c843563914cad08e2dd84ef1741e19d933f092ee
[linux-2.6-microblaze.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "bio.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "rcu-string.h"
33 #include "dev-replace.h"
34 #include "raid56.h"
35 #include "sysfs.h"
36 #include "qgroup.h"
37 #include "compression.h"
38 #include "tree-checker.h"
39 #include "ref-verify.h"
40 #include "block-group.h"
41 #include "discard.h"
42 #include "space-info.h"
43 #include "zoned.h"
44 #include "subpage.h"
45 #include "fs.h"
46 #include "accessors.h"
47 #include "extent-tree.h"
48 #include "root-tree.h"
49 #include "defrag.h"
50 #include "uuid-tree.h"
51 #include "relocation.h"
52 #include "scrub.h"
53 #include "super.h"
54
55 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
56                                  BTRFS_HEADER_FLAG_RELOC |\
57                                  BTRFS_SUPER_FLAG_ERROR |\
58                                  BTRFS_SUPER_FLAG_SEEDING |\
59                                  BTRFS_SUPER_FLAG_METADUMP |\
60                                  BTRFS_SUPER_FLAG_METADUMP_V2)
61
62 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
63 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
64
65 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
66 {
67         if (fs_info->csum_shash)
68                 crypto_free_shash(fs_info->csum_shash);
69 }
70
71 /*
72  * Compute the csum of a btree block and store the result to provided buffer.
73  */
74 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
75 {
76         struct btrfs_fs_info *fs_info = buf->fs_info;
77         int num_pages;
78         u32 first_page_part;
79         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
80         char *kaddr;
81         int i;
82
83         shash->tfm = fs_info->csum_shash;
84         crypto_shash_init(shash);
85
86         if (buf->addr) {
87                 /* Pages are contiguous, handle them as a big one. */
88                 kaddr = buf->addr;
89                 first_page_part = fs_info->nodesize;
90                 num_pages = 1;
91         } else {
92                 kaddr = folio_address(buf->folios[0]);
93                 first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
94                 num_pages = num_extent_pages(buf);
95         }
96
97         crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
98                             first_page_part - BTRFS_CSUM_SIZE);
99
100         /*
101          * Multiple single-page folios case would reach here.
102          *
103          * nodesize <= PAGE_SIZE and large folio all handled by above
104          * crypto_shash_update() already.
105          */
106         for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
107                 kaddr = folio_address(buf->folios[i]);
108                 crypto_shash_update(shash, kaddr, PAGE_SIZE);
109         }
110         memset(result, 0, BTRFS_CSUM_SIZE);
111         crypto_shash_final(shash, result);
112 }
113
114 /*
115  * we can't consider a given block up to date unless the transid of the
116  * block matches the transid in the parent node's pointer.  This is how we
117  * detect blocks that either didn't get written at all or got written
118  * in the wrong place.
119  */
120 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
121 {
122         if (!extent_buffer_uptodate(eb))
123                 return 0;
124
125         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
126                 return 1;
127
128         if (atomic)
129                 return -EAGAIN;
130
131         if (!extent_buffer_uptodate(eb) ||
132             btrfs_header_generation(eb) != parent_transid) {
133                 btrfs_err_rl(eb->fs_info,
134 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
135                         eb->start, eb->read_mirror,
136                         parent_transid, btrfs_header_generation(eb));
137                 clear_extent_buffer_uptodate(eb);
138                 return 0;
139         }
140         return 1;
141 }
142
143 static bool btrfs_supported_super_csum(u16 csum_type)
144 {
145         switch (csum_type) {
146         case BTRFS_CSUM_TYPE_CRC32:
147         case BTRFS_CSUM_TYPE_XXHASH:
148         case BTRFS_CSUM_TYPE_SHA256:
149         case BTRFS_CSUM_TYPE_BLAKE2:
150                 return true;
151         default:
152                 return false;
153         }
154 }
155
156 /*
157  * Return 0 if the superblock checksum type matches the checksum value of that
158  * algorithm. Pass the raw disk superblock data.
159  */
160 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
161                            const struct btrfs_super_block *disk_sb)
162 {
163         char result[BTRFS_CSUM_SIZE];
164         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
165
166         shash->tfm = fs_info->csum_shash;
167
168         /*
169          * The super_block structure does not span the whole
170          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
171          * filled with zeros and is included in the checksum.
172          */
173         crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
174                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
175
176         if (memcmp(disk_sb->csum, result, fs_info->csum_size))
177                 return 1;
178
179         return 0;
180 }
181
182 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
183                                       int mirror_num)
184 {
185         struct btrfs_fs_info *fs_info = eb->fs_info;
186         int num_folios = num_extent_folios(eb);
187         int ret = 0;
188
189         if (sb_rdonly(fs_info->sb))
190                 return -EROFS;
191
192         for (int i = 0; i < num_folios; i++) {
193                 struct folio *folio = eb->folios[i];
194                 u64 start = max_t(u64, eb->start, folio_pos(folio));
195                 u64 end = min_t(u64, eb->start + eb->len,
196                                 folio_pos(folio) + folio_size(folio));
197                 u32 len = end - start;
198
199                 ret = btrfs_repair_io_failure(fs_info, 0, start, len,
200                                               start, folio, offset_in_folio(folio, start),
201                                               mirror_num);
202                 if (ret)
203                         break;
204         }
205
206         return ret;
207 }
208
209 /*
210  * helper to read a given tree block, doing retries as required when
211  * the checksums don't match and we have alternate mirrors to try.
212  *
213  * @check:              expected tree parentness check, see the comments of the
214  *                      structure for details.
215  */
216 int btrfs_read_extent_buffer(struct extent_buffer *eb,
217                              struct btrfs_tree_parent_check *check)
218 {
219         struct btrfs_fs_info *fs_info = eb->fs_info;
220         int failed = 0;
221         int ret;
222         int num_copies = 0;
223         int mirror_num = 0;
224         int failed_mirror = 0;
225
226         ASSERT(check);
227
228         while (1) {
229                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
230                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
231                 if (!ret)
232                         break;
233
234                 num_copies = btrfs_num_copies(fs_info,
235                                               eb->start, eb->len);
236                 if (num_copies == 1)
237                         break;
238
239                 if (!failed_mirror) {
240                         failed = 1;
241                         failed_mirror = eb->read_mirror;
242                 }
243
244                 mirror_num++;
245                 if (mirror_num == failed_mirror)
246                         mirror_num++;
247
248                 if (mirror_num > num_copies)
249                         break;
250         }
251
252         if (failed && !ret && failed_mirror)
253                 btrfs_repair_eb_io_failure(eb, failed_mirror);
254
255         return ret;
256 }
257
258 /*
259  * Checksum a dirty tree block before IO.
260  */
261 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
262 {
263         struct extent_buffer *eb = bbio->private;
264         struct btrfs_fs_info *fs_info = eb->fs_info;
265         u64 found_start = btrfs_header_bytenr(eb);
266         u64 last_trans;
267         u8 result[BTRFS_CSUM_SIZE];
268         int ret;
269
270         /* Btree blocks are always contiguous on disk. */
271         if (WARN_ON_ONCE(bbio->file_offset != eb->start))
272                 return BLK_STS_IOERR;
273         if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
274                 return BLK_STS_IOERR;
275
276         /*
277          * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
278          * checksum it but zero-out its content. This is done to preserve
279          * ordering of I/O without unnecessarily writing out data.
280          */
281         if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
282                 memzero_extent_buffer(eb, 0, eb->len);
283                 return BLK_STS_OK;
284         }
285
286         if (WARN_ON_ONCE(found_start != eb->start))
287                 return BLK_STS_IOERR;
288         if (WARN_ON(!btrfs_folio_test_uptodate(fs_info, eb->folios[0],
289                                                eb->start, eb->len)))
290                 return BLK_STS_IOERR;
291
292         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
293                                     offsetof(struct btrfs_header, fsid),
294                                     BTRFS_FSID_SIZE) == 0);
295         csum_tree_block(eb, result);
296
297         if (btrfs_header_level(eb))
298                 ret = btrfs_check_node(eb);
299         else
300                 ret = btrfs_check_leaf(eb);
301
302         if (ret < 0)
303                 goto error;
304
305         /*
306          * Also check the generation, the eb reached here must be newer than
307          * last committed. Or something seriously wrong happened.
308          */
309         last_trans = btrfs_get_last_trans_committed(fs_info);
310         if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
311                 ret = -EUCLEAN;
312                 btrfs_err(fs_info,
313                         "block=%llu bad generation, have %llu expect > %llu",
314                           eb->start, btrfs_header_generation(eb), last_trans);
315                 goto error;
316         }
317         write_extent_buffer(eb, result, 0, fs_info->csum_size);
318         return BLK_STS_OK;
319
320 error:
321         btrfs_print_tree(eb, 0);
322         btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
323                   eb->start);
324         /*
325          * Be noisy if this is an extent buffer from a log tree. We don't abort
326          * a transaction in case there's a bad log tree extent buffer, we just
327          * fallback to a transaction commit. Still we want to know when there is
328          * a bad log tree extent buffer, as that may signal a bug somewhere.
329          */
330         WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
331                 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
332         return errno_to_blk_status(ret);
333 }
334
335 static bool check_tree_block_fsid(struct extent_buffer *eb)
336 {
337         struct btrfs_fs_info *fs_info = eb->fs_info;
338         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
339         u8 fsid[BTRFS_FSID_SIZE];
340
341         read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
342                            BTRFS_FSID_SIZE);
343
344         /*
345          * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
346          * This is then overwritten by metadata_uuid if it is present in the
347          * device_list_add(). The same true for a seed device as well. So use of
348          * fs_devices::metadata_uuid is appropriate here.
349          */
350         if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
351                 return false;
352
353         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
354                 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
355                         return false;
356
357         return true;
358 }
359
360 /* Do basic extent buffer checks at read time */
361 int btrfs_validate_extent_buffer(struct extent_buffer *eb,
362                                  struct btrfs_tree_parent_check *check)
363 {
364         struct btrfs_fs_info *fs_info = eb->fs_info;
365         u64 found_start;
366         const u32 csum_size = fs_info->csum_size;
367         u8 found_level;
368         u8 result[BTRFS_CSUM_SIZE];
369         const u8 *header_csum;
370         int ret = 0;
371
372         ASSERT(check);
373
374         found_start = btrfs_header_bytenr(eb);
375         if (found_start != eb->start) {
376                 btrfs_err_rl(fs_info,
377                         "bad tree block start, mirror %u want %llu have %llu",
378                              eb->read_mirror, eb->start, found_start);
379                 ret = -EIO;
380                 goto out;
381         }
382         if (check_tree_block_fsid(eb)) {
383                 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
384                              eb->start, eb->read_mirror);
385                 ret = -EIO;
386                 goto out;
387         }
388         found_level = btrfs_header_level(eb);
389         if (found_level >= BTRFS_MAX_LEVEL) {
390                 btrfs_err(fs_info,
391                         "bad tree block level, mirror %u level %d on logical %llu",
392                         eb->read_mirror, btrfs_header_level(eb), eb->start);
393                 ret = -EIO;
394                 goto out;
395         }
396
397         csum_tree_block(eb, result);
398         header_csum = folio_address(eb->folios[0]) +
399                 get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum));
400
401         if (memcmp(result, header_csum, csum_size) != 0) {
402                 btrfs_warn_rl(fs_info,
403 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
404                               eb->start, eb->read_mirror,
405                               CSUM_FMT_VALUE(csum_size, header_csum),
406                               CSUM_FMT_VALUE(csum_size, result),
407                               btrfs_header_level(eb));
408                 ret = -EUCLEAN;
409                 goto out;
410         }
411
412         if (found_level != check->level) {
413                 btrfs_err(fs_info,
414                 "level verify failed on logical %llu mirror %u wanted %u found %u",
415                           eb->start, eb->read_mirror, check->level, found_level);
416                 ret = -EIO;
417                 goto out;
418         }
419         if (unlikely(check->transid &&
420                      btrfs_header_generation(eb) != check->transid)) {
421                 btrfs_err_rl(eb->fs_info,
422 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
423                                 eb->start, eb->read_mirror, check->transid,
424                                 btrfs_header_generation(eb));
425                 ret = -EIO;
426                 goto out;
427         }
428         if (check->has_first_key) {
429                 struct btrfs_key *expect_key = &check->first_key;
430                 struct btrfs_key found_key;
431
432                 if (found_level)
433                         btrfs_node_key_to_cpu(eb, &found_key, 0);
434                 else
435                         btrfs_item_key_to_cpu(eb, &found_key, 0);
436                 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
437                         btrfs_err(fs_info,
438 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
439                                   eb->start, check->transid,
440                                   expect_key->objectid,
441                                   expect_key->type, expect_key->offset,
442                                   found_key.objectid, found_key.type,
443                                   found_key.offset);
444                         ret = -EUCLEAN;
445                         goto out;
446                 }
447         }
448         if (check->owner_root) {
449                 ret = btrfs_check_eb_owner(eb, check->owner_root);
450                 if (ret < 0)
451                         goto out;
452         }
453
454         /*
455          * If this is a leaf block and it is corrupt, set the corrupt bit so
456          * that we don't try and read the other copies of this block, just
457          * return -EIO.
458          */
459         if (found_level == 0 && btrfs_check_leaf(eb)) {
460                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
461                 ret = -EIO;
462         }
463
464         if (found_level > 0 && btrfs_check_node(eb))
465                 ret = -EIO;
466
467         if (ret)
468                 btrfs_err(fs_info,
469                 "read time tree block corruption detected on logical %llu mirror %u",
470                           eb->start, eb->read_mirror);
471 out:
472         return ret;
473 }
474
475 #ifdef CONFIG_MIGRATION
476 static int btree_migrate_folio(struct address_space *mapping,
477                 struct folio *dst, struct folio *src, enum migrate_mode mode)
478 {
479         /*
480          * we can't safely write a btree page from here,
481          * we haven't done the locking hook
482          */
483         if (folio_test_dirty(src))
484                 return -EAGAIN;
485         /*
486          * Buffers may be managed in a filesystem specific way.
487          * We must have no buffers or drop them.
488          */
489         if (folio_get_private(src) &&
490             !filemap_release_folio(src, GFP_KERNEL))
491                 return -EAGAIN;
492         return migrate_folio(mapping, dst, src, mode);
493 }
494 #else
495 #define btree_migrate_folio NULL
496 #endif
497
498 static int btree_writepages(struct address_space *mapping,
499                             struct writeback_control *wbc)
500 {
501         struct btrfs_fs_info *fs_info;
502         int ret;
503
504         if (wbc->sync_mode == WB_SYNC_NONE) {
505
506                 if (wbc->for_kupdate)
507                         return 0;
508
509                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
510                 /* this is a bit racy, but that's ok */
511                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
512                                              BTRFS_DIRTY_METADATA_THRESH,
513                                              fs_info->dirty_metadata_batch);
514                 if (ret < 0)
515                         return 0;
516         }
517         return btree_write_cache_pages(mapping, wbc);
518 }
519
520 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
521 {
522         if (folio_test_writeback(folio) || folio_test_dirty(folio))
523                 return false;
524
525         return try_release_extent_buffer(&folio->page);
526 }
527
528 static void btree_invalidate_folio(struct folio *folio, size_t offset,
529                                  size_t length)
530 {
531         struct extent_io_tree *tree;
532         tree = &BTRFS_I(folio->mapping->host)->io_tree;
533         extent_invalidate_folio(tree, folio, offset);
534         btree_release_folio(folio, GFP_NOFS);
535         if (folio_get_private(folio)) {
536                 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
537                            "folio private not zero on folio %llu",
538                            (unsigned long long)folio_pos(folio));
539                 folio_detach_private(folio);
540         }
541 }
542
543 #ifdef DEBUG
544 static bool btree_dirty_folio(struct address_space *mapping,
545                 struct folio *folio)
546 {
547         struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
548         struct btrfs_subpage_info *spi = fs_info->subpage_info;
549         struct btrfs_subpage *subpage;
550         struct extent_buffer *eb;
551         int cur_bit = 0;
552         u64 page_start = folio_pos(folio);
553
554         if (fs_info->sectorsize == PAGE_SIZE) {
555                 eb = folio_get_private(folio);
556                 BUG_ON(!eb);
557                 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
558                 BUG_ON(!atomic_read(&eb->refs));
559                 btrfs_assert_tree_write_locked(eb);
560                 return filemap_dirty_folio(mapping, folio);
561         }
562
563         ASSERT(spi);
564         subpage = folio_get_private(folio);
565
566         for (cur_bit = spi->dirty_offset;
567              cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
568              cur_bit++) {
569                 unsigned long flags;
570                 u64 cur;
571
572                 spin_lock_irqsave(&subpage->lock, flags);
573                 if (!test_bit(cur_bit, subpage->bitmaps)) {
574                         spin_unlock_irqrestore(&subpage->lock, flags);
575                         continue;
576                 }
577                 spin_unlock_irqrestore(&subpage->lock, flags);
578                 cur = page_start + cur_bit * fs_info->sectorsize;
579
580                 eb = find_extent_buffer(fs_info, cur);
581                 ASSERT(eb);
582                 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
583                 ASSERT(atomic_read(&eb->refs));
584                 btrfs_assert_tree_write_locked(eb);
585                 free_extent_buffer(eb);
586
587                 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
588         }
589         return filemap_dirty_folio(mapping, folio);
590 }
591 #else
592 #define btree_dirty_folio filemap_dirty_folio
593 #endif
594
595 static const struct address_space_operations btree_aops = {
596         .writepages     = btree_writepages,
597         .release_folio  = btree_release_folio,
598         .invalidate_folio = btree_invalidate_folio,
599         .migrate_folio  = btree_migrate_folio,
600         .dirty_folio    = btree_dirty_folio,
601 };
602
603 struct extent_buffer *btrfs_find_create_tree_block(
604                                                 struct btrfs_fs_info *fs_info,
605                                                 u64 bytenr, u64 owner_root,
606                                                 int level)
607 {
608         if (btrfs_is_testing(fs_info))
609                 return alloc_test_extent_buffer(fs_info, bytenr);
610         return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
611 }
612
613 /*
614  * Read tree block at logical address @bytenr and do variant basic but critical
615  * verification.
616  *
617  * @check:              expected tree parentness check, see comments of the
618  *                      structure for details.
619  */
620 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
621                                       struct btrfs_tree_parent_check *check)
622 {
623         struct extent_buffer *buf = NULL;
624         int ret;
625
626         ASSERT(check);
627
628         buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
629                                            check->level);
630         if (IS_ERR(buf))
631                 return buf;
632
633         ret = btrfs_read_extent_buffer(buf, check);
634         if (ret) {
635                 free_extent_buffer_stale(buf);
636                 return ERR_PTR(ret);
637         }
638         if (btrfs_check_eb_owner(buf, check->owner_root)) {
639                 free_extent_buffer_stale(buf);
640                 return ERR_PTR(-EUCLEAN);
641         }
642         return buf;
643
644 }
645
646 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
647                          u64 objectid)
648 {
649         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
650
651         memset(&root->root_key, 0, sizeof(root->root_key));
652         memset(&root->root_item, 0, sizeof(root->root_item));
653         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
654         root->fs_info = fs_info;
655         root->root_key.objectid = objectid;
656         root->node = NULL;
657         root->commit_root = NULL;
658         root->state = 0;
659         RB_CLEAR_NODE(&root->rb_node);
660
661         root->last_trans = 0;
662         root->free_objectid = 0;
663         root->nr_delalloc_inodes = 0;
664         root->nr_ordered_extents = 0;
665         root->inode_tree = RB_ROOT;
666         /* GFP flags are compatible with XA_FLAGS_*. */
667         xa_init_flags(&root->delayed_nodes, GFP_ATOMIC);
668
669         btrfs_init_root_block_rsv(root);
670
671         INIT_LIST_HEAD(&root->dirty_list);
672         INIT_LIST_HEAD(&root->root_list);
673         INIT_LIST_HEAD(&root->delalloc_inodes);
674         INIT_LIST_HEAD(&root->delalloc_root);
675         INIT_LIST_HEAD(&root->ordered_extents);
676         INIT_LIST_HEAD(&root->ordered_root);
677         INIT_LIST_HEAD(&root->reloc_dirty_list);
678         spin_lock_init(&root->inode_lock);
679         spin_lock_init(&root->delalloc_lock);
680         spin_lock_init(&root->ordered_extent_lock);
681         spin_lock_init(&root->accounting_lock);
682         spin_lock_init(&root->qgroup_meta_rsv_lock);
683         mutex_init(&root->objectid_mutex);
684         mutex_init(&root->log_mutex);
685         mutex_init(&root->ordered_extent_mutex);
686         mutex_init(&root->delalloc_mutex);
687         init_waitqueue_head(&root->qgroup_flush_wait);
688         init_waitqueue_head(&root->log_writer_wait);
689         init_waitqueue_head(&root->log_commit_wait[0]);
690         init_waitqueue_head(&root->log_commit_wait[1]);
691         INIT_LIST_HEAD(&root->log_ctxs[0]);
692         INIT_LIST_HEAD(&root->log_ctxs[1]);
693         atomic_set(&root->log_commit[0], 0);
694         atomic_set(&root->log_commit[1], 0);
695         atomic_set(&root->log_writers, 0);
696         atomic_set(&root->log_batch, 0);
697         refcount_set(&root->refs, 1);
698         atomic_set(&root->snapshot_force_cow, 0);
699         atomic_set(&root->nr_swapfiles, 0);
700         btrfs_set_root_log_transid(root, 0);
701         root->log_transid_committed = -1;
702         btrfs_set_root_last_log_commit(root, 0);
703         root->anon_dev = 0;
704         if (!dummy) {
705                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
706                                     IO_TREE_ROOT_DIRTY_LOG_PAGES);
707                 extent_io_tree_init(fs_info, &root->log_csum_range,
708                                     IO_TREE_LOG_CSUM_RANGE);
709         }
710
711         spin_lock_init(&root->root_item_lock);
712         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
713 #ifdef CONFIG_BTRFS_DEBUG
714         INIT_LIST_HEAD(&root->leak_list);
715         spin_lock(&fs_info->fs_roots_radix_lock);
716         list_add_tail(&root->leak_list, &fs_info->allocated_roots);
717         spin_unlock(&fs_info->fs_roots_radix_lock);
718 #endif
719 }
720
721 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
722                                            u64 objectid, gfp_t flags)
723 {
724         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
725         if (root)
726                 __setup_root(root, fs_info, objectid);
727         return root;
728 }
729
730 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
731 /* Should only be used by the testing infrastructure */
732 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
733 {
734         struct btrfs_root *root;
735
736         if (!fs_info)
737                 return ERR_PTR(-EINVAL);
738
739         root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
740         if (!root)
741                 return ERR_PTR(-ENOMEM);
742
743         /* We don't use the stripesize in selftest, set it as sectorsize */
744         root->alloc_bytenr = 0;
745
746         return root;
747 }
748 #endif
749
750 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
751 {
752         const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
753         const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
754
755         return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
756 }
757
758 static int global_root_key_cmp(const void *k, const struct rb_node *node)
759 {
760         const struct btrfs_key *key = k;
761         const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
762
763         return btrfs_comp_cpu_keys(key, &root->root_key);
764 }
765
766 int btrfs_global_root_insert(struct btrfs_root *root)
767 {
768         struct btrfs_fs_info *fs_info = root->fs_info;
769         struct rb_node *tmp;
770         int ret = 0;
771
772         write_lock(&fs_info->global_root_lock);
773         tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
774         write_unlock(&fs_info->global_root_lock);
775
776         if (tmp) {
777                 ret = -EEXIST;
778                 btrfs_warn(fs_info, "global root %llu %llu already exists",
779                                 root->root_key.objectid, root->root_key.offset);
780         }
781         return ret;
782 }
783
784 void btrfs_global_root_delete(struct btrfs_root *root)
785 {
786         struct btrfs_fs_info *fs_info = root->fs_info;
787
788         write_lock(&fs_info->global_root_lock);
789         rb_erase(&root->rb_node, &fs_info->global_root_tree);
790         write_unlock(&fs_info->global_root_lock);
791 }
792
793 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
794                                      struct btrfs_key *key)
795 {
796         struct rb_node *node;
797         struct btrfs_root *root = NULL;
798
799         read_lock(&fs_info->global_root_lock);
800         node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
801         if (node)
802                 root = container_of(node, struct btrfs_root, rb_node);
803         read_unlock(&fs_info->global_root_lock);
804
805         return root;
806 }
807
808 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
809 {
810         struct btrfs_block_group *block_group;
811         u64 ret;
812
813         if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
814                 return 0;
815
816         if (bytenr)
817                 block_group = btrfs_lookup_block_group(fs_info, bytenr);
818         else
819                 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
820         ASSERT(block_group);
821         if (!block_group)
822                 return 0;
823         ret = block_group->global_root_id;
824         btrfs_put_block_group(block_group);
825
826         return ret;
827 }
828
829 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
830 {
831         struct btrfs_key key = {
832                 .objectid = BTRFS_CSUM_TREE_OBJECTID,
833                 .type = BTRFS_ROOT_ITEM_KEY,
834                 .offset = btrfs_global_root_id(fs_info, bytenr),
835         };
836
837         return btrfs_global_root(fs_info, &key);
838 }
839
840 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
841 {
842         struct btrfs_key key = {
843                 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
844                 .type = BTRFS_ROOT_ITEM_KEY,
845                 .offset = btrfs_global_root_id(fs_info, bytenr),
846         };
847
848         return btrfs_global_root(fs_info, &key);
849 }
850
851 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
852 {
853         if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
854                 return fs_info->block_group_root;
855         return btrfs_extent_root(fs_info, 0);
856 }
857
858 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
859                                      u64 objectid)
860 {
861         struct btrfs_fs_info *fs_info = trans->fs_info;
862         struct extent_buffer *leaf;
863         struct btrfs_root *tree_root = fs_info->tree_root;
864         struct btrfs_root *root;
865         struct btrfs_key key;
866         unsigned int nofs_flag;
867         int ret = 0;
868
869         /*
870          * We're holding a transaction handle, so use a NOFS memory allocation
871          * context to avoid deadlock if reclaim happens.
872          */
873         nofs_flag = memalloc_nofs_save();
874         root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
875         memalloc_nofs_restore(nofs_flag);
876         if (!root)
877                 return ERR_PTR(-ENOMEM);
878
879         root->root_key.objectid = objectid;
880         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
881         root->root_key.offset = 0;
882
883         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
884                                       0, BTRFS_NESTING_NORMAL);
885         if (IS_ERR(leaf)) {
886                 ret = PTR_ERR(leaf);
887                 leaf = NULL;
888                 goto fail;
889         }
890
891         root->node = leaf;
892         btrfs_mark_buffer_dirty(trans, leaf);
893
894         root->commit_root = btrfs_root_node(root);
895         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
896
897         btrfs_set_root_flags(&root->root_item, 0);
898         btrfs_set_root_limit(&root->root_item, 0);
899         btrfs_set_root_bytenr(&root->root_item, leaf->start);
900         btrfs_set_root_generation(&root->root_item, trans->transid);
901         btrfs_set_root_level(&root->root_item, 0);
902         btrfs_set_root_refs(&root->root_item, 1);
903         btrfs_set_root_used(&root->root_item, leaf->len);
904         btrfs_set_root_last_snapshot(&root->root_item, 0);
905         btrfs_set_root_dirid(&root->root_item, 0);
906         if (is_fstree(objectid))
907                 generate_random_guid(root->root_item.uuid);
908         else
909                 export_guid(root->root_item.uuid, &guid_null);
910         btrfs_set_root_drop_level(&root->root_item, 0);
911
912         btrfs_tree_unlock(leaf);
913
914         key.objectid = objectid;
915         key.type = BTRFS_ROOT_ITEM_KEY;
916         key.offset = 0;
917         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
918         if (ret)
919                 goto fail;
920
921         return root;
922
923 fail:
924         btrfs_put_root(root);
925
926         return ERR_PTR(ret);
927 }
928
929 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
930                                          struct btrfs_fs_info *fs_info)
931 {
932         struct btrfs_root *root;
933
934         root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
935         if (!root)
936                 return ERR_PTR(-ENOMEM);
937
938         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
939         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
940         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
941
942         return root;
943 }
944
945 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
946                               struct btrfs_root *root)
947 {
948         struct extent_buffer *leaf;
949
950         /*
951          * DON'T set SHAREABLE bit for log trees.
952          *
953          * Log trees are not exposed to user space thus can't be snapshotted,
954          * and they go away before a real commit is actually done.
955          *
956          * They do store pointers to file data extents, and those reference
957          * counts still get updated (along with back refs to the log tree).
958          */
959
960         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
961                         NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
962         if (IS_ERR(leaf))
963                 return PTR_ERR(leaf);
964
965         root->node = leaf;
966
967         btrfs_mark_buffer_dirty(trans, root->node);
968         btrfs_tree_unlock(root->node);
969
970         return 0;
971 }
972
973 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
974                              struct btrfs_fs_info *fs_info)
975 {
976         struct btrfs_root *log_root;
977
978         log_root = alloc_log_tree(trans, fs_info);
979         if (IS_ERR(log_root))
980                 return PTR_ERR(log_root);
981
982         if (!btrfs_is_zoned(fs_info)) {
983                 int ret = btrfs_alloc_log_tree_node(trans, log_root);
984
985                 if (ret) {
986                         btrfs_put_root(log_root);
987                         return ret;
988                 }
989         }
990
991         WARN_ON(fs_info->log_root_tree);
992         fs_info->log_root_tree = log_root;
993         return 0;
994 }
995
996 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
997                        struct btrfs_root *root)
998 {
999         struct btrfs_fs_info *fs_info = root->fs_info;
1000         struct btrfs_root *log_root;
1001         struct btrfs_inode_item *inode_item;
1002         int ret;
1003
1004         log_root = alloc_log_tree(trans, fs_info);
1005         if (IS_ERR(log_root))
1006                 return PTR_ERR(log_root);
1007
1008         ret = btrfs_alloc_log_tree_node(trans, log_root);
1009         if (ret) {
1010                 btrfs_put_root(log_root);
1011                 return ret;
1012         }
1013
1014         log_root->last_trans = trans->transid;
1015         log_root->root_key.offset = root->root_key.objectid;
1016
1017         inode_item = &log_root->root_item.inode;
1018         btrfs_set_stack_inode_generation(inode_item, 1);
1019         btrfs_set_stack_inode_size(inode_item, 3);
1020         btrfs_set_stack_inode_nlink(inode_item, 1);
1021         btrfs_set_stack_inode_nbytes(inode_item,
1022                                      fs_info->nodesize);
1023         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1024
1025         btrfs_set_root_node(&log_root->root_item, log_root->node);
1026
1027         WARN_ON(root->log_root);
1028         root->log_root = log_root;
1029         btrfs_set_root_log_transid(root, 0);
1030         root->log_transid_committed = -1;
1031         btrfs_set_root_last_log_commit(root, 0);
1032         return 0;
1033 }
1034
1035 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1036                                               struct btrfs_path *path,
1037                                               struct btrfs_key *key)
1038 {
1039         struct btrfs_root *root;
1040         struct btrfs_tree_parent_check check = { 0 };
1041         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1042         u64 generation;
1043         int ret;
1044         int level;
1045
1046         root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1047         if (!root)
1048                 return ERR_PTR(-ENOMEM);
1049
1050         ret = btrfs_find_root(tree_root, key, path,
1051                               &root->root_item, &root->root_key);
1052         if (ret) {
1053                 if (ret > 0)
1054                         ret = -ENOENT;
1055                 goto fail;
1056         }
1057
1058         generation = btrfs_root_generation(&root->root_item);
1059         level = btrfs_root_level(&root->root_item);
1060         check.level = level;
1061         check.transid = generation;
1062         check.owner_root = key->objectid;
1063         root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1064                                      &check);
1065         if (IS_ERR(root->node)) {
1066                 ret = PTR_ERR(root->node);
1067                 root->node = NULL;
1068                 goto fail;
1069         }
1070         if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1071                 ret = -EIO;
1072                 goto fail;
1073         }
1074
1075         /*
1076          * For real fs, and not log/reloc trees, root owner must
1077          * match its root node owner
1078          */
1079         if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1080             root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1081             root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1082             root->root_key.objectid != btrfs_header_owner(root->node)) {
1083                 btrfs_crit(fs_info,
1084 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1085                            root->root_key.objectid, root->node->start,
1086                            btrfs_header_owner(root->node),
1087                            root->root_key.objectid);
1088                 ret = -EUCLEAN;
1089                 goto fail;
1090         }
1091         root->commit_root = btrfs_root_node(root);
1092         return root;
1093 fail:
1094         btrfs_put_root(root);
1095         return ERR_PTR(ret);
1096 }
1097
1098 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1099                                         struct btrfs_key *key)
1100 {
1101         struct btrfs_root *root;
1102         struct btrfs_path *path;
1103
1104         path = btrfs_alloc_path();
1105         if (!path)
1106                 return ERR_PTR(-ENOMEM);
1107         root = read_tree_root_path(tree_root, path, key);
1108         btrfs_free_path(path);
1109
1110         return root;
1111 }
1112
1113 /*
1114  * Initialize subvolume root in-memory structure
1115  *
1116  * @anon_dev:   anonymous device to attach to the root, if zero, allocate new
1117  */
1118 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1119 {
1120         int ret;
1121
1122         btrfs_drew_lock_init(&root->snapshot_lock);
1123
1124         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1125             !btrfs_is_data_reloc_root(root) &&
1126             is_fstree(root->root_key.objectid)) {
1127                 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1128                 btrfs_check_and_init_root_item(&root->root_item);
1129         }
1130
1131         /*
1132          * Don't assign anonymous block device to roots that are not exposed to
1133          * userspace, the id pool is limited to 1M
1134          */
1135         if (is_fstree(root->root_key.objectid) &&
1136             btrfs_root_refs(&root->root_item) > 0) {
1137                 if (!anon_dev) {
1138                         ret = get_anon_bdev(&root->anon_dev);
1139                         if (ret)
1140                                 goto fail;
1141                 } else {
1142                         root->anon_dev = anon_dev;
1143                 }
1144         }
1145
1146         mutex_lock(&root->objectid_mutex);
1147         ret = btrfs_init_root_free_objectid(root);
1148         if (ret) {
1149                 mutex_unlock(&root->objectid_mutex);
1150                 goto fail;
1151         }
1152
1153         ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1154
1155         mutex_unlock(&root->objectid_mutex);
1156
1157         return 0;
1158 fail:
1159         /* The caller is responsible to call btrfs_free_fs_root */
1160         return ret;
1161 }
1162
1163 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1164                                                u64 root_id)
1165 {
1166         struct btrfs_root *root;
1167
1168         spin_lock(&fs_info->fs_roots_radix_lock);
1169         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1170                                  (unsigned long)root_id);
1171         root = btrfs_grab_root(root);
1172         spin_unlock(&fs_info->fs_roots_radix_lock);
1173         return root;
1174 }
1175
1176 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1177                                                 u64 objectid)
1178 {
1179         struct btrfs_key key = {
1180                 .objectid = objectid,
1181                 .type = BTRFS_ROOT_ITEM_KEY,
1182                 .offset = 0,
1183         };
1184
1185         switch (objectid) {
1186         case BTRFS_ROOT_TREE_OBJECTID:
1187                 return btrfs_grab_root(fs_info->tree_root);
1188         case BTRFS_EXTENT_TREE_OBJECTID:
1189                 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1190         case BTRFS_CHUNK_TREE_OBJECTID:
1191                 return btrfs_grab_root(fs_info->chunk_root);
1192         case BTRFS_DEV_TREE_OBJECTID:
1193                 return btrfs_grab_root(fs_info->dev_root);
1194         case BTRFS_CSUM_TREE_OBJECTID:
1195                 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1196         case BTRFS_QUOTA_TREE_OBJECTID:
1197                 return btrfs_grab_root(fs_info->quota_root);
1198         case BTRFS_UUID_TREE_OBJECTID:
1199                 return btrfs_grab_root(fs_info->uuid_root);
1200         case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1201                 return btrfs_grab_root(fs_info->block_group_root);
1202         case BTRFS_FREE_SPACE_TREE_OBJECTID:
1203                 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1204         case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1205                 return btrfs_grab_root(fs_info->stripe_root);
1206         default:
1207                 return NULL;
1208         }
1209 }
1210
1211 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1212                          struct btrfs_root *root)
1213 {
1214         int ret;
1215
1216         ret = radix_tree_preload(GFP_NOFS);
1217         if (ret)
1218                 return ret;
1219
1220         spin_lock(&fs_info->fs_roots_radix_lock);
1221         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1222                                 (unsigned long)root->root_key.objectid,
1223                                 root);
1224         if (ret == 0) {
1225                 btrfs_grab_root(root);
1226                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1227         }
1228         spin_unlock(&fs_info->fs_roots_radix_lock);
1229         radix_tree_preload_end();
1230
1231         return ret;
1232 }
1233
1234 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1235 {
1236 #ifdef CONFIG_BTRFS_DEBUG
1237         struct btrfs_root *root;
1238
1239         while (!list_empty(&fs_info->allocated_roots)) {
1240                 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1241
1242                 root = list_first_entry(&fs_info->allocated_roots,
1243                                         struct btrfs_root, leak_list);
1244                 btrfs_err(fs_info, "leaked root %s refcount %d",
1245                           btrfs_root_name(&root->root_key, buf),
1246                           refcount_read(&root->refs));
1247                 while (refcount_read(&root->refs) > 1)
1248                         btrfs_put_root(root);
1249                 btrfs_put_root(root);
1250         }
1251 #endif
1252 }
1253
1254 static void free_global_roots(struct btrfs_fs_info *fs_info)
1255 {
1256         struct btrfs_root *root;
1257         struct rb_node *node;
1258
1259         while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1260                 root = rb_entry(node, struct btrfs_root, rb_node);
1261                 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1262                 btrfs_put_root(root);
1263         }
1264 }
1265
1266 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1267 {
1268         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1269         percpu_counter_destroy(&fs_info->delalloc_bytes);
1270         percpu_counter_destroy(&fs_info->ordered_bytes);
1271         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1272         btrfs_free_csum_hash(fs_info);
1273         btrfs_free_stripe_hash_table(fs_info);
1274         btrfs_free_ref_cache(fs_info);
1275         kfree(fs_info->balance_ctl);
1276         kfree(fs_info->delayed_root);
1277         free_global_roots(fs_info);
1278         btrfs_put_root(fs_info->tree_root);
1279         btrfs_put_root(fs_info->chunk_root);
1280         btrfs_put_root(fs_info->dev_root);
1281         btrfs_put_root(fs_info->quota_root);
1282         btrfs_put_root(fs_info->uuid_root);
1283         btrfs_put_root(fs_info->fs_root);
1284         btrfs_put_root(fs_info->data_reloc_root);
1285         btrfs_put_root(fs_info->block_group_root);
1286         btrfs_put_root(fs_info->stripe_root);
1287         btrfs_check_leaked_roots(fs_info);
1288         btrfs_extent_buffer_leak_debug_check(fs_info);
1289         kfree(fs_info->super_copy);
1290         kfree(fs_info->super_for_commit);
1291         kfree(fs_info->subpage_info);
1292         kvfree(fs_info);
1293 }
1294
1295
1296 /*
1297  * Get an in-memory reference of a root structure.
1298  *
1299  * For essential trees like root/extent tree, we grab it from fs_info directly.
1300  * For subvolume trees, we check the cached filesystem roots first. If not
1301  * found, then read it from disk and add it to cached fs roots.
1302  *
1303  * Caller should release the root by calling btrfs_put_root() after the usage.
1304  *
1305  * NOTE: Reloc and log trees can't be read by this function as they share the
1306  *       same root objectid.
1307  *
1308  * @objectid:   root id
1309  * @anon_dev:   preallocated anonymous block device number for new roots,
1310  *              pass NULL for a new allocation.
1311  * @check_ref:  whether to check root item references, If true, return -ENOENT
1312  *              for orphan roots
1313  */
1314 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1315                                              u64 objectid, dev_t *anon_dev,
1316                                              bool check_ref)
1317 {
1318         struct btrfs_root *root;
1319         struct btrfs_path *path;
1320         struct btrfs_key key;
1321         int ret;
1322
1323         root = btrfs_get_global_root(fs_info, objectid);
1324         if (root)
1325                 return root;
1326
1327         /*
1328          * If we're called for non-subvolume trees, and above function didn't
1329          * find one, do not try to read it from disk.
1330          *
1331          * This is namely for free-space-tree and quota tree, which can change
1332          * at runtime and should only be grabbed from fs_info.
1333          */
1334         if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1335                 return ERR_PTR(-ENOENT);
1336 again:
1337         root = btrfs_lookup_fs_root(fs_info, objectid);
1338         if (root) {
1339                 /*
1340                  * Some other caller may have read out the newly inserted
1341                  * subvolume already (for things like backref walk etc).  Not
1342                  * that common but still possible.  In that case, we just need
1343                  * to free the anon_dev.
1344                  */
1345                 if (unlikely(anon_dev && *anon_dev)) {
1346                         free_anon_bdev(*anon_dev);
1347                         *anon_dev = 0;
1348                 }
1349
1350                 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1351                         btrfs_put_root(root);
1352                         return ERR_PTR(-ENOENT);
1353                 }
1354                 return root;
1355         }
1356
1357         key.objectid = objectid;
1358         key.type = BTRFS_ROOT_ITEM_KEY;
1359         key.offset = (u64)-1;
1360         root = btrfs_read_tree_root(fs_info->tree_root, &key);
1361         if (IS_ERR(root))
1362                 return root;
1363
1364         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1365                 ret = -ENOENT;
1366                 goto fail;
1367         }
1368
1369         ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
1370         if (ret)
1371                 goto fail;
1372
1373         path = btrfs_alloc_path();
1374         if (!path) {
1375                 ret = -ENOMEM;
1376                 goto fail;
1377         }
1378         key.objectid = BTRFS_ORPHAN_OBJECTID;
1379         key.type = BTRFS_ORPHAN_ITEM_KEY;
1380         key.offset = objectid;
1381
1382         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1383         btrfs_free_path(path);
1384         if (ret < 0)
1385                 goto fail;
1386         if (ret == 0)
1387                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1388
1389         ret = btrfs_insert_fs_root(fs_info, root);
1390         if (ret) {
1391                 if (ret == -EEXIST) {
1392                         btrfs_put_root(root);
1393                         goto again;
1394                 }
1395                 goto fail;
1396         }
1397         return root;
1398 fail:
1399         /*
1400          * If our caller provided us an anonymous device, then it's his
1401          * responsibility to free it in case we fail. So we have to set our
1402          * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1403          * and once again by our caller.
1404          */
1405         if (anon_dev && *anon_dev)
1406                 root->anon_dev = 0;
1407         btrfs_put_root(root);
1408         return ERR_PTR(ret);
1409 }
1410
1411 /*
1412  * Get in-memory reference of a root structure
1413  *
1414  * @objectid:   tree objectid
1415  * @check_ref:  if set, verify that the tree exists and the item has at least
1416  *              one reference
1417  */
1418 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1419                                      u64 objectid, bool check_ref)
1420 {
1421         return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
1422 }
1423
1424 /*
1425  * Get in-memory reference of a root structure, created as new, optionally pass
1426  * the anonymous block device id
1427  *
1428  * @objectid:   tree objectid
1429  * @anon_dev:   if NULL, allocate a new anonymous block device or use the
1430  *              parameter value if not NULL
1431  */
1432 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1433                                          u64 objectid, dev_t *anon_dev)
1434 {
1435         return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1436 }
1437
1438 /*
1439  * Return a root for the given objectid.
1440  *
1441  * @fs_info:    the fs_info
1442  * @objectid:   the objectid we need to lookup
1443  *
1444  * This is exclusively used for backref walking, and exists specifically because
1445  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1446  * creation time, which means we may have to read the tree_root in order to look
1447  * up a fs root that is not in memory.  If the root is not in memory we will
1448  * read the tree root commit root and look up the fs root from there.  This is a
1449  * temporary root, it will not be inserted into the radix tree as it doesn't
1450  * have the most uptodate information, it'll simply be discarded once the
1451  * backref code is finished using the root.
1452  */
1453 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1454                                                  struct btrfs_path *path,
1455                                                  u64 objectid)
1456 {
1457         struct btrfs_root *root;
1458         struct btrfs_key key;
1459
1460         ASSERT(path->search_commit_root && path->skip_locking);
1461
1462         /*
1463          * This can return -ENOENT if we ask for a root that doesn't exist, but
1464          * since this is called via the backref walking code we won't be looking
1465          * up a root that doesn't exist, unless there's corruption.  So if root
1466          * != NULL just return it.
1467          */
1468         root = btrfs_get_global_root(fs_info, objectid);
1469         if (root)
1470                 return root;
1471
1472         root = btrfs_lookup_fs_root(fs_info, objectid);
1473         if (root)
1474                 return root;
1475
1476         key.objectid = objectid;
1477         key.type = BTRFS_ROOT_ITEM_KEY;
1478         key.offset = (u64)-1;
1479         root = read_tree_root_path(fs_info->tree_root, path, &key);
1480         btrfs_release_path(path);
1481
1482         return root;
1483 }
1484
1485 static int cleaner_kthread(void *arg)
1486 {
1487         struct btrfs_fs_info *fs_info = arg;
1488         int again;
1489
1490         while (1) {
1491                 again = 0;
1492
1493                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1494
1495                 /* Make the cleaner go to sleep early. */
1496                 if (btrfs_need_cleaner_sleep(fs_info))
1497                         goto sleep;
1498
1499                 /*
1500                  * Do not do anything if we might cause open_ctree() to block
1501                  * before we have finished mounting the filesystem.
1502                  */
1503                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1504                         goto sleep;
1505
1506                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1507                         goto sleep;
1508
1509                 /*
1510                  * Avoid the problem that we change the status of the fs
1511                  * during the above check and trylock.
1512                  */
1513                 if (btrfs_need_cleaner_sleep(fs_info)) {
1514                         mutex_unlock(&fs_info->cleaner_mutex);
1515                         goto sleep;
1516                 }
1517
1518                 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1519                         btrfs_sysfs_feature_update(fs_info);
1520
1521                 btrfs_run_delayed_iputs(fs_info);
1522
1523                 again = btrfs_clean_one_deleted_snapshot(fs_info);
1524                 mutex_unlock(&fs_info->cleaner_mutex);
1525
1526                 /*
1527                  * The defragger has dealt with the R/O remount and umount,
1528                  * needn't do anything special here.
1529                  */
1530                 btrfs_run_defrag_inodes(fs_info);
1531
1532                 /*
1533                  * Acquires fs_info->reclaim_bgs_lock to avoid racing
1534                  * with relocation (btrfs_relocate_chunk) and relocation
1535                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1536                  * after acquiring fs_info->reclaim_bgs_lock. So we
1537                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1538                  * unused block groups.
1539                  */
1540                 btrfs_delete_unused_bgs(fs_info);
1541
1542                 /*
1543                  * Reclaim block groups in the reclaim_bgs list after we deleted
1544                  * all unused block_groups. This possibly gives us some more free
1545                  * space.
1546                  */
1547                 btrfs_reclaim_bgs(fs_info);
1548 sleep:
1549                 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1550                 if (kthread_should_park())
1551                         kthread_parkme();
1552                 if (kthread_should_stop())
1553                         return 0;
1554                 if (!again) {
1555                         set_current_state(TASK_INTERRUPTIBLE);
1556                         schedule();
1557                         __set_current_state(TASK_RUNNING);
1558                 }
1559         }
1560 }
1561
1562 static int transaction_kthread(void *arg)
1563 {
1564         struct btrfs_root *root = arg;
1565         struct btrfs_fs_info *fs_info = root->fs_info;
1566         struct btrfs_trans_handle *trans;
1567         struct btrfs_transaction *cur;
1568         u64 transid;
1569         time64_t delta;
1570         unsigned long delay;
1571         bool cannot_commit;
1572
1573         do {
1574                 cannot_commit = false;
1575                 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1576                 mutex_lock(&fs_info->transaction_kthread_mutex);
1577
1578                 spin_lock(&fs_info->trans_lock);
1579                 cur = fs_info->running_transaction;
1580                 if (!cur) {
1581                         spin_unlock(&fs_info->trans_lock);
1582                         goto sleep;
1583                 }
1584
1585                 delta = ktime_get_seconds() - cur->start_time;
1586                 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1587                     cur->state < TRANS_STATE_COMMIT_PREP &&
1588                     delta < fs_info->commit_interval) {
1589                         spin_unlock(&fs_info->trans_lock);
1590                         delay -= msecs_to_jiffies((delta - 1) * 1000);
1591                         delay = min(delay,
1592                                     msecs_to_jiffies(fs_info->commit_interval * 1000));
1593                         goto sleep;
1594                 }
1595                 transid = cur->transid;
1596                 spin_unlock(&fs_info->trans_lock);
1597
1598                 /* If the file system is aborted, this will always fail. */
1599                 trans = btrfs_attach_transaction(root);
1600                 if (IS_ERR(trans)) {
1601                         if (PTR_ERR(trans) != -ENOENT)
1602                                 cannot_commit = true;
1603                         goto sleep;
1604                 }
1605                 if (transid == trans->transid) {
1606                         btrfs_commit_transaction(trans);
1607                 } else {
1608                         btrfs_end_transaction(trans);
1609                 }
1610 sleep:
1611                 wake_up_process(fs_info->cleaner_kthread);
1612                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1613
1614                 if (BTRFS_FS_ERROR(fs_info))
1615                         btrfs_cleanup_transaction(fs_info);
1616                 if (!kthread_should_stop() &&
1617                                 (!btrfs_transaction_blocked(fs_info) ||
1618                                  cannot_commit))
1619                         schedule_timeout_interruptible(delay);
1620         } while (!kthread_should_stop());
1621         return 0;
1622 }
1623
1624 /*
1625  * This will find the highest generation in the array of root backups.  The
1626  * index of the highest array is returned, or -EINVAL if we can't find
1627  * anything.
1628  *
1629  * We check to make sure the array is valid by comparing the
1630  * generation of the latest  root in the array with the generation
1631  * in the super block.  If they don't match we pitch it.
1632  */
1633 static int find_newest_super_backup(struct btrfs_fs_info *info)
1634 {
1635         const u64 newest_gen = btrfs_super_generation(info->super_copy);
1636         u64 cur;
1637         struct btrfs_root_backup *root_backup;
1638         int i;
1639
1640         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1641                 root_backup = info->super_copy->super_roots + i;
1642                 cur = btrfs_backup_tree_root_gen(root_backup);
1643                 if (cur == newest_gen)
1644                         return i;
1645         }
1646
1647         return -EINVAL;
1648 }
1649
1650 /*
1651  * copy all the root pointers into the super backup array.
1652  * this will bump the backup pointer by one when it is
1653  * done
1654  */
1655 static void backup_super_roots(struct btrfs_fs_info *info)
1656 {
1657         const int next_backup = info->backup_root_index;
1658         struct btrfs_root_backup *root_backup;
1659
1660         root_backup = info->super_for_commit->super_roots + next_backup;
1661
1662         /*
1663          * make sure all of our padding and empty slots get zero filled
1664          * regardless of which ones we use today
1665          */
1666         memset(root_backup, 0, sizeof(*root_backup));
1667
1668         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1669
1670         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1671         btrfs_set_backup_tree_root_gen(root_backup,
1672                                btrfs_header_generation(info->tree_root->node));
1673
1674         btrfs_set_backup_tree_root_level(root_backup,
1675                                btrfs_header_level(info->tree_root->node));
1676
1677         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1678         btrfs_set_backup_chunk_root_gen(root_backup,
1679                                btrfs_header_generation(info->chunk_root->node));
1680         btrfs_set_backup_chunk_root_level(root_backup,
1681                                btrfs_header_level(info->chunk_root->node));
1682
1683         if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1684                 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1685                 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1686
1687                 btrfs_set_backup_extent_root(root_backup,
1688                                              extent_root->node->start);
1689                 btrfs_set_backup_extent_root_gen(root_backup,
1690                                 btrfs_header_generation(extent_root->node));
1691                 btrfs_set_backup_extent_root_level(root_backup,
1692                                         btrfs_header_level(extent_root->node));
1693
1694                 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1695                 btrfs_set_backup_csum_root_gen(root_backup,
1696                                                btrfs_header_generation(csum_root->node));
1697                 btrfs_set_backup_csum_root_level(root_backup,
1698                                                  btrfs_header_level(csum_root->node));
1699         }
1700
1701         /*
1702          * we might commit during log recovery, which happens before we set
1703          * the fs_root.  Make sure it is valid before we fill it in.
1704          */
1705         if (info->fs_root && info->fs_root->node) {
1706                 btrfs_set_backup_fs_root(root_backup,
1707                                          info->fs_root->node->start);
1708                 btrfs_set_backup_fs_root_gen(root_backup,
1709                                btrfs_header_generation(info->fs_root->node));
1710                 btrfs_set_backup_fs_root_level(root_backup,
1711                                btrfs_header_level(info->fs_root->node));
1712         }
1713
1714         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1715         btrfs_set_backup_dev_root_gen(root_backup,
1716                                btrfs_header_generation(info->dev_root->node));
1717         btrfs_set_backup_dev_root_level(root_backup,
1718                                        btrfs_header_level(info->dev_root->node));
1719
1720         btrfs_set_backup_total_bytes(root_backup,
1721                              btrfs_super_total_bytes(info->super_copy));
1722         btrfs_set_backup_bytes_used(root_backup,
1723                              btrfs_super_bytes_used(info->super_copy));
1724         btrfs_set_backup_num_devices(root_backup,
1725                              btrfs_super_num_devices(info->super_copy));
1726
1727         /*
1728          * if we don't copy this out to the super_copy, it won't get remembered
1729          * for the next commit
1730          */
1731         memcpy(&info->super_copy->super_roots,
1732                &info->super_for_commit->super_roots,
1733                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1734 }
1735
1736 /*
1737  * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1738  * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1739  *
1740  * @fs_info:  filesystem whose backup roots need to be read
1741  * @priority: priority of backup root required
1742  *
1743  * Returns backup root index on success and -EINVAL otherwise.
1744  */
1745 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1746 {
1747         int backup_index = find_newest_super_backup(fs_info);
1748         struct btrfs_super_block *super = fs_info->super_copy;
1749         struct btrfs_root_backup *root_backup;
1750
1751         if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1752                 if (priority == 0)
1753                         return backup_index;
1754
1755                 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1756                 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1757         } else {
1758                 return -EINVAL;
1759         }
1760
1761         root_backup = super->super_roots + backup_index;
1762
1763         btrfs_set_super_generation(super,
1764                                    btrfs_backup_tree_root_gen(root_backup));
1765         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1766         btrfs_set_super_root_level(super,
1767                                    btrfs_backup_tree_root_level(root_backup));
1768         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1769
1770         /*
1771          * Fixme: the total bytes and num_devices need to match or we should
1772          * need a fsck
1773          */
1774         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1775         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1776
1777         return backup_index;
1778 }
1779
1780 /* helper to cleanup workers */
1781 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1782 {
1783         btrfs_destroy_workqueue(fs_info->fixup_workers);
1784         btrfs_destroy_workqueue(fs_info->delalloc_workers);
1785         btrfs_destroy_workqueue(fs_info->workers);
1786         if (fs_info->endio_workers)
1787                 destroy_workqueue(fs_info->endio_workers);
1788         if (fs_info->rmw_workers)
1789                 destroy_workqueue(fs_info->rmw_workers);
1790         if (fs_info->compressed_write_workers)
1791                 destroy_workqueue(fs_info->compressed_write_workers);
1792         btrfs_destroy_workqueue(fs_info->endio_write_workers);
1793         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1794         btrfs_destroy_workqueue(fs_info->delayed_workers);
1795         btrfs_destroy_workqueue(fs_info->caching_workers);
1796         btrfs_destroy_workqueue(fs_info->flush_workers);
1797         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1798         if (fs_info->discard_ctl.discard_workers)
1799                 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1800         /*
1801          * Now that all other work queues are destroyed, we can safely destroy
1802          * the queues used for metadata I/O, since tasks from those other work
1803          * queues can do metadata I/O operations.
1804          */
1805         if (fs_info->endio_meta_workers)
1806                 destroy_workqueue(fs_info->endio_meta_workers);
1807 }
1808
1809 static void free_root_extent_buffers(struct btrfs_root *root)
1810 {
1811         if (root) {
1812                 free_extent_buffer(root->node);
1813                 free_extent_buffer(root->commit_root);
1814                 root->node = NULL;
1815                 root->commit_root = NULL;
1816         }
1817 }
1818
1819 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1820 {
1821         struct btrfs_root *root, *tmp;
1822
1823         rbtree_postorder_for_each_entry_safe(root, tmp,
1824                                              &fs_info->global_root_tree,
1825                                              rb_node)
1826                 free_root_extent_buffers(root);
1827 }
1828
1829 /* helper to cleanup tree roots */
1830 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1831 {
1832         free_root_extent_buffers(info->tree_root);
1833
1834         free_global_root_pointers(info);
1835         free_root_extent_buffers(info->dev_root);
1836         free_root_extent_buffers(info->quota_root);
1837         free_root_extent_buffers(info->uuid_root);
1838         free_root_extent_buffers(info->fs_root);
1839         free_root_extent_buffers(info->data_reloc_root);
1840         free_root_extent_buffers(info->block_group_root);
1841         free_root_extent_buffers(info->stripe_root);
1842         if (free_chunk_root)
1843                 free_root_extent_buffers(info->chunk_root);
1844 }
1845
1846 void btrfs_put_root(struct btrfs_root *root)
1847 {
1848         if (!root)
1849                 return;
1850
1851         if (refcount_dec_and_test(&root->refs)) {
1852                 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1853                 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1854                 if (root->anon_dev)
1855                         free_anon_bdev(root->anon_dev);
1856                 free_root_extent_buffers(root);
1857 #ifdef CONFIG_BTRFS_DEBUG
1858                 spin_lock(&root->fs_info->fs_roots_radix_lock);
1859                 list_del_init(&root->leak_list);
1860                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
1861 #endif
1862                 kfree(root);
1863         }
1864 }
1865
1866 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1867 {
1868         int ret;
1869         struct btrfs_root *gang[8];
1870         int i;
1871
1872         while (!list_empty(&fs_info->dead_roots)) {
1873                 gang[0] = list_entry(fs_info->dead_roots.next,
1874                                      struct btrfs_root, root_list);
1875                 list_del(&gang[0]->root_list);
1876
1877                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1878                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1879                 btrfs_put_root(gang[0]);
1880         }
1881
1882         while (1) {
1883                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1884                                              (void **)gang, 0,
1885                                              ARRAY_SIZE(gang));
1886                 if (!ret)
1887                         break;
1888                 for (i = 0; i < ret; i++)
1889                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1890         }
1891 }
1892
1893 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1894 {
1895         mutex_init(&fs_info->scrub_lock);
1896         atomic_set(&fs_info->scrubs_running, 0);
1897         atomic_set(&fs_info->scrub_pause_req, 0);
1898         atomic_set(&fs_info->scrubs_paused, 0);
1899         atomic_set(&fs_info->scrub_cancel_req, 0);
1900         init_waitqueue_head(&fs_info->scrub_pause_wait);
1901         refcount_set(&fs_info->scrub_workers_refcnt, 0);
1902 }
1903
1904 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1905 {
1906         spin_lock_init(&fs_info->balance_lock);
1907         mutex_init(&fs_info->balance_mutex);
1908         atomic_set(&fs_info->balance_pause_req, 0);
1909         atomic_set(&fs_info->balance_cancel_req, 0);
1910         fs_info->balance_ctl = NULL;
1911         init_waitqueue_head(&fs_info->balance_wait_q);
1912         atomic_set(&fs_info->reloc_cancel_req, 0);
1913 }
1914
1915 static int btrfs_init_btree_inode(struct super_block *sb)
1916 {
1917         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1918         unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1919                                               fs_info->tree_root);
1920         struct inode *inode;
1921
1922         inode = new_inode(sb);
1923         if (!inode)
1924                 return -ENOMEM;
1925
1926         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1927         set_nlink(inode, 1);
1928         /*
1929          * we set the i_size on the btree inode to the max possible int.
1930          * the real end of the address space is determined by all of
1931          * the devices in the system
1932          */
1933         inode->i_size = OFFSET_MAX;
1934         inode->i_mapping->a_ops = &btree_aops;
1935         mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1936
1937         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
1938         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1939                             IO_TREE_BTREE_INODE_IO);
1940         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1941
1942         BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1943         BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
1944         BTRFS_I(inode)->location.type = 0;
1945         BTRFS_I(inode)->location.offset = 0;
1946         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1947         __insert_inode_hash(inode, hash);
1948         fs_info->btree_inode = inode;
1949
1950         return 0;
1951 }
1952
1953 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1954 {
1955         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1956         init_rwsem(&fs_info->dev_replace.rwsem);
1957         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1958 }
1959
1960 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1961 {
1962         spin_lock_init(&fs_info->qgroup_lock);
1963         mutex_init(&fs_info->qgroup_ioctl_lock);
1964         fs_info->qgroup_tree = RB_ROOT;
1965         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1966         fs_info->qgroup_seq = 1;
1967         fs_info->qgroup_ulist = NULL;
1968         fs_info->qgroup_rescan_running = false;
1969         fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
1970         mutex_init(&fs_info->qgroup_rescan_lock);
1971 }
1972
1973 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1974 {
1975         u32 max_active = fs_info->thread_pool_size;
1976         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1977         unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1978
1979         fs_info->workers =
1980                 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1981
1982         fs_info->delalloc_workers =
1983                 btrfs_alloc_workqueue(fs_info, "delalloc",
1984                                       flags, max_active, 2);
1985
1986         fs_info->flush_workers =
1987                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1988                                       flags, max_active, 0);
1989
1990         fs_info->caching_workers =
1991                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1992
1993         fs_info->fixup_workers =
1994                 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1995
1996         fs_info->endio_workers =
1997                 alloc_workqueue("btrfs-endio", flags, max_active);
1998         fs_info->endio_meta_workers =
1999                 alloc_workqueue("btrfs-endio-meta", flags, max_active);
2000         fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2001         fs_info->endio_write_workers =
2002                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2003                                       max_active, 2);
2004         fs_info->compressed_write_workers =
2005                 alloc_workqueue("btrfs-compressed-write", flags, max_active);
2006         fs_info->endio_freespace_worker =
2007                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2008                                       max_active, 0);
2009         fs_info->delayed_workers =
2010                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2011                                       max_active, 0);
2012         fs_info->qgroup_rescan_workers =
2013                 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
2014                                               ordered_flags);
2015         fs_info->discard_ctl.discard_workers =
2016                 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
2017
2018         if (!(fs_info->workers &&
2019               fs_info->delalloc_workers && fs_info->flush_workers &&
2020               fs_info->endio_workers && fs_info->endio_meta_workers &&
2021               fs_info->compressed_write_workers &&
2022               fs_info->endio_write_workers &&
2023               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2024               fs_info->caching_workers && fs_info->fixup_workers &&
2025               fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2026               fs_info->discard_ctl.discard_workers)) {
2027                 return -ENOMEM;
2028         }
2029
2030         return 0;
2031 }
2032
2033 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2034 {
2035         struct crypto_shash *csum_shash;
2036         const char *csum_driver = btrfs_super_csum_driver(csum_type);
2037
2038         csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2039
2040         if (IS_ERR(csum_shash)) {
2041                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2042                           csum_driver);
2043                 return PTR_ERR(csum_shash);
2044         }
2045
2046         fs_info->csum_shash = csum_shash;
2047
2048         /*
2049          * Check if the checksum implementation is a fast accelerated one.
2050          * As-is this is a bit of a hack and should be replaced once the csum
2051          * implementations provide that information themselves.
2052          */
2053         switch (csum_type) {
2054         case BTRFS_CSUM_TYPE_CRC32:
2055                 if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2056                         set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2057                 break;
2058         case BTRFS_CSUM_TYPE_XXHASH:
2059                 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2060                 break;
2061         default:
2062                 break;
2063         }
2064
2065         btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2066                         btrfs_super_csum_name(csum_type),
2067                         crypto_shash_driver_name(csum_shash));
2068         return 0;
2069 }
2070
2071 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2072                             struct btrfs_fs_devices *fs_devices)
2073 {
2074         int ret;
2075         struct btrfs_tree_parent_check check = { 0 };
2076         struct btrfs_root *log_tree_root;
2077         struct btrfs_super_block *disk_super = fs_info->super_copy;
2078         u64 bytenr = btrfs_super_log_root(disk_super);
2079         int level = btrfs_super_log_root_level(disk_super);
2080
2081         if (fs_devices->rw_devices == 0) {
2082                 btrfs_warn(fs_info, "log replay required on RO media");
2083                 return -EIO;
2084         }
2085
2086         log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2087                                          GFP_KERNEL);
2088         if (!log_tree_root)
2089                 return -ENOMEM;
2090
2091         check.level = level;
2092         check.transid = fs_info->generation + 1;
2093         check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2094         log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2095         if (IS_ERR(log_tree_root->node)) {
2096                 btrfs_warn(fs_info, "failed to read log tree");
2097                 ret = PTR_ERR(log_tree_root->node);
2098                 log_tree_root->node = NULL;
2099                 btrfs_put_root(log_tree_root);
2100                 return ret;
2101         }
2102         if (!extent_buffer_uptodate(log_tree_root->node)) {
2103                 btrfs_err(fs_info, "failed to read log tree");
2104                 btrfs_put_root(log_tree_root);
2105                 return -EIO;
2106         }
2107
2108         /* returns with log_tree_root freed on success */
2109         ret = btrfs_recover_log_trees(log_tree_root);
2110         if (ret) {
2111                 btrfs_handle_fs_error(fs_info, ret,
2112                                       "Failed to recover log tree");
2113                 btrfs_put_root(log_tree_root);
2114                 return ret;
2115         }
2116
2117         if (sb_rdonly(fs_info->sb)) {
2118                 ret = btrfs_commit_super(fs_info);
2119                 if (ret)
2120                         return ret;
2121         }
2122
2123         return 0;
2124 }
2125
2126 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2127                                       struct btrfs_path *path, u64 objectid,
2128                                       const char *name)
2129 {
2130         struct btrfs_fs_info *fs_info = tree_root->fs_info;
2131         struct btrfs_root *root;
2132         u64 max_global_id = 0;
2133         int ret;
2134         struct btrfs_key key = {
2135                 .objectid = objectid,
2136                 .type = BTRFS_ROOT_ITEM_KEY,
2137                 .offset = 0,
2138         };
2139         bool found = false;
2140
2141         /* If we have IGNOREDATACSUMS skip loading these roots. */
2142         if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2143             btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2144                 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2145                 return 0;
2146         }
2147
2148         while (1) {
2149                 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2150                 if (ret < 0)
2151                         break;
2152
2153                 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2154                         ret = btrfs_next_leaf(tree_root, path);
2155                         if (ret) {
2156                                 if (ret > 0)
2157                                         ret = 0;
2158                                 break;
2159                         }
2160                 }
2161                 ret = 0;
2162
2163                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2164                 if (key.objectid != objectid)
2165                         break;
2166                 btrfs_release_path(path);
2167
2168                 /*
2169                  * Just worry about this for extent tree, it'll be the same for
2170                  * everybody.
2171                  */
2172                 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2173                         max_global_id = max(max_global_id, key.offset);
2174
2175                 found = true;
2176                 root = read_tree_root_path(tree_root, path, &key);
2177                 if (IS_ERR(root)) {
2178                         if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2179                                 ret = PTR_ERR(root);
2180                         break;
2181                 }
2182                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2183                 ret = btrfs_global_root_insert(root);
2184                 if (ret) {
2185                         btrfs_put_root(root);
2186                         break;
2187                 }
2188                 key.offset++;
2189         }
2190         btrfs_release_path(path);
2191
2192         if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2193                 fs_info->nr_global_roots = max_global_id + 1;
2194
2195         if (!found || ret) {
2196                 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2197                         set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2198
2199                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2200                         ret = ret ? ret : -ENOENT;
2201                 else
2202                         ret = 0;
2203                 btrfs_err(fs_info, "failed to load root %s", name);
2204         }
2205         return ret;
2206 }
2207
2208 static int load_global_roots(struct btrfs_root *tree_root)
2209 {
2210         struct btrfs_path *path;
2211         int ret = 0;
2212
2213         path = btrfs_alloc_path();
2214         if (!path)
2215                 return -ENOMEM;
2216
2217         ret = load_global_roots_objectid(tree_root, path,
2218                                          BTRFS_EXTENT_TREE_OBJECTID, "extent");
2219         if (ret)
2220                 goto out;
2221         ret = load_global_roots_objectid(tree_root, path,
2222                                          BTRFS_CSUM_TREE_OBJECTID, "csum");
2223         if (ret)
2224                 goto out;
2225         if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2226                 goto out;
2227         ret = load_global_roots_objectid(tree_root, path,
2228                                          BTRFS_FREE_SPACE_TREE_OBJECTID,
2229                                          "free space");
2230 out:
2231         btrfs_free_path(path);
2232         return ret;
2233 }
2234
2235 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2236 {
2237         struct btrfs_root *tree_root = fs_info->tree_root;
2238         struct btrfs_root *root;
2239         struct btrfs_key location;
2240         int ret;
2241
2242         BUG_ON(!fs_info->tree_root);
2243
2244         ret = load_global_roots(tree_root);
2245         if (ret)
2246                 return ret;
2247
2248         location.type = BTRFS_ROOT_ITEM_KEY;
2249         location.offset = 0;
2250
2251         if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2252                 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2253                 root = btrfs_read_tree_root(tree_root, &location);
2254                 if (IS_ERR(root)) {
2255                         if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2256                                 ret = PTR_ERR(root);
2257                                 goto out;
2258                         }
2259                 } else {
2260                         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2261                         fs_info->block_group_root = root;
2262                 }
2263         }
2264
2265         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2266         root = btrfs_read_tree_root(tree_root, &location);
2267         if (IS_ERR(root)) {
2268                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2269                         ret = PTR_ERR(root);
2270                         goto out;
2271                 }
2272         } else {
2273                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2274                 fs_info->dev_root = root;
2275         }
2276         /* Initialize fs_info for all devices in any case */
2277         ret = btrfs_init_devices_late(fs_info);
2278         if (ret)
2279                 goto out;
2280
2281         /*
2282          * This tree can share blocks with some other fs tree during relocation
2283          * and we need a proper setup by btrfs_get_fs_root
2284          */
2285         root = btrfs_get_fs_root(tree_root->fs_info,
2286                                  BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2287         if (IS_ERR(root)) {
2288                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2289                         ret = PTR_ERR(root);
2290                         goto out;
2291                 }
2292         } else {
2293                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2294                 fs_info->data_reloc_root = root;
2295         }
2296
2297         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2298         root = btrfs_read_tree_root(tree_root, &location);
2299         if (!IS_ERR(root)) {
2300                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2301                 fs_info->quota_root = root;
2302         }
2303
2304         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2305         root = btrfs_read_tree_root(tree_root, &location);
2306         if (IS_ERR(root)) {
2307                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2308                         ret = PTR_ERR(root);
2309                         if (ret != -ENOENT)
2310                                 goto out;
2311                 }
2312         } else {
2313                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2314                 fs_info->uuid_root = root;
2315         }
2316
2317         if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2318                 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2319                 root = btrfs_read_tree_root(tree_root, &location);
2320                 if (IS_ERR(root)) {
2321                         if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2322                                 ret = PTR_ERR(root);
2323                                 goto out;
2324                         }
2325                 } else {
2326                         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2327                         fs_info->stripe_root = root;
2328                 }
2329         }
2330
2331         return 0;
2332 out:
2333         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2334                    location.objectid, ret);
2335         return ret;
2336 }
2337
2338 /*
2339  * Real super block validation
2340  * NOTE: super csum type and incompat features will not be checked here.
2341  *
2342  * @sb:         super block to check
2343  * @mirror_num: the super block number to check its bytenr:
2344  *              0       the primary (1st) sb
2345  *              1, 2    2nd and 3rd backup copy
2346  *             -1       skip bytenr check
2347  */
2348 int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2349                          struct btrfs_super_block *sb, int mirror_num)
2350 {
2351         u64 nodesize = btrfs_super_nodesize(sb);
2352         u64 sectorsize = btrfs_super_sectorsize(sb);
2353         int ret = 0;
2354
2355         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2356                 btrfs_err(fs_info, "no valid FS found");
2357                 ret = -EINVAL;
2358         }
2359         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2360                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2361                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2362                 ret = -EINVAL;
2363         }
2364         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2365                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2366                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2367                 ret = -EINVAL;
2368         }
2369         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2370                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2371                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2372                 ret = -EINVAL;
2373         }
2374         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2375                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2376                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2377                 ret = -EINVAL;
2378         }
2379
2380         /*
2381          * Check sectorsize and nodesize first, other check will need it.
2382          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2383          */
2384         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2385             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2386                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2387                 ret = -EINVAL;
2388         }
2389
2390         /*
2391          * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2392          *
2393          * We can support 16K sectorsize with 64K page size without problem,
2394          * but such sectorsize/pagesize combination doesn't make much sense.
2395          * 4K will be our future standard, PAGE_SIZE is supported from the very
2396          * beginning.
2397          */
2398         if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2399                 btrfs_err(fs_info,
2400                         "sectorsize %llu not yet supported for page size %lu",
2401                         sectorsize, PAGE_SIZE);
2402                 ret = -EINVAL;
2403         }
2404
2405         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2406             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2407                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2408                 ret = -EINVAL;
2409         }
2410         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2411                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2412                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2413                 ret = -EINVAL;
2414         }
2415
2416         /* Root alignment check */
2417         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2418                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2419                            btrfs_super_root(sb));
2420                 ret = -EINVAL;
2421         }
2422         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2423                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2424                            btrfs_super_chunk_root(sb));
2425                 ret = -EINVAL;
2426         }
2427         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2428                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2429                            btrfs_super_log_root(sb));
2430                 ret = -EINVAL;
2431         }
2432
2433         if (!fs_info->fs_devices->temp_fsid &&
2434             memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2435                 btrfs_err(fs_info,
2436                 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2437                           sb->fsid, fs_info->fs_devices->fsid);
2438                 ret = -EINVAL;
2439         }
2440
2441         if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2442                    BTRFS_FSID_SIZE) != 0) {
2443                 btrfs_err(fs_info,
2444 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2445                           btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2446                 ret = -EINVAL;
2447         }
2448
2449         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2450                    BTRFS_FSID_SIZE) != 0) {
2451                 btrfs_err(fs_info,
2452                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2453                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2454                 ret = -EINVAL;
2455         }
2456
2457         /*
2458          * Artificial requirement for block-group-tree to force newer features
2459          * (free-space-tree, no-holes) so the test matrix is smaller.
2460          */
2461         if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2462             (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2463              !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2464                 btrfs_err(fs_info,
2465                 "block-group-tree feature requires fres-space-tree and no-holes");
2466                 ret = -EINVAL;
2467         }
2468
2469         /*
2470          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2471          * done later
2472          */
2473         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2474                 btrfs_err(fs_info, "bytes_used is too small %llu",
2475                           btrfs_super_bytes_used(sb));
2476                 ret = -EINVAL;
2477         }
2478         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2479                 btrfs_err(fs_info, "invalid stripesize %u",
2480                           btrfs_super_stripesize(sb));
2481                 ret = -EINVAL;
2482         }
2483         if (btrfs_super_num_devices(sb) > (1UL << 31))
2484                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2485                            btrfs_super_num_devices(sb));
2486         if (btrfs_super_num_devices(sb) == 0) {
2487                 btrfs_err(fs_info, "number of devices is 0");
2488                 ret = -EINVAL;
2489         }
2490
2491         if (mirror_num >= 0 &&
2492             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2493                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2494                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2495                 ret = -EINVAL;
2496         }
2497
2498         /*
2499          * Obvious sys_chunk_array corruptions, it must hold at least one key
2500          * and one chunk
2501          */
2502         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2503                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2504                           btrfs_super_sys_array_size(sb),
2505                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2506                 ret = -EINVAL;
2507         }
2508         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2509                         + sizeof(struct btrfs_chunk)) {
2510                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2511                           btrfs_super_sys_array_size(sb),
2512                           sizeof(struct btrfs_disk_key)
2513                           + sizeof(struct btrfs_chunk));
2514                 ret = -EINVAL;
2515         }
2516
2517         /*
2518          * The generation is a global counter, we'll trust it more than the others
2519          * but it's still possible that it's the one that's wrong.
2520          */
2521         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2522                 btrfs_warn(fs_info,
2523                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2524                         btrfs_super_generation(sb),
2525                         btrfs_super_chunk_root_generation(sb));
2526         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2527             && btrfs_super_cache_generation(sb) != (u64)-1)
2528                 btrfs_warn(fs_info,
2529                         "suspicious: generation < cache_generation: %llu < %llu",
2530                         btrfs_super_generation(sb),
2531                         btrfs_super_cache_generation(sb));
2532
2533         return ret;
2534 }
2535
2536 /*
2537  * Validation of super block at mount time.
2538  * Some checks already done early at mount time, like csum type and incompat
2539  * flags will be skipped.
2540  */
2541 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2542 {
2543         return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2544 }
2545
2546 /*
2547  * Validation of super block at write time.
2548  * Some checks like bytenr check will be skipped as their values will be
2549  * overwritten soon.
2550  * Extra checks like csum type and incompat flags will be done here.
2551  */
2552 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2553                                       struct btrfs_super_block *sb)
2554 {
2555         int ret;
2556
2557         ret = btrfs_validate_super(fs_info, sb, -1);
2558         if (ret < 0)
2559                 goto out;
2560         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2561                 ret = -EUCLEAN;
2562                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2563                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2564                 goto out;
2565         }
2566         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2567                 ret = -EUCLEAN;
2568                 btrfs_err(fs_info,
2569                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2570                           btrfs_super_incompat_flags(sb),
2571                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2572                 goto out;
2573         }
2574 out:
2575         if (ret < 0)
2576                 btrfs_err(fs_info,
2577                 "super block corruption detected before writing it to disk");
2578         return ret;
2579 }
2580
2581 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2582 {
2583         struct btrfs_tree_parent_check check = {
2584                 .level = level,
2585                 .transid = gen,
2586                 .owner_root = root->root_key.objectid
2587         };
2588         int ret = 0;
2589
2590         root->node = read_tree_block(root->fs_info, bytenr, &check);
2591         if (IS_ERR(root->node)) {
2592                 ret = PTR_ERR(root->node);
2593                 root->node = NULL;
2594                 return ret;
2595         }
2596         if (!extent_buffer_uptodate(root->node)) {
2597                 free_extent_buffer(root->node);
2598                 root->node = NULL;
2599                 return -EIO;
2600         }
2601
2602         btrfs_set_root_node(&root->root_item, root->node);
2603         root->commit_root = btrfs_root_node(root);
2604         btrfs_set_root_refs(&root->root_item, 1);
2605         return ret;
2606 }
2607
2608 static int load_important_roots(struct btrfs_fs_info *fs_info)
2609 {
2610         struct btrfs_super_block *sb = fs_info->super_copy;
2611         u64 gen, bytenr;
2612         int level, ret;
2613
2614         bytenr = btrfs_super_root(sb);
2615         gen = btrfs_super_generation(sb);
2616         level = btrfs_super_root_level(sb);
2617         ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2618         if (ret) {
2619                 btrfs_warn(fs_info, "couldn't read tree root");
2620                 return ret;
2621         }
2622         return 0;
2623 }
2624
2625 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2626 {
2627         int backup_index = find_newest_super_backup(fs_info);
2628         struct btrfs_super_block *sb = fs_info->super_copy;
2629         struct btrfs_root *tree_root = fs_info->tree_root;
2630         bool handle_error = false;
2631         int ret = 0;
2632         int i;
2633
2634         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2635                 if (handle_error) {
2636                         if (!IS_ERR(tree_root->node))
2637                                 free_extent_buffer(tree_root->node);
2638                         tree_root->node = NULL;
2639
2640                         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2641                                 break;
2642
2643                         free_root_pointers(fs_info, 0);
2644
2645                         /*
2646                          * Don't use the log in recovery mode, it won't be
2647                          * valid
2648                          */
2649                         btrfs_set_super_log_root(sb, 0);
2650
2651                         btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2652                         ret = read_backup_root(fs_info, i);
2653                         backup_index = ret;
2654                         if (ret < 0)
2655                                 return ret;
2656                 }
2657
2658                 ret = load_important_roots(fs_info);
2659                 if (ret) {
2660                         handle_error = true;
2661                         continue;
2662                 }
2663
2664                 /*
2665                  * No need to hold btrfs_root::objectid_mutex since the fs
2666                  * hasn't been fully initialised and we are the only user
2667                  */
2668                 ret = btrfs_init_root_free_objectid(tree_root);
2669                 if (ret < 0) {
2670                         handle_error = true;
2671                         continue;
2672                 }
2673
2674                 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2675
2676                 ret = btrfs_read_roots(fs_info);
2677                 if (ret < 0) {
2678                         handle_error = true;
2679                         continue;
2680                 }
2681
2682                 /* All successful */
2683                 fs_info->generation = btrfs_header_generation(tree_root->node);
2684                 btrfs_set_last_trans_committed(fs_info, fs_info->generation);
2685                 fs_info->last_reloc_trans = 0;
2686
2687                 /* Always begin writing backup roots after the one being used */
2688                 if (backup_index < 0) {
2689                         fs_info->backup_root_index = 0;
2690                 } else {
2691                         fs_info->backup_root_index = backup_index + 1;
2692                         fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2693                 }
2694                 break;
2695         }
2696
2697         return ret;
2698 }
2699
2700 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2701 {
2702         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2703         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2704         INIT_LIST_HEAD(&fs_info->trans_list);
2705         INIT_LIST_HEAD(&fs_info->dead_roots);
2706         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2707         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2708         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2709         spin_lock_init(&fs_info->delalloc_root_lock);
2710         spin_lock_init(&fs_info->trans_lock);
2711         spin_lock_init(&fs_info->fs_roots_radix_lock);
2712         spin_lock_init(&fs_info->delayed_iput_lock);
2713         spin_lock_init(&fs_info->defrag_inodes_lock);
2714         spin_lock_init(&fs_info->super_lock);
2715         spin_lock_init(&fs_info->buffer_lock);
2716         spin_lock_init(&fs_info->unused_bgs_lock);
2717         spin_lock_init(&fs_info->treelog_bg_lock);
2718         spin_lock_init(&fs_info->zone_active_bgs_lock);
2719         spin_lock_init(&fs_info->relocation_bg_lock);
2720         rwlock_init(&fs_info->tree_mod_log_lock);
2721         rwlock_init(&fs_info->global_root_lock);
2722         mutex_init(&fs_info->unused_bg_unpin_mutex);
2723         mutex_init(&fs_info->reclaim_bgs_lock);
2724         mutex_init(&fs_info->reloc_mutex);
2725         mutex_init(&fs_info->delalloc_root_mutex);
2726         mutex_init(&fs_info->zoned_meta_io_lock);
2727         mutex_init(&fs_info->zoned_data_reloc_io_lock);
2728         seqlock_init(&fs_info->profiles_lock);
2729
2730         btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2731         btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2732         btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2733         btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2734         btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2735                                      BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2736         btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2737                                      BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2738         btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2739                                      BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2740         btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2741                                      BTRFS_LOCKDEP_TRANS_COMPLETED);
2742
2743         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2744         INIT_LIST_HEAD(&fs_info->space_info);
2745         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2746         INIT_LIST_HEAD(&fs_info->unused_bgs);
2747         INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2748         INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2749 #ifdef CONFIG_BTRFS_DEBUG
2750         INIT_LIST_HEAD(&fs_info->allocated_roots);
2751         INIT_LIST_HEAD(&fs_info->allocated_ebs);
2752         spin_lock_init(&fs_info->eb_leak_lock);
2753 #endif
2754         fs_info->mapping_tree = RB_ROOT_CACHED;
2755         rwlock_init(&fs_info->mapping_tree_lock);
2756         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2757                              BTRFS_BLOCK_RSV_GLOBAL);
2758         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2759         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2760         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2761         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2762                              BTRFS_BLOCK_RSV_DELOPS);
2763         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2764                              BTRFS_BLOCK_RSV_DELREFS);
2765
2766         atomic_set(&fs_info->async_delalloc_pages, 0);
2767         atomic_set(&fs_info->defrag_running, 0);
2768         atomic_set(&fs_info->nr_delayed_iputs, 0);
2769         atomic64_set(&fs_info->tree_mod_seq, 0);
2770         fs_info->global_root_tree = RB_ROOT;
2771         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2772         fs_info->metadata_ratio = 0;
2773         fs_info->defrag_inodes = RB_ROOT;
2774         atomic64_set(&fs_info->free_chunk_space, 0);
2775         fs_info->tree_mod_log = RB_ROOT;
2776         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2777         btrfs_init_ref_verify(fs_info);
2778
2779         fs_info->thread_pool_size = min_t(unsigned long,
2780                                           num_online_cpus() + 2, 8);
2781
2782         INIT_LIST_HEAD(&fs_info->ordered_roots);
2783         spin_lock_init(&fs_info->ordered_root_lock);
2784
2785         btrfs_init_scrub(fs_info);
2786         btrfs_init_balance(fs_info);
2787         btrfs_init_async_reclaim_work(fs_info);
2788
2789         rwlock_init(&fs_info->block_group_cache_lock);
2790         fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2791
2792         extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2793                             IO_TREE_FS_EXCLUDED_EXTENTS);
2794
2795         mutex_init(&fs_info->ordered_operations_mutex);
2796         mutex_init(&fs_info->tree_log_mutex);
2797         mutex_init(&fs_info->chunk_mutex);
2798         mutex_init(&fs_info->transaction_kthread_mutex);
2799         mutex_init(&fs_info->cleaner_mutex);
2800         mutex_init(&fs_info->ro_block_group_mutex);
2801         init_rwsem(&fs_info->commit_root_sem);
2802         init_rwsem(&fs_info->cleanup_work_sem);
2803         init_rwsem(&fs_info->subvol_sem);
2804         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2805
2806         btrfs_init_dev_replace_locks(fs_info);
2807         btrfs_init_qgroup(fs_info);
2808         btrfs_discard_init(fs_info);
2809
2810         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2811         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2812
2813         init_waitqueue_head(&fs_info->transaction_throttle);
2814         init_waitqueue_head(&fs_info->transaction_wait);
2815         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2816         init_waitqueue_head(&fs_info->async_submit_wait);
2817         init_waitqueue_head(&fs_info->delayed_iputs_wait);
2818
2819         /* Usable values until the real ones are cached from the superblock */
2820         fs_info->nodesize = 4096;
2821         fs_info->sectorsize = 4096;
2822         fs_info->sectorsize_bits = ilog2(4096);
2823         fs_info->stripesize = 4096;
2824
2825         /* Default compress algorithm when user does -o compress */
2826         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2827
2828         fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2829
2830         spin_lock_init(&fs_info->swapfile_pins_lock);
2831         fs_info->swapfile_pins = RB_ROOT;
2832
2833         fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2834         INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2835 }
2836
2837 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2838 {
2839         int ret;
2840
2841         fs_info->sb = sb;
2842         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2843         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2844
2845         ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2846         if (ret)
2847                 return ret;
2848
2849         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2850         if (ret)
2851                 return ret;
2852
2853         fs_info->dirty_metadata_batch = PAGE_SIZE *
2854                                         (1 + ilog2(nr_cpu_ids));
2855
2856         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2857         if (ret)
2858                 return ret;
2859
2860         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2861                         GFP_KERNEL);
2862         if (ret)
2863                 return ret;
2864
2865         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2866                                         GFP_KERNEL);
2867         if (!fs_info->delayed_root)
2868                 return -ENOMEM;
2869         btrfs_init_delayed_root(fs_info->delayed_root);
2870
2871         if (sb_rdonly(sb))
2872                 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2873
2874         return btrfs_alloc_stripe_hash_table(fs_info);
2875 }
2876
2877 static int btrfs_uuid_rescan_kthread(void *data)
2878 {
2879         struct btrfs_fs_info *fs_info = data;
2880         int ret;
2881
2882         /*
2883          * 1st step is to iterate through the existing UUID tree and
2884          * to delete all entries that contain outdated data.
2885          * 2nd step is to add all missing entries to the UUID tree.
2886          */
2887         ret = btrfs_uuid_tree_iterate(fs_info);
2888         if (ret < 0) {
2889                 if (ret != -EINTR)
2890                         btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2891                                    ret);
2892                 up(&fs_info->uuid_tree_rescan_sem);
2893                 return ret;
2894         }
2895         return btrfs_uuid_scan_kthread(data);
2896 }
2897
2898 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2899 {
2900         struct task_struct *task;
2901
2902         down(&fs_info->uuid_tree_rescan_sem);
2903         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2904         if (IS_ERR(task)) {
2905                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2906                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2907                 up(&fs_info->uuid_tree_rescan_sem);
2908                 return PTR_ERR(task);
2909         }
2910
2911         return 0;
2912 }
2913
2914 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2915 {
2916         u64 root_objectid = 0;
2917         struct btrfs_root *gang[8];
2918         int i = 0;
2919         int err = 0;
2920         unsigned int ret = 0;
2921
2922         while (1) {
2923                 spin_lock(&fs_info->fs_roots_radix_lock);
2924                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2925                                              (void **)gang, root_objectid,
2926                                              ARRAY_SIZE(gang));
2927                 if (!ret) {
2928                         spin_unlock(&fs_info->fs_roots_radix_lock);
2929                         break;
2930                 }
2931                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2932
2933                 for (i = 0; i < ret; i++) {
2934                         /* Avoid to grab roots in dead_roots. */
2935                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2936                                 gang[i] = NULL;
2937                                 continue;
2938                         }
2939                         /* Grab all the search result for later use. */
2940                         gang[i] = btrfs_grab_root(gang[i]);
2941                 }
2942                 spin_unlock(&fs_info->fs_roots_radix_lock);
2943
2944                 for (i = 0; i < ret; i++) {
2945                         if (!gang[i])
2946                                 continue;
2947                         root_objectid = gang[i]->root_key.objectid;
2948                         err = btrfs_orphan_cleanup(gang[i]);
2949                         if (err)
2950                                 goto out;
2951                         btrfs_put_root(gang[i]);
2952                 }
2953                 root_objectid++;
2954         }
2955 out:
2956         /* Release the uncleaned roots due to error. */
2957         for (; i < ret; i++) {
2958                 if (gang[i])
2959                         btrfs_put_root(gang[i]);
2960         }
2961         return err;
2962 }
2963
2964 /*
2965  * Mounting logic specific to read-write file systems. Shared by open_ctree
2966  * and btrfs_remount when remounting from read-only to read-write.
2967  */
2968 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2969 {
2970         int ret;
2971         const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2972         bool rebuild_free_space_tree = false;
2973
2974         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2975             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2976                 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2977                         btrfs_warn(fs_info,
2978                                    "'clear_cache' option is ignored with extent tree v2");
2979                 else
2980                         rebuild_free_space_tree = true;
2981         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2982                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2983                 btrfs_warn(fs_info, "free space tree is invalid");
2984                 rebuild_free_space_tree = true;
2985         }
2986
2987         if (rebuild_free_space_tree) {
2988                 btrfs_info(fs_info, "rebuilding free space tree");
2989                 ret = btrfs_rebuild_free_space_tree(fs_info);
2990                 if (ret) {
2991                         btrfs_warn(fs_info,
2992                                    "failed to rebuild free space tree: %d", ret);
2993                         goto out;
2994                 }
2995         }
2996
2997         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2998             !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
2999                 btrfs_info(fs_info, "disabling free space tree");
3000                 ret = btrfs_delete_free_space_tree(fs_info);
3001                 if (ret) {
3002                         btrfs_warn(fs_info,
3003                                    "failed to disable free space tree: %d", ret);
3004                         goto out;
3005                 }
3006         }
3007
3008         /*
3009          * btrfs_find_orphan_roots() is responsible for finding all the dead
3010          * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3011          * them into the fs_info->fs_roots_radix tree. This must be done before
3012          * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3013          * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3014          * item before the root's tree is deleted - this means that if we unmount
3015          * or crash before the deletion completes, on the next mount we will not
3016          * delete what remains of the tree because the orphan item does not
3017          * exists anymore, which is what tells us we have a pending deletion.
3018          */
3019         ret = btrfs_find_orphan_roots(fs_info);
3020         if (ret)
3021                 goto out;
3022
3023         ret = btrfs_cleanup_fs_roots(fs_info);
3024         if (ret)
3025                 goto out;
3026
3027         down_read(&fs_info->cleanup_work_sem);
3028         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3029             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3030                 up_read(&fs_info->cleanup_work_sem);
3031                 goto out;
3032         }
3033         up_read(&fs_info->cleanup_work_sem);
3034
3035         mutex_lock(&fs_info->cleaner_mutex);
3036         ret = btrfs_recover_relocation(fs_info);
3037         mutex_unlock(&fs_info->cleaner_mutex);
3038         if (ret < 0) {
3039                 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3040                 goto out;
3041         }
3042
3043         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3044             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3045                 btrfs_info(fs_info, "creating free space tree");
3046                 ret = btrfs_create_free_space_tree(fs_info);
3047                 if (ret) {
3048                         btrfs_warn(fs_info,
3049                                 "failed to create free space tree: %d", ret);
3050                         goto out;
3051                 }
3052         }
3053
3054         if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3055                 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3056                 if (ret)
3057                         goto out;
3058         }
3059
3060         ret = btrfs_resume_balance_async(fs_info);
3061         if (ret)
3062                 goto out;
3063
3064         ret = btrfs_resume_dev_replace_async(fs_info);
3065         if (ret) {
3066                 btrfs_warn(fs_info, "failed to resume dev_replace");
3067                 goto out;
3068         }
3069
3070         btrfs_qgroup_rescan_resume(fs_info);
3071
3072         if (!fs_info->uuid_root) {
3073                 btrfs_info(fs_info, "creating UUID tree");
3074                 ret = btrfs_create_uuid_tree(fs_info);
3075                 if (ret) {
3076                         btrfs_warn(fs_info,
3077                                    "failed to create the UUID tree %d", ret);
3078                         goto out;
3079                 }
3080         }
3081
3082 out:
3083         return ret;
3084 }
3085
3086 /*
3087  * Do various sanity and dependency checks of different features.
3088  *
3089  * @is_rw_mount:        If the mount is read-write.
3090  *
3091  * This is the place for less strict checks (like for subpage or artificial
3092  * feature dependencies).
3093  *
3094  * For strict checks or possible corruption detection, see
3095  * btrfs_validate_super().
3096  *
3097  * This should be called after btrfs_parse_options(), as some mount options
3098  * (space cache related) can modify on-disk format like free space tree and
3099  * screw up certain feature dependencies.
3100  */
3101 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3102 {
3103         struct btrfs_super_block *disk_super = fs_info->super_copy;
3104         u64 incompat = btrfs_super_incompat_flags(disk_super);
3105         const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3106         const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3107
3108         if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3109                 btrfs_err(fs_info,
3110                 "cannot mount because of unknown incompat features (0x%llx)",
3111                     incompat);
3112                 return -EINVAL;
3113         }
3114
3115         /* Runtime limitation for mixed block groups. */
3116         if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3117             (fs_info->sectorsize != fs_info->nodesize)) {
3118                 btrfs_err(fs_info,
3119 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3120                         fs_info->nodesize, fs_info->sectorsize);
3121                 return -EINVAL;
3122         }
3123
3124         /* Mixed backref is an always-enabled feature. */
3125         incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3126
3127         /* Set compression related flags just in case. */
3128         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3129                 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3130         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3131                 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3132
3133         /*
3134          * An ancient flag, which should really be marked deprecated.
3135          * Such runtime limitation doesn't really need a incompat flag.
3136          */
3137         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3138                 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3139
3140         if (compat_ro_unsupp && is_rw_mount) {
3141                 btrfs_err(fs_info,
3142         "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3143                        compat_ro);
3144                 return -EINVAL;
3145         }
3146
3147         /*
3148          * We have unsupported RO compat features, although RO mounted, we
3149          * should not cause any metadata writes, including log replay.
3150          * Or we could screw up whatever the new feature requires.
3151          */
3152         if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3153             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3154                 btrfs_err(fs_info,
3155 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3156                           compat_ro);
3157                 return -EINVAL;
3158         }
3159
3160         /*
3161          * Artificial limitations for block group tree, to force
3162          * block-group-tree to rely on no-holes and free-space-tree.
3163          */
3164         if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3165             (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3166              !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3167                 btrfs_err(fs_info,
3168 "block-group-tree feature requires no-holes and free-space-tree features");
3169                 return -EINVAL;
3170         }
3171
3172         /*
3173          * Subpage runtime limitation on v1 cache.
3174          *
3175          * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3176          * we're already defaulting to v2 cache, no need to bother v1 as it's
3177          * going to be deprecated anyway.
3178          */
3179         if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3180                 btrfs_warn(fs_info,
3181         "v1 space cache is not supported for page size %lu with sectorsize %u",
3182                            PAGE_SIZE, fs_info->sectorsize);
3183                 return -EINVAL;
3184         }
3185
3186         /* This can be called by remount, we need to protect the super block. */
3187         spin_lock(&fs_info->super_lock);
3188         btrfs_set_super_incompat_flags(disk_super, incompat);
3189         spin_unlock(&fs_info->super_lock);
3190
3191         return 0;
3192 }
3193
3194 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3195                       char *options)
3196 {
3197         u32 sectorsize;
3198         u32 nodesize;
3199         u32 stripesize;
3200         u64 generation;
3201         u16 csum_type;
3202         struct btrfs_super_block *disk_super;
3203         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3204         struct btrfs_root *tree_root;
3205         struct btrfs_root *chunk_root;
3206         int ret;
3207         int level;
3208
3209         ret = init_mount_fs_info(fs_info, sb);
3210         if (ret)
3211                 goto fail;
3212
3213         /* These need to be init'ed before we start creating inodes and such. */
3214         tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3215                                      GFP_KERNEL);
3216         fs_info->tree_root = tree_root;
3217         chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3218                                       GFP_KERNEL);
3219         fs_info->chunk_root = chunk_root;
3220         if (!tree_root || !chunk_root) {
3221                 ret = -ENOMEM;
3222                 goto fail;
3223         }
3224
3225         ret = btrfs_init_btree_inode(sb);
3226         if (ret)
3227                 goto fail;
3228
3229         invalidate_bdev(fs_devices->latest_dev->bdev);
3230
3231         /*
3232          * Read super block and check the signature bytes only
3233          */
3234         disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3235         if (IS_ERR(disk_super)) {
3236                 ret = PTR_ERR(disk_super);
3237                 goto fail_alloc;
3238         }
3239
3240         btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
3241         /*
3242          * Verify the type first, if that or the checksum value are
3243          * corrupted, we'll find out
3244          */
3245         csum_type = btrfs_super_csum_type(disk_super);
3246         if (!btrfs_supported_super_csum(csum_type)) {
3247                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3248                           csum_type);
3249                 ret = -EINVAL;
3250                 btrfs_release_disk_super(disk_super);
3251                 goto fail_alloc;
3252         }
3253
3254         fs_info->csum_size = btrfs_super_csum_size(disk_super);
3255
3256         ret = btrfs_init_csum_hash(fs_info, csum_type);
3257         if (ret) {
3258                 btrfs_release_disk_super(disk_super);
3259                 goto fail_alloc;
3260         }
3261
3262         /*
3263          * We want to check superblock checksum, the type is stored inside.
3264          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3265          */
3266         if (btrfs_check_super_csum(fs_info, disk_super)) {
3267                 btrfs_err(fs_info, "superblock checksum mismatch");
3268                 ret = -EINVAL;
3269                 btrfs_release_disk_super(disk_super);
3270                 goto fail_alloc;
3271         }
3272
3273         /*
3274          * super_copy is zeroed at allocation time and we never touch the
3275          * following bytes up to INFO_SIZE, the checksum is calculated from
3276          * the whole block of INFO_SIZE
3277          */
3278         memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3279         btrfs_release_disk_super(disk_super);
3280
3281         disk_super = fs_info->super_copy;
3282
3283         memcpy(fs_info->super_for_commit, fs_info->super_copy,
3284                sizeof(*fs_info->super_for_commit));
3285
3286         ret = btrfs_validate_mount_super(fs_info);
3287         if (ret) {
3288                 btrfs_err(fs_info, "superblock contains fatal errors");
3289                 ret = -EINVAL;
3290                 goto fail_alloc;
3291         }
3292
3293         if (!btrfs_super_root(disk_super)) {
3294                 btrfs_err(fs_info, "invalid superblock tree root bytenr");
3295                 ret = -EINVAL;
3296                 goto fail_alloc;
3297         }
3298
3299         /* check FS state, whether FS is broken. */
3300         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3301                 WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3302
3303         /* Set up fs_info before parsing mount options */
3304         nodesize = btrfs_super_nodesize(disk_super);
3305         sectorsize = btrfs_super_sectorsize(disk_super);
3306         stripesize = sectorsize;
3307         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3308         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3309
3310         fs_info->nodesize = nodesize;
3311         fs_info->sectorsize = sectorsize;
3312         fs_info->sectorsize_bits = ilog2(sectorsize);
3313         fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3314         fs_info->stripesize = stripesize;
3315
3316         /*
3317          * Handle the space caching options appropriately now that we have the
3318          * super block loaded and validated.
3319          */
3320         btrfs_set_free_space_cache_settings(fs_info);
3321
3322         if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
3323                 ret = -EINVAL;
3324                 goto fail_alloc;
3325         }
3326
3327         ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3328         if (ret < 0)
3329                 goto fail_alloc;
3330
3331         /*
3332          * At this point our mount options are validated, if we set ->max_inline
3333          * to something non-standard make sure we truncate it to sectorsize.
3334          */
3335         fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
3336
3337         if (sectorsize < PAGE_SIZE) {
3338                 struct btrfs_subpage_info *subpage_info;
3339
3340                 btrfs_warn(fs_info,
3341                 "read-write for sector size %u with page size %lu is experimental",
3342                            sectorsize, PAGE_SIZE);
3343                 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3344                 if (!subpage_info) {
3345                         ret = -ENOMEM;
3346                         goto fail_alloc;
3347                 }
3348                 btrfs_init_subpage_info(subpage_info, sectorsize);
3349                 fs_info->subpage_info = subpage_info;
3350         }
3351
3352         ret = btrfs_init_workqueues(fs_info);
3353         if (ret)
3354                 goto fail_sb_buffer;
3355
3356         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3357         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3358
3359         sb->s_blocksize = sectorsize;
3360         sb->s_blocksize_bits = blksize_bits(sectorsize);
3361         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3362
3363         mutex_lock(&fs_info->chunk_mutex);
3364         ret = btrfs_read_sys_array(fs_info);
3365         mutex_unlock(&fs_info->chunk_mutex);
3366         if (ret) {
3367                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3368                 goto fail_sb_buffer;
3369         }
3370
3371         generation = btrfs_super_chunk_root_generation(disk_super);
3372         level = btrfs_super_chunk_root_level(disk_super);
3373         ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3374                               generation, level);
3375         if (ret) {
3376                 btrfs_err(fs_info, "failed to read chunk root");
3377                 goto fail_tree_roots;
3378         }
3379
3380         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3381                            offsetof(struct btrfs_header, chunk_tree_uuid),
3382                            BTRFS_UUID_SIZE);
3383
3384         ret = btrfs_read_chunk_tree(fs_info);
3385         if (ret) {
3386                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3387                 goto fail_tree_roots;
3388         }
3389
3390         /*
3391          * At this point we know all the devices that make this filesystem,
3392          * including the seed devices but we don't know yet if the replace
3393          * target is required. So free devices that are not part of this
3394          * filesystem but skip the replace target device which is checked
3395          * below in btrfs_init_dev_replace().
3396          */
3397         btrfs_free_extra_devids(fs_devices);
3398         if (!fs_devices->latest_dev->bdev) {
3399                 btrfs_err(fs_info, "failed to read devices");
3400                 ret = -EIO;
3401                 goto fail_tree_roots;
3402         }
3403
3404         ret = init_tree_roots(fs_info);
3405         if (ret)
3406                 goto fail_tree_roots;
3407
3408         /*
3409          * Get zone type information of zoned block devices. This will also
3410          * handle emulation of a zoned filesystem if a regular device has the
3411          * zoned incompat feature flag set.
3412          */
3413         ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3414         if (ret) {
3415                 btrfs_err(fs_info,
3416                           "zoned: failed to read device zone info: %d", ret);
3417                 goto fail_block_groups;
3418         }
3419
3420         /*
3421          * If we have a uuid root and we're not being told to rescan we need to
3422          * check the generation here so we can set the
3423          * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3424          * transaction during a balance or the log replay without updating the
3425          * uuid generation, and then if we crash we would rescan the uuid tree,
3426          * even though it was perfectly fine.
3427          */
3428         if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3429             fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3430                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3431
3432         ret = btrfs_verify_dev_extents(fs_info);
3433         if (ret) {
3434                 btrfs_err(fs_info,
3435                           "failed to verify dev extents against chunks: %d",
3436                           ret);
3437                 goto fail_block_groups;
3438         }
3439         ret = btrfs_recover_balance(fs_info);
3440         if (ret) {
3441                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3442                 goto fail_block_groups;
3443         }
3444
3445         ret = btrfs_init_dev_stats(fs_info);
3446         if (ret) {
3447                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3448                 goto fail_block_groups;
3449         }
3450
3451         ret = btrfs_init_dev_replace(fs_info);
3452         if (ret) {
3453                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3454                 goto fail_block_groups;
3455         }
3456
3457         ret = btrfs_check_zoned_mode(fs_info);
3458         if (ret) {
3459                 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3460                           ret);
3461                 goto fail_block_groups;
3462         }
3463
3464         ret = btrfs_sysfs_add_fsid(fs_devices);
3465         if (ret) {
3466                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3467                                 ret);
3468                 goto fail_block_groups;
3469         }
3470
3471         ret = btrfs_sysfs_add_mounted(fs_info);
3472         if (ret) {
3473                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3474                 goto fail_fsdev_sysfs;
3475         }
3476
3477         ret = btrfs_init_space_info(fs_info);
3478         if (ret) {
3479                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3480                 goto fail_sysfs;
3481         }
3482
3483         ret = btrfs_read_block_groups(fs_info);
3484         if (ret) {
3485                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3486                 goto fail_sysfs;
3487         }
3488
3489         btrfs_free_zone_cache(fs_info);
3490
3491         btrfs_check_active_zone_reservation(fs_info);
3492
3493         if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3494             !btrfs_check_rw_degradable(fs_info, NULL)) {
3495                 btrfs_warn(fs_info,
3496                 "writable mount is not allowed due to too many missing devices");
3497                 ret = -EINVAL;
3498                 goto fail_sysfs;
3499         }
3500
3501         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3502                                                "btrfs-cleaner");
3503         if (IS_ERR(fs_info->cleaner_kthread)) {
3504                 ret = PTR_ERR(fs_info->cleaner_kthread);
3505                 goto fail_sysfs;
3506         }
3507
3508         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3509                                                    tree_root,
3510                                                    "btrfs-transaction");
3511         if (IS_ERR(fs_info->transaction_kthread)) {
3512                 ret = PTR_ERR(fs_info->transaction_kthread);
3513                 goto fail_cleaner;
3514         }
3515
3516         ret = btrfs_read_qgroup_config(fs_info);
3517         if (ret)
3518                 goto fail_trans_kthread;
3519
3520         if (btrfs_build_ref_tree(fs_info))
3521                 btrfs_err(fs_info, "couldn't build ref tree");
3522
3523         /* do not make disk changes in broken FS or nologreplay is given */
3524         if (btrfs_super_log_root(disk_super) != 0 &&
3525             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3526                 btrfs_info(fs_info, "start tree-log replay");
3527                 ret = btrfs_replay_log(fs_info, fs_devices);
3528                 if (ret)
3529                         goto fail_qgroup;
3530         }
3531
3532         fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3533         if (IS_ERR(fs_info->fs_root)) {
3534                 ret = PTR_ERR(fs_info->fs_root);
3535                 btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3536                 fs_info->fs_root = NULL;
3537                 goto fail_qgroup;
3538         }
3539
3540         if (sb_rdonly(sb))
3541                 return 0;
3542
3543         ret = btrfs_start_pre_rw_mount(fs_info);
3544         if (ret) {
3545                 close_ctree(fs_info);
3546                 return ret;
3547         }
3548         btrfs_discard_resume(fs_info);
3549
3550         if (fs_info->uuid_root &&
3551             (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3552              fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3553                 btrfs_info(fs_info, "checking UUID tree");
3554                 ret = btrfs_check_uuid_tree(fs_info);
3555                 if (ret) {
3556                         btrfs_warn(fs_info,
3557                                 "failed to check the UUID tree: %d", ret);
3558                         close_ctree(fs_info);
3559                         return ret;
3560                 }
3561         }
3562
3563         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3564
3565         /* Kick the cleaner thread so it'll start deleting snapshots. */
3566         if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3567                 wake_up_process(fs_info->cleaner_kthread);
3568
3569         return 0;
3570
3571 fail_qgroup:
3572         btrfs_free_qgroup_config(fs_info);
3573 fail_trans_kthread:
3574         kthread_stop(fs_info->transaction_kthread);
3575         btrfs_cleanup_transaction(fs_info);
3576         btrfs_free_fs_roots(fs_info);
3577 fail_cleaner:
3578         kthread_stop(fs_info->cleaner_kthread);
3579
3580         /*
3581          * make sure we're done with the btree inode before we stop our
3582          * kthreads
3583          */
3584         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3585
3586 fail_sysfs:
3587         btrfs_sysfs_remove_mounted(fs_info);
3588
3589 fail_fsdev_sysfs:
3590         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3591
3592 fail_block_groups:
3593         btrfs_put_block_group_cache(fs_info);
3594
3595 fail_tree_roots:
3596         if (fs_info->data_reloc_root)
3597                 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3598         free_root_pointers(fs_info, true);
3599         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3600
3601 fail_sb_buffer:
3602         btrfs_stop_all_workers(fs_info);
3603         btrfs_free_block_groups(fs_info);
3604 fail_alloc:
3605         btrfs_mapping_tree_free(fs_info);
3606
3607         iput(fs_info->btree_inode);
3608 fail:
3609         btrfs_close_devices(fs_info->fs_devices);
3610         ASSERT(ret < 0);
3611         return ret;
3612 }
3613 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3614
3615 static void btrfs_end_super_write(struct bio *bio)
3616 {
3617         struct btrfs_device *device = bio->bi_private;
3618         struct bio_vec *bvec;
3619         struct bvec_iter_all iter_all;
3620         struct page *page;
3621
3622         bio_for_each_segment_all(bvec, bio, iter_all) {
3623                 page = bvec->bv_page;
3624
3625                 if (bio->bi_status) {
3626                         btrfs_warn_rl_in_rcu(device->fs_info,
3627                                 "lost page write due to IO error on %s (%d)",
3628                                 btrfs_dev_name(device),
3629                                 blk_status_to_errno(bio->bi_status));
3630                         ClearPageUptodate(page);
3631                         SetPageError(page);
3632                         btrfs_dev_stat_inc_and_print(device,
3633                                                      BTRFS_DEV_STAT_WRITE_ERRS);
3634                 } else {
3635                         SetPageUptodate(page);
3636                 }
3637
3638                 put_page(page);
3639                 unlock_page(page);
3640         }
3641
3642         bio_put(bio);
3643 }
3644
3645 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3646                                                    int copy_num, bool drop_cache)
3647 {
3648         struct btrfs_super_block *super;
3649         struct page *page;
3650         u64 bytenr, bytenr_orig;
3651         struct address_space *mapping = bdev->bd_inode->i_mapping;
3652         int ret;
3653
3654         bytenr_orig = btrfs_sb_offset(copy_num);
3655         ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3656         if (ret == -ENOENT)
3657                 return ERR_PTR(-EINVAL);
3658         else if (ret)
3659                 return ERR_PTR(ret);
3660
3661         if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3662                 return ERR_PTR(-EINVAL);
3663
3664         if (drop_cache) {
3665                 /* This should only be called with the primary sb. */
3666                 ASSERT(copy_num == 0);
3667
3668                 /*
3669                  * Drop the page of the primary superblock, so later read will
3670                  * always read from the device.
3671                  */
3672                 invalidate_inode_pages2_range(mapping,
3673                                 bytenr >> PAGE_SHIFT,
3674                                 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3675         }
3676
3677         page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3678         if (IS_ERR(page))
3679                 return ERR_CAST(page);
3680
3681         super = page_address(page);
3682         if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3683                 btrfs_release_disk_super(super);
3684                 return ERR_PTR(-ENODATA);
3685         }
3686
3687         if (btrfs_super_bytenr(super) != bytenr_orig) {
3688                 btrfs_release_disk_super(super);
3689                 return ERR_PTR(-EINVAL);
3690         }
3691
3692         return super;
3693 }
3694
3695
3696 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3697 {
3698         struct btrfs_super_block *super, *latest = NULL;
3699         int i;
3700         u64 transid = 0;
3701
3702         /* we would like to check all the supers, but that would make
3703          * a btrfs mount succeed after a mkfs from a different FS.
3704          * So, we need to add a special mount option to scan for
3705          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3706          */
3707         for (i = 0; i < 1; i++) {
3708                 super = btrfs_read_dev_one_super(bdev, i, false);
3709                 if (IS_ERR(super))
3710                         continue;
3711
3712                 if (!latest || btrfs_super_generation(super) > transid) {
3713                         if (latest)
3714                                 btrfs_release_disk_super(super);
3715
3716                         latest = super;
3717                         transid = btrfs_super_generation(super);
3718                 }
3719         }
3720
3721         return super;
3722 }
3723
3724 /*
3725  * Write superblock @sb to the @device. Do not wait for completion, all the
3726  * pages we use for writing are locked.
3727  *
3728  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3729  * the expected device size at commit time. Note that max_mirrors must be
3730  * same for write and wait phases.
3731  *
3732  * Return number of errors when page is not found or submission fails.
3733  */
3734 static int write_dev_supers(struct btrfs_device *device,
3735                             struct btrfs_super_block *sb, int max_mirrors)
3736 {
3737         struct btrfs_fs_info *fs_info = device->fs_info;
3738         struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3739         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3740         int i;
3741         int errors = 0;
3742         int ret;
3743         u64 bytenr, bytenr_orig;
3744
3745         if (max_mirrors == 0)
3746                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3747
3748         shash->tfm = fs_info->csum_shash;
3749
3750         for (i = 0; i < max_mirrors; i++) {
3751                 struct page *page;
3752                 struct bio *bio;
3753                 struct btrfs_super_block *disk_super;
3754
3755                 bytenr_orig = btrfs_sb_offset(i);
3756                 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3757                 if (ret == -ENOENT) {
3758                         continue;
3759                 } else if (ret < 0) {
3760                         btrfs_err(device->fs_info,
3761                                 "couldn't get super block location for mirror %d",
3762                                 i);
3763                         errors++;
3764                         continue;
3765                 }
3766                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3767                     device->commit_total_bytes)
3768                         break;
3769
3770                 btrfs_set_super_bytenr(sb, bytenr_orig);
3771
3772                 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3773                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3774                                     sb->csum);
3775
3776                 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3777                                            GFP_NOFS);
3778                 if (!page) {
3779                         btrfs_err(device->fs_info,
3780                             "couldn't get super block page for bytenr %llu",
3781                             bytenr);
3782                         errors++;
3783                         continue;
3784                 }
3785
3786                 /* Bump the refcount for wait_dev_supers() */
3787                 get_page(page);
3788
3789                 disk_super = page_address(page);
3790                 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3791
3792                 /*
3793                  * Directly use bios here instead of relying on the page cache
3794                  * to do I/O, so we don't lose the ability to do integrity
3795                  * checking.
3796                  */
3797                 bio = bio_alloc(device->bdev, 1,
3798                                 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3799                                 GFP_NOFS);
3800                 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3801                 bio->bi_private = device;
3802                 bio->bi_end_io = btrfs_end_super_write;
3803                 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3804                                offset_in_page(bytenr));
3805
3806                 /*
3807                  * We FUA only the first super block.  The others we allow to
3808                  * go down lazy and there's a short window where the on-disk
3809                  * copies might still contain the older version.
3810                  */
3811                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3812                         bio->bi_opf |= REQ_FUA;
3813                 submit_bio(bio);
3814
3815                 if (btrfs_advance_sb_log(device, i))
3816                         errors++;
3817         }
3818         return errors < i ? 0 : -1;
3819 }
3820
3821 /*
3822  * Wait for write completion of superblocks done by write_dev_supers,
3823  * @max_mirrors same for write and wait phases.
3824  *
3825  * Return number of errors when page is not found or not marked up to
3826  * date.
3827  */
3828 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3829 {
3830         int i;
3831         int errors = 0;
3832         bool primary_failed = false;
3833         int ret;
3834         u64 bytenr;
3835
3836         if (max_mirrors == 0)
3837                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3838
3839         for (i = 0; i < max_mirrors; i++) {
3840                 struct page *page;
3841
3842                 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3843                 if (ret == -ENOENT) {
3844                         break;
3845                 } else if (ret < 0) {
3846                         errors++;
3847                         if (i == 0)
3848                                 primary_failed = true;
3849                         continue;
3850                 }
3851                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3852                     device->commit_total_bytes)
3853                         break;
3854
3855                 page = find_get_page(device->bdev->bd_inode->i_mapping,
3856                                      bytenr >> PAGE_SHIFT);
3857                 if (!page) {
3858                         errors++;
3859                         if (i == 0)
3860                                 primary_failed = true;
3861                         continue;
3862                 }
3863                 /* Page is submitted locked and unlocked once the IO completes */
3864                 wait_on_page_locked(page);
3865                 if (PageError(page)) {
3866                         errors++;
3867                         if (i == 0)
3868                                 primary_failed = true;
3869                 }
3870
3871                 /* Drop our reference */
3872                 put_page(page);
3873
3874                 /* Drop the reference from the writing run */
3875                 put_page(page);
3876         }
3877
3878         /* log error, force error return */
3879         if (primary_failed) {
3880                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3881                           device->devid);
3882                 return -1;
3883         }
3884
3885         return errors < i ? 0 : -1;
3886 }
3887
3888 /*
3889  * endio for the write_dev_flush, this will wake anyone waiting
3890  * for the barrier when it is done
3891  */
3892 static void btrfs_end_empty_barrier(struct bio *bio)
3893 {
3894         bio_uninit(bio);
3895         complete(bio->bi_private);
3896 }
3897
3898 /*
3899  * Submit a flush request to the device if it supports it. Error handling is
3900  * done in the waiting counterpart.
3901  */
3902 static void write_dev_flush(struct btrfs_device *device)
3903 {
3904         struct bio *bio = &device->flush_bio;
3905
3906         device->last_flush_error = BLK_STS_OK;
3907
3908         bio_init(bio, device->bdev, NULL, 0,
3909                  REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3910         bio->bi_end_io = btrfs_end_empty_barrier;
3911         init_completion(&device->flush_wait);
3912         bio->bi_private = &device->flush_wait;
3913         submit_bio(bio);
3914         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3915 }
3916
3917 /*
3918  * If the flush bio has been submitted by write_dev_flush, wait for it.
3919  * Return true for any error, and false otherwise.
3920  */
3921 static bool wait_dev_flush(struct btrfs_device *device)
3922 {
3923         struct bio *bio = &device->flush_bio;
3924
3925         if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3926                 return false;
3927
3928         wait_for_completion_io(&device->flush_wait);
3929
3930         if (bio->bi_status) {
3931                 device->last_flush_error = bio->bi_status;
3932                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3933                 return true;
3934         }
3935
3936         return false;
3937 }
3938
3939 /*
3940  * send an empty flush down to each device in parallel,
3941  * then wait for them
3942  */
3943 static int barrier_all_devices(struct btrfs_fs_info *info)
3944 {
3945         struct list_head *head;
3946         struct btrfs_device *dev;
3947         int errors_wait = 0;
3948
3949         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3950         /* send down all the barriers */
3951         head = &info->fs_devices->devices;
3952         list_for_each_entry(dev, head, dev_list) {
3953                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3954                         continue;
3955                 if (!dev->bdev)
3956                         continue;
3957                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3958                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3959                         continue;
3960
3961                 write_dev_flush(dev);
3962         }
3963
3964         /* wait for all the barriers */
3965         list_for_each_entry(dev, head, dev_list) {
3966                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3967                         continue;
3968                 if (!dev->bdev) {
3969                         errors_wait++;
3970                         continue;
3971                 }
3972                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3973                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3974                         continue;
3975
3976                 if (wait_dev_flush(dev))
3977                         errors_wait++;
3978         }
3979
3980         /*
3981          * Checks last_flush_error of disks in order to determine the device
3982          * state.
3983          */
3984         if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
3985                 return -EIO;
3986
3987         return 0;
3988 }
3989
3990 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3991 {
3992         int raid_type;
3993         int min_tolerated = INT_MAX;
3994
3995         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3996             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3997                 min_tolerated = min_t(int, min_tolerated,
3998                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3999                                     tolerated_failures);
4000
4001         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4002                 if (raid_type == BTRFS_RAID_SINGLE)
4003                         continue;
4004                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4005                         continue;
4006                 min_tolerated = min_t(int, min_tolerated,
4007                                     btrfs_raid_array[raid_type].
4008                                     tolerated_failures);
4009         }
4010
4011         if (min_tolerated == INT_MAX) {
4012                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
4013                 min_tolerated = 0;
4014         }
4015
4016         return min_tolerated;
4017 }
4018
4019 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4020 {
4021         struct list_head *head;
4022         struct btrfs_device *dev;
4023         struct btrfs_super_block *sb;
4024         struct btrfs_dev_item *dev_item;
4025         int ret;
4026         int do_barriers;
4027         int max_errors;
4028         int total_errors = 0;
4029         u64 flags;
4030
4031         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4032
4033         /*
4034          * max_mirrors == 0 indicates we're from commit_transaction,
4035          * not from fsync where the tree roots in fs_info have not
4036          * been consistent on disk.
4037          */
4038         if (max_mirrors == 0)
4039                 backup_super_roots(fs_info);
4040
4041         sb = fs_info->super_for_commit;
4042         dev_item = &sb->dev_item;
4043
4044         mutex_lock(&fs_info->fs_devices->device_list_mutex);
4045         head = &fs_info->fs_devices->devices;
4046         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4047
4048         if (do_barriers) {
4049                 ret = barrier_all_devices(fs_info);
4050                 if (ret) {
4051                         mutex_unlock(
4052                                 &fs_info->fs_devices->device_list_mutex);
4053                         btrfs_handle_fs_error(fs_info, ret,
4054                                               "errors while submitting device barriers.");
4055                         return ret;
4056                 }
4057         }
4058
4059         list_for_each_entry(dev, head, dev_list) {
4060                 if (!dev->bdev) {
4061                         total_errors++;
4062                         continue;
4063                 }
4064                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4065                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4066                         continue;
4067
4068                 btrfs_set_stack_device_generation(dev_item, 0);
4069                 btrfs_set_stack_device_type(dev_item, dev->type);
4070                 btrfs_set_stack_device_id(dev_item, dev->devid);
4071                 btrfs_set_stack_device_total_bytes(dev_item,
4072                                                    dev->commit_total_bytes);
4073                 btrfs_set_stack_device_bytes_used(dev_item,
4074                                                   dev->commit_bytes_used);
4075                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4076                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4077                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4078                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4079                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4080                        BTRFS_FSID_SIZE);
4081
4082                 flags = btrfs_super_flags(sb);
4083                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4084
4085                 ret = btrfs_validate_write_super(fs_info, sb);
4086                 if (ret < 0) {
4087                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4088                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
4089                                 "unexpected superblock corruption detected");
4090                         return -EUCLEAN;
4091                 }
4092
4093                 ret = write_dev_supers(dev, sb, max_mirrors);
4094                 if (ret)
4095                         total_errors++;
4096         }
4097         if (total_errors > max_errors) {
4098                 btrfs_err(fs_info, "%d errors while writing supers",
4099                           total_errors);
4100                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4101
4102                 /* FUA is masked off if unsupported and can't be the reason */
4103                 btrfs_handle_fs_error(fs_info, -EIO,
4104                                       "%d errors while writing supers",
4105                                       total_errors);
4106                 return -EIO;
4107         }
4108
4109         total_errors = 0;
4110         list_for_each_entry(dev, head, dev_list) {
4111                 if (!dev->bdev)
4112                         continue;
4113                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4114                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4115                         continue;
4116
4117                 ret = wait_dev_supers(dev, max_mirrors);
4118                 if (ret)
4119                         total_errors++;
4120         }
4121         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4122         if (total_errors > max_errors) {
4123                 btrfs_handle_fs_error(fs_info, -EIO,
4124                                       "%d errors while writing supers",
4125                                       total_errors);
4126                 return -EIO;
4127         }
4128         return 0;
4129 }
4130
4131 /* Drop a fs root from the radix tree and free it. */
4132 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4133                                   struct btrfs_root *root)
4134 {
4135         bool drop_ref = false;
4136
4137         spin_lock(&fs_info->fs_roots_radix_lock);
4138         radix_tree_delete(&fs_info->fs_roots_radix,
4139                           (unsigned long)root->root_key.objectid);
4140         if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4141                 drop_ref = true;
4142         spin_unlock(&fs_info->fs_roots_radix_lock);
4143
4144         if (BTRFS_FS_ERROR(fs_info)) {
4145                 ASSERT(root->log_root == NULL);
4146                 if (root->reloc_root) {
4147                         btrfs_put_root(root->reloc_root);
4148                         root->reloc_root = NULL;
4149                 }
4150         }
4151
4152         if (drop_ref)
4153                 btrfs_put_root(root);
4154 }
4155
4156 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4157 {
4158         struct btrfs_root *root = fs_info->tree_root;
4159         struct btrfs_trans_handle *trans;
4160
4161         mutex_lock(&fs_info->cleaner_mutex);
4162         btrfs_run_delayed_iputs(fs_info);
4163         mutex_unlock(&fs_info->cleaner_mutex);
4164         wake_up_process(fs_info->cleaner_kthread);
4165
4166         /* wait until ongoing cleanup work done */
4167         down_write(&fs_info->cleanup_work_sem);
4168         up_write(&fs_info->cleanup_work_sem);
4169
4170         trans = btrfs_join_transaction(root);
4171         if (IS_ERR(trans))
4172                 return PTR_ERR(trans);
4173         return btrfs_commit_transaction(trans);
4174 }
4175
4176 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4177 {
4178         struct btrfs_transaction *trans;
4179         struct btrfs_transaction *tmp;
4180         bool found = false;
4181
4182         if (list_empty(&fs_info->trans_list))
4183                 return;
4184
4185         /*
4186          * This function is only called at the very end of close_ctree(),
4187          * thus no other running transaction, no need to take trans_lock.
4188          */
4189         ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4190         list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4191                 struct extent_state *cached = NULL;
4192                 u64 dirty_bytes = 0;
4193                 u64 cur = 0;
4194                 u64 found_start;
4195                 u64 found_end;
4196
4197                 found = true;
4198                 while (find_first_extent_bit(&trans->dirty_pages, cur,
4199                         &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4200                         dirty_bytes += found_end + 1 - found_start;
4201                         cur = found_end + 1;
4202                 }
4203                 btrfs_warn(fs_info,
4204         "transaction %llu (with %llu dirty metadata bytes) is not committed",
4205                            trans->transid, dirty_bytes);
4206                 btrfs_cleanup_one_transaction(trans, fs_info);
4207
4208                 if (trans == fs_info->running_transaction)
4209                         fs_info->running_transaction = NULL;
4210                 list_del_init(&trans->list);
4211
4212                 btrfs_put_transaction(trans);
4213                 trace_btrfs_transaction_commit(fs_info);
4214         }
4215         ASSERT(!found);
4216 }
4217
4218 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4219 {
4220         int ret;
4221
4222         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4223
4224         /*
4225          * If we had UNFINISHED_DROPS we could still be processing them, so
4226          * clear that bit and wake up relocation so it can stop.
4227          * We must do this before stopping the block group reclaim task, because
4228          * at btrfs_relocate_block_group() we wait for this bit, and after the
4229          * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4230          * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4231          * return 1.
4232          */
4233         btrfs_wake_unfinished_drop(fs_info);
4234
4235         /*
4236          * We may have the reclaim task running and relocating a data block group,
4237          * in which case it may create delayed iputs. So stop it before we park
4238          * the cleaner kthread otherwise we can get new delayed iputs after
4239          * parking the cleaner, and that can make the async reclaim task to hang
4240          * if it's waiting for delayed iputs to complete, since the cleaner is
4241          * parked and can not run delayed iputs - this will make us hang when
4242          * trying to stop the async reclaim task.
4243          */
4244         cancel_work_sync(&fs_info->reclaim_bgs_work);
4245         /*
4246          * We don't want the cleaner to start new transactions, add more delayed
4247          * iputs, etc. while we're closing. We can't use kthread_stop() yet
4248          * because that frees the task_struct, and the transaction kthread might
4249          * still try to wake up the cleaner.
4250          */
4251         kthread_park(fs_info->cleaner_kthread);
4252
4253         /* wait for the qgroup rescan worker to stop */
4254         btrfs_qgroup_wait_for_completion(fs_info, false);
4255
4256         /* wait for the uuid_scan task to finish */
4257         down(&fs_info->uuid_tree_rescan_sem);
4258         /* avoid complains from lockdep et al., set sem back to initial state */
4259         up(&fs_info->uuid_tree_rescan_sem);
4260
4261         /* pause restriper - we want to resume on mount */
4262         btrfs_pause_balance(fs_info);
4263
4264         btrfs_dev_replace_suspend_for_unmount(fs_info);
4265
4266         btrfs_scrub_cancel(fs_info);
4267
4268         /* wait for any defraggers to finish */
4269         wait_event(fs_info->transaction_wait,
4270                    (atomic_read(&fs_info->defrag_running) == 0));
4271
4272         /* clear out the rbtree of defraggable inodes */
4273         btrfs_cleanup_defrag_inodes(fs_info);
4274
4275         /*
4276          * After we parked the cleaner kthread, ordered extents may have
4277          * completed and created new delayed iputs. If one of the async reclaim
4278          * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4279          * can hang forever trying to stop it, because if a delayed iput is
4280          * added after it ran btrfs_run_delayed_iputs() and before it called
4281          * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4282          * no one else to run iputs.
4283          *
4284          * So wait for all ongoing ordered extents to complete and then run
4285          * delayed iputs. This works because once we reach this point no one
4286          * can either create new ordered extents nor create delayed iputs
4287          * through some other means.
4288          *
4289          * Also note that btrfs_wait_ordered_roots() is not safe here, because
4290          * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4291          * but the delayed iput for the respective inode is made only when doing
4292          * the final btrfs_put_ordered_extent() (which must happen at
4293          * btrfs_finish_ordered_io() when we are unmounting).
4294          */
4295         btrfs_flush_workqueue(fs_info->endio_write_workers);
4296         /* Ordered extents for free space inodes. */
4297         btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4298         btrfs_run_delayed_iputs(fs_info);
4299
4300         cancel_work_sync(&fs_info->async_reclaim_work);
4301         cancel_work_sync(&fs_info->async_data_reclaim_work);
4302         cancel_work_sync(&fs_info->preempt_reclaim_work);
4303
4304         /* Cancel or finish ongoing discard work */
4305         btrfs_discard_cleanup(fs_info);
4306
4307         if (!sb_rdonly(fs_info->sb)) {
4308                 /*
4309                  * The cleaner kthread is stopped, so do one final pass over
4310                  * unused block groups.
4311                  */
4312                 btrfs_delete_unused_bgs(fs_info);
4313
4314                 /*
4315                  * There might be existing delayed inode workers still running
4316                  * and holding an empty delayed inode item. We must wait for
4317                  * them to complete first because they can create a transaction.
4318                  * This happens when someone calls btrfs_balance_delayed_items()
4319                  * and then a transaction commit runs the same delayed nodes
4320                  * before any delayed worker has done something with the nodes.
4321                  * We must wait for any worker here and not at transaction
4322                  * commit time since that could cause a deadlock.
4323                  * This is a very rare case.
4324                  */
4325                 btrfs_flush_workqueue(fs_info->delayed_workers);
4326
4327                 ret = btrfs_commit_super(fs_info);
4328                 if (ret)
4329                         btrfs_err(fs_info, "commit super ret %d", ret);
4330         }
4331
4332         if (BTRFS_FS_ERROR(fs_info))
4333                 btrfs_error_commit_super(fs_info);
4334
4335         kthread_stop(fs_info->transaction_kthread);
4336         kthread_stop(fs_info->cleaner_kthread);
4337
4338         ASSERT(list_empty(&fs_info->delayed_iputs));
4339         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4340
4341         if (btrfs_check_quota_leak(fs_info)) {
4342                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4343                 btrfs_err(fs_info, "qgroup reserved space leaked");
4344         }
4345
4346         btrfs_free_qgroup_config(fs_info);
4347         ASSERT(list_empty(&fs_info->delalloc_roots));
4348
4349         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4350                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4351                        percpu_counter_sum(&fs_info->delalloc_bytes));
4352         }
4353
4354         if (percpu_counter_sum(&fs_info->ordered_bytes))
4355                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4356                            percpu_counter_sum(&fs_info->ordered_bytes));
4357
4358         btrfs_sysfs_remove_mounted(fs_info);
4359         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4360
4361         btrfs_put_block_group_cache(fs_info);
4362
4363         /*
4364          * we must make sure there is not any read request to
4365          * submit after we stopping all workers.
4366          */
4367         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4368         btrfs_stop_all_workers(fs_info);
4369
4370         /* We shouldn't have any transaction open at this point */
4371         warn_about_uncommitted_trans(fs_info);
4372
4373         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4374         free_root_pointers(fs_info, true);
4375         btrfs_free_fs_roots(fs_info);
4376
4377         /*
4378          * We must free the block groups after dropping the fs_roots as we could
4379          * have had an IO error and have left over tree log blocks that aren't
4380          * cleaned up until the fs roots are freed.  This makes the block group
4381          * accounting appear to be wrong because there's pending reserved bytes,
4382          * so make sure we do the block group cleanup afterwards.
4383          */
4384         btrfs_free_block_groups(fs_info);
4385
4386         iput(fs_info->btree_inode);
4387
4388         btrfs_mapping_tree_free(fs_info);
4389         btrfs_close_devices(fs_info->fs_devices);
4390 }
4391
4392 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4393                              struct extent_buffer *buf)
4394 {
4395         struct btrfs_fs_info *fs_info = buf->fs_info;
4396         u64 transid = btrfs_header_generation(buf);
4397
4398 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4399         /*
4400          * This is a fast path so only do this check if we have sanity tests
4401          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4402          * outside of the sanity tests.
4403          */
4404         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4405                 return;
4406 #endif
4407         /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4408         ASSERT(trans->transid == fs_info->generation);
4409         btrfs_assert_tree_write_locked(buf);
4410         if (unlikely(transid != fs_info->generation)) {
4411                 btrfs_abort_transaction(trans, -EUCLEAN);
4412                 btrfs_crit(fs_info,
4413 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4414                            buf->start, transid, fs_info->generation);
4415         }
4416         set_extent_buffer_dirty(buf);
4417 }
4418
4419 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4420                                         int flush_delayed)
4421 {
4422         /*
4423          * looks as though older kernels can get into trouble with
4424          * this code, they end up stuck in balance_dirty_pages forever
4425          */
4426         int ret;
4427
4428         if (current->flags & PF_MEMALLOC)
4429                 return;
4430
4431         if (flush_delayed)
4432                 btrfs_balance_delayed_items(fs_info);
4433
4434         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4435                                      BTRFS_DIRTY_METADATA_THRESH,
4436                                      fs_info->dirty_metadata_batch);
4437         if (ret > 0) {
4438                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4439         }
4440 }
4441
4442 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4443 {
4444         __btrfs_btree_balance_dirty(fs_info, 1);
4445 }
4446
4447 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4448 {
4449         __btrfs_btree_balance_dirty(fs_info, 0);
4450 }
4451
4452 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4453 {
4454         /* cleanup FS via transaction */
4455         btrfs_cleanup_transaction(fs_info);
4456
4457         mutex_lock(&fs_info->cleaner_mutex);
4458         btrfs_run_delayed_iputs(fs_info);
4459         mutex_unlock(&fs_info->cleaner_mutex);
4460
4461         down_write(&fs_info->cleanup_work_sem);
4462         up_write(&fs_info->cleanup_work_sem);
4463 }
4464
4465 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4466 {
4467         struct btrfs_root *gang[8];
4468         u64 root_objectid = 0;
4469         int ret;
4470
4471         spin_lock(&fs_info->fs_roots_radix_lock);
4472         while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4473                                              (void **)gang, root_objectid,
4474                                              ARRAY_SIZE(gang))) != 0) {
4475                 int i;
4476
4477                 for (i = 0; i < ret; i++)
4478                         gang[i] = btrfs_grab_root(gang[i]);
4479                 spin_unlock(&fs_info->fs_roots_radix_lock);
4480
4481                 for (i = 0; i < ret; i++) {
4482                         if (!gang[i])
4483                                 continue;
4484                         root_objectid = gang[i]->root_key.objectid;
4485                         btrfs_free_log(NULL, gang[i]);
4486                         btrfs_put_root(gang[i]);
4487                 }
4488                 root_objectid++;
4489                 spin_lock(&fs_info->fs_roots_radix_lock);
4490         }
4491         spin_unlock(&fs_info->fs_roots_radix_lock);
4492         btrfs_free_log_root_tree(NULL, fs_info);
4493 }
4494
4495 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4496 {
4497         struct btrfs_ordered_extent *ordered;
4498
4499         spin_lock(&root->ordered_extent_lock);
4500         /*
4501          * This will just short circuit the ordered completion stuff which will
4502          * make sure the ordered extent gets properly cleaned up.
4503          */
4504         list_for_each_entry(ordered, &root->ordered_extents,
4505                             root_extent_list)
4506                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4507         spin_unlock(&root->ordered_extent_lock);
4508 }
4509
4510 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4511 {
4512         struct btrfs_root *root;
4513         LIST_HEAD(splice);
4514
4515         spin_lock(&fs_info->ordered_root_lock);
4516         list_splice_init(&fs_info->ordered_roots, &splice);
4517         while (!list_empty(&splice)) {
4518                 root = list_first_entry(&splice, struct btrfs_root,
4519                                         ordered_root);
4520                 list_move_tail(&root->ordered_root,
4521                                &fs_info->ordered_roots);
4522
4523                 spin_unlock(&fs_info->ordered_root_lock);
4524                 btrfs_destroy_ordered_extents(root);
4525
4526                 cond_resched();
4527                 spin_lock(&fs_info->ordered_root_lock);
4528         }
4529         spin_unlock(&fs_info->ordered_root_lock);
4530
4531         /*
4532          * We need this here because if we've been flipped read-only we won't
4533          * get sync() from the umount, so we need to make sure any ordered
4534          * extents that haven't had their dirty pages IO start writeout yet
4535          * actually get run and error out properly.
4536          */
4537         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4538 }
4539
4540 static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4541                                        struct btrfs_fs_info *fs_info)
4542 {
4543         struct rb_node *node;
4544         struct btrfs_delayed_ref_root *delayed_refs;
4545         struct btrfs_delayed_ref_node *ref;
4546
4547         delayed_refs = &trans->delayed_refs;
4548
4549         spin_lock(&delayed_refs->lock);
4550         if (atomic_read(&delayed_refs->num_entries) == 0) {
4551                 spin_unlock(&delayed_refs->lock);
4552                 btrfs_debug(fs_info, "delayed_refs has NO entry");
4553                 return;
4554         }
4555
4556         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4557                 struct btrfs_delayed_ref_head *head;
4558                 struct rb_node *n;
4559                 bool pin_bytes = false;
4560
4561                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4562                                 href_node);
4563                 if (btrfs_delayed_ref_lock(delayed_refs, head))
4564                         continue;
4565
4566                 spin_lock(&head->lock);
4567                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4568                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4569                                        ref_node);
4570                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4571                         RB_CLEAR_NODE(&ref->ref_node);
4572                         if (!list_empty(&ref->add_list))
4573                                 list_del(&ref->add_list);
4574                         atomic_dec(&delayed_refs->num_entries);
4575                         btrfs_put_delayed_ref(ref);
4576                         btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
4577                 }
4578                 if (head->must_insert_reserved)
4579                         pin_bytes = true;
4580                 btrfs_free_delayed_extent_op(head->extent_op);
4581                 btrfs_delete_ref_head(delayed_refs, head);
4582                 spin_unlock(&head->lock);
4583                 spin_unlock(&delayed_refs->lock);
4584                 mutex_unlock(&head->mutex);
4585
4586                 if (pin_bytes) {
4587                         struct btrfs_block_group *cache;
4588
4589                         cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4590                         BUG_ON(!cache);
4591
4592                         spin_lock(&cache->space_info->lock);
4593                         spin_lock(&cache->lock);
4594                         cache->pinned += head->num_bytes;
4595                         btrfs_space_info_update_bytes_pinned(fs_info,
4596                                 cache->space_info, head->num_bytes);
4597                         cache->reserved -= head->num_bytes;
4598                         cache->space_info->bytes_reserved -= head->num_bytes;
4599                         spin_unlock(&cache->lock);
4600                         spin_unlock(&cache->space_info->lock);
4601
4602                         btrfs_put_block_group(cache);
4603
4604                         btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4605                                 head->bytenr + head->num_bytes - 1);
4606                 }
4607                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4608                 btrfs_put_delayed_ref_head(head);
4609                 cond_resched();
4610                 spin_lock(&delayed_refs->lock);
4611         }
4612         btrfs_qgroup_destroy_extent_records(trans);
4613
4614         spin_unlock(&delayed_refs->lock);
4615 }
4616
4617 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4618 {
4619         struct btrfs_inode *btrfs_inode;
4620         LIST_HEAD(splice);
4621
4622         spin_lock(&root->delalloc_lock);
4623         list_splice_init(&root->delalloc_inodes, &splice);
4624
4625         while (!list_empty(&splice)) {
4626                 struct inode *inode = NULL;
4627                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4628                                                delalloc_inodes);
4629                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4630                 spin_unlock(&root->delalloc_lock);
4631
4632                 /*
4633                  * Make sure we get a live inode and that it'll not disappear
4634                  * meanwhile.
4635                  */
4636                 inode = igrab(&btrfs_inode->vfs_inode);
4637                 if (inode) {
4638                         unsigned int nofs_flag;
4639
4640                         nofs_flag = memalloc_nofs_save();
4641                         invalidate_inode_pages2(inode->i_mapping);
4642                         memalloc_nofs_restore(nofs_flag);
4643                         iput(inode);
4644                 }
4645                 spin_lock(&root->delalloc_lock);
4646         }
4647         spin_unlock(&root->delalloc_lock);
4648 }
4649
4650 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4651 {
4652         struct btrfs_root *root;
4653         LIST_HEAD(splice);
4654
4655         spin_lock(&fs_info->delalloc_root_lock);
4656         list_splice_init(&fs_info->delalloc_roots, &splice);
4657         while (!list_empty(&splice)) {
4658                 root = list_first_entry(&splice, struct btrfs_root,
4659                                          delalloc_root);
4660                 root = btrfs_grab_root(root);
4661                 BUG_ON(!root);
4662                 spin_unlock(&fs_info->delalloc_root_lock);
4663
4664                 btrfs_destroy_delalloc_inodes(root);
4665                 btrfs_put_root(root);
4666
4667                 spin_lock(&fs_info->delalloc_root_lock);
4668         }
4669         spin_unlock(&fs_info->delalloc_root_lock);
4670 }
4671
4672 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4673                                          struct extent_io_tree *dirty_pages,
4674                                          int mark)
4675 {
4676         struct extent_buffer *eb;
4677         u64 start = 0;
4678         u64 end;
4679
4680         while (find_first_extent_bit(dirty_pages, start, &start, &end,
4681                                      mark, NULL)) {
4682                 clear_extent_bits(dirty_pages, start, end, mark);
4683                 while (start <= end) {
4684                         eb = find_extent_buffer(fs_info, start);
4685                         start += fs_info->nodesize;
4686                         if (!eb)
4687                                 continue;
4688
4689                         btrfs_tree_lock(eb);
4690                         wait_on_extent_buffer_writeback(eb);
4691                         btrfs_clear_buffer_dirty(NULL, eb);
4692                         btrfs_tree_unlock(eb);
4693
4694                         free_extent_buffer_stale(eb);
4695                 }
4696         }
4697 }
4698
4699 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4700                                         struct extent_io_tree *unpin)
4701 {
4702         u64 start;
4703         u64 end;
4704
4705         while (1) {
4706                 struct extent_state *cached_state = NULL;
4707
4708                 /*
4709                  * The btrfs_finish_extent_commit() may get the same range as
4710                  * ours between find_first_extent_bit and clear_extent_dirty.
4711                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4712                  * the same extent range.
4713                  */
4714                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4715                 if (!find_first_extent_bit(unpin, 0, &start, &end,
4716                                            EXTENT_DIRTY, &cached_state)) {
4717                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4718                         break;
4719                 }
4720
4721                 clear_extent_dirty(unpin, start, end, &cached_state);
4722                 free_extent_state(cached_state);
4723                 btrfs_error_unpin_extent_range(fs_info, start, end);
4724                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4725                 cond_resched();
4726         }
4727 }
4728
4729 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4730 {
4731         struct inode *inode;
4732
4733         inode = cache->io_ctl.inode;
4734         if (inode) {
4735                 unsigned int nofs_flag;
4736
4737                 nofs_flag = memalloc_nofs_save();
4738                 invalidate_inode_pages2(inode->i_mapping);
4739                 memalloc_nofs_restore(nofs_flag);
4740
4741                 BTRFS_I(inode)->generation = 0;
4742                 cache->io_ctl.inode = NULL;
4743                 iput(inode);
4744         }
4745         ASSERT(cache->io_ctl.pages == NULL);
4746         btrfs_put_block_group(cache);
4747 }
4748
4749 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4750                              struct btrfs_fs_info *fs_info)
4751 {
4752         struct btrfs_block_group *cache;
4753
4754         spin_lock(&cur_trans->dirty_bgs_lock);
4755         while (!list_empty(&cur_trans->dirty_bgs)) {
4756                 cache = list_first_entry(&cur_trans->dirty_bgs,
4757                                          struct btrfs_block_group,
4758                                          dirty_list);
4759
4760                 if (!list_empty(&cache->io_list)) {
4761                         spin_unlock(&cur_trans->dirty_bgs_lock);
4762                         list_del_init(&cache->io_list);
4763                         btrfs_cleanup_bg_io(cache);
4764                         spin_lock(&cur_trans->dirty_bgs_lock);
4765                 }
4766
4767                 list_del_init(&cache->dirty_list);
4768                 spin_lock(&cache->lock);
4769                 cache->disk_cache_state = BTRFS_DC_ERROR;
4770                 spin_unlock(&cache->lock);
4771
4772                 spin_unlock(&cur_trans->dirty_bgs_lock);
4773                 btrfs_put_block_group(cache);
4774                 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
4775                 spin_lock(&cur_trans->dirty_bgs_lock);
4776         }
4777         spin_unlock(&cur_trans->dirty_bgs_lock);
4778
4779         /*
4780          * Refer to the definition of io_bgs member for details why it's safe
4781          * to use it without any locking
4782          */
4783         while (!list_empty(&cur_trans->io_bgs)) {
4784                 cache = list_first_entry(&cur_trans->io_bgs,
4785                                          struct btrfs_block_group,
4786                                          io_list);
4787
4788                 list_del_init(&cache->io_list);
4789                 spin_lock(&cache->lock);
4790                 cache->disk_cache_state = BTRFS_DC_ERROR;
4791                 spin_unlock(&cache->lock);
4792                 btrfs_cleanup_bg_io(cache);
4793         }
4794 }
4795
4796 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
4797 {
4798         struct btrfs_root *gang[8];
4799         int i;
4800         int ret;
4801
4802         spin_lock(&fs_info->fs_roots_radix_lock);
4803         while (1) {
4804                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4805                                                  (void **)gang, 0,
4806                                                  ARRAY_SIZE(gang),
4807                                                  BTRFS_ROOT_TRANS_TAG);
4808                 if (ret == 0)
4809                         break;
4810                 for (i = 0; i < ret; i++) {
4811                         struct btrfs_root *root = gang[i];
4812
4813                         btrfs_qgroup_free_meta_all_pertrans(root);
4814                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
4815                                         (unsigned long)root->root_key.objectid,
4816                                         BTRFS_ROOT_TRANS_TAG);
4817                 }
4818         }
4819         spin_unlock(&fs_info->fs_roots_radix_lock);
4820 }
4821
4822 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4823                                    struct btrfs_fs_info *fs_info)
4824 {
4825         struct btrfs_device *dev, *tmp;
4826
4827         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4828         ASSERT(list_empty(&cur_trans->dirty_bgs));
4829         ASSERT(list_empty(&cur_trans->io_bgs));
4830
4831         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4832                                  post_commit_list) {
4833                 list_del_init(&dev->post_commit_list);
4834         }
4835
4836         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4837
4838         cur_trans->state = TRANS_STATE_COMMIT_START;
4839         wake_up(&fs_info->transaction_blocked_wait);
4840
4841         cur_trans->state = TRANS_STATE_UNBLOCKED;
4842         wake_up(&fs_info->transaction_wait);
4843
4844         btrfs_destroy_delayed_inodes(fs_info);
4845
4846         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4847                                      EXTENT_DIRTY);
4848         btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4849
4850         btrfs_free_all_qgroup_pertrans(fs_info);
4851
4852         cur_trans->state =TRANS_STATE_COMPLETED;
4853         wake_up(&cur_trans->commit_wait);
4854 }
4855
4856 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4857 {
4858         struct btrfs_transaction *t;
4859
4860         mutex_lock(&fs_info->transaction_kthread_mutex);
4861
4862         spin_lock(&fs_info->trans_lock);
4863         while (!list_empty(&fs_info->trans_list)) {
4864                 t = list_first_entry(&fs_info->trans_list,
4865                                      struct btrfs_transaction, list);
4866                 if (t->state >= TRANS_STATE_COMMIT_PREP) {
4867                         refcount_inc(&t->use_count);
4868                         spin_unlock(&fs_info->trans_lock);
4869                         btrfs_wait_for_commit(fs_info, t->transid);
4870                         btrfs_put_transaction(t);
4871                         spin_lock(&fs_info->trans_lock);
4872                         continue;
4873                 }
4874                 if (t == fs_info->running_transaction) {
4875                         t->state = TRANS_STATE_COMMIT_DOING;
4876                         spin_unlock(&fs_info->trans_lock);
4877                         /*
4878                          * We wait for 0 num_writers since we don't hold a trans
4879                          * handle open currently for this transaction.
4880                          */
4881                         wait_event(t->writer_wait,
4882                                    atomic_read(&t->num_writers) == 0);
4883                 } else {
4884                         spin_unlock(&fs_info->trans_lock);
4885                 }
4886                 btrfs_cleanup_one_transaction(t, fs_info);
4887
4888                 spin_lock(&fs_info->trans_lock);
4889                 if (t == fs_info->running_transaction)
4890                         fs_info->running_transaction = NULL;
4891                 list_del_init(&t->list);
4892                 spin_unlock(&fs_info->trans_lock);
4893
4894                 btrfs_put_transaction(t);
4895                 trace_btrfs_transaction_commit(fs_info);
4896                 spin_lock(&fs_info->trans_lock);
4897         }
4898         spin_unlock(&fs_info->trans_lock);
4899         btrfs_destroy_all_ordered_extents(fs_info);
4900         btrfs_destroy_delayed_inodes(fs_info);
4901         btrfs_assert_delayed_root_empty(fs_info);
4902         btrfs_destroy_all_delalloc_inodes(fs_info);
4903         btrfs_drop_all_logs(fs_info);
4904         mutex_unlock(&fs_info->transaction_kthread_mutex);
4905
4906         return 0;
4907 }
4908
4909 int btrfs_init_root_free_objectid(struct btrfs_root *root)
4910 {
4911         struct btrfs_path *path;
4912         int ret;
4913         struct extent_buffer *l;
4914         struct btrfs_key search_key;
4915         struct btrfs_key found_key;
4916         int slot;
4917
4918         path = btrfs_alloc_path();
4919         if (!path)
4920                 return -ENOMEM;
4921
4922         search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4923         search_key.type = -1;
4924         search_key.offset = (u64)-1;
4925         ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4926         if (ret < 0)
4927                 goto error;
4928         BUG_ON(ret == 0); /* Corruption */
4929         if (path->slots[0] > 0) {
4930                 slot = path->slots[0] - 1;
4931                 l = path->nodes[0];
4932                 btrfs_item_key_to_cpu(l, &found_key, slot);
4933                 root->free_objectid = max_t(u64, found_key.objectid + 1,
4934                                             BTRFS_FIRST_FREE_OBJECTID);
4935         } else {
4936                 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4937         }
4938         ret = 0;
4939 error:
4940         btrfs_free_path(path);
4941         return ret;
4942 }
4943
4944 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4945 {
4946         int ret;
4947         mutex_lock(&root->objectid_mutex);
4948
4949         if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4950                 btrfs_warn(root->fs_info,
4951                            "the objectid of root %llu reaches its highest value",
4952                            root->root_key.objectid);
4953                 ret = -ENOSPC;
4954                 goto out;
4955         }
4956
4957         *objectid = root->free_objectid++;
4958         ret = 0;
4959 out:
4960         mutex_unlock(&root->objectid_mutex);
4961         return ret;
4962 }