Merge tag 'regmap-v5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[linux-2.6-microblaze.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45 #include "subpage.h"
46
47 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
48                                  BTRFS_HEADER_FLAG_RELOC |\
49                                  BTRFS_SUPER_FLAG_ERROR |\
50                                  BTRFS_SUPER_FLAG_SEEDING |\
51                                  BTRFS_SUPER_FLAG_METADUMP |\
52                                  BTRFS_SUPER_FLAG_METADUMP_V2)
53
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57                                       struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60                                         struct extent_io_tree *dirty_pages,
61                                         int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63                                        struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66
67 /*
68  * btrfs_end_io_wq structs are used to do processing in task context when an IO
69  * is complete.  This is used during reads to verify checksums, and it is used
70  * by writes to insert metadata for new file extents after IO is complete.
71  */
72 struct btrfs_end_io_wq {
73         struct bio *bio;
74         bio_end_io_t *end_io;
75         void *private;
76         struct btrfs_fs_info *info;
77         blk_status_t status;
78         enum btrfs_wq_endio_type metadata;
79         struct btrfs_work work;
80 };
81
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83
84 int __init btrfs_end_io_wq_init(void)
85 {
86         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87                                         sizeof(struct btrfs_end_io_wq),
88                                         0,
89                                         SLAB_MEM_SPREAD,
90                                         NULL);
91         if (!btrfs_end_io_wq_cache)
92                 return -ENOMEM;
93         return 0;
94 }
95
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98         kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100
101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102 {
103         if (fs_info->csum_shash)
104                 crypto_free_shash(fs_info->csum_shash);
105 }
106
107 /*
108  * async submit bios are used to offload expensive checksumming
109  * onto the worker threads.  They checksum file and metadata bios
110  * just before they are sent down the IO stack.
111  */
112 struct async_submit_bio {
113         struct inode *inode;
114         struct bio *bio;
115         extent_submit_bio_start_t *submit_bio_start;
116         int mirror_num;
117
118         /* Optional parameter for submit_bio_start used by direct io */
119         u64 dio_file_offset;
120         struct btrfs_work work;
121         blk_status_t status;
122 };
123
124 /*
125  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
126  * eb, the lockdep key is determined by the btrfs_root it belongs to and
127  * the level the eb occupies in the tree.
128  *
129  * Different roots are used for different purposes and may nest inside each
130  * other and they require separate keysets.  As lockdep keys should be
131  * static, assign keysets according to the purpose of the root as indicated
132  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
133  * roots have separate keysets.
134  *
135  * Lock-nesting across peer nodes is always done with the immediate parent
136  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
137  * subclass to avoid triggering lockdep warning in such cases.
138  *
139  * The key is set by the readpage_end_io_hook after the buffer has passed
140  * csum validation but before the pages are unlocked.  It is also set by
141  * btrfs_init_new_buffer on freshly allocated blocks.
142  *
143  * We also add a check to make sure the highest level of the tree is the
144  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
145  * needs update as well.
146  */
147 #ifdef CONFIG_DEBUG_LOCK_ALLOC
148 # if BTRFS_MAX_LEVEL != 8
149 #  error
150 # endif
151
152 #define DEFINE_LEVEL(stem, level)                                       \
153         .names[level] = "btrfs-" stem "-0" #level,
154
155 #define DEFINE_NAME(stem)                                               \
156         DEFINE_LEVEL(stem, 0)                                           \
157         DEFINE_LEVEL(stem, 1)                                           \
158         DEFINE_LEVEL(stem, 2)                                           \
159         DEFINE_LEVEL(stem, 3)                                           \
160         DEFINE_LEVEL(stem, 4)                                           \
161         DEFINE_LEVEL(stem, 5)                                           \
162         DEFINE_LEVEL(stem, 6)                                           \
163         DEFINE_LEVEL(stem, 7)
164
165 static struct btrfs_lockdep_keyset {
166         u64                     id;             /* root objectid */
167         /* Longest entry: btrfs-free-space-00 */
168         char                    names[BTRFS_MAX_LEVEL][20];
169         struct lock_class_key   keys[BTRFS_MAX_LEVEL];
170 } btrfs_lockdep_keysets[] = {
171         { .id = BTRFS_ROOT_TREE_OBJECTID,       DEFINE_NAME("root")     },
172         { .id = BTRFS_EXTENT_TREE_OBJECTID,     DEFINE_NAME("extent")   },
173         { .id = BTRFS_CHUNK_TREE_OBJECTID,      DEFINE_NAME("chunk")    },
174         { .id = BTRFS_DEV_TREE_OBJECTID,        DEFINE_NAME("dev")      },
175         { .id = BTRFS_CSUM_TREE_OBJECTID,       DEFINE_NAME("csum")     },
176         { .id = BTRFS_QUOTA_TREE_OBJECTID,      DEFINE_NAME("quota")    },
177         { .id = BTRFS_TREE_LOG_OBJECTID,        DEFINE_NAME("log")      },
178         { .id = BTRFS_TREE_RELOC_OBJECTID,      DEFINE_NAME("treloc")   },
179         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc")   },
180         { .id = BTRFS_UUID_TREE_OBJECTID,       DEFINE_NAME("uuid")     },
181         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") },
182         { .id = 0,                              DEFINE_NAME("tree")     },
183 };
184
185 #undef DEFINE_LEVEL
186 #undef DEFINE_NAME
187
188 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
189                                     int level)
190 {
191         struct btrfs_lockdep_keyset *ks;
192
193         BUG_ON(level >= ARRAY_SIZE(ks->keys));
194
195         /* find the matching keyset, id 0 is the default entry */
196         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
197                 if (ks->id == objectid)
198                         break;
199
200         lockdep_set_class_and_name(&eb->lock,
201                                    &ks->keys[level], ks->names[level]);
202 }
203
204 #endif
205
206 /*
207  * Compute the csum of a btree block and store the result to provided buffer.
208  */
209 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
210 {
211         struct btrfs_fs_info *fs_info = buf->fs_info;
212         const int num_pages = num_extent_pages(buf);
213         const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
214         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
215         char *kaddr;
216         int i;
217
218         shash->tfm = fs_info->csum_shash;
219         crypto_shash_init(shash);
220         kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
221         crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
222                             first_page_part - BTRFS_CSUM_SIZE);
223
224         for (i = 1; i < num_pages; i++) {
225                 kaddr = page_address(buf->pages[i]);
226                 crypto_shash_update(shash, kaddr, PAGE_SIZE);
227         }
228         memset(result, 0, BTRFS_CSUM_SIZE);
229         crypto_shash_final(shash, result);
230 }
231
232 /*
233  * we can't consider a given block up to date unless the transid of the
234  * block matches the transid in the parent node's pointer.  This is how we
235  * detect blocks that either didn't get written at all or got written
236  * in the wrong place.
237  */
238 static int verify_parent_transid(struct extent_io_tree *io_tree,
239                                  struct extent_buffer *eb, u64 parent_transid,
240                                  int atomic)
241 {
242         struct extent_state *cached_state = NULL;
243         int ret;
244
245         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246                 return 0;
247
248         if (atomic)
249                 return -EAGAIN;
250
251         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
252                          &cached_state);
253         if (extent_buffer_uptodate(eb) &&
254             btrfs_header_generation(eb) == parent_transid) {
255                 ret = 0;
256                 goto out;
257         }
258         btrfs_err_rl(eb->fs_info,
259                 "parent transid verify failed on %llu wanted %llu found %llu",
260                         eb->start,
261                         parent_transid, btrfs_header_generation(eb));
262         ret = 1;
263         clear_extent_buffer_uptodate(eb);
264 out:
265         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
266                              &cached_state);
267         return ret;
268 }
269
270 static bool btrfs_supported_super_csum(u16 csum_type)
271 {
272         switch (csum_type) {
273         case BTRFS_CSUM_TYPE_CRC32:
274         case BTRFS_CSUM_TYPE_XXHASH:
275         case BTRFS_CSUM_TYPE_SHA256:
276         case BTRFS_CSUM_TYPE_BLAKE2:
277                 return true;
278         default:
279                 return false;
280         }
281 }
282
283 /*
284  * Return 0 if the superblock checksum type matches the checksum value of that
285  * algorithm. Pass the raw disk superblock data.
286  */
287 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
288                                   char *raw_disk_sb)
289 {
290         struct btrfs_super_block *disk_sb =
291                 (struct btrfs_super_block *)raw_disk_sb;
292         char result[BTRFS_CSUM_SIZE];
293         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
294
295         shash->tfm = fs_info->csum_shash;
296
297         /*
298          * The super_block structure does not span the whole
299          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
300          * filled with zeros and is included in the checksum.
301          */
302         crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
303                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
304
305         if (memcmp(disk_sb->csum, result, fs_info->csum_size))
306                 return 1;
307
308         return 0;
309 }
310
311 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
312                            struct btrfs_key *first_key, u64 parent_transid)
313 {
314         struct btrfs_fs_info *fs_info = eb->fs_info;
315         int found_level;
316         struct btrfs_key found_key;
317         int ret;
318
319         found_level = btrfs_header_level(eb);
320         if (found_level != level) {
321                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
322                      KERN_ERR "BTRFS: tree level check failed\n");
323                 btrfs_err(fs_info,
324 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
325                           eb->start, level, found_level);
326                 return -EIO;
327         }
328
329         if (!first_key)
330                 return 0;
331
332         /*
333          * For live tree block (new tree blocks in current transaction),
334          * we need proper lock context to avoid race, which is impossible here.
335          * So we only checks tree blocks which is read from disk, whose
336          * generation <= fs_info->last_trans_committed.
337          */
338         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
339                 return 0;
340
341         /* We have @first_key, so this @eb must have at least one item */
342         if (btrfs_header_nritems(eb) == 0) {
343                 btrfs_err(fs_info,
344                 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
345                           eb->start);
346                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
347                 return -EUCLEAN;
348         }
349
350         if (found_level)
351                 btrfs_node_key_to_cpu(eb, &found_key, 0);
352         else
353                 btrfs_item_key_to_cpu(eb, &found_key, 0);
354         ret = btrfs_comp_cpu_keys(first_key, &found_key);
355
356         if (ret) {
357                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
358                      KERN_ERR "BTRFS: tree first key check failed\n");
359                 btrfs_err(fs_info,
360 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
361                           eb->start, parent_transid, first_key->objectid,
362                           first_key->type, first_key->offset,
363                           found_key.objectid, found_key.type,
364                           found_key.offset);
365         }
366         return ret;
367 }
368
369 /*
370  * helper to read a given tree block, doing retries as required when
371  * the checksums don't match and we have alternate mirrors to try.
372  *
373  * @parent_transid:     expected transid, skip check if 0
374  * @level:              expected level, mandatory check
375  * @first_key:          expected key of first slot, skip check if NULL
376  */
377 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
378                                           u64 parent_transid, int level,
379                                           struct btrfs_key *first_key)
380 {
381         struct btrfs_fs_info *fs_info = eb->fs_info;
382         struct extent_io_tree *io_tree;
383         int failed = 0;
384         int ret;
385         int num_copies = 0;
386         int mirror_num = 0;
387         int failed_mirror = 0;
388
389         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
390         while (1) {
391                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
392                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
393                 if (!ret) {
394                         if (verify_parent_transid(io_tree, eb,
395                                                    parent_transid, 0))
396                                 ret = -EIO;
397                         else if (btrfs_verify_level_key(eb, level,
398                                                 first_key, parent_transid))
399                                 ret = -EUCLEAN;
400                         else
401                                 break;
402                 }
403
404                 num_copies = btrfs_num_copies(fs_info,
405                                               eb->start, eb->len);
406                 if (num_copies == 1)
407                         break;
408
409                 if (!failed_mirror) {
410                         failed = 1;
411                         failed_mirror = eb->read_mirror;
412                 }
413
414                 mirror_num++;
415                 if (mirror_num == failed_mirror)
416                         mirror_num++;
417
418                 if (mirror_num > num_copies)
419                         break;
420         }
421
422         if (failed && !ret && failed_mirror)
423                 btrfs_repair_eb_io_failure(eb, failed_mirror);
424
425         return ret;
426 }
427
428 static int csum_one_extent_buffer(struct extent_buffer *eb)
429 {
430         struct btrfs_fs_info *fs_info = eb->fs_info;
431         u8 result[BTRFS_CSUM_SIZE];
432         int ret;
433
434         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
435                                     offsetof(struct btrfs_header, fsid),
436                                     BTRFS_FSID_SIZE) == 0);
437         csum_tree_block(eb, result);
438
439         if (btrfs_header_level(eb))
440                 ret = btrfs_check_node(eb);
441         else
442                 ret = btrfs_check_leaf_full(eb);
443
444         if (ret < 0)
445                 goto error;
446
447         /*
448          * Also check the generation, the eb reached here must be newer than
449          * last committed. Or something seriously wrong happened.
450          */
451         if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
452                 ret = -EUCLEAN;
453                 btrfs_err(fs_info,
454                         "block=%llu bad generation, have %llu expect > %llu",
455                           eb->start, btrfs_header_generation(eb),
456                           fs_info->last_trans_committed);
457                 goto error;
458         }
459         write_extent_buffer(eb, result, 0, fs_info->csum_size);
460
461         return 0;
462
463 error:
464         btrfs_print_tree(eb, 0);
465         btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
466                   eb->start);
467         WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
468         return ret;
469 }
470
471 /* Checksum all dirty extent buffers in one bio_vec */
472 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
473                                       struct bio_vec *bvec)
474 {
475         struct page *page = bvec->bv_page;
476         u64 bvec_start = page_offset(page) + bvec->bv_offset;
477         u64 cur;
478         int ret = 0;
479
480         for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
481              cur += fs_info->nodesize) {
482                 struct extent_buffer *eb;
483                 bool uptodate;
484
485                 eb = find_extent_buffer(fs_info, cur);
486                 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
487                                                        fs_info->nodesize);
488
489                 /* A dirty eb shouldn't disappear from buffer_radix */
490                 if (WARN_ON(!eb))
491                         return -EUCLEAN;
492
493                 if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
494                         free_extent_buffer(eb);
495                         return -EUCLEAN;
496                 }
497                 if (WARN_ON(!uptodate)) {
498                         free_extent_buffer(eb);
499                         return -EUCLEAN;
500                 }
501
502                 ret = csum_one_extent_buffer(eb);
503                 free_extent_buffer(eb);
504                 if (ret < 0)
505                         return ret;
506         }
507         return ret;
508 }
509
510 /*
511  * Checksum a dirty tree block before IO.  This has extra checks to make sure
512  * we only fill in the checksum field in the first page of a multi-page block.
513  * For subpage extent buffers we need bvec to also read the offset in the page.
514  */
515 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
516 {
517         struct page *page = bvec->bv_page;
518         u64 start = page_offset(page);
519         u64 found_start;
520         struct extent_buffer *eb;
521
522         if (fs_info->sectorsize < PAGE_SIZE)
523                 return csum_dirty_subpage_buffers(fs_info, bvec);
524
525         eb = (struct extent_buffer *)page->private;
526         if (page != eb->pages[0])
527                 return 0;
528
529         found_start = btrfs_header_bytenr(eb);
530
531         if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
532                 WARN_ON(found_start != 0);
533                 return 0;
534         }
535
536         /*
537          * Please do not consolidate these warnings into a single if.
538          * It is useful to know what went wrong.
539          */
540         if (WARN_ON(found_start != start))
541                 return -EUCLEAN;
542         if (WARN_ON(!PageUptodate(page)))
543                 return -EUCLEAN;
544
545         return csum_one_extent_buffer(eb);
546 }
547
548 static int check_tree_block_fsid(struct extent_buffer *eb)
549 {
550         struct btrfs_fs_info *fs_info = eb->fs_info;
551         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
552         u8 fsid[BTRFS_FSID_SIZE];
553         u8 *metadata_uuid;
554
555         read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
556                            BTRFS_FSID_SIZE);
557         /*
558          * Checking the incompat flag is only valid for the current fs. For
559          * seed devices it's forbidden to have their uuid changed so reading
560          * ->fsid in this case is fine
561          */
562         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
563                 metadata_uuid = fs_devices->metadata_uuid;
564         else
565                 metadata_uuid = fs_devices->fsid;
566
567         if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
568                 return 0;
569
570         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
571                 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
572                         return 0;
573
574         return 1;
575 }
576
577 /* Do basic extent buffer checks at read time */
578 static int validate_extent_buffer(struct extent_buffer *eb)
579 {
580         struct btrfs_fs_info *fs_info = eb->fs_info;
581         u64 found_start;
582         const u32 csum_size = fs_info->csum_size;
583         u8 found_level;
584         u8 result[BTRFS_CSUM_SIZE];
585         const u8 *header_csum;
586         int ret = 0;
587
588         found_start = btrfs_header_bytenr(eb);
589         if (found_start != eb->start) {
590                 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
591                              eb->start, found_start);
592                 ret = -EIO;
593                 goto out;
594         }
595         if (check_tree_block_fsid(eb)) {
596                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
597                              eb->start);
598                 ret = -EIO;
599                 goto out;
600         }
601         found_level = btrfs_header_level(eb);
602         if (found_level >= BTRFS_MAX_LEVEL) {
603                 btrfs_err(fs_info, "bad tree block level %d on %llu",
604                           (int)btrfs_header_level(eb), eb->start);
605                 ret = -EIO;
606                 goto out;
607         }
608
609         csum_tree_block(eb, result);
610         header_csum = page_address(eb->pages[0]) +
611                 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
612
613         if (memcmp(result, header_csum, csum_size) != 0) {
614                 btrfs_warn_rl(fs_info,
615         "checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
616                               eb->start,
617                               CSUM_FMT_VALUE(csum_size, header_csum),
618                               CSUM_FMT_VALUE(csum_size, result),
619                               btrfs_header_level(eb));
620                 ret = -EUCLEAN;
621                 goto out;
622         }
623
624         /*
625          * If this is a leaf block and it is corrupt, set the corrupt bit so
626          * that we don't try and read the other copies of this block, just
627          * return -EIO.
628          */
629         if (found_level == 0 && btrfs_check_leaf_full(eb)) {
630                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
631                 ret = -EIO;
632         }
633
634         if (found_level > 0 && btrfs_check_node(eb))
635                 ret = -EIO;
636
637         if (!ret)
638                 set_extent_buffer_uptodate(eb);
639         else
640                 btrfs_err(fs_info,
641                           "block=%llu read time tree block corruption detected",
642                           eb->start);
643 out:
644         return ret;
645 }
646
647 static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
648                                    int mirror)
649 {
650         struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
651         struct extent_buffer *eb;
652         bool reads_done;
653         int ret = 0;
654
655         /*
656          * We don't allow bio merge for subpage metadata read, so we should
657          * only get one eb for each endio hook.
658          */
659         ASSERT(end == start + fs_info->nodesize - 1);
660         ASSERT(PagePrivate(page));
661
662         eb = find_extent_buffer(fs_info, start);
663         /*
664          * When we are reading one tree block, eb must have been inserted into
665          * the radix tree. If not, something is wrong.
666          */
667         ASSERT(eb);
668
669         reads_done = atomic_dec_and_test(&eb->io_pages);
670         /* Subpage read must finish in page read */
671         ASSERT(reads_done);
672
673         eb->read_mirror = mirror;
674         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
675                 ret = -EIO;
676                 goto err;
677         }
678         ret = validate_extent_buffer(eb);
679         if (ret < 0)
680                 goto err;
681
682         set_extent_buffer_uptodate(eb);
683
684         free_extent_buffer(eb);
685         return ret;
686 err:
687         /*
688          * end_bio_extent_readpage decrements io_pages in case of error,
689          * make sure it has something to decrement.
690          */
691         atomic_inc(&eb->io_pages);
692         clear_extent_buffer_uptodate(eb);
693         free_extent_buffer(eb);
694         return ret;
695 }
696
697 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
698                                    struct page *page, u64 start, u64 end,
699                                    int mirror)
700 {
701         struct extent_buffer *eb;
702         int ret = 0;
703         int reads_done;
704
705         ASSERT(page->private);
706
707         if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
708                 return validate_subpage_buffer(page, start, end, mirror);
709
710         eb = (struct extent_buffer *)page->private;
711
712         /*
713          * The pending IO might have been the only thing that kept this buffer
714          * in memory.  Make sure we have a ref for all this other checks
715          */
716         atomic_inc(&eb->refs);
717
718         reads_done = atomic_dec_and_test(&eb->io_pages);
719         if (!reads_done)
720                 goto err;
721
722         eb->read_mirror = mirror;
723         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
724                 ret = -EIO;
725                 goto err;
726         }
727         ret = validate_extent_buffer(eb);
728 err:
729         if (ret) {
730                 /*
731                  * our io error hook is going to dec the io pages
732                  * again, we have to make sure it has something
733                  * to decrement
734                  */
735                 atomic_inc(&eb->io_pages);
736                 clear_extent_buffer_uptodate(eb);
737         }
738         free_extent_buffer(eb);
739
740         return ret;
741 }
742
743 static void end_workqueue_bio(struct bio *bio)
744 {
745         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
746         struct btrfs_fs_info *fs_info;
747         struct btrfs_workqueue *wq;
748
749         fs_info = end_io_wq->info;
750         end_io_wq->status = bio->bi_status;
751
752         if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
753                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
754                         wq = fs_info->endio_meta_write_workers;
755                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
756                         wq = fs_info->endio_freespace_worker;
757                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
758                         wq = fs_info->endio_raid56_workers;
759                 else
760                         wq = fs_info->endio_write_workers;
761         } else {
762                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
763                         wq = fs_info->endio_raid56_workers;
764                 else if (end_io_wq->metadata)
765                         wq = fs_info->endio_meta_workers;
766                 else
767                         wq = fs_info->endio_workers;
768         }
769
770         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
771         btrfs_queue_work(wq, &end_io_wq->work);
772 }
773
774 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
775                         enum btrfs_wq_endio_type metadata)
776 {
777         struct btrfs_end_io_wq *end_io_wq;
778
779         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
780         if (!end_io_wq)
781                 return BLK_STS_RESOURCE;
782
783         end_io_wq->private = bio->bi_private;
784         end_io_wq->end_io = bio->bi_end_io;
785         end_io_wq->info = info;
786         end_io_wq->status = 0;
787         end_io_wq->bio = bio;
788         end_io_wq->metadata = metadata;
789
790         bio->bi_private = end_io_wq;
791         bio->bi_end_io = end_workqueue_bio;
792         return 0;
793 }
794
795 static void run_one_async_start(struct btrfs_work *work)
796 {
797         struct async_submit_bio *async;
798         blk_status_t ret;
799
800         async = container_of(work, struct  async_submit_bio, work);
801         ret = async->submit_bio_start(async->inode, async->bio,
802                                       async->dio_file_offset);
803         if (ret)
804                 async->status = ret;
805 }
806
807 /*
808  * In order to insert checksums into the metadata in large chunks, we wait
809  * until bio submission time.   All the pages in the bio are checksummed and
810  * sums are attached onto the ordered extent record.
811  *
812  * At IO completion time the csums attached on the ordered extent record are
813  * inserted into the tree.
814  */
815 static void run_one_async_done(struct btrfs_work *work)
816 {
817         struct async_submit_bio *async;
818         struct inode *inode;
819         blk_status_t ret;
820
821         async = container_of(work, struct  async_submit_bio, work);
822         inode = async->inode;
823
824         /* If an error occurred we just want to clean up the bio and move on */
825         if (async->status) {
826                 async->bio->bi_status = async->status;
827                 bio_endio(async->bio);
828                 return;
829         }
830
831         /*
832          * All of the bios that pass through here are from async helpers.
833          * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
834          * This changes nothing when cgroups aren't in use.
835          */
836         async->bio->bi_opf |= REQ_CGROUP_PUNT;
837         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
838         if (ret) {
839                 async->bio->bi_status = ret;
840                 bio_endio(async->bio);
841         }
842 }
843
844 static void run_one_async_free(struct btrfs_work *work)
845 {
846         struct async_submit_bio *async;
847
848         async = container_of(work, struct  async_submit_bio, work);
849         kfree(async);
850 }
851
852 blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
853                                  int mirror_num, unsigned long bio_flags,
854                                  u64 dio_file_offset,
855                                  extent_submit_bio_start_t *submit_bio_start)
856 {
857         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
858         struct async_submit_bio *async;
859
860         async = kmalloc(sizeof(*async), GFP_NOFS);
861         if (!async)
862                 return BLK_STS_RESOURCE;
863
864         async->inode = inode;
865         async->bio = bio;
866         async->mirror_num = mirror_num;
867         async->submit_bio_start = submit_bio_start;
868
869         btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
870                         run_one_async_free);
871
872         async->dio_file_offset = dio_file_offset;
873
874         async->status = 0;
875
876         if (op_is_sync(bio->bi_opf))
877                 btrfs_set_work_high_priority(&async->work);
878
879         btrfs_queue_work(fs_info->workers, &async->work);
880         return 0;
881 }
882
883 static blk_status_t btree_csum_one_bio(struct bio *bio)
884 {
885         struct bio_vec *bvec;
886         struct btrfs_root *root;
887         int ret = 0;
888         struct bvec_iter_all iter_all;
889
890         ASSERT(!bio_flagged(bio, BIO_CLONED));
891         bio_for_each_segment_all(bvec, bio, iter_all) {
892                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
893                 ret = csum_dirty_buffer(root->fs_info, bvec);
894                 if (ret)
895                         break;
896         }
897
898         return errno_to_blk_status(ret);
899 }
900
901 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
902                                            u64 dio_file_offset)
903 {
904         /*
905          * when we're called for a write, we're already in the async
906          * submission context.  Just jump into btrfs_map_bio
907          */
908         return btree_csum_one_bio(bio);
909 }
910
911 static bool should_async_write(struct btrfs_fs_info *fs_info,
912                              struct btrfs_inode *bi)
913 {
914         if (btrfs_is_zoned(fs_info))
915                 return false;
916         if (atomic_read(&bi->sync_writers))
917                 return false;
918         if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
919                 return false;
920         return true;
921 }
922
923 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
924                                        int mirror_num, unsigned long bio_flags)
925 {
926         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
927         blk_status_t ret;
928
929         if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
930                 /*
931                  * called for a read, do the setup so that checksum validation
932                  * can happen in the async kernel threads
933                  */
934                 ret = btrfs_bio_wq_end_io(fs_info, bio,
935                                           BTRFS_WQ_ENDIO_METADATA);
936                 if (ret)
937                         goto out_w_error;
938                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
939         } else if (!should_async_write(fs_info, BTRFS_I(inode))) {
940                 ret = btree_csum_one_bio(bio);
941                 if (ret)
942                         goto out_w_error;
943                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
944         } else {
945                 /*
946                  * kthread helpers are used to submit writes so that
947                  * checksumming can happen in parallel across all CPUs
948                  */
949                 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
950                                           0, btree_submit_bio_start);
951         }
952
953         if (ret)
954                 goto out_w_error;
955         return 0;
956
957 out_w_error:
958         bio->bi_status = ret;
959         bio_endio(bio);
960         return ret;
961 }
962
963 #ifdef CONFIG_MIGRATION
964 static int btree_migratepage(struct address_space *mapping,
965                         struct page *newpage, struct page *page,
966                         enum migrate_mode mode)
967 {
968         /*
969          * we can't safely write a btree page from here,
970          * we haven't done the locking hook
971          */
972         if (PageDirty(page))
973                 return -EAGAIN;
974         /*
975          * Buffers may be managed in a filesystem specific way.
976          * We must have no buffers or drop them.
977          */
978         if (page_has_private(page) &&
979             !try_to_release_page(page, GFP_KERNEL))
980                 return -EAGAIN;
981         return migrate_page(mapping, newpage, page, mode);
982 }
983 #endif
984
985
986 static int btree_writepages(struct address_space *mapping,
987                             struct writeback_control *wbc)
988 {
989         struct btrfs_fs_info *fs_info;
990         int ret;
991
992         if (wbc->sync_mode == WB_SYNC_NONE) {
993
994                 if (wbc->for_kupdate)
995                         return 0;
996
997                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
998                 /* this is a bit racy, but that's ok */
999                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1000                                              BTRFS_DIRTY_METADATA_THRESH,
1001                                              fs_info->dirty_metadata_batch);
1002                 if (ret < 0)
1003                         return 0;
1004         }
1005         return btree_write_cache_pages(mapping, wbc);
1006 }
1007
1008 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1009 {
1010         if (PageWriteback(page) || PageDirty(page))
1011                 return 0;
1012
1013         return try_release_extent_buffer(page);
1014 }
1015
1016 static void btree_invalidate_folio(struct folio *folio, size_t offset,
1017                                  size_t length)
1018 {
1019         struct extent_io_tree *tree;
1020         tree = &BTRFS_I(folio->mapping->host)->io_tree;
1021         extent_invalidate_folio(tree, folio, offset);
1022         btree_releasepage(&folio->page, GFP_NOFS);
1023         if (folio_get_private(folio)) {
1024                 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
1025                            "folio private not zero on folio %llu",
1026                            (unsigned long long)folio_pos(folio));
1027                 folio_detach_private(folio);
1028         }
1029 }
1030
1031 #ifdef DEBUG
1032 static bool btree_dirty_folio(struct address_space *mapping,
1033                 struct folio *folio)
1034 {
1035         struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
1036         struct btrfs_subpage *subpage;
1037         struct extent_buffer *eb;
1038         int cur_bit = 0;
1039         u64 page_start = folio_pos(folio);
1040
1041         if (fs_info->sectorsize == PAGE_SIZE) {
1042                 eb = folio_get_private(folio);
1043                 BUG_ON(!eb);
1044                 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1045                 BUG_ON(!atomic_read(&eb->refs));
1046                 btrfs_assert_tree_write_locked(eb);
1047                 return filemap_dirty_folio(mapping, folio);
1048         }
1049         subpage = folio_get_private(folio);
1050
1051         ASSERT(subpage->dirty_bitmap);
1052         while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
1053                 unsigned long flags;
1054                 u64 cur;
1055                 u16 tmp = (1 << cur_bit);
1056
1057                 spin_lock_irqsave(&subpage->lock, flags);
1058                 if (!(tmp & subpage->dirty_bitmap)) {
1059                         spin_unlock_irqrestore(&subpage->lock, flags);
1060                         cur_bit++;
1061                         continue;
1062                 }
1063                 spin_unlock_irqrestore(&subpage->lock, flags);
1064                 cur = page_start + cur_bit * fs_info->sectorsize;
1065
1066                 eb = find_extent_buffer(fs_info, cur);
1067                 ASSERT(eb);
1068                 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1069                 ASSERT(atomic_read(&eb->refs));
1070                 btrfs_assert_tree_write_locked(eb);
1071                 free_extent_buffer(eb);
1072
1073                 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
1074         }
1075         return filemap_dirty_folio(mapping, folio);
1076 }
1077 #else
1078 #define btree_dirty_folio filemap_dirty_folio
1079 #endif
1080
1081 static const struct address_space_operations btree_aops = {
1082         .writepages     = btree_writepages,
1083         .releasepage    = btree_releasepage,
1084         .invalidate_folio = btree_invalidate_folio,
1085 #ifdef CONFIG_MIGRATION
1086         .migratepage    = btree_migratepage,
1087 #endif
1088         .dirty_folio = btree_dirty_folio,
1089 };
1090
1091 struct extent_buffer *btrfs_find_create_tree_block(
1092                                                 struct btrfs_fs_info *fs_info,
1093                                                 u64 bytenr, u64 owner_root,
1094                                                 int level)
1095 {
1096         if (btrfs_is_testing(fs_info))
1097                 return alloc_test_extent_buffer(fs_info, bytenr);
1098         return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
1099 }
1100
1101 /*
1102  * Read tree block at logical address @bytenr and do variant basic but critical
1103  * verification.
1104  *
1105  * @owner_root:         the objectid of the root owner for this block.
1106  * @parent_transid:     expected transid of this tree block, skip check if 0
1107  * @level:              expected level, mandatory check
1108  * @first_key:          expected key in slot 0, skip check if NULL
1109  */
1110 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1111                                       u64 owner_root, u64 parent_transid,
1112                                       int level, struct btrfs_key *first_key)
1113 {
1114         struct extent_buffer *buf = NULL;
1115         int ret;
1116
1117         buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
1118         if (IS_ERR(buf))
1119                 return buf;
1120
1121         ret = btree_read_extent_buffer_pages(buf, parent_transid,
1122                                              level, first_key);
1123         if (ret) {
1124                 free_extent_buffer_stale(buf);
1125                 return ERR_PTR(ret);
1126         }
1127         return buf;
1128
1129 }
1130
1131 void btrfs_clean_tree_block(struct extent_buffer *buf)
1132 {
1133         struct btrfs_fs_info *fs_info = buf->fs_info;
1134         if (btrfs_header_generation(buf) ==
1135             fs_info->running_transaction->transid) {
1136                 btrfs_assert_tree_write_locked(buf);
1137
1138                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1139                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1140                                                  -buf->len,
1141                                                  fs_info->dirty_metadata_batch);
1142                         clear_extent_buffer_dirty(buf);
1143                 }
1144         }
1145 }
1146
1147 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1148                          u64 objectid)
1149 {
1150         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1151
1152         memset(&root->root_key, 0, sizeof(root->root_key));
1153         memset(&root->root_item, 0, sizeof(root->root_item));
1154         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1155         root->fs_info = fs_info;
1156         root->root_key.objectid = objectid;
1157         root->node = NULL;
1158         root->commit_root = NULL;
1159         root->state = 0;
1160         RB_CLEAR_NODE(&root->rb_node);
1161
1162         root->last_trans = 0;
1163         root->free_objectid = 0;
1164         root->nr_delalloc_inodes = 0;
1165         root->nr_ordered_extents = 0;
1166         root->inode_tree = RB_ROOT;
1167         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1168
1169         btrfs_init_root_block_rsv(root);
1170
1171         INIT_LIST_HEAD(&root->dirty_list);
1172         INIT_LIST_HEAD(&root->root_list);
1173         INIT_LIST_HEAD(&root->delalloc_inodes);
1174         INIT_LIST_HEAD(&root->delalloc_root);
1175         INIT_LIST_HEAD(&root->ordered_extents);
1176         INIT_LIST_HEAD(&root->ordered_root);
1177         INIT_LIST_HEAD(&root->reloc_dirty_list);
1178         INIT_LIST_HEAD(&root->logged_list[0]);
1179         INIT_LIST_HEAD(&root->logged_list[1]);
1180         spin_lock_init(&root->inode_lock);
1181         spin_lock_init(&root->delalloc_lock);
1182         spin_lock_init(&root->ordered_extent_lock);
1183         spin_lock_init(&root->accounting_lock);
1184         spin_lock_init(&root->log_extents_lock[0]);
1185         spin_lock_init(&root->log_extents_lock[1]);
1186         spin_lock_init(&root->qgroup_meta_rsv_lock);
1187         mutex_init(&root->objectid_mutex);
1188         mutex_init(&root->log_mutex);
1189         mutex_init(&root->ordered_extent_mutex);
1190         mutex_init(&root->delalloc_mutex);
1191         init_waitqueue_head(&root->qgroup_flush_wait);
1192         init_waitqueue_head(&root->log_writer_wait);
1193         init_waitqueue_head(&root->log_commit_wait[0]);
1194         init_waitqueue_head(&root->log_commit_wait[1]);
1195         INIT_LIST_HEAD(&root->log_ctxs[0]);
1196         INIT_LIST_HEAD(&root->log_ctxs[1]);
1197         atomic_set(&root->log_commit[0], 0);
1198         atomic_set(&root->log_commit[1], 0);
1199         atomic_set(&root->log_writers, 0);
1200         atomic_set(&root->log_batch, 0);
1201         refcount_set(&root->refs, 1);
1202         atomic_set(&root->snapshot_force_cow, 0);
1203         atomic_set(&root->nr_swapfiles, 0);
1204         root->log_transid = 0;
1205         root->log_transid_committed = -1;
1206         root->last_log_commit = 0;
1207         root->anon_dev = 0;
1208         if (!dummy) {
1209                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1210                                     IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1211                 extent_io_tree_init(fs_info, &root->log_csum_range,
1212                                     IO_TREE_LOG_CSUM_RANGE, NULL);
1213         }
1214
1215         spin_lock_init(&root->root_item_lock);
1216         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1217 #ifdef CONFIG_BTRFS_DEBUG
1218         INIT_LIST_HEAD(&root->leak_list);
1219         spin_lock(&fs_info->fs_roots_radix_lock);
1220         list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1221         spin_unlock(&fs_info->fs_roots_radix_lock);
1222 #endif
1223 }
1224
1225 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1226                                            u64 objectid, gfp_t flags)
1227 {
1228         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1229         if (root)
1230                 __setup_root(root, fs_info, objectid);
1231         return root;
1232 }
1233
1234 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1235 /* Should only be used by the testing infrastructure */
1236 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1237 {
1238         struct btrfs_root *root;
1239
1240         if (!fs_info)
1241                 return ERR_PTR(-EINVAL);
1242
1243         root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1244         if (!root)
1245                 return ERR_PTR(-ENOMEM);
1246
1247         /* We don't use the stripesize in selftest, set it as sectorsize */
1248         root->alloc_bytenr = 0;
1249
1250         return root;
1251 }
1252 #endif
1253
1254 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
1255 {
1256         const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
1257         const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
1258
1259         return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
1260 }
1261
1262 static int global_root_key_cmp(const void *k, const struct rb_node *node)
1263 {
1264         const struct btrfs_key *key = k;
1265         const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
1266
1267         return btrfs_comp_cpu_keys(key, &root->root_key);
1268 }
1269
1270 int btrfs_global_root_insert(struct btrfs_root *root)
1271 {
1272         struct btrfs_fs_info *fs_info = root->fs_info;
1273         struct rb_node *tmp;
1274
1275         write_lock(&fs_info->global_root_lock);
1276         tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1277         write_unlock(&fs_info->global_root_lock);
1278         ASSERT(!tmp);
1279
1280         return tmp ? -EEXIST : 0;
1281 }
1282
1283 void btrfs_global_root_delete(struct btrfs_root *root)
1284 {
1285         struct btrfs_fs_info *fs_info = root->fs_info;
1286
1287         write_lock(&fs_info->global_root_lock);
1288         rb_erase(&root->rb_node, &fs_info->global_root_tree);
1289         write_unlock(&fs_info->global_root_lock);
1290 }
1291
1292 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1293                                      struct btrfs_key *key)
1294 {
1295         struct rb_node *node;
1296         struct btrfs_root *root = NULL;
1297
1298         read_lock(&fs_info->global_root_lock);
1299         node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1300         if (node)
1301                 root = container_of(node, struct btrfs_root, rb_node);
1302         read_unlock(&fs_info->global_root_lock);
1303
1304         return root;
1305 }
1306
1307 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1308 {
1309         struct btrfs_block_group *block_group;
1310         u64 ret;
1311
1312         if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1313                 return 0;
1314
1315         if (bytenr)
1316                 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1317         else
1318                 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1319         ASSERT(block_group);
1320         if (!block_group)
1321                 return 0;
1322         ret = block_group->global_root_id;
1323         btrfs_put_block_group(block_group);
1324
1325         return ret;
1326 }
1327
1328 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1329 {
1330         struct btrfs_key key = {
1331                 .objectid = BTRFS_CSUM_TREE_OBJECTID,
1332                 .type = BTRFS_ROOT_ITEM_KEY,
1333                 .offset = btrfs_global_root_id(fs_info, bytenr),
1334         };
1335
1336         return btrfs_global_root(fs_info, &key);
1337 }
1338
1339 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1340 {
1341         struct btrfs_key key = {
1342                 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
1343                 .type = BTRFS_ROOT_ITEM_KEY,
1344                 .offset = btrfs_global_root_id(fs_info, bytenr),
1345         };
1346
1347         return btrfs_global_root(fs_info, &key);
1348 }
1349
1350 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1351                                      u64 objectid)
1352 {
1353         struct btrfs_fs_info *fs_info = trans->fs_info;
1354         struct extent_buffer *leaf;
1355         struct btrfs_root *tree_root = fs_info->tree_root;
1356         struct btrfs_root *root;
1357         struct btrfs_key key;
1358         unsigned int nofs_flag;
1359         int ret = 0;
1360
1361         /*
1362          * We're holding a transaction handle, so use a NOFS memory allocation
1363          * context to avoid deadlock if reclaim happens.
1364          */
1365         nofs_flag = memalloc_nofs_save();
1366         root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1367         memalloc_nofs_restore(nofs_flag);
1368         if (!root)
1369                 return ERR_PTR(-ENOMEM);
1370
1371         root->root_key.objectid = objectid;
1372         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1373         root->root_key.offset = 0;
1374
1375         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1376                                       BTRFS_NESTING_NORMAL);
1377         if (IS_ERR(leaf)) {
1378                 ret = PTR_ERR(leaf);
1379                 leaf = NULL;
1380                 goto fail_unlock;
1381         }
1382
1383         root->node = leaf;
1384         btrfs_mark_buffer_dirty(leaf);
1385
1386         root->commit_root = btrfs_root_node(root);
1387         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1388
1389         btrfs_set_root_flags(&root->root_item, 0);
1390         btrfs_set_root_limit(&root->root_item, 0);
1391         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1392         btrfs_set_root_generation(&root->root_item, trans->transid);
1393         btrfs_set_root_level(&root->root_item, 0);
1394         btrfs_set_root_refs(&root->root_item, 1);
1395         btrfs_set_root_used(&root->root_item, leaf->len);
1396         btrfs_set_root_last_snapshot(&root->root_item, 0);
1397         btrfs_set_root_dirid(&root->root_item, 0);
1398         if (is_fstree(objectid))
1399                 generate_random_guid(root->root_item.uuid);
1400         else
1401                 export_guid(root->root_item.uuid, &guid_null);
1402         btrfs_set_root_drop_level(&root->root_item, 0);
1403
1404         btrfs_tree_unlock(leaf);
1405
1406         key.objectid = objectid;
1407         key.type = BTRFS_ROOT_ITEM_KEY;
1408         key.offset = 0;
1409         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1410         if (ret)
1411                 goto fail;
1412
1413         return root;
1414
1415 fail_unlock:
1416         if (leaf)
1417                 btrfs_tree_unlock(leaf);
1418 fail:
1419         btrfs_put_root(root);
1420
1421         return ERR_PTR(ret);
1422 }
1423
1424 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1425                                          struct btrfs_fs_info *fs_info)
1426 {
1427         struct btrfs_root *root;
1428
1429         root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1430         if (!root)
1431                 return ERR_PTR(-ENOMEM);
1432
1433         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1434         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1435         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1436
1437         return root;
1438 }
1439
1440 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1441                               struct btrfs_root *root)
1442 {
1443         struct extent_buffer *leaf;
1444
1445         /*
1446          * DON'T set SHAREABLE bit for log trees.
1447          *
1448          * Log trees are not exposed to user space thus can't be snapshotted,
1449          * and they go away before a real commit is actually done.
1450          *
1451          * They do store pointers to file data extents, and those reference
1452          * counts still get updated (along with back refs to the log tree).
1453          */
1454
1455         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1456                         NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1457         if (IS_ERR(leaf))
1458                 return PTR_ERR(leaf);
1459
1460         root->node = leaf;
1461
1462         btrfs_mark_buffer_dirty(root->node);
1463         btrfs_tree_unlock(root->node);
1464
1465         return 0;
1466 }
1467
1468 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1469                              struct btrfs_fs_info *fs_info)
1470 {
1471         struct btrfs_root *log_root;
1472
1473         log_root = alloc_log_tree(trans, fs_info);
1474         if (IS_ERR(log_root))
1475                 return PTR_ERR(log_root);
1476
1477         if (!btrfs_is_zoned(fs_info)) {
1478                 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1479
1480                 if (ret) {
1481                         btrfs_put_root(log_root);
1482                         return ret;
1483                 }
1484         }
1485
1486         WARN_ON(fs_info->log_root_tree);
1487         fs_info->log_root_tree = log_root;
1488         return 0;
1489 }
1490
1491 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1492                        struct btrfs_root *root)
1493 {
1494         struct btrfs_fs_info *fs_info = root->fs_info;
1495         struct btrfs_root *log_root;
1496         struct btrfs_inode_item *inode_item;
1497         int ret;
1498
1499         log_root = alloc_log_tree(trans, fs_info);
1500         if (IS_ERR(log_root))
1501                 return PTR_ERR(log_root);
1502
1503         ret = btrfs_alloc_log_tree_node(trans, log_root);
1504         if (ret) {
1505                 btrfs_put_root(log_root);
1506                 return ret;
1507         }
1508
1509         log_root->last_trans = trans->transid;
1510         log_root->root_key.offset = root->root_key.objectid;
1511
1512         inode_item = &log_root->root_item.inode;
1513         btrfs_set_stack_inode_generation(inode_item, 1);
1514         btrfs_set_stack_inode_size(inode_item, 3);
1515         btrfs_set_stack_inode_nlink(inode_item, 1);
1516         btrfs_set_stack_inode_nbytes(inode_item,
1517                                      fs_info->nodesize);
1518         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1519
1520         btrfs_set_root_node(&log_root->root_item, log_root->node);
1521
1522         WARN_ON(root->log_root);
1523         root->log_root = log_root;
1524         root->log_transid = 0;
1525         root->log_transid_committed = -1;
1526         root->last_log_commit = 0;
1527         return 0;
1528 }
1529
1530 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1531                                               struct btrfs_path *path,
1532                                               struct btrfs_key *key)
1533 {
1534         struct btrfs_root *root;
1535         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1536         u64 generation;
1537         int ret;
1538         int level;
1539
1540         root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1541         if (!root)
1542                 return ERR_PTR(-ENOMEM);
1543
1544         ret = btrfs_find_root(tree_root, key, path,
1545                               &root->root_item, &root->root_key);
1546         if (ret) {
1547                 if (ret > 0)
1548                         ret = -ENOENT;
1549                 goto fail;
1550         }
1551
1552         generation = btrfs_root_generation(&root->root_item);
1553         level = btrfs_root_level(&root->root_item);
1554         root->node = read_tree_block(fs_info,
1555                                      btrfs_root_bytenr(&root->root_item),
1556                                      key->objectid, generation, level, NULL);
1557         if (IS_ERR(root->node)) {
1558                 ret = PTR_ERR(root->node);
1559                 root->node = NULL;
1560                 goto fail;
1561         }
1562         if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1563                 ret = -EIO;
1564                 goto fail;
1565         }
1566         root->commit_root = btrfs_root_node(root);
1567         return root;
1568 fail:
1569         btrfs_put_root(root);
1570         return ERR_PTR(ret);
1571 }
1572
1573 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1574                                         struct btrfs_key *key)
1575 {
1576         struct btrfs_root *root;
1577         struct btrfs_path *path;
1578
1579         path = btrfs_alloc_path();
1580         if (!path)
1581                 return ERR_PTR(-ENOMEM);
1582         root = read_tree_root_path(tree_root, path, key);
1583         btrfs_free_path(path);
1584
1585         return root;
1586 }
1587
1588 /*
1589  * Initialize subvolume root in-memory structure
1590  *
1591  * @anon_dev:   anonymous device to attach to the root, if zero, allocate new
1592  */
1593 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1594 {
1595         int ret;
1596         unsigned int nofs_flag;
1597
1598         /*
1599          * We might be called under a transaction (e.g. indirect backref
1600          * resolution) which could deadlock if it triggers memory reclaim
1601          */
1602         nofs_flag = memalloc_nofs_save();
1603         ret = btrfs_drew_lock_init(&root->snapshot_lock);
1604         memalloc_nofs_restore(nofs_flag);
1605         if (ret)
1606                 goto fail;
1607
1608         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1609             !btrfs_is_data_reloc_root(root)) {
1610                 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1611                 btrfs_check_and_init_root_item(&root->root_item);
1612         }
1613
1614         /*
1615          * Don't assign anonymous block device to roots that are not exposed to
1616          * userspace, the id pool is limited to 1M
1617          */
1618         if (is_fstree(root->root_key.objectid) &&
1619             btrfs_root_refs(&root->root_item) > 0) {
1620                 if (!anon_dev) {
1621                         ret = get_anon_bdev(&root->anon_dev);
1622                         if (ret)
1623                                 goto fail;
1624                 } else {
1625                         root->anon_dev = anon_dev;
1626                 }
1627         }
1628
1629         mutex_lock(&root->objectid_mutex);
1630         ret = btrfs_init_root_free_objectid(root);
1631         if (ret) {
1632                 mutex_unlock(&root->objectid_mutex);
1633                 goto fail;
1634         }
1635
1636         ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1637
1638         mutex_unlock(&root->objectid_mutex);
1639
1640         return 0;
1641 fail:
1642         /* The caller is responsible to call btrfs_free_fs_root */
1643         return ret;
1644 }
1645
1646 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1647                                                u64 root_id)
1648 {
1649         struct btrfs_root *root;
1650
1651         spin_lock(&fs_info->fs_roots_radix_lock);
1652         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1653                                  (unsigned long)root_id);
1654         if (root)
1655                 root = btrfs_grab_root(root);
1656         spin_unlock(&fs_info->fs_roots_radix_lock);
1657         return root;
1658 }
1659
1660 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1661                                                 u64 objectid)
1662 {
1663         struct btrfs_key key = {
1664                 .objectid = objectid,
1665                 .type = BTRFS_ROOT_ITEM_KEY,
1666                 .offset = 0,
1667         };
1668
1669         if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1670                 return btrfs_grab_root(fs_info->tree_root);
1671         if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1672                 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1673         if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1674                 return btrfs_grab_root(fs_info->chunk_root);
1675         if (objectid == BTRFS_DEV_TREE_OBJECTID)
1676                 return btrfs_grab_root(fs_info->dev_root);
1677         if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1678                 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1679         if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1680                 return btrfs_grab_root(fs_info->quota_root) ?
1681                         fs_info->quota_root : ERR_PTR(-ENOENT);
1682         if (objectid == BTRFS_UUID_TREE_OBJECTID)
1683                 return btrfs_grab_root(fs_info->uuid_root) ?
1684                         fs_info->uuid_root : ERR_PTR(-ENOENT);
1685         if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1686                 struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1687
1688                 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1689         }
1690         return NULL;
1691 }
1692
1693 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1694                          struct btrfs_root *root)
1695 {
1696         int ret;
1697
1698         ret = radix_tree_preload(GFP_NOFS);
1699         if (ret)
1700                 return ret;
1701
1702         spin_lock(&fs_info->fs_roots_radix_lock);
1703         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1704                                 (unsigned long)root->root_key.objectid,
1705                                 root);
1706         if (ret == 0) {
1707                 btrfs_grab_root(root);
1708                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1709         }
1710         spin_unlock(&fs_info->fs_roots_radix_lock);
1711         radix_tree_preload_end();
1712
1713         return ret;
1714 }
1715
1716 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1717 {
1718 #ifdef CONFIG_BTRFS_DEBUG
1719         struct btrfs_root *root;
1720
1721         while (!list_empty(&fs_info->allocated_roots)) {
1722                 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1723
1724                 root = list_first_entry(&fs_info->allocated_roots,
1725                                         struct btrfs_root, leak_list);
1726                 btrfs_err(fs_info, "leaked root %s refcount %d",
1727                           btrfs_root_name(&root->root_key, buf),
1728                           refcount_read(&root->refs));
1729                 while (refcount_read(&root->refs) > 1)
1730                         btrfs_put_root(root);
1731                 btrfs_put_root(root);
1732         }
1733 #endif
1734 }
1735
1736 static void free_global_roots(struct btrfs_fs_info *fs_info)
1737 {
1738         struct btrfs_root *root;
1739         struct rb_node *node;
1740
1741         while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1742                 root = rb_entry(node, struct btrfs_root, rb_node);
1743                 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1744                 btrfs_put_root(root);
1745         }
1746 }
1747
1748 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1749 {
1750         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1751         percpu_counter_destroy(&fs_info->delalloc_bytes);
1752         percpu_counter_destroy(&fs_info->ordered_bytes);
1753         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1754         btrfs_free_csum_hash(fs_info);
1755         btrfs_free_stripe_hash_table(fs_info);
1756         btrfs_free_ref_cache(fs_info);
1757         kfree(fs_info->balance_ctl);
1758         kfree(fs_info->delayed_root);
1759         free_global_roots(fs_info);
1760         btrfs_put_root(fs_info->tree_root);
1761         btrfs_put_root(fs_info->chunk_root);
1762         btrfs_put_root(fs_info->dev_root);
1763         btrfs_put_root(fs_info->quota_root);
1764         btrfs_put_root(fs_info->uuid_root);
1765         btrfs_put_root(fs_info->fs_root);
1766         btrfs_put_root(fs_info->data_reloc_root);
1767         btrfs_put_root(fs_info->block_group_root);
1768         btrfs_check_leaked_roots(fs_info);
1769         btrfs_extent_buffer_leak_debug_check(fs_info);
1770         kfree(fs_info->super_copy);
1771         kfree(fs_info->super_for_commit);
1772         kfree(fs_info->subpage_info);
1773         kvfree(fs_info);
1774 }
1775
1776
1777 /*
1778  * Get an in-memory reference of a root structure.
1779  *
1780  * For essential trees like root/extent tree, we grab it from fs_info directly.
1781  * For subvolume trees, we check the cached filesystem roots first. If not
1782  * found, then read it from disk and add it to cached fs roots.
1783  *
1784  * Caller should release the root by calling btrfs_put_root() after the usage.
1785  *
1786  * NOTE: Reloc and log trees can't be read by this function as they share the
1787  *       same root objectid.
1788  *
1789  * @objectid:   root id
1790  * @anon_dev:   preallocated anonymous block device number for new roots,
1791  *              pass 0 for new allocation.
1792  * @check_ref:  whether to check root item references, If true, return -ENOENT
1793  *              for orphan roots
1794  */
1795 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1796                                              u64 objectid, dev_t anon_dev,
1797                                              bool check_ref)
1798 {
1799         struct btrfs_root *root;
1800         struct btrfs_path *path;
1801         struct btrfs_key key;
1802         int ret;
1803
1804         root = btrfs_get_global_root(fs_info, objectid);
1805         if (root)
1806                 return root;
1807 again:
1808         root = btrfs_lookup_fs_root(fs_info, objectid);
1809         if (root) {
1810                 /* Shouldn't get preallocated anon_dev for cached roots */
1811                 ASSERT(!anon_dev);
1812                 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1813                         btrfs_put_root(root);
1814                         return ERR_PTR(-ENOENT);
1815                 }
1816                 return root;
1817         }
1818
1819         key.objectid = objectid;
1820         key.type = BTRFS_ROOT_ITEM_KEY;
1821         key.offset = (u64)-1;
1822         root = btrfs_read_tree_root(fs_info->tree_root, &key);
1823         if (IS_ERR(root))
1824                 return root;
1825
1826         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1827                 ret = -ENOENT;
1828                 goto fail;
1829         }
1830
1831         ret = btrfs_init_fs_root(root, anon_dev);
1832         if (ret)
1833                 goto fail;
1834
1835         path = btrfs_alloc_path();
1836         if (!path) {
1837                 ret = -ENOMEM;
1838                 goto fail;
1839         }
1840         key.objectid = BTRFS_ORPHAN_OBJECTID;
1841         key.type = BTRFS_ORPHAN_ITEM_KEY;
1842         key.offset = objectid;
1843
1844         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1845         btrfs_free_path(path);
1846         if (ret < 0)
1847                 goto fail;
1848         if (ret == 0)
1849                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1850
1851         ret = btrfs_insert_fs_root(fs_info, root);
1852         if (ret) {
1853                 if (ret == -EEXIST) {
1854                         btrfs_put_root(root);
1855                         goto again;
1856                 }
1857                 goto fail;
1858         }
1859         return root;
1860 fail:
1861         /*
1862          * If our caller provided us an anonymous device, then it's his
1863          * responsability to free it in case we fail. So we have to set our
1864          * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1865          * and once again by our caller.
1866          */
1867         if (anon_dev)
1868                 root->anon_dev = 0;
1869         btrfs_put_root(root);
1870         return ERR_PTR(ret);
1871 }
1872
1873 /*
1874  * Get in-memory reference of a root structure
1875  *
1876  * @objectid:   tree objectid
1877  * @check_ref:  if set, verify that the tree exists and the item has at least
1878  *              one reference
1879  */
1880 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1881                                      u64 objectid, bool check_ref)
1882 {
1883         return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1884 }
1885
1886 /*
1887  * Get in-memory reference of a root structure, created as new, optionally pass
1888  * the anonymous block device id
1889  *
1890  * @objectid:   tree objectid
1891  * @anon_dev:   if zero, allocate a new anonymous block device or use the
1892  *              parameter value
1893  */
1894 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1895                                          u64 objectid, dev_t anon_dev)
1896 {
1897         return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1898 }
1899
1900 /*
1901  * btrfs_get_fs_root_commit_root - return a root for the given objectid
1902  * @fs_info:    the fs_info
1903  * @objectid:   the objectid we need to lookup
1904  *
1905  * This is exclusively used for backref walking, and exists specifically because
1906  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1907  * creation time, which means we may have to read the tree_root in order to look
1908  * up a fs root that is not in memory.  If the root is not in memory we will
1909  * read the tree root commit root and look up the fs root from there.  This is a
1910  * temporary root, it will not be inserted into the radix tree as it doesn't
1911  * have the most uptodate information, it'll simply be discarded once the
1912  * backref code is finished using the root.
1913  */
1914 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1915                                                  struct btrfs_path *path,
1916                                                  u64 objectid)
1917 {
1918         struct btrfs_root *root;
1919         struct btrfs_key key;
1920
1921         ASSERT(path->search_commit_root && path->skip_locking);
1922
1923         /*
1924          * This can return -ENOENT if we ask for a root that doesn't exist, but
1925          * since this is called via the backref walking code we won't be looking
1926          * up a root that doesn't exist, unless there's corruption.  So if root
1927          * != NULL just return it.
1928          */
1929         root = btrfs_get_global_root(fs_info, objectid);
1930         if (root)
1931                 return root;
1932
1933         root = btrfs_lookup_fs_root(fs_info, objectid);
1934         if (root)
1935                 return root;
1936
1937         key.objectid = objectid;
1938         key.type = BTRFS_ROOT_ITEM_KEY;
1939         key.offset = (u64)-1;
1940         root = read_tree_root_path(fs_info->tree_root, path, &key);
1941         btrfs_release_path(path);
1942
1943         return root;
1944 }
1945
1946 /*
1947  * called by the kthread helper functions to finally call the bio end_io
1948  * functions.  This is where read checksum verification actually happens
1949  */
1950 static void end_workqueue_fn(struct btrfs_work *work)
1951 {
1952         struct bio *bio;
1953         struct btrfs_end_io_wq *end_io_wq;
1954
1955         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1956         bio = end_io_wq->bio;
1957
1958         bio->bi_status = end_io_wq->status;
1959         bio->bi_private = end_io_wq->private;
1960         bio->bi_end_io = end_io_wq->end_io;
1961         bio_endio(bio);
1962         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1963 }
1964
1965 static int cleaner_kthread(void *arg)
1966 {
1967         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)arg;
1968         int again;
1969
1970         while (1) {
1971                 again = 0;
1972
1973                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1974
1975                 /* Make the cleaner go to sleep early. */
1976                 if (btrfs_need_cleaner_sleep(fs_info))
1977                         goto sleep;
1978
1979                 /*
1980                  * Do not do anything if we might cause open_ctree() to block
1981                  * before we have finished mounting the filesystem.
1982                  */
1983                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1984                         goto sleep;
1985
1986                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1987                         goto sleep;
1988
1989                 /*
1990                  * Avoid the problem that we change the status of the fs
1991                  * during the above check and trylock.
1992                  */
1993                 if (btrfs_need_cleaner_sleep(fs_info)) {
1994                         mutex_unlock(&fs_info->cleaner_mutex);
1995                         goto sleep;
1996                 }
1997
1998                 btrfs_run_delayed_iputs(fs_info);
1999
2000                 again = btrfs_clean_one_deleted_snapshot(fs_info);
2001                 mutex_unlock(&fs_info->cleaner_mutex);
2002
2003                 /*
2004                  * The defragger has dealt with the R/O remount and umount,
2005                  * needn't do anything special here.
2006                  */
2007                 btrfs_run_defrag_inodes(fs_info);
2008
2009                 /*
2010                  * Acquires fs_info->reclaim_bgs_lock to avoid racing
2011                  * with relocation (btrfs_relocate_chunk) and relocation
2012                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
2013                  * after acquiring fs_info->reclaim_bgs_lock. So we
2014                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
2015                  * unused block groups.
2016                  */
2017                 btrfs_delete_unused_bgs(fs_info);
2018
2019                 /*
2020                  * Reclaim block groups in the reclaim_bgs list after we deleted
2021                  * all unused block_groups. This possibly gives us some more free
2022                  * space.
2023                  */
2024                 btrfs_reclaim_bgs(fs_info);
2025 sleep:
2026                 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
2027                 if (kthread_should_park())
2028                         kthread_parkme();
2029                 if (kthread_should_stop())
2030                         return 0;
2031                 if (!again) {
2032                         set_current_state(TASK_INTERRUPTIBLE);
2033                         schedule();
2034                         __set_current_state(TASK_RUNNING);
2035                 }
2036         }
2037 }
2038
2039 static int transaction_kthread(void *arg)
2040 {
2041         struct btrfs_root *root = arg;
2042         struct btrfs_fs_info *fs_info = root->fs_info;
2043         struct btrfs_trans_handle *trans;
2044         struct btrfs_transaction *cur;
2045         u64 transid;
2046         time64_t delta;
2047         unsigned long delay;
2048         bool cannot_commit;
2049
2050         do {
2051                 cannot_commit = false;
2052                 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
2053                 mutex_lock(&fs_info->transaction_kthread_mutex);
2054
2055                 spin_lock(&fs_info->trans_lock);
2056                 cur = fs_info->running_transaction;
2057                 if (!cur) {
2058                         spin_unlock(&fs_info->trans_lock);
2059                         goto sleep;
2060                 }
2061
2062                 delta = ktime_get_seconds() - cur->start_time;
2063                 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
2064                     cur->state < TRANS_STATE_COMMIT_START &&
2065                     delta < fs_info->commit_interval) {
2066                         spin_unlock(&fs_info->trans_lock);
2067                         delay -= msecs_to_jiffies((delta - 1) * 1000);
2068                         delay = min(delay,
2069                                     msecs_to_jiffies(fs_info->commit_interval * 1000));
2070                         goto sleep;
2071                 }
2072                 transid = cur->transid;
2073                 spin_unlock(&fs_info->trans_lock);
2074
2075                 /* If the file system is aborted, this will always fail. */
2076                 trans = btrfs_attach_transaction(root);
2077                 if (IS_ERR(trans)) {
2078                         if (PTR_ERR(trans) != -ENOENT)
2079                                 cannot_commit = true;
2080                         goto sleep;
2081                 }
2082                 if (transid == trans->transid) {
2083                         btrfs_commit_transaction(trans);
2084                 } else {
2085                         btrfs_end_transaction(trans);
2086                 }
2087 sleep:
2088                 wake_up_process(fs_info->cleaner_kthread);
2089                 mutex_unlock(&fs_info->transaction_kthread_mutex);
2090
2091                 if (BTRFS_FS_ERROR(fs_info))
2092                         btrfs_cleanup_transaction(fs_info);
2093                 if (!kthread_should_stop() &&
2094                                 (!btrfs_transaction_blocked(fs_info) ||
2095                                  cannot_commit))
2096                         schedule_timeout_interruptible(delay);
2097         } while (!kthread_should_stop());
2098         return 0;
2099 }
2100
2101 /*
2102  * This will find the highest generation in the array of root backups.  The
2103  * index of the highest array is returned, or -EINVAL if we can't find
2104  * anything.
2105  *
2106  * We check to make sure the array is valid by comparing the
2107  * generation of the latest  root in the array with the generation
2108  * in the super block.  If they don't match we pitch it.
2109  */
2110 static int find_newest_super_backup(struct btrfs_fs_info *info)
2111 {
2112         const u64 newest_gen = btrfs_super_generation(info->super_copy);
2113         u64 cur;
2114         struct btrfs_root_backup *root_backup;
2115         int i;
2116
2117         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2118                 root_backup = info->super_copy->super_roots + i;
2119                 cur = btrfs_backup_tree_root_gen(root_backup);
2120                 if (cur == newest_gen)
2121                         return i;
2122         }
2123
2124         return -EINVAL;
2125 }
2126
2127 /*
2128  * copy all the root pointers into the super backup array.
2129  * this will bump the backup pointer by one when it is
2130  * done
2131  */
2132 static void backup_super_roots(struct btrfs_fs_info *info)
2133 {
2134         const int next_backup = info->backup_root_index;
2135         struct btrfs_root_backup *root_backup;
2136
2137         root_backup = info->super_for_commit->super_roots + next_backup;
2138
2139         /*
2140          * make sure all of our padding and empty slots get zero filled
2141          * regardless of which ones we use today
2142          */
2143         memset(root_backup, 0, sizeof(*root_backup));
2144
2145         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2146
2147         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2148         btrfs_set_backup_tree_root_gen(root_backup,
2149                                btrfs_header_generation(info->tree_root->node));
2150
2151         btrfs_set_backup_tree_root_level(root_backup,
2152                                btrfs_header_level(info->tree_root->node));
2153
2154         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2155         btrfs_set_backup_chunk_root_gen(root_backup,
2156                                btrfs_header_generation(info->chunk_root->node));
2157         btrfs_set_backup_chunk_root_level(root_backup,
2158                                btrfs_header_level(info->chunk_root->node));
2159
2160         if (btrfs_fs_incompat(info, EXTENT_TREE_V2)) {
2161                 btrfs_set_backup_block_group_root(root_backup,
2162                                         info->block_group_root->node->start);
2163                 btrfs_set_backup_block_group_root_gen(root_backup,
2164                         btrfs_header_generation(info->block_group_root->node));
2165                 btrfs_set_backup_block_group_root_level(root_backup,
2166                         btrfs_header_level(info->block_group_root->node));
2167         } else {
2168                 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
2169                 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
2170
2171                 btrfs_set_backup_extent_root(root_backup,
2172                                              extent_root->node->start);
2173                 btrfs_set_backup_extent_root_gen(root_backup,
2174                                 btrfs_header_generation(extent_root->node));
2175                 btrfs_set_backup_extent_root_level(root_backup,
2176                                         btrfs_header_level(extent_root->node));
2177
2178                 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
2179                 btrfs_set_backup_csum_root_gen(root_backup,
2180                                                btrfs_header_generation(csum_root->node));
2181                 btrfs_set_backup_csum_root_level(root_backup,
2182                                                  btrfs_header_level(csum_root->node));
2183         }
2184
2185         /*
2186          * we might commit during log recovery, which happens before we set
2187          * the fs_root.  Make sure it is valid before we fill it in.
2188          */
2189         if (info->fs_root && info->fs_root->node) {
2190                 btrfs_set_backup_fs_root(root_backup,
2191                                          info->fs_root->node->start);
2192                 btrfs_set_backup_fs_root_gen(root_backup,
2193                                btrfs_header_generation(info->fs_root->node));
2194                 btrfs_set_backup_fs_root_level(root_backup,
2195                                btrfs_header_level(info->fs_root->node));
2196         }
2197
2198         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2199         btrfs_set_backup_dev_root_gen(root_backup,
2200                                btrfs_header_generation(info->dev_root->node));
2201         btrfs_set_backup_dev_root_level(root_backup,
2202                                        btrfs_header_level(info->dev_root->node));
2203
2204         btrfs_set_backup_total_bytes(root_backup,
2205                              btrfs_super_total_bytes(info->super_copy));
2206         btrfs_set_backup_bytes_used(root_backup,
2207                              btrfs_super_bytes_used(info->super_copy));
2208         btrfs_set_backup_num_devices(root_backup,
2209                              btrfs_super_num_devices(info->super_copy));
2210
2211         /*
2212          * if we don't copy this out to the super_copy, it won't get remembered
2213          * for the next commit
2214          */
2215         memcpy(&info->super_copy->super_roots,
2216                &info->super_for_commit->super_roots,
2217                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2218 }
2219
2220 /*
2221  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2222  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2223  *
2224  * fs_info - filesystem whose backup roots need to be read
2225  * priority - priority of backup root required
2226  *
2227  * Returns backup root index on success and -EINVAL otherwise.
2228  */
2229 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2230 {
2231         int backup_index = find_newest_super_backup(fs_info);
2232         struct btrfs_super_block *super = fs_info->super_copy;
2233         struct btrfs_root_backup *root_backup;
2234
2235         if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2236                 if (priority == 0)
2237                         return backup_index;
2238
2239                 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2240                 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2241         } else {
2242                 return -EINVAL;
2243         }
2244
2245         root_backup = super->super_roots + backup_index;
2246
2247         btrfs_set_super_generation(super,
2248                                    btrfs_backup_tree_root_gen(root_backup));
2249         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2250         btrfs_set_super_root_level(super,
2251                                    btrfs_backup_tree_root_level(root_backup));
2252         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2253
2254         /*
2255          * Fixme: the total bytes and num_devices need to match or we should
2256          * need a fsck
2257          */
2258         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2259         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2260
2261         return backup_index;
2262 }
2263
2264 /* helper to cleanup workers */
2265 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2266 {
2267         btrfs_destroy_workqueue(fs_info->fixup_workers);
2268         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2269         btrfs_destroy_workqueue(fs_info->workers);
2270         btrfs_destroy_workqueue(fs_info->endio_workers);
2271         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2272         btrfs_destroy_workqueue(fs_info->rmw_workers);
2273         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2274         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2275         btrfs_destroy_workqueue(fs_info->delayed_workers);
2276         btrfs_destroy_workqueue(fs_info->caching_workers);
2277         btrfs_destroy_workqueue(fs_info->flush_workers);
2278         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2279         if (fs_info->discard_ctl.discard_workers)
2280                 destroy_workqueue(fs_info->discard_ctl.discard_workers);
2281         /*
2282          * Now that all other work queues are destroyed, we can safely destroy
2283          * the queues used for metadata I/O, since tasks from those other work
2284          * queues can do metadata I/O operations.
2285          */
2286         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2287         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2288 }
2289
2290 static void free_root_extent_buffers(struct btrfs_root *root)
2291 {
2292         if (root) {
2293                 free_extent_buffer(root->node);
2294                 free_extent_buffer(root->commit_root);
2295                 root->node = NULL;
2296                 root->commit_root = NULL;
2297         }
2298 }
2299
2300 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2301 {
2302         struct btrfs_root *root, *tmp;
2303
2304         rbtree_postorder_for_each_entry_safe(root, tmp,
2305                                              &fs_info->global_root_tree,
2306                                              rb_node)
2307                 free_root_extent_buffers(root);
2308 }
2309
2310 /* helper to cleanup tree roots */
2311 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2312 {
2313         free_root_extent_buffers(info->tree_root);
2314
2315         free_global_root_pointers(info);
2316         free_root_extent_buffers(info->dev_root);
2317         free_root_extent_buffers(info->quota_root);
2318         free_root_extent_buffers(info->uuid_root);
2319         free_root_extent_buffers(info->fs_root);
2320         free_root_extent_buffers(info->data_reloc_root);
2321         free_root_extent_buffers(info->block_group_root);
2322         if (free_chunk_root)
2323                 free_root_extent_buffers(info->chunk_root);
2324 }
2325
2326 void btrfs_put_root(struct btrfs_root *root)
2327 {
2328         if (!root)
2329                 return;
2330
2331         if (refcount_dec_and_test(&root->refs)) {
2332                 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2333                 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2334                 if (root->anon_dev)
2335                         free_anon_bdev(root->anon_dev);
2336                 btrfs_drew_lock_destroy(&root->snapshot_lock);
2337                 free_root_extent_buffers(root);
2338 #ifdef CONFIG_BTRFS_DEBUG
2339                 spin_lock(&root->fs_info->fs_roots_radix_lock);
2340                 list_del_init(&root->leak_list);
2341                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2342 #endif
2343                 kfree(root);
2344         }
2345 }
2346
2347 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2348 {
2349         int ret;
2350         struct btrfs_root *gang[8];
2351         int i;
2352
2353         while (!list_empty(&fs_info->dead_roots)) {
2354                 gang[0] = list_entry(fs_info->dead_roots.next,
2355                                      struct btrfs_root, root_list);
2356                 list_del(&gang[0]->root_list);
2357
2358                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2359                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2360                 btrfs_put_root(gang[0]);
2361         }
2362
2363         while (1) {
2364                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2365                                              (void **)gang, 0,
2366                                              ARRAY_SIZE(gang));
2367                 if (!ret)
2368                         break;
2369                 for (i = 0; i < ret; i++)
2370                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2371         }
2372 }
2373
2374 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2375 {
2376         mutex_init(&fs_info->scrub_lock);
2377         atomic_set(&fs_info->scrubs_running, 0);
2378         atomic_set(&fs_info->scrub_pause_req, 0);
2379         atomic_set(&fs_info->scrubs_paused, 0);
2380         atomic_set(&fs_info->scrub_cancel_req, 0);
2381         init_waitqueue_head(&fs_info->scrub_pause_wait);
2382         refcount_set(&fs_info->scrub_workers_refcnt, 0);
2383 }
2384
2385 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2386 {
2387         spin_lock_init(&fs_info->balance_lock);
2388         mutex_init(&fs_info->balance_mutex);
2389         atomic_set(&fs_info->balance_pause_req, 0);
2390         atomic_set(&fs_info->balance_cancel_req, 0);
2391         fs_info->balance_ctl = NULL;
2392         init_waitqueue_head(&fs_info->balance_wait_q);
2393         atomic_set(&fs_info->reloc_cancel_req, 0);
2394 }
2395
2396 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2397 {
2398         struct inode *inode = fs_info->btree_inode;
2399
2400         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2401         set_nlink(inode, 1);
2402         /*
2403          * we set the i_size on the btree inode to the max possible int.
2404          * the real end of the address space is determined by all of
2405          * the devices in the system
2406          */
2407         inode->i_size = OFFSET_MAX;
2408         inode->i_mapping->a_ops = &btree_aops;
2409
2410         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2411         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2412                             IO_TREE_BTREE_INODE_IO, inode);
2413         BTRFS_I(inode)->io_tree.track_uptodate = false;
2414         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2415
2416         BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2417         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2418         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2419         btrfs_insert_inode_hash(inode);
2420 }
2421
2422 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2423 {
2424         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2425         init_rwsem(&fs_info->dev_replace.rwsem);
2426         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2427 }
2428
2429 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2430 {
2431         spin_lock_init(&fs_info->qgroup_lock);
2432         mutex_init(&fs_info->qgroup_ioctl_lock);
2433         fs_info->qgroup_tree = RB_ROOT;
2434         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2435         fs_info->qgroup_seq = 1;
2436         fs_info->qgroup_ulist = NULL;
2437         fs_info->qgroup_rescan_running = false;
2438         mutex_init(&fs_info->qgroup_rescan_lock);
2439 }
2440
2441 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2442 {
2443         u32 max_active = fs_info->thread_pool_size;
2444         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2445
2446         fs_info->workers =
2447                 btrfs_alloc_workqueue(fs_info, "worker",
2448                                       flags | WQ_HIGHPRI, max_active, 16);
2449
2450         fs_info->delalloc_workers =
2451                 btrfs_alloc_workqueue(fs_info, "delalloc",
2452                                       flags, max_active, 2);
2453
2454         fs_info->flush_workers =
2455                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2456                                       flags, max_active, 0);
2457
2458         fs_info->caching_workers =
2459                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2460
2461         fs_info->fixup_workers =
2462                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2463
2464         /*
2465          * endios are largely parallel and should have a very
2466          * low idle thresh
2467          */
2468         fs_info->endio_workers =
2469                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2470         fs_info->endio_meta_workers =
2471                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2472                                       max_active, 4);
2473         fs_info->endio_meta_write_workers =
2474                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2475                                       max_active, 2);
2476         fs_info->endio_raid56_workers =
2477                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2478                                       max_active, 4);
2479         fs_info->rmw_workers =
2480                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2481         fs_info->endio_write_workers =
2482                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2483                                       max_active, 2);
2484         fs_info->endio_freespace_worker =
2485                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2486                                       max_active, 0);
2487         fs_info->delayed_workers =
2488                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2489                                       max_active, 0);
2490         fs_info->qgroup_rescan_workers =
2491                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2492         fs_info->discard_ctl.discard_workers =
2493                 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2494
2495         if (!(fs_info->workers && fs_info->delalloc_workers &&
2496               fs_info->flush_workers &&
2497               fs_info->endio_workers && fs_info->endio_meta_workers &&
2498               fs_info->endio_meta_write_workers &&
2499               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2500               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2501               fs_info->caching_workers && fs_info->fixup_workers &&
2502               fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2503               fs_info->discard_ctl.discard_workers)) {
2504                 return -ENOMEM;
2505         }
2506
2507         return 0;
2508 }
2509
2510 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2511 {
2512         struct crypto_shash *csum_shash;
2513         const char *csum_driver = btrfs_super_csum_driver(csum_type);
2514
2515         csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2516
2517         if (IS_ERR(csum_shash)) {
2518                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2519                           csum_driver);
2520                 return PTR_ERR(csum_shash);
2521         }
2522
2523         fs_info->csum_shash = csum_shash;
2524
2525         return 0;
2526 }
2527
2528 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2529                             struct btrfs_fs_devices *fs_devices)
2530 {
2531         int ret;
2532         struct btrfs_root *log_tree_root;
2533         struct btrfs_super_block *disk_super = fs_info->super_copy;
2534         u64 bytenr = btrfs_super_log_root(disk_super);
2535         int level = btrfs_super_log_root_level(disk_super);
2536
2537         if (fs_devices->rw_devices == 0) {
2538                 btrfs_warn(fs_info, "log replay required on RO media");
2539                 return -EIO;
2540         }
2541
2542         log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2543                                          GFP_KERNEL);
2544         if (!log_tree_root)
2545                 return -ENOMEM;
2546
2547         log_tree_root->node = read_tree_block(fs_info, bytenr,
2548                                               BTRFS_TREE_LOG_OBJECTID,
2549                                               fs_info->generation + 1, level,
2550                                               NULL);
2551         if (IS_ERR(log_tree_root->node)) {
2552                 btrfs_warn(fs_info, "failed to read log tree");
2553                 ret = PTR_ERR(log_tree_root->node);
2554                 log_tree_root->node = NULL;
2555                 btrfs_put_root(log_tree_root);
2556                 return ret;
2557         }
2558         if (!extent_buffer_uptodate(log_tree_root->node)) {
2559                 btrfs_err(fs_info, "failed to read log tree");
2560                 btrfs_put_root(log_tree_root);
2561                 return -EIO;
2562         }
2563
2564         /* returns with log_tree_root freed on success */
2565         ret = btrfs_recover_log_trees(log_tree_root);
2566         if (ret) {
2567                 btrfs_handle_fs_error(fs_info, ret,
2568                                       "Failed to recover log tree");
2569                 btrfs_put_root(log_tree_root);
2570                 return ret;
2571         }
2572
2573         if (sb_rdonly(fs_info->sb)) {
2574                 ret = btrfs_commit_super(fs_info);
2575                 if (ret)
2576                         return ret;
2577         }
2578
2579         return 0;
2580 }
2581
2582 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2583                                       struct btrfs_path *path, u64 objectid,
2584                                       const char *name)
2585 {
2586         struct btrfs_fs_info *fs_info = tree_root->fs_info;
2587         struct btrfs_root *root;
2588         u64 max_global_id = 0;
2589         int ret;
2590         struct btrfs_key key = {
2591                 .objectid = objectid,
2592                 .type = BTRFS_ROOT_ITEM_KEY,
2593                 .offset = 0,
2594         };
2595         bool found = false;
2596
2597         /* If we have IGNOREDATACSUMS skip loading these roots. */
2598         if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2599             btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2600                 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2601                 return 0;
2602         }
2603
2604         while (1) {
2605                 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2606                 if (ret < 0)
2607                         break;
2608
2609                 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2610                         ret = btrfs_next_leaf(tree_root, path);
2611                         if (ret) {
2612                                 if (ret > 0)
2613                                         ret = 0;
2614                                 break;
2615                         }
2616                 }
2617                 ret = 0;
2618
2619                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2620                 if (key.objectid != objectid)
2621                         break;
2622                 btrfs_release_path(path);
2623
2624                 /*
2625                  * Just worry about this for extent tree, it'll be the same for
2626                  * everybody.
2627                  */
2628                 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2629                         max_global_id = max(max_global_id, key.offset);
2630
2631                 found = true;
2632                 root = read_tree_root_path(tree_root, path, &key);
2633                 if (IS_ERR(root)) {
2634                         if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2635                                 ret = PTR_ERR(root);
2636                         break;
2637                 }
2638                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2639                 ret = btrfs_global_root_insert(root);
2640                 if (ret) {
2641                         btrfs_put_root(root);
2642                         break;
2643                 }
2644                 key.offset++;
2645         }
2646         btrfs_release_path(path);
2647
2648         if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2649                 fs_info->nr_global_roots = max_global_id + 1;
2650
2651         if (!found || ret) {
2652                 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2653                         set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2654
2655                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2656                         ret = ret ? ret : -ENOENT;
2657                 else
2658                         ret = 0;
2659                 btrfs_err(fs_info, "failed to load root %s", name);
2660         }
2661         return ret;
2662 }
2663
2664 static int load_global_roots(struct btrfs_root *tree_root)
2665 {
2666         struct btrfs_path *path;
2667         int ret = 0;
2668
2669         path = btrfs_alloc_path();
2670         if (!path)
2671                 return -ENOMEM;
2672
2673         ret = load_global_roots_objectid(tree_root, path,
2674                                          BTRFS_EXTENT_TREE_OBJECTID, "extent");
2675         if (ret)
2676                 goto out;
2677         ret = load_global_roots_objectid(tree_root, path,
2678                                          BTRFS_CSUM_TREE_OBJECTID, "csum");
2679         if (ret)
2680                 goto out;
2681         if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2682                 goto out;
2683         ret = load_global_roots_objectid(tree_root, path,
2684                                          BTRFS_FREE_SPACE_TREE_OBJECTID,
2685                                          "free space");
2686 out:
2687         btrfs_free_path(path);
2688         return ret;
2689 }
2690
2691 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2692 {
2693         struct btrfs_root *tree_root = fs_info->tree_root;
2694         struct btrfs_root *root;
2695         struct btrfs_key location;
2696         int ret;
2697
2698         BUG_ON(!fs_info->tree_root);
2699
2700         ret = load_global_roots(tree_root);
2701         if (ret)
2702                 return ret;
2703
2704         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2705         location.type = BTRFS_ROOT_ITEM_KEY;
2706         location.offset = 0;
2707
2708         root = btrfs_read_tree_root(tree_root, &location);
2709         if (IS_ERR(root)) {
2710                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2711                         ret = PTR_ERR(root);
2712                         goto out;
2713                 }
2714         } else {
2715                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2716                 fs_info->dev_root = root;
2717         }
2718         /* Initialize fs_info for all devices in any case */
2719         btrfs_init_devices_late(fs_info);
2720
2721         /*
2722          * This tree can share blocks with some other fs tree during relocation
2723          * and we need a proper setup by btrfs_get_fs_root
2724          */
2725         root = btrfs_get_fs_root(tree_root->fs_info,
2726                                  BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2727         if (IS_ERR(root)) {
2728                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2729                         ret = PTR_ERR(root);
2730                         goto out;
2731                 }
2732         } else {
2733                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2734                 fs_info->data_reloc_root = root;
2735         }
2736
2737         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2738         root = btrfs_read_tree_root(tree_root, &location);
2739         if (!IS_ERR(root)) {
2740                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2741                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2742                 fs_info->quota_root = root;
2743         }
2744
2745         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2746         root = btrfs_read_tree_root(tree_root, &location);
2747         if (IS_ERR(root)) {
2748                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2749                         ret = PTR_ERR(root);
2750                         if (ret != -ENOENT)
2751                                 goto out;
2752                 }
2753         } else {
2754                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2755                 fs_info->uuid_root = root;
2756         }
2757
2758         return 0;
2759 out:
2760         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2761                    location.objectid, ret);
2762         return ret;
2763 }
2764
2765 /*
2766  * Real super block validation
2767  * NOTE: super csum type and incompat features will not be checked here.
2768  *
2769  * @sb:         super block to check
2770  * @mirror_num: the super block number to check its bytenr:
2771  *              0       the primary (1st) sb
2772  *              1, 2    2nd and 3rd backup copy
2773  *             -1       skip bytenr check
2774  */
2775 static int validate_super(struct btrfs_fs_info *fs_info,
2776                             struct btrfs_super_block *sb, int mirror_num)
2777 {
2778         u64 nodesize = btrfs_super_nodesize(sb);
2779         u64 sectorsize = btrfs_super_sectorsize(sb);
2780         int ret = 0;
2781
2782         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2783                 btrfs_err(fs_info, "no valid FS found");
2784                 ret = -EINVAL;
2785         }
2786         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2787                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2788                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2789                 ret = -EINVAL;
2790         }
2791         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2792                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2793                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2794                 ret = -EINVAL;
2795         }
2796         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2797                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2798                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2799                 ret = -EINVAL;
2800         }
2801         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2802                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2803                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2804                 ret = -EINVAL;
2805         }
2806
2807         /*
2808          * Check sectorsize and nodesize first, other check will need it.
2809          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2810          */
2811         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2812             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2813                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2814                 ret = -EINVAL;
2815         }
2816
2817         /*
2818          * For 4K page size, we only support 4K sector size.
2819          * For 64K page size, we support 64K and 4K sector sizes.
2820          */
2821         if ((PAGE_SIZE == SZ_4K && sectorsize != PAGE_SIZE) ||
2822             (PAGE_SIZE == SZ_64K && (sectorsize != SZ_4K &&
2823                                      sectorsize != SZ_64K))) {
2824                 btrfs_err(fs_info,
2825                         "sectorsize %llu not yet supported for page size %lu",
2826                         sectorsize, PAGE_SIZE);
2827                 ret = -EINVAL;
2828         }
2829
2830         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2831             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2832                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2833                 ret = -EINVAL;
2834         }
2835         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2836                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2837                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2838                 ret = -EINVAL;
2839         }
2840
2841         /* Root alignment check */
2842         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2843                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2844                            btrfs_super_root(sb));
2845                 ret = -EINVAL;
2846         }
2847         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2848                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2849                            btrfs_super_chunk_root(sb));
2850                 ret = -EINVAL;
2851         }
2852         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2853                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2854                            btrfs_super_log_root(sb));
2855                 ret = -EINVAL;
2856         }
2857
2858         if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2859                    BTRFS_FSID_SIZE)) {
2860                 btrfs_err(fs_info,
2861                 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2862                         fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2863                 ret = -EINVAL;
2864         }
2865
2866         if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2867             memcmp(fs_info->fs_devices->metadata_uuid,
2868                    fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2869                 btrfs_err(fs_info,
2870 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2871                         fs_info->super_copy->metadata_uuid,
2872                         fs_info->fs_devices->metadata_uuid);
2873                 ret = -EINVAL;
2874         }
2875
2876         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2877                    BTRFS_FSID_SIZE) != 0) {
2878                 btrfs_err(fs_info,
2879                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2880                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2881                 ret = -EINVAL;
2882         }
2883
2884         /*
2885          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2886          * done later
2887          */
2888         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2889                 btrfs_err(fs_info, "bytes_used is too small %llu",
2890                           btrfs_super_bytes_used(sb));
2891                 ret = -EINVAL;
2892         }
2893         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2894                 btrfs_err(fs_info, "invalid stripesize %u",
2895                           btrfs_super_stripesize(sb));
2896                 ret = -EINVAL;
2897         }
2898         if (btrfs_super_num_devices(sb) > (1UL << 31))
2899                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2900                            btrfs_super_num_devices(sb));
2901         if (btrfs_super_num_devices(sb) == 0) {
2902                 btrfs_err(fs_info, "number of devices is 0");
2903                 ret = -EINVAL;
2904         }
2905
2906         if (mirror_num >= 0 &&
2907             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2908                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2909                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2910                 ret = -EINVAL;
2911         }
2912
2913         /*
2914          * Obvious sys_chunk_array corruptions, it must hold at least one key
2915          * and one chunk
2916          */
2917         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2918                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2919                           btrfs_super_sys_array_size(sb),
2920                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2921                 ret = -EINVAL;
2922         }
2923         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2924                         + sizeof(struct btrfs_chunk)) {
2925                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2926                           btrfs_super_sys_array_size(sb),
2927                           sizeof(struct btrfs_disk_key)
2928                           + sizeof(struct btrfs_chunk));
2929                 ret = -EINVAL;
2930         }
2931
2932         /*
2933          * The generation is a global counter, we'll trust it more than the others
2934          * but it's still possible that it's the one that's wrong.
2935          */
2936         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2937                 btrfs_warn(fs_info,
2938                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2939                         btrfs_super_generation(sb),
2940                         btrfs_super_chunk_root_generation(sb));
2941         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2942             && btrfs_super_cache_generation(sb) != (u64)-1)
2943                 btrfs_warn(fs_info,
2944                         "suspicious: generation < cache_generation: %llu < %llu",
2945                         btrfs_super_generation(sb),
2946                         btrfs_super_cache_generation(sb));
2947
2948         return ret;
2949 }
2950
2951 /*
2952  * Validation of super block at mount time.
2953  * Some checks already done early at mount time, like csum type and incompat
2954  * flags will be skipped.
2955  */
2956 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2957 {
2958         return validate_super(fs_info, fs_info->super_copy, 0);
2959 }
2960
2961 /*
2962  * Validation of super block at write time.
2963  * Some checks like bytenr check will be skipped as their values will be
2964  * overwritten soon.
2965  * Extra checks like csum type and incompat flags will be done here.
2966  */
2967 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2968                                       struct btrfs_super_block *sb)
2969 {
2970         int ret;
2971
2972         ret = validate_super(fs_info, sb, -1);
2973         if (ret < 0)
2974                 goto out;
2975         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2976                 ret = -EUCLEAN;
2977                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2978                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2979                 goto out;
2980         }
2981         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2982                 ret = -EUCLEAN;
2983                 btrfs_err(fs_info,
2984                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2985                           btrfs_super_incompat_flags(sb),
2986                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2987                 goto out;
2988         }
2989 out:
2990         if (ret < 0)
2991                 btrfs_err(fs_info,
2992                 "super block corruption detected before writing it to disk");
2993         return ret;
2994 }
2995
2996 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2997 {
2998         int ret = 0;
2999
3000         root->node = read_tree_block(root->fs_info, bytenr,
3001                                      root->root_key.objectid, gen, level, NULL);
3002         if (IS_ERR(root->node)) {
3003                 ret = PTR_ERR(root->node);
3004                 root->node = NULL;
3005                 return ret;
3006         }
3007         if (!extent_buffer_uptodate(root->node)) {
3008                 free_extent_buffer(root->node);
3009                 root->node = NULL;
3010                 return -EIO;
3011         }
3012
3013         btrfs_set_root_node(&root->root_item, root->node);
3014         root->commit_root = btrfs_root_node(root);
3015         btrfs_set_root_refs(&root->root_item, 1);
3016         return ret;
3017 }
3018
3019 static int load_important_roots(struct btrfs_fs_info *fs_info)
3020 {
3021         struct btrfs_super_block *sb = fs_info->super_copy;
3022         u64 gen, bytenr;
3023         int level, ret;
3024
3025         bytenr = btrfs_super_root(sb);
3026         gen = btrfs_super_generation(sb);
3027         level = btrfs_super_root_level(sb);
3028         ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
3029         if (ret) {
3030                 btrfs_warn(fs_info, "couldn't read tree root");
3031                 return ret;
3032         }
3033
3034         if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
3035                 return 0;
3036
3037         bytenr = btrfs_super_block_group_root(sb);
3038         gen = btrfs_super_block_group_root_generation(sb);
3039         level = btrfs_super_block_group_root_level(sb);
3040         ret = load_super_root(fs_info->block_group_root, bytenr, gen, level);
3041         if (ret)
3042                 btrfs_warn(fs_info, "couldn't read block group root");
3043         return ret;
3044 }
3045
3046 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
3047 {
3048         int backup_index = find_newest_super_backup(fs_info);
3049         struct btrfs_super_block *sb = fs_info->super_copy;
3050         struct btrfs_root *tree_root = fs_info->tree_root;
3051         bool handle_error = false;
3052         int ret = 0;
3053         int i;
3054
3055         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3056                 struct btrfs_root *root;
3057
3058                 root = btrfs_alloc_root(fs_info, BTRFS_BLOCK_GROUP_TREE_OBJECTID,
3059                                         GFP_KERNEL);
3060                 if (!root)
3061                         return -ENOMEM;
3062                 fs_info->block_group_root = root;
3063         }
3064
3065         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
3066                 if (handle_error) {
3067                         if (!IS_ERR(tree_root->node))
3068                                 free_extent_buffer(tree_root->node);
3069                         tree_root->node = NULL;
3070
3071                         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3072                                 break;
3073
3074                         free_root_pointers(fs_info, 0);
3075
3076                         /*
3077                          * Don't use the log in recovery mode, it won't be
3078                          * valid
3079                          */
3080                         btrfs_set_super_log_root(sb, 0);
3081
3082                         /* We can't trust the free space cache either */
3083                         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3084
3085                         ret = read_backup_root(fs_info, i);
3086                         backup_index = ret;
3087                         if (ret < 0)
3088                                 return ret;
3089                 }
3090
3091                 ret = load_important_roots(fs_info);
3092                 if (ret) {
3093                         handle_error = true;
3094                         continue;
3095                 }
3096
3097                 /*
3098                  * No need to hold btrfs_root::objectid_mutex since the fs
3099                  * hasn't been fully initialised and we are the only user
3100                  */
3101                 ret = btrfs_init_root_free_objectid(tree_root);
3102                 if (ret < 0) {
3103                         handle_error = true;
3104                         continue;
3105                 }
3106
3107                 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
3108
3109                 ret = btrfs_read_roots(fs_info);
3110                 if (ret < 0) {
3111                         handle_error = true;
3112                         continue;
3113                 }
3114
3115                 /* All successful */
3116                 fs_info->generation = btrfs_header_generation(tree_root->node);
3117                 fs_info->last_trans_committed = fs_info->generation;
3118                 fs_info->last_reloc_trans = 0;
3119
3120                 /* Always begin writing backup roots after the one being used */
3121                 if (backup_index < 0) {
3122                         fs_info->backup_root_index = 0;
3123                 } else {
3124                         fs_info->backup_root_index = backup_index + 1;
3125                         fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
3126                 }
3127                 break;
3128         }
3129
3130         return ret;
3131 }
3132
3133 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
3134 {
3135         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
3136         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
3137         INIT_LIST_HEAD(&fs_info->trans_list);
3138         INIT_LIST_HEAD(&fs_info->dead_roots);
3139         INIT_LIST_HEAD(&fs_info->delayed_iputs);
3140         INIT_LIST_HEAD(&fs_info->delalloc_roots);
3141         INIT_LIST_HEAD(&fs_info->caching_block_groups);
3142         spin_lock_init(&fs_info->delalloc_root_lock);
3143         spin_lock_init(&fs_info->trans_lock);
3144         spin_lock_init(&fs_info->fs_roots_radix_lock);
3145         spin_lock_init(&fs_info->delayed_iput_lock);
3146         spin_lock_init(&fs_info->defrag_inodes_lock);
3147         spin_lock_init(&fs_info->super_lock);
3148         spin_lock_init(&fs_info->buffer_lock);
3149         spin_lock_init(&fs_info->unused_bgs_lock);
3150         spin_lock_init(&fs_info->treelog_bg_lock);
3151         spin_lock_init(&fs_info->zone_active_bgs_lock);
3152         spin_lock_init(&fs_info->relocation_bg_lock);
3153         rwlock_init(&fs_info->tree_mod_log_lock);
3154         rwlock_init(&fs_info->global_root_lock);
3155         mutex_init(&fs_info->unused_bg_unpin_mutex);
3156         mutex_init(&fs_info->reclaim_bgs_lock);
3157         mutex_init(&fs_info->reloc_mutex);
3158         mutex_init(&fs_info->delalloc_root_mutex);
3159         mutex_init(&fs_info->zoned_meta_io_lock);
3160         mutex_init(&fs_info->zoned_data_reloc_io_lock);
3161         seqlock_init(&fs_info->profiles_lock);
3162
3163         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
3164         INIT_LIST_HEAD(&fs_info->space_info);
3165         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
3166         INIT_LIST_HEAD(&fs_info->unused_bgs);
3167         INIT_LIST_HEAD(&fs_info->reclaim_bgs);
3168         INIT_LIST_HEAD(&fs_info->zone_active_bgs);
3169 #ifdef CONFIG_BTRFS_DEBUG
3170         INIT_LIST_HEAD(&fs_info->allocated_roots);
3171         INIT_LIST_HEAD(&fs_info->allocated_ebs);
3172         spin_lock_init(&fs_info->eb_leak_lock);
3173 #endif
3174         extent_map_tree_init(&fs_info->mapping_tree);
3175         btrfs_init_block_rsv(&fs_info->global_block_rsv,
3176                              BTRFS_BLOCK_RSV_GLOBAL);
3177         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
3178         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
3179         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
3180         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
3181                              BTRFS_BLOCK_RSV_DELOPS);
3182         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
3183                              BTRFS_BLOCK_RSV_DELREFS);
3184
3185         atomic_set(&fs_info->async_delalloc_pages, 0);
3186         atomic_set(&fs_info->defrag_running, 0);
3187         atomic_set(&fs_info->nr_delayed_iputs, 0);
3188         atomic64_set(&fs_info->tree_mod_seq, 0);
3189         fs_info->global_root_tree = RB_ROOT;
3190         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
3191         fs_info->metadata_ratio = 0;
3192         fs_info->defrag_inodes = RB_ROOT;
3193         atomic64_set(&fs_info->free_chunk_space, 0);
3194         fs_info->tree_mod_log = RB_ROOT;
3195         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
3196         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
3197         btrfs_init_ref_verify(fs_info);
3198
3199         fs_info->thread_pool_size = min_t(unsigned long,
3200                                           num_online_cpus() + 2, 8);
3201
3202         INIT_LIST_HEAD(&fs_info->ordered_roots);
3203         spin_lock_init(&fs_info->ordered_root_lock);
3204
3205         btrfs_init_scrub(fs_info);
3206 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3207         fs_info->check_integrity_print_mask = 0;
3208 #endif
3209         btrfs_init_balance(fs_info);
3210         btrfs_init_async_reclaim_work(fs_info);
3211
3212         spin_lock_init(&fs_info->block_group_cache_lock);
3213         fs_info->block_group_cache_tree = RB_ROOT;
3214         fs_info->first_logical_byte = (u64)-1;
3215
3216         extent_io_tree_init(fs_info, &fs_info->excluded_extents,
3217                             IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
3218
3219         mutex_init(&fs_info->ordered_operations_mutex);
3220         mutex_init(&fs_info->tree_log_mutex);
3221         mutex_init(&fs_info->chunk_mutex);
3222         mutex_init(&fs_info->transaction_kthread_mutex);
3223         mutex_init(&fs_info->cleaner_mutex);
3224         mutex_init(&fs_info->ro_block_group_mutex);
3225         init_rwsem(&fs_info->commit_root_sem);
3226         init_rwsem(&fs_info->cleanup_work_sem);
3227         init_rwsem(&fs_info->subvol_sem);
3228         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
3229
3230         btrfs_init_dev_replace_locks(fs_info);
3231         btrfs_init_qgroup(fs_info);
3232         btrfs_discard_init(fs_info);
3233
3234         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3235         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3236
3237         init_waitqueue_head(&fs_info->transaction_throttle);
3238         init_waitqueue_head(&fs_info->transaction_wait);
3239         init_waitqueue_head(&fs_info->transaction_blocked_wait);
3240         init_waitqueue_head(&fs_info->async_submit_wait);
3241         init_waitqueue_head(&fs_info->delayed_iputs_wait);
3242
3243         /* Usable values until the real ones are cached from the superblock */
3244         fs_info->nodesize = 4096;
3245         fs_info->sectorsize = 4096;
3246         fs_info->sectorsize_bits = ilog2(4096);
3247         fs_info->stripesize = 4096;
3248
3249         spin_lock_init(&fs_info->swapfile_pins_lock);
3250         fs_info->swapfile_pins = RB_ROOT;
3251
3252         fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3253         INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
3254 }
3255
3256 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3257 {
3258         int ret;
3259
3260         fs_info->sb = sb;
3261         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3262         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
3263
3264         ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
3265         if (ret)
3266                 return ret;
3267
3268         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3269         if (ret)
3270                 return ret;
3271
3272         fs_info->dirty_metadata_batch = PAGE_SIZE *
3273                                         (1 + ilog2(nr_cpu_ids));
3274
3275         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3276         if (ret)
3277                 return ret;
3278
3279         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3280                         GFP_KERNEL);
3281         if (ret)
3282                 return ret;
3283
3284         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3285                                         GFP_KERNEL);
3286         if (!fs_info->delayed_root)
3287                 return -ENOMEM;
3288         btrfs_init_delayed_root(fs_info->delayed_root);
3289
3290         if (sb_rdonly(sb))
3291                 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3292
3293         return btrfs_alloc_stripe_hash_table(fs_info);
3294 }
3295
3296 static int btrfs_uuid_rescan_kthread(void *data)
3297 {
3298         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3299         int ret;
3300
3301         /*
3302          * 1st step is to iterate through the existing UUID tree and
3303          * to delete all entries that contain outdated data.
3304          * 2nd step is to add all missing entries to the UUID tree.
3305          */
3306         ret = btrfs_uuid_tree_iterate(fs_info);
3307         if (ret < 0) {
3308                 if (ret != -EINTR)
3309                         btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3310                                    ret);
3311                 up(&fs_info->uuid_tree_rescan_sem);
3312                 return ret;
3313         }
3314         return btrfs_uuid_scan_kthread(data);
3315 }
3316
3317 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3318 {
3319         struct task_struct *task;
3320
3321         down(&fs_info->uuid_tree_rescan_sem);
3322         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3323         if (IS_ERR(task)) {
3324                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3325                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3326                 up(&fs_info->uuid_tree_rescan_sem);
3327                 return PTR_ERR(task);
3328         }
3329
3330         return 0;
3331 }
3332
3333 /*
3334  * Some options only have meaning at mount time and shouldn't persist across
3335  * remounts, or be displayed. Clear these at the end of mount and remount
3336  * code paths.
3337  */
3338 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3339 {
3340         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3341         btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3342 }
3343
3344 /*
3345  * Mounting logic specific to read-write file systems. Shared by open_ctree
3346  * and btrfs_remount when remounting from read-only to read-write.
3347  */
3348 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3349 {
3350         int ret;
3351         const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3352         bool clear_free_space_tree = false;
3353
3354         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3355             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3356                 clear_free_space_tree = true;
3357         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3358                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3359                 btrfs_warn(fs_info, "free space tree is invalid");
3360                 clear_free_space_tree = true;
3361         }
3362
3363         if (clear_free_space_tree) {
3364                 btrfs_info(fs_info, "clearing free space tree");
3365                 ret = btrfs_clear_free_space_tree(fs_info);
3366                 if (ret) {
3367                         btrfs_warn(fs_info,
3368                                    "failed to clear free space tree: %d", ret);
3369                         goto out;
3370                 }
3371         }
3372
3373         /*
3374          * btrfs_find_orphan_roots() is responsible for finding all the dead
3375          * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3376          * them into the fs_info->fs_roots_radix tree. This must be done before
3377          * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3378          * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3379          * item before the root's tree is deleted - this means that if we unmount
3380          * or crash before the deletion completes, on the next mount we will not
3381          * delete what remains of the tree because the orphan item does not
3382          * exists anymore, which is what tells us we have a pending deletion.
3383          */
3384         ret = btrfs_find_orphan_roots(fs_info);
3385         if (ret)
3386                 goto out;
3387
3388         ret = btrfs_cleanup_fs_roots(fs_info);
3389         if (ret)
3390                 goto out;
3391
3392         down_read(&fs_info->cleanup_work_sem);
3393         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3394             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3395                 up_read(&fs_info->cleanup_work_sem);
3396                 goto out;
3397         }
3398         up_read(&fs_info->cleanup_work_sem);
3399
3400         mutex_lock(&fs_info->cleaner_mutex);
3401         ret = btrfs_recover_relocation(fs_info);
3402         mutex_unlock(&fs_info->cleaner_mutex);
3403         if (ret < 0) {
3404                 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3405                 goto out;
3406         }
3407
3408         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3409             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3410                 btrfs_info(fs_info, "creating free space tree");
3411                 ret = btrfs_create_free_space_tree(fs_info);
3412                 if (ret) {
3413                         btrfs_warn(fs_info,
3414                                 "failed to create free space tree: %d", ret);
3415                         goto out;
3416                 }
3417         }
3418
3419         if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3420                 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3421                 if (ret)
3422                         goto out;
3423         }
3424
3425         ret = btrfs_resume_balance_async(fs_info);
3426         if (ret)
3427                 goto out;
3428
3429         ret = btrfs_resume_dev_replace_async(fs_info);
3430         if (ret) {
3431                 btrfs_warn(fs_info, "failed to resume dev_replace");
3432                 goto out;
3433         }
3434
3435         btrfs_qgroup_rescan_resume(fs_info);
3436
3437         if (!fs_info->uuid_root) {
3438                 btrfs_info(fs_info, "creating UUID tree");
3439                 ret = btrfs_create_uuid_tree(fs_info);
3440                 if (ret) {
3441                         btrfs_warn(fs_info,
3442                                    "failed to create the UUID tree %d", ret);
3443                         goto out;
3444                 }
3445         }
3446
3447 out:
3448         return ret;
3449 }
3450
3451 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3452                       char *options)
3453 {
3454         u32 sectorsize;
3455         u32 nodesize;
3456         u32 stripesize;
3457         u64 generation;
3458         u64 features;
3459         u16 csum_type;
3460         struct btrfs_super_block *disk_super;
3461         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3462         struct btrfs_root *tree_root;
3463         struct btrfs_root *chunk_root;
3464         int ret;
3465         int err = -EINVAL;
3466         int level;
3467
3468         ret = init_mount_fs_info(fs_info, sb);
3469         if (ret) {
3470                 err = ret;
3471                 goto fail;
3472         }
3473
3474         /* These need to be init'ed before we start creating inodes and such. */
3475         tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3476                                      GFP_KERNEL);
3477         fs_info->tree_root = tree_root;
3478         chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3479                                       GFP_KERNEL);
3480         fs_info->chunk_root = chunk_root;
3481         if (!tree_root || !chunk_root) {
3482                 err = -ENOMEM;
3483                 goto fail;
3484         }
3485
3486         fs_info->btree_inode = new_inode(sb);
3487         if (!fs_info->btree_inode) {
3488                 err = -ENOMEM;
3489                 goto fail;
3490         }
3491         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3492         btrfs_init_btree_inode(fs_info);
3493
3494         invalidate_bdev(fs_devices->latest_dev->bdev);
3495
3496         /*
3497          * Read super block and check the signature bytes only
3498          */
3499         disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3500         if (IS_ERR(disk_super)) {
3501                 err = PTR_ERR(disk_super);
3502                 goto fail_alloc;
3503         }
3504
3505         /*
3506          * Verify the type first, if that or the checksum value are
3507          * corrupted, we'll find out
3508          */
3509         csum_type = btrfs_super_csum_type(disk_super);
3510         if (!btrfs_supported_super_csum(csum_type)) {
3511                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3512                           csum_type);
3513                 err = -EINVAL;
3514                 btrfs_release_disk_super(disk_super);
3515                 goto fail_alloc;
3516         }
3517
3518         fs_info->csum_size = btrfs_super_csum_size(disk_super);
3519
3520         ret = btrfs_init_csum_hash(fs_info, csum_type);
3521         if (ret) {
3522                 err = ret;
3523                 btrfs_release_disk_super(disk_super);
3524                 goto fail_alloc;
3525         }
3526
3527         /*
3528          * We want to check superblock checksum, the type is stored inside.
3529          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3530          */
3531         if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
3532                 btrfs_err(fs_info, "superblock checksum mismatch");
3533                 err = -EINVAL;
3534                 btrfs_release_disk_super(disk_super);
3535                 goto fail_alloc;
3536         }
3537
3538         /*
3539          * super_copy is zeroed at allocation time and we never touch the
3540          * following bytes up to INFO_SIZE, the checksum is calculated from
3541          * the whole block of INFO_SIZE
3542          */
3543         memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3544         btrfs_release_disk_super(disk_super);
3545
3546         disk_super = fs_info->super_copy;
3547
3548
3549         features = btrfs_super_flags(disk_super);
3550         if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3551                 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3552                 btrfs_set_super_flags(disk_super, features);
3553                 btrfs_info(fs_info,
3554                         "found metadata UUID change in progress flag, clearing");
3555         }
3556
3557         memcpy(fs_info->super_for_commit, fs_info->super_copy,
3558                sizeof(*fs_info->super_for_commit));
3559
3560         ret = btrfs_validate_mount_super(fs_info);
3561         if (ret) {
3562                 btrfs_err(fs_info, "superblock contains fatal errors");
3563                 err = -EINVAL;
3564                 goto fail_alloc;
3565         }
3566
3567         if (!btrfs_super_root(disk_super))
3568                 goto fail_alloc;
3569
3570         /* check FS state, whether FS is broken. */
3571         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3572                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3573
3574         /*
3575          * In the long term, we'll store the compression type in the super
3576          * block, and it'll be used for per file compression control.
3577          */
3578         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3579
3580         /*
3581          * Flag our filesystem as having big metadata blocks if they are bigger
3582          * than the page size.
3583          */
3584         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3585                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3586                         btrfs_info(fs_info,
3587                                 "flagging fs with big metadata feature");
3588                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3589         }
3590
3591         /* Set up fs_info before parsing mount options */
3592         nodesize = btrfs_super_nodesize(disk_super);
3593         sectorsize = btrfs_super_sectorsize(disk_super);
3594         stripesize = sectorsize;
3595         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3596         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3597
3598         fs_info->nodesize = nodesize;
3599         fs_info->sectorsize = sectorsize;
3600         fs_info->sectorsize_bits = ilog2(sectorsize);
3601         fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3602         fs_info->stripesize = stripesize;
3603
3604         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3605         if (ret) {
3606                 err = ret;
3607                 goto fail_alloc;
3608         }
3609
3610         features = btrfs_super_incompat_flags(disk_super) &
3611                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3612         if (features) {
3613                 btrfs_err(fs_info,
3614                     "cannot mount because of unsupported optional features (%llx)",
3615                     features);
3616                 err = -EINVAL;
3617                 goto fail_alloc;
3618         }
3619
3620         features = btrfs_super_incompat_flags(disk_super);
3621         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3622         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3623                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3624         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3625                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3626
3627         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3628                 btrfs_info(fs_info, "has skinny extents");
3629
3630         /*
3631          * mixed block groups end up with duplicate but slightly offset
3632          * extent buffers for the same range.  It leads to corruptions
3633          */
3634         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3635             (sectorsize != nodesize)) {
3636                 btrfs_err(fs_info,
3637 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3638                         nodesize, sectorsize);
3639                 goto fail_alloc;
3640         }
3641
3642         /*
3643          * Needn't use the lock because there is no other task which will
3644          * update the flag.
3645          */
3646         btrfs_set_super_incompat_flags(disk_super, features);
3647
3648         features = btrfs_super_compat_ro_flags(disk_super) &
3649                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3650         if (!sb_rdonly(sb) && features) {
3651                 btrfs_err(fs_info,
3652         "cannot mount read-write because of unsupported optional features (%llx)",
3653                        features);
3654                 err = -EINVAL;
3655                 goto fail_alloc;
3656         }
3657
3658         if (sectorsize < PAGE_SIZE) {
3659                 struct btrfs_subpage_info *subpage_info;
3660
3661                 /*
3662                  * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3663                  * going to be deprecated.
3664                  *
3665                  * Force to use v2 cache for subpage case.
3666                  */
3667                 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3668                 btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3669                         "forcing free space tree for sector size %u with page size %lu",
3670                         sectorsize, PAGE_SIZE);
3671
3672                 btrfs_warn(fs_info,
3673                 "read-write for sector size %u with page size %lu is experimental",
3674                            sectorsize, PAGE_SIZE);
3675                 if (btrfs_super_incompat_flags(fs_info->super_copy) &
3676                         BTRFS_FEATURE_INCOMPAT_RAID56) {
3677                         btrfs_err(fs_info,
3678                 "RAID56 is not yet supported for sector size %u with page size %lu",
3679                                 sectorsize, PAGE_SIZE);
3680                         err = -EINVAL;
3681                         goto fail_alloc;
3682                 }
3683                 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3684                 if (!subpage_info)
3685                         goto fail_alloc;
3686                 btrfs_init_subpage_info(subpage_info, sectorsize);
3687                 fs_info->subpage_info = subpage_info;
3688         }
3689
3690         ret = btrfs_init_workqueues(fs_info);
3691         if (ret) {
3692                 err = ret;
3693                 goto fail_sb_buffer;
3694         }
3695
3696         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3697         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3698
3699         sb->s_blocksize = sectorsize;
3700         sb->s_blocksize_bits = blksize_bits(sectorsize);
3701         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3702
3703         mutex_lock(&fs_info->chunk_mutex);
3704         ret = btrfs_read_sys_array(fs_info);
3705         mutex_unlock(&fs_info->chunk_mutex);
3706         if (ret) {
3707                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3708                 goto fail_sb_buffer;
3709         }
3710
3711         generation = btrfs_super_chunk_root_generation(disk_super);
3712         level = btrfs_super_chunk_root_level(disk_super);
3713         ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3714                               generation, level);
3715         if (ret) {
3716                 btrfs_err(fs_info, "failed to read chunk root");
3717                 goto fail_tree_roots;
3718         }
3719
3720         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3721                            offsetof(struct btrfs_header, chunk_tree_uuid),
3722                            BTRFS_UUID_SIZE);
3723
3724         ret = btrfs_read_chunk_tree(fs_info);
3725         if (ret) {
3726                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3727                 goto fail_tree_roots;
3728         }
3729
3730         /*
3731          * At this point we know all the devices that make this filesystem,
3732          * including the seed devices but we don't know yet if the replace
3733          * target is required. So free devices that are not part of this
3734          * filesystem but skip the replace target device which is checked
3735          * below in btrfs_init_dev_replace().
3736          */
3737         btrfs_free_extra_devids(fs_devices);
3738         if (!fs_devices->latest_dev->bdev) {
3739                 btrfs_err(fs_info, "failed to read devices");
3740                 goto fail_tree_roots;
3741         }
3742
3743         ret = init_tree_roots(fs_info);
3744         if (ret)
3745                 goto fail_tree_roots;
3746
3747         /*
3748          * Get zone type information of zoned block devices. This will also
3749          * handle emulation of a zoned filesystem if a regular device has the
3750          * zoned incompat feature flag set.
3751          */
3752         ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3753         if (ret) {
3754                 btrfs_err(fs_info,
3755                           "zoned: failed to read device zone info: %d",
3756                           ret);
3757                 goto fail_block_groups;
3758         }
3759
3760         /*
3761          * If we have a uuid root and we're not being told to rescan we need to
3762          * check the generation here so we can set the
3763          * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3764          * transaction during a balance or the log replay without updating the
3765          * uuid generation, and then if we crash we would rescan the uuid tree,
3766          * even though it was perfectly fine.
3767          */
3768         if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3769             fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3770                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3771
3772         ret = btrfs_verify_dev_extents(fs_info);
3773         if (ret) {
3774                 btrfs_err(fs_info,
3775                           "failed to verify dev extents against chunks: %d",
3776                           ret);
3777                 goto fail_block_groups;
3778         }
3779         ret = btrfs_recover_balance(fs_info);
3780         if (ret) {
3781                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3782                 goto fail_block_groups;
3783         }
3784
3785         ret = btrfs_init_dev_stats(fs_info);
3786         if (ret) {
3787                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3788                 goto fail_block_groups;
3789         }
3790
3791         ret = btrfs_init_dev_replace(fs_info);
3792         if (ret) {
3793                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3794                 goto fail_block_groups;
3795         }
3796
3797         ret = btrfs_check_zoned_mode(fs_info);
3798         if (ret) {
3799                 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3800                           ret);
3801                 goto fail_block_groups;
3802         }
3803
3804         ret = btrfs_sysfs_add_fsid(fs_devices);
3805         if (ret) {
3806                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3807                                 ret);
3808                 goto fail_block_groups;
3809         }
3810
3811         ret = btrfs_sysfs_add_mounted(fs_info);
3812         if (ret) {
3813                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3814                 goto fail_fsdev_sysfs;
3815         }
3816
3817         ret = btrfs_init_space_info(fs_info);
3818         if (ret) {
3819                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3820                 goto fail_sysfs;
3821         }
3822
3823         ret = btrfs_read_block_groups(fs_info);
3824         if (ret) {
3825                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3826                 goto fail_sysfs;
3827         }
3828
3829         btrfs_free_zone_cache(fs_info);
3830
3831         if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3832             !btrfs_check_rw_degradable(fs_info, NULL)) {
3833                 btrfs_warn(fs_info,
3834                 "writable mount is not allowed due to too many missing devices");
3835                 goto fail_sysfs;
3836         }
3837
3838         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3839                                                "btrfs-cleaner");
3840         if (IS_ERR(fs_info->cleaner_kthread))
3841                 goto fail_sysfs;
3842
3843         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3844                                                    tree_root,
3845                                                    "btrfs-transaction");
3846         if (IS_ERR(fs_info->transaction_kthread))
3847                 goto fail_cleaner;
3848
3849         if (!btrfs_test_opt(fs_info, NOSSD) &&
3850             !fs_info->fs_devices->rotating) {
3851                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3852         }
3853
3854         /*
3855          * Mount does not set all options immediately, we can do it now and do
3856          * not have to wait for transaction commit
3857          */
3858         btrfs_apply_pending_changes(fs_info);
3859
3860 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3861         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3862                 ret = btrfsic_mount(fs_info, fs_devices,
3863                                     btrfs_test_opt(fs_info,
3864                                         CHECK_INTEGRITY_DATA) ? 1 : 0,
3865                                     fs_info->check_integrity_print_mask);
3866                 if (ret)
3867                         btrfs_warn(fs_info,
3868                                 "failed to initialize integrity check module: %d",
3869                                 ret);
3870         }
3871 #endif
3872         ret = btrfs_read_qgroup_config(fs_info);
3873         if (ret)
3874                 goto fail_trans_kthread;
3875
3876         if (btrfs_build_ref_tree(fs_info))
3877                 btrfs_err(fs_info, "couldn't build ref tree");
3878
3879         /* do not make disk changes in broken FS or nologreplay is given */
3880         if (btrfs_super_log_root(disk_super) != 0 &&
3881             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3882                 btrfs_info(fs_info, "start tree-log replay");
3883                 ret = btrfs_replay_log(fs_info, fs_devices);
3884                 if (ret) {
3885                         err = ret;
3886                         goto fail_qgroup;
3887                 }
3888         }
3889
3890         fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3891         if (IS_ERR(fs_info->fs_root)) {
3892                 err = PTR_ERR(fs_info->fs_root);
3893                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3894                 fs_info->fs_root = NULL;
3895                 goto fail_qgroup;
3896         }
3897
3898         if (sb_rdonly(sb))
3899                 goto clear_oneshot;
3900
3901         ret = btrfs_start_pre_rw_mount(fs_info);
3902         if (ret) {
3903                 close_ctree(fs_info);
3904                 return ret;
3905         }
3906         btrfs_discard_resume(fs_info);
3907
3908         if (fs_info->uuid_root &&
3909             (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3910              fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3911                 btrfs_info(fs_info, "checking UUID tree");
3912                 ret = btrfs_check_uuid_tree(fs_info);
3913                 if (ret) {
3914                         btrfs_warn(fs_info,
3915                                 "failed to check the UUID tree: %d", ret);
3916                         close_ctree(fs_info);
3917                         return ret;
3918                 }
3919         }
3920
3921         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3922
3923         /* Kick the cleaner thread so it'll start deleting snapshots. */
3924         if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3925                 wake_up_process(fs_info->cleaner_kthread);
3926
3927 clear_oneshot:
3928         btrfs_clear_oneshot_options(fs_info);
3929         return 0;
3930
3931 fail_qgroup:
3932         btrfs_free_qgroup_config(fs_info);
3933 fail_trans_kthread:
3934         kthread_stop(fs_info->transaction_kthread);
3935         btrfs_cleanup_transaction(fs_info);
3936         btrfs_free_fs_roots(fs_info);
3937 fail_cleaner:
3938         kthread_stop(fs_info->cleaner_kthread);
3939
3940         /*
3941          * make sure we're done with the btree inode before we stop our
3942          * kthreads
3943          */
3944         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3945
3946 fail_sysfs:
3947         btrfs_sysfs_remove_mounted(fs_info);
3948
3949 fail_fsdev_sysfs:
3950         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3951
3952 fail_block_groups:
3953         btrfs_put_block_group_cache(fs_info);
3954
3955 fail_tree_roots:
3956         if (fs_info->data_reloc_root)
3957                 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3958         free_root_pointers(fs_info, true);
3959         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3960
3961 fail_sb_buffer:
3962         btrfs_stop_all_workers(fs_info);
3963         btrfs_free_block_groups(fs_info);
3964 fail_alloc:
3965         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3966
3967         iput(fs_info->btree_inode);
3968 fail:
3969         btrfs_close_devices(fs_info->fs_devices);
3970         return err;
3971 }
3972 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3973
3974 static void btrfs_end_super_write(struct bio *bio)
3975 {
3976         struct btrfs_device *device = bio->bi_private;
3977         struct bio_vec *bvec;
3978         struct bvec_iter_all iter_all;
3979         struct page *page;
3980
3981         bio_for_each_segment_all(bvec, bio, iter_all) {
3982                 page = bvec->bv_page;
3983
3984                 if (bio->bi_status) {
3985                         btrfs_warn_rl_in_rcu(device->fs_info,
3986                                 "lost page write due to IO error on %s (%d)",
3987                                 rcu_str_deref(device->name),
3988                                 blk_status_to_errno(bio->bi_status));
3989                         ClearPageUptodate(page);
3990                         SetPageError(page);
3991                         btrfs_dev_stat_inc_and_print(device,
3992                                                      BTRFS_DEV_STAT_WRITE_ERRS);
3993                 } else {
3994                         SetPageUptodate(page);
3995                 }
3996
3997                 put_page(page);
3998                 unlock_page(page);
3999         }
4000
4001         bio_put(bio);
4002 }
4003
4004 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
4005                                                    int copy_num)
4006 {
4007         struct btrfs_super_block *super;
4008         struct page *page;
4009         u64 bytenr, bytenr_orig;
4010         struct address_space *mapping = bdev->bd_inode->i_mapping;
4011         int ret;
4012
4013         bytenr_orig = btrfs_sb_offset(copy_num);
4014         ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
4015         if (ret == -ENOENT)
4016                 return ERR_PTR(-EINVAL);
4017         else if (ret)
4018                 return ERR_PTR(ret);
4019
4020         if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
4021                 return ERR_PTR(-EINVAL);
4022
4023         page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
4024         if (IS_ERR(page))
4025                 return ERR_CAST(page);
4026
4027         super = page_address(page);
4028         if (btrfs_super_magic(super) != BTRFS_MAGIC) {
4029                 btrfs_release_disk_super(super);
4030                 return ERR_PTR(-ENODATA);
4031         }
4032
4033         if (btrfs_super_bytenr(super) != bytenr_orig) {
4034                 btrfs_release_disk_super(super);
4035                 return ERR_PTR(-EINVAL);
4036         }
4037
4038         return super;
4039 }
4040
4041
4042 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
4043 {
4044         struct btrfs_super_block *super, *latest = NULL;
4045         int i;
4046         u64 transid = 0;
4047
4048         /* we would like to check all the supers, but that would make
4049          * a btrfs mount succeed after a mkfs from a different FS.
4050          * So, we need to add a special mount option to scan for
4051          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
4052          */
4053         for (i = 0; i < 1; i++) {
4054                 super = btrfs_read_dev_one_super(bdev, i);
4055                 if (IS_ERR(super))
4056                         continue;
4057
4058                 if (!latest || btrfs_super_generation(super) > transid) {
4059                         if (latest)
4060                                 btrfs_release_disk_super(super);
4061
4062                         latest = super;
4063                         transid = btrfs_super_generation(super);
4064                 }
4065         }
4066
4067         return super;
4068 }
4069
4070 /*
4071  * Write superblock @sb to the @device. Do not wait for completion, all the
4072  * pages we use for writing are locked.
4073  *
4074  * Write @max_mirrors copies of the superblock, where 0 means default that fit
4075  * the expected device size at commit time. Note that max_mirrors must be
4076  * same for write and wait phases.
4077  *
4078  * Return number of errors when page is not found or submission fails.
4079  */
4080 static int write_dev_supers(struct btrfs_device *device,
4081                             struct btrfs_super_block *sb, int max_mirrors)
4082 {
4083         struct btrfs_fs_info *fs_info = device->fs_info;
4084         struct address_space *mapping = device->bdev->bd_inode->i_mapping;
4085         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
4086         int i;
4087         int errors = 0;
4088         int ret;
4089         u64 bytenr, bytenr_orig;
4090
4091         if (max_mirrors == 0)
4092                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4093
4094         shash->tfm = fs_info->csum_shash;
4095
4096         for (i = 0; i < max_mirrors; i++) {
4097                 struct page *page;
4098                 struct bio *bio;
4099                 struct btrfs_super_block *disk_super;
4100
4101                 bytenr_orig = btrfs_sb_offset(i);
4102                 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
4103                 if (ret == -ENOENT) {
4104                         continue;
4105                 } else if (ret < 0) {
4106                         btrfs_err(device->fs_info,
4107                                 "couldn't get super block location for mirror %d",
4108                                 i);
4109                         errors++;
4110                         continue;
4111                 }
4112                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4113                     device->commit_total_bytes)
4114                         break;
4115
4116                 btrfs_set_super_bytenr(sb, bytenr_orig);
4117
4118                 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
4119                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
4120                                     sb->csum);
4121
4122                 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
4123                                            GFP_NOFS);
4124                 if (!page) {
4125                         btrfs_err(device->fs_info,
4126                             "couldn't get super block page for bytenr %llu",
4127                             bytenr);
4128                         errors++;
4129                         continue;
4130                 }
4131
4132                 /* Bump the refcount for wait_dev_supers() */
4133                 get_page(page);
4134
4135                 disk_super = page_address(page);
4136                 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4137
4138                 /*
4139                  * Directly use bios here instead of relying on the page cache
4140                  * to do I/O, so we don't lose the ability to do integrity
4141                  * checking.
4142                  */
4143                 bio = bio_alloc(device->bdev, 1,
4144                                 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
4145                                 GFP_NOFS);
4146                 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
4147                 bio->bi_private = device;
4148                 bio->bi_end_io = btrfs_end_super_write;
4149                 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
4150                                offset_in_page(bytenr));
4151
4152                 /*
4153                  * We FUA only the first super block.  The others we allow to
4154                  * go down lazy and there's a short window where the on-disk
4155                  * copies might still contain the older version.
4156                  */
4157                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
4158                         bio->bi_opf |= REQ_FUA;
4159
4160                 btrfsic_submit_bio(bio);
4161
4162                 if (btrfs_advance_sb_log(device, i))
4163                         errors++;
4164         }
4165         return errors < i ? 0 : -1;
4166 }
4167
4168 /*
4169  * Wait for write completion of superblocks done by write_dev_supers,
4170  * @max_mirrors same for write and wait phases.
4171  *
4172  * Return number of errors when page is not found or not marked up to
4173  * date.
4174  */
4175 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4176 {
4177         int i;
4178         int errors = 0;
4179         bool primary_failed = false;
4180         int ret;
4181         u64 bytenr;
4182
4183         if (max_mirrors == 0)
4184                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4185
4186         for (i = 0; i < max_mirrors; i++) {
4187                 struct page *page;
4188
4189                 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4190                 if (ret == -ENOENT) {
4191                         break;
4192                 } else if (ret < 0) {
4193                         errors++;
4194                         if (i == 0)
4195                                 primary_failed = true;
4196                         continue;
4197                 }
4198                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4199                     device->commit_total_bytes)
4200                         break;
4201
4202                 page = find_get_page(device->bdev->bd_inode->i_mapping,
4203                                      bytenr >> PAGE_SHIFT);
4204                 if (!page) {
4205                         errors++;
4206                         if (i == 0)
4207                                 primary_failed = true;
4208                         continue;
4209                 }
4210                 /* Page is submitted locked and unlocked once the IO completes */
4211                 wait_on_page_locked(page);
4212                 if (PageError(page)) {
4213                         errors++;
4214                         if (i == 0)
4215                                 primary_failed = true;
4216                 }
4217
4218                 /* Drop our reference */
4219                 put_page(page);
4220
4221                 /* Drop the reference from the writing run */
4222                 put_page(page);
4223         }
4224
4225         /* log error, force error return */
4226         if (primary_failed) {
4227                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4228                           device->devid);
4229                 return -1;
4230         }
4231
4232         return errors < i ? 0 : -1;
4233 }
4234
4235 /*
4236  * endio for the write_dev_flush, this will wake anyone waiting
4237  * for the barrier when it is done
4238  */
4239 static void btrfs_end_empty_barrier(struct bio *bio)
4240 {
4241         bio_uninit(bio);
4242         complete(bio->bi_private);
4243 }
4244
4245 /*
4246  * Submit a flush request to the device if it supports it. Error handling is
4247  * done in the waiting counterpart.
4248  */
4249 static void write_dev_flush(struct btrfs_device *device)
4250 {
4251         struct bio *bio = &device->flush_bio;
4252
4253 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4254         /*
4255          * When a disk has write caching disabled, we skip submission of a bio
4256          * with flush and sync requests before writing the superblock, since
4257          * it's not needed. However when the integrity checker is enabled, this
4258          * results in reports that there are metadata blocks referred by a
4259          * superblock that were not properly flushed. So don't skip the bio
4260          * submission only when the integrity checker is enabled for the sake
4261          * of simplicity, since this is a debug tool and not meant for use in
4262          * non-debug builds.
4263          */
4264         if (!bdev_write_cache(device->bdev))
4265                 return;
4266 #endif
4267
4268         bio_init(bio, device->bdev, NULL, 0,
4269                  REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
4270         bio->bi_end_io = btrfs_end_empty_barrier;
4271         init_completion(&device->flush_wait);
4272         bio->bi_private = &device->flush_wait;
4273
4274         btrfsic_submit_bio(bio);
4275         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4276 }
4277
4278 /*
4279  * If the flush bio has been submitted by write_dev_flush, wait for it.
4280  */
4281 static blk_status_t wait_dev_flush(struct btrfs_device *device)
4282 {
4283         struct bio *bio = &device->flush_bio;
4284
4285         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
4286                 return BLK_STS_OK;
4287
4288         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4289         wait_for_completion_io(&device->flush_wait);
4290
4291         return bio->bi_status;
4292 }
4293
4294 static int check_barrier_error(struct btrfs_fs_info *fs_info)
4295 {
4296         if (!btrfs_check_rw_degradable(fs_info, NULL))
4297                 return -EIO;
4298         return 0;
4299 }
4300
4301 /*
4302  * send an empty flush down to each device in parallel,
4303  * then wait for them
4304  */
4305 static int barrier_all_devices(struct btrfs_fs_info *info)
4306 {
4307         struct list_head *head;
4308         struct btrfs_device *dev;
4309         int errors_wait = 0;
4310         blk_status_t ret;
4311
4312         lockdep_assert_held(&info->fs_devices->device_list_mutex);
4313         /* send down all the barriers */
4314         head = &info->fs_devices->devices;
4315         list_for_each_entry(dev, head, dev_list) {
4316                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4317                         continue;
4318                 if (!dev->bdev)
4319                         continue;
4320                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4321                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4322                         continue;
4323
4324                 write_dev_flush(dev);
4325                 dev->last_flush_error = BLK_STS_OK;
4326         }
4327
4328         /* wait for all the barriers */
4329         list_for_each_entry(dev, head, dev_list) {
4330                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4331                         continue;
4332                 if (!dev->bdev) {
4333                         errors_wait++;
4334                         continue;
4335                 }
4336                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4337                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4338                         continue;
4339
4340                 ret = wait_dev_flush(dev);
4341                 if (ret) {
4342                         dev->last_flush_error = ret;
4343                         btrfs_dev_stat_inc_and_print(dev,
4344                                         BTRFS_DEV_STAT_FLUSH_ERRS);
4345                         errors_wait++;
4346                 }
4347         }
4348
4349         if (errors_wait) {
4350                 /*
4351                  * At some point we need the status of all disks
4352                  * to arrive at the volume status. So error checking
4353                  * is being pushed to a separate loop.
4354                  */
4355                 return check_barrier_error(info);
4356         }
4357         return 0;
4358 }
4359
4360 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4361 {
4362         int raid_type;
4363         int min_tolerated = INT_MAX;
4364
4365         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4366             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4367                 min_tolerated = min_t(int, min_tolerated,
4368                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
4369                                     tolerated_failures);
4370
4371         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4372                 if (raid_type == BTRFS_RAID_SINGLE)
4373                         continue;
4374                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4375                         continue;
4376                 min_tolerated = min_t(int, min_tolerated,
4377                                     btrfs_raid_array[raid_type].
4378                                     tolerated_failures);
4379         }
4380
4381         if (min_tolerated == INT_MAX) {
4382                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
4383                 min_tolerated = 0;
4384         }
4385
4386         return min_tolerated;
4387 }
4388
4389 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4390 {
4391         struct list_head *head;
4392         struct btrfs_device *dev;
4393         struct btrfs_super_block *sb;
4394         struct btrfs_dev_item *dev_item;
4395         int ret;
4396         int do_barriers;
4397         int max_errors;
4398         int total_errors = 0;
4399         u64 flags;
4400
4401         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4402
4403         /*
4404          * max_mirrors == 0 indicates we're from commit_transaction,
4405          * not from fsync where the tree roots in fs_info have not
4406          * been consistent on disk.
4407          */
4408         if (max_mirrors == 0)
4409                 backup_super_roots(fs_info);
4410
4411         sb = fs_info->super_for_commit;
4412         dev_item = &sb->dev_item;
4413
4414         mutex_lock(&fs_info->fs_devices->device_list_mutex);
4415         head = &fs_info->fs_devices->devices;
4416         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4417
4418         if (do_barriers) {
4419                 ret = barrier_all_devices(fs_info);
4420                 if (ret) {
4421                         mutex_unlock(
4422                                 &fs_info->fs_devices->device_list_mutex);
4423                         btrfs_handle_fs_error(fs_info, ret,
4424                                               "errors while submitting device barriers.");
4425                         return ret;
4426                 }
4427         }
4428
4429         list_for_each_entry(dev, head, dev_list) {
4430                 if (!dev->bdev) {
4431                         total_errors++;
4432                         continue;
4433                 }
4434                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4435                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4436                         continue;
4437
4438                 btrfs_set_stack_device_generation(dev_item, 0);
4439                 btrfs_set_stack_device_type(dev_item, dev->type);
4440                 btrfs_set_stack_device_id(dev_item, dev->devid);
4441                 btrfs_set_stack_device_total_bytes(dev_item,
4442                                                    dev->commit_total_bytes);
4443                 btrfs_set_stack_device_bytes_used(dev_item,
4444                                                   dev->commit_bytes_used);
4445                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4446                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4447                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4448                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4449                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4450                        BTRFS_FSID_SIZE);
4451
4452                 flags = btrfs_super_flags(sb);
4453                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4454
4455                 ret = btrfs_validate_write_super(fs_info, sb);
4456                 if (ret < 0) {
4457                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4458                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
4459                                 "unexpected superblock corruption detected");
4460                         return -EUCLEAN;
4461                 }
4462
4463                 ret = write_dev_supers(dev, sb, max_mirrors);
4464                 if (ret)
4465                         total_errors++;
4466         }
4467         if (total_errors > max_errors) {
4468                 btrfs_err(fs_info, "%d errors while writing supers",
4469                           total_errors);
4470                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4471
4472                 /* FUA is masked off if unsupported and can't be the reason */
4473                 btrfs_handle_fs_error(fs_info, -EIO,
4474                                       "%d errors while writing supers",
4475                                       total_errors);
4476                 return -EIO;
4477         }
4478
4479         total_errors = 0;
4480         list_for_each_entry(dev, head, dev_list) {
4481                 if (!dev->bdev)
4482                         continue;
4483                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4484                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4485                         continue;
4486
4487                 ret = wait_dev_supers(dev, max_mirrors);
4488                 if (ret)
4489                         total_errors++;
4490         }
4491         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4492         if (total_errors > max_errors) {
4493                 btrfs_handle_fs_error(fs_info, -EIO,
4494                                       "%d errors while writing supers",
4495                                       total_errors);
4496                 return -EIO;
4497         }
4498         return 0;
4499 }
4500
4501 /* Drop a fs root from the radix tree and free it. */
4502 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4503                                   struct btrfs_root *root)
4504 {
4505         bool drop_ref = false;
4506
4507         spin_lock(&fs_info->fs_roots_radix_lock);
4508         radix_tree_delete(&fs_info->fs_roots_radix,
4509                           (unsigned long)root->root_key.objectid);
4510         if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4511                 drop_ref = true;
4512         spin_unlock(&fs_info->fs_roots_radix_lock);
4513
4514         if (BTRFS_FS_ERROR(fs_info)) {
4515                 ASSERT(root->log_root == NULL);
4516                 if (root->reloc_root) {
4517                         btrfs_put_root(root->reloc_root);
4518                         root->reloc_root = NULL;
4519                 }
4520         }
4521
4522         if (drop_ref)
4523                 btrfs_put_root(root);
4524 }
4525
4526 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4527 {
4528         u64 root_objectid = 0;
4529         struct btrfs_root *gang[8];
4530         int i = 0;
4531         int err = 0;
4532         unsigned int ret = 0;
4533
4534         while (1) {
4535                 spin_lock(&fs_info->fs_roots_radix_lock);
4536                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4537                                              (void **)gang, root_objectid,
4538                                              ARRAY_SIZE(gang));
4539                 if (!ret) {
4540                         spin_unlock(&fs_info->fs_roots_radix_lock);
4541                         break;
4542                 }
4543                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
4544
4545                 for (i = 0; i < ret; i++) {
4546                         /* Avoid to grab roots in dead_roots */
4547                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4548                                 gang[i] = NULL;
4549                                 continue;
4550                         }
4551                         /* grab all the search result for later use */
4552                         gang[i] = btrfs_grab_root(gang[i]);
4553                 }
4554                 spin_unlock(&fs_info->fs_roots_radix_lock);
4555
4556                 for (i = 0; i < ret; i++) {
4557                         if (!gang[i])
4558                                 continue;
4559                         root_objectid = gang[i]->root_key.objectid;
4560                         err = btrfs_orphan_cleanup(gang[i]);
4561                         if (err)
4562                                 break;
4563                         btrfs_put_root(gang[i]);
4564                 }
4565                 root_objectid++;
4566         }
4567
4568         /* release the uncleaned roots due to error */
4569         for (; i < ret; i++) {
4570                 if (gang[i])
4571                         btrfs_put_root(gang[i]);
4572         }
4573         return err;
4574 }
4575
4576 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4577 {
4578         struct btrfs_root *root = fs_info->tree_root;
4579         struct btrfs_trans_handle *trans;
4580
4581         mutex_lock(&fs_info->cleaner_mutex);
4582         btrfs_run_delayed_iputs(fs_info);
4583         mutex_unlock(&fs_info->cleaner_mutex);
4584         wake_up_process(fs_info->cleaner_kthread);
4585
4586         /* wait until ongoing cleanup work done */
4587         down_write(&fs_info->cleanup_work_sem);
4588         up_write(&fs_info->cleanup_work_sem);
4589
4590         trans = btrfs_join_transaction(root);
4591         if (IS_ERR(trans))
4592                 return PTR_ERR(trans);
4593         return btrfs_commit_transaction(trans);
4594 }
4595
4596 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4597 {
4598         struct btrfs_transaction *trans;
4599         struct btrfs_transaction *tmp;
4600         bool found = false;
4601
4602         if (list_empty(&fs_info->trans_list))
4603                 return;
4604
4605         /*
4606          * This function is only called at the very end of close_ctree(),
4607          * thus no other running transaction, no need to take trans_lock.
4608          */
4609         ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4610         list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4611                 struct extent_state *cached = NULL;
4612                 u64 dirty_bytes = 0;
4613                 u64 cur = 0;
4614                 u64 found_start;
4615                 u64 found_end;
4616
4617                 found = true;
4618                 while (!find_first_extent_bit(&trans->dirty_pages, cur,
4619                         &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4620                         dirty_bytes += found_end + 1 - found_start;
4621                         cur = found_end + 1;
4622                 }
4623                 btrfs_warn(fs_info,
4624         "transaction %llu (with %llu dirty metadata bytes) is not committed",
4625                            trans->transid, dirty_bytes);
4626                 btrfs_cleanup_one_transaction(trans, fs_info);
4627
4628                 if (trans == fs_info->running_transaction)
4629                         fs_info->running_transaction = NULL;
4630                 list_del_init(&trans->list);
4631
4632                 btrfs_put_transaction(trans);
4633                 trace_btrfs_transaction_commit(fs_info);
4634         }
4635         ASSERT(!found);
4636 }
4637
4638 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4639 {
4640         int ret;
4641
4642         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4643         /*
4644          * We don't want the cleaner to start new transactions, add more delayed
4645          * iputs, etc. while we're closing. We can't use kthread_stop() yet
4646          * because that frees the task_struct, and the transaction kthread might
4647          * still try to wake up the cleaner.
4648          */
4649         kthread_park(fs_info->cleaner_kthread);
4650
4651         /*
4652          * If we had UNFINISHED_DROPS we could still be processing them, so
4653          * clear that bit and wake up relocation so it can stop.
4654          */
4655         btrfs_wake_unfinished_drop(fs_info);
4656
4657         /* wait for the qgroup rescan worker to stop */
4658         btrfs_qgroup_wait_for_completion(fs_info, false);
4659
4660         /* wait for the uuid_scan task to finish */
4661         down(&fs_info->uuid_tree_rescan_sem);
4662         /* avoid complains from lockdep et al., set sem back to initial state */
4663         up(&fs_info->uuid_tree_rescan_sem);
4664
4665         /* pause restriper - we want to resume on mount */
4666         btrfs_pause_balance(fs_info);
4667
4668         btrfs_dev_replace_suspend_for_unmount(fs_info);
4669
4670         btrfs_scrub_cancel(fs_info);
4671
4672         /* wait for any defraggers to finish */
4673         wait_event(fs_info->transaction_wait,
4674                    (atomic_read(&fs_info->defrag_running) == 0));
4675
4676         /* clear out the rbtree of defraggable inodes */
4677         btrfs_cleanup_defrag_inodes(fs_info);
4678
4679         cancel_work_sync(&fs_info->async_reclaim_work);
4680         cancel_work_sync(&fs_info->async_data_reclaim_work);
4681         cancel_work_sync(&fs_info->preempt_reclaim_work);
4682
4683         cancel_work_sync(&fs_info->reclaim_bgs_work);
4684
4685         /* Cancel or finish ongoing discard work */
4686         btrfs_discard_cleanup(fs_info);
4687
4688         if (!sb_rdonly(fs_info->sb)) {
4689                 /*
4690                  * The cleaner kthread is stopped, so do one final pass over
4691                  * unused block groups.
4692                  */
4693                 btrfs_delete_unused_bgs(fs_info);
4694
4695                 /*
4696                  * There might be existing delayed inode workers still running
4697                  * and holding an empty delayed inode item. We must wait for
4698                  * them to complete first because they can create a transaction.
4699                  * This happens when someone calls btrfs_balance_delayed_items()
4700                  * and then a transaction commit runs the same delayed nodes
4701                  * before any delayed worker has done something with the nodes.
4702                  * We must wait for any worker here and not at transaction
4703                  * commit time since that could cause a deadlock.
4704                  * This is a very rare case.
4705                  */
4706                 btrfs_flush_workqueue(fs_info->delayed_workers);
4707
4708                 ret = btrfs_commit_super(fs_info);
4709                 if (ret)
4710                         btrfs_err(fs_info, "commit super ret %d", ret);
4711         }
4712
4713         if (BTRFS_FS_ERROR(fs_info))
4714                 btrfs_error_commit_super(fs_info);
4715
4716         kthread_stop(fs_info->transaction_kthread);
4717         kthread_stop(fs_info->cleaner_kthread);
4718
4719         ASSERT(list_empty(&fs_info->delayed_iputs));
4720         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4721
4722         if (btrfs_check_quota_leak(fs_info)) {
4723                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4724                 btrfs_err(fs_info, "qgroup reserved space leaked");
4725         }
4726
4727         btrfs_free_qgroup_config(fs_info);
4728         ASSERT(list_empty(&fs_info->delalloc_roots));
4729
4730         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4731                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4732                        percpu_counter_sum(&fs_info->delalloc_bytes));
4733         }
4734
4735         if (percpu_counter_sum(&fs_info->ordered_bytes))
4736                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4737                            percpu_counter_sum(&fs_info->ordered_bytes));
4738
4739         btrfs_sysfs_remove_mounted(fs_info);
4740         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4741
4742         btrfs_put_block_group_cache(fs_info);
4743
4744         /*
4745          * we must make sure there is not any read request to
4746          * submit after we stopping all workers.
4747          */
4748         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4749         btrfs_stop_all_workers(fs_info);
4750
4751         /* We shouldn't have any transaction open at this point */
4752         warn_about_uncommitted_trans(fs_info);
4753
4754         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4755         free_root_pointers(fs_info, true);
4756         btrfs_free_fs_roots(fs_info);
4757
4758         /*
4759          * We must free the block groups after dropping the fs_roots as we could
4760          * have had an IO error and have left over tree log blocks that aren't
4761          * cleaned up until the fs roots are freed.  This makes the block group
4762          * accounting appear to be wrong because there's pending reserved bytes,
4763          * so make sure we do the block group cleanup afterwards.
4764          */
4765         btrfs_free_block_groups(fs_info);
4766
4767         iput(fs_info->btree_inode);
4768
4769 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4770         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4771                 btrfsic_unmount(fs_info->fs_devices);
4772 #endif
4773
4774         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4775         btrfs_close_devices(fs_info->fs_devices);
4776 }
4777
4778 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4779                           int atomic)
4780 {
4781         int ret;
4782         struct inode *btree_inode = buf->pages[0]->mapping->host;
4783
4784         ret = extent_buffer_uptodate(buf);
4785         if (!ret)
4786                 return ret;
4787
4788         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4789                                     parent_transid, atomic);
4790         if (ret == -EAGAIN)
4791                 return ret;
4792         return !ret;
4793 }
4794
4795 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4796 {
4797         struct btrfs_fs_info *fs_info = buf->fs_info;
4798         u64 transid = btrfs_header_generation(buf);
4799         int was_dirty;
4800
4801 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4802         /*
4803          * This is a fast path so only do this check if we have sanity tests
4804          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4805          * outside of the sanity tests.
4806          */
4807         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4808                 return;
4809 #endif
4810         btrfs_assert_tree_write_locked(buf);
4811         if (transid != fs_info->generation)
4812                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4813                         buf->start, transid, fs_info->generation);
4814         was_dirty = set_extent_buffer_dirty(buf);
4815         if (!was_dirty)
4816                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4817                                          buf->len,
4818                                          fs_info->dirty_metadata_batch);
4819 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4820         /*
4821          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4822          * but item data not updated.
4823          * So here we should only check item pointers, not item data.
4824          */
4825         if (btrfs_header_level(buf) == 0 &&
4826             btrfs_check_leaf_relaxed(buf)) {
4827                 btrfs_print_leaf(buf);
4828                 ASSERT(0);
4829         }
4830 #endif
4831 }
4832
4833 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4834                                         int flush_delayed)
4835 {
4836         /*
4837          * looks as though older kernels can get into trouble with
4838          * this code, they end up stuck in balance_dirty_pages forever
4839          */
4840         int ret;
4841
4842         if (current->flags & PF_MEMALLOC)
4843                 return;
4844
4845         if (flush_delayed)
4846                 btrfs_balance_delayed_items(fs_info);
4847
4848         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4849                                      BTRFS_DIRTY_METADATA_THRESH,
4850                                      fs_info->dirty_metadata_batch);
4851         if (ret > 0) {
4852                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4853         }
4854 }
4855
4856 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4857 {
4858         __btrfs_btree_balance_dirty(fs_info, 1);
4859 }
4860
4861 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4862 {
4863         __btrfs_btree_balance_dirty(fs_info, 0);
4864 }
4865
4866 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4867                       struct btrfs_key *first_key)
4868 {
4869         return btree_read_extent_buffer_pages(buf, parent_transid,
4870                                               level, first_key);
4871 }
4872
4873 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4874 {
4875         /* cleanup FS via transaction */
4876         btrfs_cleanup_transaction(fs_info);
4877
4878         mutex_lock(&fs_info->cleaner_mutex);
4879         btrfs_run_delayed_iputs(fs_info);
4880         mutex_unlock(&fs_info->cleaner_mutex);
4881
4882         down_write(&fs_info->cleanup_work_sem);
4883         up_write(&fs_info->cleanup_work_sem);
4884 }
4885
4886 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4887 {
4888         struct btrfs_root *gang[8];
4889         u64 root_objectid = 0;
4890         int ret;
4891
4892         spin_lock(&fs_info->fs_roots_radix_lock);
4893         while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4894                                              (void **)gang, root_objectid,
4895                                              ARRAY_SIZE(gang))) != 0) {
4896                 int i;
4897
4898                 for (i = 0; i < ret; i++)
4899                         gang[i] = btrfs_grab_root(gang[i]);
4900                 spin_unlock(&fs_info->fs_roots_radix_lock);
4901
4902                 for (i = 0; i < ret; i++) {
4903                         if (!gang[i])
4904                                 continue;
4905                         root_objectid = gang[i]->root_key.objectid;
4906                         btrfs_free_log(NULL, gang[i]);
4907                         btrfs_put_root(gang[i]);
4908                 }
4909                 root_objectid++;
4910                 spin_lock(&fs_info->fs_roots_radix_lock);
4911         }
4912         spin_unlock(&fs_info->fs_roots_radix_lock);
4913         btrfs_free_log_root_tree(NULL, fs_info);
4914 }
4915
4916 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4917 {
4918         struct btrfs_ordered_extent *ordered;
4919
4920         spin_lock(&root->ordered_extent_lock);
4921         /*
4922          * This will just short circuit the ordered completion stuff which will
4923          * make sure the ordered extent gets properly cleaned up.
4924          */
4925         list_for_each_entry(ordered, &root->ordered_extents,
4926                             root_extent_list)
4927                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4928         spin_unlock(&root->ordered_extent_lock);
4929 }
4930
4931 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4932 {
4933         struct btrfs_root *root;
4934         struct list_head splice;
4935
4936         INIT_LIST_HEAD(&splice);
4937
4938         spin_lock(&fs_info->ordered_root_lock);
4939         list_splice_init(&fs_info->ordered_roots, &splice);
4940         while (!list_empty(&splice)) {
4941                 root = list_first_entry(&splice, struct btrfs_root,
4942                                         ordered_root);
4943                 list_move_tail(&root->ordered_root,
4944                                &fs_info->ordered_roots);
4945
4946                 spin_unlock(&fs_info->ordered_root_lock);
4947                 btrfs_destroy_ordered_extents(root);
4948
4949                 cond_resched();
4950                 spin_lock(&fs_info->ordered_root_lock);
4951         }
4952         spin_unlock(&fs_info->ordered_root_lock);
4953
4954         /*
4955          * We need this here because if we've been flipped read-only we won't
4956          * get sync() from the umount, so we need to make sure any ordered
4957          * extents that haven't had their dirty pages IO start writeout yet
4958          * actually get run and error out properly.
4959          */
4960         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4961 }
4962
4963 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4964                                       struct btrfs_fs_info *fs_info)
4965 {
4966         struct rb_node *node;
4967         struct btrfs_delayed_ref_root *delayed_refs;
4968         struct btrfs_delayed_ref_node *ref;
4969         int ret = 0;
4970
4971         delayed_refs = &trans->delayed_refs;
4972
4973         spin_lock(&delayed_refs->lock);
4974         if (atomic_read(&delayed_refs->num_entries) == 0) {
4975                 spin_unlock(&delayed_refs->lock);
4976                 btrfs_debug(fs_info, "delayed_refs has NO entry");
4977                 return ret;
4978         }
4979
4980         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4981                 struct btrfs_delayed_ref_head *head;
4982                 struct rb_node *n;
4983                 bool pin_bytes = false;
4984
4985                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4986                                 href_node);
4987                 if (btrfs_delayed_ref_lock(delayed_refs, head))
4988                         continue;
4989
4990                 spin_lock(&head->lock);
4991                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4992                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4993                                        ref_node);
4994                         ref->in_tree = 0;
4995                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4996                         RB_CLEAR_NODE(&ref->ref_node);
4997                         if (!list_empty(&ref->add_list))
4998                                 list_del(&ref->add_list);
4999                         atomic_dec(&delayed_refs->num_entries);
5000                         btrfs_put_delayed_ref(ref);
5001                 }
5002                 if (head->must_insert_reserved)
5003                         pin_bytes = true;
5004                 btrfs_free_delayed_extent_op(head->extent_op);
5005                 btrfs_delete_ref_head(delayed_refs, head);
5006                 spin_unlock(&head->lock);
5007                 spin_unlock(&delayed_refs->lock);
5008                 mutex_unlock(&head->mutex);
5009
5010                 if (pin_bytes) {
5011                         struct btrfs_block_group *cache;
5012
5013                         cache = btrfs_lookup_block_group(fs_info, head->bytenr);
5014                         BUG_ON(!cache);
5015
5016                         spin_lock(&cache->space_info->lock);
5017                         spin_lock(&cache->lock);
5018                         cache->pinned += head->num_bytes;
5019                         btrfs_space_info_update_bytes_pinned(fs_info,
5020                                 cache->space_info, head->num_bytes);
5021                         cache->reserved -= head->num_bytes;
5022                         cache->space_info->bytes_reserved -= head->num_bytes;
5023                         spin_unlock(&cache->lock);
5024                         spin_unlock(&cache->space_info->lock);
5025
5026                         btrfs_put_block_group(cache);
5027
5028                         btrfs_error_unpin_extent_range(fs_info, head->bytenr,
5029                                 head->bytenr + head->num_bytes - 1);
5030                 }
5031                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
5032                 btrfs_put_delayed_ref_head(head);
5033                 cond_resched();
5034                 spin_lock(&delayed_refs->lock);
5035         }
5036         btrfs_qgroup_destroy_extent_records(trans);
5037
5038         spin_unlock(&delayed_refs->lock);
5039
5040         return ret;
5041 }
5042
5043 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
5044 {
5045         struct btrfs_inode *btrfs_inode;
5046         struct list_head splice;
5047
5048         INIT_LIST_HEAD(&splice);
5049
5050         spin_lock(&root->delalloc_lock);
5051         list_splice_init(&root->delalloc_inodes, &splice);
5052
5053         while (!list_empty(&splice)) {
5054                 struct inode *inode = NULL;
5055                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
5056                                                delalloc_inodes);
5057                 __btrfs_del_delalloc_inode(root, btrfs_inode);
5058                 spin_unlock(&root->delalloc_lock);
5059
5060                 /*
5061                  * Make sure we get a live inode and that it'll not disappear
5062                  * meanwhile.
5063                  */
5064                 inode = igrab(&btrfs_inode->vfs_inode);
5065                 if (inode) {
5066                         invalidate_inode_pages2(inode->i_mapping);
5067                         iput(inode);
5068                 }
5069                 spin_lock(&root->delalloc_lock);
5070         }
5071         spin_unlock(&root->delalloc_lock);
5072 }
5073
5074 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
5075 {
5076         struct btrfs_root *root;
5077         struct list_head splice;
5078
5079         INIT_LIST_HEAD(&splice);
5080
5081         spin_lock(&fs_info->delalloc_root_lock);
5082         list_splice_init(&fs_info->delalloc_roots, &splice);
5083         while (!list_empty(&splice)) {
5084                 root = list_first_entry(&splice, struct btrfs_root,
5085                                          delalloc_root);
5086                 root = btrfs_grab_root(root);
5087                 BUG_ON(!root);
5088                 spin_unlock(&fs_info->delalloc_root_lock);
5089
5090                 btrfs_destroy_delalloc_inodes(root);
5091                 btrfs_put_root(root);
5092
5093                 spin_lock(&fs_info->delalloc_root_lock);
5094         }
5095         spin_unlock(&fs_info->delalloc_root_lock);
5096 }
5097
5098 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
5099                                         struct extent_io_tree *dirty_pages,
5100                                         int mark)
5101 {
5102         int ret;
5103         struct extent_buffer *eb;
5104         u64 start = 0;
5105         u64 end;
5106
5107         while (1) {
5108                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
5109                                             mark, NULL);
5110                 if (ret)
5111                         break;
5112
5113                 clear_extent_bits(dirty_pages, start, end, mark);
5114                 while (start <= end) {
5115                         eb = find_extent_buffer(fs_info, start);
5116                         start += fs_info->nodesize;
5117                         if (!eb)
5118                                 continue;
5119                         wait_on_extent_buffer_writeback(eb);
5120
5121                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
5122                                                &eb->bflags))
5123                                 clear_extent_buffer_dirty(eb);
5124                         free_extent_buffer_stale(eb);
5125                 }
5126         }
5127
5128         return ret;
5129 }
5130
5131 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
5132                                        struct extent_io_tree *unpin)
5133 {
5134         u64 start;
5135         u64 end;
5136         int ret;
5137
5138         while (1) {
5139                 struct extent_state *cached_state = NULL;
5140
5141                 /*
5142                  * The btrfs_finish_extent_commit() may get the same range as
5143                  * ours between find_first_extent_bit and clear_extent_dirty.
5144                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5145                  * the same extent range.
5146                  */
5147                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
5148                 ret = find_first_extent_bit(unpin, 0, &start, &end,
5149                                             EXTENT_DIRTY, &cached_state);
5150                 if (ret) {
5151                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5152                         break;
5153                 }
5154
5155                 clear_extent_dirty(unpin, start, end, &cached_state);
5156                 free_extent_state(cached_state);
5157                 btrfs_error_unpin_extent_range(fs_info, start, end);
5158                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5159                 cond_resched();
5160         }
5161
5162         return 0;
5163 }
5164
5165 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
5166 {
5167         struct inode *inode;
5168
5169         inode = cache->io_ctl.inode;
5170         if (inode) {
5171                 invalidate_inode_pages2(inode->i_mapping);
5172                 BTRFS_I(inode)->generation = 0;
5173                 cache->io_ctl.inode = NULL;
5174                 iput(inode);
5175         }
5176         ASSERT(cache->io_ctl.pages == NULL);
5177         btrfs_put_block_group(cache);
5178 }
5179
5180 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
5181                              struct btrfs_fs_info *fs_info)
5182 {
5183         struct btrfs_block_group *cache;
5184
5185         spin_lock(&cur_trans->dirty_bgs_lock);
5186         while (!list_empty(&cur_trans->dirty_bgs)) {
5187                 cache = list_first_entry(&cur_trans->dirty_bgs,
5188                                          struct btrfs_block_group,
5189                                          dirty_list);
5190
5191                 if (!list_empty(&cache->io_list)) {
5192                         spin_unlock(&cur_trans->dirty_bgs_lock);
5193                         list_del_init(&cache->io_list);
5194                         btrfs_cleanup_bg_io(cache);
5195                         spin_lock(&cur_trans->dirty_bgs_lock);
5196                 }
5197
5198                 list_del_init(&cache->dirty_list);
5199                 spin_lock(&cache->lock);
5200                 cache->disk_cache_state = BTRFS_DC_ERROR;
5201                 spin_unlock(&cache->lock);
5202
5203                 spin_unlock(&cur_trans->dirty_bgs_lock);
5204                 btrfs_put_block_group(cache);
5205                 btrfs_delayed_refs_rsv_release(fs_info, 1);
5206                 spin_lock(&cur_trans->dirty_bgs_lock);
5207         }
5208         spin_unlock(&cur_trans->dirty_bgs_lock);
5209
5210         /*
5211          * Refer to the definition of io_bgs member for details why it's safe
5212          * to use it without any locking
5213          */
5214         while (!list_empty(&cur_trans->io_bgs)) {
5215                 cache = list_first_entry(&cur_trans->io_bgs,
5216                                          struct btrfs_block_group,
5217                                          io_list);
5218
5219                 list_del_init(&cache->io_list);
5220                 spin_lock(&cache->lock);
5221                 cache->disk_cache_state = BTRFS_DC_ERROR;
5222                 spin_unlock(&cache->lock);
5223                 btrfs_cleanup_bg_io(cache);
5224         }
5225 }
5226
5227 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
5228                                    struct btrfs_fs_info *fs_info)
5229 {
5230         struct btrfs_device *dev, *tmp;
5231
5232         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
5233         ASSERT(list_empty(&cur_trans->dirty_bgs));
5234         ASSERT(list_empty(&cur_trans->io_bgs));
5235
5236         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5237                                  post_commit_list) {
5238                 list_del_init(&dev->post_commit_list);
5239         }
5240
5241         btrfs_destroy_delayed_refs(cur_trans, fs_info);
5242
5243         cur_trans->state = TRANS_STATE_COMMIT_START;
5244         wake_up(&fs_info->transaction_blocked_wait);
5245
5246         cur_trans->state = TRANS_STATE_UNBLOCKED;
5247         wake_up(&fs_info->transaction_wait);
5248
5249         btrfs_destroy_delayed_inodes(fs_info);
5250
5251         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
5252                                      EXTENT_DIRTY);
5253         btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
5254
5255         btrfs_free_redirty_list(cur_trans);
5256
5257         cur_trans->state =TRANS_STATE_COMPLETED;
5258         wake_up(&cur_trans->commit_wait);
5259 }
5260
5261 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
5262 {
5263         struct btrfs_transaction *t;
5264
5265         mutex_lock(&fs_info->transaction_kthread_mutex);
5266
5267         spin_lock(&fs_info->trans_lock);
5268         while (!list_empty(&fs_info->trans_list)) {
5269                 t = list_first_entry(&fs_info->trans_list,
5270                                      struct btrfs_transaction, list);
5271                 if (t->state >= TRANS_STATE_COMMIT_START) {
5272                         refcount_inc(&t->use_count);
5273                         spin_unlock(&fs_info->trans_lock);
5274                         btrfs_wait_for_commit(fs_info, t->transid);
5275                         btrfs_put_transaction(t);
5276                         spin_lock(&fs_info->trans_lock);
5277                         continue;
5278                 }
5279                 if (t == fs_info->running_transaction) {
5280                         t->state = TRANS_STATE_COMMIT_DOING;
5281                         spin_unlock(&fs_info->trans_lock);
5282                         /*
5283                          * We wait for 0 num_writers since we don't hold a trans
5284                          * handle open currently for this transaction.
5285                          */
5286                         wait_event(t->writer_wait,
5287                                    atomic_read(&t->num_writers) == 0);
5288                 } else {
5289                         spin_unlock(&fs_info->trans_lock);
5290                 }
5291                 btrfs_cleanup_one_transaction(t, fs_info);
5292
5293                 spin_lock(&fs_info->trans_lock);
5294                 if (t == fs_info->running_transaction)
5295                         fs_info->running_transaction = NULL;
5296                 list_del_init(&t->list);
5297                 spin_unlock(&fs_info->trans_lock);
5298
5299                 btrfs_put_transaction(t);
5300                 trace_btrfs_transaction_commit(fs_info);
5301                 spin_lock(&fs_info->trans_lock);
5302         }
5303         spin_unlock(&fs_info->trans_lock);
5304         btrfs_destroy_all_ordered_extents(fs_info);
5305         btrfs_destroy_delayed_inodes(fs_info);
5306         btrfs_assert_delayed_root_empty(fs_info);
5307         btrfs_destroy_all_delalloc_inodes(fs_info);
5308         btrfs_drop_all_logs(fs_info);
5309         mutex_unlock(&fs_info->transaction_kthread_mutex);
5310
5311         return 0;
5312 }
5313
5314 int btrfs_init_root_free_objectid(struct btrfs_root *root)
5315 {
5316         struct btrfs_path *path;
5317         int ret;
5318         struct extent_buffer *l;
5319         struct btrfs_key search_key;
5320         struct btrfs_key found_key;
5321         int slot;
5322
5323         path = btrfs_alloc_path();
5324         if (!path)
5325                 return -ENOMEM;
5326
5327         search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5328         search_key.type = -1;
5329         search_key.offset = (u64)-1;
5330         ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5331         if (ret < 0)
5332                 goto error;
5333         BUG_ON(ret == 0); /* Corruption */
5334         if (path->slots[0] > 0) {
5335                 slot = path->slots[0] - 1;
5336                 l = path->nodes[0];
5337                 btrfs_item_key_to_cpu(l, &found_key, slot);
5338                 root->free_objectid = max_t(u64, found_key.objectid + 1,
5339                                             BTRFS_FIRST_FREE_OBJECTID);
5340         } else {
5341                 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5342         }
5343         ret = 0;
5344 error:
5345         btrfs_free_path(path);
5346         return ret;
5347 }
5348
5349 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5350 {
5351         int ret;
5352         mutex_lock(&root->objectid_mutex);
5353
5354         if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5355                 btrfs_warn(root->fs_info,
5356                            "the objectid of root %llu reaches its highest value",
5357                            root->root_key.objectid);
5358                 ret = -ENOSPC;
5359                 goto out;
5360         }
5361
5362         *objectid = root->free_objectid++;
5363         ret = 0;
5364 out:
5365         mutex_unlock(&root->objectid_mutex);
5366         return ret;
5367 }