         }
2486         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2487                 btrfs_err(fs_info, "invalid stripesize %u",
2488                           btrfs_super_stripesize(sb));
2489                 ret = -EINVAL;
2490         }
2491         if (btrfs_super_num_devices(sb) > (1UL << 31))
2492                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2493                            btrfs_super_num_devices(sb));
2494         if (btrfs_super_num_devices(sb) == 0) {
2495                 btrfs_err(fs_info, "number of devices is 0");
2496                 ret = -EINVAL;
2497         }
2498
2499         if (mirror_num >= 0 &&
2500             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2501                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2502                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2503                 ret = -EINVAL;
2504         }
2505
2506         /*
2507          * Obvious sys_chunk_array corruptions, it must hold at least one key
2508          * and one chunk
2509          */
2510         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2511                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2512                           btrfs_super_sys_array_size(sb),
2513                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2514                 ret = -EINVAL;
2515         }
2516         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2517                         + sizeof(struct btrfs_chunk)) {
2518                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2519                           btrfs_super_sys_array_size(sb),
2520                           sizeof(struct btrfs_disk_key)
2521                           + sizeof(struct btrfs_chunk));
2522                 ret = -EINVAL;
2523         }
2524
2525         /*
2526          * The generation is a global counter, we'll trust it more than the others
2527          * but it's still possible that it's the one that's wrong.
2528          */
2529         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2530                 btrfs_warn(fs_info,
2531                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2532                         btrfs_super_generation(sb),
2533                         btrfs_super_chunk_root_generation(sb));
2534         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2535             && btrfs_super_cache_generation(sb) != (u64)-1)
2536                 btrfs_warn(fs_info,
2537                         "suspicious: generation < cache_generation: %llu < %llu",
2538                         btrfs_super_generation(sb),
2539                         btrfs_super_cache_generation(sb));
2540
2541         return ret;
2542 }
2543
2544 /*
2545  * Validation of super block at mount time.
2546  * Some checks already done early at mount time, like csum type and incompat
2547  * flags will be skipped.
2548  */
2549 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2550 {
2551         return validate_super(fs_info, fs_info->super_copy, 0);
2552 }
2553
2554 /*
2555  * Validation of super block at write time.
2556  * Some checks like bytenr check will be skipped as their values will be
2557  * overwritten soon.
2558  * Extra checks like csum type and incompat flags will be done here.
2559  */
2560 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2561                                       struct btrfs_super_block *sb)
2562 {
2563         int ret;
2564
2565         ret = validate_super(fs_info, sb, -1);
2566         if (ret < 0)
2567                 goto out;
2568         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2569                 ret = -EUCLEAN;
2570                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2571                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2572                 goto out;
2573         }
2574         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2575                 ret = -EUCLEAN;
2576                 btrfs_err(fs_info,
2577                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2578                           btrfs_super_incompat_flags(sb),
2579                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2580                 goto out;
2581         }
2582 out:
2583         if (ret < 0)
2584                 btrfs_err(fs_info,
2585                 "super block corruption detected before writing it to disk");
2586         return ret;
2587 }
2588
2589 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2590 {
2591         int backup_index = find_newest_super_backup(fs_info);
2592         struct btrfs_super_block *sb = fs_info->super_copy;
2593         struct btrfs_root *tree_root = fs_info->tree_root;
2594         bool handle_error = false;
2595         int ret = 0;
2596         int i;
2597
2598         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2599                 u64 generation;
2600                 int level;
2601
2602                 if (handle_error) {
2603                         if (!IS_ERR(tree_root->node))
2604                                 free_extent_buffer(tree_root->node);
2605                         tree_root->node = NULL;
2606
2607                         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2608                                 break;
2609
2610                         free_root_pointers(fs_info, 0);
2611
2612                         /*
2613                          * Don't use the log in recovery mode, it won't be
2614                          * valid
2615                          */
2616                         btrfs_set_super_log_root(sb, 0);
2617
2618                         /* We can't trust the free space cache either */
2619                         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2620
2621                         ret = read_backup_root(fs_info, i);
2622                         backup_index = ret;
2623                         if (ret < 0)
2624                                 return ret;
2625                 }
2626                 generation = btrfs_super_generation(sb);
2627                 level = btrfs_super_root_level(sb);
2628                 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2629                                                   generation, level, NULL);
2630                 if (IS_ERR(tree_root->node) ||
2631                     !extent_buffer_uptodate(tree_root->node)) {
2632                         handle_error = true;
2633
2634                         if (IS_ERR(tree_root->node)) {
2635                                 ret = PTR_ERR(tree_root->node);
2636                                 tree_root->node = NULL;
2637                         } else if (!extent_buffer_uptodate(tree_root->node)) {
2638                                 ret = -EUCLEAN;
2639                         }
2640
2641                         btrfs_warn(fs_info, "failed to read tree root");
2642                         continue;
2643                 }
2644
2645                 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2646                 tree_root->commit_root = btrfs_root_node(tree_root);
2647                 btrfs_set_root_refs(&tree_root->root_item, 1);
2648
2649                 /*
2650                  * No need to hold btrfs_root::objectid_mutex since the fs
2651                  * hasn't been fully initialised and we are the only user
2652                  */
2653                 ret = btrfs_find_highest_objectid(tree_root,
2654                                                 &tree_root->highest_objectid);
2655                 if (ret < 0) {
2656                         handle_error = true;
2657                         continue;
2658                 }
2659
2660                 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2661
2662                 ret = btrfs_read_roots(fs_info);
2663                 if (ret < 0) {
2664                         handle_error = true;
2665                         continue;
2666                 }
2667
2668                 /* All successful */
2669                 fs_info->generation = generation;
2670                 fs_info->last_trans_committed = generation;
2671
2672                 /* Always begin writing backup roots after the one being used */
2673                 if (backup_index < 0) {
2674                         fs_info->backup_root_index = 0;
2675                 } else {
2676                         fs_info->backup_root_index = backup_index + 1;
2677                         fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2678                 }
2679                 break;
2680         }
2681
2682         return ret;
2683 }
2684
2685 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2686 {
2687         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2688         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2689         INIT_LIST_HEAD(&fs_info->trans_list);
2690         INIT_LIST_HEAD(&fs_info->dead_roots);
2691         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2692         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2693         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2694         spin_lock_init(&fs_info->delalloc_root_lock);
2695         spin_lock_init(&fs_info->trans_lock);
2696         spin_lock_init(&fs_info->fs_roots_radix_lock);
2697         spin_lock_init(&fs_info->delayed_iput_lock);
2698         spin_lock_init(&fs_info->defrag_inodes_lock);
2699         spin_lock_init(&fs_info->super_lock);
2700         spin_lock_init(&fs_info->buffer_lock);
2701         spin_lock_init(&fs_info->unused_bgs_lock);
2702         rwlock_init(&fs_info->tree_mod_log_lock);
2703         mutex_init(&fs_info->unused_bg_unpin_mutex);
2704         mutex_init(&fs_info->delete_unused_bgs_mutex);
2705         mutex_init(&fs_info->reloc_mutex);
2706         mutex_init(&fs_info->delalloc_root_mutex);
2707         seqlock_init(&fs_info->profiles_lock);
2708
2709         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2710         INIT_LIST_HEAD(&fs_info->space_info);
2711         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2712         INIT_LIST_HEAD(&fs_info->unused_bgs);
2713 #ifdef CONFIG_BTRFS_DEBUG
2714         INIT_LIST_HEAD(&fs_info->allocated_roots);
2715         INIT_LIST_HEAD(&fs_info->allocated_ebs);
2716         spin_lock_init(&fs_info->eb_leak_lock);
2717 #endif
2718         extent_map_tree_init(&fs_info->mapping_tree);
2719         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2720                              BTRFS_BLOCK_RSV_GLOBAL);
2721         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2722         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2723         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2724         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2725                              BTRFS_BLOCK_RSV_DELOPS);
2726         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2727                              BTRFS_BLOCK_RSV_DELREFS);
2728
2729         atomic_set(&fs_info->async_delalloc_pages, 0);
2730         atomic_set(&fs_info->defrag_running, 0);
2731         atomic_set(&fs_info->reada_works_cnt, 0);
2732         atomic_set(&fs_info->nr_delayed_iputs, 0);
2733         atomic64_set(&fs_info->tree_mod_seq, 0);
2734         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2735         fs_info->metadata_ratio = 0;
2736         fs_info->defrag_inodes = RB_ROOT;
2737         atomic64_set(&fs_info->free_chunk_space, 0);
2738         fs_info->tree_mod_log = RB_ROOT;
2739         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2740         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2741         /* readahead state */
2742         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2743         spin_lock_init(&fs_info->reada_lock);
2744         btrfs_init_ref_verify(fs_info);
2745
2746         fs_info->thread_pool_size = min_t(unsigned long,
2747                                           num_online_cpus() + 2, 8);
2748
2749         INIT_LIST_HEAD(&fs_info->ordered_roots);
2750         spin_lock_init(&fs_info->ordered_root_lock);
2751
2752         btrfs_init_scrub(fs_info);
2753 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2754         fs_info->check_integrity_print_mask = 0;
2755 #endif
2756         btrfs_init_balance(fs_info);
2757         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2758
2759         spin_lock_init(&fs_info->block_group_cache_lock);
2760         fs_info->block_group_cache_tree = RB_ROOT;
2761         fs_info->first_logical_byte = (u64)-1;
2762
2763         extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2764                             IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2765         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2766
2767         mutex_init(&fs_info->ordered_operations_mutex);
2768         mutex_init(&fs_info->tree_log_mutex);
2769         mutex_init(&fs_info->chunk_mutex);
2770         mutex_init(&fs_info->transaction_kthread_mutex);
2771         mutex_init(&fs_info->cleaner_mutex);
2772         mutex_init(&fs_info->ro_block_group_mutex);
2773         init_rwsem(&fs_info->commit_root_sem);
2774         init_rwsem(&fs_info->cleanup_work_sem);
2775         init_rwsem(&fs_info->subvol_sem);
2776         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2777
2778         btrfs_init_dev_replace_locks(fs_info);
2779         btrfs_init_qgroup(fs_info);
2780         btrfs_discard_init(fs_info);
2781
2782         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2783         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2784
2785         init_waitqueue_head(&fs_info->transaction_throttle);
2786         init_waitqueue_head(&fs_info->transaction_wait);
2787         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2788         init_waitqueue_head(&fs_info->async_submit_wait);
2789         init_waitqueue_head(&fs_info->delayed_iputs_wait);
2790
2791         /* Usable values until the real ones are cached from the superblock */
2792         fs_info->nodesize = 4096;
2793         fs_info->sectorsize = 4096;
2794         fs_info->stripesize = 4096;
2795
2796         spin_lock_init(&fs_info->swapfile_pins_lock);
2797         fs_info->swapfile_pins = RB_ROOT;
2798
2799         fs_info->send_in_progress = 0;
2800 }
2801
2802 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2803 {
2804         int ret;
2805
2806         fs_info->sb = sb;
2807         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2808         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2809
2810         ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2811         if (ret)
2812                 return ret;
2813
2814         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2815         if (ret)
2816                 return ret;
2817
2818         fs_info->dirty_metadata_batch = PAGE_SIZE *
2819                                         (1 + ilog2(nr_cpu_ids));
2820
2821         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2822         if (ret)
2823                 return ret;
2824
2825         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2826                         GFP_KERNEL);
2827         if (ret)
2828                 return ret;
2829
2830         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2831                                         GFP_KERNEL);
2832         if (!fs_info->delayed_root)
2833                 return -ENOMEM;
2834         btrfs_init_delayed_root(fs_info->delayed_root);
2835
2836         return btrfs_alloc_stripe_hash_table(fs_info);
2837 }
2838
2839 static int btrfs_uuid_rescan_kthread(void *data)
2840 {
2841         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2842         int ret;
2843
2844         /*
2845          * 1st step is to iterate through the existing UUID tree and
2846          * to delete all entries that contain outdated data.
2847          * 2nd step is to add all missing entries to the UUID tree.
2848          */
2849         ret = btrfs_uuid_tree_iterate(fs_info);
2850         if (ret < 0) {
2851                 if (ret != -EINTR)
2852                         btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2853                                    ret);
2854                 up(&fs_info->uuid_tree_rescan_sem);
2855                 return ret;
2856         }
2857         return btrfs_uuid_scan_kthread(data);
2858 }
2859
2860 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2861 {
2862         struct task_struct *task;
2863
2864         down(&fs_info->uuid_tree_rescan_sem);
2865         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2866         if (IS_ERR(task)) {
2867                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2868                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2869                 up(&fs_info->uuid_tree_rescan_sem);
2870                 return PTR_ERR(task);
2871         }
2872
2873         return 0;
2874 }
2875
2876 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2877                       char *options)
2878 {
2879         u32 sectorsize;
2880         u32 nodesize;
2881         u32 stripesize;
2882         u64 generation;
2883         u64 features;
2884         u16 csum_type;
2885         struct btrfs_super_block *disk_super;
2886         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2887         struct btrfs_root *tree_root;
2888         struct btrfs_root *chunk_root;
2889         int ret;
2890         int err = -EINVAL;
2891         int clear_free_space_tree = 0;
2892         int level;
2893
2894         ret = init_mount_fs_info(fs_info, sb);
2895         if (ret) {
2896                 err = ret;
2897                 goto fail;
2898         }
2899
2900         /* These need to be init'ed before we start creating inodes and such. */
2901         tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2902                                      GFP_KERNEL);
2903         fs_info->tree_root = tree_root;
2904         chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2905                                       GFP_KERNEL);
2906         fs_info->chunk_root = chunk_root;
2907         if (!tree_root || !chunk_root) {
2908                 err = -ENOMEM;
2909                 goto fail;
2910         }
2911
2912         fs_info->btree_inode = new_inode(sb);
2913         if (!fs_info->btree_inode) {
2914                 err = -ENOMEM;
2915                 goto fail;
2916         }
2917         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2918         btrfs_init_btree_inode(fs_info);
2919
2920         invalidate_bdev(fs_devices->latest_bdev);
2921
2922         /*
2923          * Read super block and check the signature bytes only
2924          */
2925         disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2926         if (IS_ERR(disk_super)) {
2927                 err = PTR_ERR(disk_super);
2928                 goto fail_alloc;
2929         }
2930
2931         /*
2932          * Verify the type first, if that or the the checksum value are
2933          * corrupted, we'll find out
2934          */
2935         csum_type = btrfs_super_csum_type(disk_super);
2936         if (!btrfs_supported_super_csum(csum_type)) {
2937                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2938                           csum_type);
2939                 err = -EINVAL;
2940                 btrfs_release_disk_super(disk_super);
2941                 goto fail_alloc;
2942         }
2943
2944         ret = btrfs_init_csum_hash(fs_info, csum_type);
2945         if (ret) {
2946                 err = ret;
2947                 btrfs_release_disk_super(disk_super);
2948                 goto fail_alloc;
2949         }
2950
2951         /*
2952          * We want to check superblock checksum, the type is stored inside.
2953          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2954          */
2955         if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
2956                 btrfs_err(fs_info, "superblock checksum mismatch");
2957                 err = -EINVAL;
2958                 btrfs_release_disk_super(disk_super);
2959                 goto fail_alloc;
2960         }
2961
2962         /*
2963          * super_copy is zeroed at allocation time and we never touch the
2964          * following bytes up to INFO_SIZE, the checksum is calculated from
2965          * the whole block of INFO_SIZE
2966          */
2967         memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2968         btrfs_release_disk_super(disk_super);
2969
2970         disk_super = fs_info->super_copy;
2971
2972         ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2973                        BTRFS_FSID_SIZE));
2974
2975         if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2976                 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2977                                 fs_info->super_copy->metadata_uuid,
2978                                 BTRFS_FSID_SIZE));
2979         }
2980
2981         features = btrfs_super_flags(disk_super);
2982         if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2983                 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2984                 btrfs_set_super_flags(disk_super, features);
2985                 btrfs_info(fs_info,
2986                         "found metadata UUID change in progress flag, clearing");
2987         }
2988
2989         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2990                sizeof(*fs_info->super_for_commit));
2991
2992         ret = btrfs_validate_mount_super(fs_info);
2993         if (ret) {
2994                 btrfs_err(fs_info, "superblock contains fatal errors");
2995                 err = -EINVAL;
2996                 goto fail_alloc;
2997         }
2998
2999         if (!btrfs_super_root(disk_super))
3000                 goto fail_alloc;
3001
3002         /* check FS state, whether FS is broken. */
3003         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3004                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3005
3006         /*
3007          * In the long term, we'll store the compression type in the super
3008          * block, and it'll be used for per file compression control.
3009          */
3010         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3011
3012         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3013         if (ret) {
3014                 err = ret;
3015                 goto fail_alloc;
3016         }
3017
3018         features = btrfs_super_incompat_flags(disk_super) &
3019                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3020         if (features) {
3021                 btrfs_err(fs_info,
3022                     "cannot mount because of unsupported optional features (%llx)",
3023                     features);
3024                 err = -EINVAL;
3025                 goto fail_alloc;
3026         }
3027
3028         features = btrfs_super_incompat_flags(disk_super);
3029         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3030         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3031                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3032         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3033                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3034
3035         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3036                 btrfs_info(fs_info, "has skinny extents");
3037
3038         /*
3039          * flag our filesystem as having big metadata blocks if
3040          * they are bigger than the page size
3041          */
3042         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3043                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3044                         btrfs_info(fs_info,
3045                                 "flagging fs with big metadata feature");
3046                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3047         }
3048
3049         nodesize = btrfs_super_nodesize(disk_super);
3050         sectorsize = btrfs_super_sectorsize(disk_super);
3051         stripesize = sectorsize;
3052         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3053         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3054
3055         /* Cache block sizes */
3056         fs_info->nodesize = nodesize;
3057         fs_info->sectorsize = sectorsize;
3058         fs_info->stripesize = stripesize;
3059
3060         /*
3061          * mixed block groups end up with duplicate but slightly offset
3062          * extent buffers for the same range.  It leads to corruptions
3063          */
3064         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3065             (sectorsize != nodesize)) {
3066                 btrfs_err(fs_info,
3067 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3068                         nodesize, sectorsize);
3069                 goto fail_alloc;
3070         }
3071
3072         /*
3073          * Needn't use the lock because there is no other task which will
3074          * update the flag.
3075          */
3076         btrfs_set_super_incompat_flags(disk_super, features);
3077
3078         features = btrfs_super_compat_ro_flags(disk_super) &
3079                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3080         if (!sb_rdonly(sb) && features) {
3081                 btrfs_err(fs_info,
3082         "cannot mount read-write because of unsupported optional features (%llx)",
3083                        features);
3084                 err = -EINVAL;
3085                 goto fail_alloc;
3086         }
3087
3088         ret = btrfs_init_workqueues(fs_info, fs_devices);
3089         if (ret) {
3090                 err = ret;
3091                 goto fail_sb_buffer;
3092         }
3093
3094         sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
3095         sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
3096         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3097         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3098
3099         sb->s_blocksize = sectorsize;
3100         sb->s_blocksize_bits = blksize_bits(sectorsize);
3101         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3102
3103         mutex_lock(&fs_info->chunk_mutex);
3104         ret = btrfs_read_sys_array(fs_info);
3105         mutex_unlock(&fs_info->chunk_mutex);
3106         if (ret) {
3107                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3108                 goto fail_sb_buffer;
3109         }
3110
3111         generation = btrfs_super_chunk_root_generation(disk_super);
3112         level = btrfs_super_chunk_root_level(disk_super);
3113
3114         chunk_root->node = read_tree_block(fs_info,
3115                                            btrfs_super_chunk_root(disk_super),
3116                                            generation, level, NULL);
3117         if (IS_ERR(chunk_root->node) ||
3118             !extent_buffer_uptodate(chunk_root->node)) {
3119                 btrfs_err(fs_info, "failed to read chunk root");
3120                 if (!IS_ERR(chunk_root->node))
3121                         free_extent_buffer(chunk_root->node);
3122                 chunk_root->node = NULL;
3123                 goto fail_tree_roots;
3124         }
3125         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3126         chunk_root->commit_root = btrfs_root_node(chunk_root);
3127
3128         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3129                            offsetof(struct btrfs_header, chunk_tree_uuid),
3130                            BTRFS_UUID_SIZE);
3131
3132         ret = btrfs_read_chunk_tree(fs_info);
3133         if (ret) {
3134                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3135                 goto fail_tree_roots;
3136         }
3137
3138         /*
3139          * Keep the devid that is marked to be the target device for the
3140          * device replace procedure
3141          */
3142         btrfs_free_extra_devids(fs_devices, 0);
3143
3144         if (!fs_devices->latest_bdev) {
3145                 btrfs_err(fs_info, "failed to read devices");
3146                 goto fail_tree_roots;
3147         }
3148
3149         ret = init_tree_roots(fs_info);
3150         if (ret)
3151                 goto fail_tree_roots;
3152
3153         /*
3154          * If we have a uuid root and we're not being told to rescan we need to
3155          * check the generation here so we can set the
3156          * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3157          * transaction during a balance or the log replay without updating the
3158          * uuid generation, and then if we crash we would rescan the uuid tree,
3159          * even though it was perfectly fine.
3160          */
3161         if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3162             fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3163                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3164
3165         ret = btrfs_verify_dev_extents(fs_info);
3166         if (ret) {
3167                 btrfs_err(fs_info,
3168                           "failed to verify dev extents against chunks: %d",
3169                           ret);
3170                 goto fail_block_groups;
3171         }
3172         ret = btrfs_recover_balance(fs_info);
3173         if (ret) {
3174                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3175                 goto fail_block_groups;
3176         }
3177
3178         ret = btrfs_init_dev_stats(fs_info);
3179         if (ret) {
3180                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3181                 goto fail_block_groups;
3182         }
3183
3184         ret = btrfs_init_dev_replace(fs_info);
3185         if (ret) {
3186                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3187                 goto fail_block_groups;
3188         }
3189
3190         btrfs_free_extra_devids(fs_devices, 1);
3191
3192         ret = btrfs_sysfs_add_fsid(fs_devices);
3193         if (ret) {
3194                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3195                                 ret);
3196                 goto fail_block_groups;
3197         }
3198
3199         ret = btrfs_sysfs_add_mounted(fs_info);
3200         if (ret) {
3201                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3202                 goto fail_fsdev_sysfs;
3203         }
3204
3205         ret = btrfs_init_space_info(fs_info);
3206         if (ret) {
3207                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3208                 goto fail_sysfs;
3209         }
3210
3211         ret = btrfs_read_block_groups(fs_info);
3212         if (ret) {
3213                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3214                 goto fail_sysfs;
3215         }
3216
3217         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3218                 btrfs_warn(fs_info,
3219                 "writable mount is not allowed due to too many missing devices");
3220                 goto fail_sysfs;
3221         }
3222
3223         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3224                                                "btrfs-cleaner");
3225         if (IS_ERR(fs_info->cleaner_kthread))
3226                 goto fail_sysfs;
3227
3228         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3229                                                    tree_root,
3230                                                    "btrfs-transaction");
3231         if (IS_ERR(fs_info->transaction_kthread))
3232                 goto fail_cleaner;
3233
3234         if (!btrfs_test_opt(fs_info, NOSSD) &&
3235             !fs_info->fs_devices->rotating) {
3236                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3237         }
3238
3239         /*
3240          * Mount does not set all options immediately, we can do it now and do
3241          * not have to wait for transaction commit
3242          */
3243         btrfs_apply_pending_changes(fs_info);
3244
3245 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3246         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3247                 ret = btrfsic_mount(fs_info, fs_devices,
3248                                     btrfs_test_opt(fs_info,
3249                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3250                                     1 : 0,
3251                                     fs_info->check_integrity_print_mask);
3252                 if (ret)
3253                         btrfs_warn(fs_info,
3254                                 "failed to initialize integrity check module: %d",
3255                                 ret);
3256         }
3257 #endif
3258         ret = btrfs_read_qgroup_config(fs_info);
3259         if (ret)
3260                 goto fail_trans_kthread;
3261
3262         if (btrfs_build_ref_tree(fs_info))
3263                 btrfs_err(fs_info, "couldn't build ref tree");
3264
3265         /* do not make disk changes in broken FS or nologreplay is given */
3266         if (btrfs_super_log_root(disk_super) != 0 &&
3267             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3268                 btrfs_info(fs_info, "start tree-log replay");
3269                 ret = btrfs_replay_log(fs_info, fs_devices);
3270                 if (ret) {
3271                         err = ret;
3272                         goto fail_qgroup;
3273                 }
3274         }
3275
3276         ret = btrfs_find_orphan_roots(fs_info);
3277         if (ret)
3278                 goto fail_qgroup;
3279
3280         if (!sb_rdonly(sb)) {
3281                 ret = btrfs_cleanup_fs_roots(fs_info);
3282                 if (ret)
3283                         goto fail_qgroup;
3284
3285                 mutex_lock(&fs_info->cleaner_mutex);
3286                 ret = btrfs_recover_relocation(tree_root);
3287                 mutex_unlock(&fs_info->cleaner_mutex);
3288                 if (ret < 0) {
3289                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3290                                         ret);
3291                         err = -EINVAL;
3292                         goto fail_qgroup;
3293                 }
3294         }
3295
3296         fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3297         if (IS_ERR(fs_info->fs_root)) {
3298                 err = PTR_ERR(fs_info->fs_root);
3299                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3300                 fs_info->fs_root = NULL;
3301                 goto fail_qgroup;
3302         }
3303
3304         if (sb_rdonly(sb))
3305                 return 0;
3306
3307         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3308             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3309                 clear_free_space_tree = 1;
3310         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3311                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3312                 btrfs_warn(fs_info, "free space tree is invalid");
3313                 clear_free_space_tree = 1;
3314         }
3315
3316         if (clear_free_space_tree) {
3317                 btrfs_info(fs_info, "clearing free space tree");
3318                 ret = btrfs_clear_free_space_tree(fs_info);
3319                 if (ret) {
3320                         btrfs_warn(fs_info,
3321                                    "failed to clear free space tree: %d", ret);
3322                         close_ctree(fs_info);
3323                         return ret;
3324                 }
3325         }
3326
3327         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3328             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3329                 btrfs_info(fs_info, "creating free space tree");
3330                 ret = btrfs_create_free_space_tree(fs_info);
3331                 if (ret) {
3332                         btrfs_warn(fs_info,
3333                                 "failed to create free space tree: %d", ret);
3334                         close_ctree(fs_info);
3335                         return ret;
3336                 }
3337         }
3338
3339         down_read(&fs_info->cleanup_work_sem);
3340         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3341             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3342                 up_read(&fs_info->cleanup_work_sem);
3343                 close_ctree(fs_info);
3344                 return ret;
3345         }
3346         up_read(&fs_info->cleanup_work_sem);
3347
3348         ret = btrfs_resume_balance_async(fs_info);
3349         if (ret) {
3350                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3351                 close_ctree(fs_info);
3352                 return ret;
3353         }
3354
3355         ret = btrfs_resume_dev_replace_async(fs_info);
3356         if (ret) {
3357                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3358                 close_ctree(fs_info);
3359                 return ret;
3360         }
3361
3362         btrfs_qgroup_rescan_resume(fs_info);
3363         btrfs_discard_resume(fs_info);
3364
3365         if (!fs_info->uuid_root) {
3366                 btrfs_info(fs_info, "creating UUID tree");
3367                 ret = btrfs_create_uuid_tree(fs_info);
3368                 if (ret) {
3369                         btrfs_warn(fs_info,
3370                                 "failed to create the UUID tree: %d", ret);
3371                         close_ctree(fs_info);
3372                         return ret;
3373                 }
3374         } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3375                    fs_info->generation !=
3376                                 btrfs_super_uuid_tree_generation(disk_super)) {
3377                 btrfs_info(fs_info, "checking UUID tree");
3378                 ret = btrfs_check_uuid_tree(fs_info);
3379                 if (ret) {
3380                         btrfs_warn(fs_info,
3381                                 "failed to check the UUID tree: %d", ret);
3382                         close_ctree(fs_info);
3383                         return ret;
3384                 }
3385         }
3386         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3387
3388         /*
3389          * backuproot only affect mount behavior, and if open_ctree succeeded,
3390          * no need to keep the flag
3391          */
3392         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3393
3394         return 0;
3395
3396 fail_qgroup:
3397         btrfs_free_qgroup_config(fs_info);
3398 fail_trans_kthread:
3399         kthread_stop(fs_info->transaction_kthread);
3400         btrfs_cleanup_transaction(fs_info);
3401         btrfs_free_fs_roots(fs_info);
3402 fail_cleaner:
3403         kthread_stop(fs_info->cleaner_kthread);
3404
3405         /*
3406          * make sure we're done with the btree inode before we stop our
3407          * kthreads
3408          */
3409         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3410
3411 fail_sysfs:
3412         btrfs_sysfs_remove_mounted(fs_info);
3413
3414 fail_fsdev_sysfs:
3415         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3416
3417 fail_block_groups:
3418         btrfs_put_block_group_cache(fs_info);
3419
3420 fail_tree_roots:
3421         free_root_pointers(fs_info, true);
3422         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3423
3424 fail_sb_buffer:
3425         btrfs_stop_all_workers(fs_info);
3426         btrfs_free_block_groups(fs_info);
3427 fail_alloc:
3428         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3429
3430         iput(fs_info->btree_inode);
3431 fail:
3432         btrfs_close_devices(fs_info->fs_devices);
3433         return err;
3434 }
3435 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3436
3437 static void btrfs_end_super_write(struct bio *bio)
3438 {
3439         struct btrfs_device *device = bio->bi_private;
3440         struct bio_vec *bvec;
3441         struct bvec_iter_all iter_all;
3442         struct page *page;
3443
3444         bio_for_each_segment_all(bvec, bio, iter_all) {
3445                 page = bvec->bv_page;
3446
3447                 if (bio->bi_status) {
3448                         btrfs_warn_rl_in_rcu(device->fs_info,
3449                                 "lost page write due to IO error on %s (%d)",
3450                                 rcu_str_deref(device->name),
3451                                 blk_status_to_errno(bio->bi_status));
3452                         ClearPageUptodate(page);
3453                         SetPageError(page);
3454                         btrfs_dev_stat_inc_and_print(device,
3455                                                      BTRFS_DEV_STAT_WRITE_ERRS);
3456                 } else {
3457                         SetPageUptodate(page);
3458                 }
3459
3460                 put_page(page);
3461                 unlock_page(page);
3462         }
3463
3464         bio_put(bio);
3465 }
3466
3467 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3468                                                    int copy_num)
3469 {
3470         struct btrfs_super_block *super;
3471         struct page *page;
3472         u64 bytenr;
3473         struct address_space *mapping = bdev->bd_inode->i_mapping;
3474
3475         bytenr = btrfs_sb_offset(copy_num);
3476         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3477                 return ERR_PTR(-EINVAL);
3478
3479         page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3480         if (IS_ERR(page))
3481                 return ERR_CAST(page);
3482
3483         super = page_address(page);
3484         if (btrfs_super_bytenr(super) != bytenr ||
3485                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3486                 btrfs_release_disk_super(super);
3487                 return ERR_PTR(-EINVAL);
3488         }
3489
3490         return super;
3491 }
3492
3493
3494 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3495 {
3496         struct btrfs_super_block *super, *latest = NULL;
3497         int i;
3498         u64 transid = 0;
3499
3500         /* we would like to check all the supers, but that would make
3501          * a btrfs mount succeed after a mkfs from a different FS.
3502          * So, we need to add a special mount option to scan for
3503          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3504          */
3505         for (i = 0; i < 1; i++) {
3506                 super = btrfs_read_dev_one_super(bdev, i);
3507                 if (IS_ERR(super))
3508                         continue;
3509
3510                 if (!latest || btrfs_super_generation(super) > transid) {
3511                         if (latest)
3512                                 btrfs_release_disk_super(super);
3513
3514                         latest = super;
3515                         transid = btrfs_super_generation(super);
3516                 }
3517         }
3518
3519         return super;
3520 }
3521
3522 /*
3523  * Write superblock @sb to the @device. Do not wait for completion, all the
3524  * pages we use for writing are locked.
3525  *
3526  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3527  * the expected device size at commit time. Note that max_mirrors must be
3528  * same for write and wait phases.
3529  *
3530  * Return number of errors when page is not found or submission fails.
3531  */
3532 static int write_dev_supers(struct btrfs_device *device,
3533                             struct btrfs_super_block *sb, int max_mirrors)
3534 {
3535         struct btrfs_fs_info *fs_info = device->fs_info;
3536         struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3537         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3538         int i;
3539         int errors = 0;
3540         u64 bytenr;
3541
3542         if (max_mirrors == 0)
3543                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3544
3545         shash->tfm = fs_info->csum_shash;
3546
3547         for (i = 0; i < max_mirrors; i++) {
3548                 struct page *page;
3549                 struct bio *bio;
3550                 struct btrfs_super_block *disk_super;
3551
3552                 bytenr = btrfs_sb_offset(i);
3553                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3554                     device->commit_total_bytes)
3555                         break;
3556
3557                 btrfs_set_super_bytenr(sb, bytenr);
3558
3559                 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3560                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3561                                     sb->csum);
3562
3563                 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3564                                            GFP_NOFS);
3565                 if (!page) {
3566                         btrfs_err(device->fs_info,
3567                             "couldn't get super block page for bytenr %llu",
3568                             bytenr);
3569                         errors++;
3570                         continue;
3571                 }
3572
3573                 /* Bump the refcount for wait_dev_supers() */
3574                 get_page(page);
3575
3576                 disk_super = page_address(page);
3577                 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3578
3579                 /*
3580                  * Directly use bios here instead of relying on the page cache
3581                  * to do I/O, so we don't lose the ability to do integrity
3582                  * checking.
3583                  */
3584                 bio = bio_alloc(GFP_NOFS, 1);
3585                 bio_set_dev(bio, device->bdev);
3586                 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3587                 bio->bi_private = device;
3588                 bio->bi_end_io = btrfs_end_super_write;
3589                 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3590                                offset_in_page(bytenr));
3591
3592                 /*
3593                  * We FUA only the first super block.  The others we allow to
3594                  * go down lazy and there's a short window where the on-disk
3595                  * copies might still contain the older version.
3596                  */
3597                 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3598                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3599                         bio->bi_opf |= REQ_FUA;
3600
3601                 btrfsic_submit_bio(bio);
3602         }
3603         return errors < i ? 0 : -1;
3604 }
3605
3606 /*
3607  * Wait for write completion of superblocks done by write_dev_supers,
3608  * @max_mirrors same for write and wait phases.
3609  *
3610  * Return number of errors when page is not found or not marked up to
3611  * date.
3612  */
3613 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3614 {
3615         int i;
3616         int errors = 0;
3617         bool primary_failed = false;
3618         u64 bytenr;
3619
3620         if (max_mirrors == 0)
3621                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3622
3623         for (i = 0; i < max_mirrors; i++) {
3624                 struct page *page;
3625
3626                 bytenr = btrfs_sb_offset(i);
3627                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3628                     device->commit_total_bytes)
3629                         break;
3630
3631                 page = find_get_page(device->bdev->bd_inode->i_mapping,
3632                                      bytenr >> PAGE_SHIFT);
3633                 if (!page) {
3634                         errors++;
3635                         if (i == 0)
3636                                 primary_failed = true;
3637                         continue;
3638                 }
3639                 /* Page is submitted locked and unlocked once the IO completes */
3640                 wait_on_page_locked(page);
3641                 if (PageError(page)) {
3642                         errors++;
3643                         if (i == 0)
3644                                 primary_failed = true;
3645                 }
3646
3647                 /* Drop our reference */
3648                 put_page(page);
3649
3650                 /* Drop the reference from the writing run */
3651                 put_page(page);
3652         }
3653
3654         /* log error, force error return */
3655         if (primary_failed) {
3656                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3657                           device->devid);
3658                 return -1;
3659         }
3660
3661         return errors < i ? 0 : -1;
3662 }
3663
3664 /*
3665  * endio for the write_dev_flush, this will wake anyone waiting
3666  * for the barrier when it is done
3667  */
3668 static void btrfs_end_empty_barrier(struct bio *bio)
3669 {
3670         complete(bio->bi_private);
3671 }
3672
3673 /*
3674  * Submit a flush request to the device if it supports it. Error handling is
3675  * done in the waiting counterpart.
3676  */
3677 static void write_dev_flush(struct btrfs_device *device)
3678 {
3679         struct request_queue *q = bdev_get_queue(device->bdev);
3680         struct bio *bio = device->flush_bio;
3681
3682         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3683                 return;
3684
3685         bio_reset(bio);
3686         bio->bi_end_io = btrfs_end_empty_barrier;
3687         bio_set_dev(bio, device->bdev);
3688         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3689         init_completion(&device->flush_wait);
3690         bio->bi_private = &device->flush_wait;
3691
3692         btrfsic_submit_bio(bio);
3693         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3694 }
3695
3696 /*
3697  * If the flush bio has been submitted by write_dev_flush, wait for it.
3698  */
3699 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3700 {
3701         struct bio *bio = device->flush_bio;
3702
3703         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3704                 return BLK_STS_OK;
3705
3706         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3707         wait_for_completion_io(&device->flush_wait);
3708
3709         return bio->bi_status;
3710 }
3711
3712 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3713 {
3714         if (!btrfs_check_rw_degradable(fs_info, NULL))
3715                 return -EIO;
3716         return 0;
3717 }
3718
3719 /*
3720  * send an empty flush down to each device in parallel,
3721  * then wait for them
3722  */
3723 static int barrier_all_devices(struct btrfs_fs_info *info)
3724 {
3725         struct list_head *head;
3726         struct btrfs_device *dev;
3727         int errors_wait = 0;
3728         blk_status_t ret;
3729
3730         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3731         /* send down all the barriers */
3732         head = &info->fs_devices->devices;
3733         list_for_each_entry(dev, head, dev_list) {
3734                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3735                         continue;
3736                 if (!dev->bdev)
3737                         continue;
3738                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3739                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3740                         continue;
3741
3742                 write_dev_flush(dev);
3743                 dev->last_flush_error = BLK_STS_OK;
3744         }
3745
3746         /* wait for all the barriers */
3747         list_for_each_entry(dev, head, dev_list) {
3748                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3749                         continue;
3750                 if (!dev->bdev) {
3751                         errors_wait++;
3752                         continue;
3753                 }
3754                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3755                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3756                         continue;
3757
3758                 ret = wait_dev_flush(dev);
3759                 if (ret) {
3760                         dev->last_flush_error = ret;
3761                         btrfs_dev_stat_inc_and_print(dev,
3762                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3763                         errors_wait++;
3764                 }
3765         }
3766
3767         if (errors_wait) {
3768                 /*
3769                  * At some point we need the status of all disks
3770                  * to arrive at the volume status. So error checking
3771                  * is being pushed to a separate loop.
3772                  */
3773                 return check_barrier_error(info);
3774         }
3775         return 0;
3776 }
3777
3778 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3779 {
3780         int raid_type;
3781         int min_tolerated = INT_MAX;
3782
3783         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3784             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3785                 min_tolerated = min_t(int, min_tolerated,
3786                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3787                                     tolerated_failures);
3788
3789         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3790                 if (raid_type == BTRFS_RAID_SINGLE)
3791                         continue;
3792                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3793                         continue;
3794                 min_tolerated = min_t(int, min_tolerated,
3795                                     btrfs_raid_array[raid_type].
3796                                     tolerated_failures);
3797         }
3798
3799         if (min_tolerated == INT_MAX) {
3800                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3801                 min_tolerated = 0;
3802         }
3803
3804         return min_tolerated;
3805 }
3806
3807 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3808 {
3809         struct list_head *head;
3810         struct btrfs_device *dev;
3811         struct btrfs_super_block *sb;
3812         struct btrfs_dev_item *dev_item;
3813         int ret;
3814         int do_barriers;
3815         int max_errors;
3816         int total_errors = 0;
3817         u64 flags;
3818
3819         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3820
3821         /*
3822          * max_mirrors == 0 indicates we're from commit_transaction,
3823          * not from fsync where the tree roots in fs_info have not
3824          * been consistent on disk.
3825          */
3826         if (max_mirrors == 0)
3827                 backup_super_roots(fs_info);
3828
3829         sb = fs_info->super_for_commit;
3830         dev_item = &sb->dev_item;
3831
3832         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3833         head = &fs_info->fs_devices->devices;
3834         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3835
3836         if (do_barriers) {
3837                 ret = barrier_all_devices(fs_info);
3838                 if (ret) {
3839                         mutex_unlock(
3840                                 &fs_info->fs_devices->device_list_mutex);
3841                         btrfs_handle_fs_error(fs_info, ret,
3842                                               "errors while submitting device barriers.");
3843                         return ret;
3844                 }
3845         }
3846
3847         list_for_each_entry(dev, head, dev_list) {
3848                 if (!dev->bdev) {
3849                         total_errors++;
3850                         continue;
3851                 }
3852                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3853                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3854                         continue;
3855
3856                 btrfs_set_stack_device_generation(dev_item, 0);
3857                 btrfs_set_stack_device_type(dev_item, dev->type);
3858                 btrfs_set_stack_device_id(dev_item, dev->devid);
3859                 btrfs_set_stack_device_total_bytes(dev_item,
3860                                                    dev->commit_total_bytes);
3861                 btrfs_set_stack_device_bytes_used(dev_item,
3862                                                   dev->commit_bytes_used);
3863                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3864                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3865                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3866                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3867                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3868                        BTRFS_FSID_SIZE);
3869
3870                 flags = btrfs_super_flags(sb);
3871                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3872
3873                 ret = btrfs_validate_write_super(fs_info, sb);
3874                 if (ret < 0) {
3875                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3876                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
3877                                 "unexpected superblock corruption detected");
3878                         return -EUCLEAN;
3879                 }
3880
3881                 ret = write_dev_supers(dev, sb, max_mirrors);
3882                 if (ret)
3883                         total_errors++;
3884         }
3885         if (total_errors > max_errors) {
3886                 btrfs_err(fs_info, "%d errors while writing supers",
3887                           total_errors);
3888                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3889
3890                 /* FUA is masked off if unsupported and can't be the reason */
3891                 btrfs_handle_fs_error(fs_info, -EIO,
3892                                       "%d errors while writing supers",
3893                                       total_errors);
3894                 return -EIO;
3895         }
3896
3897         total_errors = 0;
3898         list_for_each_entry(dev, head, dev_list) {
3899                 if (!dev->bdev)
3900                         continue;
3901                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3902                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3903                         continue;
3904
3905                 ret = wait_dev_supers(dev, max_mirrors);
3906                 if (ret)
3907                         total_errors++;
3908         }
3909         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3910         if (total_errors > max_errors) {
3911                 btrfs_handle_fs_error(fs_info, -EIO,
3912                                       "%d errors while writing supers",
3913                                       total_errors);
3914                 return -EIO;
3915         }
3916         return 0;
3917 }
3918
3919 /* Drop a fs root from the radix tree and free it. */
3920 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3921                                   struct btrfs_root *root)
3922 {
3923         bool drop_ref = false;
3924
3925         spin_lock(&fs_info->fs_roots_radix_lock);
3926         radix_tree_delete(&fs_info->fs_roots_radix,
3927                           (unsigned long)root->root_key.objectid);
3928         if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3929                 drop_ref = true;
3930         spin_unlock(&fs_info->fs_roots_radix_lock);
3931
3932         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3933                 ASSERT(root->log_root == NULL);
3934                 if (root->reloc_root) {
3935                         btrfs_put_root(root->reloc_root);
3936                         root->reloc_root = NULL;
3937                 }
3938         }
3939
3940         if (root->free_ino_pinned)
3941                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3942         if (root->free_ino_ctl)
3943                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3944         if (root->ino_cache_inode) {
3945                 iput(root->ino_cache_inode);
3946                 root->ino_cache_inode = NULL;
3947         }
3948         if (drop_ref)
3949                 btrfs_put_root(root);
3950 }
3951
3952 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3953 {
3954         u64 root_objectid = 0;
3955         struct btrfs_root *gang[8];
3956         int i = 0;
3957         int err = 0;
3958         unsigned int ret = 0;
3959
3960         while (1) {
3961                 spin_lock(&fs_info->fs_roots_radix_lock);
3962                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3963                                              (void **)gang, root_objectid,
3964                                              ARRAY_SIZE(gang));
3965                 if (!ret) {
3966                         spin_unlock(&fs_info->fs_roots_radix_lock);
3967                         break;
3968                 }
3969                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3970
3971                 for (i = 0; i < ret; i++) {
3972                         /* Avoid to grab roots in dead_roots */
3973                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3974                                 gang[i] = NULL;
3975                                 continue;
3976                         }
3977                         /* grab all the search result for later use */
3978                         gang[i] = btrfs_grab_root(gang[i]);
3979                 }
3980                 spin_unlock(&fs_info->fs_roots_radix_lock);
3981
3982                 for (i = 0; i < ret; i++) {
3983                         if (!gang[i])
3984                                 continue;
3985                         root_objectid = gang[i]->root_key.objectid;
3986                         err = btrfs_orphan_cleanup(gang[i]);
3987                         if (err)
3988                                 break;
3989                         btrfs_put_root(gang[i]);
3990                 }
3991                 root_objectid++;
3992         }
3993
3994         /* release the uncleaned roots due to error */
3995         for (; i < ret; i++) {
3996                 if (gang[i])
3997                         btrfs_put_root(gang[i]);
3998         }
3999         return err;
4000 }
4001
4002 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4003 {
4004         struct btrfs_root *root = fs_info->tree_root;
4005         struct btrfs_trans_handle *trans;
4006
4007         mutex_lock(&fs_info->cleaner_mutex);
4008         btrfs_run_delayed_iputs(fs_info);
4009         mutex_unlock(&fs_info->cleaner_mutex);
4010         wake_up_process(fs_info->cleaner_kthread);
4011
4012         /* wait until ongoing cleanup work done */
4013         down_write(&fs_info->cleanup_work_sem);
4014         up_write(&fs_info->cleanup_work_sem);
4015
4016         trans = btrfs_join_transaction(root);
4017         if (IS_ERR(trans))
4018                 return PTR_ERR(trans);
4019         return btrfs_commit_transaction(trans);
4020 }
4021
4022 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4023 {
4024         int ret;
4025
4026         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4027         /*
4028          * We don't want the cleaner to start new transactions, add more delayed
4029          * iputs, etc. while we're closing. We can't use kthread_stop() yet
4030          * because that frees the task_struct, and the transaction kthread might
4031          * still try to wake up the cleaner.
4032          */
4033         kthread_park(fs_info->cleaner_kthread);
4034
4035         /* wait for the qgroup rescan worker to stop */
4036         btrfs_qgroup_wait_for_completion(fs_info, false);
4037
4038         /* wait for the uuid_scan task to finish */
4039         down(&fs_info->uuid_tree_rescan_sem);
4040         /* avoid complains from lockdep et al., set sem back to initial state */
4041         up(&fs_info->uuid_tree_rescan_sem);
4042
4043         /* pause restriper - we want to resume on mount */
4044         btrfs_pause_balance(fs_info);
4045
4046         btrfs_dev_replace_suspend_for_unmount(fs_info);
4047
4048         btrfs_scrub_cancel(fs_info);
4049
4050         /* wait for any defraggers to finish */
4051         wait_event(fs_info->transaction_wait,
4052                    (atomic_read(&fs_info->defrag_running) == 0));
4053
4054         /* clear out the rbtree of defraggable inodes */
4055         btrfs_cleanup_defrag_inodes(fs_info);
4056
4057         cancel_work_sync(&fs_info->async_reclaim_work);
4058
4059         /* Cancel or finish ongoing discard work */
4060         btrfs_discard_cleanup(fs_info);
4061
4062         if (!sb_rdonly(fs_info->sb)) {
4063                 /*
4064                  * The cleaner kthread is stopped, so do one final pass over
4065                  * unused block groups.
4066                  */
4067                 btrfs_delete_unused_bgs(fs_info);
4068
4069                 /*
4070                  * There might be existing delayed inode workers still running
4071                  * and holding an empty delayed inode item. We must wait for
4072                  * them to complete first because they can create a transaction.
4073                  * This happens when someone calls btrfs_balance_delayed_items()
4074                  * and then a transaction commit runs the same delayed nodes
4075                  * before any delayed worker has done something with the nodes.
4076                  * We must wait for any worker here and not at transaction
4077                  * commit time since that could cause a deadlock.
4078                  * This is a very rare case.
4079                  */
4080                 btrfs_flush_workqueue(fs_info->delayed_workers);
4081
4082                 ret = btrfs_commit_super(fs_info);
4083                 if (ret)
4084                         btrfs_err(fs_info, "commit super ret %d", ret);
4085         }
4086
4087         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4088             test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4089                 btrfs_error_commit_super(fs_info);
4090
4091         kthread_stop(fs_info->transaction_kthread);
4092         kthread_stop(fs_info->cleaner_kthread);
4093
4094         ASSERT(list_empty(&fs_info->delayed_iputs));
4095         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4096
4097         if (btrfs_check_quota_leak(fs_info)) {
4098                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4099                 btrfs_err(fs_info, "qgroup reserved space leaked");
4100         }
4101
4102         btrfs_free_qgroup_config(fs_info);
4103         ASSERT(list_empty(&fs_info->delalloc_roots));
4104
4105         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4106                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4107                        percpu_counter_sum(&fs_info->delalloc_bytes));
4108         }
4109
4110         if (percpu_counter_sum(&fs_info->dio_bytes))
4111                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4112                            percpu_counter_sum(&fs_info->dio_bytes));
4113
4114         btrfs_sysfs_remove_mounted(fs_info);
4115         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4116
4117         btrfs_put_block_group_cache(fs_info);
4118
4119         /*
4120          * we must make sure there is not any read request to
4121          * submit after we stopping all workers.
4122          */
4123         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4124         btrfs_stop_all_workers(fs_info);
4125
4126         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4127         free_root_pointers(fs_info, true);
4128         btrfs_free_fs_roots(fs_info);
4129
4130         /*
4131          * We must free the block groups after dropping the fs_roots as we could
4132          * have had an IO error and have left over tree log blocks that aren't
4133          * cleaned up until the fs roots are freed.  This makes the block group
4134          * accounting appear to be wrong because there's pending reserved bytes,
4135          * so make sure we do the block group cleanup afterwards.
4136          */
4137         btrfs_free_block_groups(fs_info);
4138
4139         iput(fs_info->btree_inode);
4140
4141 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4142         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4143                 btrfsic_unmount(fs_info->fs_devices);
4144 #endif
4145
4146         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4147         btrfs_close_devices(fs_info->fs_devices);
4148 }
4149
4150 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4151                           int atomic)
4152 {
4153         int ret;
4154         struct inode *btree_inode = buf->pages[0]->mapping->host;
4155
4156         ret = extent_buffer_uptodate(buf);
4157         if (!ret)
4158                 return ret;
4159
4160         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4161                                     parent_transid, atomic);
4162         if (ret == -EAGAIN)
4163                 return ret;
4164         return !ret;
4165 }
4166
4167 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4168 {
4169         struct btrfs_fs_info *fs_info;
4170         struct btrfs_root *root;
4171         u64 transid = btrfs_header_generation(buf);
4172         int was_dirty;
4173
4174 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4175         /*
4176          * This is a fast path so only do this check if we have sanity tests
4177          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4178          * outside of the sanity tests.
4179          */
4180         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4181                 return;
4182 #endif
4183         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4184         fs_info = root->fs_info;
4185         btrfs_assert_tree_locked(buf);
4186         if (transid != fs_info->generation)
4187                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4188                         buf->start, transid, fs_info->generation);
4189         was_dirty = set_extent_buffer_dirty(buf);
4190         if (!was_dirty)
4191                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4192                                          buf->len,
4193                                          fs_info->dirty_metadata_batch);
4194 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4195         /*
4196          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4197          * but item data not updated.
4198          * So here we should only check item pointers, not item data.
4199          */
4200         if (btrfs_header_level(buf) == 0 &&
4201             btrfs_check_leaf_relaxed(buf)) {
4202                 btrfs_print_leaf(buf);
4203                 ASSERT(0);
4204         }
4205 #endif
4206 }
4207
4208 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4209                                         int flush_delayed)
4210 {
4211         /*
4212          * looks as though older kernels can get into trouble with
4213          * this code, they end up stuck in balance_dirty_pages forever
4214          */
4215         int ret;
4216
4217         if (current->flags & PF_MEMALLOC)
4218                 return;
4219
4220         if (flush_delayed)
4221                 btrfs_balance_delayed_items(fs_info);
4222
4223         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4224                                      BTRFS_DIRTY_METADATA_THRESH,
4225                                      fs_info->dirty_metadata_batch);
4226         if (ret > 0) {
4227                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4228         }
4229 }
4230
4231 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4232 {
4233         __btrfs_btree_balance_dirty(fs_info, 1);
4234 }
4235
4236 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4237 {
4238         __btrfs_btree_balance_dirty(fs_info, 0);
4239 }
4240
4241 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4242                       struct btrfs_key *first_key)
4243 {
4244         return btree_read_extent_buffer_pages(buf, parent_transid,
4245                                               level, first_key);
4246 }
4247
4248 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4249 {
4250         /* cleanup FS via transaction */
4251         btrfs_cleanup_transaction(fs_info);
4252
4253         mutex_lock(&fs_info->cleaner_mutex);
4254         btrfs_run_delayed_iputs(fs_info);
4255         mutex_unlock(&fs_info->cleaner_mutex);
4256
4257         down_write(&fs_info->cleanup_work_sem);
4258         up_write(&fs_info->cleanup_work_sem);
4259 }
4260
4261 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4262 {
4263         struct btrfs_root *gang[8];
4264         u64 root_objectid = 0;
4265         int ret;
4266
4267         spin_lock(&fs_info->fs_roots_radix_lock);
4268         while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4269                                              (void **)gang, root_objectid,
4270                                              ARRAY_SIZE(gang))) != 0) {
4271                 int i;
4272
4273                 for (i = 0; i < ret; i++)
4274                         gang[i] = btrfs_grab_root(gang[i]);
4275                 spin_unlock(&fs_info->fs_roots_radix_lock);
4276
4277                 for (i = 0; i < ret; i++) {
4278                         if (!gang[i])
4279                                 continue;
4280                         root_objectid = gang[i]->root_key.objectid;
4281                         btrfs_free_log(NULL, gang[i]);
4282                         btrfs_put_root(gang[i]);
4283                 }
4284                 root_objectid++;
4285                 spin_lock(&fs_info->fs_roots_radix_lock);
4286         }
4287         spin_unlock(&fs_info->fs_roots_radix_lock);
4288         btrfs_free_log_root_tree(NULL, fs_info);
4289 }
4290
4291 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4292 {
4293         struct btrfs_ordered_extent *ordered;
4294
4295         spin_lock(&root->ordered_extent_lock);
4296         /*
4297          * This will just short circuit the ordered completion stuff which will
4298          * make sure the ordered extent gets properly cleaned up.
4299          */
4300         list_for_each_entry(ordered, &root->ordered_extents,
4301                             root_extent_list)
4302                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4303         spin_unlock(&root->ordered_extent_lock);
4304 }
4305
4306 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4307 {
4308         struct btrfs_root *root;
4309         struct list_head splice;
4310
4311         INIT_LIST_HEAD(&splice);
4312
4313         spin_lock(&fs_info->ordered_root_lock);
4314         list_splice_init(&fs_info->ordered_roots, &splice);
4315         while (!list_empty(&splice)) {
4316                 root = list_first_entry(&splice, struct btrfs_root,
4317                                         ordered_root);
4318                 list_move_tail(&root->ordered_root,
4319                                &fs_info->ordered_roots);
4320
4321                 spin_unlock(&fs_info->ordered_root_lock);
4322                 btrfs_destroy_ordered_extents(root);
4323
4324                 cond_resched();
4325                 spin_lock(&fs_info->ordered_root_lock);
4326         }
4327         spin_unlock(&fs_info->ordered_root_lock);
4328
4329         /*
4330          * We need this here because if we've been flipped read-only we won't
4331          * get sync() from the umount, so we need to make sure any ordered
4332          * extents that haven't had their dirty pages IO start writeout yet
4333          * actually get run and error out properly.
4334          */
4335         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4336 }
4337
4338 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4339                                       struct btrfs_fs_info *fs_info)
4340 {
4341         struct rb_node *node;
4342         struct btrfs_delayed_ref_root *delayed_refs;
4343         struct btrfs_delayed_ref_node *ref;
4344         int ret = 0;
4345
4346         delayed_refs = &trans->delayed_refs;
4347
4348         spin_lock(&delayed_refs->lock);
4349         if (atomic_read(&delayed_refs->num_entries) == 0) {
4350                 spin_unlock(&delayed_refs->lock);
4351                 btrfs_debug(fs_info, "delayed_refs has NO entry");
4352                 return ret;
4353         }
4354
4355         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4356                 struct btrfs_delayed_ref_head *head;
4357                 struct rb_node *n;
4358                 bool pin_bytes = false;
4359
4360                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4361                                 href_node);
4362                 if (btrfs_delayed_ref_lock(delayed_refs, head))
4363                         continue;
4364
4365                 spin_lock(&head->lock);
4366                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4367                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4368                                        ref_node);
4369                         ref->in_tree = 0;
4370                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4371                         RB_CLEAR_NODE(&ref->ref_node);
4372                         if (!list_empty(&ref->add_list))
4373                                 list_del(&ref->add_list);
4374                         atomic_dec(&delayed_refs->num_entries);
4375                         btrfs_put_delayed_ref(ref);
4376                 }
4377                 if (head->must_insert_reserved)
4378                         pin_bytes = true;
4379                 btrfs_free_delayed_extent_op(head->extent_op);
4380                 btrfs_delete_ref_head(delayed_refs, head);
4381                 spin_unlock(&head->lock);
4382                 spin_unlock(&delayed_refs->lock);
4383                 mutex_unlock(&head->mutex);
4384
4385                 if (pin_bytes) {
4386                         struct btrfs_block_group *cache;
4387
4388                         cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4389                         BUG_ON(!cache);
4390
4391                         spin_lock(&cache->space_info->lock);
4392                         spin_lock(&cache->lock);
4393                         cache->pinned += head->num_bytes;
4394                         btrfs_space_info_update_bytes_pinned(fs_info,
4395                                 cache->space_info, head->num_bytes);
4396                         cache->reserved -= head->num_bytes;
4397                         cache->space_info->bytes_reserved -= head->num_bytes;
4398                         spin_unlock(&cache->lock);
4399                         spin_unlock(&cache->space_info->lock);
4400                         percpu_counter_add_batch(
4401                                 &cache->space_info->total_bytes_pinned,
4402                                 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4403
4404                         btrfs_put_block_group(cache);
4405
4406                         btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4407                                 head->bytenr + head->num_bytes - 1);
4408                 }
4409                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4410                 btrfs_put_delayed_ref_head(head);
4411                 cond_resched();
4412                 spin_lock(&delayed_refs->lock);
4413         }
4414         btrfs_qgroup_destroy_extent_records(trans);
4415
4416         spin_unlock(&delayed_refs->lock);
4417
4418         return ret;
4419 }
4420
4421 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4422 {
4423         struct btrfs_inode *btrfs_inode;
4424         struct list_head splice;
4425
4426         INIT_LIST_HEAD(&splice);
4427
4428         spin_lock(&root->delalloc_lock);
4429         list_splice_init(&root->delalloc_inodes, &splice);
4430
4431         while (!list_empty(&splice)) {
4432                 struct inode *inode = NULL;
4433                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4434                                                delalloc_inodes);
4435                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4436                 spin_unlock(&root->delalloc_lock);
4437
4438                 /*
4439                  * Make sure we get a live inode and that it'll not disappear
4440                  * meanwhile.
4441                  */
4442                 inode = igrab(&btrfs_inode->vfs_inode);
4443                 if (inode) {
4444                         invalidate_inode_pages2(inode->i_mapping);
4445                         iput(inode);
4446                 }
4447                 spin_lock(&root->delalloc_lock);
4448         }
4449         spin_unlock(&root->delalloc_lock);
4450 }
4451
4452 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4453 {
4454         struct btrfs_root *root;
4455         struct list_head splice;
4456
4457         INIT_LIST_HEAD(&splice);
4458
4459         spin_lock(&fs_info->delalloc_root_lock);
4460         list_splice_init(&fs_info->delalloc_roots, &splice);
4461         while (!list_empty(&splice)) {
4462                 root = list_first_entry(&splice, struct btrfs_root,
4463                                          delalloc_root);
4464                 root = btrfs_grab_root(root);
4465                 BUG_ON(!root);
4466                 spin_unlock(&fs_info->delalloc_root_lock);
4467
4468                 btrfs_destroy_delalloc_inodes(root);
4469                 btrfs_put_root(root);
4470
4471                 spin_lock(&fs_info->delalloc_root_lock);
4472         }
4473         spin_unlock(&fs_info->delalloc_root_lock);
4474 }
4475
4476 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4477                                         struct extent_io_tree *dirty_pages,
4478                                         int mark)
4479 {
4480         int ret;
4481         struct extent_buffer *eb;
4482         u64 start = 0;
4483         u64 end;
4484
4485         while (1) {
4486                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4487                                             mark, NULL);
4488                 if (ret)
4489                         break;
4490
4491                 clear_extent_bits(dirty_pages, start, end, mark);
4492                 while (start <= end) {
4493                         eb = find_extent_buffer(fs_info, start);
4494                         start += fs_info->nodesize;
4495                         if (!eb)
4496                                 continue;
4497                         wait_on_extent_buffer_writeback(eb);
4498
4499                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4500                                                &eb->bflags))
4501                                 clear_extent_buffer_dirty(eb);
4502                         free_extent_buffer_stale(eb);
4503                 }
4504         }
4505
4506         return ret;
4507 }
4508
4509 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4510                                        struct extent_io_tree *unpin)
4511 {
4512         u64 start;
4513         u64 end;
4514         int ret;
4515
4516         while (1) {
4517                 struct extent_state *cached_state = NULL;
4518
4519                 /*
4520                  * The btrfs_finish_extent_commit() may get the same range as
4521                  * ours between find_first_extent_bit and clear_extent_dirty.
4522                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4523                  * the same extent range.
4524                  */
4525                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4526                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4527                                             EXTENT_DIRTY, &cached_state);
4528                 if (ret) {
4529                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4530                         break;
4531                 }
4532
4533                 clear_extent_dirty(unpin, start, end, &cached_state);
4534                 free_extent_state(cached_state);
4535                 btrfs_error_unpin_extent_range(fs_info, start, end);
4536                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4537                 cond_resched();
4538         }
4539
4540         return 0;
4541 }
4542
4543 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4544 {
4545         struct inode *inode;
4546
4547         inode = cache->io_ctl.inode;
4548         if (inode) {
4549                 invalidate_inode_pages2(inode->i_mapping);
4550                 BTRFS_I(inode)->generation = 0;
4551                 cache->io_ctl.inode = NULL;
4552                 iput(inode);
4553         }
4554         btrfs_put_block_group(cache);
4555 }
4556
4557 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4558                              struct btrfs_fs_info *fs_info)
4559 {
4560         struct btrfs_block_group *cache;
4561
4562         spin_lock(&cur_trans->dirty_bgs_lock);
4563         while (!list_empty(&cur_trans->dirty_bgs)) {
4564                 cache = list_first_entry(&cur_trans->dirty_bgs,
4565                                          struct btrfs_block_group,
4566                                          dirty_list);
4567
4568                 if (!list_empty(&cache->io_list)) {
4569                         spin_unlock(&cur_trans->dirty_bgs_lock);
4570                         list_del_init(&cache->io_list);
4571                         btrfs_cleanup_bg_io(cache);
4572                         spin_lock(&cur_trans->dirty_bgs_lock);
4573                 }
4574
4575                 list_del_init(&cache->dirty_list);
4576                 spin_lock(&cache->lock);
4577                 cache->disk_cache_state = BTRFS_DC_ERROR;
4578                 spin_unlock(&cache->lock);
4579
4580                 spin_unlock(&cur_trans->dirty_bgs_lock);
4581                 btrfs_put_block_group(cache);
4582                 btrfs_delayed_refs_rsv_release(fs_info, 1);
4583                 spin_lock(&cur_trans->dirty_bgs_lock);
4584         }
4585         spin_unlock(&cur_trans->dirty_bgs_lock);
4586
4587         /*
4588          * Refer to the definition of io_bgs member for details why it's safe
4589          * to use it without any locking
4590          */
4591         while (!list_empty(&cur_trans->io_bgs)) {
4592                 cache = list_first_entry(&cur_trans->io_bgs,
4593                                          struct btrfs_block_group,
4594                                          io_list);
4595
4596                 list_del_init(&cache->io_list);
4597                 spin_lock(&cache->lock);
4598                 cache->disk_cache_state = BTRFS_DC_ERROR;
4599                 spin_unlock(&cache->lock);
4600                 btrfs_cleanup_bg_io(cache);
4601         }
4602 }
4603
4604 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4605                                    struct btrfs_fs_info *fs_info)
4606 {
4607         struct btrfs_device *dev, *tmp;
4608
4609         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4610         ASSERT(list_empty(&cur_trans->dirty_bgs));
4611         ASSERT(list_empty(&cur_trans->io_bgs));
4612
4613         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4614                                  post_commit_list) {
4615                 list_del_init(&dev->post_commit_list);
4616         }
4617
4618         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4619
4620         cur_trans->state = TRANS_STATE_COMMIT_START;
4621         wake_up(&fs_info->transaction_blocked_wait);
4622
4623         cur_trans->state = TRANS_STATE_UNBLOCKED;
4624         wake_up(&fs_info->transaction_wait);
4625
4626         btrfs_destroy_delayed_inodes(fs_info);
4627
4628         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4629                                      EXTENT_DIRTY);
4630         btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4631
4632         cur_trans->state =TRANS_STATE_COMPLETED;
4633         wake_up(&cur_trans->commit_wait);
4634 }
4635
4636 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4637 {
4638         struct btrfs_transaction *t;
4639
4640         mutex_lock(&fs_info->transaction_kthread_mutex);
4641
4642         spin_lock(&fs_info->trans_lock);
4643         while (!list_empty(&fs_info->trans_list)) {
4644                 t = list_first_entry(&fs_info->trans_list,
4645                                      struct btrfs_transaction, list);
4646                 if (t->state >= TRANS_STATE_COMMIT_START) {
4647                         refcount_inc(&t->use_count);
4648                         spin_unlock(&fs_info->trans_lock);
4649                         btrfs_wait_for_commit(fs_info, t->transid);
4650                         btrfs_put_transaction(t);
4651                         spin_lock(&fs_info->trans_lock);
4652                         continue;
4653                 }
4654                 if (t == fs_info->running_transaction) {
4655                         t->state = TRANS_STATE_COMMIT_DOING;
4656                         spin_unlock(&fs_info->trans_lock);
4657                         /*
4658                          * We wait for 0 num_writers since we don't hold a trans
4659                          * handle open currently for this transaction.
4660                          */
4661                         wait_event(t->writer_wait,
4662                                    atomic_read(&t->num_writers) == 0);
4663                 } else {
4664                         spin_unlock(&fs_info->trans_lock);
4665                 }
4666                 btrfs_cleanup_one_transaction(t, fs_info);
4667
4668                 spin_lock(&fs_info->trans_lock);
4669                 if (t == fs_info->running_transaction)
4670                         fs_info->running_transaction = NULL;
4671                 list_del_init(&t->list);
4672                 spin_unlock(&fs_info->trans_lock);
4673
4674                 btrfs_put_transaction(t);
4675                 trace_btrfs_transaction_commit(fs_info->tree_root);
4676                 spin_lock(&fs_info->trans_lock);
4677         }
4678         spin_unlock(&fs_info->trans_lock);
4679         btrfs_destroy_all_ordered_extents(fs_info);
4680         btrfs_destroy_delayed_inodes(fs_info);
4681         btrfs_assert_delayed_root_empty(fs_info);
4682         btrfs_destroy_all_delalloc_inodes(fs_info);
4683         btrfs_drop_all_logs(fs_info);
4684         mutex_unlock(&fs_info->transaction_kthread_mutex);
4685
4686         return 0;
4687 }
4688
4689 static const struct extent_io_ops btree_extent_io_ops = {
4690         /* mandatory callbacks */
4691         .submit_bio_hook = btree_submit_bio_hook,
4692         .readpage_end_io_hook = btree_readpage_end_io_hook,
4693 };