c7886584ba7d3bb5d0bb01c80c6f57ce72bb23d9
[linux-2.6-microblaze.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45
46 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
47                                  BTRFS_HEADER_FLAG_RELOC |\
48                                  BTRFS_SUPER_FLAG_ERROR |\
49                                  BTRFS_SUPER_FLAG_SEEDING |\
50                                  BTRFS_SUPER_FLAG_METADUMP |\
51                                  BTRFS_SUPER_FLAG_METADUMP_V2)
52
53 static void end_workqueue_fn(struct btrfs_work *work);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56                                       struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59                                         struct extent_io_tree *dirty_pages,
60                                         int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62                                        struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65
66 /*
67  * btrfs_end_io_wq structs are used to do processing in task context when an IO
68  * is complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct btrfs_end_io_wq {
72         struct bio *bio;
73         bio_end_io_t *end_io;
74         void *private;
75         struct btrfs_fs_info *info;
76         blk_status_t status;
77         enum btrfs_wq_endio_type metadata;
78         struct btrfs_work work;
79 };
80
81 static struct kmem_cache *btrfs_end_io_wq_cache;
82
83 int __init btrfs_end_io_wq_init(void)
84 {
85         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86                                         sizeof(struct btrfs_end_io_wq),
87                                         0,
88                                         SLAB_MEM_SPREAD,
89                                         NULL);
90         if (!btrfs_end_io_wq_cache)
91                 return -ENOMEM;
92         return 0;
93 }
94
95 void __cold btrfs_end_io_wq_exit(void)
96 {
97         kmem_cache_destroy(btrfs_end_io_wq_cache);
98 }
99
100 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
101 {
102         if (fs_info->csum_shash)
103                 crypto_free_shash(fs_info->csum_shash);
104 }
105
106 /*
107  * async submit bios are used to offload expensive checksumming
108  * onto the worker threads.  They checksum file and metadata bios
109  * just before they are sent down the IO stack.
110  */
111 struct async_submit_bio {
112         struct inode *inode;
113         struct bio *bio;
114         extent_submit_bio_start_t *submit_bio_start;
115         int mirror_num;
116         /*
117          * bio_offset is optional, can be used if the pages in the bio
118          * can't tell us where in the file the bio should go
119          */
120         u64 bio_offset;
121         struct btrfs_work work;
122         blk_status_t status;
123 };
124
125 /*
126  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
127  * eb, the lockdep key is determined by the btrfs_root it belongs to and
128  * the level the eb occupies in the tree.
129  *
130  * Different roots are used for different purposes and may nest inside each
131  * other and they require separate keysets.  As lockdep keys should be
132  * static, assign keysets according to the purpose of the root as indicated
133  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
134  * roots have separate keysets.
135  *
136  * Lock-nesting across peer nodes is always done with the immediate parent
137  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
138  * subclass to avoid triggering lockdep warning in such cases.
139  *
140  * The key is set by the readpage_end_io_hook after the buffer has passed
141  * csum validation but before the pages are unlocked.  It is also set by
142  * btrfs_init_new_buffer on freshly allocated blocks.
143  *
144  * We also add a check to make sure the highest level of the tree is the
145  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
146  * needs update as well.
147  */
148 #ifdef CONFIG_DEBUG_LOCK_ALLOC
149 # if BTRFS_MAX_LEVEL != 8
150 #  error
151 # endif
152
153 #define DEFINE_LEVEL(stem, level)                                       \
154         .names[level] = "btrfs-" stem "-0" #level,
155
156 #define DEFINE_NAME(stem)                                               \
157         DEFINE_LEVEL(stem, 0)                                           \
158         DEFINE_LEVEL(stem, 1)                                           \
159         DEFINE_LEVEL(stem, 2)                                           \
160         DEFINE_LEVEL(stem, 3)                                           \
161         DEFINE_LEVEL(stem, 4)                                           \
162         DEFINE_LEVEL(stem, 5)                                           \
163         DEFINE_LEVEL(stem, 6)                                           \
164         DEFINE_LEVEL(stem, 7)
165
166 static struct btrfs_lockdep_keyset {
167         u64                     id;             /* root objectid */
168         /* Longest entry: btrfs-free-space-00 */
169         char                    names[BTRFS_MAX_LEVEL][20];
170         struct lock_class_key   keys[BTRFS_MAX_LEVEL];
171 } btrfs_lockdep_keysets[] = {
172         { .id = BTRFS_ROOT_TREE_OBJECTID,       DEFINE_NAME("root")     },
173         { .id = BTRFS_EXTENT_TREE_OBJECTID,     DEFINE_NAME("extent")   },
174         { .id = BTRFS_CHUNK_TREE_OBJECTID,      DEFINE_NAME("chunk")    },
175         { .id = BTRFS_DEV_TREE_OBJECTID,        DEFINE_NAME("dev")      },
176         { .id = BTRFS_CSUM_TREE_OBJECTID,       DEFINE_NAME("csum")     },
177         { .id = BTRFS_QUOTA_TREE_OBJECTID,      DEFINE_NAME("quota")    },
178         { .id = BTRFS_TREE_LOG_OBJECTID,        DEFINE_NAME("log")      },
179         { .id = BTRFS_TREE_RELOC_OBJECTID,      DEFINE_NAME("treloc")   },
180         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc")   },
181         { .id = BTRFS_UUID_TREE_OBJECTID,       DEFINE_NAME("uuid")     },
182         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") },
183         { .id = 0,                              DEFINE_NAME("tree")     },
184 };
185
186 #undef DEFINE_LEVEL
187 #undef DEFINE_NAME
188
189 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190                                     int level)
191 {
192         struct btrfs_lockdep_keyset *ks;
193
194         BUG_ON(level >= ARRAY_SIZE(ks->keys));
195
196         /* find the matching keyset, id 0 is the default entry */
197         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198                 if (ks->id == objectid)
199                         break;
200
201         lockdep_set_class_and_name(&eb->lock,
202                                    &ks->keys[level], ks->names[level]);
203 }
204
205 #endif
206
207 /*
208  * Compute the csum of a btree block and store the result to provided buffer.
209  */
210 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
211 {
212         struct btrfs_fs_info *fs_info = buf->fs_info;
213         const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
214         const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
215         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
216         char *kaddr;
217         int i;
218
219         shash->tfm = fs_info->csum_shash;
220         crypto_shash_init(shash);
221         kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
222         crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
223                             first_page_part - BTRFS_CSUM_SIZE);
224
225         for (i = 1; i < num_pages; i++) {
226                 kaddr = page_address(buf->pages[i]);
227                 crypto_shash_update(shash, kaddr, PAGE_SIZE);
228         }
229         memset(result, 0, BTRFS_CSUM_SIZE);
230         crypto_shash_final(shash, result);
231 }
232
233 /*
234  * we can't consider a given block up to date unless the transid of the
235  * block matches the transid in the parent node's pointer.  This is how we
236  * detect blocks that either didn't get written at all or got written
237  * in the wrong place.
238  */
239 static int verify_parent_transid(struct extent_io_tree *io_tree,
240                                  struct extent_buffer *eb, u64 parent_transid,
241                                  int atomic)
242 {
243         struct extent_state *cached_state = NULL;
244         int ret;
245         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
246
247         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
248                 return 0;
249
250         if (atomic)
251                 return -EAGAIN;
252
253         if (need_lock)
254                 btrfs_tree_read_lock(eb);
255
256         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
257                          &cached_state);
258         if (extent_buffer_uptodate(eb) &&
259             btrfs_header_generation(eb) == parent_transid) {
260                 ret = 0;
261                 goto out;
262         }
263         btrfs_err_rl(eb->fs_info,
264                 "parent transid verify failed on %llu wanted %llu found %llu",
265                         eb->start,
266                         parent_transid, btrfs_header_generation(eb));
267         ret = 1;
268
269         /*
270          * Things reading via commit roots that don't have normal protection,
271          * like send, can have a really old block in cache that may point at a
272          * block that has been freed and re-allocated.  So don't clear uptodate
273          * if we find an eb that is under IO (dirty/writeback) because we could
274          * end up reading in the stale data and then writing it back out and
275          * making everybody very sad.
276          */
277         if (!extent_buffer_under_io(eb))
278                 clear_extent_buffer_uptodate(eb);
279 out:
280         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
281                              &cached_state);
282         if (need_lock)
283                 btrfs_tree_read_unlock(eb);
284         return ret;
285 }
286
287 static bool btrfs_supported_super_csum(u16 csum_type)
288 {
289         switch (csum_type) {
290         case BTRFS_CSUM_TYPE_CRC32:
291         case BTRFS_CSUM_TYPE_XXHASH:
292         case BTRFS_CSUM_TYPE_SHA256:
293         case BTRFS_CSUM_TYPE_BLAKE2:
294                 return true;
295         default:
296                 return false;
297         }
298 }
299
300 /*
301  * Return 0 if the superblock checksum type matches the checksum value of that
302  * algorithm. Pass the raw disk superblock data.
303  */
304 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
305                                   char *raw_disk_sb)
306 {
307         struct btrfs_super_block *disk_sb =
308                 (struct btrfs_super_block *)raw_disk_sb;
309         char result[BTRFS_CSUM_SIZE];
310         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
311
312         shash->tfm = fs_info->csum_shash;
313
314         /*
315          * The super_block structure does not span the whole
316          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
317          * filled with zeros and is included in the checksum.
318          */
319         crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
320                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
321
322         if (memcmp(disk_sb->csum, result, fs_info->csum_size))
323                 return 1;
324
325         return 0;
326 }
327
328 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
329                            struct btrfs_key *first_key, u64 parent_transid)
330 {
331         struct btrfs_fs_info *fs_info = eb->fs_info;
332         int found_level;
333         struct btrfs_key found_key;
334         int ret;
335
336         found_level = btrfs_header_level(eb);
337         if (found_level != level) {
338                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
339                      KERN_ERR "BTRFS: tree level check failed\n");
340                 btrfs_err(fs_info,
341 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
342                           eb->start, level, found_level);
343                 return -EIO;
344         }
345
346         if (!first_key)
347                 return 0;
348
349         /*
350          * For live tree block (new tree blocks in current transaction),
351          * we need proper lock context to avoid race, which is impossible here.
352          * So we only checks tree blocks which is read from disk, whose
353          * generation <= fs_info->last_trans_committed.
354          */
355         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
356                 return 0;
357
358         /* We have @first_key, so this @eb must have at least one item */
359         if (btrfs_header_nritems(eb) == 0) {
360                 btrfs_err(fs_info,
361                 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
362                           eb->start);
363                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
364                 return -EUCLEAN;
365         }
366
367         if (found_level)
368                 btrfs_node_key_to_cpu(eb, &found_key, 0);
369         else
370                 btrfs_item_key_to_cpu(eb, &found_key, 0);
371         ret = btrfs_comp_cpu_keys(first_key, &found_key);
372
373         if (ret) {
374                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
375                      KERN_ERR "BTRFS: tree first key check failed\n");
376                 btrfs_err(fs_info,
377 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
378                           eb->start, parent_transid, first_key->objectid,
379                           first_key->type, first_key->offset,
380                           found_key.objectid, found_key.type,
381                           found_key.offset);
382         }
383         return ret;
384 }
385
386 /*
387  * helper to read a given tree block, doing retries as required when
388  * the checksums don't match and we have alternate mirrors to try.
389  *
390  * @parent_transid:     expected transid, skip check if 0
391  * @level:              expected level, mandatory check
392  * @first_key:          expected key of first slot, skip check if NULL
393  */
394 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
395                                           u64 parent_transid, int level,
396                                           struct btrfs_key *first_key)
397 {
398         struct btrfs_fs_info *fs_info = eb->fs_info;
399         struct extent_io_tree *io_tree;
400         int failed = 0;
401         int ret;
402         int num_copies = 0;
403         int mirror_num = 0;
404         int failed_mirror = 0;
405
406         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
407         while (1) {
408                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
409                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
410                 if (!ret) {
411                         if (verify_parent_transid(io_tree, eb,
412                                                    parent_transid, 0))
413                                 ret = -EIO;
414                         else if (btrfs_verify_level_key(eb, level,
415                                                 first_key, parent_transid))
416                                 ret = -EUCLEAN;
417                         else
418                                 break;
419                 }
420
421                 num_copies = btrfs_num_copies(fs_info,
422                                               eb->start, eb->len);
423                 if (num_copies == 1)
424                         break;
425
426                 if (!failed_mirror) {
427                         failed = 1;
428                         failed_mirror = eb->read_mirror;
429                 }
430
431                 mirror_num++;
432                 if (mirror_num == failed_mirror)
433                         mirror_num++;
434
435                 if (mirror_num > num_copies)
436                         break;
437         }
438
439         if (failed && !ret && failed_mirror)
440                 btrfs_repair_eb_io_failure(eb, failed_mirror);
441
442         return ret;
443 }
444
445 /*
446  * Checksum a dirty tree block before IO.  This has extra checks to make sure
447  * we only fill in the checksum field in the first page of a multi-page block.
448  * For subpage extent buffers we need bvec to also read the offset in the page.
449  */
450 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
451 {
452         struct page *page = bvec->bv_page;
453         u64 start = page_offset(page);
454         u64 found_start;
455         u8 result[BTRFS_CSUM_SIZE];
456         struct extent_buffer *eb;
457         int ret;
458
459         eb = (struct extent_buffer *)page->private;
460         if (page != eb->pages[0])
461                 return 0;
462
463         found_start = btrfs_header_bytenr(eb);
464         /*
465          * Please do not consolidate these warnings into a single if.
466          * It is useful to know what went wrong.
467          */
468         if (WARN_ON(found_start != start))
469                 return -EUCLEAN;
470         if (WARN_ON(!PageUptodate(page)))
471                 return -EUCLEAN;
472
473         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
474                                     offsetof(struct btrfs_header, fsid),
475                                     BTRFS_FSID_SIZE) == 0);
476
477         csum_tree_block(eb, result);
478
479         if (btrfs_header_level(eb))
480                 ret = btrfs_check_node(eb);
481         else
482                 ret = btrfs_check_leaf_full(eb);
483
484         if (ret < 0) {
485                 btrfs_print_tree(eb, 0);
486                 btrfs_err(fs_info,
487                 "block=%llu write time tree block corruption detected",
488                           eb->start);
489                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
490                 return ret;
491         }
492         write_extent_buffer(eb, result, 0, fs_info->csum_size);
493
494         return 0;
495 }
496
497 static int check_tree_block_fsid(struct extent_buffer *eb)
498 {
499         struct btrfs_fs_info *fs_info = eb->fs_info;
500         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
501         u8 fsid[BTRFS_FSID_SIZE];
502         u8 *metadata_uuid;
503
504         read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
505                            BTRFS_FSID_SIZE);
506         /*
507          * Checking the incompat flag is only valid for the current fs. For
508          * seed devices it's forbidden to have their uuid changed so reading
509          * ->fsid in this case is fine
510          */
511         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
512                 metadata_uuid = fs_devices->metadata_uuid;
513         else
514                 metadata_uuid = fs_devices->fsid;
515
516         if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
517                 return 0;
518
519         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
520                 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
521                         return 0;
522
523         return 1;
524 }
525
526 /* Do basic extent buffer checks at read time */
527 static int validate_extent_buffer(struct extent_buffer *eb)
528 {
529         struct btrfs_fs_info *fs_info = eb->fs_info;
530         u64 found_start;
531         const u32 csum_size = fs_info->csum_size;
532         u8 found_level;
533         u8 result[BTRFS_CSUM_SIZE];
534         int ret = 0;
535
536         found_start = btrfs_header_bytenr(eb);
537         if (found_start != eb->start) {
538                 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
539                              eb->start, found_start);
540                 ret = -EIO;
541                 goto out;
542         }
543         if (check_tree_block_fsid(eb)) {
544                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
545                              eb->start);
546                 ret = -EIO;
547                 goto out;
548         }
549         found_level = btrfs_header_level(eb);
550         if (found_level >= BTRFS_MAX_LEVEL) {
551                 btrfs_err(fs_info, "bad tree block level %d on %llu",
552                           (int)btrfs_header_level(eb), eb->start);
553                 ret = -EIO;
554                 goto out;
555         }
556
557         csum_tree_block(eb, result);
558
559         if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
560                 u8 val[BTRFS_CSUM_SIZE] = { 0 };
561
562                 read_extent_buffer(eb, &val, 0, csum_size);
563                 btrfs_warn_rl(fs_info,
564         "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
565                               fs_info->sb->s_id, eb->start,
566                               CSUM_FMT_VALUE(csum_size, val),
567                               CSUM_FMT_VALUE(csum_size, result),
568                               btrfs_header_level(eb));
569                 ret = -EUCLEAN;
570                 goto out;
571         }
572
573         /*
574          * If this is a leaf block and it is corrupt, set the corrupt bit so
575          * that we don't try and read the other copies of this block, just
576          * return -EIO.
577          */
578         if (found_level == 0 && btrfs_check_leaf_full(eb)) {
579                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
580                 ret = -EIO;
581         }
582
583         if (found_level > 0 && btrfs_check_node(eb))
584                 ret = -EIO;
585
586         if (!ret)
587                 set_extent_buffer_uptodate(eb);
588         else
589                 btrfs_err(fs_info,
590                           "block=%llu read time tree block corruption detected",
591                           eb->start);
592 out:
593         return ret;
594 }
595
596 int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio,
597                                    struct page *page, u64 start, u64 end,
598                                    int mirror)
599 {
600         struct extent_buffer *eb;
601         int ret = 0;
602         int reads_done;
603
604         ASSERT(page->private);
605         eb = (struct extent_buffer *)page->private;
606
607         /*
608          * The pending IO might have been the only thing that kept this buffer
609          * in memory.  Make sure we have a ref for all this other checks
610          */
611         atomic_inc(&eb->refs);
612
613         reads_done = atomic_dec_and_test(&eb->io_pages);
614         if (!reads_done)
615                 goto err;
616
617         eb->read_mirror = mirror;
618         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
619                 ret = -EIO;
620                 goto err;
621         }
622         ret = validate_extent_buffer(eb);
623 err:
624         if (reads_done &&
625             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
626                 btree_readahead_hook(eb, ret);
627
628         if (ret) {
629                 /*
630                  * our io error hook is going to dec the io pages
631                  * again, we have to make sure it has something
632                  * to decrement
633                  */
634                 atomic_inc(&eb->io_pages);
635                 clear_extent_buffer_uptodate(eb);
636         }
637         free_extent_buffer(eb);
638
639         return ret;
640 }
641
642 static void end_workqueue_bio(struct bio *bio)
643 {
644         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
645         struct btrfs_fs_info *fs_info;
646         struct btrfs_workqueue *wq;
647
648         fs_info = end_io_wq->info;
649         end_io_wq->status = bio->bi_status;
650
651         if (bio_op(bio) == REQ_OP_WRITE) {
652                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
653                         wq = fs_info->endio_meta_write_workers;
654                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
655                         wq = fs_info->endio_freespace_worker;
656                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
657                         wq = fs_info->endio_raid56_workers;
658                 else
659                         wq = fs_info->endio_write_workers;
660         } else {
661                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
662                         wq = fs_info->endio_raid56_workers;
663                 else if (end_io_wq->metadata)
664                         wq = fs_info->endio_meta_workers;
665                 else
666                         wq = fs_info->endio_workers;
667         }
668
669         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
670         btrfs_queue_work(wq, &end_io_wq->work);
671 }
672
673 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
674                         enum btrfs_wq_endio_type metadata)
675 {
676         struct btrfs_end_io_wq *end_io_wq;
677
678         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
679         if (!end_io_wq)
680                 return BLK_STS_RESOURCE;
681
682         end_io_wq->private = bio->bi_private;
683         end_io_wq->end_io = bio->bi_end_io;
684         end_io_wq->info = info;
685         end_io_wq->status = 0;
686         end_io_wq->bio = bio;
687         end_io_wq->metadata = metadata;
688
689         bio->bi_private = end_io_wq;
690         bio->bi_end_io = end_workqueue_bio;
691         return 0;
692 }
693
694 static void run_one_async_start(struct btrfs_work *work)
695 {
696         struct async_submit_bio *async;
697         blk_status_t ret;
698
699         async = container_of(work, struct  async_submit_bio, work);
700         ret = async->submit_bio_start(async->inode, async->bio, async->bio_offset);
701         if (ret)
702                 async->status = ret;
703 }
704
705 /*
706  * In order to insert checksums into the metadata in large chunks, we wait
707  * until bio submission time.   All the pages in the bio are checksummed and
708  * sums are attached onto the ordered extent record.
709  *
710  * At IO completion time the csums attached on the ordered extent record are
711  * inserted into the tree.
712  */
713 static void run_one_async_done(struct btrfs_work *work)
714 {
715         struct async_submit_bio *async;
716         struct inode *inode;
717         blk_status_t ret;
718
719         async = container_of(work, struct  async_submit_bio, work);
720         inode = async->inode;
721
722         /* If an error occurred we just want to clean up the bio and move on */
723         if (async->status) {
724                 async->bio->bi_status = async->status;
725                 bio_endio(async->bio);
726                 return;
727         }
728
729         /*
730          * All of the bios that pass through here are from async helpers.
731          * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
732          * This changes nothing when cgroups aren't in use.
733          */
734         async->bio->bi_opf |= REQ_CGROUP_PUNT;
735         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
736         if (ret) {
737                 async->bio->bi_status = ret;
738                 bio_endio(async->bio);
739         }
740 }
741
742 static void run_one_async_free(struct btrfs_work *work)
743 {
744         struct async_submit_bio *async;
745
746         async = container_of(work, struct  async_submit_bio, work);
747         kfree(async);
748 }
749
750 blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
751                                  int mirror_num, unsigned long bio_flags,
752                                  u64 bio_offset,
753                                  extent_submit_bio_start_t *submit_bio_start)
754 {
755         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
756         struct async_submit_bio *async;
757
758         async = kmalloc(sizeof(*async), GFP_NOFS);
759         if (!async)
760                 return BLK_STS_RESOURCE;
761
762         async->inode = inode;
763         async->bio = bio;
764         async->mirror_num = mirror_num;
765         async->submit_bio_start = submit_bio_start;
766
767         btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
768                         run_one_async_free);
769
770         async->bio_offset = bio_offset;
771
772         async->status = 0;
773
774         if (op_is_sync(bio->bi_opf))
775                 btrfs_set_work_high_priority(&async->work);
776
777         btrfs_queue_work(fs_info->workers, &async->work);
778         return 0;
779 }
780
781 static blk_status_t btree_csum_one_bio(struct bio *bio)
782 {
783         struct bio_vec *bvec;
784         struct btrfs_root *root;
785         int ret = 0;
786         struct bvec_iter_all iter_all;
787
788         ASSERT(!bio_flagged(bio, BIO_CLONED));
789         bio_for_each_segment_all(bvec, bio, iter_all) {
790                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
791                 ret = csum_dirty_buffer(root->fs_info, bvec);
792                 if (ret)
793                         break;
794         }
795
796         return errno_to_blk_status(ret);
797 }
798
799 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
800                                            u64 bio_offset)
801 {
802         /*
803          * when we're called for a write, we're already in the async
804          * submission context.  Just jump into btrfs_map_bio
805          */
806         return btree_csum_one_bio(bio);
807 }
808
809 static int check_async_write(struct btrfs_fs_info *fs_info,
810                              struct btrfs_inode *bi)
811 {
812         if (atomic_read(&bi->sync_writers))
813                 return 0;
814         if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
815                 return 0;
816         return 1;
817 }
818
819 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
820                                        int mirror_num, unsigned long bio_flags)
821 {
822         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
823         int async = check_async_write(fs_info, BTRFS_I(inode));
824         blk_status_t ret;
825
826         if (bio_op(bio) != REQ_OP_WRITE) {
827                 /*
828                  * called for a read, do the setup so that checksum validation
829                  * can happen in the async kernel threads
830                  */
831                 ret = btrfs_bio_wq_end_io(fs_info, bio,
832                                           BTRFS_WQ_ENDIO_METADATA);
833                 if (ret)
834                         goto out_w_error;
835                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
836         } else if (!async) {
837                 ret = btree_csum_one_bio(bio);
838                 if (ret)
839                         goto out_w_error;
840                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
841         } else {
842                 /*
843                  * kthread helpers are used to submit writes so that
844                  * checksumming can happen in parallel across all CPUs
845                  */
846                 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
847                                           0, btree_submit_bio_start);
848         }
849
850         if (ret)
851                 goto out_w_error;
852         return 0;
853
854 out_w_error:
855         bio->bi_status = ret;
856         bio_endio(bio);
857         return ret;
858 }
859
860 #ifdef CONFIG_MIGRATION
861 static int btree_migratepage(struct address_space *mapping,
862                         struct page *newpage, struct page *page,
863                         enum migrate_mode mode)
864 {
865         /*
866          * we can't safely write a btree page from here,
867          * we haven't done the locking hook
868          */
869         if (PageDirty(page))
870                 return -EAGAIN;
871         /*
872          * Buffers may be managed in a filesystem specific way.
873          * We must have no buffers or drop them.
874          */
875         if (page_has_private(page) &&
876             !try_to_release_page(page, GFP_KERNEL))
877                 return -EAGAIN;
878         return migrate_page(mapping, newpage, page, mode);
879 }
880 #endif
881
882
883 static int btree_writepages(struct address_space *mapping,
884                             struct writeback_control *wbc)
885 {
886         struct btrfs_fs_info *fs_info;
887         int ret;
888
889         if (wbc->sync_mode == WB_SYNC_NONE) {
890
891                 if (wbc->for_kupdate)
892                         return 0;
893
894                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
895                 /* this is a bit racy, but that's ok */
896                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
897                                              BTRFS_DIRTY_METADATA_THRESH,
898                                              fs_info->dirty_metadata_batch);
899                 if (ret < 0)
900                         return 0;
901         }
902         return btree_write_cache_pages(mapping, wbc);
903 }
904
905 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
906 {
907         if (PageWriteback(page) || PageDirty(page))
908                 return 0;
909
910         return try_release_extent_buffer(page);
911 }
912
913 static void btree_invalidatepage(struct page *page, unsigned int offset,
914                                  unsigned int length)
915 {
916         struct extent_io_tree *tree;
917         tree = &BTRFS_I(page->mapping->host)->io_tree;
918         extent_invalidatepage(tree, page, offset);
919         btree_releasepage(page, GFP_NOFS);
920         if (PagePrivate(page)) {
921                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
922                            "page private not zero on page %llu",
923                            (unsigned long long)page_offset(page));
924                 detach_page_private(page);
925         }
926 }
927
928 static int btree_set_page_dirty(struct page *page)
929 {
930 #ifdef DEBUG
931         struct extent_buffer *eb;
932
933         BUG_ON(!PagePrivate(page));
934         eb = (struct extent_buffer *)page->private;
935         BUG_ON(!eb);
936         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
937         BUG_ON(!atomic_read(&eb->refs));
938         btrfs_assert_tree_locked(eb);
939 #endif
940         return __set_page_dirty_nobuffers(page);
941 }
942
943 static const struct address_space_operations btree_aops = {
944         .writepages     = btree_writepages,
945         .releasepage    = btree_releasepage,
946         .invalidatepage = btree_invalidatepage,
947 #ifdef CONFIG_MIGRATION
948         .migratepage    = btree_migratepage,
949 #endif
950         .set_page_dirty = btree_set_page_dirty,
951 };
952
953 struct extent_buffer *btrfs_find_create_tree_block(
954                                                 struct btrfs_fs_info *fs_info,
955                                                 u64 bytenr, u64 owner_root,
956                                                 int level)
957 {
958         if (btrfs_is_testing(fs_info))
959                 return alloc_test_extent_buffer(fs_info, bytenr);
960         return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
961 }
962
963 /*
964  * Read tree block at logical address @bytenr and do variant basic but critical
965  * verification.
966  *
967  * @owner_root:         the objectid of the root owner for this block.
968  * @parent_transid:     expected transid of this tree block, skip check if 0
969  * @level:              expected level, mandatory check
970  * @first_key:          expected key in slot 0, skip check if NULL
971  */
972 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
973                                       u64 owner_root, u64 parent_transid,
974                                       int level, struct btrfs_key *first_key)
975 {
976         struct extent_buffer *buf = NULL;
977         int ret;
978
979         buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
980         if (IS_ERR(buf))
981                 return buf;
982
983         ret = btree_read_extent_buffer_pages(buf, parent_transid,
984                                              level, first_key);
985         if (ret) {
986                 free_extent_buffer_stale(buf);
987                 return ERR_PTR(ret);
988         }
989         return buf;
990
991 }
992
993 void btrfs_clean_tree_block(struct extent_buffer *buf)
994 {
995         struct btrfs_fs_info *fs_info = buf->fs_info;
996         if (btrfs_header_generation(buf) ==
997             fs_info->running_transaction->transid) {
998                 btrfs_assert_tree_locked(buf);
999
1000                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1001                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1002                                                  -buf->len,
1003                                                  fs_info->dirty_metadata_batch);
1004                         clear_extent_buffer_dirty(buf);
1005                 }
1006         }
1007 }
1008
1009 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1010                          u64 objectid)
1011 {
1012         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1013         root->fs_info = fs_info;
1014         root->node = NULL;
1015         root->commit_root = NULL;
1016         root->state = 0;
1017         root->orphan_cleanup_state = 0;
1018
1019         root->last_trans = 0;
1020         root->highest_objectid = 0;
1021         root->nr_delalloc_inodes = 0;
1022         root->nr_ordered_extents = 0;
1023         root->inode_tree = RB_ROOT;
1024         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1025         root->block_rsv = NULL;
1026
1027         INIT_LIST_HEAD(&root->dirty_list);
1028         INIT_LIST_HEAD(&root->root_list);
1029         INIT_LIST_HEAD(&root->delalloc_inodes);
1030         INIT_LIST_HEAD(&root->delalloc_root);
1031         INIT_LIST_HEAD(&root->ordered_extents);
1032         INIT_LIST_HEAD(&root->ordered_root);
1033         INIT_LIST_HEAD(&root->reloc_dirty_list);
1034         INIT_LIST_HEAD(&root->logged_list[0]);
1035         INIT_LIST_HEAD(&root->logged_list[1]);
1036         spin_lock_init(&root->inode_lock);
1037         spin_lock_init(&root->delalloc_lock);
1038         spin_lock_init(&root->ordered_extent_lock);
1039         spin_lock_init(&root->accounting_lock);
1040         spin_lock_init(&root->log_extents_lock[0]);
1041         spin_lock_init(&root->log_extents_lock[1]);
1042         spin_lock_init(&root->qgroup_meta_rsv_lock);
1043         mutex_init(&root->objectid_mutex);
1044         mutex_init(&root->log_mutex);
1045         mutex_init(&root->ordered_extent_mutex);
1046         mutex_init(&root->delalloc_mutex);
1047         init_waitqueue_head(&root->qgroup_flush_wait);
1048         init_waitqueue_head(&root->log_writer_wait);
1049         init_waitqueue_head(&root->log_commit_wait[0]);
1050         init_waitqueue_head(&root->log_commit_wait[1]);
1051         INIT_LIST_HEAD(&root->log_ctxs[0]);
1052         INIT_LIST_HEAD(&root->log_ctxs[1]);
1053         atomic_set(&root->log_commit[0], 0);
1054         atomic_set(&root->log_commit[1], 0);
1055         atomic_set(&root->log_writers, 0);
1056         atomic_set(&root->log_batch, 0);
1057         refcount_set(&root->refs, 1);
1058         atomic_set(&root->snapshot_force_cow, 0);
1059         atomic_set(&root->nr_swapfiles, 0);
1060         root->log_transid = 0;
1061         root->log_transid_committed = -1;
1062         root->last_log_commit = 0;
1063         if (!dummy) {
1064                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1065                                     IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1066                 extent_io_tree_init(fs_info, &root->log_csum_range,
1067                                     IO_TREE_LOG_CSUM_RANGE, NULL);
1068         }
1069
1070         memset(&root->root_key, 0, sizeof(root->root_key));
1071         memset(&root->root_item, 0, sizeof(root->root_item));
1072         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1073         root->root_key.objectid = objectid;
1074         root->anon_dev = 0;
1075
1076         spin_lock_init(&root->root_item_lock);
1077         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1078 #ifdef CONFIG_BTRFS_DEBUG
1079         INIT_LIST_HEAD(&root->leak_list);
1080         spin_lock(&fs_info->fs_roots_radix_lock);
1081         list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1082         spin_unlock(&fs_info->fs_roots_radix_lock);
1083 #endif
1084 }
1085
1086 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1087                                            u64 objectid, gfp_t flags)
1088 {
1089         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1090         if (root)
1091                 __setup_root(root, fs_info, objectid);
1092         return root;
1093 }
1094
1095 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1096 /* Should only be used by the testing infrastructure */
1097 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1098 {
1099         struct btrfs_root *root;
1100
1101         if (!fs_info)
1102                 return ERR_PTR(-EINVAL);
1103
1104         root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1105         if (!root)
1106                 return ERR_PTR(-ENOMEM);
1107
1108         /* We don't use the stripesize in selftest, set it as sectorsize */
1109         root->alloc_bytenr = 0;
1110
1111         return root;
1112 }
1113 #endif
1114
1115 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1116                                      u64 objectid)
1117 {
1118         struct btrfs_fs_info *fs_info = trans->fs_info;
1119         struct extent_buffer *leaf;
1120         struct btrfs_root *tree_root = fs_info->tree_root;
1121         struct btrfs_root *root;
1122         struct btrfs_key key;
1123         unsigned int nofs_flag;
1124         int ret = 0;
1125
1126         /*
1127          * We're holding a transaction handle, so use a NOFS memory allocation
1128          * context to avoid deadlock if reclaim happens.
1129          */
1130         nofs_flag = memalloc_nofs_save();
1131         root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1132         memalloc_nofs_restore(nofs_flag);
1133         if (!root)
1134                 return ERR_PTR(-ENOMEM);
1135
1136         root->root_key.objectid = objectid;
1137         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1138         root->root_key.offset = 0;
1139
1140         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1141                                       BTRFS_NESTING_NORMAL);
1142         if (IS_ERR(leaf)) {
1143                 ret = PTR_ERR(leaf);
1144                 leaf = NULL;
1145                 goto fail;
1146         }
1147
1148         root->node = leaf;
1149         btrfs_mark_buffer_dirty(leaf);
1150
1151         root->commit_root = btrfs_root_node(root);
1152         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1153
1154         btrfs_set_root_flags(&root->root_item, 0);
1155         btrfs_set_root_limit(&root->root_item, 0);
1156         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1157         btrfs_set_root_generation(&root->root_item, trans->transid);
1158         btrfs_set_root_level(&root->root_item, 0);
1159         btrfs_set_root_refs(&root->root_item, 1);
1160         btrfs_set_root_used(&root->root_item, leaf->len);
1161         btrfs_set_root_last_snapshot(&root->root_item, 0);
1162         btrfs_set_root_dirid(&root->root_item, 0);
1163         if (is_fstree(objectid))
1164                 generate_random_guid(root->root_item.uuid);
1165         else
1166                 export_guid(root->root_item.uuid, &guid_null);
1167         btrfs_set_root_drop_level(&root->root_item, 0);
1168
1169         key.objectid = objectid;
1170         key.type = BTRFS_ROOT_ITEM_KEY;
1171         key.offset = 0;
1172         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1173         if (ret)
1174                 goto fail;
1175
1176         btrfs_tree_unlock(leaf);
1177
1178         return root;
1179
1180 fail:
1181         if (leaf)
1182                 btrfs_tree_unlock(leaf);
1183         btrfs_put_root(root);
1184
1185         return ERR_PTR(ret);
1186 }
1187
1188 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1189                                          struct btrfs_fs_info *fs_info)
1190 {
1191         struct btrfs_root *root;
1192         struct extent_buffer *leaf;
1193
1194         root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1195         if (!root)
1196                 return ERR_PTR(-ENOMEM);
1197
1198         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1199         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1200         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1201
1202         /*
1203          * DON'T set SHAREABLE bit for log trees.
1204          *
1205          * Log trees are not exposed to user space thus can't be snapshotted,
1206          * and they go away before a real commit is actually done.
1207          *
1208          * They do store pointers to file data extents, and those reference
1209          * counts still get updated (along with back refs to the log tree).
1210          */
1211
1212         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1213                         NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1214         if (IS_ERR(leaf)) {
1215                 btrfs_put_root(root);
1216                 return ERR_CAST(leaf);
1217         }
1218
1219         root->node = leaf;
1220
1221         btrfs_mark_buffer_dirty(root->node);
1222         btrfs_tree_unlock(root->node);
1223         return root;
1224 }
1225
1226 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1227                              struct btrfs_fs_info *fs_info)
1228 {
1229         struct btrfs_root *log_root;
1230
1231         log_root = alloc_log_tree(trans, fs_info);
1232         if (IS_ERR(log_root))
1233                 return PTR_ERR(log_root);
1234         WARN_ON(fs_info->log_root_tree);
1235         fs_info->log_root_tree = log_root;
1236         return 0;
1237 }
1238
1239 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1240                        struct btrfs_root *root)
1241 {
1242         struct btrfs_fs_info *fs_info = root->fs_info;
1243         struct btrfs_root *log_root;
1244         struct btrfs_inode_item *inode_item;
1245
1246         log_root = alloc_log_tree(trans, fs_info);
1247         if (IS_ERR(log_root))
1248                 return PTR_ERR(log_root);
1249
1250         log_root->last_trans = trans->transid;
1251         log_root->root_key.offset = root->root_key.objectid;
1252
1253         inode_item = &log_root->root_item.inode;
1254         btrfs_set_stack_inode_generation(inode_item, 1);
1255         btrfs_set_stack_inode_size(inode_item, 3);
1256         btrfs_set_stack_inode_nlink(inode_item, 1);
1257         btrfs_set_stack_inode_nbytes(inode_item,
1258                                      fs_info->nodesize);
1259         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1260
1261         btrfs_set_root_node(&log_root->root_item, log_root->node);
1262
1263         WARN_ON(root->log_root);
1264         root->log_root = log_root;
1265         root->log_transid = 0;
1266         root->log_transid_committed = -1;
1267         root->last_log_commit = 0;
1268         return 0;
1269 }
1270
1271 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1272                                               struct btrfs_path *path,
1273                                               struct btrfs_key *key)
1274 {
1275         struct btrfs_root *root;
1276         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1277         u64 generation;
1278         int ret;
1279         int level;
1280
1281         root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1282         if (!root)
1283                 return ERR_PTR(-ENOMEM);
1284
1285         ret = btrfs_find_root(tree_root, key, path,
1286                               &root->root_item, &root->root_key);
1287         if (ret) {
1288                 if (ret > 0)
1289                         ret = -ENOENT;
1290                 goto fail;
1291         }
1292
1293         generation = btrfs_root_generation(&root->root_item);
1294         level = btrfs_root_level(&root->root_item);
1295         root->node = read_tree_block(fs_info,
1296                                      btrfs_root_bytenr(&root->root_item),
1297                                      key->objectid, generation, level, NULL);
1298         if (IS_ERR(root->node)) {
1299                 ret = PTR_ERR(root->node);
1300                 root->node = NULL;
1301                 goto fail;
1302         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1303                 ret = -EIO;
1304                 goto fail;
1305         }
1306         root->commit_root = btrfs_root_node(root);
1307         return root;
1308 fail:
1309         btrfs_put_root(root);
1310         return ERR_PTR(ret);
1311 }
1312
1313 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1314                                         struct btrfs_key *key)
1315 {
1316         struct btrfs_root *root;
1317         struct btrfs_path *path;
1318
1319         path = btrfs_alloc_path();
1320         if (!path)
1321                 return ERR_PTR(-ENOMEM);
1322         root = read_tree_root_path(tree_root, path, key);
1323         btrfs_free_path(path);
1324
1325         return root;
1326 }
1327
1328 /*
1329  * Initialize subvolume root in-memory structure
1330  *
1331  * @anon_dev:   anonymous device to attach to the root, if zero, allocate new
1332  */
1333 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1334 {
1335         int ret;
1336         unsigned int nofs_flag;
1337
1338         /*
1339          * We might be called under a transaction (e.g. indirect backref
1340          * resolution) which could deadlock if it triggers memory reclaim
1341          */
1342         nofs_flag = memalloc_nofs_save();
1343         ret = btrfs_drew_lock_init(&root->snapshot_lock);
1344         memalloc_nofs_restore(nofs_flag);
1345         if (ret)
1346                 goto fail;
1347
1348         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1349             root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1350                 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1351                 btrfs_check_and_init_root_item(&root->root_item);
1352         }
1353
1354         /*
1355          * Don't assign anonymous block device to roots that are not exposed to
1356          * userspace, the id pool is limited to 1M
1357          */
1358         if (is_fstree(root->root_key.objectid) &&
1359             btrfs_root_refs(&root->root_item) > 0) {
1360                 if (!anon_dev) {
1361                         ret = get_anon_bdev(&root->anon_dev);
1362                         if (ret)
1363                                 goto fail;
1364                 } else {
1365                         root->anon_dev = anon_dev;
1366                 }
1367         }
1368
1369         mutex_lock(&root->objectid_mutex);
1370         ret = btrfs_find_highest_objectid(root,
1371                                         &root->highest_objectid);
1372         if (ret) {
1373                 mutex_unlock(&root->objectid_mutex);
1374                 goto fail;
1375         }
1376
1377         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1378
1379         mutex_unlock(&root->objectid_mutex);
1380
1381         return 0;
1382 fail:
1383         /* The caller is responsible to call btrfs_free_fs_root */
1384         return ret;
1385 }
1386
1387 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1388                                                u64 root_id)
1389 {
1390         struct btrfs_root *root;
1391
1392         spin_lock(&fs_info->fs_roots_radix_lock);
1393         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1394                                  (unsigned long)root_id);
1395         if (root)
1396                 root = btrfs_grab_root(root);
1397         spin_unlock(&fs_info->fs_roots_radix_lock);
1398         return root;
1399 }
1400
1401 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1402                                                 u64 objectid)
1403 {
1404         if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1405                 return btrfs_grab_root(fs_info->tree_root);
1406         if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1407                 return btrfs_grab_root(fs_info->extent_root);
1408         if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1409                 return btrfs_grab_root(fs_info->chunk_root);
1410         if (objectid == BTRFS_DEV_TREE_OBJECTID)
1411                 return btrfs_grab_root(fs_info->dev_root);
1412         if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1413                 return btrfs_grab_root(fs_info->csum_root);
1414         if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1415                 return btrfs_grab_root(fs_info->quota_root) ?
1416                         fs_info->quota_root : ERR_PTR(-ENOENT);
1417         if (objectid == BTRFS_UUID_TREE_OBJECTID)
1418                 return btrfs_grab_root(fs_info->uuid_root) ?
1419                         fs_info->uuid_root : ERR_PTR(-ENOENT);
1420         if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1421                 return btrfs_grab_root(fs_info->free_space_root) ?
1422                         fs_info->free_space_root : ERR_PTR(-ENOENT);
1423         return NULL;
1424 }
1425
1426 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1427                          struct btrfs_root *root)
1428 {
1429         int ret;
1430
1431         ret = radix_tree_preload(GFP_NOFS);
1432         if (ret)
1433                 return ret;
1434
1435         spin_lock(&fs_info->fs_roots_radix_lock);
1436         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1437                                 (unsigned long)root->root_key.objectid,
1438                                 root);
1439         if (ret == 0) {
1440                 btrfs_grab_root(root);
1441                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1442         }
1443         spin_unlock(&fs_info->fs_roots_radix_lock);
1444         radix_tree_preload_end();
1445
1446         return ret;
1447 }
1448
1449 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1450 {
1451 #ifdef CONFIG_BTRFS_DEBUG
1452         struct btrfs_root *root;
1453
1454         while (!list_empty(&fs_info->allocated_roots)) {
1455                 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1456
1457                 root = list_first_entry(&fs_info->allocated_roots,
1458                                         struct btrfs_root, leak_list);
1459                 btrfs_err(fs_info, "leaked root %s refcount %d",
1460                           btrfs_root_name(root->root_key.objectid, buf),
1461                           refcount_read(&root->refs));
1462                 while (refcount_read(&root->refs) > 1)
1463                         btrfs_put_root(root);
1464                 btrfs_put_root(root);
1465         }
1466 #endif
1467 }
1468
1469 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1470 {
1471         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1472         percpu_counter_destroy(&fs_info->delalloc_bytes);
1473         percpu_counter_destroy(&fs_info->dio_bytes);
1474         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1475         btrfs_free_csum_hash(fs_info);
1476         btrfs_free_stripe_hash_table(fs_info);
1477         btrfs_free_ref_cache(fs_info);
1478         kfree(fs_info->balance_ctl);
1479         kfree(fs_info->delayed_root);
1480         btrfs_put_root(fs_info->extent_root);
1481         btrfs_put_root(fs_info->tree_root);
1482         btrfs_put_root(fs_info->chunk_root);
1483         btrfs_put_root(fs_info->dev_root);
1484         btrfs_put_root(fs_info->csum_root);
1485         btrfs_put_root(fs_info->quota_root);
1486         btrfs_put_root(fs_info->uuid_root);
1487         btrfs_put_root(fs_info->free_space_root);
1488         btrfs_put_root(fs_info->fs_root);
1489         btrfs_put_root(fs_info->data_reloc_root);
1490         btrfs_check_leaked_roots(fs_info);
1491         btrfs_extent_buffer_leak_debug_check(fs_info);
1492         kfree(fs_info->super_copy);
1493         kfree(fs_info->super_for_commit);
1494         kvfree(fs_info);
1495 }
1496
1497
1498 /*
1499  * Get an in-memory reference of a root structure.
1500  *
1501  * For essential trees like root/extent tree, we grab it from fs_info directly.
1502  * For subvolume trees, we check the cached filesystem roots first. If not
1503  * found, then read it from disk and add it to cached fs roots.
1504  *
1505  * Caller should release the root by calling btrfs_put_root() after the usage.
1506  *
1507  * NOTE: Reloc and log trees can't be read by this function as they share the
1508  *       same root objectid.
1509  *
1510  * @objectid:   root id
1511  * @anon_dev:   preallocated anonymous block device number for new roots,
1512  *              pass 0 for new allocation.
1513  * @check_ref:  whether to check root item references, If true, return -ENOENT
1514  *              for orphan roots
1515  */
1516 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1517                                              u64 objectid, dev_t anon_dev,
1518                                              bool check_ref)
1519 {
1520         struct btrfs_root *root;
1521         struct btrfs_path *path;
1522         struct btrfs_key key;
1523         int ret;
1524
1525         root = btrfs_get_global_root(fs_info, objectid);
1526         if (root)
1527                 return root;
1528 again:
1529         root = btrfs_lookup_fs_root(fs_info, objectid);
1530         if (root) {
1531                 /* Shouldn't get preallocated anon_dev for cached roots */
1532                 ASSERT(!anon_dev);
1533                 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1534                         btrfs_put_root(root);
1535                         return ERR_PTR(-ENOENT);
1536                 }
1537                 return root;
1538         }
1539
1540         key.objectid = objectid;
1541         key.type = BTRFS_ROOT_ITEM_KEY;
1542         key.offset = (u64)-1;
1543         root = btrfs_read_tree_root(fs_info->tree_root, &key);
1544         if (IS_ERR(root))
1545                 return root;
1546
1547         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1548                 ret = -ENOENT;
1549                 goto fail;
1550         }
1551
1552         ret = btrfs_init_fs_root(root, anon_dev);
1553         if (ret)
1554                 goto fail;
1555
1556         path = btrfs_alloc_path();
1557         if (!path) {
1558                 ret = -ENOMEM;
1559                 goto fail;
1560         }
1561         key.objectid = BTRFS_ORPHAN_OBJECTID;
1562         key.type = BTRFS_ORPHAN_ITEM_KEY;
1563         key.offset = objectid;
1564
1565         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1566         btrfs_free_path(path);
1567         if (ret < 0)
1568                 goto fail;
1569         if (ret == 0)
1570                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1571
1572         ret = btrfs_insert_fs_root(fs_info, root);
1573         if (ret) {
1574                 btrfs_put_root(root);
1575                 if (ret == -EEXIST)
1576                         goto again;
1577                 goto fail;
1578         }
1579         return root;
1580 fail:
1581         btrfs_put_root(root);
1582         return ERR_PTR(ret);
1583 }
1584
1585 /*
1586  * Get in-memory reference of a root structure
1587  *
1588  * @objectid:   tree objectid
1589  * @check_ref:  if set, verify that the tree exists and the item has at least
1590  *              one reference
1591  */
1592 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1593                                      u64 objectid, bool check_ref)
1594 {
1595         return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1596 }
1597
1598 /*
1599  * Get in-memory reference of a root structure, created as new, optionally pass
1600  * the anonymous block device id
1601  *
1602  * @objectid:   tree objectid
1603  * @anon_dev:   if zero, allocate a new anonymous block device or use the
1604  *              parameter value
1605  */
1606 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1607                                          u64 objectid, dev_t anon_dev)
1608 {
1609         return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1610 }
1611
1612 /*
1613  * btrfs_get_fs_root_commit_root - return a root for the given objectid
1614  * @fs_info:    the fs_info
1615  * @objectid:   the objectid we need to lookup
1616  *
1617  * This is exclusively used for backref walking, and exists specifically because
1618  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1619  * creation time, which means we may have to read the tree_root in order to look
1620  * up a fs root that is not in memory.  If the root is not in memory we will
1621  * read the tree root commit root and look up the fs root from there.  This is a
1622  * temporary root, it will not be inserted into the radix tree as it doesn't
1623  * have the most uptodate information, it'll simply be discarded once the
1624  * backref code is finished using the root.
1625  */
1626 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1627                                                  struct btrfs_path *path,
1628                                                  u64 objectid)
1629 {
1630         struct btrfs_root *root;
1631         struct btrfs_key key;
1632
1633         ASSERT(path->search_commit_root && path->skip_locking);
1634
1635         /*
1636          * This can return -ENOENT if we ask for a root that doesn't exist, but
1637          * since this is called via the backref walking code we won't be looking
1638          * up a root that doesn't exist, unless there's corruption.  So if root
1639          * != NULL just return it.
1640          */
1641         root = btrfs_get_global_root(fs_info, objectid);
1642         if (root)
1643                 return root;
1644
1645         root = btrfs_lookup_fs_root(fs_info, objectid);
1646         if (root)
1647                 return root;
1648
1649         key.objectid = objectid;
1650         key.type = BTRFS_ROOT_ITEM_KEY;
1651         key.offset = (u64)-1;
1652         root = read_tree_root_path(fs_info->tree_root, path, &key);
1653         btrfs_release_path(path);
1654
1655         return root;
1656 }
1657
1658 /*
1659  * called by the kthread helper functions to finally call the bio end_io
1660  * functions.  This is where read checksum verification actually happens
1661  */
1662 static void end_workqueue_fn(struct btrfs_work *work)
1663 {
1664         struct bio *bio;
1665         struct btrfs_end_io_wq *end_io_wq;
1666
1667         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1668         bio = end_io_wq->bio;
1669
1670         bio->bi_status = end_io_wq->status;
1671         bio->bi_private = end_io_wq->private;
1672         bio->bi_end_io = end_io_wq->end_io;
1673         bio_endio(bio);
1674         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1675 }
1676
1677 static int cleaner_kthread(void *arg)
1678 {
1679         struct btrfs_root *root = arg;
1680         struct btrfs_fs_info *fs_info = root->fs_info;
1681         int again;
1682
1683         while (1) {
1684                 again = 0;
1685
1686                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1687
1688                 /* Make the cleaner go to sleep early. */
1689                 if (btrfs_need_cleaner_sleep(fs_info))
1690                         goto sleep;
1691
1692                 /*
1693                  * Do not do anything if we might cause open_ctree() to block
1694                  * before we have finished mounting the filesystem.
1695                  */
1696                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1697                         goto sleep;
1698
1699                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1700                         goto sleep;
1701
1702                 /*
1703                  * Avoid the problem that we change the status of the fs
1704                  * during the above check and trylock.
1705                  */
1706                 if (btrfs_need_cleaner_sleep(fs_info)) {
1707                         mutex_unlock(&fs_info->cleaner_mutex);
1708                         goto sleep;
1709                 }
1710
1711                 btrfs_run_delayed_iputs(fs_info);
1712
1713                 again = btrfs_clean_one_deleted_snapshot(root);
1714                 mutex_unlock(&fs_info->cleaner_mutex);
1715
1716                 /*
1717                  * The defragger has dealt with the R/O remount and umount,
1718                  * needn't do anything special here.
1719                  */
1720                 btrfs_run_defrag_inodes(fs_info);
1721
1722                 /*
1723                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1724                  * with relocation (btrfs_relocate_chunk) and relocation
1725                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1726                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1727                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1728                  * unused block groups.
1729                  */
1730                 btrfs_delete_unused_bgs(fs_info);
1731 sleep:
1732                 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1733                 if (kthread_should_park())
1734                         kthread_parkme();
1735                 if (kthread_should_stop())
1736                         return 0;
1737                 if (!again) {
1738                         set_current_state(TASK_INTERRUPTIBLE);
1739                         schedule();
1740                         __set_current_state(TASK_RUNNING);
1741                 }
1742         }
1743 }
1744
1745 static int transaction_kthread(void *arg)
1746 {
1747         struct btrfs_root *root = arg;
1748         struct btrfs_fs_info *fs_info = root->fs_info;
1749         struct btrfs_trans_handle *trans;
1750         struct btrfs_transaction *cur;
1751         u64 transid;
1752         time64_t delta;
1753         unsigned long delay;
1754         bool cannot_commit;
1755
1756         do {
1757                 cannot_commit = false;
1758                 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1759                 mutex_lock(&fs_info->transaction_kthread_mutex);
1760
1761                 spin_lock(&fs_info->trans_lock);
1762                 cur = fs_info->running_transaction;
1763                 if (!cur) {
1764                         spin_unlock(&fs_info->trans_lock);
1765                         goto sleep;
1766                 }
1767
1768                 delta = ktime_get_seconds() - cur->start_time;
1769                 if (cur->state < TRANS_STATE_COMMIT_START &&
1770                     delta < fs_info->commit_interval) {
1771                         spin_unlock(&fs_info->trans_lock);
1772                         delay -= msecs_to_jiffies((delta - 1) * 1000);
1773                         delay = min(delay,
1774                                     msecs_to_jiffies(fs_info->commit_interval * 1000));
1775                         goto sleep;
1776                 }
1777                 transid = cur->transid;
1778                 spin_unlock(&fs_info->trans_lock);
1779
1780                 /* If the file system is aborted, this will always fail. */
1781                 trans = btrfs_attach_transaction(root);
1782                 if (IS_ERR(trans)) {
1783                         if (PTR_ERR(trans) != -ENOENT)
1784                                 cannot_commit = true;
1785                         goto sleep;
1786                 }
1787                 if (transid == trans->transid) {
1788                         btrfs_commit_transaction(trans);
1789                 } else {
1790                         btrfs_end_transaction(trans);
1791                 }
1792 sleep:
1793                 wake_up_process(fs_info->cleaner_kthread);
1794                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1795
1796                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1797                                       &fs_info->fs_state)))
1798                         btrfs_cleanup_transaction(fs_info);
1799                 if (!kthread_should_stop() &&
1800                                 (!btrfs_transaction_blocked(fs_info) ||
1801                                  cannot_commit))
1802                         schedule_timeout_interruptible(delay);
1803         } while (!kthread_should_stop());
1804         return 0;
1805 }
1806
1807 /*
1808  * This will find the highest generation in the array of root backups.  The
1809  * index of the highest array is returned, or -EINVAL if we can't find
1810  * anything.
1811  *
1812  * We check to make sure the array is valid by comparing the
1813  * generation of the latest  root in the array with the generation
1814  * in the super block.  If they don't match we pitch it.
1815  */
1816 static int find_newest_super_backup(struct btrfs_fs_info *info)
1817 {
1818         const u64 newest_gen = btrfs_super_generation(info->super_copy);
1819         u64 cur;
1820         struct btrfs_root_backup *root_backup;
1821         int i;
1822
1823         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1824                 root_backup = info->super_copy->super_roots + i;
1825                 cur = btrfs_backup_tree_root_gen(root_backup);
1826                 if (cur == newest_gen)
1827                         return i;
1828         }
1829
1830         return -EINVAL;
1831 }
1832
1833 /*
1834  * copy all the root pointers into the super backup array.
1835  * this will bump the backup pointer by one when it is
1836  * done
1837  */
1838 static void backup_super_roots(struct btrfs_fs_info *info)
1839 {
1840         const int next_backup = info->backup_root_index;
1841         struct btrfs_root_backup *root_backup;
1842
1843         root_backup = info->super_for_commit->super_roots + next_backup;
1844
1845         /*
1846          * make sure all of our padding and empty slots get zero filled
1847          * regardless of which ones we use today
1848          */
1849         memset(root_backup, 0, sizeof(*root_backup));
1850
1851         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1852
1853         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1854         btrfs_set_backup_tree_root_gen(root_backup,
1855                                btrfs_header_generation(info->tree_root->node));
1856
1857         btrfs_set_backup_tree_root_level(root_backup,
1858                                btrfs_header_level(info->tree_root->node));
1859
1860         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1861         btrfs_set_backup_chunk_root_gen(root_backup,
1862                                btrfs_header_generation(info->chunk_root->node));
1863         btrfs_set_backup_chunk_root_level(root_backup,
1864                                btrfs_header_level(info->chunk_root->node));
1865
1866         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1867         btrfs_set_backup_extent_root_gen(root_backup,
1868                                btrfs_header_generation(info->extent_root->node));
1869         btrfs_set_backup_extent_root_level(root_backup,
1870                                btrfs_header_level(info->extent_root->node));
1871
1872         /*
1873          * we might commit during log recovery, which happens before we set
1874          * the fs_root.  Make sure it is valid before we fill it in.
1875          */
1876         if (info->fs_root && info->fs_root->node) {
1877                 btrfs_set_backup_fs_root(root_backup,
1878                                          info->fs_root->node->start);
1879                 btrfs_set_backup_fs_root_gen(root_backup,
1880                                btrfs_header_generation(info->fs_root->node));
1881                 btrfs_set_backup_fs_root_level(root_backup,
1882                                btrfs_header_level(info->fs_root->node));
1883         }
1884
1885         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1886         btrfs_set_backup_dev_root_gen(root_backup,
1887                                btrfs_header_generation(info->dev_root->node));
1888         btrfs_set_backup_dev_root_level(root_backup,
1889                                        btrfs_header_level(info->dev_root->node));
1890
1891         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1892         btrfs_set_backup_csum_root_gen(root_backup,
1893                                btrfs_header_generation(info->csum_root->node));
1894         btrfs_set_backup_csum_root_level(root_backup,
1895                                btrfs_header_level(info->csum_root->node));
1896
1897         btrfs_set_backup_total_bytes(root_backup,
1898                              btrfs_super_total_bytes(info->super_copy));
1899         btrfs_set_backup_bytes_used(root_backup,
1900                              btrfs_super_bytes_used(info->super_copy));
1901         btrfs_set_backup_num_devices(root_backup,
1902                              btrfs_super_num_devices(info->super_copy));
1903
1904         /*
1905          * if we don't copy this out to the super_copy, it won't get remembered
1906          * for the next commit
1907          */
1908         memcpy(&info->super_copy->super_roots,
1909                &info->super_for_commit->super_roots,
1910                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1911 }
1912
1913 /*
1914  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1915  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1916  *
1917  * fs_info - filesystem whose backup roots need to be read
1918  * priority - priority of backup root required
1919  *
1920  * Returns backup root index on success and -EINVAL otherwise.
1921  */
1922 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1923 {
1924         int backup_index = find_newest_super_backup(fs_info);
1925         struct btrfs_super_block *super = fs_info->super_copy;
1926         struct btrfs_root_backup *root_backup;
1927
1928         if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1929                 if (priority == 0)
1930                         return backup_index;
1931
1932                 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1933                 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1934         } else {
1935                 return -EINVAL;
1936         }
1937
1938         root_backup = super->super_roots + backup_index;
1939
1940         btrfs_set_super_generation(super,
1941                                    btrfs_backup_tree_root_gen(root_backup));
1942         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1943         btrfs_set_super_root_level(super,
1944                                    btrfs_backup_tree_root_level(root_backup));
1945         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1946
1947         /*
1948          * Fixme: the total bytes and num_devices need to match or we should
1949          * need a fsck
1950          */
1951         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1952         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1953
1954         return backup_index;
1955 }
1956
1957 /* helper to cleanup workers */
1958 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1959 {
1960         btrfs_destroy_workqueue(fs_info->fixup_workers);
1961         btrfs_destroy_workqueue(fs_info->delalloc_workers);
1962         btrfs_destroy_workqueue(fs_info->workers);
1963         btrfs_destroy_workqueue(fs_info->endio_workers);
1964         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1965         btrfs_destroy_workqueue(fs_info->rmw_workers);
1966         btrfs_destroy_workqueue(fs_info->endio_write_workers);
1967         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1968         btrfs_destroy_workqueue(fs_info->delayed_workers);
1969         btrfs_destroy_workqueue(fs_info->caching_workers);
1970         btrfs_destroy_workqueue(fs_info->readahead_workers);
1971         btrfs_destroy_workqueue(fs_info->flush_workers);
1972         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1973         if (fs_info->discard_ctl.discard_workers)
1974                 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1975         /*
1976          * Now that all other work queues are destroyed, we can safely destroy
1977          * the queues used for metadata I/O, since tasks from those other work
1978          * queues can do metadata I/O operations.
1979          */
1980         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1981         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
1982 }
1983
1984 static void free_root_extent_buffers(struct btrfs_root *root)
1985 {
1986         if (root) {
1987                 free_extent_buffer(root->node);
1988                 free_extent_buffer(root->commit_root);
1989                 root->node = NULL;
1990                 root->commit_root = NULL;
1991         }
1992 }
1993
1994 /* helper to cleanup tree roots */
1995 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1996 {
1997         free_root_extent_buffers(info->tree_root);
1998
1999         free_root_extent_buffers(info->dev_root);
2000         free_root_extent_buffers(info->extent_root);
2001         free_root_extent_buffers(info->csum_root);
2002         free_root_extent_buffers(info->quota_root);
2003         free_root_extent_buffers(info->uuid_root);
2004         free_root_extent_buffers(info->fs_root);
2005         free_root_extent_buffers(info->data_reloc_root);
2006         if (free_chunk_root)
2007                 free_root_extent_buffers(info->chunk_root);
2008         free_root_extent_buffers(info->free_space_root);
2009 }
2010
2011 void btrfs_put_root(struct btrfs_root *root)
2012 {
2013         if (!root)
2014                 return;
2015
2016         if (refcount_dec_and_test(&root->refs)) {
2017                 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2018                 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2019                 if (root->anon_dev)
2020                         free_anon_bdev(root->anon_dev);
2021                 btrfs_drew_lock_destroy(&root->snapshot_lock);
2022                 free_root_extent_buffers(root);
2023 #ifdef CONFIG_BTRFS_DEBUG
2024                 spin_lock(&root->fs_info->fs_roots_radix_lock);
2025                 list_del_init(&root->leak_list);
2026                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2027 #endif
2028                 kfree(root);
2029         }
2030 }
2031
2032 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2033 {
2034         int ret;
2035         struct btrfs_root *gang[8];
2036         int i;
2037
2038         while (!list_empty(&fs_info->dead_roots)) {
2039                 gang[0] = list_entry(fs_info->dead_roots.next,
2040                                      struct btrfs_root, root_list);
2041                 list_del(&gang[0]->root_list);
2042
2043                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2044                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2045                 btrfs_put_root(gang[0]);
2046         }
2047
2048         while (1) {
2049                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2050                                              (void **)gang, 0,
2051                                              ARRAY_SIZE(gang));
2052                 if (!ret)
2053                         break;
2054                 for (i = 0; i < ret; i++)
2055                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2056         }
2057 }
2058
2059 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2060 {
2061         mutex_init(&fs_info->scrub_lock);
2062         atomic_set(&fs_info->scrubs_running, 0);
2063         atomic_set(&fs_info->scrub_pause_req, 0);
2064         atomic_set(&fs_info->scrubs_paused, 0);
2065         atomic_set(&fs_info->scrub_cancel_req, 0);
2066         init_waitqueue_head(&fs_info->scrub_pause_wait);
2067         refcount_set(&fs_info->scrub_workers_refcnt, 0);
2068 }
2069
2070 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2071 {
2072         spin_lock_init(&fs_info->balance_lock);
2073         mutex_init(&fs_info->balance_mutex);
2074         atomic_set(&fs_info->balance_pause_req, 0);
2075         atomic_set(&fs_info->balance_cancel_req, 0);
2076         fs_info->balance_ctl = NULL;
2077         init_waitqueue_head(&fs_info->balance_wait_q);
2078 }
2079
2080 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2081 {
2082         struct inode *inode = fs_info->btree_inode;
2083
2084         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2085         set_nlink(inode, 1);
2086         /*
2087          * we set the i_size on the btree inode to the max possible int.
2088          * the real end of the address space is determined by all of
2089          * the devices in the system
2090          */
2091         inode->i_size = OFFSET_MAX;
2092         inode->i_mapping->a_ops = &btree_aops;
2093
2094         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2095         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2096                             IO_TREE_BTREE_INODE_IO, inode);
2097         BTRFS_I(inode)->io_tree.track_uptodate = false;
2098         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2099
2100         BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2101         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2102         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2103         btrfs_insert_inode_hash(inode);
2104 }
2105
2106 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2107 {
2108         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2109         init_rwsem(&fs_info->dev_replace.rwsem);
2110         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2111 }
2112
2113 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2114 {
2115         spin_lock_init(&fs_info->qgroup_lock);
2116         mutex_init(&fs_info->qgroup_ioctl_lock);
2117         fs_info->qgroup_tree = RB_ROOT;
2118         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2119         fs_info->qgroup_seq = 1;
2120         fs_info->qgroup_ulist = NULL;
2121         fs_info->qgroup_rescan_running = false;
2122         mutex_init(&fs_info->qgroup_rescan_lock);
2123 }
2124
2125 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2126                 struct btrfs_fs_devices *fs_devices)
2127 {
2128         u32 max_active = fs_info->thread_pool_size;
2129         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2130
2131         fs_info->workers =
2132                 btrfs_alloc_workqueue(fs_info, "worker",
2133                                       flags | WQ_HIGHPRI, max_active, 16);
2134
2135         fs_info->delalloc_workers =
2136                 btrfs_alloc_workqueue(fs_info, "delalloc",
2137                                       flags, max_active, 2);
2138
2139         fs_info->flush_workers =
2140                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2141                                       flags, max_active, 0);
2142
2143         fs_info->caching_workers =
2144                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2145
2146         fs_info->fixup_workers =
2147                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2148
2149         /*
2150          * endios are largely parallel and should have a very
2151          * low idle thresh
2152          */
2153         fs_info->endio_workers =
2154                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2155         fs_info->endio_meta_workers =
2156                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2157                                       max_active, 4);
2158         fs_info->endio_meta_write_workers =
2159                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2160                                       max_active, 2);
2161         fs_info->endio_raid56_workers =
2162                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2163                                       max_active, 4);
2164         fs_info->rmw_workers =
2165                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2166         fs_info->endio_write_workers =
2167                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2168                                       max_active, 2);
2169         fs_info->endio_freespace_worker =
2170                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2171                                       max_active, 0);
2172         fs_info->delayed_workers =
2173                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2174                                       max_active, 0);
2175         fs_info->readahead_workers =
2176                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2177                                       max_active, 2);
2178         fs_info->qgroup_rescan_workers =
2179                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2180         fs_info->discard_ctl.discard_workers =
2181                 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2182
2183         if (!(fs_info->workers && fs_info->delalloc_workers &&
2184               fs_info->flush_workers &&
2185               fs_info->endio_workers && fs_info->endio_meta_workers &&
2186               fs_info->endio_meta_write_workers &&
2187               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2188               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2189               fs_info->caching_workers && fs_info->readahead_workers &&
2190               fs_info->fixup_workers && fs_info->delayed_workers &&
2191               fs_info->qgroup_rescan_workers &&
2192               fs_info->discard_ctl.discard_workers)) {
2193                 return -ENOMEM;
2194         }
2195
2196         return 0;
2197 }
2198
2199 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2200 {
2201         struct crypto_shash *csum_shash;
2202         const char *csum_driver = btrfs_super_csum_driver(csum_type);
2203
2204         csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2205
2206         if (IS_ERR(csum_shash)) {
2207                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2208                           csum_driver);
2209                 return PTR_ERR(csum_shash);
2210         }
2211
2212         fs_info->csum_shash = csum_shash;
2213
2214         return 0;
2215 }
2216
2217 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2218                             struct btrfs_fs_devices *fs_devices)
2219 {
2220         int ret;
2221         struct btrfs_root *log_tree_root;
2222         struct btrfs_super_block *disk_super = fs_info->super_copy;
2223         u64 bytenr = btrfs_super_log_root(disk_super);
2224         int level = btrfs_super_log_root_level(disk_super);
2225
2226         if (fs_devices->rw_devices == 0) {
2227                 btrfs_warn(fs_info, "log replay required on RO media");
2228                 return -EIO;
2229         }
2230
2231         log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2232                                          GFP_KERNEL);
2233         if (!log_tree_root)
2234                 return -ENOMEM;
2235
2236         log_tree_root->node = read_tree_block(fs_info, bytenr,
2237                                               BTRFS_TREE_LOG_OBJECTID,
2238                                               fs_info->generation + 1, level,
2239                                               NULL);
2240         if (IS_ERR(log_tree_root->node)) {
2241                 btrfs_warn(fs_info, "failed to read log tree");
2242                 ret = PTR_ERR(log_tree_root->node);
2243                 log_tree_root->node = NULL;
2244                 btrfs_put_root(log_tree_root);
2245                 return ret;
2246         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2247                 btrfs_err(fs_info, "failed to read log tree");
2248                 btrfs_put_root(log_tree_root);
2249                 return -EIO;
2250         }
2251         /* returns with log_tree_root freed on success */
2252         ret = btrfs_recover_log_trees(log_tree_root);
2253         if (ret) {
2254                 btrfs_handle_fs_error(fs_info, ret,
2255                                       "Failed to recover log tree");
2256                 btrfs_put_root(log_tree_root);
2257                 return ret;
2258         }
2259
2260         if (sb_rdonly(fs_info->sb)) {
2261                 ret = btrfs_commit_super(fs_info);
2262                 if (ret)
2263                         return ret;
2264         }
2265
2266         return 0;
2267 }
2268
2269 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2270 {
2271         struct btrfs_root *tree_root = fs_info->tree_root;
2272         struct btrfs_root *root;
2273         struct btrfs_key location;
2274         int ret;
2275
2276         BUG_ON(!fs_info->tree_root);
2277
2278         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2279         location.type = BTRFS_ROOT_ITEM_KEY;
2280         location.offset = 0;
2281
2282         root = btrfs_read_tree_root(tree_root, &location);
2283         if (IS_ERR(root)) {
2284                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2285                         ret = PTR_ERR(root);
2286                         goto out;
2287                 }
2288         } else {
2289                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2290                 fs_info->extent_root = root;
2291         }
2292
2293         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2294         root = btrfs_read_tree_root(tree_root, &location);
2295         if (IS_ERR(root)) {
2296                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2297                         ret = PTR_ERR(root);
2298                         goto out;
2299                 }
2300         } else {
2301                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2302                 fs_info->dev_root = root;
2303                 btrfs_init_devices_late(fs_info);
2304         }
2305
2306         /* If IGNOREDATACSUMS is set don't bother reading the csum root. */
2307         if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2308                 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2309                 root = btrfs_read_tree_root(tree_root, &location);
2310                 if (IS_ERR(root)) {
2311                         if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2312                                 ret = PTR_ERR(root);
2313                                 goto out;
2314                         }
2315                 } else {
2316                         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2317                         fs_info->csum_root = root;
2318                 }
2319         }
2320
2321         /*
2322          * This tree can share blocks with some other fs tree during relocation
2323          * and we need a proper setup by btrfs_get_fs_root
2324          */
2325         root = btrfs_get_fs_root(tree_root->fs_info,
2326                                  BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2327         if (IS_ERR(root)) {
2328                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2329                         ret = PTR_ERR(root);
2330                         goto out;
2331                 }
2332         } else {
2333                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2334                 fs_info->data_reloc_root = root;
2335         }
2336
2337         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2338         root = btrfs_read_tree_root(tree_root, &location);
2339         if (!IS_ERR(root)) {
2340                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2341                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2342                 fs_info->quota_root = root;
2343         }
2344
2345         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2346         root = btrfs_read_tree_root(tree_root, &location);
2347         if (IS_ERR(root)) {
2348                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2349                         ret = PTR_ERR(root);
2350                         if (ret != -ENOENT)
2351                                 goto out;
2352                 }
2353         } else {
2354                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2355                 fs_info->uuid_root = root;
2356         }
2357
2358         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2359                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2360                 root = btrfs_read_tree_root(tree_root, &location);
2361                 if (IS_ERR(root)) {
2362                         if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2363                                 ret = PTR_ERR(root);
2364                                 goto out;
2365                         }
2366                 }  else {
2367                         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2368                         fs_info->free_space_root = root;
2369                 }
2370         }
2371
2372         return 0;
2373 out:
2374         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2375                    location.objectid, ret);
2376         return ret;
2377 }
2378
2379 /*
2380  * Real super block validation
2381  * NOTE: super csum type and incompat features will not be checked here.
2382  *
2383  * @sb:         super block to check
2384  * @mirror_num: the super block number to check its bytenr:
2385  *              0       the primary (1st) sb
2386  *              1, 2    2nd and 3rd backup copy
2387  *             -1       skip bytenr check
2388  */
2389 static int validate_super(struct btrfs_fs_info *fs_info,
2390                             struct btrfs_super_block *sb, int mirror_num)
2391 {
2392         u64 nodesize = btrfs_super_nodesize(sb);
2393         u64 sectorsize = btrfs_super_sectorsize(sb);
2394         int ret = 0;
2395
2396         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2397                 btrfs_err(fs_info, "no valid FS found");
2398                 ret = -EINVAL;
2399         }
2400         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2401                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2402                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2403                 ret = -EINVAL;
2404         }
2405         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2406                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2407                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2408                 ret = -EINVAL;
2409         }
2410         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2411                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2412                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2413                 ret = -EINVAL;
2414         }
2415         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2416                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2417                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2418                 ret = -EINVAL;
2419         }
2420
2421         /*
2422          * Check sectorsize and nodesize first, other check will need it.
2423          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2424          */
2425         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2426             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2427                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2428                 ret = -EINVAL;
2429         }
2430         /* Only PAGE SIZE is supported yet */
2431         if (sectorsize != PAGE_SIZE) {
2432                 btrfs_err(fs_info,
2433                         "sectorsize %llu not supported yet, only support %lu",
2434                         sectorsize, PAGE_SIZE);
2435                 ret = -EINVAL;
2436         }
2437         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2438             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2439                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2440                 ret = -EINVAL;
2441         }
2442         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2443                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2444                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2445                 ret = -EINVAL;
2446         }
2447
2448         /* Root alignment check */
2449         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2450                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2451                            btrfs_super_root(sb));
2452                 ret = -EINVAL;
2453         }
2454         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2455                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2456                            btrfs_super_chunk_root(sb));
2457                 ret = -EINVAL;
2458         }
2459         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2460                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2461                            btrfs_super_log_root(sb));
2462                 ret = -EINVAL;
2463         }
2464
2465         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2466                    BTRFS_FSID_SIZE) != 0) {
2467                 btrfs_err(fs_info,
2468                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2469                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2470                 ret = -EINVAL;
2471         }
2472
2473         /*
2474          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2475          * done later
2476          */
2477         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2478                 btrfs_err(fs_info, "bytes_used is too small %llu",
2479                           btrfs_super_bytes_used(sb));
2480                 ret = -EINVAL;
2481         }
2482         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2483                 btrfs_err(fs_info, "invalid stripesize %u",
2484                           btrfs_super_stripesize(sb));
2485                 ret = -EINVAL;
2486         }
2487         if (btrfs_super_num_devices(sb) > (1UL << 31))
2488                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2489                            btrfs_super_num_devices(sb));
2490         if (btrfs_super_num_devices(sb) == 0) {
2491                 btrfs_err(fs_info, "number of devices is 0");
2492                 ret = -EINVAL;
2493         }
2494
2495         if (mirror_num >= 0 &&
2496             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2497                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2498                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2499                 ret = -EINVAL;
2500         }
2501
2502         /*
2503          * Obvious sys_chunk_array corruptions, it must hold at least one key
2504          * and one chunk
2505          */
2506         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2507                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2508                           btrfs_super_sys_array_size(sb),
2509                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2510                 ret = -EINVAL;
2511         }
2512         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2513                         + sizeof(struct btrfs_chunk)) {
2514                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2515                           btrfs_super_sys_array_size(sb),
2516                           sizeof(struct btrfs_disk_key)
2517                           + sizeof(struct btrfs_chunk));
2518                 ret = -EINVAL;
2519         }
2520
2521         /*
2522          * The generation is a global counter, we'll trust it more than the others
2523          * but it's still possible that it's the one that's wrong.
2524          */
2525         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2526                 btrfs_warn(fs_info,
2527                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2528                         btrfs_super_generation(sb),
2529                         btrfs_super_chunk_root_generation(sb));
2530         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2531             && btrfs_super_cache_generation(sb) != (u64)-1)
2532                 btrfs_warn(fs_info,
2533                         "suspicious: generation < cache_generation: %llu < %llu",
2534                         btrfs_super_generation(sb),
2535                         btrfs_super_cache_generation(sb));
2536
2537         return ret;
2538 }
2539
2540 /*
2541  * Validation of super block at mount time.
2542  * Some checks already done early at mount time, like csum type and incompat
2543  * flags will be skipped.
2544  */
2545 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2546 {
2547         return validate_super(fs_info, fs_info->super_copy, 0);
2548 }
2549
2550 /*
2551  * Validation of super block at write time.
2552  * Some checks like bytenr check will be skipped as their values will be
2553  * overwritten soon.
2554  * Extra checks like csum type and incompat flags will be done here.
2555  */
2556 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2557                                       struct btrfs_super_block *sb)
2558 {
2559         int ret;
2560
2561         ret = validate_super(fs_info, sb, -1);
2562         if (ret < 0)
2563                 goto out;
2564         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2565                 ret = -EUCLEAN;
2566                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2567                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2568                 goto out;
2569         }
2570         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2571                 ret = -EUCLEAN;
2572                 btrfs_err(fs_info,
2573                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2574                           btrfs_super_incompat_flags(sb),
2575                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2576                 goto out;
2577         }
2578 out:
2579         if (ret < 0)
2580                 btrfs_err(fs_info,
2581                 "super block corruption detected before writing it to disk");
2582         return ret;
2583 }
2584
2585 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2586 {
2587         int backup_index = find_newest_super_backup(fs_info);
2588         struct btrfs_super_block *sb = fs_info->super_copy;
2589         struct btrfs_root *tree_root = fs_info->tree_root;
2590         bool handle_error = false;
2591         int ret = 0;
2592         int i;
2593
2594         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2595                 u64 generation;
2596                 int level;
2597
2598                 if (handle_error) {
2599                         if (!IS_ERR(tree_root->node))
2600                                 free_extent_buffer(tree_root->node);
2601                         tree_root->node = NULL;
2602
2603                         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2604                                 break;
2605
2606                         free_root_pointers(fs_info, 0);
2607
2608                         /*
2609                          * Don't use the log in recovery mode, it won't be
2610                          * valid
2611                          */
2612                         btrfs_set_super_log_root(sb, 0);
2613
2614                         /* We can't trust the free space cache either */
2615                         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2616
2617                         ret = read_backup_root(fs_info, i);
2618                         backup_index = ret;
2619                         if (ret < 0)
2620                                 return ret;
2621                 }
2622                 generation = btrfs_super_generation(sb);
2623                 level = btrfs_super_root_level(sb);
2624                 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2625                                                   BTRFS_ROOT_TREE_OBJECTID,
2626                                                   generation, level, NULL);
2627                 if (IS_ERR(tree_root->node)) {
2628                         handle_error = true;
2629                         ret = PTR_ERR(tree_root->node);
2630                         tree_root->node = NULL;
2631                         btrfs_warn(fs_info, "couldn't read tree root");
2632                         continue;
2633
2634                 } else if (!extent_buffer_uptodate(tree_root->node)) {
2635                         handle_error = true;
2636                         ret = -EIO;
2637                         btrfs_warn(fs_info, "error while reading tree root");
2638                         continue;
2639                 }
2640
2641                 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2642                 tree_root->commit_root = btrfs_root_node(tree_root);
2643                 btrfs_set_root_refs(&tree_root->root_item, 1);
2644
2645                 /*
2646                  * No need to hold btrfs_root::objectid_mutex since the fs
2647                  * hasn't been fully initialised and we are the only user
2648                  */
2649                 ret = btrfs_find_highest_objectid(tree_root,
2650                                                 &tree_root->highest_objectid);
2651                 if (ret < 0) {
2652                         handle_error = true;
2653                         continue;
2654                 }
2655
2656                 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2657
2658                 ret = btrfs_read_roots(fs_info);
2659                 if (ret < 0) {
2660                         handle_error = true;
2661                         continue;
2662                 }
2663
2664                 /* All successful */
2665                 fs_info->generation = generation;
2666                 fs_info->last_trans_committed = generation;
2667
2668                 /* Always begin writing backup roots after the one being used */
2669                 if (backup_index < 0) {
2670                         fs_info->backup_root_index = 0;
2671                 } else {
2672                         fs_info->backup_root_index = backup_index + 1;
2673                         fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2674                 }
2675                 break;
2676         }
2677
2678         return ret;
2679 }
2680
2681 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2682 {
2683         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2684         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2685         INIT_LIST_HEAD(&fs_info->trans_list);
2686         INIT_LIST_HEAD(&fs_info->dead_roots);
2687         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2688         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2689         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2690         spin_lock_init(&fs_info->delalloc_root_lock);
2691         spin_lock_init(&fs_info->trans_lock);
2692         spin_lock_init(&fs_info->fs_roots_radix_lock);
2693         spin_lock_init(&fs_info->delayed_iput_lock);
2694         spin_lock_init(&fs_info->defrag_inodes_lock);
2695         spin_lock_init(&fs_info->super_lock);
2696         spin_lock_init(&fs_info->buffer_lock);
2697         spin_lock_init(&fs_info->unused_bgs_lock);
2698         rwlock_init(&fs_info->tree_mod_log_lock);
2699         mutex_init(&fs_info->unused_bg_unpin_mutex);
2700         mutex_init(&fs_info->delete_unused_bgs_mutex);
2701         mutex_init(&fs_info->reloc_mutex);
2702         mutex_init(&fs_info->delalloc_root_mutex);
2703         seqlock_init(&fs_info->profiles_lock);
2704
2705         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2706         INIT_LIST_HEAD(&fs_info->space_info);
2707         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2708         INIT_LIST_HEAD(&fs_info->unused_bgs);
2709 #ifdef CONFIG_BTRFS_DEBUG
2710         INIT_LIST_HEAD(&fs_info->allocated_roots);
2711         INIT_LIST_HEAD(&fs_info->allocated_ebs);
2712         spin_lock_init(&fs_info->eb_leak_lock);
2713 #endif
2714         extent_map_tree_init(&fs_info->mapping_tree);
2715         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2716                              BTRFS_BLOCK_RSV_GLOBAL);
2717         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2718         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2719         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2720         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2721                              BTRFS_BLOCK_RSV_DELOPS);
2722         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2723                              BTRFS_BLOCK_RSV_DELREFS);
2724
2725         atomic_set(&fs_info->async_delalloc_pages, 0);
2726         atomic_set(&fs_info->defrag_running, 0);
2727         atomic_set(&fs_info->reada_works_cnt, 0);
2728         atomic_set(&fs_info->nr_delayed_iputs, 0);
2729         atomic64_set(&fs_info->tree_mod_seq, 0);
2730         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2731         fs_info->metadata_ratio = 0;
2732         fs_info->defrag_inodes = RB_ROOT;
2733         atomic64_set(&fs_info->free_chunk_space, 0);
2734         fs_info->tree_mod_log = RB_ROOT;
2735         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2736         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2737         /* readahead state */
2738         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2739         spin_lock_init(&fs_info->reada_lock);
2740         btrfs_init_ref_verify(fs_info);
2741
2742         fs_info->thread_pool_size = min_t(unsigned long,
2743                                           num_online_cpus() + 2, 8);
2744
2745         INIT_LIST_HEAD(&fs_info->ordered_roots);
2746         spin_lock_init(&fs_info->ordered_root_lock);
2747
2748         btrfs_init_scrub(fs_info);
2749 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2750         fs_info->check_integrity_print_mask = 0;
2751 #endif
2752         btrfs_init_balance(fs_info);
2753         btrfs_init_async_reclaim_work(fs_info);
2754
2755         spin_lock_init(&fs_info->block_group_cache_lock);
2756         fs_info->block_group_cache_tree = RB_ROOT;
2757         fs_info->first_logical_byte = (u64)-1;
2758
2759         extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2760                             IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2761         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2762
2763         mutex_init(&fs_info->ordered_operations_mutex);
2764         mutex_init(&fs_info->tree_log_mutex);
2765         mutex_init(&fs_info->chunk_mutex);
2766         mutex_init(&fs_info->transaction_kthread_mutex);
2767         mutex_init(&fs_info->cleaner_mutex);
2768         mutex_init(&fs_info->ro_block_group_mutex);
2769         init_rwsem(&fs_info->commit_root_sem);
2770         init_rwsem(&fs_info->cleanup_work_sem);
2771         init_rwsem(&fs_info->subvol_sem);
2772         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2773
2774         btrfs_init_dev_replace_locks(fs_info);
2775         btrfs_init_qgroup(fs_info);
2776         btrfs_discard_init(fs_info);
2777
2778         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2779         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2780
2781         init_waitqueue_head(&fs_info->transaction_throttle);
2782         init_waitqueue_head(&fs_info->transaction_wait);
2783         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2784         init_waitqueue_head(&fs_info->async_submit_wait);
2785         init_waitqueue_head(&fs_info->delayed_iputs_wait);
2786
2787         /* Usable values until the real ones are cached from the superblock */
2788         fs_info->nodesize = 4096;
2789         fs_info->sectorsize = 4096;
2790         fs_info->sectorsize_bits = ilog2(4096);
2791         fs_info->stripesize = 4096;
2792
2793         spin_lock_init(&fs_info->swapfile_pins_lock);
2794         fs_info->swapfile_pins = RB_ROOT;
2795
2796         fs_info->send_in_progress = 0;
2797 }
2798
2799 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2800 {
2801         int ret;
2802
2803         fs_info->sb = sb;
2804         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2805         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2806
2807         ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2808         if (ret)
2809                 return ret;
2810
2811         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2812         if (ret)
2813                 return ret;
2814
2815         fs_info->dirty_metadata_batch = PAGE_SIZE *
2816                                         (1 + ilog2(nr_cpu_ids));
2817
2818         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2819         if (ret)
2820                 return ret;
2821
2822         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2823                         GFP_KERNEL);
2824         if (ret)
2825                 return ret;
2826
2827         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2828                                         GFP_KERNEL);
2829         if (!fs_info->delayed_root)
2830                 return -ENOMEM;
2831         btrfs_init_delayed_root(fs_info->delayed_root);
2832
2833         return btrfs_alloc_stripe_hash_table(fs_info);
2834 }
2835
2836 static int btrfs_uuid_rescan_kthread(void *data)
2837 {
2838         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2839         int ret;
2840
2841         /*
2842          * 1st step is to iterate through the existing UUID tree and
2843          * to delete all entries that contain outdated data.
2844          * 2nd step is to add all missing entries to the UUID tree.
2845          */
2846         ret = btrfs_uuid_tree_iterate(fs_info);
2847         if (ret < 0) {
2848                 if (ret != -EINTR)
2849                         btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2850                                    ret);
2851                 up(&fs_info->uuid_tree_rescan_sem);
2852                 return ret;
2853         }
2854         return btrfs_uuid_scan_kthread(data);
2855 }
2856
2857 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2858 {
2859         struct task_struct *task;
2860
2861         down(&fs_info->uuid_tree_rescan_sem);
2862         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2863         if (IS_ERR(task)) {
2864                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2865                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2866                 up(&fs_info->uuid_tree_rescan_sem);
2867                 return PTR_ERR(task);
2868         }
2869
2870         return 0;
2871 }
2872
2873 /*
2874  * Mounting logic specific to read-write file systems. Shared by open_ctree
2875  * and btrfs_remount when remounting from read-only to read-write.
2876  */
2877 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2878 {
2879         int ret;
2880
2881         ret = btrfs_cleanup_fs_roots(fs_info);
2882         if (ret)
2883                 goto out;
2884
2885         mutex_lock(&fs_info->cleaner_mutex);
2886         ret = btrfs_recover_relocation(fs_info->tree_root);
2887         mutex_unlock(&fs_info->cleaner_mutex);
2888         if (ret < 0) {
2889                 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
2890                 goto out;
2891         }
2892
2893         ret = btrfs_resume_balance_async(fs_info);
2894         if (ret)
2895                 goto out;
2896
2897         ret = btrfs_resume_dev_replace_async(fs_info);
2898         if (ret) {
2899                 btrfs_warn(fs_info, "failed to resume dev_replace");
2900                 goto out;
2901         }
2902
2903         btrfs_qgroup_rescan_resume(fs_info);
2904
2905         if (!fs_info->uuid_root) {
2906                 btrfs_info(fs_info, "creating UUID tree");
2907                 ret = btrfs_create_uuid_tree(fs_info);
2908                 if (ret) {
2909                         btrfs_warn(fs_info,
2910                                    "failed to create the UUID tree %d", ret);
2911                         goto out;
2912                 }
2913         }
2914
2915 out:
2916         return ret;
2917 }
2918
2919 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2920                       char *options)
2921 {
2922         u32 sectorsize;
2923         u32 nodesize;
2924         u32 stripesize;
2925         u64 generation;
2926         u64 features;
2927         u16 csum_type;
2928         struct btrfs_super_block *disk_super;
2929         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2930         struct btrfs_root *tree_root;
2931         struct btrfs_root *chunk_root;
2932         int ret;
2933         int err = -EINVAL;
2934         int clear_free_space_tree = 0;
2935         int level;
2936
2937         ret = init_mount_fs_info(fs_info, sb);
2938         if (ret) {
2939                 err = ret;
2940                 goto fail;
2941         }
2942
2943         /* These need to be init'ed before we start creating inodes and such. */
2944         tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2945                                      GFP_KERNEL);
2946         fs_info->tree_root = tree_root;
2947         chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2948                                       GFP_KERNEL);
2949         fs_info->chunk_root = chunk_root;
2950         if (!tree_root || !chunk_root) {
2951                 err = -ENOMEM;
2952                 goto fail;
2953         }
2954
2955         fs_info->btree_inode = new_inode(sb);
2956         if (!fs_info->btree_inode) {
2957                 err = -ENOMEM;
2958                 goto fail;
2959         }
2960         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2961         btrfs_init_btree_inode(fs_info);
2962
2963         invalidate_bdev(fs_devices->latest_bdev);
2964
2965         /*
2966          * Read super block and check the signature bytes only
2967          */
2968         disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2969         if (IS_ERR(disk_super)) {
2970                 err = PTR_ERR(disk_super);
2971                 goto fail_alloc;
2972         }
2973
2974         /*
2975          * Verify the type first, if that or the checksum value are
2976          * corrupted, we'll find out
2977          */
2978         csum_type = btrfs_super_csum_type(disk_super);
2979         if (!btrfs_supported_super_csum(csum_type)) {
2980                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2981                           csum_type);
2982                 err = -EINVAL;
2983                 btrfs_release_disk_super(disk_super);
2984                 goto fail_alloc;
2985         }
2986
2987         ret = btrfs_init_csum_hash(fs_info, csum_type);
2988         if (ret) {
2989                 err = ret;
2990                 btrfs_release_disk_super(disk_super);
2991                 goto fail_alloc;
2992         }
2993
2994         /*
2995          * We want to check superblock checksum, the type is stored inside.
2996          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2997          */
2998         if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
2999                 btrfs_err(fs_info, "superblock checksum mismatch");
3000                 err = -EINVAL;
3001                 btrfs_release_disk_super(disk_super);
3002                 goto fail_alloc;
3003         }
3004
3005         /*
3006          * super_copy is zeroed at allocation time and we never touch the
3007          * following bytes up to INFO_SIZE, the checksum is calculated from
3008          * the whole block of INFO_SIZE
3009          */
3010         memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3011         btrfs_release_disk_super(disk_super);
3012
3013         disk_super = fs_info->super_copy;
3014
3015         ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
3016                        BTRFS_FSID_SIZE));
3017
3018         if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
3019                 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
3020                                 fs_info->super_copy->metadata_uuid,
3021                                 BTRFS_FSID_SIZE));
3022         }
3023
3024         features = btrfs_super_flags(disk_super);
3025         if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3026                 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3027                 btrfs_set_super_flags(disk_super, features);
3028                 btrfs_info(fs_info,
3029                         "found metadata UUID change in progress flag, clearing");
3030         }
3031
3032         memcpy(fs_info->super_for_commit, fs_info->super_copy,
3033                sizeof(*fs_info->super_for_commit));
3034
3035         ret = btrfs_validate_mount_super(fs_info);
3036         if (ret) {
3037                 btrfs_err(fs_info, "superblock contains fatal errors");
3038                 err = -EINVAL;
3039                 goto fail_alloc;
3040         }
3041
3042         if (!btrfs_super_root(disk_super))
3043                 goto fail_alloc;
3044
3045         /* check FS state, whether FS is broken. */
3046         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3047                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3048
3049         /*
3050          * In the long term, we'll store the compression type in the super
3051          * block, and it'll be used for per file compression control.
3052          */
3053         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3054
3055         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3056         if (ret) {
3057                 err = ret;
3058                 goto fail_alloc;
3059         }
3060
3061         features = btrfs_super_incompat_flags(disk_super) &
3062                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3063         if (features) {
3064                 btrfs_err(fs_info,
3065                     "cannot mount because of unsupported optional features (%llx)",
3066                     features);
3067                 err = -EINVAL;
3068                 goto fail_alloc;
3069         }
3070
3071         features = btrfs_super_incompat_flags(disk_super);
3072         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3073         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3074                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3075         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3076                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3077
3078         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3079                 btrfs_info(fs_info, "has skinny extents");
3080
3081         fs_info->zoned = (features & BTRFS_FEATURE_INCOMPAT_ZONED);
3082
3083         /*
3084          * flag our filesystem as having big metadata blocks if
3085          * they are bigger than the page size
3086          */
3087         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3088                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3089                         btrfs_info(fs_info,
3090                                 "flagging fs with big metadata feature");
3091                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3092         }
3093
3094         nodesize = btrfs_super_nodesize(disk_super);
3095         sectorsize = btrfs_super_sectorsize(disk_super);
3096         stripesize = sectorsize;
3097         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3098         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3099
3100         /* Cache block sizes */
3101         fs_info->nodesize = nodesize;
3102         fs_info->sectorsize = sectorsize;
3103         fs_info->sectorsize_bits = ilog2(sectorsize);
3104         fs_info->csum_size = btrfs_super_csum_size(disk_super);
3105         fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3106         fs_info->stripesize = stripesize;
3107
3108         /*
3109          * mixed block groups end up with duplicate but slightly offset
3110          * extent buffers for the same range.  It leads to corruptions
3111          */
3112         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3113             (sectorsize != nodesize)) {
3114                 btrfs_err(fs_info,
3115 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3116                         nodesize, sectorsize);
3117                 goto fail_alloc;
3118         }
3119
3120         /*
3121          * Needn't use the lock because there is no other task which will
3122          * update the flag.
3123          */
3124         btrfs_set_super_incompat_flags(disk_super, features);
3125
3126         features = btrfs_super_compat_ro_flags(disk_super) &
3127                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3128         if (!sb_rdonly(sb) && features) {
3129                 btrfs_err(fs_info,
3130         "cannot mount read-write because of unsupported optional features (%llx)",
3131                        features);
3132                 err = -EINVAL;
3133                 goto fail_alloc;
3134         }
3135
3136         ret = btrfs_init_workqueues(fs_info, fs_devices);
3137         if (ret) {
3138                 err = ret;
3139                 goto fail_sb_buffer;
3140         }
3141
3142         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3143         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3144
3145         sb->s_blocksize = sectorsize;
3146         sb->s_blocksize_bits = blksize_bits(sectorsize);
3147         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3148
3149         mutex_lock(&fs_info->chunk_mutex);
3150         ret = btrfs_read_sys_array(fs_info);
3151         mutex_unlock(&fs_info->chunk_mutex);
3152         if (ret) {
3153                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3154                 goto fail_sb_buffer;
3155         }
3156
3157         generation = btrfs_super_chunk_root_generation(disk_super);
3158         level = btrfs_super_chunk_root_level(disk_super);
3159
3160         chunk_root->node = read_tree_block(fs_info,
3161                                            btrfs_super_chunk_root(disk_super),
3162                                            BTRFS_CHUNK_TREE_OBJECTID,
3163                                            generation, level, NULL);
3164         if (IS_ERR(chunk_root->node) ||
3165             !extent_buffer_uptodate(chunk_root->node)) {
3166                 btrfs_err(fs_info, "failed to read chunk root");
3167                 if (!IS_ERR(chunk_root->node))
3168                         free_extent_buffer(chunk_root->node);
3169                 chunk_root->node = NULL;
3170                 goto fail_tree_roots;
3171         }
3172         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3173         chunk_root->commit_root = btrfs_root_node(chunk_root);
3174
3175         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3176                            offsetof(struct btrfs_header, chunk_tree_uuid),
3177                            BTRFS_UUID_SIZE);
3178
3179         ret = btrfs_read_chunk_tree(fs_info);
3180         if (ret) {
3181                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3182                 goto fail_tree_roots;
3183         }
3184
3185         /*
3186          * At this point we know all the devices that make this filesystem,
3187          * including the seed devices but we don't know yet if the replace
3188          * target is required. So free devices that are not part of this
3189          * filesystem but skip the replace traget device which is checked
3190          * below in btrfs_init_dev_replace().
3191          */
3192         btrfs_free_extra_devids(fs_devices);
3193         if (!fs_devices->latest_bdev) {
3194                 btrfs_err(fs_info, "failed to read devices");
3195                 goto fail_tree_roots;
3196         }
3197
3198         ret = init_tree_roots(fs_info);
3199         if (ret)
3200                 goto fail_tree_roots;
3201
3202         /*
3203          * If we have a uuid root and we're not being told to rescan we need to
3204          * check the generation here so we can set the
3205          * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3206          * transaction during a balance or the log replay without updating the
3207          * uuid generation, and then if we crash we would rescan the uuid tree,
3208          * even though it was perfectly fine.
3209          */
3210         if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3211             fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3212                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3213
3214         ret = btrfs_verify_dev_extents(fs_info);
3215         if (ret) {
3216                 btrfs_err(fs_info,
3217                           "failed to verify dev extents against chunks: %d",
3218                           ret);
3219                 goto fail_block_groups;
3220         }
3221         ret = btrfs_recover_balance(fs_info);
3222         if (ret) {
3223                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3224                 goto fail_block_groups;
3225         }
3226
3227         ret = btrfs_init_dev_stats(fs_info);
3228         if (ret) {
3229                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3230                 goto fail_block_groups;
3231         }
3232
3233         ret = btrfs_init_dev_replace(fs_info);
3234         if (ret) {
3235                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3236                 goto fail_block_groups;
3237         }
3238
3239         ret = btrfs_check_zoned_mode(fs_info);
3240         if (ret) {
3241                 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3242                           ret);
3243                 goto fail_block_groups;
3244         }
3245
3246         ret = btrfs_sysfs_add_fsid(fs_devices);
3247         if (ret) {
3248                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3249                                 ret);
3250                 goto fail_block_groups;
3251         }
3252
3253         ret = btrfs_sysfs_add_mounted(fs_info);
3254         if (ret) {
3255                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3256                 goto fail_fsdev_sysfs;
3257         }
3258
3259         ret = btrfs_init_space_info(fs_info);
3260         if (ret) {
3261                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3262                 goto fail_sysfs;
3263         }
3264
3265         ret = btrfs_read_block_groups(fs_info);
3266         if (ret) {
3267                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3268                 goto fail_sysfs;
3269         }
3270
3271         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3272                 btrfs_warn(fs_info,
3273                 "writable mount is not allowed due to too many missing devices");
3274                 goto fail_sysfs;
3275         }
3276
3277         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3278                                                "btrfs-cleaner");
3279         if (IS_ERR(fs_info->cleaner_kthread))
3280                 goto fail_sysfs;
3281
3282         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3283                                                    tree_root,
3284                                                    "btrfs-transaction");
3285         if (IS_ERR(fs_info->transaction_kthread))
3286                 goto fail_cleaner;
3287
3288         if (!btrfs_test_opt(fs_info, NOSSD) &&
3289             !fs_info->fs_devices->rotating) {
3290                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3291         }
3292
3293         /*
3294          * Mount does not set all options immediately, we can do it now and do
3295          * not have to wait for transaction commit
3296          */
3297         btrfs_apply_pending_changes(fs_info);
3298
3299 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3300         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3301                 ret = btrfsic_mount(fs_info, fs_devices,
3302                                     btrfs_test_opt(fs_info,
3303                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3304                                     1 : 0,
3305                                     fs_info->check_integrity_print_mask);
3306                 if (ret)
3307                         btrfs_warn(fs_info,
3308                                 "failed to initialize integrity check module: %d",
3309                                 ret);
3310         }
3311 #endif
3312         ret = btrfs_read_qgroup_config(fs_info);
3313         if (ret)
3314                 goto fail_trans_kthread;
3315
3316         if (btrfs_build_ref_tree(fs_info))
3317                 btrfs_err(fs_info, "couldn't build ref tree");
3318
3319         /* do not make disk changes in broken FS or nologreplay is given */
3320         if (btrfs_super_log_root(disk_super) != 0 &&
3321             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3322                 btrfs_info(fs_info, "start tree-log replay");
3323                 ret = btrfs_replay_log(fs_info, fs_devices);
3324                 if (ret) {
3325                         err = ret;
3326                         goto fail_qgroup;
3327                 }
3328         }
3329
3330         ret = btrfs_find_orphan_roots(fs_info);
3331         if (ret)
3332                 goto fail_qgroup;
3333
3334         fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3335         if (IS_ERR(fs_info->fs_root)) {
3336                 err = PTR_ERR(fs_info->fs_root);
3337                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3338                 fs_info->fs_root = NULL;
3339                 goto fail_qgroup;
3340         }
3341
3342         if (sb_rdonly(sb))
3343                 return 0;
3344
3345         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3346             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3347                 clear_free_space_tree = 1;
3348         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3349                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3350                 btrfs_warn(fs_info, "free space tree is invalid");
3351                 clear_free_space_tree = 1;
3352         }
3353
3354         if (clear_free_space_tree) {
3355                 btrfs_info(fs_info, "clearing free space tree");
3356                 ret = btrfs_clear_free_space_tree(fs_info);
3357                 if (ret) {
3358                         btrfs_warn(fs_info,
3359                                    "failed to clear free space tree: %d", ret);
3360                         close_ctree(fs_info);
3361                         return ret;
3362                 }
3363         }
3364
3365         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3366             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3367                 btrfs_info(fs_info, "creating free space tree");
3368                 ret = btrfs_create_free_space_tree(fs_info);
3369                 if (ret) {
3370                         btrfs_warn(fs_info,
3371                                 "failed to create free space tree: %d", ret);
3372                         close_ctree(fs_info);
3373                         return ret;
3374                 }
3375         }
3376
3377         down_read(&fs_info->cleanup_work_sem);
3378         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3379             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3380                 up_read(&fs_info->cleanup_work_sem);
3381                 close_ctree(fs_info);
3382                 return ret;
3383         }
3384         up_read(&fs_info->cleanup_work_sem);
3385
3386         ret = btrfs_start_pre_rw_mount(fs_info);
3387         if (ret) {
3388                 close_ctree(fs_info);
3389                 return ret;
3390         }
3391         btrfs_discard_resume(fs_info);
3392
3393         if (fs_info->uuid_root &&
3394             (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3395              fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3396                 btrfs_info(fs_info, "checking UUID tree");
3397                 ret = btrfs_check_uuid_tree(fs_info);
3398                 if (ret) {
3399                         btrfs_warn(fs_info,
3400                                 "failed to check the UUID tree: %d", ret);
3401                         close_ctree(fs_info);
3402                         return ret;
3403                 }
3404         }
3405         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3406
3407         return 0;
3408
3409 fail_qgroup:
3410         btrfs_free_qgroup_config(fs_info);
3411 fail_trans_kthread:
3412         kthread_stop(fs_info->transaction_kthread);
3413         btrfs_cleanup_transaction(fs_info);
3414         btrfs_free_fs_roots(fs_info);
3415 fail_cleaner:
3416         kthread_stop(fs_info->cleaner_kthread);
3417
3418         /*
3419          * make sure we're done with the btree inode before we stop our
3420          * kthreads
3421          */
3422         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3423
3424 fail_sysfs:
3425         btrfs_sysfs_remove_mounted(fs_info);
3426
3427 fail_fsdev_sysfs:
3428         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3429
3430 fail_block_groups:
3431         btrfs_put_block_group_cache(fs_info);
3432
3433 fail_tree_roots:
3434         if (fs_info->data_reloc_root)
3435                 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3436         free_root_pointers(fs_info, true);
3437         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3438
3439 fail_sb_buffer:
3440         btrfs_stop_all_workers(fs_info);
3441         btrfs_free_block_groups(fs_info);
3442 fail_alloc:
3443         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3444
3445         iput(fs_info->btree_inode);
3446 fail:
3447         btrfs_close_devices(fs_info->fs_devices);
3448         return err;
3449 }
3450 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3451
3452 static void btrfs_end_super_write(struct bio *bio)
3453 {
3454         struct btrfs_device *device = bio->bi_private;
3455         struct bio_vec *bvec;
3456         struct bvec_iter_all iter_all;
3457         struct page *page;
3458
3459         bio_for_each_segment_all(bvec, bio, iter_all) {
3460                 page = bvec->bv_page;
3461
3462                 if (bio->bi_status) {
3463                         btrfs_warn_rl_in_rcu(device->fs_info,
3464                                 "lost page write due to IO error on %s (%d)",
3465                                 rcu_str_deref(device->name),
3466                                 blk_status_to_errno(bio->bi_status));
3467                         ClearPageUptodate(page);
3468                         SetPageError(page);
3469                         btrfs_dev_stat_inc_and_print(device,
3470                                                      BTRFS_DEV_STAT_WRITE_ERRS);
3471                 } else {
3472                         SetPageUptodate(page);
3473                 }
3474
3475                 put_page(page);
3476                 unlock_page(page);
3477         }
3478
3479         bio_put(bio);
3480 }
3481
3482 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3483                                                    int copy_num)
3484 {
3485         struct btrfs_super_block *super;
3486         struct page *page;
3487         u64 bytenr, bytenr_orig;
3488         struct address_space *mapping = bdev->bd_inode->i_mapping;
3489         int ret;
3490
3491         bytenr_orig = btrfs_sb_offset(copy_num);
3492         ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3493         if (ret == -ENOENT)
3494                 return ERR_PTR(-EINVAL);
3495         else if (ret)
3496                 return ERR_PTR(ret);
3497
3498         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3499                 return ERR_PTR(-EINVAL);
3500
3501         page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3502         if (IS_ERR(page))
3503                 return ERR_CAST(page);
3504
3505         super = page_address(page);
3506         if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3507                 btrfs_release_disk_super(super);
3508                 return ERR_PTR(-ENODATA);
3509         }
3510
3511         if (btrfs_super_bytenr(super) != bytenr_orig) {
3512                 btrfs_release_disk_super(super);
3513                 return ERR_PTR(-EINVAL);
3514         }
3515
3516         return super;
3517 }
3518
3519
3520 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3521 {
3522         struct btrfs_super_block *super, *latest = NULL;
3523         int i;
3524         u64 transid = 0;
3525
3526         /* we would like to check all the supers, but that would make
3527          * a btrfs mount succeed after a mkfs from a different FS.
3528          * So, we need to add a special mount option to scan for
3529          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3530          */
3531         for (i = 0; i < 1; i++) {
3532                 super = btrfs_read_dev_one_super(bdev, i);
3533                 if (IS_ERR(super))
3534                         continue;
3535
3536                 if (!latest || btrfs_super_generation(super) > transid) {
3537                         if (latest)
3538                                 btrfs_release_disk_super(super);
3539
3540                         latest = super;
3541                         transid = btrfs_super_generation(super);
3542                 }
3543         }
3544
3545         return super;
3546 }
3547
3548 /*
3549  * Write superblock @sb to the @device. Do not wait for completion, all the
3550  * pages we use for writing are locked.
3551  *
3552  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3553  * the expected device size at commit time. Note that max_mirrors must be
3554  * same for write and wait phases.
3555  *
3556  * Return number of errors when page is not found or submission fails.
3557  */
3558 static int write_dev_supers(struct btrfs_device *device,
3559                             struct btrfs_super_block *sb, int max_mirrors)
3560 {
3561         struct btrfs_fs_info *fs_info = device->fs_info;
3562         struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3563         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3564         int i;
3565         int errors = 0;
3566         int ret;
3567         u64 bytenr, bytenr_orig;
3568
3569         if (max_mirrors == 0)
3570                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3571
3572         shash->tfm = fs_info->csum_shash;
3573
3574         for (i = 0; i < max_mirrors; i++) {
3575                 struct page *page;
3576                 struct bio *bio;
3577                 struct btrfs_super_block *disk_super;
3578
3579                 bytenr_orig = btrfs_sb_offset(i);
3580                 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3581                 if (ret == -ENOENT) {
3582                         continue;
3583                 } else if (ret < 0) {
3584                         btrfs_err(device->fs_info,
3585                                 "couldn't get super block location for mirror %d",
3586                                 i);
3587                         errors++;
3588                         continue;
3589                 }
3590                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3591                     device->commit_total_bytes)
3592                         break;
3593
3594                 btrfs_set_super_bytenr(sb, bytenr_orig);
3595
3596                 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3597                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3598                                     sb->csum);
3599
3600                 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3601                                            GFP_NOFS);
3602                 if (!page) {
3603                         btrfs_err(device->fs_info,
3604                             "couldn't get super block page for bytenr %llu",
3605                             bytenr);
3606                         errors++;
3607                         continue;
3608                 }
3609
3610                 /* Bump the refcount for wait_dev_supers() */
3611                 get_page(page);
3612
3613                 disk_super = page_address(page);
3614                 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3615
3616                 /*
3617                  * Directly use bios here instead of relying on the page cache
3618                  * to do I/O, so we don't lose the ability to do integrity
3619                  * checking.
3620                  */
3621                 bio = bio_alloc(GFP_NOFS, 1);
3622                 bio_set_dev(bio, device->bdev);
3623                 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3624                 bio->bi_private = device;
3625                 bio->bi_end_io = btrfs_end_super_write;
3626                 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3627                                offset_in_page(bytenr));
3628
3629                 /*
3630                  * We FUA only the first super block.  The others we allow to
3631                  * go down lazy and there's a short window where the on-disk
3632                  * copies might still contain the older version.
3633                  */
3634                 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3635                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3636                         bio->bi_opf |= REQ_FUA;
3637
3638                 btrfsic_submit_bio(bio);
3639                 btrfs_advance_sb_log(device, i);
3640         }
3641         return errors < i ? 0 : -1;
3642 }
3643
3644 /*
3645  * Wait for write completion of superblocks done by write_dev_supers,
3646  * @max_mirrors same for write and wait phases.
3647  *
3648  * Return number of errors when page is not found or not marked up to
3649  * date.
3650  */
3651 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3652 {
3653         int i;
3654         int errors = 0;
3655         bool primary_failed = false;
3656         int ret;
3657         u64 bytenr;
3658
3659         if (max_mirrors == 0)
3660                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3661
3662         for (i = 0; i < max_mirrors; i++) {
3663                 struct page *page;
3664
3665                 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3666                 if (ret == -ENOENT) {
3667                         break;
3668                 } else if (ret < 0) {
3669                         errors++;
3670                         if (i == 0)
3671                                 primary_failed = true;
3672                         continue;
3673                 }
3674                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3675                     device->commit_total_bytes)
3676                         break;
3677
3678                 page = find_get_page(device->bdev->bd_inode->i_mapping,
3679                                      bytenr >> PAGE_SHIFT);
3680                 if (!page) {
3681                         errors++;
3682                         if (i == 0)
3683                                 primary_failed = true;
3684                         continue;
3685                 }
3686                 /* Page is submitted locked and unlocked once the IO completes */
3687                 wait_on_page_locked(page);
3688                 if (PageError(page)) {
3689                         errors++;
3690                         if (i == 0)
3691                                 primary_failed = true;
3692                 }
3693
3694                 /* Drop our reference */
3695                 put_page(page);
3696
3697                 /* Drop the reference from the writing run */
3698                 put_page(page);
3699         }
3700
3701         /* log error, force error return */
3702         if (primary_failed) {
3703                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3704                           device->devid);
3705                 return -1;
3706         }
3707
3708         return errors < i ? 0 : -1;
3709 }
3710
3711 /*
3712  * endio for the write_dev_flush, this will wake anyone waiting
3713  * for the barrier when it is done
3714  */
3715 static void btrfs_end_empty_barrier(struct bio *bio)
3716 {
3717         complete(bio->bi_private);
3718 }
3719
3720 /*
3721  * Submit a flush request to the device if it supports it. Error handling is
3722  * done in the waiting counterpart.
3723  */
3724 static void write_dev_flush(struct btrfs_device *device)
3725 {
3726         struct request_queue *q = bdev_get_queue(device->bdev);
3727         struct bio *bio = device->flush_bio;
3728
3729         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3730                 return;
3731
3732         bio_reset(bio);
3733         bio->bi_end_io = btrfs_end_empty_barrier;
3734         bio_set_dev(bio, device->bdev);
3735         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3736         init_completion(&device->flush_wait);
3737         bio->bi_private = &device->flush_wait;
3738
3739         btrfsic_submit_bio(bio);
3740         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3741 }
3742
3743 /*
3744  * If the flush bio has been submitted by write_dev_flush, wait for it.
3745  */
3746 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3747 {
3748         struct bio *bio = device->flush_bio;
3749
3750         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3751                 return BLK_STS_OK;
3752
3753         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3754         wait_for_completion_io(&device->flush_wait);
3755
3756         return bio->bi_status;
3757 }
3758
3759 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3760 {
3761         if (!btrfs_check_rw_degradable(fs_info, NULL))
3762                 return -EIO;
3763         return 0;
3764 }
3765
3766 /*
3767  * send an empty flush down to each device in parallel,
3768  * then wait for them
3769  */
3770 static int barrier_all_devices(struct btrfs_fs_info *info)
3771 {
3772         struct list_head *head;
3773         struct btrfs_device *dev;
3774         int errors_wait = 0;
3775         blk_status_t ret;
3776
3777         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3778         /* send down all the barriers */
3779         head = &info->fs_devices->devices;
3780         list_for_each_entry(dev, head, dev_list) {
3781                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3782                         continue;
3783                 if (!dev->bdev)
3784                         continue;
3785                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3786                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3787                         continue;
3788
3789                 write_dev_flush(dev);
3790                 dev->last_flush_error = BLK_STS_OK;
3791         }
3792
3793         /* wait for all the barriers */
3794         list_for_each_entry(dev, head, dev_list) {
3795                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3796                         continue;
3797                 if (!dev->bdev) {
3798                         errors_wait++;
3799                         continue;
3800                 }
3801                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3802                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3803                         continue;
3804
3805                 ret = wait_dev_flush(dev);
3806                 if (ret) {
3807                         dev->last_flush_error = ret;
3808                         btrfs_dev_stat_inc_and_print(dev,
3809                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3810                         errors_wait++;
3811                 }
3812         }
3813
3814         if (errors_wait) {
3815                 /*
3816                  * At some point we need the status of all disks
3817                  * to arrive at the volume status. So error checking
3818                  * is being pushed to a separate loop.
3819                  */
3820                 return check_barrier_error(info);
3821         }
3822         return 0;
3823 }
3824
3825 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3826 {
3827         int raid_type;
3828         int min_tolerated = INT_MAX;
3829
3830         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3831             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3832                 min_tolerated = min_t(int, min_tolerated,
3833                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3834                                     tolerated_failures);
3835
3836         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3837                 if (raid_type == BTRFS_RAID_SINGLE)
3838                         continue;
3839                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3840                         continue;
3841                 min_tolerated = min_t(int, min_tolerated,
3842                                     btrfs_raid_array[raid_type].
3843                                     tolerated_failures);
3844         }
3845
3846         if (min_tolerated == INT_MAX) {
3847                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3848                 min_tolerated = 0;
3849         }
3850
3851         return min_tolerated;
3852 }
3853
3854 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3855 {
3856         struct list_head *head;
3857         struct btrfs_device *dev;
3858         struct btrfs_super_block *sb;
3859         struct btrfs_dev_item *dev_item;
3860         int ret;
3861         int do_barriers;
3862         int max_errors;
3863         int total_errors = 0;
3864         u64 flags;
3865
3866         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3867
3868         /*
3869          * max_mirrors == 0 indicates we're from commit_transaction,
3870          * not from fsync where the tree roots in fs_info have not
3871          * been consistent on disk.
3872          */
3873         if (max_mirrors == 0)
3874                 backup_super_roots(fs_info);
3875
3876         sb = fs_info->super_for_commit;
3877         dev_item = &sb->dev_item;
3878
3879         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3880         head = &fs_info->fs_devices->devices;
3881         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3882
3883         if (do_barriers) {
3884                 ret = barrier_all_devices(fs_info);
3885                 if (ret) {
3886                         mutex_unlock(
3887                                 &fs_info->fs_devices->device_list_mutex);
3888                         btrfs_handle_fs_error(fs_info, ret,
3889                                               "errors while submitting device barriers.");
3890                         return ret;
3891                 }
3892         }
3893
3894         list_for_each_entry(dev, head, dev_list) {
3895                 if (!dev->bdev) {
3896                         total_errors++;
3897                         continue;
3898                 }
3899                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3900                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3901                         continue;
3902
3903                 btrfs_set_stack_device_generation(dev_item, 0);
3904                 btrfs_set_stack_device_type(dev_item, dev->type);
3905                 btrfs_set_stack_device_id(dev_item, dev->devid);
3906                 btrfs_set_stack_device_total_bytes(dev_item,
3907                                                    dev->commit_total_bytes);
3908                 btrfs_set_stack_device_bytes_used(dev_item,
3909                                                   dev->commit_bytes_used);
3910                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3911                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3912                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3913                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3914                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3915                        BTRFS_FSID_SIZE);
3916
3917                 flags = btrfs_super_flags(sb);
3918                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3919
3920                 ret = btrfs_validate_write_super(fs_info, sb);
3921                 if (ret < 0) {
3922                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3923                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
3924                                 "unexpected superblock corruption detected");
3925                         return -EUCLEAN;
3926                 }
3927
3928                 ret = write_dev_supers(dev, sb, max_mirrors);
3929                 if (ret)
3930                         total_errors++;
3931         }
3932         if (total_errors > max_errors) {
3933                 btrfs_err(fs_info, "%d errors while writing supers",
3934                           total_errors);
3935                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3936
3937                 /* FUA is masked off if unsupported and can't be the reason */
3938                 btrfs_handle_fs_error(fs_info, -EIO,
3939                                       "%d errors while writing supers",
3940                                       total_errors);
3941                 return -EIO;
3942         }
3943
3944         total_errors = 0;
3945         list_for_each_entry(dev, head, dev_list) {
3946                 if (!dev->bdev)
3947                         continue;
3948                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3949                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3950                         continue;
3951
3952                 ret = wait_dev_supers(dev, max_mirrors);
3953                 if (ret)
3954                         total_errors++;
3955         }
3956         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3957         if (total_errors > max_errors) {
3958                 btrfs_handle_fs_error(fs_info, -EIO,
3959                                       "%d errors while writing supers",
3960                                       total_errors);
3961                 return -EIO;
3962         }
3963         return 0;
3964 }
3965
3966 /* Drop a fs root from the radix tree and free it. */
3967 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3968                                   struct btrfs_root *root)
3969 {
3970         bool drop_ref = false;
3971
3972         spin_lock(&fs_info->fs_roots_radix_lock);
3973         radix_tree_delete(&fs_info->fs_roots_radix,
3974                           (unsigned long)root->root_key.objectid);
3975         if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3976                 drop_ref = true;
3977         spin_unlock(&fs_info->fs_roots_radix_lock);
3978
3979         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3980                 ASSERT(root->log_root == NULL);
3981                 if (root->reloc_root) {
3982                         btrfs_put_root(root->reloc_root);
3983                         root->reloc_root = NULL;
3984                 }
3985         }
3986
3987         if (drop_ref)
3988                 btrfs_put_root(root);
3989 }
3990
3991 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3992 {
3993         u64 root_objectid = 0;
3994         struct btrfs_root *gang[8];
3995         int i = 0;
3996         int err = 0;
3997         unsigned int ret = 0;
3998
3999         while (1) {
4000                 spin_lock(&fs_info->fs_roots_radix_lock);
4001                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4002                                              (void **)gang, root_objectid,
4003                                              ARRAY_SIZE(gang));
4004                 if (!ret) {
4005                         spin_unlock(&fs_info->fs_roots_radix_lock);
4006                         break;
4007                 }
4008                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
4009
4010                 for (i = 0; i < ret; i++) {
4011                         /* Avoid to grab roots in dead_roots */
4012                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4013                                 gang[i] = NULL;
4014                                 continue;
4015                         }
4016                         /* grab all the search result for later use */
4017                         gang[i] = btrfs_grab_root(gang[i]);
4018                 }
4019                 spin_unlock(&fs_info->fs_roots_radix_lock);
4020
4021                 for (i = 0; i < ret; i++) {
4022                         if (!gang[i])
4023                                 continue;
4024                         root_objectid = gang[i]->root_key.objectid;
4025                         err = btrfs_orphan_cleanup(gang[i]);
4026                         if (err)
4027                                 break;
4028                         btrfs_put_root(gang[i]);
4029                 }
4030                 root_objectid++;
4031         }
4032
4033         /* release the uncleaned roots due to error */
4034         for (; i < ret; i++) {
4035                 if (gang[i])
4036                         btrfs_put_root(gang[i]);
4037         }
4038         return err;
4039 }
4040
4041 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4042 {
4043         struct btrfs_root *root = fs_info->tree_root;
4044         struct btrfs_trans_handle *trans;
4045
4046         mutex_lock(&fs_info->cleaner_mutex);
4047         btrfs_run_delayed_iputs(fs_info);
4048         mutex_unlock(&fs_info->cleaner_mutex);
4049         wake_up_process(fs_info->cleaner_kthread);
4050
4051         /* wait until ongoing cleanup work done */
4052         down_write(&fs_info->cleanup_work_sem);
4053         up_write(&fs_info->cleanup_work_sem);
4054
4055         trans = btrfs_join_transaction(root);
4056         if (IS_ERR(trans))
4057                 return PTR_ERR(trans);
4058         return btrfs_commit_transaction(trans);
4059 }
4060
4061 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4062 {
4063         int ret;
4064
4065         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4066         /*
4067          * We don't want the cleaner to start new transactions, add more delayed
4068          * iputs, etc. while we're closing. We can't use kthread_stop() yet
4069          * because that frees the task_struct, and the transaction kthread might
4070          * still try to wake up the cleaner.
4071          */
4072         kthread_park(fs_info->cleaner_kthread);
4073
4074         /* wait for the qgroup rescan worker to stop */
4075         btrfs_qgroup_wait_for_completion(fs_info, false);
4076
4077         /* wait for the uuid_scan task to finish */
4078         down(&fs_info->uuid_tree_rescan_sem);
4079         /* avoid complains from lockdep et al., set sem back to initial state */
4080         up(&fs_info->uuid_tree_rescan_sem);
4081
4082         /* pause restriper - we want to resume on mount */
4083         btrfs_pause_balance(fs_info);
4084
4085         btrfs_dev_replace_suspend_for_unmount(fs_info);
4086
4087         btrfs_scrub_cancel(fs_info);
4088
4089         /* wait for any defraggers to finish */
4090         wait_event(fs_info->transaction_wait,
4091                    (atomic_read(&fs_info->defrag_running) == 0));
4092
4093         /* clear out the rbtree of defraggable inodes */
4094         btrfs_cleanup_defrag_inodes(fs_info);
4095
4096         cancel_work_sync(&fs_info->async_reclaim_work);
4097         cancel_work_sync(&fs_info->async_data_reclaim_work);
4098
4099         /* Cancel or finish ongoing discard work */
4100         btrfs_discard_cleanup(fs_info);
4101
4102         if (!sb_rdonly(fs_info->sb)) {
4103                 /*
4104                  * The cleaner kthread is stopped, so do one final pass over
4105                  * unused block groups.
4106                  */
4107                 btrfs_delete_unused_bgs(fs_info);
4108
4109                 /*
4110                  * There might be existing delayed inode workers still running
4111                  * and holding an empty delayed inode item. We must wait for
4112                  * them to complete first because they can create a transaction.
4113                  * This happens when someone calls btrfs_balance_delayed_items()
4114                  * and then a transaction commit runs the same delayed nodes
4115                  * before any delayed worker has done something with the nodes.
4116                  * We must wait for any worker here and not at transaction
4117                  * commit time since that could cause a deadlock.
4118                  * This is a very rare case.
4119                  */
4120                 btrfs_flush_workqueue(fs_info->delayed_workers);
4121
4122                 ret = btrfs_commit_super(fs_info);
4123                 if (ret)
4124                         btrfs_err(fs_info, "commit super ret %d", ret);
4125         }
4126
4127         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4128             test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4129                 btrfs_error_commit_super(fs_info);
4130
4131         kthread_stop(fs_info->transaction_kthread);
4132         kthread_stop(fs_info->cleaner_kthread);
4133
4134         ASSERT(list_empty(&fs_info->delayed_iputs));
4135         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4136
4137         if (btrfs_check_quota_leak(fs_info)) {
4138                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4139                 btrfs_err(fs_info, "qgroup reserved space leaked");
4140         }
4141
4142         btrfs_free_qgroup_config(fs_info);
4143         ASSERT(list_empty(&fs_info->delalloc_roots));
4144
4145         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4146                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4147                        percpu_counter_sum(&fs_info->delalloc_bytes));
4148         }
4149
4150         if (percpu_counter_sum(&fs_info->dio_bytes))
4151                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4152                            percpu_counter_sum(&fs_info->dio_bytes));
4153
4154         btrfs_sysfs_remove_mounted(fs_info);
4155         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4156
4157         btrfs_put_block_group_cache(fs_info);
4158
4159         /*
4160          * we must make sure there is not any read request to
4161          * submit after we stopping all workers.
4162          */
4163         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4164         btrfs_stop_all_workers(fs_info);
4165
4166         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4167         free_root_pointers(fs_info, true);
4168         btrfs_free_fs_roots(fs_info);
4169
4170         /*
4171          * We must free the block groups after dropping the fs_roots as we could
4172          * have had an IO error and have left over tree log blocks that aren't
4173          * cleaned up until the fs roots are freed.  This makes the block group
4174          * accounting appear to be wrong because there's pending reserved bytes,
4175          * so make sure we do the block group cleanup afterwards.
4176          */
4177         btrfs_free_block_groups(fs_info);
4178
4179         iput(fs_info->btree_inode);
4180
4181 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4182         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4183                 btrfsic_unmount(fs_info->fs_devices);
4184 #endif
4185
4186         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4187         btrfs_close_devices(fs_info->fs_devices);
4188 }
4189
4190 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4191                           int atomic)
4192 {
4193         int ret;
4194         struct inode *btree_inode = buf->pages[0]->mapping->host;
4195
4196         ret = extent_buffer_uptodate(buf);
4197         if (!ret)
4198                 return ret;
4199
4200         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4201                                     parent_transid, atomic);
4202         if (ret == -EAGAIN)
4203                 return ret;
4204         return !ret;
4205 }
4206
4207 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4208 {
4209         struct btrfs_fs_info *fs_info = buf->fs_info;
4210         u64 transid = btrfs_header_generation(buf);
4211         int was_dirty;
4212
4213 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4214         /*
4215          * This is a fast path so only do this check if we have sanity tests
4216          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4217          * outside of the sanity tests.
4218          */
4219         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4220                 return;
4221 #endif
4222         btrfs_assert_tree_locked(buf);
4223         if (transid != fs_info->generation)
4224                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4225                         buf->start, transid, fs_info->generation);
4226         was_dirty = set_extent_buffer_dirty(buf);
4227         if (!was_dirty)
4228                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4229                                          buf->len,
4230                                          fs_info->dirty_metadata_batch);
4231 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4232         /*
4233          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4234          * but item data not updated.
4235          * So here we should only check item pointers, not item data.
4236          */
4237         if (btrfs_header_level(buf) == 0 &&
4238             btrfs_check_leaf_relaxed(buf)) {
4239                 btrfs_print_leaf(buf);
4240                 ASSERT(0);
4241         }
4242 #endif
4243 }
4244
4245 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4246                                         int flush_delayed)
4247 {
4248         /*
4249          * looks as though older kernels can get into trouble with
4250          * this code, they end up stuck in balance_dirty_pages forever
4251          */
4252         int ret;
4253
4254         if (current->flags & PF_MEMALLOC)
4255                 return;
4256
4257         if (flush_delayed)
4258                 btrfs_balance_delayed_items(fs_info);
4259
4260         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4261                                      BTRFS_DIRTY_METADATA_THRESH,
4262                                      fs_info->dirty_metadata_batch);
4263         if (ret > 0) {
4264                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4265         }
4266 }
4267
4268 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4269 {
4270         __btrfs_btree_balance_dirty(fs_info, 1);
4271 }
4272
4273 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4274 {
4275         __btrfs_btree_balance_dirty(fs_info, 0);
4276 }
4277
4278 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4279                       struct btrfs_key *first_key)
4280 {
4281         return btree_read_extent_buffer_pages(buf, parent_transid,
4282                                               level, first_key);
4283 }
4284
4285 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4286 {
4287         /* cleanup FS via transaction */
4288         btrfs_cleanup_transaction(fs_info);
4289
4290         mutex_lock(&fs_info->cleaner_mutex);
4291         btrfs_run_delayed_iputs(fs_info);
4292         mutex_unlock(&fs_info->cleaner_mutex);
4293
4294         down_write(&fs_info->cleanup_work_sem);
4295         up_write(&fs_info->cleanup_work_sem);
4296 }
4297
4298 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4299 {
4300         struct btrfs_root *gang[8];
4301         u64 root_objectid = 0;
4302         int ret;
4303
4304         spin_lock(&fs_info->fs_roots_radix_lock);
4305         while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4306                                              (void **)gang, root_objectid,
4307                                              ARRAY_SIZE(gang))) != 0) {
4308                 int i;
4309
4310                 for (i = 0; i < ret; i++)
4311                         gang[i] = btrfs_grab_root(gang[i]);
4312                 spin_unlock(&fs_info->fs_roots_radix_lock);
4313
4314                 for (i = 0; i < ret; i++) {
4315                         if (!gang[i])
4316                                 continue;
4317                         root_objectid = gang[i]->root_key.objectid;
4318                         btrfs_free_log(NULL, gang[i]);
4319                         btrfs_put_root(gang[i]);
4320                 }
4321                 root_objectid++;
4322                 spin_lock(&fs_info->fs_roots_radix_lock);
4323         }
4324         spin_unlock(&fs_info->fs_roots_radix_lock);
4325         btrfs_free_log_root_tree(NULL, fs_info);
4326 }
4327
4328 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4329 {
4330         struct btrfs_ordered_extent *ordered;
4331
4332         spin_lock(&root->ordered_extent_lock);
4333         /*
4334          * This will just short circuit the ordered completion stuff which will
4335          * make sure the ordered extent gets properly cleaned up.
4336          */
4337         list_for_each_entry(ordered, &root->ordered_extents,
4338                             root_extent_list)
4339                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4340         spin_unlock(&root->ordered_extent_lock);
4341 }
4342
4343 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4344 {
4345         struct btrfs_root *root;
4346         struct list_head splice;
4347
4348         INIT_LIST_HEAD(&splice);
4349
4350         spin_lock(&fs_info->ordered_root_lock);
4351         list_splice_init(&fs_info->ordered_roots, &splice);
4352         while (!list_empty(&splice)) {
4353                 root = list_first_entry(&splice, struct btrfs_root,
4354                                         ordered_root);
4355                 list_move_tail(&root->ordered_root,
4356                                &fs_info->ordered_roots);
4357
4358                 spin_unlock(&fs_info->ordered_root_lock);
4359                 btrfs_destroy_ordered_extents(root);
4360
4361                 cond_resched();
4362                 spin_lock(&fs_info->ordered_root_lock);
4363         }
4364         spin_unlock(&fs_info->ordered_root_lock);
4365
4366         /*
4367          * We need this here because if we've been flipped read-only we won't
4368          * get sync() from the umount, so we need to make sure any ordered
4369          * extents that haven't had their dirty pages IO start writeout yet
4370          * actually get run and error out properly.
4371          */
4372         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4373 }
4374
4375 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4376                                       struct btrfs_fs_info *fs_info)
4377 {
4378         struct rb_node *node;
4379         struct btrfs_delayed_ref_root *delayed_refs;
4380         struct btrfs_delayed_ref_node *ref;
4381         int ret = 0;
4382
4383         delayed_refs = &trans->delayed_refs;
4384
4385         spin_lock(&delayed_refs->lock);
4386         if (atomic_read(&delayed_refs->num_entries) == 0) {
4387                 spin_unlock(&delayed_refs->lock);
4388                 btrfs_debug(fs_info, "delayed_refs has NO entry");
4389                 return ret;
4390         }
4391
4392         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4393                 struct btrfs_delayed_ref_head *head;
4394                 struct rb_node *n;
4395                 bool pin_bytes = false;
4396
4397                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4398                                 href_node);
4399                 if (btrfs_delayed_ref_lock(delayed_refs, head))
4400                         continue;
4401
4402                 spin_lock(&head->lock);
4403                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4404                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4405                                        ref_node);
4406                         ref->in_tree = 0;
4407                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4408                         RB_CLEAR_NODE(&ref->ref_node);
4409                         if (!list_empty(&ref->add_list))
4410                                 list_del(&ref->add_list);
4411                         atomic_dec(&delayed_refs->num_entries);
4412                         btrfs_put_delayed_ref(ref);
4413                 }
4414                 if (head->must_insert_reserved)
4415                         pin_bytes = true;
4416                 btrfs_free_delayed_extent_op(head->extent_op);
4417                 btrfs_delete_ref_head(delayed_refs, head);
4418                 spin_unlock(&head->lock);
4419                 spin_unlock(&delayed_refs->lock);
4420                 mutex_unlock(&head->mutex);
4421
4422                 if (pin_bytes) {
4423                         struct btrfs_block_group *cache;
4424
4425                         cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4426                         BUG_ON(!cache);
4427
4428                         spin_lock(&cache->space_info->lock);
4429                         spin_lock(&cache->lock);
4430                         cache->pinned += head->num_bytes;
4431                         btrfs_space_info_update_bytes_pinned(fs_info,
4432                                 cache->space_info, head->num_bytes);
4433                         cache->reserved -= head->num_bytes;
4434                         cache->space_info->bytes_reserved -= head->num_bytes;
4435                         spin_unlock(&cache->lock);
4436                         spin_unlock(&cache->space_info->lock);
4437                         percpu_counter_add_batch(
4438                                 &cache->space_info->total_bytes_pinned,
4439                                 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4440
4441                         btrfs_put_block_group(cache);
4442
4443                         btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4444                                 head->bytenr + head->num_bytes - 1);
4445                 }
4446                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4447                 btrfs_put_delayed_ref_head(head);
4448                 cond_resched();
4449                 spin_lock(&delayed_refs->lock);
4450         }
4451         btrfs_qgroup_destroy_extent_records(trans);
4452
4453         spin_unlock(&delayed_refs->lock);
4454
4455         return ret;
4456 }
4457
4458 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4459 {
4460         struct btrfs_inode *btrfs_inode;
4461         struct list_head splice;
4462
4463         INIT_LIST_HEAD(&splice);
4464
4465         spin_lock(&root->delalloc_lock);
4466         list_splice_init(&root->delalloc_inodes, &splice);
4467
4468         while (!list_empty(&splice)) {
4469                 struct inode *inode = NULL;
4470                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4471                                                delalloc_inodes);
4472                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4473                 spin_unlock(&root->delalloc_lock);
4474
4475                 /*
4476                  * Make sure we get a live inode and that it'll not disappear
4477                  * meanwhile.
4478                  */
4479                 inode = igrab(&btrfs_inode->vfs_inode);
4480                 if (inode) {
4481                         invalidate_inode_pages2(inode->i_mapping);
4482                         iput(inode);
4483                 }
4484                 spin_lock(&root->delalloc_lock);
4485         }
4486         spin_unlock(&root->delalloc_lock);
4487 }
4488
4489 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4490 {
4491         struct btrfs_root *root;
4492         struct list_head splice;
4493
4494         INIT_LIST_HEAD(&splice);
4495
4496         spin_lock(&fs_info->delalloc_root_lock);
4497         list_splice_init(&fs_info->delalloc_roots, &splice);
4498         while (!list_empty(&splice)) {
4499                 root = list_first_entry(&splice, struct btrfs_root,
4500                                          delalloc_root);
4501                 root = btrfs_grab_root(root);
4502                 BUG_ON(!root);
4503                 spin_unlock(&fs_info->delalloc_root_lock);
4504
4505                 btrfs_destroy_delalloc_inodes(root);
4506                 btrfs_put_root(root);
4507
4508                 spin_lock(&fs_info->delalloc_root_lock);
4509         }
4510         spin_unlock(&fs_info->delalloc_root_lock);
4511 }
4512
4513 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4514                                         struct extent_io_tree *dirty_pages,
4515                                         int mark)
4516 {
4517         int ret;
4518         struct extent_buffer *eb;
4519         u64 start = 0;
4520         u64 end;
4521
4522         while (1) {
4523                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4524                                             mark, NULL);
4525                 if (ret)
4526                         break;
4527
4528                 clear_extent_bits(dirty_pages, start, end, mark);
4529                 while (start <= end) {
4530                         eb = find_extent_buffer(fs_info, start);
4531                         start += fs_info->nodesize;
4532                         if (!eb)
4533                                 continue;
4534                         wait_on_extent_buffer_writeback(eb);
4535
4536                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4537                                                &eb->bflags))
4538                                 clear_extent_buffer_dirty(eb);
4539                         free_extent_buffer_stale(eb);
4540                 }
4541         }
4542
4543         return ret;
4544 }
4545
4546 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4547                                        struct extent_io_tree *unpin)
4548 {
4549         u64 start;
4550         u64 end;
4551         int ret;
4552
4553         while (1) {
4554                 struct extent_state *cached_state = NULL;
4555
4556                 /*
4557                  * The btrfs_finish_extent_commit() may get the same range as
4558                  * ours between find_first_extent_bit and clear_extent_dirty.
4559                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4560                  * the same extent range.
4561                  */
4562                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4563                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4564                                             EXTENT_DIRTY, &cached_state);
4565                 if (ret) {
4566                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4567                         break;
4568                 }
4569
4570                 clear_extent_dirty(unpin, start, end, &cached_state);
4571                 free_extent_state(cached_state);
4572                 btrfs_error_unpin_extent_range(fs_info, start, end);
4573                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4574                 cond_resched();
4575         }
4576
4577         return 0;
4578 }
4579
4580 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4581 {
4582         struct inode *inode;
4583
4584         inode = cache->io_ctl.inode;
4585         if (inode) {
4586                 invalidate_inode_pages2(inode->i_mapping);
4587                 BTRFS_I(inode)->generation = 0;
4588                 cache->io_ctl.inode = NULL;
4589                 iput(inode);
4590         }
4591         ASSERT(cache->io_ctl.pages == NULL);
4592         btrfs_put_block_group(cache);
4593 }
4594
4595 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4596                              struct btrfs_fs_info *fs_info)
4597 {
4598         struct btrfs_block_group *cache;
4599
4600         spin_lock(&cur_trans->dirty_bgs_lock);
4601         while (!list_empty(&cur_trans->dirty_bgs)) {
4602                 cache = list_first_entry(&cur_trans->dirty_bgs,
4603                                          struct btrfs_block_group,
4604                                          dirty_list);
4605
4606                 if (!list_empty(&cache->io_list)) {
4607                         spin_unlock(&cur_trans->dirty_bgs_lock);
4608                         list_del_init(&cache->io_list);
4609                         btrfs_cleanup_bg_io(cache);
4610                         spin_lock(&cur_trans->dirty_bgs_lock);
4611                 }
4612
4613                 list_del_init(&cache->dirty_list);
4614                 spin_lock(&cache->lock);
4615                 cache->disk_cache_state = BTRFS_DC_ERROR;
4616                 spin_unlock(&cache->lock);
4617
4618                 spin_unlock(&cur_trans->dirty_bgs_lock);
4619                 btrfs_put_block_group(cache);
4620                 btrfs_delayed_refs_rsv_release(fs_info, 1);
4621                 spin_lock(&cur_trans->dirty_bgs_lock);
4622         }
4623         spin_unlock(&cur_trans->dirty_bgs_lock);
4624
4625         /*
4626          * Refer to the definition of io_bgs member for details why it's safe
4627          * to use it without any locking
4628          */
4629         while (!list_empty(&cur_trans->io_bgs)) {
4630                 cache = list_first_entry(&cur_trans->io_bgs,
4631                                          struct btrfs_block_group,
4632                                          io_list);
4633
4634                 list_del_init(&cache->io_list);
4635                 spin_lock(&cache->lock);
4636                 cache->disk_cache_state = BTRFS_DC_ERROR;
4637                 spin_unlock(&cache->lock);
4638                 btrfs_cleanup_bg_io(cache);
4639         }
4640 }
4641
4642 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4643                                    struct btrfs_fs_info *fs_info)
4644 {
4645         struct btrfs_device *dev, *tmp;
4646
4647         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4648         ASSERT(list_empty(&cur_trans->dirty_bgs));
4649         ASSERT(list_empty(&cur_trans->io_bgs));
4650
4651         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4652                                  post_commit_list) {
4653                 list_del_init(&dev->post_commit_list);
4654         }
4655
4656         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4657
4658         cur_trans->state = TRANS_STATE_COMMIT_START;
4659         wake_up(&fs_info->transaction_blocked_wait);
4660
4661         cur_trans->state = TRANS_STATE_UNBLOCKED;
4662         wake_up(&fs_info->transaction_wait);
4663
4664         btrfs_destroy_delayed_inodes(fs_info);
4665
4666         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4667                                      EXTENT_DIRTY);
4668         btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4669
4670         cur_trans->state =TRANS_STATE_COMPLETED;
4671         wake_up(&cur_trans->commit_wait);
4672 }
4673
4674 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4675 {
4676         struct btrfs_transaction *t;
4677
4678         mutex_lock(&fs_info->transaction_kthread_mutex);
4679
4680         spin_lock(&fs_info->trans_lock);
4681         while (!list_empty(&fs_info->trans_list)) {
4682                 t = list_first_entry(&fs_info->trans_list,
4683                                      struct btrfs_transaction, list);
4684                 if (t->state >= TRANS_STATE_COMMIT_START) {
4685                         refcount_inc(&t->use_count);
4686                         spin_unlock(&fs_info->trans_lock);
4687                         btrfs_wait_for_commit(fs_info, t->transid);
4688                         btrfs_put_transaction(t);
4689                         spin_lock(&fs_info->trans_lock);
4690                         continue;
4691                 }
4692                 if (t == fs_info->running_transaction) {
4693                         t->state = TRANS_STATE_COMMIT_DOING;
4694                         spin_unlock(&fs_info->trans_lock);
4695                         /*
4696                          * We wait for 0 num_writers since we don't hold a trans
4697                          * handle open currently for this transaction.
4698                          */
4699                         wait_event(t->writer_wait,
4700                                    atomic_read(&t->num_writers) == 0);
4701                 } else {
4702                         spin_unlock(&fs_info->trans_lock);
4703                 }
4704                 btrfs_cleanup_one_transaction(t, fs_info);
4705
4706                 spin_lock(&fs_info->trans_lock);
4707                 if (t == fs_info->running_transaction)
4708                         fs_info->running_transaction = NULL;
4709                 list_del_init(&t->list);
4710                 spin_unlock(&fs_info->trans_lock);
4711
4712                 btrfs_put_transaction(t);
4713                 trace_btrfs_transaction_commit(fs_info->tree_root);
4714                 spin_lock(&fs_info->trans_lock);
4715         }
4716         spin_unlock(&fs_info->trans_lock);
4717         btrfs_destroy_all_ordered_extents(fs_info);
4718         btrfs_destroy_delayed_inodes(fs_info);
4719         btrfs_assert_delayed_root_empty(fs_info);
4720         btrfs_destroy_all_delalloc_inodes(fs_info);
4721         btrfs_drop_all_logs(fs_info);
4722         mutex_unlock(&fs_info->transaction_kthread_mutex);
4723
4724         return 0;
4725 }
4726
4727 int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid)
4728 {
4729         struct btrfs_path *path;
4730         int ret;
4731         struct extent_buffer *l;
4732         struct btrfs_key search_key;
4733         struct btrfs_key found_key;
4734         int slot;
4735
4736         path = btrfs_alloc_path();
4737         if (!path)
4738                 return -ENOMEM;
4739
4740         search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4741         search_key.type = -1;
4742         search_key.offset = (u64)-1;
4743         ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4744         if (ret < 0)
4745                 goto error;
4746         BUG_ON(ret == 0); /* Corruption */
4747         if (path->slots[0] > 0) {
4748                 slot = path->slots[0] - 1;
4749                 l = path->nodes[0];
4750                 btrfs_item_key_to_cpu(l, &found_key, slot);
4751                 *objectid = max_t(u64, found_key.objectid,
4752                                   BTRFS_FIRST_FREE_OBJECTID - 1);
4753         } else {
4754                 *objectid = BTRFS_FIRST_FREE_OBJECTID - 1;
4755         }
4756         ret = 0;
4757 error:
4758         btrfs_free_path(path);
4759         return ret;
4760 }
4761
4762 int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid)
4763 {
4764         int ret;
4765         mutex_lock(&root->objectid_mutex);
4766
4767         if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4768                 btrfs_warn(root->fs_info,
4769                            "the objectid of root %llu reaches its highest value",
4770                            root->root_key.objectid);
4771                 ret = -ENOSPC;
4772                 goto out;
4773         }
4774
4775         *objectid = ++root->highest_objectid;
4776         ret = 0;
4777 out:
4778         mutex_unlock(&root->objectid_mutex);
4779         return ret;
4780 }