mm/huge_memory.c: use head to emphasize the purpose of page
[linux-2.6-microblaze.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <linux/sched/mm.h>
21 #include <asm/unaligned.h>
22 #include <crypto/hash.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "volumes.h"
28 #include "print-tree.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "free-space-cache.h"
32 #include "free-space-tree.h"
33 #include "inode-map.h"
34 #include "check-integrity.h"
35 #include "rcu-string.h"
36 #include "dev-replace.h"
37 #include "raid56.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40 #include "compression.h"
41 #include "tree-checker.h"
42 #include "ref-verify.h"
43 #include "block-group.h"
44 #include "discard.h"
45
46 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
47                                  BTRFS_HEADER_FLAG_RELOC |\
48                                  BTRFS_SUPER_FLAG_ERROR |\
49                                  BTRFS_SUPER_FLAG_SEEDING |\
50                                  BTRFS_SUPER_FLAG_METADUMP |\
51                                  BTRFS_SUPER_FLAG_METADUMP_V2)
52
53 static const struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57                                       struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60                                         struct extent_io_tree *dirty_pages,
61                                         int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63                                        struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66
67 /*
68  * btrfs_end_io_wq structs are used to do processing in task context when an IO
69  * is complete.  This is used during reads to verify checksums, and it is used
70  * by writes to insert metadata for new file extents after IO is complete.
71  */
72 struct btrfs_end_io_wq {
73         struct bio *bio;
74         bio_end_io_t *end_io;
75         void *private;
76         struct btrfs_fs_info *info;
77         blk_status_t status;
78         enum btrfs_wq_endio_type metadata;
79         struct btrfs_work work;
80 };
81
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83
84 int __init btrfs_end_io_wq_init(void)
85 {
86         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87                                         sizeof(struct btrfs_end_io_wq),
88                                         0,
89                                         SLAB_MEM_SPREAD,
90                                         NULL);
91         if (!btrfs_end_io_wq_cache)
92                 return -ENOMEM;
93         return 0;
94 }
95
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98         kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100
101 /*
102  * async submit bios are used to offload expensive checksumming
103  * onto the worker threads.  They checksum file and metadata bios
104  * just before they are sent down the IO stack.
105  */
106 struct async_submit_bio {
107         void *private_data;
108         struct bio *bio;
109         extent_submit_bio_start_t *submit_bio_start;
110         int mirror_num;
111         /*
112          * bio_offset is optional, can be used if the pages in the bio
113          * can't tell us where in the file the bio should go
114          */
115         u64 bio_offset;
116         struct btrfs_work work;
117         blk_status_t status;
118 };
119
120 /*
121  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
122  * eb, the lockdep key is determined by the btrfs_root it belongs to and
123  * the level the eb occupies in the tree.
124  *
125  * Different roots are used for different purposes and may nest inside each
126  * other and they require separate keysets.  As lockdep keys should be
127  * static, assign keysets according to the purpose of the root as indicated
128  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
129  * roots have separate keysets.
130  *
131  * Lock-nesting across peer nodes is always done with the immediate parent
132  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
133  * subclass to avoid triggering lockdep warning in such cases.
134  *
135  * The key is set by the readpage_end_io_hook after the buffer has passed
136  * csum validation but before the pages are unlocked.  It is also set by
137  * btrfs_init_new_buffer on freshly allocated blocks.
138  *
139  * We also add a check to make sure the highest level of the tree is the
140  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
141  * needs update as well.
142  */
143 #ifdef CONFIG_DEBUG_LOCK_ALLOC
144 # if BTRFS_MAX_LEVEL != 8
145 #  error
146 # endif
147
148 static struct btrfs_lockdep_keyset {
149         u64                     id;             /* root objectid */
150         const char              *name_stem;     /* lock name stem */
151         char                    names[BTRFS_MAX_LEVEL + 1][20];
152         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
153 } btrfs_lockdep_keysets[] = {
154         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
155         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
156         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
157         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
158         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
159         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
160         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
161         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
162         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
163         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
164         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
165         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
166         { .id = 0,                              .name_stem = "tree"     },
167 };
168
169 void __init btrfs_init_lockdep(void)
170 {
171         int i, j;
172
173         /* initialize lockdep class names */
174         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
175                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
176
177                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
178                         snprintf(ks->names[j], sizeof(ks->names[j]),
179                                  "btrfs-%s-%02d", ks->name_stem, j);
180         }
181 }
182
183 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
184                                     int level)
185 {
186         struct btrfs_lockdep_keyset *ks;
187
188         BUG_ON(level >= ARRAY_SIZE(ks->keys));
189
190         /* find the matching keyset, id 0 is the default entry */
191         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
192                 if (ks->id == objectid)
193                         break;
194
195         lockdep_set_class_and_name(&eb->lock,
196                                    &ks->keys[level], ks->names[level]);
197 }
198
199 #endif
200
201 /*
202  * extents on the btree inode are pretty simple, there's one extent
203  * that covers the entire device
204  */
205 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
206                                     struct page *page, size_t pg_offset,
207                                     u64 start, u64 len)
208 {
209         struct extent_map_tree *em_tree = &inode->extent_tree;
210         struct extent_map *em;
211         int ret;
212
213         read_lock(&em_tree->lock);
214         em = lookup_extent_mapping(em_tree, start, len);
215         if (em) {
216                 read_unlock(&em_tree->lock);
217                 goto out;
218         }
219         read_unlock(&em_tree->lock);
220
221         em = alloc_extent_map();
222         if (!em) {
223                 em = ERR_PTR(-ENOMEM);
224                 goto out;
225         }
226         em->start = 0;
227         em->len = (u64)-1;
228         em->block_len = (u64)-1;
229         em->block_start = 0;
230
231         write_lock(&em_tree->lock);
232         ret = add_extent_mapping(em_tree, em, 0);
233         if (ret == -EEXIST) {
234                 free_extent_map(em);
235                 em = lookup_extent_mapping(em_tree, start, len);
236                 if (!em)
237                         em = ERR_PTR(-EIO);
238         } else if (ret) {
239                 free_extent_map(em);
240                 em = ERR_PTR(ret);
241         }
242         write_unlock(&em_tree->lock);
243
244 out:
245         return em;
246 }
247
248 /*
249  * Compute the csum of a btree block and store the result to provided buffer.
250  *
251  * Returns error if the extent buffer cannot be mapped.
252  */
253 static int csum_tree_block(struct extent_buffer *buf, u8 *result)
254 {
255         struct btrfs_fs_info *fs_info = buf->fs_info;
256         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
257         unsigned long len;
258         unsigned long cur_len;
259         unsigned long offset = BTRFS_CSUM_SIZE;
260         char *kaddr;
261         unsigned long map_start;
262         unsigned long map_len;
263         int err;
264
265         shash->tfm = fs_info->csum_shash;
266         crypto_shash_init(shash);
267
268         len = buf->len - offset;
269
270         while (len > 0) {
271                 /*
272                  * Note: we don't need to check for the err == 1 case here, as
273                  * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
274                  * and 'min_len = 32' and the currently implemented mapping
275                  * algorithm we cannot cross a page boundary.
276                  */
277                 err = map_private_extent_buffer(buf, offset, 32,
278                                         &kaddr, &map_start, &map_len);
279                 if (WARN_ON(err))
280                         return err;
281                 cur_len = min(len, map_len - (offset - map_start));
282                 crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
283                 len -= cur_len;
284                 offset += cur_len;
285         }
286         memset(result, 0, BTRFS_CSUM_SIZE);
287
288         crypto_shash_final(shash, result);
289
290         return 0;
291 }
292
293 /*
294  * we can't consider a given block up to date unless the transid of the
295  * block matches the transid in the parent node's pointer.  This is how we
296  * detect blocks that either didn't get written at all or got written
297  * in the wrong place.
298  */
299 static int verify_parent_transid(struct extent_io_tree *io_tree,
300                                  struct extent_buffer *eb, u64 parent_transid,
301                                  int atomic)
302 {
303         struct extent_state *cached_state = NULL;
304         int ret;
305         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
306
307         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
308                 return 0;
309
310         if (atomic)
311                 return -EAGAIN;
312
313         if (need_lock) {
314                 btrfs_tree_read_lock(eb);
315                 btrfs_set_lock_blocking_read(eb);
316         }
317
318         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
319                          &cached_state);
320         if (extent_buffer_uptodate(eb) &&
321             btrfs_header_generation(eb) == parent_transid) {
322                 ret = 0;
323                 goto out;
324         }
325         btrfs_err_rl(eb->fs_info,
326                 "parent transid verify failed on %llu wanted %llu found %llu",
327                         eb->start,
328                         parent_transid, btrfs_header_generation(eb));
329         ret = 1;
330
331         /*
332          * Things reading via commit roots that don't have normal protection,
333          * like send, can have a really old block in cache that may point at a
334          * block that has been freed and re-allocated.  So don't clear uptodate
335          * if we find an eb that is under IO (dirty/writeback) because we could
336          * end up reading in the stale data and then writing it back out and
337          * making everybody very sad.
338          */
339         if (!extent_buffer_under_io(eb))
340                 clear_extent_buffer_uptodate(eb);
341 out:
342         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
343                              &cached_state);
344         if (need_lock)
345                 btrfs_tree_read_unlock_blocking(eb);
346         return ret;
347 }
348
349 static bool btrfs_supported_super_csum(u16 csum_type)
350 {
351         switch (csum_type) {
352         case BTRFS_CSUM_TYPE_CRC32:
353         case BTRFS_CSUM_TYPE_XXHASH:
354         case BTRFS_CSUM_TYPE_SHA256:
355         case BTRFS_CSUM_TYPE_BLAKE2:
356                 return true;
357         default:
358                 return false;
359         }
360 }
361
362 /*
363  * Return 0 if the superblock checksum type matches the checksum value of that
364  * algorithm. Pass the raw disk superblock data.
365  */
366 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
367                                   char *raw_disk_sb)
368 {
369         struct btrfs_super_block *disk_sb =
370                 (struct btrfs_super_block *)raw_disk_sb;
371         char result[BTRFS_CSUM_SIZE];
372         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
373
374         shash->tfm = fs_info->csum_shash;
375         crypto_shash_init(shash);
376
377         /*
378          * The super_block structure does not span the whole
379          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
380          * filled with zeros and is included in the checksum.
381          */
382         crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
383                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
384         crypto_shash_final(shash, result);
385
386         if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
387                 return 1;
388
389         return 0;
390 }
391
392 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
393                            struct btrfs_key *first_key, u64 parent_transid)
394 {
395         struct btrfs_fs_info *fs_info = eb->fs_info;
396         int found_level;
397         struct btrfs_key found_key;
398         int ret;
399
400         found_level = btrfs_header_level(eb);
401         if (found_level != level) {
402                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
403                      KERN_ERR "BTRFS: tree level check failed\n");
404                 btrfs_err(fs_info,
405 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
406                           eb->start, level, found_level);
407                 return -EIO;
408         }
409
410         if (!first_key)
411                 return 0;
412
413         /*
414          * For live tree block (new tree blocks in current transaction),
415          * we need proper lock context to avoid race, which is impossible here.
416          * So we only checks tree blocks which is read from disk, whose
417          * generation <= fs_info->last_trans_committed.
418          */
419         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
420                 return 0;
421
422         /* We have @first_key, so this @eb must have at least one item */
423         if (btrfs_header_nritems(eb) == 0) {
424                 btrfs_err(fs_info,
425                 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
426                           eb->start);
427                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
428                 return -EUCLEAN;
429         }
430
431         if (found_level)
432                 btrfs_node_key_to_cpu(eb, &found_key, 0);
433         else
434                 btrfs_item_key_to_cpu(eb, &found_key, 0);
435         ret = btrfs_comp_cpu_keys(first_key, &found_key);
436
437         if (ret) {
438                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
439                      KERN_ERR "BTRFS: tree first key check failed\n");
440                 btrfs_err(fs_info,
441 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
442                           eb->start, parent_transid, first_key->objectid,
443                           first_key->type, first_key->offset,
444                           found_key.objectid, found_key.type,
445                           found_key.offset);
446         }
447         return ret;
448 }
449
450 /*
451  * helper to read a given tree block, doing retries as required when
452  * the checksums don't match and we have alternate mirrors to try.
453  *
454  * @parent_transid:     expected transid, skip check if 0
455  * @level:              expected level, mandatory check
456  * @first_key:          expected key of first slot, skip check if NULL
457  */
458 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
459                                           u64 parent_transid, int level,
460                                           struct btrfs_key *first_key)
461 {
462         struct btrfs_fs_info *fs_info = eb->fs_info;
463         struct extent_io_tree *io_tree;
464         int failed = 0;
465         int ret;
466         int num_copies = 0;
467         int mirror_num = 0;
468         int failed_mirror = 0;
469
470         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
471         while (1) {
472                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
473                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
474                 if (!ret) {
475                         if (verify_parent_transid(io_tree, eb,
476                                                    parent_transid, 0))
477                                 ret = -EIO;
478                         else if (btrfs_verify_level_key(eb, level,
479                                                 first_key, parent_transid))
480                                 ret = -EUCLEAN;
481                         else
482                                 break;
483                 }
484
485                 num_copies = btrfs_num_copies(fs_info,
486                                               eb->start, eb->len);
487                 if (num_copies == 1)
488                         break;
489
490                 if (!failed_mirror) {
491                         failed = 1;
492                         failed_mirror = eb->read_mirror;
493                 }
494
495                 mirror_num++;
496                 if (mirror_num == failed_mirror)
497                         mirror_num++;
498
499                 if (mirror_num > num_copies)
500                         break;
501         }
502
503         if (failed && !ret && failed_mirror)
504                 btrfs_repair_eb_io_failure(eb, failed_mirror);
505
506         return ret;
507 }
508
509 /*
510  * checksum a dirty tree block before IO.  This has extra checks to make sure
511  * we only fill in the checksum field in the first page of a multi-page block
512  */
513
514 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
515 {
516         u64 start = page_offset(page);
517         u64 found_start;
518         u8 result[BTRFS_CSUM_SIZE];
519         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
520         struct extent_buffer *eb;
521         int ret;
522
523         eb = (struct extent_buffer *)page->private;
524         if (page != eb->pages[0])
525                 return 0;
526
527         found_start = btrfs_header_bytenr(eb);
528         /*
529          * Please do not consolidate these warnings into a single if.
530          * It is useful to know what went wrong.
531          */
532         if (WARN_ON(found_start != start))
533                 return -EUCLEAN;
534         if (WARN_ON(!PageUptodate(page)))
535                 return -EUCLEAN;
536
537         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
538                         btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
539
540         if (csum_tree_block(eb, result))
541                 return -EINVAL;
542
543         if (btrfs_header_level(eb))
544                 ret = btrfs_check_node(eb);
545         else
546                 ret = btrfs_check_leaf_full(eb);
547
548         if (ret < 0) {
549                 btrfs_print_tree(eb, 0);
550                 btrfs_err(fs_info,
551                 "block=%llu write time tree block corruption detected",
552                           eb->start);
553                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
554                 return ret;
555         }
556         write_extent_buffer(eb, result, 0, csum_size);
557
558         return 0;
559 }
560
561 static int check_tree_block_fsid(struct extent_buffer *eb)
562 {
563         struct btrfs_fs_info *fs_info = eb->fs_info;
564         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
565         u8 fsid[BTRFS_FSID_SIZE];
566         int ret = 1;
567
568         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
569         while (fs_devices) {
570                 u8 *metadata_uuid;
571
572                 /*
573                  * Checking the incompat flag is only valid for the current
574                  * fs. For seed devices it's forbidden to have their uuid
575                  * changed so reading ->fsid in this case is fine
576                  */
577                 if (fs_devices == fs_info->fs_devices &&
578                     btrfs_fs_incompat(fs_info, METADATA_UUID))
579                         metadata_uuid = fs_devices->metadata_uuid;
580                 else
581                         metadata_uuid = fs_devices->fsid;
582
583                 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
584                         ret = 0;
585                         break;
586                 }
587                 fs_devices = fs_devices->seed;
588         }
589         return ret;
590 }
591
592 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
593                                       u64 phy_offset, struct page *page,
594                                       u64 start, u64 end, int mirror)
595 {
596         u64 found_start;
597         int found_level;
598         struct extent_buffer *eb;
599         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
600         struct btrfs_fs_info *fs_info = root->fs_info;
601         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
602         int ret = 0;
603         u8 result[BTRFS_CSUM_SIZE];
604         int reads_done;
605
606         if (!page->private)
607                 goto out;
608
609         eb = (struct extent_buffer *)page->private;
610
611         /* the pending IO might have been the only thing that kept this buffer
612          * in memory.  Make sure we have a ref for all this other checks
613          */
614         atomic_inc(&eb->refs);
615
616         reads_done = atomic_dec_and_test(&eb->io_pages);
617         if (!reads_done)
618                 goto err;
619
620         eb->read_mirror = mirror;
621         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
622                 ret = -EIO;
623                 goto err;
624         }
625
626         found_start = btrfs_header_bytenr(eb);
627         if (found_start != eb->start) {
628                 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
629                              eb->start, found_start);
630                 ret = -EIO;
631                 goto err;
632         }
633         if (check_tree_block_fsid(eb)) {
634                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
635                              eb->start);
636                 ret = -EIO;
637                 goto err;
638         }
639         found_level = btrfs_header_level(eb);
640         if (found_level >= BTRFS_MAX_LEVEL) {
641                 btrfs_err(fs_info, "bad tree block level %d on %llu",
642                           (int)btrfs_header_level(eb), eb->start);
643                 ret = -EIO;
644                 goto err;
645         }
646
647         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
648                                        eb, found_level);
649
650         ret = csum_tree_block(eb, result);
651         if (ret)
652                 goto err;
653
654         if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
655                 u32 val;
656                 u32 found = 0;
657
658                 memcpy(&found, result, csum_size);
659
660                 read_extent_buffer(eb, &val, 0, csum_size);
661                 btrfs_warn_rl(fs_info,
662                 "%s checksum verify failed on %llu wanted %x found %x level %d",
663                               fs_info->sb->s_id, eb->start,
664                               val, found, btrfs_header_level(eb));
665                 ret = -EUCLEAN;
666                 goto err;
667         }
668
669         /*
670          * If this is a leaf block and it is corrupt, set the corrupt bit so
671          * that we don't try and read the other copies of this block, just
672          * return -EIO.
673          */
674         if (found_level == 0 && btrfs_check_leaf_full(eb)) {
675                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
676                 ret = -EIO;
677         }
678
679         if (found_level > 0 && btrfs_check_node(eb))
680                 ret = -EIO;
681
682         if (!ret)
683                 set_extent_buffer_uptodate(eb);
684         else
685                 btrfs_err(fs_info,
686                           "block=%llu read time tree block corruption detected",
687                           eb->start);
688 err:
689         if (reads_done &&
690             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
691                 btree_readahead_hook(eb, ret);
692
693         if (ret) {
694                 /*
695                  * our io error hook is going to dec the io pages
696                  * again, we have to make sure it has something
697                  * to decrement
698                  */
699                 atomic_inc(&eb->io_pages);
700                 clear_extent_buffer_uptodate(eb);
701         }
702         free_extent_buffer(eb);
703 out:
704         return ret;
705 }
706
707 static void end_workqueue_bio(struct bio *bio)
708 {
709         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
710         struct btrfs_fs_info *fs_info;
711         struct btrfs_workqueue *wq;
712
713         fs_info = end_io_wq->info;
714         end_io_wq->status = bio->bi_status;
715
716         if (bio_op(bio) == REQ_OP_WRITE) {
717                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
718                         wq = fs_info->endio_meta_write_workers;
719                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
720                         wq = fs_info->endio_freespace_worker;
721                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
722                         wq = fs_info->endio_raid56_workers;
723                 else
724                         wq = fs_info->endio_write_workers;
725         } else {
726                 if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
727                         wq = fs_info->endio_repair_workers;
728                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
729                         wq = fs_info->endio_raid56_workers;
730                 else if (end_io_wq->metadata)
731                         wq = fs_info->endio_meta_workers;
732                 else
733                         wq = fs_info->endio_workers;
734         }
735
736         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
737         btrfs_queue_work(wq, &end_io_wq->work);
738 }
739
740 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
741                         enum btrfs_wq_endio_type metadata)
742 {
743         struct btrfs_end_io_wq *end_io_wq;
744
745         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
746         if (!end_io_wq)
747                 return BLK_STS_RESOURCE;
748
749         end_io_wq->private = bio->bi_private;
750         end_io_wq->end_io = bio->bi_end_io;
751         end_io_wq->info = info;
752         end_io_wq->status = 0;
753         end_io_wq->bio = bio;
754         end_io_wq->metadata = metadata;
755
756         bio->bi_private = end_io_wq;
757         bio->bi_end_io = end_workqueue_bio;
758         return 0;
759 }
760
761 static void run_one_async_start(struct btrfs_work *work)
762 {
763         struct async_submit_bio *async;
764         blk_status_t ret;
765
766         async = container_of(work, struct  async_submit_bio, work);
767         ret = async->submit_bio_start(async->private_data, async->bio,
768                                       async->bio_offset);
769         if (ret)
770                 async->status = ret;
771 }
772
773 /*
774  * In order to insert checksums into the metadata in large chunks, we wait
775  * until bio submission time.   All the pages in the bio are checksummed and
776  * sums are attached onto the ordered extent record.
777  *
778  * At IO completion time the csums attached on the ordered extent record are
779  * inserted into the tree.
780  */
781 static void run_one_async_done(struct btrfs_work *work)
782 {
783         struct async_submit_bio *async;
784         struct inode *inode;
785         blk_status_t ret;
786
787         async = container_of(work, struct  async_submit_bio, work);
788         inode = async->private_data;
789
790         /* If an error occurred we just want to clean up the bio and move on */
791         if (async->status) {
792                 async->bio->bi_status = async->status;
793                 bio_endio(async->bio);
794                 return;
795         }
796
797         /*
798          * All of the bios that pass through here are from async helpers.
799          * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
800          * This changes nothing when cgroups aren't in use.
801          */
802         async->bio->bi_opf |= REQ_CGROUP_PUNT;
803         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
804         if (ret) {
805                 async->bio->bi_status = ret;
806                 bio_endio(async->bio);
807         }
808 }
809
810 static void run_one_async_free(struct btrfs_work *work)
811 {
812         struct async_submit_bio *async;
813
814         async = container_of(work, struct  async_submit_bio, work);
815         kfree(async);
816 }
817
818 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
819                                  int mirror_num, unsigned long bio_flags,
820                                  u64 bio_offset, void *private_data,
821                                  extent_submit_bio_start_t *submit_bio_start)
822 {
823         struct async_submit_bio *async;
824
825         async = kmalloc(sizeof(*async), GFP_NOFS);
826         if (!async)
827                 return BLK_STS_RESOURCE;
828
829         async->private_data = private_data;
830         async->bio = bio;
831         async->mirror_num = mirror_num;
832         async->submit_bio_start = submit_bio_start;
833
834         btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
835                         run_one_async_free);
836
837         async->bio_offset = bio_offset;
838
839         async->status = 0;
840
841         if (op_is_sync(bio->bi_opf))
842                 btrfs_set_work_high_priority(&async->work);
843
844         btrfs_queue_work(fs_info->workers, &async->work);
845         return 0;
846 }
847
848 static blk_status_t btree_csum_one_bio(struct bio *bio)
849 {
850         struct bio_vec *bvec;
851         struct btrfs_root *root;
852         int ret = 0;
853         struct bvec_iter_all iter_all;
854
855         ASSERT(!bio_flagged(bio, BIO_CLONED));
856         bio_for_each_segment_all(bvec, bio, iter_all) {
857                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
858                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
859                 if (ret)
860                         break;
861         }
862
863         return errno_to_blk_status(ret);
864 }
865
866 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
867                                              u64 bio_offset)
868 {
869         /*
870          * when we're called for a write, we're already in the async
871          * submission context.  Just jump into btrfs_map_bio
872          */
873         return btree_csum_one_bio(bio);
874 }
875
876 static int check_async_write(struct btrfs_fs_info *fs_info,
877                              struct btrfs_inode *bi)
878 {
879         if (atomic_read(&bi->sync_writers))
880                 return 0;
881         if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
882                 return 0;
883         return 1;
884 }
885
886 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
887                                           int mirror_num,
888                                           unsigned long bio_flags)
889 {
890         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
891         int async = check_async_write(fs_info, BTRFS_I(inode));
892         blk_status_t ret;
893
894         if (bio_op(bio) != REQ_OP_WRITE) {
895                 /*
896                  * called for a read, do the setup so that checksum validation
897                  * can happen in the async kernel threads
898                  */
899                 ret = btrfs_bio_wq_end_io(fs_info, bio,
900                                           BTRFS_WQ_ENDIO_METADATA);
901                 if (ret)
902                         goto out_w_error;
903                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
904         } else if (!async) {
905                 ret = btree_csum_one_bio(bio);
906                 if (ret)
907                         goto out_w_error;
908                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
909         } else {
910                 /*
911                  * kthread helpers are used to submit writes so that
912                  * checksumming can happen in parallel across all CPUs
913                  */
914                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
915                                           0, inode, btree_submit_bio_start);
916         }
917
918         if (ret)
919                 goto out_w_error;
920         return 0;
921
922 out_w_error:
923         bio->bi_status = ret;
924         bio_endio(bio);
925         return ret;
926 }
927
928 #ifdef CONFIG_MIGRATION
929 static int btree_migratepage(struct address_space *mapping,
930                         struct page *newpage, struct page *page,
931                         enum migrate_mode mode)
932 {
933         /*
934          * we can't safely write a btree page from here,
935          * we haven't done the locking hook
936          */
937         if (PageDirty(page))
938                 return -EAGAIN;
939         /*
940          * Buffers may be managed in a filesystem specific way.
941          * We must have no buffers or drop them.
942          */
943         if (page_has_private(page) &&
944             !try_to_release_page(page, GFP_KERNEL))
945                 return -EAGAIN;
946         return migrate_page(mapping, newpage, page, mode);
947 }
948 #endif
949
950
951 static int btree_writepages(struct address_space *mapping,
952                             struct writeback_control *wbc)
953 {
954         struct btrfs_fs_info *fs_info;
955         int ret;
956
957         if (wbc->sync_mode == WB_SYNC_NONE) {
958
959                 if (wbc->for_kupdate)
960                         return 0;
961
962                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
963                 /* this is a bit racy, but that's ok */
964                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
965                                              BTRFS_DIRTY_METADATA_THRESH,
966                                              fs_info->dirty_metadata_batch);
967                 if (ret < 0)
968                         return 0;
969         }
970         return btree_write_cache_pages(mapping, wbc);
971 }
972
973 static int btree_readpage(struct file *file, struct page *page)
974 {
975         struct extent_io_tree *tree;
976         tree = &BTRFS_I(page->mapping->host)->io_tree;
977         return extent_read_full_page(tree, page, btree_get_extent, 0);
978 }
979
980 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
981 {
982         if (PageWriteback(page) || PageDirty(page))
983                 return 0;
984
985         return try_release_extent_buffer(page);
986 }
987
988 static void btree_invalidatepage(struct page *page, unsigned int offset,
989                                  unsigned int length)
990 {
991         struct extent_io_tree *tree;
992         tree = &BTRFS_I(page->mapping->host)->io_tree;
993         extent_invalidatepage(tree, page, offset);
994         btree_releasepage(page, GFP_NOFS);
995         if (PagePrivate(page)) {
996                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
997                            "page private not zero on page %llu",
998                            (unsigned long long)page_offset(page));
999                 ClearPagePrivate(page);
1000                 set_page_private(page, 0);
1001                 put_page(page);
1002         }
1003 }
1004
1005 static int btree_set_page_dirty(struct page *page)
1006 {
1007 #ifdef DEBUG
1008         struct extent_buffer *eb;
1009
1010         BUG_ON(!PagePrivate(page));
1011         eb = (struct extent_buffer *)page->private;
1012         BUG_ON(!eb);
1013         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1014         BUG_ON(!atomic_read(&eb->refs));
1015         btrfs_assert_tree_locked(eb);
1016 #endif
1017         return __set_page_dirty_nobuffers(page);
1018 }
1019
1020 static const struct address_space_operations btree_aops = {
1021         .readpage       = btree_readpage,
1022         .writepages     = btree_writepages,
1023         .releasepage    = btree_releasepage,
1024         .invalidatepage = btree_invalidatepage,
1025 #ifdef CONFIG_MIGRATION
1026         .migratepage    = btree_migratepage,
1027 #endif
1028         .set_page_dirty = btree_set_page_dirty,
1029 };
1030
1031 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1032 {
1033         struct extent_buffer *buf = NULL;
1034         int ret;
1035
1036         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1037         if (IS_ERR(buf))
1038                 return;
1039
1040         ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1041         if (ret < 0)
1042                 free_extent_buffer_stale(buf);
1043         else
1044                 free_extent_buffer(buf);
1045 }
1046
1047 struct extent_buffer *btrfs_find_create_tree_block(
1048                                                 struct btrfs_fs_info *fs_info,
1049                                                 u64 bytenr)
1050 {
1051         if (btrfs_is_testing(fs_info))
1052                 return alloc_test_extent_buffer(fs_info, bytenr);
1053         return alloc_extent_buffer(fs_info, bytenr);
1054 }
1055
1056 /*
1057  * Read tree block at logical address @bytenr and do variant basic but critical
1058  * verification.
1059  *
1060  * @parent_transid:     expected transid of this tree block, skip check if 0
1061  * @level:              expected level, mandatory check
1062  * @first_key:          expected key in slot 0, skip check if NULL
1063  */
1064 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1065                                       u64 parent_transid, int level,
1066                                       struct btrfs_key *first_key)
1067 {
1068         struct extent_buffer *buf = NULL;
1069         int ret;
1070
1071         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1072         if (IS_ERR(buf))
1073                 return buf;
1074
1075         ret = btree_read_extent_buffer_pages(buf, parent_transid,
1076                                              level, first_key);
1077         if (ret) {
1078                 free_extent_buffer_stale(buf);
1079                 return ERR_PTR(ret);
1080         }
1081         return buf;
1082
1083 }
1084
1085 void btrfs_clean_tree_block(struct extent_buffer *buf)
1086 {
1087         struct btrfs_fs_info *fs_info = buf->fs_info;
1088         if (btrfs_header_generation(buf) ==
1089             fs_info->running_transaction->transid) {
1090                 btrfs_assert_tree_locked(buf);
1091
1092                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1093                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1094                                                  -buf->len,
1095                                                  fs_info->dirty_metadata_batch);
1096                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1097                         btrfs_set_lock_blocking_write(buf);
1098                         clear_extent_buffer_dirty(buf);
1099                 }
1100         }
1101 }
1102
1103 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1104 {
1105         struct btrfs_subvolume_writers *writers;
1106         int ret;
1107
1108         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1109         if (!writers)
1110                 return ERR_PTR(-ENOMEM);
1111
1112         ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1113         if (ret < 0) {
1114                 kfree(writers);
1115                 return ERR_PTR(ret);
1116         }
1117
1118         init_waitqueue_head(&writers->wait);
1119         return writers;
1120 }
1121
1122 static void
1123 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1124 {
1125         percpu_counter_destroy(&writers->counter);
1126         kfree(writers);
1127 }
1128
1129 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1130                          u64 objectid)
1131 {
1132         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1133         root->node = NULL;
1134         root->commit_root = NULL;
1135         root->state = 0;
1136         root->orphan_cleanup_state = 0;
1137
1138         root->last_trans = 0;
1139         root->highest_objectid = 0;
1140         root->nr_delalloc_inodes = 0;
1141         root->nr_ordered_extents = 0;
1142         root->inode_tree = RB_ROOT;
1143         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1144         root->block_rsv = NULL;
1145
1146         INIT_LIST_HEAD(&root->dirty_list);
1147         INIT_LIST_HEAD(&root->root_list);
1148         INIT_LIST_HEAD(&root->delalloc_inodes);
1149         INIT_LIST_HEAD(&root->delalloc_root);
1150         INIT_LIST_HEAD(&root->ordered_extents);
1151         INIT_LIST_HEAD(&root->ordered_root);
1152         INIT_LIST_HEAD(&root->reloc_dirty_list);
1153         INIT_LIST_HEAD(&root->logged_list[0]);
1154         INIT_LIST_HEAD(&root->logged_list[1]);
1155         spin_lock_init(&root->inode_lock);
1156         spin_lock_init(&root->delalloc_lock);
1157         spin_lock_init(&root->ordered_extent_lock);
1158         spin_lock_init(&root->accounting_lock);
1159         spin_lock_init(&root->log_extents_lock[0]);
1160         spin_lock_init(&root->log_extents_lock[1]);
1161         spin_lock_init(&root->qgroup_meta_rsv_lock);
1162         mutex_init(&root->objectid_mutex);
1163         mutex_init(&root->log_mutex);
1164         mutex_init(&root->ordered_extent_mutex);
1165         mutex_init(&root->delalloc_mutex);
1166         init_waitqueue_head(&root->log_writer_wait);
1167         init_waitqueue_head(&root->log_commit_wait[0]);
1168         init_waitqueue_head(&root->log_commit_wait[1]);
1169         INIT_LIST_HEAD(&root->log_ctxs[0]);
1170         INIT_LIST_HEAD(&root->log_ctxs[1]);
1171         atomic_set(&root->log_commit[0], 0);
1172         atomic_set(&root->log_commit[1], 0);
1173         atomic_set(&root->log_writers, 0);
1174         atomic_set(&root->log_batch, 0);
1175         refcount_set(&root->refs, 1);
1176         atomic_set(&root->will_be_snapshotted, 0);
1177         atomic_set(&root->snapshot_force_cow, 0);
1178         atomic_set(&root->nr_swapfiles, 0);
1179         root->log_transid = 0;
1180         root->log_transid_committed = -1;
1181         root->last_log_commit = 0;
1182         if (!dummy)
1183                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1184                                     IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1185
1186         memset(&root->root_key, 0, sizeof(root->root_key));
1187         memset(&root->root_item, 0, sizeof(root->root_item));
1188         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1189         if (!dummy)
1190                 root->defrag_trans_start = fs_info->generation;
1191         else
1192                 root->defrag_trans_start = 0;
1193         root->root_key.objectid = objectid;
1194         root->anon_dev = 0;
1195
1196         spin_lock_init(&root->root_item_lock);
1197         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1198 }
1199
1200 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1201                 gfp_t flags)
1202 {
1203         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1204         if (root)
1205                 root->fs_info = fs_info;
1206         return root;
1207 }
1208
1209 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1210 /* Should only be used by the testing infrastructure */
1211 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1212 {
1213         struct btrfs_root *root;
1214
1215         if (!fs_info)
1216                 return ERR_PTR(-EINVAL);
1217
1218         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1219         if (!root)
1220                 return ERR_PTR(-ENOMEM);
1221
1222         /* We don't use the stripesize in selftest, set it as sectorsize */
1223         __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1224         root->alloc_bytenr = 0;
1225
1226         return root;
1227 }
1228 #endif
1229
1230 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1231                                      u64 objectid)
1232 {
1233         struct btrfs_fs_info *fs_info = trans->fs_info;
1234         struct extent_buffer *leaf;
1235         struct btrfs_root *tree_root = fs_info->tree_root;
1236         struct btrfs_root *root;
1237         struct btrfs_key key;
1238         unsigned int nofs_flag;
1239         int ret = 0;
1240         uuid_le uuid = NULL_UUID_LE;
1241
1242         /*
1243          * We're holding a transaction handle, so use a NOFS memory allocation
1244          * context to avoid deadlock if reclaim happens.
1245          */
1246         nofs_flag = memalloc_nofs_save();
1247         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1248         memalloc_nofs_restore(nofs_flag);
1249         if (!root)
1250                 return ERR_PTR(-ENOMEM);
1251
1252         __setup_root(root, fs_info, objectid);
1253         root->root_key.objectid = objectid;
1254         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1255         root->root_key.offset = 0;
1256
1257         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1258         if (IS_ERR(leaf)) {
1259                 ret = PTR_ERR(leaf);
1260                 leaf = NULL;
1261                 goto fail;
1262         }
1263
1264         root->node = leaf;
1265         btrfs_mark_buffer_dirty(leaf);
1266
1267         root->commit_root = btrfs_root_node(root);
1268         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1269
1270         root->root_item.flags = 0;
1271         root->root_item.byte_limit = 0;
1272         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1273         btrfs_set_root_generation(&root->root_item, trans->transid);
1274         btrfs_set_root_level(&root->root_item, 0);
1275         btrfs_set_root_refs(&root->root_item, 1);
1276         btrfs_set_root_used(&root->root_item, leaf->len);
1277         btrfs_set_root_last_snapshot(&root->root_item, 0);
1278         btrfs_set_root_dirid(&root->root_item, 0);
1279         if (is_fstree(objectid))
1280                 uuid_le_gen(&uuid);
1281         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1282         root->root_item.drop_level = 0;
1283
1284         key.objectid = objectid;
1285         key.type = BTRFS_ROOT_ITEM_KEY;
1286         key.offset = 0;
1287         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1288         if (ret)
1289                 goto fail;
1290
1291         btrfs_tree_unlock(leaf);
1292
1293         return root;
1294
1295 fail:
1296         if (leaf) {
1297                 btrfs_tree_unlock(leaf);
1298                 free_extent_buffer(root->commit_root);
1299                 free_extent_buffer(leaf);
1300         }
1301         kfree(root);
1302
1303         return ERR_PTR(ret);
1304 }
1305
1306 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1307                                          struct btrfs_fs_info *fs_info)
1308 {
1309         struct btrfs_root *root;
1310         struct extent_buffer *leaf;
1311
1312         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1313         if (!root)
1314                 return ERR_PTR(-ENOMEM);
1315
1316         __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1317
1318         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1319         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1320         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1321
1322         /*
1323          * DON'T set REF_COWS for log trees
1324          *
1325          * log trees do not get reference counted because they go away
1326          * before a real commit is actually done.  They do store pointers
1327          * to file data extents, and those reference counts still get
1328          * updated (along with back refs to the log tree).
1329          */
1330
1331         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1332                         NULL, 0, 0, 0);
1333         if (IS_ERR(leaf)) {
1334                 kfree(root);
1335                 return ERR_CAST(leaf);
1336         }
1337
1338         root->node = leaf;
1339
1340         btrfs_mark_buffer_dirty(root->node);
1341         btrfs_tree_unlock(root->node);
1342         return root;
1343 }
1344
1345 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1346                              struct btrfs_fs_info *fs_info)
1347 {
1348         struct btrfs_root *log_root;
1349
1350         log_root = alloc_log_tree(trans, fs_info);
1351         if (IS_ERR(log_root))
1352                 return PTR_ERR(log_root);
1353         WARN_ON(fs_info->log_root_tree);
1354         fs_info->log_root_tree = log_root;
1355         return 0;
1356 }
1357
1358 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1359                        struct btrfs_root *root)
1360 {
1361         struct btrfs_fs_info *fs_info = root->fs_info;
1362         struct btrfs_root *log_root;
1363         struct btrfs_inode_item *inode_item;
1364
1365         log_root = alloc_log_tree(trans, fs_info);
1366         if (IS_ERR(log_root))
1367                 return PTR_ERR(log_root);
1368
1369         log_root->last_trans = trans->transid;
1370         log_root->root_key.offset = root->root_key.objectid;
1371
1372         inode_item = &log_root->root_item.inode;
1373         btrfs_set_stack_inode_generation(inode_item, 1);
1374         btrfs_set_stack_inode_size(inode_item, 3);
1375         btrfs_set_stack_inode_nlink(inode_item, 1);
1376         btrfs_set_stack_inode_nbytes(inode_item,
1377                                      fs_info->nodesize);
1378         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1379
1380         btrfs_set_root_node(&log_root->root_item, log_root->node);
1381
1382         WARN_ON(root->log_root);
1383         root->log_root = log_root;
1384         root->log_transid = 0;
1385         root->log_transid_committed = -1;
1386         root->last_log_commit = 0;
1387         return 0;
1388 }
1389
1390 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1391                                                struct btrfs_key *key)
1392 {
1393         struct btrfs_root *root;
1394         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1395         struct btrfs_path *path;
1396         u64 generation;
1397         int ret;
1398         int level;
1399
1400         path = btrfs_alloc_path();
1401         if (!path)
1402                 return ERR_PTR(-ENOMEM);
1403
1404         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1405         if (!root) {
1406                 ret = -ENOMEM;
1407                 goto alloc_fail;
1408         }
1409
1410         __setup_root(root, fs_info, key->objectid);
1411
1412         ret = btrfs_find_root(tree_root, key, path,
1413                               &root->root_item, &root->root_key);
1414         if (ret) {
1415                 if (ret > 0)
1416                         ret = -ENOENT;
1417                 goto find_fail;
1418         }
1419
1420         generation = btrfs_root_generation(&root->root_item);
1421         level = btrfs_root_level(&root->root_item);
1422         root->node = read_tree_block(fs_info,
1423                                      btrfs_root_bytenr(&root->root_item),
1424                                      generation, level, NULL);
1425         if (IS_ERR(root->node)) {
1426                 ret = PTR_ERR(root->node);
1427                 goto find_fail;
1428         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1429                 ret = -EIO;
1430                 free_extent_buffer(root->node);
1431                 goto find_fail;
1432         }
1433         root->commit_root = btrfs_root_node(root);
1434 out:
1435         btrfs_free_path(path);
1436         return root;
1437
1438 find_fail:
1439         kfree(root);
1440 alloc_fail:
1441         root = ERR_PTR(ret);
1442         goto out;
1443 }
1444
1445 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1446                                       struct btrfs_key *location)
1447 {
1448         struct btrfs_root *root;
1449
1450         root = btrfs_read_tree_root(tree_root, location);
1451         if (IS_ERR(root))
1452                 return root;
1453
1454         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1455                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1456                 btrfs_check_and_init_root_item(&root->root_item);
1457         }
1458
1459         return root;
1460 }
1461
1462 int btrfs_init_fs_root(struct btrfs_root *root)
1463 {
1464         int ret;
1465         struct btrfs_subvolume_writers *writers;
1466
1467         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1468         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1469                                         GFP_NOFS);
1470         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1471                 ret = -ENOMEM;
1472                 goto fail;
1473         }
1474
1475         writers = btrfs_alloc_subvolume_writers();
1476         if (IS_ERR(writers)) {
1477                 ret = PTR_ERR(writers);
1478                 goto fail;
1479         }
1480         root->subv_writers = writers;
1481
1482         btrfs_init_free_ino_ctl(root);
1483         spin_lock_init(&root->ino_cache_lock);
1484         init_waitqueue_head(&root->ino_cache_wait);
1485
1486         ret = get_anon_bdev(&root->anon_dev);
1487         if (ret)
1488                 goto fail;
1489
1490         mutex_lock(&root->objectid_mutex);
1491         ret = btrfs_find_highest_objectid(root,
1492                                         &root->highest_objectid);
1493         if (ret) {
1494                 mutex_unlock(&root->objectid_mutex);
1495                 goto fail;
1496         }
1497
1498         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1499
1500         mutex_unlock(&root->objectid_mutex);
1501
1502         return 0;
1503 fail:
1504         /* The caller is responsible to call btrfs_free_fs_root */
1505         return ret;
1506 }
1507
1508 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1509                                         u64 root_id)
1510 {
1511         struct btrfs_root *root;
1512
1513         spin_lock(&fs_info->fs_roots_radix_lock);
1514         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1515                                  (unsigned long)root_id);
1516         spin_unlock(&fs_info->fs_roots_radix_lock);
1517         return root;
1518 }
1519
1520 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1521                          struct btrfs_root *root)
1522 {
1523         int ret;
1524
1525         ret = radix_tree_preload(GFP_NOFS);
1526         if (ret)
1527                 return ret;
1528
1529         spin_lock(&fs_info->fs_roots_radix_lock);
1530         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1531                                 (unsigned long)root->root_key.objectid,
1532                                 root);
1533         if (ret == 0)
1534                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1535         spin_unlock(&fs_info->fs_roots_radix_lock);
1536         radix_tree_preload_end();
1537
1538         return ret;
1539 }
1540
1541 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1542                                      struct btrfs_key *location,
1543                                      bool check_ref)
1544 {
1545         struct btrfs_root *root;
1546         struct btrfs_path *path;
1547         struct btrfs_key key;
1548         int ret;
1549
1550         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1551                 return fs_info->tree_root;
1552         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1553                 return fs_info->extent_root;
1554         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1555                 return fs_info->chunk_root;
1556         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1557                 return fs_info->dev_root;
1558         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1559                 return fs_info->csum_root;
1560         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1561                 return fs_info->quota_root ? fs_info->quota_root :
1562                                              ERR_PTR(-ENOENT);
1563         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1564                 return fs_info->uuid_root ? fs_info->uuid_root :
1565                                             ERR_PTR(-ENOENT);
1566         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1567                 return fs_info->free_space_root ? fs_info->free_space_root :
1568                                                   ERR_PTR(-ENOENT);
1569 again:
1570         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1571         if (root) {
1572                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1573                         return ERR_PTR(-ENOENT);
1574                 return root;
1575         }
1576
1577         root = btrfs_read_fs_root(fs_info->tree_root, location);
1578         if (IS_ERR(root))
1579                 return root;
1580
1581         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1582                 ret = -ENOENT;
1583                 goto fail;
1584         }
1585
1586         ret = btrfs_init_fs_root(root);
1587         if (ret)
1588                 goto fail;
1589
1590         path = btrfs_alloc_path();
1591         if (!path) {
1592                 ret = -ENOMEM;
1593                 goto fail;
1594         }
1595         key.objectid = BTRFS_ORPHAN_OBJECTID;
1596         key.type = BTRFS_ORPHAN_ITEM_KEY;
1597         key.offset = location->objectid;
1598
1599         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1600         btrfs_free_path(path);
1601         if (ret < 0)
1602                 goto fail;
1603         if (ret == 0)
1604                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1605
1606         ret = btrfs_insert_fs_root(fs_info, root);
1607         if (ret) {
1608                 if (ret == -EEXIST) {
1609                         btrfs_free_fs_root(root);
1610                         goto again;
1611                 }
1612                 goto fail;
1613         }
1614         return root;
1615 fail:
1616         btrfs_free_fs_root(root);
1617         return ERR_PTR(ret);
1618 }
1619
1620 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1621 {
1622         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1623         int ret = 0;
1624         struct btrfs_device *device;
1625         struct backing_dev_info *bdi;
1626
1627         rcu_read_lock();
1628         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1629                 if (!device->bdev)
1630                         continue;
1631                 bdi = device->bdev->bd_bdi;
1632                 if (bdi_congested(bdi, bdi_bits)) {
1633                         ret = 1;
1634                         break;
1635                 }
1636         }
1637         rcu_read_unlock();
1638         return ret;
1639 }
1640
1641 /*
1642  * called by the kthread helper functions to finally call the bio end_io
1643  * functions.  This is where read checksum verification actually happens
1644  */
1645 static void end_workqueue_fn(struct btrfs_work *work)
1646 {
1647         struct bio *bio;
1648         struct btrfs_end_io_wq *end_io_wq;
1649
1650         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1651         bio = end_io_wq->bio;
1652
1653         bio->bi_status = end_io_wq->status;
1654         bio->bi_private = end_io_wq->private;
1655         bio->bi_end_io = end_io_wq->end_io;
1656         bio_endio(bio);
1657         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1658 }
1659
1660 static int cleaner_kthread(void *arg)
1661 {
1662         struct btrfs_root *root = arg;
1663         struct btrfs_fs_info *fs_info = root->fs_info;
1664         int again;
1665
1666         while (1) {
1667                 again = 0;
1668
1669                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1670
1671                 /* Make the cleaner go to sleep early. */
1672                 if (btrfs_need_cleaner_sleep(fs_info))
1673                         goto sleep;
1674
1675                 /*
1676                  * Do not do anything if we might cause open_ctree() to block
1677                  * before we have finished mounting the filesystem.
1678                  */
1679                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1680                         goto sleep;
1681
1682                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1683                         goto sleep;
1684
1685                 /*
1686                  * Avoid the problem that we change the status of the fs
1687                  * during the above check and trylock.
1688                  */
1689                 if (btrfs_need_cleaner_sleep(fs_info)) {
1690                         mutex_unlock(&fs_info->cleaner_mutex);
1691                         goto sleep;
1692                 }
1693
1694                 btrfs_run_delayed_iputs(fs_info);
1695
1696                 again = btrfs_clean_one_deleted_snapshot(root);
1697                 mutex_unlock(&fs_info->cleaner_mutex);
1698
1699                 /*
1700                  * The defragger has dealt with the R/O remount and umount,
1701                  * needn't do anything special here.
1702                  */
1703                 btrfs_run_defrag_inodes(fs_info);
1704
1705                 /*
1706                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1707                  * with relocation (btrfs_relocate_chunk) and relocation
1708                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1709                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1710                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1711                  * unused block groups.
1712                  */
1713                 btrfs_delete_unused_bgs(fs_info);
1714 sleep:
1715                 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1716                 if (kthread_should_park())
1717                         kthread_parkme();
1718                 if (kthread_should_stop())
1719                         return 0;
1720                 if (!again) {
1721                         set_current_state(TASK_INTERRUPTIBLE);
1722                         schedule();
1723                         __set_current_state(TASK_RUNNING);
1724                 }
1725         }
1726 }
1727
1728 static int transaction_kthread(void *arg)
1729 {
1730         struct btrfs_root *root = arg;
1731         struct btrfs_fs_info *fs_info = root->fs_info;
1732         struct btrfs_trans_handle *trans;
1733         struct btrfs_transaction *cur;
1734         u64 transid;
1735         time64_t now;
1736         unsigned long delay;
1737         bool cannot_commit;
1738
1739         do {
1740                 cannot_commit = false;
1741                 delay = HZ * fs_info->commit_interval;
1742                 mutex_lock(&fs_info->transaction_kthread_mutex);
1743
1744                 spin_lock(&fs_info->trans_lock);
1745                 cur = fs_info->running_transaction;
1746                 if (!cur) {
1747                         spin_unlock(&fs_info->trans_lock);
1748                         goto sleep;
1749                 }
1750
1751                 now = ktime_get_seconds();
1752                 if (cur->state < TRANS_STATE_COMMIT_START &&
1753                     !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1754                     (now < cur->start_time ||
1755                      now - cur->start_time < fs_info->commit_interval)) {
1756                         spin_unlock(&fs_info->trans_lock);
1757                         delay = HZ * 5;
1758                         goto sleep;
1759                 }
1760                 transid = cur->transid;
1761                 spin_unlock(&fs_info->trans_lock);
1762
1763                 /* If the file system is aborted, this will always fail. */
1764                 trans = btrfs_attach_transaction(root);
1765                 if (IS_ERR(trans)) {
1766                         if (PTR_ERR(trans) != -ENOENT)
1767                                 cannot_commit = true;
1768                         goto sleep;
1769                 }
1770                 if (transid == trans->transid) {
1771                         btrfs_commit_transaction(trans);
1772                 } else {
1773                         btrfs_end_transaction(trans);
1774                 }
1775 sleep:
1776                 wake_up_process(fs_info->cleaner_kthread);
1777                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1778
1779                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1780                                       &fs_info->fs_state)))
1781                         btrfs_cleanup_transaction(fs_info);
1782                 if (!kthread_should_stop() &&
1783                                 (!btrfs_transaction_blocked(fs_info) ||
1784                                  cannot_commit))
1785                         schedule_timeout_interruptible(delay);
1786         } while (!kthread_should_stop());
1787         return 0;
1788 }
1789
1790 /*
1791  * This will find the highest generation in the array of root backups.  The
1792  * index of the highest array is returned, or -EINVAL if we can't find
1793  * anything.
1794  *
1795  * We check to make sure the array is valid by comparing the
1796  * generation of the latest  root in the array with the generation
1797  * in the super block.  If they don't match we pitch it.
1798  */
1799 static int find_newest_super_backup(struct btrfs_fs_info *info)
1800 {
1801         const u64 newest_gen = btrfs_super_generation(info->super_copy);
1802         u64 cur;
1803         struct btrfs_root_backup *root_backup;
1804         int i;
1805
1806         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1807                 root_backup = info->super_copy->super_roots + i;
1808                 cur = btrfs_backup_tree_root_gen(root_backup);
1809                 if (cur == newest_gen)
1810                         return i;
1811         }
1812
1813         return -EINVAL;
1814 }
1815
1816 /*
1817  * copy all the root pointers into the super backup array.
1818  * this will bump the backup pointer by one when it is
1819  * done
1820  */
1821 static void backup_super_roots(struct btrfs_fs_info *info)
1822 {
1823         const int next_backup = info->backup_root_index;
1824         struct btrfs_root_backup *root_backup;
1825
1826         root_backup = info->super_for_commit->super_roots + next_backup;
1827
1828         /*
1829          * make sure all of our padding and empty slots get zero filled
1830          * regardless of which ones we use today
1831          */
1832         memset(root_backup, 0, sizeof(*root_backup));
1833
1834         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1835
1836         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1837         btrfs_set_backup_tree_root_gen(root_backup,
1838                                btrfs_header_generation(info->tree_root->node));
1839
1840         btrfs_set_backup_tree_root_level(root_backup,
1841                                btrfs_header_level(info->tree_root->node));
1842
1843         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1844         btrfs_set_backup_chunk_root_gen(root_backup,
1845                                btrfs_header_generation(info->chunk_root->node));
1846         btrfs_set_backup_chunk_root_level(root_backup,
1847                                btrfs_header_level(info->chunk_root->node));
1848
1849         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1850         btrfs_set_backup_extent_root_gen(root_backup,
1851                                btrfs_header_generation(info->extent_root->node));
1852         btrfs_set_backup_extent_root_level(root_backup,
1853                                btrfs_header_level(info->extent_root->node));
1854
1855         /*
1856          * we might commit during log recovery, which happens before we set
1857          * the fs_root.  Make sure it is valid before we fill it in.
1858          */
1859         if (info->fs_root && info->fs_root->node) {
1860                 btrfs_set_backup_fs_root(root_backup,
1861                                          info->fs_root->node->start);
1862                 btrfs_set_backup_fs_root_gen(root_backup,
1863                                btrfs_header_generation(info->fs_root->node));
1864                 btrfs_set_backup_fs_root_level(root_backup,
1865                                btrfs_header_level(info->fs_root->node));
1866         }
1867
1868         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1869         btrfs_set_backup_dev_root_gen(root_backup,
1870                                btrfs_header_generation(info->dev_root->node));
1871         btrfs_set_backup_dev_root_level(root_backup,
1872                                        btrfs_header_level(info->dev_root->node));
1873
1874         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1875         btrfs_set_backup_csum_root_gen(root_backup,
1876                                btrfs_header_generation(info->csum_root->node));
1877         btrfs_set_backup_csum_root_level(root_backup,
1878                                btrfs_header_level(info->csum_root->node));
1879
1880         btrfs_set_backup_total_bytes(root_backup,
1881                              btrfs_super_total_bytes(info->super_copy));
1882         btrfs_set_backup_bytes_used(root_backup,
1883                              btrfs_super_bytes_used(info->super_copy));
1884         btrfs_set_backup_num_devices(root_backup,
1885                              btrfs_super_num_devices(info->super_copy));
1886
1887         /*
1888          * if we don't copy this out to the super_copy, it won't get remembered
1889          * for the next commit
1890          */
1891         memcpy(&info->super_copy->super_roots,
1892                &info->super_for_commit->super_roots,
1893                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1894 }
1895
1896 /*
1897  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1898  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1899  *
1900  * fs_info - filesystem whose backup roots need to be read
1901  * priority - priority of backup root required
1902  *
1903  * Returns backup root index on success and -EINVAL otherwise.
1904  */
1905 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1906 {
1907         int backup_index = find_newest_super_backup(fs_info);
1908         struct btrfs_super_block *super = fs_info->super_copy;
1909         struct btrfs_root_backup *root_backup;
1910
1911         if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1912                 if (priority == 0)
1913                         return backup_index;
1914
1915                 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1916                 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1917         } else {
1918                 return -EINVAL;
1919         }
1920
1921         root_backup = super->super_roots + backup_index;
1922
1923         btrfs_set_super_generation(super,
1924                                    btrfs_backup_tree_root_gen(root_backup));
1925         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1926         btrfs_set_super_root_level(super,
1927                                    btrfs_backup_tree_root_level(root_backup));
1928         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1929
1930         /*
1931          * Fixme: the total bytes and num_devices need to match or we should
1932          * need a fsck
1933          */
1934         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1935         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1936
1937         return backup_index;
1938 }
1939
1940 /* helper to cleanup workers */
1941 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1942 {
1943         btrfs_destroy_workqueue(fs_info->fixup_workers);
1944         btrfs_destroy_workqueue(fs_info->delalloc_workers);
1945         btrfs_destroy_workqueue(fs_info->workers);
1946         btrfs_destroy_workqueue(fs_info->endio_workers);
1947         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1948         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
1949         btrfs_destroy_workqueue(fs_info->rmw_workers);
1950         btrfs_destroy_workqueue(fs_info->endio_write_workers);
1951         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1952         btrfs_destroy_workqueue(fs_info->delayed_workers);
1953         btrfs_destroy_workqueue(fs_info->caching_workers);
1954         btrfs_destroy_workqueue(fs_info->readahead_workers);
1955         btrfs_destroy_workqueue(fs_info->flush_workers);
1956         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1957         if (fs_info->discard_ctl.discard_workers)
1958                 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1959         /*
1960          * Now that all other work queues are destroyed, we can safely destroy
1961          * the queues used for metadata I/O, since tasks from those other work
1962          * queues can do metadata I/O operations.
1963          */
1964         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1965         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
1966 }
1967
1968 static void free_root_extent_buffers(struct btrfs_root *root)
1969 {
1970         if (root) {
1971                 free_extent_buffer(root->node);
1972                 free_extent_buffer(root->commit_root);
1973                 root->node = NULL;
1974                 root->commit_root = NULL;
1975         }
1976 }
1977
1978 /* helper to cleanup tree roots */
1979 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1980 {
1981         free_root_extent_buffers(info->tree_root);
1982
1983         free_root_extent_buffers(info->dev_root);
1984         free_root_extent_buffers(info->extent_root);
1985         free_root_extent_buffers(info->csum_root);
1986         free_root_extent_buffers(info->quota_root);
1987         free_root_extent_buffers(info->uuid_root);
1988         if (free_chunk_root)
1989                 free_root_extent_buffers(info->chunk_root);
1990         free_root_extent_buffers(info->free_space_root);
1991 }
1992
1993 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1994 {
1995         int ret;
1996         struct btrfs_root *gang[8];
1997         int i;
1998
1999         while (!list_empty(&fs_info->dead_roots)) {
2000                 gang[0] = list_entry(fs_info->dead_roots.next,
2001                                      struct btrfs_root, root_list);
2002                 list_del(&gang[0]->root_list);
2003
2004                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2005                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2006                 } else {
2007                         free_extent_buffer(gang[0]->node);
2008                         free_extent_buffer(gang[0]->commit_root);
2009                         btrfs_put_fs_root(gang[0]);
2010                 }
2011         }
2012
2013         while (1) {
2014                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2015                                              (void **)gang, 0,
2016                                              ARRAY_SIZE(gang));
2017                 if (!ret)
2018                         break;
2019                 for (i = 0; i < ret; i++)
2020                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2021         }
2022
2023         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2024                 btrfs_free_log_root_tree(NULL, fs_info);
2025                 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2026         }
2027 }
2028
2029 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2030 {
2031         mutex_init(&fs_info->scrub_lock);
2032         atomic_set(&fs_info->scrubs_running, 0);
2033         atomic_set(&fs_info->scrub_pause_req, 0);
2034         atomic_set(&fs_info->scrubs_paused, 0);
2035         atomic_set(&fs_info->scrub_cancel_req, 0);
2036         init_waitqueue_head(&fs_info->scrub_pause_wait);
2037         refcount_set(&fs_info->scrub_workers_refcnt, 0);
2038 }
2039
2040 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2041 {
2042         spin_lock_init(&fs_info->balance_lock);
2043         mutex_init(&fs_info->balance_mutex);
2044         atomic_set(&fs_info->balance_pause_req, 0);
2045         atomic_set(&fs_info->balance_cancel_req, 0);
2046         fs_info->balance_ctl = NULL;
2047         init_waitqueue_head(&fs_info->balance_wait_q);
2048 }
2049
2050 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2051 {
2052         struct inode *inode = fs_info->btree_inode;
2053
2054         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2055         set_nlink(inode, 1);
2056         /*
2057          * we set the i_size on the btree inode to the max possible int.
2058          * the real end of the address space is determined by all of
2059          * the devices in the system
2060          */
2061         inode->i_size = OFFSET_MAX;
2062         inode->i_mapping->a_ops = &btree_aops;
2063
2064         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2065         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2066                             IO_TREE_INODE_IO, inode);
2067         BTRFS_I(inode)->io_tree.track_uptodate = false;
2068         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2069
2070         BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2071
2072         BTRFS_I(inode)->root = fs_info->tree_root;
2073         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2074         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2075         btrfs_insert_inode_hash(inode);
2076 }
2077
2078 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2079 {
2080         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2081         init_rwsem(&fs_info->dev_replace.rwsem);
2082         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2083 }
2084
2085 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2086 {
2087         spin_lock_init(&fs_info->qgroup_lock);
2088         mutex_init(&fs_info->qgroup_ioctl_lock);
2089         fs_info->qgroup_tree = RB_ROOT;
2090         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2091         fs_info->qgroup_seq = 1;
2092         fs_info->qgroup_ulist = NULL;
2093         fs_info->qgroup_rescan_running = false;
2094         mutex_init(&fs_info->qgroup_rescan_lock);
2095 }
2096
2097 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2098                 struct btrfs_fs_devices *fs_devices)
2099 {
2100         u32 max_active = fs_info->thread_pool_size;
2101         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2102
2103         fs_info->workers =
2104                 btrfs_alloc_workqueue(fs_info, "worker",
2105                                       flags | WQ_HIGHPRI, max_active, 16);
2106
2107         fs_info->delalloc_workers =
2108                 btrfs_alloc_workqueue(fs_info, "delalloc",
2109                                       flags, max_active, 2);
2110
2111         fs_info->flush_workers =
2112                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2113                                       flags, max_active, 0);
2114
2115         fs_info->caching_workers =
2116                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2117
2118         fs_info->fixup_workers =
2119                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2120
2121         /*
2122          * endios are largely parallel and should have a very
2123          * low idle thresh
2124          */
2125         fs_info->endio_workers =
2126                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2127         fs_info->endio_meta_workers =
2128                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2129                                       max_active, 4);
2130         fs_info->endio_meta_write_workers =
2131                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2132                                       max_active, 2);
2133         fs_info->endio_raid56_workers =
2134                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2135                                       max_active, 4);
2136         fs_info->endio_repair_workers =
2137                 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2138         fs_info->rmw_workers =
2139                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2140         fs_info->endio_write_workers =
2141                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2142                                       max_active, 2);
2143         fs_info->endio_freespace_worker =
2144                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2145                                       max_active, 0);
2146         fs_info->delayed_workers =
2147                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2148                                       max_active, 0);
2149         fs_info->readahead_workers =
2150                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2151                                       max_active, 2);
2152         fs_info->qgroup_rescan_workers =
2153                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2154         fs_info->discard_ctl.discard_workers =
2155                 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2156
2157         if (!(fs_info->workers && fs_info->delalloc_workers &&
2158               fs_info->flush_workers &&
2159               fs_info->endio_workers && fs_info->endio_meta_workers &&
2160               fs_info->endio_meta_write_workers &&
2161               fs_info->endio_repair_workers &&
2162               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2163               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2164               fs_info->caching_workers && fs_info->readahead_workers &&
2165               fs_info->fixup_workers && fs_info->delayed_workers &&
2166               fs_info->qgroup_rescan_workers &&
2167               fs_info->discard_ctl.discard_workers)) {
2168                 return -ENOMEM;
2169         }
2170
2171         return 0;
2172 }
2173
2174 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2175 {
2176         struct crypto_shash *csum_shash;
2177         const char *csum_driver = btrfs_super_csum_driver(csum_type);
2178
2179         csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2180
2181         if (IS_ERR(csum_shash)) {
2182                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2183                           csum_driver);
2184                 return PTR_ERR(csum_shash);
2185         }
2186
2187         fs_info->csum_shash = csum_shash;
2188
2189         return 0;
2190 }
2191
2192 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2193 {
2194         crypto_free_shash(fs_info->csum_shash);
2195 }
2196
2197 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2198                             struct btrfs_fs_devices *fs_devices)
2199 {
2200         int ret;
2201         struct btrfs_root *log_tree_root;
2202         struct btrfs_super_block *disk_super = fs_info->super_copy;
2203         u64 bytenr = btrfs_super_log_root(disk_super);
2204         int level = btrfs_super_log_root_level(disk_super);
2205
2206         if (fs_devices->rw_devices == 0) {
2207                 btrfs_warn(fs_info, "log replay required on RO media");
2208                 return -EIO;
2209         }
2210
2211         log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2212         if (!log_tree_root)
2213                 return -ENOMEM;
2214
2215         __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2216
2217         log_tree_root->node = read_tree_block(fs_info, bytenr,
2218                                               fs_info->generation + 1,
2219                                               level, NULL);
2220         if (IS_ERR(log_tree_root->node)) {
2221                 btrfs_warn(fs_info, "failed to read log tree");
2222                 ret = PTR_ERR(log_tree_root->node);
2223                 kfree(log_tree_root);
2224                 return ret;
2225         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2226                 btrfs_err(fs_info, "failed to read log tree");
2227                 free_extent_buffer(log_tree_root->node);
2228                 kfree(log_tree_root);
2229                 return -EIO;
2230         }
2231         /* returns with log_tree_root freed on success */
2232         ret = btrfs_recover_log_trees(log_tree_root);
2233         if (ret) {
2234                 btrfs_handle_fs_error(fs_info, ret,
2235                                       "Failed to recover log tree");
2236                 free_extent_buffer(log_tree_root->node);
2237                 kfree(log_tree_root);
2238                 return ret;
2239         }
2240
2241         if (sb_rdonly(fs_info->sb)) {
2242                 ret = btrfs_commit_super(fs_info);
2243                 if (ret)
2244                         return ret;
2245         }
2246
2247         return 0;
2248 }
2249
2250 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2251 {
2252         struct btrfs_root *tree_root = fs_info->tree_root;
2253         struct btrfs_root *root;
2254         struct btrfs_key location;
2255         int ret;
2256
2257         BUG_ON(!fs_info->tree_root);
2258
2259         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2260         location.type = BTRFS_ROOT_ITEM_KEY;
2261         location.offset = 0;
2262
2263         root = btrfs_read_tree_root(tree_root, &location);
2264         if (IS_ERR(root)) {
2265                 ret = PTR_ERR(root);
2266                 goto out;
2267         }
2268         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2269         fs_info->extent_root = root;
2270
2271         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2272         root = btrfs_read_tree_root(tree_root, &location);
2273         if (IS_ERR(root)) {
2274                 ret = PTR_ERR(root);
2275                 goto out;
2276         }
2277         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2278         fs_info->dev_root = root;
2279         btrfs_init_devices_late(fs_info);
2280
2281         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2282         root = btrfs_read_tree_root(tree_root, &location);
2283         if (IS_ERR(root)) {
2284                 ret = PTR_ERR(root);
2285                 goto out;
2286         }
2287         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2288         fs_info->csum_root = root;
2289
2290         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2291         root = btrfs_read_tree_root(tree_root, &location);
2292         if (!IS_ERR(root)) {
2293                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2294                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2295                 fs_info->quota_root = root;
2296         }
2297
2298         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2299         root = btrfs_read_tree_root(tree_root, &location);
2300         if (IS_ERR(root)) {
2301                 ret = PTR_ERR(root);
2302                 if (ret != -ENOENT)
2303                         goto out;
2304         } else {
2305                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2306                 fs_info->uuid_root = root;
2307         }
2308
2309         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2310                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2311                 root = btrfs_read_tree_root(tree_root, &location);
2312                 if (IS_ERR(root)) {
2313                         ret = PTR_ERR(root);
2314                         goto out;
2315                 }
2316                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2317                 fs_info->free_space_root = root;
2318         }
2319
2320         return 0;
2321 out:
2322         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2323                    location.objectid, ret);
2324         return ret;
2325 }
2326
2327 /*
2328  * Real super block validation
2329  * NOTE: super csum type and incompat features will not be checked here.
2330  *
2331  * @sb:         super block to check
2332  * @mirror_num: the super block number to check its bytenr:
2333  *              0       the primary (1st) sb
2334  *              1, 2    2nd and 3rd backup copy
2335  *             -1       skip bytenr check
2336  */
2337 static int validate_super(struct btrfs_fs_info *fs_info,
2338                             struct btrfs_super_block *sb, int mirror_num)
2339 {
2340         u64 nodesize = btrfs_super_nodesize(sb);
2341         u64 sectorsize = btrfs_super_sectorsize(sb);
2342         int ret = 0;
2343
2344         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2345                 btrfs_err(fs_info, "no valid FS found");
2346                 ret = -EINVAL;
2347         }
2348         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2349                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2350                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2351                 ret = -EINVAL;
2352         }
2353         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2354                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2355                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2356                 ret = -EINVAL;
2357         }
2358         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2359                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2360                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2361                 ret = -EINVAL;
2362         }
2363         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2364                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2365                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2366                 ret = -EINVAL;
2367         }
2368
2369         /*
2370          * Check sectorsize and nodesize first, other check will need it.
2371          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2372          */
2373         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2374             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2375                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2376                 ret = -EINVAL;
2377         }
2378         /* Only PAGE SIZE is supported yet */
2379         if (sectorsize != PAGE_SIZE) {
2380                 btrfs_err(fs_info,
2381                         "sectorsize %llu not supported yet, only support %lu",
2382                         sectorsize, PAGE_SIZE);
2383                 ret = -EINVAL;
2384         }
2385         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2386             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2387                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2388                 ret = -EINVAL;
2389         }
2390         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2391                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2392                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2393                 ret = -EINVAL;
2394         }
2395
2396         /* Root alignment check */
2397         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2398                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2399                            btrfs_super_root(sb));
2400                 ret = -EINVAL;
2401         }
2402         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2403                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2404                            btrfs_super_chunk_root(sb));
2405                 ret = -EINVAL;
2406         }
2407         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2408                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2409                            btrfs_super_log_root(sb));
2410                 ret = -EINVAL;
2411         }
2412
2413         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2414                    BTRFS_FSID_SIZE) != 0) {
2415                 btrfs_err(fs_info,
2416                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2417                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2418                 ret = -EINVAL;
2419         }
2420
2421         /*
2422          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2423          * done later
2424          */
2425         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2426                 btrfs_err(fs_info, "bytes_used is too small %llu",
2427                           btrfs_super_bytes_used(sb));
2428                 ret = -EINVAL;
2429         }
2430         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2431                 btrfs_err(fs_info, "invalid stripesize %u",
2432                           btrfs_super_stripesize(sb));
2433                 ret = -EINVAL;
2434         }
2435         if (btrfs_super_num_devices(sb) > (1UL << 31))
2436                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2437                            btrfs_super_num_devices(sb));
2438         if (btrfs_super_num_devices(sb) == 0) {
2439                 btrfs_err(fs_info, "number of devices is 0");
2440                 ret = -EINVAL;
2441         }
2442
2443         if (mirror_num >= 0 &&
2444             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2445                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2446                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2447                 ret = -EINVAL;
2448         }
2449
2450         /*
2451          * Obvious sys_chunk_array corruptions, it must hold at least one key
2452          * and one chunk
2453          */
2454         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2455                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2456                           btrfs_super_sys_array_size(sb),
2457                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2458                 ret = -EINVAL;
2459         }
2460         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2461                         + sizeof(struct btrfs_chunk)) {
2462                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2463                           btrfs_super_sys_array_size(sb),
2464                           sizeof(struct btrfs_disk_key)
2465                           + sizeof(struct btrfs_chunk));
2466                 ret = -EINVAL;
2467         }
2468
2469         /*
2470          * The generation is a global counter, we'll trust it more than the others
2471          * but it's still possible that it's the one that's wrong.
2472          */
2473         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2474                 btrfs_warn(fs_info,
2475                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2476                         btrfs_super_generation(sb),
2477                         btrfs_super_chunk_root_generation(sb));
2478         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2479             && btrfs_super_cache_generation(sb) != (u64)-1)
2480                 btrfs_warn(fs_info,
2481                         "suspicious: generation < cache_generation: %llu < %llu",
2482                         btrfs_super_generation(sb),
2483                         btrfs_super_cache_generation(sb));
2484
2485         return ret;
2486 }
2487
2488 /*
2489  * Validation of super block at mount time.
2490  * Some checks already done early at mount time, like csum type and incompat
2491  * flags will be skipped.
2492  */
2493 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2494 {
2495         return validate_super(fs_info, fs_info->super_copy, 0);
2496 }
2497
2498 /*
2499  * Validation of super block at write time.
2500  * Some checks like bytenr check will be skipped as their values will be
2501  * overwritten soon.
2502  * Extra checks like csum type and incompat flags will be done here.
2503  */
2504 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2505                                       struct btrfs_super_block *sb)
2506 {
2507         int ret;
2508
2509         ret = validate_super(fs_info, sb, -1);
2510         if (ret < 0)
2511                 goto out;
2512         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2513                 ret = -EUCLEAN;
2514                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2515                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2516                 goto out;
2517         }
2518         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2519                 ret = -EUCLEAN;
2520                 btrfs_err(fs_info,
2521                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2522                           btrfs_super_incompat_flags(sb),
2523                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2524                 goto out;
2525         }
2526 out:
2527         if (ret < 0)
2528                 btrfs_err(fs_info,
2529                 "super block corruption detected before writing it to disk");
2530         return ret;
2531 }
2532
2533 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2534 {
2535         int backup_index = find_newest_super_backup(fs_info);
2536         struct btrfs_super_block *sb = fs_info->super_copy;
2537         struct btrfs_root *tree_root = fs_info->tree_root;
2538         bool handle_error = false;
2539         int ret = 0;
2540         int i;
2541
2542         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2543                 u64 generation;
2544                 int level;
2545
2546                 if (handle_error) {
2547                         if (!IS_ERR(tree_root->node))
2548                                 free_extent_buffer(tree_root->node);
2549                         tree_root->node = NULL;
2550
2551                         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2552                                 break;
2553
2554                         free_root_pointers(fs_info, 0);
2555
2556                         /*
2557                          * Don't use the log in recovery mode, it won't be
2558                          * valid
2559                          */
2560                         btrfs_set_super_log_root(sb, 0);
2561
2562                         /* We can't trust the free space cache either */
2563                         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2564
2565                         ret = read_backup_root(fs_info, i);
2566                         backup_index = ret;
2567                         if (ret < 0)
2568                                 return ret;
2569                 }
2570                 generation = btrfs_super_generation(sb);
2571                 level = btrfs_super_root_level(sb);
2572                 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2573                                                   generation, level, NULL);
2574                 if (IS_ERR(tree_root->node) ||
2575                     !extent_buffer_uptodate(tree_root->node)) {
2576                         handle_error = true;
2577
2578                         if (IS_ERR(tree_root->node))
2579                                 ret = PTR_ERR(tree_root->node);
2580                         else if (!extent_buffer_uptodate(tree_root->node))
2581                                 ret = -EUCLEAN;
2582
2583                         btrfs_warn(fs_info, "failed to read tree root");
2584                         continue;
2585                 }
2586
2587                 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2588                 tree_root->commit_root = btrfs_root_node(tree_root);
2589                 btrfs_set_root_refs(&tree_root->root_item, 1);
2590
2591                 /*
2592                  * No need to hold btrfs_root::objectid_mutex since the fs
2593                  * hasn't been fully initialised and we are the only user
2594                  */
2595                 ret = btrfs_find_highest_objectid(tree_root,
2596                                                 &tree_root->highest_objectid);
2597                 if (ret < 0) {
2598                         handle_error = true;
2599                         continue;
2600                 }
2601
2602                 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2603
2604                 ret = btrfs_read_roots(fs_info);
2605                 if (ret < 0) {
2606                         handle_error = true;
2607                         continue;
2608                 }
2609
2610                 /* All successful */
2611                 fs_info->generation = generation;
2612                 fs_info->last_trans_committed = generation;
2613
2614                 /* Always begin writing backup roots after the one being used */
2615                 if (backup_index < 0) {
2616                         fs_info->backup_root_index = 0;
2617                 } else {
2618                         fs_info->backup_root_index = backup_index + 1;
2619                         fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2620                 }
2621                 break;
2622         }
2623
2624         return ret;
2625 }
2626
2627 int __cold open_ctree(struct super_block *sb,
2628                struct btrfs_fs_devices *fs_devices,
2629                char *options)
2630 {
2631         u32 sectorsize;
2632         u32 nodesize;
2633         u32 stripesize;
2634         u64 generation;
2635         u64 features;
2636         u16 csum_type;
2637         struct btrfs_key location;
2638         struct buffer_head *bh;
2639         struct btrfs_super_block *disk_super;
2640         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2641         struct btrfs_root *tree_root;
2642         struct btrfs_root *chunk_root;
2643         int ret;
2644         int err = -EINVAL;
2645         int clear_free_space_tree = 0;
2646         int level;
2647
2648         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2649         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2650         if (!tree_root || !chunk_root) {
2651                 err = -ENOMEM;
2652                 goto fail;
2653         }
2654
2655         ret = init_srcu_struct(&fs_info->subvol_srcu);
2656         if (ret) {
2657                 err = ret;
2658                 goto fail;
2659         }
2660
2661         ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2662         if (ret) {
2663                 err = ret;
2664                 goto fail_srcu;
2665         }
2666
2667         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2668         if (ret) {
2669                 err = ret;
2670                 goto fail_dio_bytes;
2671         }
2672         fs_info->dirty_metadata_batch = PAGE_SIZE *
2673                                         (1 + ilog2(nr_cpu_ids));
2674
2675         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2676         if (ret) {
2677                 err = ret;
2678                 goto fail_dirty_metadata_bytes;
2679         }
2680
2681         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2682                         GFP_KERNEL);
2683         if (ret) {
2684                 err = ret;
2685                 goto fail_delalloc_bytes;
2686         }
2687
2688         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2689         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2690         INIT_LIST_HEAD(&fs_info->trans_list);
2691         INIT_LIST_HEAD(&fs_info->dead_roots);
2692         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2693         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2694         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2695         spin_lock_init(&fs_info->delalloc_root_lock);
2696         spin_lock_init(&fs_info->trans_lock);
2697         spin_lock_init(&fs_info->fs_roots_radix_lock);
2698         spin_lock_init(&fs_info->delayed_iput_lock);
2699         spin_lock_init(&fs_info->defrag_inodes_lock);
2700         spin_lock_init(&fs_info->tree_mod_seq_lock);
2701         spin_lock_init(&fs_info->super_lock);
2702         spin_lock_init(&fs_info->buffer_lock);
2703         spin_lock_init(&fs_info->unused_bgs_lock);
2704         rwlock_init(&fs_info->tree_mod_log_lock);
2705         mutex_init(&fs_info->unused_bg_unpin_mutex);
2706         mutex_init(&fs_info->delete_unused_bgs_mutex);
2707         mutex_init(&fs_info->reloc_mutex);
2708         mutex_init(&fs_info->delalloc_root_mutex);
2709         seqlock_init(&fs_info->profiles_lock);
2710
2711         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2712         INIT_LIST_HEAD(&fs_info->space_info);
2713         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2714         INIT_LIST_HEAD(&fs_info->unused_bgs);
2715         extent_map_tree_init(&fs_info->mapping_tree);
2716         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2717                              BTRFS_BLOCK_RSV_GLOBAL);
2718         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2719         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2720         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2721         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2722                              BTRFS_BLOCK_RSV_DELOPS);
2723         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2724                              BTRFS_BLOCK_RSV_DELREFS);
2725
2726         atomic_set(&fs_info->async_delalloc_pages, 0);
2727         atomic_set(&fs_info->defrag_running, 0);
2728         atomic_set(&fs_info->reada_works_cnt, 0);
2729         atomic_set(&fs_info->nr_delayed_iputs, 0);
2730         atomic64_set(&fs_info->tree_mod_seq, 0);
2731         fs_info->sb = sb;
2732         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2733         fs_info->metadata_ratio = 0;
2734         fs_info->defrag_inodes = RB_ROOT;
2735         atomic64_set(&fs_info->free_chunk_space, 0);
2736         fs_info->tree_mod_log = RB_ROOT;
2737         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2738         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2739         /* readahead state */
2740         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2741         spin_lock_init(&fs_info->reada_lock);
2742         btrfs_init_ref_verify(fs_info);
2743
2744         fs_info->thread_pool_size = min_t(unsigned long,
2745                                           num_online_cpus() + 2, 8);
2746
2747         INIT_LIST_HEAD(&fs_info->ordered_roots);
2748         spin_lock_init(&fs_info->ordered_root_lock);
2749
2750         fs_info->btree_inode = new_inode(sb);
2751         if (!fs_info->btree_inode) {
2752                 err = -ENOMEM;
2753                 goto fail_bio_counter;
2754         }
2755         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2756
2757         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2758                                         GFP_KERNEL);
2759         if (!fs_info->delayed_root) {
2760                 err = -ENOMEM;
2761                 goto fail_iput;
2762         }
2763         btrfs_init_delayed_root(fs_info->delayed_root);
2764
2765         btrfs_init_scrub(fs_info);
2766 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2767         fs_info->check_integrity_print_mask = 0;
2768 #endif
2769         btrfs_init_balance(fs_info);
2770         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2771
2772         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2773         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2774
2775         btrfs_init_btree_inode(fs_info);
2776
2777         spin_lock_init(&fs_info->block_group_cache_lock);
2778         fs_info->block_group_cache_tree = RB_ROOT;
2779         fs_info->first_logical_byte = (u64)-1;
2780
2781         extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2782                             IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2783         extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2784                             IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
2785         fs_info->pinned_extents = &fs_info->freed_extents[0];
2786         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2787
2788         mutex_init(&fs_info->ordered_operations_mutex);
2789         mutex_init(&fs_info->tree_log_mutex);
2790         mutex_init(&fs_info->chunk_mutex);
2791         mutex_init(&fs_info->transaction_kthread_mutex);
2792         mutex_init(&fs_info->cleaner_mutex);
2793         mutex_init(&fs_info->ro_block_group_mutex);
2794         init_rwsem(&fs_info->commit_root_sem);
2795         init_rwsem(&fs_info->cleanup_work_sem);
2796         init_rwsem(&fs_info->subvol_sem);
2797         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2798
2799         btrfs_init_dev_replace_locks(fs_info);
2800         btrfs_init_qgroup(fs_info);
2801         btrfs_discard_init(fs_info);
2802
2803         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2804         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2805
2806         init_waitqueue_head(&fs_info->transaction_throttle);
2807         init_waitqueue_head(&fs_info->transaction_wait);
2808         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2809         init_waitqueue_head(&fs_info->async_submit_wait);
2810         init_waitqueue_head(&fs_info->delayed_iputs_wait);
2811
2812         /* Usable values until the real ones are cached from the superblock */
2813         fs_info->nodesize = 4096;
2814         fs_info->sectorsize = 4096;
2815         fs_info->stripesize = 4096;
2816
2817         spin_lock_init(&fs_info->swapfile_pins_lock);
2818         fs_info->swapfile_pins = RB_ROOT;
2819
2820         fs_info->send_in_progress = 0;
2821
2822         ret = btrfs_alloc_stripe_hash_table(fs_info);
2823         if (ret) {
2824                 err = ret;
2825                 goto fail_alloc;
2826         }
2827
2828         __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2829
2830         invalidate_bdev(fs_devices->latest_bdev);
2831
2832         /*
2833          * Read super block and check the signature bytes only
2834          */
2835         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2836         if (IS_ERR(bh)) {
2837                 err = PTR_ERR(bh);
2838                 goto fail_alloc;
2839         }
2840
2841         /*
2842          * Verify the type first, if that or the the checksum value are
2843          * corrupted, we'll find out
2844          */
2845         csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2846         if (!btrfs_supported_super_csum(csum_type)) {
2847                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2848                           csum_type);
2849                 err = -EINVAL;
2850                 brelse(bh);
2851                 goto fail_alloc;
2852         }
2853
2854         ret = btrfs_init_csum_hash(fs_info, csum_type);
2855         if (ret) {
2856                 err = ret;
2857                 goto fail_alloc;
2858         }
2859
2860         /*
2861          * We want to check superblock checksum, the type is stored inside.
2862          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2863          */
2864         if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2865                 btrfs_err(fs_info, "superblock checksum mismatch");
2866                 err = -EINVAL;
2867                 brelse(bh);
2868                 goto fail_csum;
2869         }
2870
2871         /*
2872          * super_copy is zeroed at allocation time and we never touch the
2873          * following bytes up to INFO_SIZE, the checksum is calculated from
2874          * the whole block of INFO_SIZE
2875          */
2876         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2877         brelse(bh);
2878
2879         disk_super = fs_info->super_copy;
2880
2881         ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2882                        BTRFS_FSID_SIZE));
2883
2884         if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2885                 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2886                                 fs_info->super_copy->metadata_uuid,
2887                                 BTRFS_FSID_SIZE));
2888         }
2889
2890         features = btrfs_super_flags(disk_super);
2891         if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2892                 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2893                 btrfs_set_super_flags(disk_super, features);
2894                 btrfs_info(fs_info,
2895                         "found metadata UUID change in progress flag, clearing");
2896         }
2897
2898         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2899                sizeof(*fs_info->super_for_commit));
2900
2901         ret = btrfs_validate_mount_super(fs_info);
2902         if (ret) {
2903                 btrfs_err(fs_info, "superblock contains fatal errors");
2904                 err = -EINVAL;
2905                 goto fail_csum;
2906         }
2907
2908         if (!btrfs_super_root(disk_super))
2909                 goto fail_csum;
2910
2911         /* check FS state, whether FS is broken. */
2912         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2913                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2914
2915         /*
2916          * In the long term, we'll store the compression type in the super
2917          * block, and it'll be used for per file compression control.
2918          */
2919         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2920
2921         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2922         if (ret) {
2923                 err = ret;
2924                 goto fail_csum;
2925         }
2926
2927         features = btrfs_super_incompat_flags(disk_super) &
2928                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2929         if (features) {
2930                 btrfs_err(fs_info,
2931                     "cannot mount because of unsupported optional features (%llx)",
2932                     features);
2933                 err = -EINVAL;
2934                 goto fail_csum;
2935         }
2936
2937         features = btrfs_super_incompat_flags(disk_super);
2938         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2939         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2940                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2941         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2942                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2943
2944         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2945                 btrfs_info(fs_info, "has skinny extents");
2946
2947         /*
2948          * flag our filesystem as having big metadata blocks if
2949          * they are bigger than the page size
2950          */
2951         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2952                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2953                         btrfs_info(fs_info,
2954                                 "flagging fs with big metadata feature");
2955                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2956         }
2957
2958         nodesize = btrfs_super_nodesize(disk_super);
2959         sectorsize = btrfs_super_sectorsize(disk_super);
2960         stripesize = sectorsize;
2961         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2962         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2963
2964         /* Cache block sizes */
2965         fs_info->nodesize = nodesize;
2966         fs_info->sectorsize = sectorsize;
2967         fs_info->stripesize = stripesize;
2968
2969         /*
2970          * mixed block groups end up with duplicate but slightly offset
2971          * extent buffers for the same range.  It leads to corruptions
2972          */
2973         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2974             (sectorsize != nodesize)) {
2975                 btrfs_err(fs_info,
2976 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2977                         nodesize, sectorsize);
2978                 goto fail_csum;
2979         }
2980
2981         /*
2982          * Needn't use the lock because there is no other task which will
2983          * update the flag.
2984          */
2985         btrfs_set_super_incompat_flags(disk_super, features);
2986
2987         features = btrfs_super_compat_ro_flags(disk_super) &
2988                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2989         if (!sb_rdonly(sb) && features) {
2990                 btrfs_err(fs_info,
2991         "cannot mount read-write because of unsupported optional features (%llx)",
2992                        features);
2993                 err = -EINVAL;
2994                 goto fail_csum;
2995         }
2996
2997         ret = btrfs_init_workqueues(fs_info, fs_devices);
2998         if (ret) {
2999                 err = ret;
3000                 goto fail_sb_buffer;
3001         }
3002
3003         sb->s_bdi->congested_fn = btrfs_congested_fn;
3004         sb->s_bdi->congested_data = fs_info;
3005         sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
3006         sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
3007         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3008         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3009
3010         sb->s_blocksize = sectorsize;
3011         sb->s_blocksize_bits = blksize_bits(sectorsize);
3012         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3013
3014         mutex_lock(&fs_info->chunk_mutex);
3015         ret = btrfs_read_sys_array(fs_info);
3016         mutex_unlock(&fs_info->chunk_mutex);
3017         if (ret) {
3018                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3019                 goto fail_sb_buffer;
3020         }
3021
3022         generation = btrfs_super_chunk_root_generation(disk_super);
3023         level = btrfs_super_chunk_root_level(disk_super);
3024
3025         __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
3026
3027         chunk_root->node = read_tree_block(fs_info,
3028                                            btrfs_super_chunk_root(disk_super),
3029                                            generation, level, NULL);
3030         if (IS_ERR(chunk_root->node) ||
3031             !extent_buffer_uptodate(chunk_root->node)) {
3032                 btrfs_err(fs_info, "failed to read chunk root");
3033                 if (!IS_ERR(chunk_root->node))
3034                         free_extent_buffer(chunk_root->node);
3035                 chunk_root->node = NULL;
3036                 goto fail_tree_roots;
3037         }
3038         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3039         chunk_root->commit_root = btrfs_root_node(chunk_root);
3040
3041         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3042            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
3043
3044         ret = btrfs_read_chunk_tree(fs_info);
3045         if (ret) {
3046                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3047                 goto fail_tree_roots;
3048         }
3049
3050         /*
3051          * Keep the devid that is marked to be the target device for the
3052          * device replace procedure
3053          */
3054         btrfs_free_extra_devids(fs_devices, 0);
3055
3056         if (!fs_devices->latest_bdev) {
3057                 btrfs_err(fs_info, "failed to read devices");
3058                 goto fail_tree_roots;
3059         }
3060
3061         ret = init_tree_roots(fs_info);
3062         if (ret)
3063                 goto fail_tree_roots;
3064
3065         ret = btrfs_verify_dev_extents(fs_info);
3066         if (ret) {
3067                 btrfs_err(fs_info,
3068                           "failed to verify dev extents against chunks: %d",
3069                           ret);
3070                 goto fail_block_groups;
3071         }
3072         ret = btrfs_recover_balance(fs_info);
3073         if (ret) {
3074                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3075                 goto fail_block_groups;
3076         }
3077
3078         ret = btrfs_init_dev_stats(fs_info);
3079         if (ret) {
3080                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3081                 goto fail_block_groups;
3082         }
3083
3084         ret = btrfs_init_dev_replace(fs_info);
3085         if (ret) {
3086                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3087                 goto fail_block_groups;
3088         }
3089
3090         btrfs_free_extra_devids(fs_devices, 1);
3091
3092         ret = btrfs_sysfs_add_fsid(fs_devices);
3093         if (ret) {
3094                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3095                                 ret);
3096                 goto fail_block_groups;
3097         }
3098
3099         ret = btrfs_sysfs_add_mounted(fs_info);
3100         if (ret) {
3101                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3102                 goto fail_fsdev_sysfs;
3103         }
3104
3105         ret = btrfs_init_space_info(fs_info);
3106         if (ret) {
3107                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3108                 goto fail_sysfs;
3109         }
3110
3111         ret = btrfs_read_block_groups(fs_info);
3112         if (ret) {
3113                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3114                 goto fail_sysfs;
3115         }
3116
3117         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3118                 btrfs_warn(fs_info,
3119                 "writable mount is not allowed due to too many missing devices");
3120                 goto fail_sysfs;
3121         }
3122
3123         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3124                                                "btrfs-cleaner");
3125         if (IS_ERR(fs_info->cleaner_kthread))
3126                 goto fail_sysfs;
3127
3128         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3129                                                    tree_root,
3130                                                    "btrfs-transaction");
3131         if (IS_ERR(fs_info->transaction_kthread))
3132                 goto fail_cleaner;
3133
3134         if (!btrfs_test_opt(fs_info, NOSSD) &&
3135             !fs_info->fs_devices->rotating) {
3136                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3137         }
3138
3139         /*
3140          * Mount does not set all options immediately, we can do it now and do
3141          * not have to wait for transaction commit
3142          */
3143         btrfs_apply_pending_changes(fs_info);
3144
3145 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3146         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3147                 ret = btrfsic_mount(fs_info, fs_devices,
3148                                     btrfs_test_opt(fs_info,
3149                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3150                                     1 : 0,
3151                                     fs_info->check_integrity_print_mask);
3152                 if (ret)
3153                         btrfs_warn(fs_info,
3154                                 "failed to initialize integrity check module: %d",
3155                                 ret);
3156         }
3157 #endif
3158         ret = btrfs_read_qgroup_config(fs_info);
3159         if (ret)
3160                 goto fail_trans_kthread;
3161
3162         if (btrfs_build_ref_tree(fs_info))
3163                 btrfs_err(fs_info, "couldn't build ref tree");
3164
3165         /* do not make disk changes in broken FS or nologreplay is given */
3166         if (btrfs_super_log_root(disk_super) != 0 &&
3167             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3168                 ret = btrfs_replay_log(fs_info, fs_devices);
3169                 if (ret) {
3170                         err = ret;
3171                         goto fail_qgroup;
3172                 }
3173         }
3174
3175         ret = btrfs_find_orphan_roots(fs_info);
3176         if (ret)
3177                 goto fail_qgroup;
3178
3179         if (!sb_rdonly(sb)) {
3180                 ret = btrfs_cleanup_fs_roots(fs_info);
3181                 if (ret)
3182                         goto fail_qgroup;
3183
3184                 mutex_lock(&fs_info->cleaner_mutex);
3185                 ret = btrfs_recover_relocation(tree_root);
3186                 mutex_unlock(&fs_info->cleaner_mutex);
3187                 if (ret < 0) {
3188                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3189                                         ret);
3190                         err = -EINVAL;
3191                         goto fail_qgroup;
3192                 }
3193         }
3194
3195         location.objectid = BTRFS_FS_TREE_OBJECTID;
3196         location.type = BTRFS_ROOT_ITEM_KEY;
3197         location.offset = 0;
3198
3199         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3200         if (IS_ERR(fs_info->fs_root)) {
3201                 err = PTR_ERR(fs_info->fs_root);
3202                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3203                 goto fail_qgroup;
3204         }
3205
3206         if (sb_rdonly(sb))
3207                 return 0;
3208
3209         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3210             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3211                 clear_free_space_tree = 1;
3212         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3213                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3214                 btrfs_warn(fs_info, "free space tree is invalid");
3215                 clear_free_space_tree = 1;
3216         }
3217
3218         if (clear_free_space_tree) {
3219                 btrfs_info(fs_info, "clearing free space tree");
3220                 ret = btrfs_clear_free_space_tree(fs_info);
3221                 if (ret) {
3222                         btrfs_warn(fs_info,
3223                                    "failed to clear free space tree: %d", ret);
3224                         close_ctree(fs_info);
3225                         return ret;
3226                 }
3227         }
3228
3229         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3230             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3231                 btrfs_info(fs_info, "creating free space tree");
3232                 ret = btrfs_create_free_space_tree(fs_info);
3233                 if (ret) {
3234                         btrfs_warn(fs_info,
3235                                 "failed to create free space tree: %d", ret);
3236                         close_ctree(fs_info);
3237                         return ret;
3238                 }
3239         }
3240
3241         down_read(&fs_info->cleanup_work_sem);
3242         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3243             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3244                 up_read(&fs_info->cleanup_work_sem);
3245                 close_ctree(fs_info);
3246                 return ret;
3247         }
3248         up_read(&fs_info->cleanup_work_sem);
3249
3250         ret = btrfs_resume_balance_async(fs_info);
3251         if (ret) {
3252                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3253                 close_ctree(fs_info);
3254                 return ret;
3255         }
3256
3257         ret = btrfs_resume_dev_replace_async(fs_info);
3258         if (ret) {
3259                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3260                 close_ctree(fs_info);
3261                 return ret;
3262         }
3263
3264         btrfs_qgroup_rescan_resume(fs_info);
3265         btrfs_discard_resume(fs_info);
3266
3267         if (!fs_info->uuid_root) {
3268                 btrfs_info(fs_info, "creating UUID tree");
3269                 ret = btrfs_create_uuid_tree(fs_info);
3270                 if (ret) {
3271                         btrfs_warn(fs_info,
3272                                 "failed to create the UUID tree: %d", ret);
3273                         close_ctree(fs_info);
3274                         return ret;
3275                 }
3276         } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3277                    fs_info->generation !=
3278                                 btrfs_super_uuid_tree_generation(disk_super)) {
3279                 btrfs_info(fs_info, "checking UUID tree");
3280                 ret = btrfs_check_uuid_tree(fs_info);
3281                 if (ret) {
3282                         btrfs_warn(fs_info,
3283                                 "failed to check the UUID tree: %d", ret);
3284                         close_ctree(fs_info);
3285                         return ret;
3286                 }
3287         } else {
3288                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3289         }
3290         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3291
3292         /*
3293          * backuproot only affect mount behavior, and if open_ctree succeeded,
3294          * no need to keep the flag
3295          */
3296         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3297
3298         return 0;
3299
3300 fail_qgroup:
3301         btrfs_free_qgroup_config(fs_info);
3302 fail_trans_kthread:
3303         kthread_stop(fs_info->transaction_kthread);
3304         btrfs_cleanup_transaction(fs_info);
3305         btrfs_free_fs_roots(fs_info);
3306 fail_cleaner:
3307         kthread_stop(fs_info->cleaner_kthread);
3308
3309         /*
3310          * make sure we're done with the btree inode before we stop our
3311          * kthreads
3312          */
3313         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3314
3315 fail_sysfs:
3316         btrfs_sysfs_remove_mounted(fs_info);
3317
3318 fail_fsdev_sysfs:
3319         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3320
3321 fail_block_groups:
3322         btrfs_put_block_group_cache(fs_info);
3323
3324 fail_tree_roots:
3325         free_root_pointers(fs_info, true);
3326         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3327
3328 fail_sb_buffer:
3329         btrfs_stop_all_workers(fs_info);
3330         btrfs_free_block_groups(fs_info);
3331 fail_csum:
3332         btrfs_free_csum_hash(fs_info);
3333 fail_alloc:
3334 fail_iput:
3335         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3336
3337         iput(fs_info->btree_inode);
3338 fail_bio_counter:
3339         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3340 fail_delalloc_bytes:
3341         percpu_counter_destroy(&fs_info->delalloc_bytes);
3342 fail_dirty_metadata_bytes:
3343         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3344 fail_dio_bytes:
3345         percpu_counter_destroy(&fs_info->dio_bytes);
3346 fail_srcu:
3347         cleanup_srcu_struct(&fs_info->subvol_srcu);
3348 fail:
3349         btrfs_free_stripe_hash_table(fs_info);
3350         btrfs_close_devices(fs_info->fs_devices);
3351         return err;
3352 }
3353 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3354
3355 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3356 {
3357         if (uptodate) {
3358                 set_buffer_uptodate(bh);
3359         } else {
3360                 struct btrfs_device *device = (struct btrfs_device *)
3361                         bh->b_private;
3362
3363                 btrfs_warn_rl_in_rcu(device->fs_info,
3364                                 "lost page write due to IO error on %s",
3365                                           rcu_str_deref(device->name));
3366                 /* note, we don't set_buffer_write_io_error because we have
3367                  * our own ways of dealing with the IO errors
3368                  */
3369                 clear_buffer_uptodate(bh);
3370                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3371         }
3372         unlock_buffer(bh);
3373         put_bh(bh);
3374 }
3375
3376 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3377                         struct buffer_head **bh_ret)
3378 {
3379         struct buffer_head *bh;
3380         struct btrfs_super_block *super;
3381         u64 bytenr;
3382
3383         bytenr = btrfs_sb_offset(copy_num);
3384         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3385                 return -EINVAL;
3386
3387         bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3388         /*
3389          * If we fail to read from the underlying devices, as of now
3390          * the best option we have is to mark it EIO.
3391          */
3392         if (!bh)
3393                 return -EIO;
3394
3395         super = (struct btrfs_super_block *)bh->b_data;
3396         if (btrfs_super_bytenr(super) != bytenr ||
3397                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3398                 brelse(bh);
3399                 return -EINVAL;
3400         }
3401
3402         *bh_ret = bh;
3403         return 0;
3404 }
3405
3406
3407 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3408 {
3409         struct buffer_head *bh;
3410         struct buffer_head *latest = NULL;
3411         struct btrfs_super_block *super;
3412         int i;
3413         u64 transid = 0;
3414         int ret = -EINVAL;
3415
3416         /* we would like to check all the supers, but that would make
3417          * a btrfs mount succeed after a mkfs from a different FS.
3418          * So, we need to add a special mount option to scan for
3419          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3420          */
3421         for (i = 0; i < 1; i++) {
3422                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3423                 if (ret)
3424                         continue;
3425
3426                 super = (struct btrfs_super_block *)bh->b_data;
3427
3428                 if (!latest || btrfs_super_generation(super) > transid) {
3429                         brelse(latest);
3430                         latest = bh;
3431                         transid = btrfs_super_generation(super);
3432                 } else {
3433                         brelse(bh);
3434                 }
3435         }
3436
3437         if (!latest)
3438                 return ERR_PTR(ret);
3439
3440         return latest;
3441 }
3442
3443 /*
3444  * Write superblock @sb to the @device. Do not wait for completion, all the
3445  * buffer heads we write are pinned.
3446  *
3447  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3448  * the expected device size at commit time. Note that max_mirrors must be
3449  * same for write and wait phases.
3450  *
3451  * Return number of errors when buffer head is not found or submission fails.
3452  */
3453 static int write_dev_supers(struct btrfs_device *device,
3454                             struct btrfs_super_block *sb, int max_mirrors)
3455 {
3456         struct btrfs_fs_info *fs_info = device->fs_info;
3457         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3458         struct buffer_head *bh;
3459         int i;
3460         int ret;
3461         int errors = 0;
3462         u64 bytenr;
3463         int op_flags;
3464
3465         if (max_mirrors == 0)
3466                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3467
3468         shash->tfm = fs_info->csum_shash;
3469
3470         for (i = 0; i < max_mirrors; i++) {
3471                 bytenr = btrfs_sb_offset(i);
3472                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3473                     device->commit_total_bytes)
3474                         break;
3475
3476                 btrfs_set_super_bytenr(sb, bytenr);
3477
3478                 crypto_shash_init(shash);
3479                 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3480                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3481                 crypto_shash_final(shash, sb->csum);
3482
3483                 /* One reference for us, and we leave it for the caller */
3484                 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3485                               BTRFS_SUPER_INFO_SIZE);
3486                 if (!bh) {
3487                         btrfs_err(device->fs_info,
3488                             "couldn't get super buffer head for bytenr %llu",
3489                             bytenr);
3490                         errors++;
3491                         continue;
3492                 }
3493
3494                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3495
3496                 /* one reference for submit_bh */
3497                 get_bh(bh);
3498
3499                 set_buffer_uptodate(bh);
3500                 lock_buffer(bh);
3501                 bh->b_end_io = btrfs_end_buffer_write_sync;
3502                 bh->b_private = device;
3503
3504                 /*
3505                  * we fua the first super.  The others we allow
3506                  * to go down lazy.
3507                  */
3508                 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3509                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3510                         op_flags |= REQ_FUA;
3511                 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3512                 if (ret)
3513                         errors++;
3514         }
3515         return errors < i ? 0 : -1;
3516 }
3517
3518 /*
3519  * Wait for write completion of superblocks done by write_dev_supers,
3520  * @max_mirrors same for write and wait phases.
3521  *
3522  * Return number of errors when buffer head is not found or not marked up to
3523  * date.
3524  */
3525 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3526 {
3527         struct buffer_head *bh;
3528         int i;
3529         int errors = 0;
3530         bool primary_failed = false;
3531         u64 bytenr;
3532
3533         if (max_mirrors == 0)
3534                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3535
3536         for (i = 0; i < max_mirrors; i++) {
3537                 bytenr = btrfs_sb_offset(i);
3538                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3539                     device->commit_total_bytes)
3540                         break;
3541
3542                 bh = __find_get_block(device->bdev,
3543                                       bytenr / BTRFS_BDEV_BLOCKSIZE,
3544                                       BTRFS_SUPER_INFO_SIZE);
3545                 if (!bh) {
3546                         errors++;
3547                         if (i == 0)
3548                                 primary_failed = true;
3549                         continue;
3550                 }
3551                 wait_on_buffer(bh);
3552                 if (!buffer_uptodate(bh)) {
3553                         errors++;
3554                         if (i == 0)
3555                                 primary_failed = true;
3556                 }
3557
3558                 /* drop our reference */
3559                 brelse(bh);
3560
3561                 /* drop the reference from the writing run */
3562                 brelse(bh);
3563         }
3564
3565         /* log error, force error return */
3566         if (primary_failed) {
3567                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3568                           device->devid);
3569                 return -1;
3570         }
3571
3572         return errors < i ? 0 : -1;
3573 }
3574
3575 /*
3576  * endio for the write_dev_flush, this will wake anyone waiting
3577  * for the barrier when it is done
3578  */
3579 static void btrfs_end_empty_barrier(struct bio *bio)
3580 {
3581         complete(bio->bi_private);
3582 }
3583
3584 /*
3585  * Submit a flush request to the device if it supports it. Error handling is
3586  * done in the waiting counterpart.
3587  */
3588 static void write_dev_flush(struct btrfs_device *device)
3589 {
3590         struct request_queue *q = bdev_get_queue(device->bdev);
3591         struct bio *bio = device->flush_bio;
3592
3593         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3594                 return;
3595
3596         bio_reset(bio);
3597         bio->bi_end_io = btrfs_end_empty_barrier;
3598         bio_set_dev(bio, device->bdev);
3599         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3600         init_completion(&device->flush_wait);
3601         bio->bi_private = &device->flush_wait;
3602
3603         btrfsic_submit_bio(bio);
3604         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3605 }
3606
3607 /*
3608  * If the flush bio has been submitted by write_dev_flush, wait for it.
3609  */
3610 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3611 {
3612         struct bio *bio = device->flush_bio;
3613
3614         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3615                 return BLK_STS_OK;
3616
3617         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3618         wait_for_completion_io(&device->flush_wait);
3619
3620         return bio->bi_status;
3621 }
3622
3623 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3624 {
3625         if (!btrfs_check_rw_degradable(fs_info, NULL))
3626                 return -EIO;
3627         return 0;
3628 }
3629
3630 /*
3631  * send an empty flush down to each device in parallel,
3632  * then wait for them
3633  */
3634 static int barrier_all_devices(struct btrfs_fs_info *info)
3635 {
3636         struct list_head *head;
3637         struct btrfs_device *dev;
3638         int errors_wait = 0;
3639         blk_status_t ret;
3640
3641         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3642         /* send down all the barriers */
3643         head = &info->fs_devices->devices;
3644         list_for_each_entry(dev, head, dev_list) {
3645                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3646                         continue;
3647                 if (!dev->bdev)
3648                         continue;
3649                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3650                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3651                         continue;
3652
3653                 write_dev_flush(dev);
3654                 dev->last_flush_error = BLK_STS_OK;
3655         }
3656
3657         /* wait for all the barriers */
3658         list_for_each_entry(dev, head, dev_list) {
3659                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3660                         continue;
3661                 if (!dev->bdev) {
3662                         errors_wait++;
3663                         continue;
3664                 }
3665                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3666                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3667                         continue;
3668
3669                 ret = wait_dev_flush(dev);
3670                 if (ret) {
3671                         dev->last_flush_error = ret;
3672                         btrfs_dev_stat_inc_and_print(dev,
3673                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3674                         errors_wait++;
3675                 }
3676         }
3677
3678         if (errors_wait) {
3679                 /*
3680                  * At some point we need the status of all disks
3681                  * to arrive at the volume status. So error checking
3682                  * is being pushed to a separate loop.
3683                  */
3684                 return check_barrier_error(info);
3685         }
3686         return 0;
3687 }
3688
3689 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3690 {
3691         int raid_type;
3692         int min_tolerated = INT_MAX;
3693
3694         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3695             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3696                 min_tolerated = min_t(int, min_tolerated,
3697                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3698                                     tolerated_failures);
3699
3700         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3701                 if (raid_type == BTRFS_RAID_SINGLE)
3702                         continue;
3703                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3704                         continue;
3705                 min_tolerated = min_t(int, min_tolerated,
3706                                     btrfs_raid_array[raid_type].
3707                                     tolerated_failures);
3708         }
3709
3710         if (min_tolerated == INT_MAX) {
3711                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3712                 min_tolerated = 0;
3713         }
3714
3715         return min_tolerated;
3716 }
3717
3718 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3719 {
3720         struct list_head *head;
3721         struct btrfs_device *dev;
3722         struct btrfs_super_block *sb;
3723         struct btrfs_dev_item *dev_item;
3724         int ret;
3725         int do_barriers;
3726         int max_errors;
3727         int total_errors = 0;
3728         u64 flags;
3729
3730         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3731
3732         /*
3733          * max_mirrors == 0 indicates we're from commit_transaction,
3734          * not from fsync where the tree roots in fs_info have not
3735          * been consistent on disk.
3736          */
3737         if (max_mirrors == 0)
3738                 backup_super_roots(fs_info);
3739
3740         sb = fs_info->super_for_commit;
3741         dev_item = &sb->dev_item;
3742
3743         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3744         head = &fs_info->fs_devices->devices;
3745         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3746
3747         if (do_barriers) {
3748                 ret = barrier_all_devices(fs_info);
3749                 if (ret) {
3750                         mutex_unlock(
3751                                 &fs_info->fs_devices->device_list_mutex);
3752                         btrfs_handle_fs_error(fs_info, ret,
3753                                               "errors while submitting device barriers.");
3754                         return ret;
3755                 }
3756         }
3757
3758         list_for_each_entry(dev, head, dev_list) {
3759                 if (!dev->bdev) {
3760                         total_errors++;
3761                         continue;
3762                 }
3763                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3764                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3765                         continue;
3766
3767                 btrfs_set_stack_device_generation(dev_item, 0);
3768                 btrfs_set_stack_device_type(dev_item, dev->type);
3769                 btrfs_set_stack_device_id(dev_item, dev->devid);
3770                 btrfs_set_stack_device_total_bytes(dev_item,
3771                                                    dev->commit_total_bytes);
3772                 btrfs_set_stack_device_bytes_used(dev_item,
3773                                                   dev->commit_bytes_used);
3774                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3775                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3776                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3777                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3778                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3779                        BTRFS_FSID_SIZE);
3780
3781                 flags = btrfs_super_flags(sb);
3782                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3783
3784                 ret = btrfs_validate_write_super(fs_info, sb);
3785                 if (ret < 0) {
3786                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3787                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
3788                                 "unexpected superblock corruption detected");
3789                         return -EUCLEAN;
3790                 }
3791
3792                 ret = write_dev_supers(dev, sb, max_mirrors);
3793                 if (ret)
3794                         total_errors++;
3795         }
3796         if (total_errors > max_errors) {
3797                 btrfs_err(fs_info, "%d errors while writing supers",
3798                           total_errors);
3799                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3800
3801                 /* FUA is masked off if unsupported and can't be the reason */
3802                 btrfs_handle_fs_error(fs_info, -EIO,
3803                                       "%d errors while writing supers",
3804                                       total_errors);
3805                 return -EIO;
3806         }
3807
3808         total_errors = 0;
3809         list_for_each_entry(dev, head, dev_list) {
3810                 if (!dev->bdev)
3811                         continue;
3812                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3813                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3814                         continue;
3815
3816                 ret = wait_dev_supers(dev, max_mirrors);
3817                 if (ret)
3818                         total_errors++;
3819         }
3820         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3821         if (total_errors > max_errors) {
3822                 btrfs_handle_fs_error(fs_info, -EIO,
3823                                       "%d errors while writing supers",
3824                                       total_errors);
3825                 return -EIO;
3826         }
3827         return 0;
3828 }
3829
3830 /* Drop a fs root from the radix tree and free it. */
3831 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3832                                   struct btrfs_root *root)
3833 {
3834         spin_lock(&fs_info->fs_roots_radix_lock);
3835         radix_tree_delete(&fs_info->fs_roots_radix,
3836                           (unsigned long)root->root_key.objectid);
3837         spin_unlock(&fs_info->fs_roots_radix_lock);
3838
3839         if (btrfs_root_refs(&root->root_item) == 0)
3840                 synchronize_srcu(&fs_info->subvol_srcu);
3841
3842         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3843                 btrfs_free_log(NULL, root);
3844                 if (root->reloc_root) {
3845                         free_extent_buffer(root->reloc_root->node);
3846                         free_extent_buffer(root->reloc_root->commit_root);
3847                         btrfs_put_fs_root(root->reloc_root);
3848                         root->reloc_root = NULL;
3849                 }
3850         }
3851
3852         if (root->free_ino_pinned)
3853                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3854         if (root->free_ino_ctl)
3855                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3856         btrfs_free_fs_root(root);
3857 }
3858
3859 void btrfs_free_fs_root(struct btrfs_root *root)
3860 {
3861         iput(root->ino_cache_inode);
3862         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3863         if (root->anon_dev)
3864                 free_anon_bdev(root->anon_dev);
3865         if (root->subv_writers)
3866                 btrfs_free_subvolume_writers(root->subv_writers);
3867         free_extent_buffer(root->node);
3868         free_extent_buffer(root->commit_root);
3869         kfree(root->free_ino_ctl);
3870         kfree(root->free_ino_pinned);
3871         btrfs_put_fs_root(root);
3872 }
3873
3874 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3875 {
3876         u64 root_objectid = 0;
3877         struct btrfs_root *gang[8];
3878         int i = 0;
3879         int err = 0;
3880         unsigned int ret = 0;
3881         int index;
3882
3883         while (1) {
3884                 index = srcu_read_lock(&fs_info->subvol_srcu);
3885                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3886                                              (void **)gang, root_objectid,
3887                                              ARRAY_SIZE(gang));
3888                 if (!ret) {
3889                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3890                         break;
3891                 }
3892                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3893
3894                 for (i = 0; i < ret; i++) {
3895                         /* Avoid to grab roots in dead_roots */
3896                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3897                                 gang[i] = NULL;
3898                                 continue;
3899                         }
3900                         /* grab all the search result for later use */
3901                         gang[i] = btrfs_grab_fs_root(gang[i]);
3902                 }
3903                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3904
3905                 for (i = 0; i < ret; i++) {
3906                         if (!gang[i])
3907                                 continue;
3908                         root_objectid = gang[i]->root_key.objectid;
3909                         err = btrfs_orphan_cleanup(gang[i]);
3910                         if (err)
3911                                 break;
3912                         btrfs_put_fs_root(gang[i]);
3913                 }
3914                 root_objectid++;
3915         }
3916
3917         /* release the uncleaned roots due to error */
3918         for (; i < ret; i++) {
3919                 if (gang[i])
3920                         btrfs_put_fs_root(gang[i]);
3921         }
3922         return err;
3923 }
3924
3925 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3926 {
3927         struct btrfs_root *root = fs_info->tree_root;
3928         struct btrfs_trans_handle *trans;
3929
3930         mutex_lock(&fs_info->cleaner_mutex);
3931         btrfs_run_delayed_iputs(fs_info);
3932         mutex_unlock(&fs_info->cleaner_mutex);
3933         wake_up_process(fs_info->cleaner_kthread);
3934
3935         /* wait until ongoing cleanup work done */
3936         down_write(&fs_info->cleanup_work_sem);
3937         up_write(&fs_info->cleanup_work_sem);
3938
3939         trans = btrfs_join_transaction(root);
3940         if (IS_ERR(trans))
3941                 return PTR_ERR(trans);
3942         return btrfs_commit_transaction(trans);
3943 }
3944
3945 void __cold close_ctree(struct btrfs_fs_info *fs_info)
3946 {
3947         int ret;
3948
3949         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3950         /*
3951          * We don't want the cleaner to start new transactions, add more delayed
3952          * iputs, etc. while we're closing. We can't use kthread_stop() yet
3953          * because that frees the task_struct, and the transaction kthread might
3954          * still try to wake up the cleaner.
3955          */
3956         kthread_park(fs_info->cleaner_kthread);
3957
3958         /* wait for the qgroup rescan worker to stop */
3959         btrfs_qgroup_wait_for_completion(fs_info, false);
3960
3961         /* wait for the uuid_scan task to finish */
3962         down(&fs_info->uuid_tree_rescan_sem);
3963         /* avoid complains from lockdep et al., set sem back to initial state */
3964         up(&fs_info->uuid_tree_rescan_sem);
3965
3966         /* pause restriper - we want to resume on mount */
3967         btrfs_pause_balance(fs_info);
3968
3969         btrfs_dev_replace_suspend_for_unmount(fs_info);
3970
3971         btrfs_scrub_cancel(fs_info);
3972
3973         /* wait for any defraggers to finish */
3974         wait_event(fs_info->transaction_wait,
3975                    (atomic_read(&fs_info->defrag_running) == 0));
3976
3977         /* clear out the rbtree of defraggable inodes */
3978         btrfs_cleanup_defrag_inodes(fs_info);
3979
3980         cancel_work_sync(&fs_info->async_reclaim_work);
3981
3982         /* Cancel or finish ongoing discard work */
3983         btrfs_discard_cleanup(fs_info);
3984
3985         if (!sb_rdonly(fs_info->sb)) {
3986                 /*
3987                  * The cleaner kthread is stopped, so do one final pass over
3988                  * unused block groups.
3989                  */
3990                 btrfs_delete_unused_bgs(fs_info);
3991
3992                 ret = btrfs_commit_super(fs_info);
3993                 if (ret)
3994                         btrfs_err(fs_info, "commit super ret %d", ret);
3995         }
3996
3997         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3998             test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
3999                 btrfs_error_commit_super(fs_info);
4000
4001         kthread_stop(fs_info->transaction_kthread);
4002         kthread_stop(fs_info->cleaner_kthread);
4003
4004         ASSERT(list_empty(&fs_info->delayed_iputs));
4005         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4006
4007         btrfs_free_qgroup_config(fs_info);
4008         ASSERT(list_empty(&fs_info->delalloc_roots));
4009
4010         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4011                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4012                        percpu_counter_sum(&fs_info->delalloc_bytes));
4013         }
4014
4015         if (percpu_counter_sum(&fs_info->dio_bytes))
4016                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4017                            percpu_counter_sum(&fs_info->dio_bytes));
4018
4019         btrfs_sysfs_remove_mounted(fs_info);
4020         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4021
4022         btrfs_free_fs_roots(fs_info);
4023
4024         btrfs_put_block_group_cache(fs_info);
4025
4026         /*
4027          * we must make sure there is not any read request to
4028          * submit after we stopping all workers.
4029          */
4030         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4031         btrfs_stop_all_workers(fs_info);
4032
4033         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4034         free_root_pointers(fs_info, true);
4035
4036         /*
4037          * We must free the block groups after dropping the fs_roots as we could
4038          * have had an IO error and have left over tree log blocks that aren't
4039          * cleaned up until the fs roots are freed.  This makes the block group
4040          * accounting appear to be wrong because there's pending reserved bytes,
4041          * so make sure we do the block group cleanup afterwards.
4042          */
4043         btrfs_free_block_groups(fs_info);
4044
4045         iput(fs_info->btree_inode);
4046
4047 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4048         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4049                 btrfsic_unmount(fs_info->fs_devices);
4050 #endif
4051
4052         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4053         btrfs_close_devices(fs_info->fs_devices);
4054
4055         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4056         percpu_counter_destroy(&fs_info->delalloc_bytes);
4057         percpu_counter_destroy(&fs_info->dio_bytes);
4058         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4059         cleanup_srcu_struct(&fs_info->subvol_srcu);
4060
4061         btrfs_free_csum_hash(fs_info);
4062         btrfs_free_stripe_hash_table(fs_info);
4063         btrfs_free_ref_cache(fs_info);
4064 }
4065
4066 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4067                           int atomic)
4068 {
4069         int ret;
4070         struct inode *btree_inode = buf->pages[0]->mapping->host;
4071
4072         ret = extent_buffer_uptodate(buf);
4073         if (!ret)
4074                 return ret;
4075
4076         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4077                                     parent_transid, atomic);
4078         if (ret == -EAGAIN)
4079                 return ret;
4080         return !ret;
4081 }
4082
4083 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4084 {
4085         struct btrfs_fs_info *fs_info;
4086         struct btrfs_root *root;
4087         u64 transid = btrfs_header_generation(buf);
4088         int was_dirty;
4089
4090 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4091         /*
4092          * This is a fast path so only do this check if we have sanity tests
4093          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4094          * outside of the sanity tests.
4095          */
4096         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4097                 return;
4098 #endif
4099         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4100         fs_info = root->fs_info;
4101         btrfs_assert_tree_locked(buf);
4102         if (transid != fs_info->generation)
4103                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4104                         buf->start, transid, fs_info->generation);
4105         was_dirty = set_extent_buffer_dirty(buf);
4106         if (!was_dirty)
4107                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4108                                          buf->len,
4109                                          fs_info->dirty_metadata_batch);
4110 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4111         /*
4112          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4113          * but item data not updated.
4114          * So here we should only check item pointers, not item data.
4115          */
4116         if (btrfs_header_level(buf) == 0 &&
4117             btrfs_check_leaf_relaxed(buf)) {
4118                 btrfs_print_leaf(buf);
4119                 ASSERT(0);
4120         }
4121 #endif
4122 }
4123
4124 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4125                                         int flush_delayed)
4126 {
4127         /*
4128          * looks as though older kernels can get into trouble with
4129          * this code, they end up stuck in balance_dirty_pages forever
4130          */
4131         int ret;
4132
4133         if (current->flags & PF_MEMALLOC)
4134                 return;
4135
4136         if (flush_delayed)
4137                 btrfs_balance_delayed_items(fs_info);
4138
4139         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4140                                      BTRFS_DIRTY_METADATA_THRESH,
4141                                      fs_info->dirty_metadata_batch);
4142         if (ret > 0) {
4143                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4144         }
4145 }
4146
4147 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4148 {
4149         __btrfs_btree_balance_dirty(fs_info, 1);
4150 }
4151
4152 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4153 {
4154         __btrfs_btree_balance_dirty(fs_info, 0);
4155 }
4156
4157 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4158                       struct btrfs_key *first_key)
4159 {
4160         return btree_read_extent_buffer_pages(buf, parent_transid,
4161                                               level, first_key);
4162 }
4163
4164 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4165 {
4166         /* cleanup FS via transaction */
4167         btrfs_cleanup_transaction(fs_info);
4168
4169         mutex_lock(&fs_info->cleaner_mutex);
4170         btrfs_run_delayed_iputs(fs_info);
4171         mutex_unlock(&fs_info->cleaner_mutex);
4172
4173         down_write(&fs_info->cleanup_work_sem);
4174         up_write(&fs_info->cleanup_work_sem);
4175 }
4176
4177 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4178 {
4179         struct btrfs_ordered_extent *ordered;
4180
4181         spin_lock(&root->ordered_extent_lock);
4182         /*
4183          * This will just short circuit the ordered completion stuff which will
4184          * make sure the ordered extent gets properly cleaned up.
4185          */
4186         list_for_each_entry(ordered, &root->ordered_extents,
4187                             root_extent_list)
4188                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4189         spin_unlock(&root->ordered_extent_lock);
4190 }
4191
4192 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4193 {
4194         struct btrfs_root *root;
4195         struct list_head splice;
4196
4197         INIT_LIST_HEAD(&splice);
4198
4199         spin_lock(&fs_info->ordered_root_lock);
4200         list_splice_init(&fs_info->ordered_roots, &splice);
4201         while (!list_empty(&splice)) {
4202                 root = list_first_entry(&splice, struct btrfs_root,
4203                                         ordered_root);
4204                 list_move_tail(&root->ordered_root,
4205                                &fs_info->ordered_roots);
4206
4207                 spin_unlock(&fs_info->ordered_root_lock);
4208                 btrfs_destroy_ordered_extents(root);
4209
4210                 cond_resched();
4211                 spin_lock(&fs_info->ordered_root_lock);
4212         }
4213         spin_unlock(&fs_info->ordered_root_lock);
4214
4215         /*
4216          * We need this here because if we've been flipped read-only we won't
4217          * get sync() from the umount, so we need to make sure any ordered
4218          * extents that haven't had their dirty pages IO start writeout yet
4219          * actually get run and error out properly.
4220          */
4221         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4222 }
4223
4224 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4225                                       struct btrfs_fs_info *fs_info)
4226 {
4227         struct rb_node *node;
4228         struct btrfs_delayed_ref_root *delayed_refs;
4229         struct btrfs_delayed_ref_node *ref;
4230         int ret = 0;
4231
4232         delayed_refs = &trans->delayed_refs;
4233
4234         spin_lock(&delayed_refs->lock);
4235         if (atomic_read(&delayed_refs->num_entries) == 0) {
4236                 spin_unlock(&delayed_refs->lock);
4237                 btrfs_info(fs_info, "delayed_refs has NO entry");
4238                 return ret;
4239         }
4240
4241         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4242                 struct btrfs_delayed_ref_head *head;
4243                 struct rb_node *n;
4244                 bool pin_bytes = false;
4245
4246                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4247                                 href_node);
4248                 if (btrfs_delayed_ref_lock(delayed_refs, head))
4249                         continue;
4250
4251                 spin_lock(&head->lock);
4252                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4253                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4254                                        ref_node);
4255                         ref->in_tree = 0;
4256                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4257                         RB_CLEAR_NODE(&ref->ref_node);
4258                         if (!list_empty(&ref->add_list))
4259                                 list_del(&ref->add_list);
4260                         atomic_dec(&delayed_refs->num_entries);
4261                         btrfs_put_delayed_ref(ref);
4262                 }
4263                 if (head->must_insert_reserved)
4264                         pin_bytes = true;
4265                 btrfs_free_delayed_extent_op(head->extent_op);
4266                 btrfs_delete_ref_head(delayed_refs, head);
4267                 spin_unlock(&head->lock);
4268                 spin_unlock(&delayed_refs->lock);
4269                 mutex_unlock(&head->mutex);
4270
4271                 if (pin_bytes)
4272                         btrfs_pin_extent(fs_info, head->bytenr,
4273                                          head->num_bytes, 1);
4274                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4275                 btrfs_put_delayed_ref_head(head);
4276                 cond_resched();
4277                 spin_lock(&delayed_refs->lock);
4278         }
4279
4280         spin_unlock(&delayed_refs->lock);
4281
4282         return ret;
4283 }
4284
4285 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4286 {
4287         struct btrfs_inode *btrfs_inode;
4288         struct list_head splice;
4289
4290         INIT_LIST_HEAD(&splice);
4291
4292         spin_lock(&root->delalloc_lock);
4293         list_splice_init(&root->delalloc_inodes, &splice);
4294
4295         while (!list_empty(&splice)) {
4296                 struct inode *inode = NULL;
4297                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4298                                                delalloc_inodes);
4299                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4300                 spin_unlock(&root->delalloc_lock);
4301
4302                 /*
4303                  * Make sure we get a live inode and that it'll not disappear
4304                  * meanwhile.
4305                  */
4306                 inode = igrab(&btrfs_inode->vfs_inode);
4307                 if (inode) {
4308                         invalidate_inode_pages2(inode->i_mapping);
4309                         iput(inode);
4310                 }
4311                 spin_lock(&root->delalloc_lock);
4312         }
4313         spin_unlock(&root->delalloc_lock);
4314 }
4315
4316 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4317 {
4318         struct btrfs_root *root;
4319         struct list_head splice;
4320
4321         INIT_LIST_HEAD(&splice);
4322
4323         spin_lock(&fs_info->delalloc_root_lock);
4324         list_splice_init(&fs_info->delalloc_roots, &splice);
4325         while (!list_empty(&splice)) {
4326                 root = list_first_entry(&splice, struct btrfs_root,
4327                                          delalloc_root);
4328                 root = btrfs_grab_fs_root(root);
4329                 BUG_ON(!root);
4330                 spin_unlock(&fs_info->delalloc_root_lock);
4331
4332                 btrfs_destroy_delalloc_inodes(root);
4333                 btrfs_put_fs_root(root);
4334
4335                 spin_lock(&fs_info->delalloc_root_lock);
4336         }
4337         spin_unlock(&fs_info->delalloc_root_lock);
4338 }
4339
4340 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4341                                         struct extent_io_tree *dirty_pages,
4342                                         int mark)
4343 {
4344         int ret;
4345         struct extent_buffer *eb;
4346         u64 start = 0;
4347         u64 end;
4348
4349         while (1) {
4350                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4351                                             mark, NULL);
4352                 if (ret)
4353                         break;
4354
4355                 clear_extent_bits(dirty_pages, start, end, mark);
4356                 while (start <= end) {
4357                         eb = find_extent_buffer(fs_info, start);
4358                         start += fs_info->nodesize;
4359                         if (!eb)
4360                                 continue;
4361                         wait_on_extent_buffer_writeback(eb);
4362
4363                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4364                                                &eb->bflags))
4365                                 clear_extent_buffer_dirty(eb);
4366                         free_extent_buffer_stale(eb);
4367                 }
4368         }
4369
4370         return ret;
4371 }
4372
4373 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4374                                        struct extent_io_tree *pinned_extents)
4375 {
4376         struct extent_io_tree *unpin;
4377         u64 start;
4378         u64 end;
4379         int ret;
4380         bool loop = true;
4381
4382         unpin = pinned_extents;
4383 again:
4384         while (1) {
4385                 struct extent_state *cached_state = NULL;
4386
4387                 /*
4388                  * The btrfs_finish_extent_commit() may get the same range as
4389                  * ours between find_first_extent_bit and clear_extent_dirty.
4390                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4391                  * the same extent range.
4392                  */
4393                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4394                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4395                                             EXTENT_DIRTY, &cached_state);
4396                 if (ret) {
4397                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4398                         break;
4399                 }
4400
4401                 clear_extent_dirty(unpin, start, end, &cached_state);
4402                 free_extent_state(cached_state);
4403                 btrfs_error_unpin_extent_range(fs_info, start, end);
4404                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4405                 cond_resched();
4406         }
4407
4408         if (loop) {
4409                 if (unpin == &fs_info->freed_extents[0])
4410                         unpin = &fs_info->freed_extents[1];
4411                 else
4412                         unpin = &fs_info->freed_extents[0];
4413                 loop = false;
4414                 goto again;
4415         }
4416
4417         return 0;
4418 }
4419
4420 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4421 {
4422         struct inode *inode;
4423
4424         inode = cache->io_ctl.inode;
4425         if (inode) {
4426                 invalidate_inode_pages2(inode->i_mapping);
4427                 BTRFS_I(inode)->generation = 0;
4428                 cache->io_ctl.inode = NULL;
4429                 iput(inode);
4430         }
4431         btrfs_put_block_group(cache);
4432 }
4433
4434 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4435                              struct btrfs_fs_info *fs_info)
4436 {
4437         struct btrfs_block_group *cache;
4438
4439         spin_lock(&cur_trans->dirty_bgs_lock);
4440         while (!list_empty(&cur_trans->dirty_bgs)) {
4441                 cache = list_first_entry(&cur_trans->dirty_bgs,
4442                                          struct btrfs_block_group,
4443                                          dirty_list);
4444
4445                 if (!list_empty(&cache->io_list)) {
4446                         spin_unlock(&cur_trans->dirty_bgs_lock);
4447                         list_del_init(&cache->io_list);
4448                         btrfs_cleanup_bg_io(cache);
4449                         spin_lock(&cur_trans->dirty_bgs_lock);
4450                 }
4451
4452                 list_del_init(&cache->dirty_list);
4453                 spin_lock(&cache->lock);
4454                 cache->disk_cache_state = BTRFS_DC_ERROR;
4455                 spin_unlock(&cache->lock);
4456
4457                 spin_unlock(&cur_trans->dirty_bgs_lock);
4458                 btrfs_put_block_group(cache);
4459                 btrfs_delayed_refs_rsv_release(fs_info, 1);
4460                 spin_lock(&cur_trans->dirty_bgs_lock);
4461         }
4462         spin_unlock(&cur_trans->dirty_bgs_lock);
4463
4464         /*
4465          * Refer to the definition of io_bgs member for details why it's safe
4466          * to use it without any locking
4467          */
4468         while (!list_empty(&cur_trans->io_bgs)) {
4469                 cache = list_first_entry(&cur_trans->io_bgs,
4470                                          struct btrfs_block_group,
4471                                          io_list);
4472
4473                 list_del_init(&cache->io_list);
4474                 spin_lock(&cache->lock);
4475                 cache->disk_cache_state = BTRFS_DC_ERROR;
4476                 spin_unlock(&cache->lock);
4477                 btrfs_cleanup_bg_io(cache);
4478         }
4479 }
4480
4481 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4482                                    struct btrfs_fs_info *fs_info)
4483 {
4484         struct btrfs_device *dev, *tmp;
4485
4486         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4487         ASSERT(list_empty(&cur_trans->dirty_bgs));
4488         ASSERT(list_empty(&cur_trans->io_bgs));
4489
4490         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4491                                  post_commit_list) {
4492                 list_del_init(&dev->post_commit_list);
4493         }
4494
4495         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4496
4497         cur_trans->state = TRANS_STATE_COMMIT_START;
4498         wake_up(&fs_info->transaction_blocked_wait);
4499
4500         cur_trans->state = TRANS_STATE_UNBLOCKED;
4501         wake_up(&fs_info->transaction_wait);
4502
4503         btrfs_destroy_delayed_inodes(fs_info);
4504         btrfs_assert_delayed_root_empty(fs_info);
4505
4506         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4507                                      EXTENT_DIRTY);
4508         btrfs_destroy_pinned_extent(fs_info,
4509                                     fs_info->pinned_extents);
4510
4511         cur_trans->state =TRANS_STATE_COMPLETED;
4512         wake_up(&cur_trans->commit_wait);
4513 }
4514
4515 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4516 {
4517         struct btrfs_transaction *t;
4518
4519         mutex_lock(&fs_info->transaction_kthread_mutex);
4520
4521         spin_lock(&fs_info->trans_lock);
4522         while (!list_empty(&fs_info->trans_list)) {
4523                 t = list_first_entry(&fs_info->trans_list,
4524                                      struct btrfs_transaction, list);
4525                 if (t->state >= TRANS_STATE_COMMIT_START) {
4526                         refcount_inc(&t->use_count);
4527                         spin_unlock(&fs_info->trans_lock);
4528                         btrfs_wait_for_commit(fs_info, t->transid);
4529                         btrfs_put_transaction(t);
4530                         spin_lock(&fs_info->trans_lock);
4531                         continue;
4532                 }
4533                 if (t == fs_info->running_transaction) {
4534                         t->state = TRANS_STATE_COMMIT_DOING;
4535                         spin_unlock(&fs_info->trans_lock);
4536                         /*
4537                          * We wait for 0 num_writers since we don't hold a trans
4538                          * handle open currently for this transaction.
4539                          */
4540                         wait_event(t->writer_wait,
4541                                    atomic_read(&t->num_writers) == 0);
4542                 } else {
4543                         spin_unlock(&fs_info->trans_lock);
4544                 }
4545                 btrfs_cleanup_one_transaction(t, fs_info);
4546
4547                 spin_lock(&fs_info->trans_lock);
4548                 if (t == fs_info->running_transaction)
4549                         fs_info->running_transaction = NULL;
4550                 list_del_init(&t->list);
4551                 spin_unlock(&fs_info->trans_lock);
4552
4553                 btrfs_put_transaction(t);
4554                 trace_btrfs_transaction_commit(fs_info->tree_root);
4555                 spin_lock(&fs_info->trans_lock);
4556         }
4557         spin_unlock(&fs_info->trans_lock);
4558         btrfs_destroy_all_ordered_extents(fs_info);
4559         btrfs_destroy_delayed_inodes(fs_info);
4560         btrfs_assert_delayed_root_empty(fs_info);
4561         btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4562         btrfs_destroy_all_delalloc_inodes(fs_info);
4563         mutex_unlock(&fs_info->transaction_kthread_mutex);
4564
4565         return 0;
4566 }
4567
4568 static const struct extent_io_ops btree_extent_io_ops = {
4569         /* mandatory callbacks */
4570         .submit_bio_hook = btree_submit_bio_hook,
4571         .readpage_end_io_hook = btree_readpage_end_io_hook,
4572 };