btrfs: hold a ref on the root in open_ctree
[linux-2.6-microblaze.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <linux/sched/mm.h>
21 #include <asm/unaligned.h>
22 #include <crypto/hash.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "volumes.h"
28 #include "print-tree.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "free-space-cache.h"
32 #include "free-space-tree.h"
33 #include "inode-map.h"
34 #include "check-integrity.h"
35 #include "rcu-string.h"
36 #include "dev-replace.h"
37 #include "raid56.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40 #include "compression.h"
41 #include "tree-checker.h"
42 #include "ref-verify.h"
43 #include "block-group.h"
44 #include "discard.h"
45
46 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
47                                  BTRFS_HEADER_FLAG_RELOC |\
48                                  BTRFS_SUPER_FLAG_ERROR |\
49                                  BTRFS_SUPER_FLAG_SEEDING |\
50                                  BTRFS_SUPER_FLAG_METADUMP |\
51                                  BTRFS_SUPER_FLAG_METADUMP_V2)
52
53 static const struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57                                       struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60                                         struct extent_io_tree *dirty_pages,
61                                         int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63                                        struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66
67 /*
68  * btrfs_end_io_wq structs are used to do processing in task context when an IO
69  * is complete.  This is used during reads to verify checksums, and it is used
70  * by writes to insert metadata for new file extents after IO is complete.
71  */
72 struct btrfs_end_io_wq {
73         struct bio *bio;
74         bio_end_io_t *end_io;
75         void *private;
76         struct btrfs_fs_info *info;
77         blk_status_t status;
78         enum btrfs_wq_endio_type metadata;
79         struct btrfs_work work;
80 };
81
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83
84 int __init btrfs_end_io_wq_init(void)
85 {
86         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87                                         sizeof(struct btrfs_end_io_wq),
88                                         0,
89                                         SLAB_MEM_SPREAD,
90                                         NULL);
91         if (!btrfs_end_io_wq_cache)
92                 return -ENOMEM;
93         return 0;
94 }
95
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98         kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100
101 /*
102  * async submit bios are used to offload expensive checksumming
103  * onto the worker threads.  They checksum file and metadata bios
104  * just before they are sent down the IO stack.
105  */
106 struct async_submit_bio {
107         void *private_data;
108         struct bio *bio;
109         extent_submit_bio_start_t *submit_bio_start;
110         int mirror_num;
111         /*
112          * bio_offset is optional, can be used if the pages in the bio
113          * can't tell us where in the file the bio should go
114          */
115         u64 bio_offset;
116         struct btrfs_work work;
117         blk_status_t status;
118 };
119
120 /*
121  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
122  * eb, the lockdep key is determined by the btrfs_root it belongs to and
123  * the level the eb occupies in the tree.
124  *
125  * Different roots are used for different purposes and may nest inside each
126  * other and they require separate keysets.  As lockdep keys should be
127  * static, assign keysets according to the purpose of the root as indicated
128  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
129  * roots have separate keysets.
130  *
131  * Lock-nesting across peer nodes is always done with the immediate parent
132  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
133  * subclass to avoid triggering lockdep warning in such cases.
134  *
135  * The key is set by the readpage_end_io_hook after the buffer has passed
136  * csum validation but before the pages are unlocked.  It is also set by
137  * btrfs_init_new_buffer on freshly allocated blocks.
138  *
139  * We also add a check to make sure the highest level of the tree is the
140  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
141  * needs update as well.
142  */
143 #ifdef CONFIG_DEBUG_LOCK_ALLOC
144 # if BTRFS_MAX_LEVEL != 8
145 #  error
146 # endif
147
148 static struct btrfs_lockdep_keyset {
149         u64                     id;             /* root objectid */
150         const char              *name_stem;     /* lock name stem */
151         char                    names[BTRFS_MAX_LEVEL + 1][20];
152         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
153 } btrfs_lockdep_keysets[] = {
154         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
155         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
156         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
157         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
158         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
159         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
160         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
161         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
162         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
163         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
164         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
165         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
166         { .id = 0,                              .name_stem = "tree"     },
167 };
168
169 void __init btrfs_init_lockdep(void)
170 {
171         int i, j;
172
173         /* initialize lockdep class names */
174         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
175                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
176
177                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
178                         snprintf(ks->names[j], sizeof(ks->names[j]),
179                                  "btrfs-%s-%02d", ks->name_stem, j);
180         }
181 }
182
183 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
184                                     int level)
185 {
186         struct btrfs_lockdep_keyset *ks;
187
188         BUG_ON(level >= ARRAY_SIZE(ks->keys));
189
190         /* find the matching keyset, id 0 is the default entry */
191         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
192                 if (ks->id == objectid)
193                         break;
194
195         lockdep_set_class_and_name(&eb->lock,
196                                    &ks->keys[level], ks->names[level]);
197 }
198
199 #endif
200
201 /*
202  * extents on the btree inode are pretty simple, there's one extent
203  * that covers the entire device
204  */
205 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
206                                     struct page *page, size_t pg_offset,
207                                     u64 start, u64 len)
208 {
209         struct extent_map_tree *em_tree = &inode->extent_tree;
210         struct extent_map *em;
211         int ret;
212
213         read_lock(&em_tree->lock);
214         em = lookup_extent_mapping(em_tree, start, len);
215         if (em) {
216                 read_unlock(&em_tree->lock);
217                 goto out;
218         }
219         read_unlock(&em_tree->lock);
220
221         em = alloc_extent_map();
222         if (!em) {
223                 em = ERR_PTR(-ENOMEM);
224                 goto out;
225         }
226         em->start = 0;
227         em->len = (u64)-1;
228         em->block_len = (u64)-1;
229         em->block_start = 0;
230
231         write_lock(&em_tree->lock);
232         ret = add_extent_mapping(em_tree, em, 0);
233         if (ret == -EEXIST) {
234                 free_extent_map(em);
235                 em = lookup_extent_mapping(em_tree, start, len);
236                 if (!em)
237                         em = ERR_PTR(-EIO);
238         } else if (ret) {
239                 free_extent_map(em);
240                 em = ERR_PTR(ret);
241         }
242         write_unlock(&em_tree->lock);
243
244 out:
245         return em;
246 }
247
248 /*
249  * Compute the csum of a btree block and store the result to provided buffer.
250  *
251  * Returns error if the extent buffer cannot be mapped.
252  */
253 static int csum_tree_block(struct extent_buffer *buf, u8 *result)
254 {
255         struct btrfs_fs_info *fs_info = buf->fs_info;
256         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
257         unsigned long len;
258         unsigned long cur_len;
259         unsigned long offset = BTRFS_CSUM_SIZE;
260         char *kaddr;
261         unsigned long map_start;
262         unsigned long map_len;
263         int err;
264
265         shash->tfm = fs_info->csum_shash;
266         crypto_shash_init(shash);
267
268         len = buf->len - offset;
269
270         while (len > 0) {
271                 /*
272                  * Note: we don't need to check for the err == 1 case here, as
273                  * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
274                  * and 'min_len = 32' and the currently implemented mapping
275                  * algorithm we cannot cross a page boundary.
276                  */
277                 err = map_private_extent_buffer(buf, offset, 32,
278                                         &kaddr, &map_start, &map_len);
279                 if (WARN_ON(err))
280                         return err;
281                 cur_len = min(len, map_len - (offset - map_start));
282                 crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
283                 len -= cur_len;
284                 offset += cur_len;
285         }
286         memset(result, 0, BTRFS_CSUM_SIZE);
287
288         crypto_shash_final(shash, result);
289
290         return 0;
291 }
292
293 /*
294  * we can't consider a given block up to date unless the transid of the
295  * block matches the transid in the parent node's pointer.  This is how we
296  * detect blocks that either didn't get written at all or got written
297  * in the wrong place.
298  */
299 static int verify_parent_transid(struct extent_io_tree *io_tree,
300                                  struct extent_buffer *eb, u64 parent_transid,
301                                  int atomic)
302 {
303         struct extent_state *cached_state = NULL;
304         int ret;
305         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
306
307         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
308                 return 0;
309
310         if (atomic)
311                 return -EAGAIN;
312
313         if (need_lock) {
314                 btrfs_tree_read_lock(eb);
315                 btrfs_set_lock_blocking_read(eb);
316         }
317
318         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
319                          &cached_state);
320         if (extent_buffer_uptodate(eb) &&
321             btrfs_header_generation(eb) == parent_transid) {
322                 ret = 0;
323                 goto out;
324         }
325         btrfs_err_rl(eb->fs_info,
326                 "parent transid verify failed on %llu wanted %llu found %llu",
327                         eb->start,
328                         parent_transid, btrfs_header_generation(eb));
329         ret = 1;
330
331         /*
332          * Things reading via commit roots that don't have normal protection,
333          * like send, can have a really old block in cache that may point at a
334          * block that has been freed and re-allocated.  So don't clear uptodate
335          * if we find an eb that is under IO (dirty/writeback) because we could
336          * end up reading in the stale data and then writing it back out and
337          * making everybody very sad.
338          */
339         if (!extent_buffer_under_io(eb))
340                 clear_extent_buffer_uptodate(eb);
341 out:
342         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
343                              &cached_state);
344         if (need_lock)
345                 btrfs_tree_read_unlock_blocking(eb);
346         return ret;
347 }
348
349 static bool btrfs_supported_super_csum(u16 csum_type)
350 {
351         switch (csum_type) {
352         case BTRFS_CSUM_TYPE_CRC32:
353         case BTRFS_CSUM_TYPE_XXHASH:
354         case BTRFS_CSUM_TYPE_SHA256:
355         case BTRFS_CSUM_TYPE_BLAKE2:
356                 return true;
357         default:
358                 return false;
359         }
360 }
361
362 /*
363  * Return 0 if the superblock checksum type matches the checksum value of that
364  * algorithm. Pass the raw disk superblock data.
365  */
366 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
367                                   char *raw_disk_sb)
368 {
369         struct btrfs_super_block *disk_sb =
370                 (struct btrfs_super_block *)raw_disk_sb;
371         char result[BTRFS_CSUM_SIZE];
372         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
373
374         shash->tfm = fs_info->csum_shash;
375         crypto_shash_init(shash);
376
377         /*
378          * The super_block structure does not span the whole
379          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
380          * filled with zeros and is included in the checksum.
381          */
382         crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
383                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
384         crypto_shash_final(shash, result);
385
386         if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
387                 return 1;
388
389         return 0;
390 }
391
392 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
393                            struct btrfs_key *first_key, u64 parent_transid)
394 {
395         struct btrfs_fs_info *fs_info = eb->fs_info;
396         int found_level;
397         struct btrfs_key found_key;
398         int ret;
399
400         found_level = btrfs_header_level(eb);
401         if (found_level != level) {
402                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
403                      KERN_ERR "BTRFS: tree level check failed\n");
404                 btrfs_err(fs_info,
405 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
406                           eb->start, level, found_level);
407                 return -EIO;
408         }
409
410         if (!first_key)
411                 return 0;
412
413         /*
414          * For live tree block (new tree blocks in current transaction),
415          * we need proper lock context to avoid race, which is impossible here.
416          * So we only checks tree blocks which is read from disk, whose
417          * generation <= fs_info->last_trans_committed.
418          */
419         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
420                 return 0;
421
422         /* We have @first_key, so this @eb must have at least one item */
423         if (btrfs_header_nritems(eb) == 0) {
424                 btrfs_err(fs_info,
425                 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
426                           eb->start);
427                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
428                 return -EUCLEAN;
429         }
430
431         if (found_level)
432                 btrfs_node_key_to_cpu(eb, &found_key, 0);
433         else
434                 btrfs_item_key_to_cpu(eb, &found_key, 0);
435         ret = btrfs_comp_cpu_keys(first_key, &found_key);
436
437         if (ret) {
438                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
439                      KERN_ERR "BTRFS: tree first key check failed\n");
440                 btrfs_err(fs_info,
441 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
442                           eb->start, parent_transid, first_key->objectid,
443                           first_key->type, first_key->offset,
444                           found_key.objectid, found_key.type,
445                           found_key.offset);
446         }
447         return ret;
448 }
449
450 /*
451  * helper to read a given tree block, doing retries as required when
452  * the checksums don't match and we have alternate mirrors to try.
453  *
454  * @parent_transid:     expected transid, skip check if 0
455  * @level:              expected level, mandatory check
456  * @first_key:          expected key of first slot, skip check if NULL
457  */
458 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
459                                           u64 parent_transid, int level,
460                                           struct btrfs_key *first_key)
461 {
462         struct btrfs_fs_info *fs_info = eb->fs_info;
463         struct extent_io_tree *io_tree;
464         int failed = 0;
465         int ret;
466         int num_copies = 0;
467         int mirror_num = 0;
468         int failed_mirror = 0;
469
470         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
471         while (1) {
472                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
473                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
474                 if (!ret) {
475                         if (verify_parent_transid(io_tree, eb,
476                                                    parent_transid, 0))
477                                 ret = -EIO;
478                         else if (btrfs_verify_level_key(eb, level,
479                                                 first_key, parent_transid))
480                                 ret = -EUCLEAN;
481                         else
482                                 break;
483                 }
484
485                 num_copies = btrfs_num_copies(fs_info,
486                                               eb->start, eb->len);
487                 if (num_copies == 1)
488                         break;
489
490                 if (!failed_mirror) {
491                         failed = 1;
492                         failed_mirror = eb->read_mirror;
493                 }
494
495                 mirror_num++;
496                 if (mirror_num == failed_mirror)
497                         mirror_num++;
498
499                 if (mirror_num > num_copies)
500                         break;
501         }
502
503         if (failed && !ret && failed_mirror)
504                 btrfs_repair_eb_io_failure(eb, failed_mirror);
505
506         return ret;
507 }
508
509 /*
510  * checksum a dirty tree block before IO.  This has extra checks to make sure
511  * we only fill in the checksum field in the first page of a multi-page block
512  */
513
514 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
515 {
516         u64 start = page_offset(page);
517         u64 found_start;
518         u8 result[BTRFS_CSUM_SIZE];
519         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
520         struct extent_buffer *eb;
521         int ret;
522
523         eb = (struct extent_buffer *)page->private;
524         if (page != eb->pages[0])
525                 return 0;
526
527         found_start = btrfs_header_bytenr(eb);
528         /*
529          * Please do not consolidate these warnings into a single if.
530          * It is useful to know what went wrong.
531          */
532         if (WARN_ON(found_start != start))
533                 return -EUCLEAN;
534         if (WARN_ON(!PageUptodate(page)))
535                 return -EUCLEAN;
536
537         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
538                         btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
539
540         if (csum_tree_block(eb, result))
541                 return -EINVAL;
542
543         if (btrfs_header_level(eb))
544                 ret = btrfs_check_node(eb);
545         else
546                 ret = btrfs_check_leaf_full(eb);
547
548         if (ret < 0) {
549                 btrfs_print_tree(eb, 0);
550                 btrfs_err(fs_info,
551                 "block=%llu write time tree block corruption detected",
552                           eb->start);
553                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
554                 return ret;
555         }
556         write_extent_buffer(eb, result, 0, csum_size);
557
558         return 0;
559 }
560
561 static int check_tree_block_fsid(struct extent_buffer *eb)
562 {
563         struct btrfs_fs_info *fs_info = eb->fs_info;
564         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
565         u8 fsid[BTRFS_FSID_SIZE];
566         int ret = 1;
567
568         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
569         while (fs_devices) {
570                 u8 *metadata_uuid;
571
572                 /*
573                  * Checking the incompat flag is only valid for the current
574                  * fs. For seed devices it's forbidden to have their uuid
575                  * changed so reading ->fsid in this case is fine
576                  */
577                 if (fs_devices == fs_info->fs_devices &&
578                     btrfs_fs_incompat(fs_info, METADATA_UUID))
579                         metadata_uuid = fs_devices->metadata_uuid;
580                 else
581                         metadata_uuid = fs_devices->fsid;
582
583                 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
584                         ret = 0;
585                         break;
586                 }
587                 fs_devices = fs_devices->seed;
588         }
589         return ret;
590 }
591
592 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
593                                       u64 phy_offset, struct page *page,
594                                       u64 start, u64 end, int mirror)
595 {
596         u64 found_start;
597         int found_level;
598         struct extent_buffer *eb;
599         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
600         struct btrfs_fs_info *fs_info = root->fs_info;
601         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
602         int ret = 0;
603         u8 result[BTRFS_CSUM_SIZE];
604         int reads_done;
605
606         if (!page->private)
607                 goto out;
608
609         eb = (struct extent_buffer *)page->private;
610
611         /* the pending IO might have been the only thing that kept this buffer
612          * in memory.  Make sure we have a ref for all this other checks
613          */
614         atomic_inc(&eb->refs);
615
616         reads_done = atomic_dec_and_test(&eb->io_pages);
617         if (!reads_done)
618                 goto err;
619
620         eb->read_mirror = mirror;
621         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
622                 ret = -EIO;
623                 goto err;
624         }
625
626         found_start = btrfs_header_bytenr(eb);
627         if (found_start != eb->start) {
628                 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
629                              eb->start, found_start);
630                 ret = -EIO;
631                 goto err;
632         }
633         if (check_tree_block_fsid(eb)) {
634                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
635                              eb->start);
636                 ret = -EIO;
637                 goto err;
638         }
639         found_level = btrfs_header_level(eb);
640         if (found_level >= BTRFS_MAX_LEVEL) {
641                 btrfs_err(fs_info, "bad tree block level %d on %llu",
642                           (int)btrfs_header_level(eb), eb->start);
643                 ret = -EIO;
644                 goto err;
645         }
646
647         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
648                                        eb, found_level);
649
650         ret = csum_tree_block(eb, result);
651         if (ret)
652                 goto err;
653
654         if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
655                 u32 val;
656                 u32 found = 0;
657
658                 memcpy(&found, result, csum_size);
659
660                 read_extent_buffer(eb, &val, 0, csum_size);
661                 btrfs_warn_rl(fs_info,
662                 "%s checksum verify failed on %llu wanted %x found %x level %d",
663                               fs_info->sb->s_id, eb->start,
664                               val, found, btrfs_header_level(eb));
665                 ret = -EUCLEAN;
666                 goto err;
667         }
668
669         /*
670          * If this is a leaf block and it is corrupt, set the corrupt bit so
671          * that we don't try and read the other copies of this block, just
672          * return -EIO.
673          */
674         if (found_level == 0 && btrfs_check_leaf_full(eb)) {
675                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
676                 ret = -EIO;
677         }
678
679         if (found_level > 0 && btrfs_check_node(eb))
680                 ret = -EIO;
681
682         if (!ret)
683                 set_extent_buffer_uptodate(eb);
684         else
685                 btrfs_err(fs_info,
686                           "block=%llu read time tree block corruption detected",
687                           eb->start);
688 err:
689         if (reads_done &&
690             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
691                 btree_readahead_hook(eb, ret);
692
693         if (ret) {
694                 /*
695                  * our io error hook is going to dec the io pages
696                  * again, we have to make sure it has something
697                  * to decrement
698                  */
699                 atomic_inc(&eb->io_pages);
700                 clear_extent_buffer_uptodate(eb);
701         }
702         free_extent_buffer(eb);
703 out:
704         return ret;
705 }
706
707 static void end_workqueue_bio(struct bio *bio)
708 {
709         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
710         struct btrfs_fs_info *fs_info;
711         struct btrfs_workqueue *wq;
712
713         fs_info = end_io_wq->info;
714         end_io_wq->status = bio->bi_status;
715
716         if (bio_op(bio) == REQ_OP_WRITE) {
717                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
718                         wq = fs_info->endio_meta_write_workers;
719                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
720                         wq = fs_info->endio_freespace_worker;
721                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
722                         wq = fs_info->endio_raid56_workers;
723                 else
724                         wq = fs_info->endio_write_workers;
725         } else {
726                 if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
727                         wq = fs_info->endio_repair_workers;
728                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
729                         wq = fs_info->endio_raid56_workers;
730                 else if (end_io_wq->metadata)
731                         wq = fs_info->endio_meta_workers;
732                 else
733                         wq = fs_info->endio_workers;
734         }
735
736         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
737         btrfs_queue_work(wq, &end_io_wq->work);
738 }
739
740 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
741                         enum btrfs_wq_endio_type metadata)
742 {
743         struct btrfs_end_io_wq *end_io_wq;
744
745         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
746         if (!end_io_wq)
747                 return BLK_STS_RESOURCE;
748
749         end_io_wq->private = bio->bi_private;
750         end_io_wq->end_io = bio->bi_end_io;
751         end_io_wq->info = info;
752         end_io_wq->status = 0;
753         end_io_wq->bio = bio;
754         end_io_wq->metadata = metadata;
755
756         bio->bi_private = end_io_wq;
757         bio->bi_end_io = end_workqueue_bio;
758         return 0;
759 }
760
761 static void run_one_async_start(struct btrfs_work *work)
762 {
763         struct async_submit_bio *async;
764         blk_status_t ret;
765
766         async = container_of(work, struct  async_submit_bio, work);
767         ret = async->submit_bio_start(async->private_data, async->bio,
768                                       async->bio_offset);
769         if (ret)
770                 async->status = ret;
771 }
772
773 /*
774  * In order to insert checksums into the metadata in large chunks, we wait
775  * until bio submission time.   All the pages in the bio are checksummed and
776  * sums are attached onto the ordered extent record.
777  *
778  * At IO completion time the csums attached on the ordered extent record are
779  * inserted into the tree.
780  */
781 static void run_one_async_done(struct btrfs_work *work)
782 {
783         struct async_submit_bio *async;
784         struct inode *inode;
785         blk_status_t ret;
786
787         async = container_of(work, struct  async_submit_bio, work);
788         inode = async->private_data;
789
790         /* If an error occurred we just want to clean up the bio and move on */
791         if (async->status) {
792                 async->bio->bi_status = async->status;
793                 bio_endio(async->bio);
794                 return;
795         }
796
797         /*
798          * All of the bios that pass through here are from async helpers.
799          * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
800          * This changes nothing when cgroups aren't in use.
801          */
802         async->bio->bi_opf |= REQ_CGROUP_PUNT;
803         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
804         if (ret) {
805                 async->bio->bi_status = ret;
806                 bio_endio(async->bio);
807         }
808 }
809
810 static void run_one_async_free(struct btrfs_work *work)
811 {
812         struct async_submit_bio *async;
813
814         async = container_of(work, struct  async_submit_bio, work);
815         kfree(async);
816 }
817
818 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
819                                  int mirror_num, unsigned long bio_flags,
820                                  u64 bio_offset, void *private_data,
821                                  extent_submit_bio_start_t *submit_bio_start)
822 {
823         struct async_submit_bio *async;
824
825         async = kmalloc(sizeof(*async), GFP_NOFS);
826         if (!async)
827                 return BLK_STS_RESOURCE;
828
829         async->private_data = private_data;
830         async->bio = bio;
831         async->mirror_num = mirror_num;
832         async->submit_bio_start = submit_bio_start;
833
834         btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
835                         run_one_async_free);
836
837         async->bio_offset = bio_offset;
838
839         async->status = 0;
840
841         if (op_is_sync(bio->bi_opf))
842                 btrfs_set_work_high_priority(&async->work);
843
844         btrfs_queue_work(fs_info->workers, &async->work);
845         return 0;
846 }
847
848 static blk_status_t btree_csum_one_bio(struct bio *bio)
849 {
850         struct bio_vec *bvec;
851         struct btrfs_root *root;
852         int ret = 0;
853         struct bvec_iter_all iter_all;
854
855         ASSERT(!bio_flagged(bio, BIO_CLONED));
856         bio_for_each_segment_all(bvec, bio, iter_all) {
857                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
858                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
859                 if (ret)
860                         break;
861         }
862
863         return errno_to_blk_status(ret);
864 }
865
866 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
867                                              u64 bio_offset)
868 {
869         /*
870          * when we're called for a write, we're already in the async
871          * submission context.  Just jump into btrfs_map_bio
872          */
873         return btree_csum_one_bio(bio);
874 }
875
876 static int check_async_write(struct btrfs_fs_info *fs_info,
877                              struct btrfs_inode *bi)
878 {
879         if (atomic_read(&bi->sync_writers))
880                 return 0;
881         if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
882                 return 0;
883         return 1;
884 }
885
886 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
887                                           int mirror_num,
888                                           unsigned long bio_flags)
889 {
890         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
891         int async = check_async_write(fs_info, BTRFS_I(inode));
892         blk_status_t ret;
893
894         if (bio_op(bio) != REQ_OP_WRITE) {
895                 /*
896                  * called for a read, do the setup so that checksum validation
897                  * can happen in the async kernel threads
898                  */
899                 ret = btrfs_bio_wq_end_io(fs_info, bio,
900                                           BTRFS_WQ_ENDIO_METADATA);
901                 if (ret)
902                         goto out_w_error;
903                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
904         } else if (!async) {
905                 ret = btree_csum_one_bio(bio);
906                 if (ret)
907                         goto out_w_error;
908                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
909         } else {
910                 /*
911                  * kthread helpers are used to submit writes so that
912                  * checksumming can happen in parallel across all CPUs
913                  */
914                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
915                                           0, inode, btree_submit_bio_start);
916         }
917
918         if (ret)
919                 goto out_w_error;
920         return 0;
921
922 out_w_error:
923         bio->bi_status = ret;
924         bio_endio(bio);
925         return ret;
926 }
927
928 #ifdef CONFIG_MIGRATION
929 static int btree_migratepage(struct address_space *mapping,
930                         struct page *newpage, struct page *page,
931                         enum migrate_mode mode)
932 {
933         /*
934          * we can't safely write a btree page from here,
935          * we haven't done the locking hook
936          */
937         if (PageDirty(page))
938                 return -EAGAIN;
939         /*
940          * Buffers may be managed in a filesystem specific way.
941          * We must have no buffers or drop them.
942          */
943         if (page_has_private(page) &&
944             !try_to_release_page(page, GFP_KERNEL))
945                 return -EAGAIN;
946         return migrate_page(mapping, newpage, page, mode);
947 }
948 #endif
949
950
951 static int btree_writepages(struct address_space *mapping,
952                             struct writeback_control *wbc)
953 {
954         struct btrfs_fs_info *fs_info;
955         int ret;
956
957         if (wbc->sync_mode == WB_SYNC_NONE) {
958
959                 if (wbc->for_kupdate)
960                         return 0;
961
962                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
963                 /* this is a bit racy, but that's ok */
964                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
965                                              BTRFS_DIRTY_METADATA_THRESH,
966                                              fs_info->dirty_metadata_batch);
967                 if (ret < 0)
968                         return 0;
969         }
970         return btree_write_cache_pages(mapping, wbc);
971 }
972
973 static int btree_readpage(struct file *file, struct page *page)
974 {
975         struct extent_io_tree *tree;
976         tree = &BTRFS_I(page->mapping->host)->io_tree;
977         return extent_read_full_page(tree, page, btree_get_extent, 0);
978 }
979
980 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
981 {
982         if (PageWriteback(page) || PageDirty(page))
983                 return 0;
984
985         return try_release_extent_buffer(page);
986 }
987
988 static void btree_invalidatepage(struct page *page, unsigned int offset,
989                                  unsigned int length)
990 {
991         struct extent_io_tree *tree;
992         tree = &BTRFS_I(page->mapping->host)->io_tree;
993         extent_invalidatepage(tree, page, offset);
994         btree_releasepage(page, GFP_NOFS);
995         if (PagePrivate(page)) {
996                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
997                            "page private not zero on page %llu",
998                            (unsigned long long)page_offset(page));
999                 ClearPagePrivate(page);
1000                 set_page_private(page, 0);
1001                 put_page(page);
1002         }
1003 }
1004
1005 static int btree_set_page_dirty(struct page *page)
1006 {
1007 #ifdef DEBUG
1008         struct extent_buffer *eb;
1009
1010         BUG_ON(!PagePrivate(page));
1011         eb = (struct extent_buffer *)page->private;
1012         BUG_ON(!eb);
1013         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1014         BUG_ON(!atomic_read(&eb->refs));
1015         btrfs_assert_tree_locked(eb);
1016 #endif
1017         return __set_page_dirty_nobuffers(page);
1018 }
1019
1020 static const struct address_space_operations btree_aops = {
1021         .readpage       = btree_readpage,
1022         .writepages     = btree_writepages,
1023         .releasepage    = btree_releasepage,
1024         .invalidatepage = btree_invalidatepage,
1025 #ifdef CONFIG_MIGRATION
1026         .migratepage    = btree_migratepage,
1027 #endif
1028         .set_page_dirty = btree_set_page_dirty,
1029 };
1030
1031 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1032 {
1033         struct extent_buffer *buf = NULL;
1034         int ret;
1035
1036         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1037         if (IS_ERR(buf))
1038                 return;
1039
1040         ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1041         if (ret < 0)
1042                 free_extent_buffer_stale(buf);
1043         else
1044                 free_extent_buffer(buf);
1045 }
1046
1047 struct extent_buffer *btrfs_find_create_tree_block(
1048                                                 struct btrfs_fs_info *fs_info,
1049                                                 u64 bytenr)
1050 {
1051         if (btrfs_is_testing(fs_info))
1052                 return alloc_test_extent_buffer(fs_info, bytenr);
1053         return alloc_extent_buffer(fs_info, bytenr);
1054 }
1055
1056 /*
1057  * Read tree block at logical address @bytenr and do variant basic but critical
1058  * verification.
1059  *
1060  * @parent_transid:     expected transid of this tree block, skip check if 0
1061  * @level:              expected level, mandatory check
1062  * @first_key:          expected key in slot 0, skip check if NULL
1063  */
1064 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1065                                       u64 parent_transid, int level,
1066                                       struct btrfs_key *first_key)
1067 {
1068         struct extent_buffer *buf = NULL;
1069         int ret;
1070
1071         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1072         if (IS_ERR(buf))
1073                 return buf;
1074
1075         ret = btree_read_extent_buffer_pages(buf, parent_transid,
1076                                              level, first_key);
1077         if (ret) {
1078                 free_extent_buffer_stale(buf);
1079                 return ERR_PTR(ret);
1080         }
1081         return buf;
1082
1083 }
1084
1085 void btrfs_clean_tree_block(struct extent_buffer *buf)
1086 {
1087         struct btrfs_fs_info *fs_info = buf->fs_info;
1088         if (btrfs_header_generation(buf) ==
1089             fs_info->running_transaction->transid) {
1090                 btrfs_assert_tree_locked(buf);
1091
1092                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1093                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1094                                                  -buf->len,
1095                                                  fs_info->dirty_metadata_batch);
1096                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1097                         btrfs_set_lock_blocking_write(buf);
1098                         clear_extent_buffer_dirty(buf);
1099                 }
1100         }
1101 }
1102
1103 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1104 {
1105         struct btrfs_subvolume_writers *writers;
1106         int ret;
1107
1108         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1109         if (!writers)
1110                 return ERR_PTR(-ENOMEM);
1111
1112         ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1113         if (ret < 0) {
1114                 kfree(writers);
1115                 return ERR_PTR(ret);
1116         }
1117
1118         init_waitqueue_head(&writers->wait);
1119         return writers;
1120 }
1121
1122 static void
1123 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1124 {
1125         percpu_counter_destroy(&writers->counter);
1126         kfree(writers);
1127 }
1128
1129 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1130                          u64 objectid)
1131 {
1132         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1133         root->fs_info = fs_info;
1134         root->node = NULL;
1135         root->commit_root = NULL;
1136         root->state = 0;
1137         root->orphan_cleanup_state = 0;
1138
1139         root->last_trans = 0;
1140         root->highest_objectid = 0;
1141         root->nr_delalloc_inodes = 0;
1142         root->nr_ordered_extents = 0;
1143         root->inode_tree = RB_ROOT;
1144         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1145         root->block_rsv = NULL;
1146
1147         INIT_LIST_HEAD(&root->dirty_list);
1148         INIT_LIST_HEAD(&root->root_list);
1149         INIT_LIST_HEAD(&root->delalloc_inodes);
1150         INIT_LIST_HEAD(&root->delalloc_root);
1151         INIT_LIST_HEAD(&root->ordered_extents);
1152         INIT_LIST_HEAD(&root->ordered_root);
1153         INIT_LIST_HEAD(&root->reloc_dirty_list);
1154         INIT_LIST_HEAD(&root->logged_list[0]);
1155         INIT_LIST_HEAD(&root->logged_list[1]);
1156         spin_lock_init(&root->inode_lock);
1157         spin_lock_init(&root->delalloc_lock);
1158         spin_lock_init(&root->ordered_extent_lock);
1159         spin_lock_init(&root->accounting_lock);
1160         spin_lock_init(&root->log_extents_lock[0]);
1161         spin_lock_init(&root->log_extents_lock[1]);
1162         spin_lock_init(&root->qgroup_meta_rsv_lock);
1163         mutex_init(&root->objectid_mutex);
1164         mutex_init(&root->log_mutex);
1165         mutex_init(&root->ordered_extent_mutex);
1166         mutex_init(&root->delalloc_mutex);
1167         init_waitqueue_head(&root->log_writer_wait);
1168         init_waitqueue_head(&root->log_commit_wait[0]);
1169         init_waitqueue_head(&root->log_commit_wait[1]);
1170         INIT_LIST_HEAD(&root->log_ctxs[0]);
1171         INIT_LIST_HEAD(&root->log_ctxs[1]);
1172         atomic_set(&root->log_commit[0], 0);
1173         atomic_set(&root->log_commit[1], 0);
1174         atomic_set(&root->log_writers, 0);
1175         atomic_set(&root->log_batch, 0);
1176         refcount_set(&root->refs, 1);
1177         atomic_set(&root->will_be_snapshotted, 0);
1178         atomic_set(&root->snapshot_force_cow, 0);
1179         atomic_set(&root->nr_swapfiles, 0);
1180         root->log_transid = 0;
1181         root->log_transid_committed = -1;
1182         root->last_log_commit = 0;
1183         if (!dummy)
1184                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1185                                     IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1186
1187         memset(&root->root_key, 0, sizeof(root->root_key));
1188         memset(&root->root_item, 0, sizeof(root->root_item));
1189         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1190         if (!dummy)
1191                 root->defrag_trans_start = fs_info->generation;
1192         else
1193                 root->defrag_trans_start = 0;
1194         root->root_key.objectid = objectid;
1195         root->anon_dev = 0;
1196
1197         spin_lock_init(&root->root_item_lock);
1198         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1199 }
1200
1201 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1202                                            u64 objectid, gfp_t flags)
1203 {
1204         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1205         if (root)
1206                 __setup_root(root, fs_info, objectid);
1207         return root;
1208 }
1209
1210 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1211 /* Should only be used by the testing infrastructure */
1212 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1213 {
1214         struct btrfs_root *root;
1215
1216         if (!fs_info)
1217                 return ERR_PTR(-EINVAL);
1218
1219         root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1220         if (!root)
1221                 return ERR_PTR(-ENOMEM);
1222
1223         /* We don't use the stripesize in selftest, set it as sectorsize */
1224         root->alloc_bytenr = 0;
1225
1226         return root;
1227 }
1228 #endif
1229
1230 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1231                                      u64 objectid)
1232 {
1233         struct btrfs_fs_info *fs_info = trans->fs_info;
1234         struct extent_buffer *leaf;
1235         struct btrfs_root *tree_root = fs_info->tree_root;
1236         struct btrfs_root *root;
1237         struct btrfs_key key;
1238         unsigned int nofs_flag;
1239         int ret = 0;
1240         uuid_le uuid = NULL_UUID_LE;
1241
1242         /*
1243          * We're holding a transaction handle, so use a NOFS memory allocation
1244          * context to avoid deadlock if reclaim happens.
1245          */
1246         nofs_flag = memalloc_nofs_save();
1247         root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1248         memalloc_nofs_restore(nofs_flag);
1249         if (!root)
1250                 return ERR_PTR(-ENOMEM);
1251
1252         root->root_key.objectid = objectid;
1253         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1254         root->root_key.offset = 0;
1255
1256         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1257         if (IS_ERR(leaf)) {
1258                 ret = PTR_ERR(leaf);
1259                 leaf = NULL;
1260                 goto fail;
1261         }
1262
1263         root->node = leaf;
1264         btrfs_mark_buffer_dirty(leaf);
1265
1266         root->commit_root = btrfs_root_node(root);
1267         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1268
1269         root->root_item.flags = 0;
1270         root->root_item.byte_limit = 0;
1271         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1272         btrfs_set_root_generation(&root->root_item, trans->transid);
1273         btrfs_set_root_level(&root->root_item, 0);
1274         btrfs_set_root_refs(&root->root_item, 1);
1275         btrfs_set_root_used(&root->root_item, leaf->len);
1276         btrfs_set_root_last_snapshot(&root->root_item, 0);
1277         btrfs_set_root_dirid(&root->root_item, 0);
1278         if (is_fstree(objectid))
1279                 uuid_le_gen(&uuid);
1280         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1281         root->root_item.drop_level = 0;
1282
1283         key.objectid = objectid;
1284         key.type = BTRFS_ROOT_ITEM_KEY;
1285         key.offset = 0;
1286         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1287         if (ret)
1288                 goto fail;
1289
1290         btrfs_tree_unlock(leaf);
1291
1292         return root;
1293
1294 fail:
1295         if (leaf) {
1296                 btrfs_tree_unlock(leaf);
1297                 free_extent_buffer(root->commit_root);
1298                 free_extent_buffer(leaf);
1299         }
1300         kfree(root);
1301
1302         return ERR_PTR(ret);
1303 }
1304
1305 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1306                                          struct btrfs_fs_info *fs_info)
1307 {
1308         struct btrfs_root *root;
1309         struct extent_buffer *leaf;
1310
1311         root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1312         if (!root)
1313                 return ERR_PTR(-ENOMEM);
1314
1315         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1316         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1317         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1318
1319         /*
1320          * DON'T set REF_COWS for log trees
1321          *
1322          * log trees do not get reference counted because they go away
1323          * before a real commit is actually done.  They do store pointers
1324          * to file data extents, and those reference counts still get
1325          * updated (along with back refs to the log tree).
1326          */
1327
1328         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1329                         NULL, 0, 0, 0);
1330         if (IS_ERR(leaf)) {
1331                 kfree(root);
1332                 return ERR_CAST(leaf);
1333         }
1334
1335         root->node = leaf;
1336
1337         btrfs_mark_buffer_dirty(root->node);
1338         btrfs_tree_unlock(root->node);
1339         return root;
1340 }
1341
1342 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1343                              struct btrfs_fs_info *fs_info)
1344 {
1345         struct btrfs_root *log_root;
1346
1347         log_root = alloc_log_tree(trans, fs_info);
1348         if (IS_ERR(log_root))
1349                 return PTR_ERR(log_root);
1350         WARN_ON(fs_info->log_root_tree);
1351         fs_info->log_root_tree = log_root;
1352         return 0;
1353 }
1354
1355 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1356                        struct btrfs_root *root)
1357 {
1358         struct btrfs_fs_info *fs_info = root->fs_info;
1359         struct btrfs_root *log_root;
1360         struct btrfs_inode_item *inode_item;
1361
1362         log_root = alloc_log_tree(trans, fs_info);
1363         if (IS_ERR(log_root))
1364                 return PTR_ERR(log_root);
1365
1366         log_root->last_trans = trans->transid;
1367         log_root->root_key.offset = root->root_key.objectid;
1368
1369         inode_item = &log_root->root_item.inode;
1370         btrfs_set_stack_inode_generation(inode_item, 1);
1371         btrfs_set_stack_inode_size(inode_item, 3);
1372         btrfs_set_stack_inode_nlink(inode_item, 1);
1373         btrfs_set_stack_inode_nbytes(inode_item,
1374                                      fs_info->nodesize);
1375         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1376
1377         btrfs_set_root_node(&log_root->root_item, log_root->node);
1378
1379         WARN_ON(root->log_root);
1380         root->log_root = log_root;
1381         root->log_transid = 0;
1382         root->log_transid_committed = -1;
1383         root->last_log_commit = 0;
1384         return 0;
1385 }
1386
1387 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1388                                         struct btrfs_key *key)
1389 {
1390         struct btrfs_root *root;
1391         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1392         struct btrfs_path *path;
1393         u64 generation;
1394         int ret;
1395         int level;
1396
1397         path = btrfs_alloc_path();
1398         if (!path)
1399                 return ERR_PTR(-ENOMEM);
1400
1401         root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1402         if (!root) {
1403                 ret = -ENOMEM;
1404                 goto alloc_fail;
1405         }
1406
1407         ret = btrfs_find_root(tree_root, key, path,
1408                               &root->root_item, &root->root_key);
1409         if (ret) {
1410                 if (ret > 0)
1411                         ret = -ENOENT;
1412                 goto find_fail;
1413         }
1414
1415         generation = btrfs_root_generation(&root->root_item);
1416         level = btrfs_root_level(&root->root_item);
1417         root->node = read_tree_block(fs_info,
1418                                      btrfs_root_bytenr(&root->root_item),
1419                                      generation, level, NULL);
1420         if (IS_ERR(root->node)) {
1421                 ret = PTR_ERR(root->node);
1422                 goto find_fail;
1423         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1424                 ret = -EIO;
1425                 free_extent_buffer(root->node);
1426                 goto find_fail;
1427         }
1428         root->commit_root = btrfs_root_node(root);
1429 out:
1430         btrfs_free_path(path);
1431         return root;
1432
1433 find_fail:
1434         kfree(root);
1435 alloc_fail:
1436         root = ERR_PTR(ret);
1437         goto out;
1438 }
1439
1440 static int btrfs_init_fs_root(struct btrfs_root *root)
1441 {
1442         int ret;
1443         struct btrfs_subvolume_writers *writers;
1444
1445         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1446         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1447                                         GFP_NOFS);
1448         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1449                 ret = -ENOMEM;
1450                 goto fail;
1451         }
1452
1453         writers = btrfs_alloc_subvolume_writers();
1454         if (IS_ERR(writers)) {
1455                 ret = PTR_ERR(writers);
1456                 goto fail;
1457         }
1458         root->subv_writers = writers;
1459
1460         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1461                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1462                 btrfs_check_and_init_root_item(&root->root_item);
1463         }
1464
1465         btrfs_init_free_ino_ctl(root);
1466         spin_lock_init(&root->ino_cache_lock);
1467         init_waitqueue_head(&root->ino_cache_wait);
1468
1469         ret = get_anon_bdev(&root->anon_dev);
1470         if (ret)
1471                 goto fail;
1472
1473         mutex_lock(&root->objectid_mutex);
1474         ret = btrfs_find_highest_objectid(root,
1475                                         &root->highest_objectid);
1476         if (ret) {
1477                 mutex_unlock(&root->objectid_mutex);
1478                 goto fail;
1479         }
1480
1481         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1482
1483         mutex_unlock(&root->objectid_mutex);
1484
1485         return 0;
1486 fail:
1487         /* The caller is responsible to call btrfs_free_fs_root */
1488         return ret;
1489 }
1490
1491 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1492                                                u64 root_id)
1493 {
1494         struct btrfs_root *root;
1495
1496         spin_lock(&fs_info->fs_roots_radix_lock);
1497         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1498                                  (unsigned long)root_id);
1499         spin_unlock(&fs_info->fs_roots_radix_lock);
1500         return root;
1501 }
1502
1503 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1504                          struct btrfs_root *root)
1505 {
1506         int ret;
1507
1508         ret = radix_tree_preload(GFP_NOFS);
1509         if (ret)
1510                 return ret;
1511
1512         spin_lock(&fs_info->fs_roots_radix_lock);
1513         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1514                                 (unsigned long)root->root_key.objectid,
1515                                 root);
1516         if (ret == 0) {
1517                 btrfs_grab_fs_root(root);
1518                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1519         }
1520         spin_unlock(&fs_info->fs_roots_radix_lock);
1521         radix_tree_preload_end();
1522
1523         return ret;
1524 }
1525
1526 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1527 {
1528         kfree(fs_info->balance_ctl);
1529         kfree(fs_info->delayed_root);
1530         kfree(fs_info->extent_root);
1531         kfree(fs_info->tree_root);
1532         kfree(fs_info->chunk_root);
1533         kfree(fs_info->dev_root);
1534         kfree(fs_info->csum_root);
1535         kfree(fs_info->quota_root);
1536         kfree(fs_info->uuid_root);
1537         kfree(fs_info->free_space_root);
1538         kfree(fs_info->super_copy);
1539         kfree(fs_info->super_for_commit);
1540         btrfs_put_fs_root(fs_info->fs_root);
1541         kvfree(fs_info);
1542 }
1543
1544
1545 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1546                                      struct btrfs_key *location,
1547                                      bool check_ref)
1548 {
1549         struct btrfs_root *root;
1550         struct btrfs_path *path;
1551         struct btrfs_key key;
1552         int ret;
1553
1554         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1555                 return fs_info->tree_root;
1556         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1557                 return fs_info->extent_root;
1558         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1559                 return fs_info->chunk_root;
1560         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1561                 return fs_info->dev_root;
1562         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1563                 return fs_info->csum_root;
1564         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1565                 return fs_info->quota_root ? fs_info->quota_root :
1566                                              ERR_PTR(-ENOENT);
1567         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1568                 return fs_info->uuid_root ? fs_info->uuid_root :
1569                                             ERR_PTR(-ENOENT);
1570         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1571                 return fs_info->free_space_root ? fs_info->free_space_root :
1572                                                   ERR_PTR(-ENOENT);
1573 again:
1574         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1575         if (root) {
1576                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1577                         return ERR_PTR(-ENOENT);
1578                 return root;
1579         }
1580
1581         root = btrfs_read_tree_root(fs_info->tree_root, location);
1582         if (IS_ERR(root))
1583                 return root;
1584
1585         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1586                 ret = -ENOENT;
1587                 goto fail;
1588         }
1589
1590         ret = btrfs_init_fs_root(root);
1591         if (ret)
1592                 goto fail;
1593
1594         path = btrfs_alloc_path();
1595         if (!path) {
1596                 ret = -ENOMEM;
1597                 goto fail;
1598         }
1599         key.objectid = BTRFS_ORPHAN_OBJECTID;
1600         key.type = BTRFS_ORPHAN_ITEM_KEY;
1601         key.offset = location->objectid;
1602
1603         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1604         btrfs_free_path(path);
1605         if (ret < 0)
1606                 goto fail;
1607         if (ret == 0)
1608                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1609
1610         ret = btrfs_insert_fs_root(fs_info, root);
1611         if (ret) {
1612                 if (ret == -EEXIST) {
1613                         btrfs_free_fs_root(root);
1614                         goto again;
1615                 }
1616                 goto fail;
1617         }
1618         return root;
1619 fail:
1620         btrfs_free_fs_root(root);
1621         return ERR_PTR(ret);
1622 }
1623
1624 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1625 {
1626         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1627         int ret = 0;
1628         struct btrfs_device *device;
1629         struct backing_dev_info *bdi;
1630
1631         rcu_read_lock();
1632         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1633                 if (!device->bdev)
1634                         continue;
1635                 bdi = device->bdev->bd_bdi;
1636                 if (bdi_congested(bdi, bdi_bits)) {
1637                         ret = 1;
1638                         break;
1639                 }
1640         }
1641         rcu_read_unlock();
1642         return ret;
1643 }
1644
1645 /*
1646  * called by the kthread helper functions to finally call the bio end_io
1647  * functions.  This is where read checksum verification actually happens
1648  */
1649 static void end_workqueue_fn(struct btrfs_work *work)
1650 {
1651         struct bio *bio;
1652         struct btrfs_end_io_wq *end_io_wq;
1653
1654         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1655         bio = end_io_wq->bio;
1656
1657         bio->bi_status = end_io_wq->status;
1658         bio->bi_private = end_io_wq->private;
1659         bio->bi_end_io = end_io_wq->end_io;
1660         bio_endio(bio);
1661         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1662 }
1663
1664 static int cleaner_kthread(void *arg)
1665 {
1666         struct btrfs_root *root = arg;
1667         struct btrfs_fs_info *fs_info = root->fs_info;
1668         int again;
1669
1670         while (1) {
1671                 again = 0;
1672
1673                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1674
1675                 /* Make the cleaner go to sleep early. */
1676                 if (btrfs_need_cleaner_sleep(fs_info))
1677                         goto sleep;
1678
1679                 /*
1680                  * Do not do anything if we might cause open_ctree() to block
1681                  * before we have finished mounting the filesystem.
1682                  */
1683                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1684                         goto sleep;
1685
1686                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1687                         goto sleep;
1688
1689                 /*
1690                  * Avoid the problem that we change the status of the fs
1691                  * during the above check and trylock.
1692                  */
1693                 if (btrfs_need_cleaner_sleep(fs_info)) {
1694                         mutex_unlock(&fs_info->cleaner_mutex);
1695                         goto sleep;
1696                 }
1697
1698                 btrfs_run_delayed_iputs(fs_info);
1699
1700                 again = btrfs_clean_one_deleted_snapshot(root);
1701                 mutex_unlock(&fs_info->cleaner_mutex);
1702
1703                 /*
1704                  * The defragger has dealt with the R/O remount and umount,
1705                  * needn't do anything special here.
1706                  */
1707                 btrfs_run_defrag_inodes(fs_info);
1708
1709                 /*
1710                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1711                  * with relocation (btrfs_relocate_chunk) and relocation
1712                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1713                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1714                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1715                  * unused block groups.
1716                  */
1717                 btrfs_delete_unused_bgs(fs_info);
1718 sleep:
1719                 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1720                 if (kthread_should_park())
1721                         kthread_parkme();
1722                 if (kthread_should_stop())
1723                         return 0;
1724                 if (!again) {
1725                         set_current_state(TASK_INTERRUPTIBLE);
1726                         schedule();
1727                         __set_current_state(TASK_RUNNING);
1728                 }
1729         }
1730 }
1731
1732 static int transaction_kthread(void *arg)
1733 {
1734         struct btrfs_root *root = arg;
1735         struct btrfs_fs_info *fs_info = root->fs_info;
1736         struct btrfs_trans_handle *trans;
1737         struct btrfs_transaction *cur;
1738         u64 transid;
1739         time64_t now;
1740         unsigned long delay;
1741         bool cannot_commit;
1742
1743         do {
1744                 cannot_commit = false;
1745                 delay = HZ * fs_info->commit_interval;
1746                 mutex_lock(&fs_info->transaction_kthread_mutex);
1747
1748                 spin_lock(&fs_info->trans_lock);
1749                 cur = fs_info->running_transaction;
1750                 if (!cur) {
1751                         spin_unlock(&fs_info->trans_lock);
1752                         goto sleep;
1753                 }
1754
1755                 now = ktime_get_seconds();
1756                 if (cur->state < TRANS_STATE_COMMIT_START &&
1757                     !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1758                     (now < cur->start_time ||
1759                      now - cur->start_time < fs_info->commit_interval)) {
1760                         spin_unlock(&fs_info->trans_lock);
1761                         delay = HZ * 5;
1762                         goto sleep;
1763                 }
1764                 transid = cur->transid;
1765                 spin_unlock(&fs_info->trans_lock);
1766
1767                 /* If the file system is aborted, this will always fail. */
1768                 trans = btrfs_attach_transaction(root);
1769                 if (IS_ERR(trans)) {
1770                         if (PTR_ERR(trans) != -ENOENT)
1771                                 cannot_commit = true;
1772                         goto sleep;
1773                 }
1774                 if (transid == trans->transid) {
1775                         btrfs_commit_transaction(trans);
1776                 } else {
1777                         btrfs_end_transaction(trans);
1778                 }
1779 sleep:
1780                 wake_up_process(fs_info->cleaner_kthread);
1781                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1782
1783                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1784                                       &fs_info->fs_state)))
1785                         btrfs_cleanup_transaction(fs_info);
1786                 if (!kthread_should_stop() &&
1787                                 (!btrfs_transaction_blocked(fs_info) ||
1788                                  cannot_commit))
1789                         schedule_timeout_interruptible(delay);
1790         } while (!kthread_should_stop());
1791         return 0;
1792 }
1793
1794 /*
1795  * This will find the highest generation in the array of root backups.  The
1796  * index of the highest array is returned, or -EINVAL if we can't find
1797  * anything.
1798  *
1799  * We check to make sure the array is valid by comparing the
1800  * generation of the latest  root in the array with the generation
1801  * in the super block.  If they don't match we pitch it.
1802  */
1803 static int find_newest_super_backup(struct btrfs_fs_info *info)
1804 {
1805         const u64 newest_gen = btrfs_super_generation(info->super_copy);
1806         u64 cur;
1807         struct btrfs_root_backup *root_backup;
1808         int i;
1809
1810         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1811                 root_backup = info->super_copy->super_roots + i;
1812                 cur = btrfs_backup_tree_root_gen(root_backup);
1813                 if (cur == newest_gen)
1814                         return i;
1815         }
1816
1817         return -EINVAL;
1818 }
1819
1820 /*
1821  * copy all the root pointers into the super backup array.
1822  * this will bump the backup pointer by one when it is
1823  * done
1824  */
1825 static void backup_super_roots(struct btrfs_fs_info *info)
1826 {
1827         const int next_backup = info->backup_root_index;
1828         struct btrfs_root_backup *root_backup;
1829
1830         root_backup = info->super_for_commit->super_roots + next_backup;
1831
1832         /*
1833          * make sure all of our padding and empty slots get zero filled
1834          * regardless of which ones we use today
1835          */
1836         memset(root_backup, 0, sizeof(*root_backup));
1837
1838         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1839
1840         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1841         btrfs_set_backup_tree_root_gen(root_backup,
1842                                btrfs_header_generation(info->tree_root->node));
1843
1844         btrfs_set_backup_tree_root_level(root_backup,
1845                                btrfs_header_level(info->tree_root->node));
1846
1847         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1848         btrfs_set_backup_chunk_root_gen(root_backup,
1849                                btrfs_header_generation(info->chunk_root->node));
1850         btrfs_set_backup_chunk_root_level(root_backup,
1851                                btrfs_header_level(info->chunk_root->node));
1852
1853         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1854         btrfs_set_backup_extent_root_gen(root_backup,
1855                                btrfs_header_generation(info->extent_root->node));
1856         btrfs_set_backup_extent_root_level(root_backup,
1857                                btrfs_header_level(info->extent_root->node));
1858
1859         /*
1860          * we might commit during log recovery, which happens before we set
1861          * the fs_root.  Make sure it is valid before we fill it in.
1862          */
1863         if (info->fs_root && info->fs_root->node) {
1864                 btrfs_set_backup_fs_root(root_backup,
1865                                          info->fs_root->node->start);
1866                 btrfs_set_backup_fs_root_gen(root_backup,
1867                                btrfs_header_generation(info->fs_root->node));
1868                 btrfs_set_backup_fs_root_level(root_backup,
1869                                btrfs_header_level(info->fs_root->node));
1870         }
1871
1872         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1873         btrfs_set_backup_dev_root_gen(root_backup,
1874                                btrfs_header_generation(info->dev_root->node));
1875         btrfs_set_backup_dev_root_level(root_backup,
1876                                        btrfs_header_level(info->dev_root->node));
1877
1878         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1879         btrfs_set_backup_csum_root_gen(root_backup,
1880                                btrfs_header_generation(info->csum_root->node));
1881         btrfs_set_backup_csum_root_level(root_backup,
1882                                btrfs_header_level(info->csum_root->node));
1883
1884         btrfs_set_backup_total_bytes(root_backup,
1885                              btrfs_super_total_bytes(info->super_copy));
1886         btrfs_set_backup_bytes_used(root_backup,
1887                              btrfs_super_bytes_used(info->super_copy));
1888         btrfs_set_backup_num_devices(root_backup,
1889                              btrfs_super_num_devices(info->super_copy));
1890
1891         /*
1892          * if we don't copy this out to the super_copy, it won't get remembered
1893          * for the next commit
1894          */
1895         memcpy(&info->super_copy->super_roots,
1896                &info->super_for_commit->super_roots,
1897                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1898 }
1899
1900 /*
1901  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1902  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1903  *
1904  * fs_info - filesystem whose backup roots need to be read
1905  * priority - priority of backup root required
1906  *
1907  * Returns backup root index on success and -EINVAL otherwise.
1908  */
1909 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1910 {
1911         int backup_index = find_newest_super_backup(fs_info);
1912         struct btrfs_super_block *super = fs_info->super_copy;
1913         struct btrfs_root_backup *root_backup;
1914
1915         if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1916                 if (priority == 0)
1917                         return backup_index;
1918
1919                 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1920                 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1921         } else {
1922                 return -EINVAL;
1923         }
1924
1925         root_backup = super->super_roots + backup_index;
1926
1927         btrfs_set_super_generation(super,
1928                                    btrfs_backup_tree_root_gen(root_backup));
1929         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1930         btrfs_set_super_root_level(super,
1931                                    btrfs_backup_tree_root_level(root_backup));
1932         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1933
1934         /*
1935          * Fixme: the total bytes and num_devices need to match or we should
1936          * need a fsck
1937          */
1938         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1939         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1940
1941         return backup_index;
1942 }
1943
1944 /* helper to cleanup workers */
1945 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1946 {
1947         btrfs_destroy_workqueue(fs_info->fixup_workers);
1948         btrfs_destroy_workqueue(fs_info->delalloc_workers);
1949         btrfs_destroy_workqueue(fs_info->workers);
1950         btrfs_destroy_workqueue(fs_info->endio_workers);
1951         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1952         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
1953         btrfs_destroy_workqueue(fs_info->rmw_workers);
1954         btrfs_destroy_workqueue(fs_info->endio_write_workers);
1955         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1956         btrfs_destroy_workqueue(fs_info->delayed_workers);
1957         btrfs_destroy_workqueue(fs_info->caching_workers);
1958         btrfs_destroy_workqueue(fs_info->readahead_workers);
1959         btrfs_destroy_workqueue(fs_info->flush_workers);
1960         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1961         if (fs_info->discard_ctl.discard_workers)
1962                 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1963         /*
1964          * Now that all other work queues are destroyed, we can safely destroy
1965          * the queues used for metadata I/O, since tasks from those other work
1966          * queues can do metadata I/O operations.
1967          */
1968         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1969         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
1970 }
1971
1972 static void free_root_extent_buffers(struct btrfs_root *root)
1973 {
1974         if (root) {
1975                 free_extent_buffer(root->node);
1976                 free_extent_buffer(root->commit_root);
1977                 root->node = NULL;
1978                 root->commit_root = NULL;
1979         }
1980 }
1981
1982 /* helper to cleanup tree roots */
1983 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1984 {
1985         free_root_extent_buffers(info->tree_root);
1986
1987         free_root_extent_buffers(info->dev_root);
1988         free_root_extent_buffers(info->extent_root);
1989         free_root_extent_buffers(info->csum_root);
1990         free_root_extent_buffers(info->quota_root);
1991         free_root_extent_buffers(info->uuid_root);
1992         if (free_chunk_root)
1993                 free_root_extent_buffers(info->chunk_root);
1994         free_root_extent_buffers(info->free_space_root);
1995 }
1996
1997 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1998 {
1999         int ret;
2000         struct btrfs_root *gang[8];
2001         int i;
2002
2003         while (!list_empty(&fs_info->dead_roots)) {
2004                 gang[0] = list_entry(fs_info->dead_roots.next,
2005                                      struct btrfs_root, root_list);
2006                 list_del(&gang[0]->root_list);
2007
2008                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2009                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2010                 } else {
2011                         free_extent_buffer(gang[0]->node);
2012                         free_extent_buffer(gang[0]->commit_root);
2013                         btrfs_put_fs_root(gang[0]);
2014                 }
2015         }
2016
2017         while (1) {
2018                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2019                                              (void **)gang, 0,
2020                                              ARRAY_SIZE(gang));
2021                 if (!ret)
2022                         break;
2023                 for (i = 0; i < ret; i++)
2024                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2025         }
2026
2027         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2028                 btrfs_free_log_root_tree(NULL, fs_info);
2029                 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2030         }
2031 }
2032
2033 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2034 {
2035         mutex_init(&fs_info->scrub_lock);
2036         atomic_set(&fs_info->scrubs_running, 0);
2037         atomic_set(&fs_info->scrub_pause_req, 0);
2038         atomic_set(&fs_info->scrubs_paused, 0);
2039         atomic_set(&fs_info->scrub_cancel_req, 0);
2040         init_waitqueue_head(&fs_info->scrub_pause_wait);
2041         refcount_set(&fs_info->scrub_workers_refcnt, 0);
2042 }
2043
2044 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2045 {
2046         spin_lock_init(&fs_info->balance_lock);
2047         mutex_init(&fs_info->balance_mutex);
2048         atomic_set(&fs_info->balance_pause_req, 0);
2049         atomic_set(&fs_info->balance_cancel_req, 0);
2050         fs_info->balance_ctl = NULL;
2051         init_waitqueue_head(&fs_info->balance_wait_q);
2052 }
2053
2054 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2055 {
2056         struct inode *inode = fs_info->btree_inode;
2057
2058         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2059         set_nlink(inode, 1);
2060         /*
2061          * we set the i_size on the btree inode to the max possible int.
2062          * the real end of the address space is determined by all of
2063          * the devices in the system
2064          */
2065         inode->i_size = OFFSET_MAX;
2066         inode->i_mapping->a_ops = &btree_aops;
2067
2068         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2069         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2070                             IO_TREE_INODE_IO, inode);
2071         BTRFS_I(inode)->io_tree.track_uptodate = false;
2072         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2073
2074         BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2075
2076         BTRFS_I(inode)->root = fs_info->tree_root;
2077         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2078         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2079         btrfs_insert_inode_hash(inode);
2080 }
2081
2082 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2083 {
2084         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2085         init_rwsem(&fs_info->dev_replace.rwsem);
2086         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2087 }
2088
2089 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2090 {
2091         spin_lock_init(&fs_info->qgroup_lock);
2092         mutex_init(&fs_info->qgroup_ioctl_lock);
2093         fs_info->qgroup_tree = RB_ROOT;
2094         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2095         fs_info->qgroup_seq = 1;
2096         fs_info->qgroup_ulist = NULL;
2097         fs_info->qgroup_rescan_running = false;
2098         mutex_init(&fs_info->qgroup_rescan_lock);
2099 }
2100
2101 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2102                 struct btrfs_fs_devices *fs_devices)
2103 {
2104         u32 max_active = fs_info->thread_pool_size;
2105         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2106
2107         fs_info->workers =
2108                 btrfs_alloc_workqueue(fs_info, "worker",
2109                                       flags | WQ_HIGHPRI, max_active, 16);
2110
2111         fs_info->delalloc_workers =
2112                 btrfs_alloc_workqueue(fs_info, "delalloc",
2113                                       flags, max_active, 2);
2114
2115         fs_info->flush_workers =
2116                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2117                                       flags, max_active, 0);
2118
2119         fs_info->caching_workers =
2120                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2121
2122         fs_info->fixup_workers =
2123                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2124
2125         /*
2126          * endios are largely parallel and should have a very
2127          * low idle thresh
2128          */
2129         fs_info->endio_workers =
2130                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2131         fs_info->endio_meta_workers =
2132                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2133                                       max_active, 4);
2134         fs_info->endio_meta_write_workers =
2135                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2136                                       max_active, 2);
2137         fs_info->endio_raid56_workers =
2138                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2139                                       max_active, 4);
2140         fs_info->endio_repair_workers =
2141                 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2142         fs_info->rmw_workers =
2143                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2144         fs_info->endio_write_workers =
2145                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2146                                       max_active, 2);
2147         fs_info->endio_freespace_worker =
2148                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2149                                       max_active, 0);
2150         fs_info->delayed_workers =
2151                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2152                                       max_active, 0);
2153         fs_info->readahead_workers =
2154                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2155                                       max_active, 2);
2156         fs_info->qgroup_rescan_workers =
2157                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2158         fs_info->discard_ctl.discard_workers =
2159                 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2160
2161         if (!(fs_info->workers && fs_info->delalloc_workers &&
2162               fs_info->flush_workers &&
2163               fs_info->endio_workers && fs_info->endio_meta_workers &&
2164               fs_info->endio_meta_write_workers &&
2165               fs_info->endio_repair_workers &&
2166               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2167               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2168               fs_info->caching_workers && fs_info->readahead_workers &&
2169               fs_info->fixup_workers && fs_info->delayed_workers &&
2170               fs_info->qgroup_rescan_workers &&
2171               fs_info->discard_ctl.discard_workers)) {
2172                 return -ENOMEM;
2173         }
2174
2175         return 0;
2176 }
2177
2178 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2179 {
2180         struct crypto_shash *csum_shash;
2181         const char *csum_driver = btrfs_super_csum_driver(csum_type);
2182
2183         csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2184
2185         if (IS_ERR(csum_shash)) {
2186                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2187                           csum_driver);
2188                 return PTR_ERR(csum_shash);
2189         }
2190
2191         fs_info->csum_shash = csum_shash;
2192
2193         return 0;
2194 }
2195
2196 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2197 {
2198         crypto_free_shash(fs_info->csum_shash);
2199 }
2200
2201 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2202                             struct btrfs_fs_devices *fs_devices)
2203 {
2204         int ret;
2205         struct btrfs_root *log_tree_root;
2206         struct btrfs_super_block *disk_super = fs_info->super_copy;
2207         u64 bytenr = btrfs_super_log_root(disk_super);
2208         int level = btrfs_super_log_root_level(disk_super);
2209
2210         if (fs_devices->rw_devices == 0) {
2211                 btrfs_warn(fs_info, "log replay required on RO media");
2212                 return -EIO;
2213         }
2214
2215         log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2216                                          GFP_KERNEL);
2217         if (!log_tree_root)
2218                 return -ENOMEM;
2219
2220         log_tree_root->node = read_tree_block(fs_info, bytenr,
2221                                               fs_info->generation + 1,
2222                                               level, NULL);
2223         if (IS_ERR(log_tree_root->node)) {
2224                 btrfs_warn(fs_info, "failed to read log tree");
2225                 ret = PTR_ERR(log_tree_root->node);
2226                 kfree(log_tree_root);
2227                 return ret;
2228         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2229                 btrfs_err(fs_info, "failed to read log tree");
2230                 free_extent_buffer(log_tree_root->node);
2231                 kfree(log_tree_root);
2232                 return -EIO;
2233         }
2234         /* returns with log_tree_root freed on success */
2235         ret = btrfs_recover_log_trees(log_tree_root);
2236         if (ret) {
2237                 btrfs_handle_fs_error(fs_info, ret,
2238                                       "Failed to recover log tree");
2239                 free_extent_buffer(log_tree_root->node);
2240                 kfree(log_tree_root);
2241                 return ret;
2242         }
2243
2244         if (sb_rdonly(fs_info->sb)) {
2245                 ret = btrfs_commit_super(fs_info);
2246                 if (ret)
2247                         return ret;
2248         }
2249
2250         return 0;
2251 }
2252
2253 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2254 {
2255         struct btrfs_root *tree_root = fs_info->tree_root;
2256         struct btrfs_root *root;
2257         struct btrfs_key location;
2258         int ret;
2259
2260         BUG_ON(!fs_info->tree_root);
2261
2262         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2263         location.type = BTRFS_ROOT_ITEM_KEY;
2264         location.offset = 0;
2265
2266         root = btrfs_read_tree_root(tree_root, &location);
2267         if (IS_ERR(root)) {
2268                 ret = PTR_ERR(root);
2269                 goto out;
2270         }
2271         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2272         fs_info->extent_root = root;
2273
2274         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2275         root = btrfs_read_tree_root(tree_root, &location);
2276         if (IS_ERR(root)) {
2277                 ret = PTR_ERR(root);
2278                 goto out;
2279         }
2280         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2281         fs_info->dev_root = root;
2282         btrfs_init_devices_late(fs_info);
2283
2284         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2285         root = btrfs_read_tree_root(tree_root, &location);
2286         if (IS_ERR(root)) {
2287                 ret = PTR_ERR(root);
2288                 goto out;
2289         }
2290         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2291         fs_info->csum_root = root;
2292
2293         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2294         root = btrfs_read_tree_root(tree_root, &location);
2295         if (!IS_ERR(root)) {
2296                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2297                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2298                 fs_info->quota_root = root;
2299         }
2300
2301         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2302         root = btrfs_read_tree_root(tree_root, &location);
2303         if (IS_ERR(root)) {
2304                 ret = PTR_ERR(root);
2305                 if (ret != -ENOENT)
2306                         goto out;
2307         } else {
2308                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2309                 fs_info->uuid_root = root;
2310         }
2311
2312         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2313                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2314                 root = btrfs_read_tree_root(tree_root, &location);
2315                 if (IS_ERR(root)) {
2316                         ret = PTR_ERR(root);
2317                         goto out;
2318                 }
2319                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2320                 fs_info->free_space_root = root;
2321         }
2322
2323         return 0;
2324 out:
2325         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2326                    location.objectid, ret);
2327         return ret;
2328 }
2329
2330 /*
2331  * Real super block validation
2332  * NOTE: super csum type and incompat features will not be checked here.
2333  *
2334  * @sb:         super block to check
2335  * @mirror_num: the super block number to check its bytenr:
2336  *              0       the primary (1st) sb
2337  *              1, 2    2nd and 3rd backup copy
2338  *             -1       skip bytenr check
2339  */
2340 static int validate_super(struct btrfs_fs_info *fs_info,
2341                             struct btrfs_super_block *sb, int mirror_num)
2342 {
2343         u64 nodesize = btrfs_super_nodesize(sb);
2344         u64 sectorsize = btrfs_super_sectorsize(sb);
2345         int ret = 0;
2346
2347         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2348                 btrfs_err(fs_info, "no valid FS found");
2349                 ret = -EINVAL;
2350         }
2351         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2352                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2353                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2354                 ret = -EINVAL;
2355         }
2356         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2357                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2358                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2359                 ret = -EINVAL;
2360         }
2361         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2362                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2363                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2364                 ret = -EINVAL;
2365         }
2366         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2367                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2368                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2369                 ret = -EINVAL;
2370         }
2371
2372         /*
2373          * Check sectorsize and nodesize first, other check will need it.
2374          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2375          */
2376         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2377             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2378                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2379                 ret = -EINVAL;
2380         }
2381         /* Only PAGE SIZE is supported yet */
2382         if (sectorsize != PAGE_SIZE) {
2383                 btrfs_err(fs_info,
2384                         "sectorsize %llu not supported yet, only support %lu",
2385                         sectorsize, PAGE_SIZE);
2386                 ret = -EINVAL;
2387         }
2388         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2389             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2390                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2391                 ret = -EINVAL;
2392         }
2393         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2394                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2395                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2396                 ret = -EINVAL;
2397         }
2398
2399         /* Root alignment check */
2400         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2401                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2402                            btrfs_super_root(sb));
2403                 ret = -EINVAL;
2404         }
2405         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2406                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2407                            btrfs_super_chunk_root(sb));
2408                 ret = -EINVAL;
2409         }
2410         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2411                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2412                            btrfs_super_log_root(sb));
2413                 ret = -EINVAL;
2414         }
2415
2416         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2417                    BTRFS_FSID_SIZE) != 0) {
2418                 btrfs_err(fs_info,
2419                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2420                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2421                 ret = -EINVAL;
2422         }
2423
2424         /*
2425          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2426          * done later
2427          */
2428         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2429                 btrfs_err(fs_info, "bytes_used is too small %llu",
2430                           btrfs_super_bytes_used(sb));
2431                 ret = -EINVAL;
2432         }
2433         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2434                 btrfs_err(fs_info, "invalid stripesize %u",
2435                           btrfs_super_stripesize(sb));
2436                 ret = -EINVAL;
2437         }
2438         if (btrfs_super_num_devices(sb) > (1UL << 31))
2439                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2440                            btrfs_super_num_devices(sb));
2441         if (btrfs_super_num_devices(sb) == 0) {
2442                 btrfs_err(fs_info, "number of devices is 0");
2443                 ret = -EINVAL;
2444         }
2445
2446         if (mirror_num >= 0 &&
2447             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2448                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2449                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2450                 ret = -EINVAL;
2451         }
2452
2453         /*
2454          * Obvious sys_chunk_array corruptions, it must hold at least one key
2455          * and one chunk
2456          */
2457         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2458                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2459                           btrfs_super_sys_array_size(sb),
2460                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2461                 ret = -EINVAL;
2462         }
2463         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2464                         + sizeof(struct btrfs_chunk)) {
2465                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2466                           btrfs_super_sys_array_size(sb),
2467                           sizeof(struct btrfs_disk_key)
2468                           + sizeof(struct btrfs_chunk));
2469                 ret = -EINVAL;
2470         }
2471
2472         /*
2473          * The generation is a global counter, we'll trust it more than the others
2474          * but it's still possible that it's the one that's wrong.
2475          */
2476         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2477                 btrfs_warn(fs_info,
2478                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2479                         btrfs_super_generation(sb),
2480                         btrfs_super_chunk_root_generation(sb));
2481         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2482             && btrfs_super_cache_generation(sb) != (u64)-1)
2483                 btrfs_warn(fs_info,
2484                         "suspicious: generation < cache_generation: %llu < %llu",
2485                         btrfs_super_generation(sb),
2486                         btrfs_super_cache_generation(sb));
2487
2488         return ret;
2489 }
2490
2491 /*
2492  * Validation of super block at mount time.
2493  * Some checks already done early at mount time, like csum type and incompat
2494  * flags will be skipped.
2495  */
2496 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2497 {
2498         return validate_super(fs_info, fs_info->super_copy, 0);
2499 }
2500
2501 /*
2502  * Validation of super block at write time.
2503  * Some checks like bytenr check will be skipped as their values will be
2504  * overwritten soon.
2505  * Extra checks like csum type and incompat flags will be done here.
2506  */
2507 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2508                                       struct btrfs_super_block *sb)
2509 {
2510         int ret;
2511
2512         ret = validate_super(fs_info, sb, -1);
2513         if (ret < 0)
2514                 goto out;
2515         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2516                 ret = -EUCLEAN;
2517                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2518                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2519                 goto out;
2520         }
2521         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2522                 ret = -EUCLEAN;
2523                 btrfs_err(fs_info,
2524                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2525                           btrfs_super_incompat_flags(sb),
2526                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2527                 goto out;
2528         }
2529 out:
2530         if (ret < 0)
2531                 btrfs_err(fs_info,
2532                 "super block corruption detected before writing it to disk");
2533         return ret;
2534 }
2535
2536 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2537 {
2538         int backup_index = find_newest_super_backup(fs_info);
2539         struct btrfs_super_block *sb = fs_info->super_copy;
2540         struct btrfs_root *tree_root = fs_info->tree_root;
2541         bool handle_error = false;
2542         int ret = 0;
2543         int i;
2544
2545         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2546                 u64 generation;
2547                 int level;
2548
2549                 if (handle_error) {
2550                         if (!IS_ERR(tree_root->node))
2551                                 free_extent_buffer(tree_root->node);
2552                         tree_root->node = NULL;
2553
2554                         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2555                                 break;
2556
2557                         free_root_pointers(fs_info, 0);
2558
2559                         /*
2560                          * Don't use the log in recovery mode, it won't be
2561                          * valid
2562                          */
2563                         btrfs_set_super_log_root(sb, 0);
2564
2565                         /* We can't trust the free space cache either */
2566                         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2567
2568                         ret = read_backup_root(fs_info, i);
2569                         backup_index = ret;
2570                         if (ret < 0)
2571                                 return ret;
2572                 }
2573                 generation = btrfs_super_generation(sb);
2574                 level = btrfs_super_root_level(sb);
2575                 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2576                                                   generation, level, NULL);
2577                 if (IS_ERR(tree_root->node) ||
2578                     !extent_buffer_uptodate(tree_root->node)) {
2579                         handle_error = true;
2580
2581                         if (IS_ERR(tree_root->node))
2582                                 ret = PTR_ERR(tree_root->node);
2583                         else if (!extent_buffer_uptodate(tree_root->node))
2584                                 ret = -EUCLEAN;
2585
2586                         btrfs_warn(fs_info, "failed to read tree root");
2587                         continue;
2588                 }
2589
2590                 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2591                 tree_root->commit_root = btrfs_root_node(tree_root);
2592                 btrfs_set_root_refs(&tree_root->root_item, 1);
2593
2594                 /*
2595                  * No need to hold btrfs_root::objectid_mutex since the fs
2596                  * hasn't been fully initialised and we are the only user
2597                  */
2598                 ret = btrfs_find_highest_objectid(tree_root,
2599                                                 &tree_root->highest_objectid);
2600                 if (ret < 0) {
2601                         handle_error = true;
2602                         continue;
2603                 }
2604
2605                 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2606
2607                 ret = btrfs_read_roots(fs_info);
2608                 if (ret < 0) {
2609                         handle_error = true;
2610                         continue;
2611                 }
2612
2613                 /* All successful */
2614                 fs_info->generation = generation;
2615                 fs_info->last_trans_committed = generation;
2616
2617                 /* Always begin writing backup roots after the one being used */
2618                 if (backup_index < 0) {
2619                         fs_info->backup_root_index = 0;
2620                 } else {
2621                         fs_info->backup_root_index = backup_index + 1;
2622                         fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2623                 }
2624                 break;
2625         }
2626
2627         return ret;
2628 }
2629
2630 int __cold open_ctree(struct super_block *sb,
2631                struct btrfs_fs_devices *fs_devices,
2632                char *options)
2633 {
2634         u32 sectorsize;
2635         u32 nodesize;
2636         u32 stripesize;
2637         u64 generation;
2638         u64 features;
2639         u16 csum_type;
2640         struct btrfs_key location;
2641         struct buffer_head *bh;
2642         struct btrfs_super_block *disk_super;
2643         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2644         struct btrfs_root *tree_root;
2645         struct btrfs_root *chunk_root;
2646         int ret;
2647         int err = -EINVAL;
2648         int clear_free_space_tree = 0;
2649         int level;
2650
2651         tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2652                                      GFP_KERNEL);
2653         fs_info->tree_root = tree_root;
2654         chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2655                                       GFP_KERNEL);
2656         fs_info->chunk_root = chunk_root;
2657         if (!tree_root || !chunk_root) {
2658                 err = -ENOMEM;
2659                 goto fail;
2660         }
2661
2662         ret = init_srcu_struct(&fs_info->subvol_srcu);
2663         if (ret) {
2664                 err = ret;
2665                 goto fail;
2666         }
2667
2668         ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2669         if (ret) {
2670                 err = ret;
2671                 goto fail_srcu;
2672         }
2673
2674         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2675         if (ret) {
2676                 err = ret;
2677                 goto fail_dio_bytes;
2678         }
2679         fs_info->dirty_metadata_batch = PAGE_SIZE *
2680                                         (1 + ilog2(nr_cpu_ids));
2681
2682         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2683         if (ret) {
2684                 err = ret;
2685                 goto fail_dirty_metadata_bytes;
2686         }
2687
2688         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2689                         GFP_KERNEL);
2690         if (ret) {
2691                 err = ret;
2692                 goto fail_delalloc_bytes;
2693         }
2694
2695         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2696         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2697         INIT_LIST_HEAD(&fs_info->trans_list);
2698         INIT_LIST_HEAD(&fs_info->dead_roots);
2699         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2700         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2701         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2702         spin_lock_init(&fs_info->delalloc_root_lock);
2703         spin_lock_init(&fs_info->trans_lock);
2704         spin_lock_init(&fs_info->fs_roots_radix_lock);
2705         spin_lock_init(&fs_info->delayed_iput_lock);
2706         spin_lock_init(&fs_info->defrag_inodes_lock);
2707         spin_lock_init(&fs_info->super_lock);
2708         spin_lock_init(&fs_info->buffer_lock);
2709         spin_lock_init(&fs_info->unused_bgs_lock);
2710         rwlock_init(&fs_info->tree_mod_log_lock);
2711         mutex_init(&fs_info->unused_bg_unpin_mutex);
2712         mutex_init(&fs_info->delete_unused_bgs_mutex);
2713         mutex_init(&fs_info->reloc_mutex);
2714         mutex_init(&fs_info->delalloc_root_mutex);
2715         seqlock_init(&fs_info->profiles_lock);
2716
2717         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2718         INIT_LIST_HEAD(&fs_info->space_info);
2719         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2720         INIT_LIST_HEAD(&fs_info->unused_bgs);
2721         extent_map_tree_init(&fs_info->mapping_tree);
2722         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2723                              BTRFS_BLOCK_RSV_GLOBAL);
2724         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2725         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2726         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2727         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2728                              BTRFS_BLOCK_RSV_DELOPS);
2729         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2730                              BTRFS_BLOCK_RSV_DELREFS);
2731
2732         atomic_set(&fs_info->async_delalloc_pages, 0);
2733         atomic_set(&fs_info->defrag_running, 0);
2734         atomic_set(&fs_info->reada_works_cnt, 0);
2735         atomic_set(&fs_info->nr_delayed_iputs, 0);
2736         atomic64_set(&fs_info->tree_mod_seq, 0);
2737         fs_info->sb = sb;
2738         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2739         fs_info->metadata_ratio = 0;
2740         fs_info->defrag_inodes = RB_ROOT;
2741         atomic64_set(&fs_info->free_chunk_space, 0);
2742         fs_info->tree_mod_log = RB_ROOT;
2743         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2744         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2745         /* readahead state */
2746         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2747         spin_lock_init(&fs_info->reada_lock);
2748         btrfs_init_ref_verify(fs_info);
2749
2750         fs_info->thread_pool_size = min_t(unsigned long,
2751                                           num_online_cpus() + 2, 8);
2752
2753         INIT_LIST_HEAD(&fs_info->ordered_roots);
2754         spin_lock_init(&fs_info->ordered_root_lock);
2755
2756         fs_info->btree_inode = new_inode(sb);
2757         if (!fs_info->btree_inode) {
2758                 err = -ENOMEM;
2759                 goto fail_bio_counter;
2760         }
2761         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2762
2763         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2764                                         GFP_KERNEL);
2765         if (!fs_info->delayed_root) {
2766                 err = -ENOMEM;
2767                 goto fail_iput;
2768         }
2769         btrfs_init_delayed_root(fs_info->delayed_root);
2770
2771         btrfs_init_scrub(fs_info);
2772 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2773         fs_info->check_integrity_print_mask = 0;
2774 #endif
2775         btrfs_init_balance(fs_info);
2776         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2777
2778         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2779         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2780
2781         btrfs_init_btree_inode(fs_info);
2782
2783         spin_lock_init(&fs_info->block_group_cache_lock);
2784         fs_info->block_group_cache_tree = RB_ROOT;
2785         fs_info->first_logical_byte = (u64)-1;
2786
2787         extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2788                             IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2789         extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2790                             IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
2791         fs_info->pinned_extents = &fs_info->freed_extents[0];
2792         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2793
2794         mutex_init(&fs_info->ordered_operations_mutex);
2795         mutex_init(&fs_info->tree_log_mutex);
2796         mutex_init(&fs_info->chunk_mutex);
2797         mutex_init(&fs_info->transaction_kthread_mutex);
2798         mutex_init(&fs_info->cleaner_mutex);
2799         mutex_init(&fs_info->ro_block_group_mutex);
2800         init_rwsem(&fs_info->commit_root_sem);
2801         init_rwsem(&fs_info->cleanup_work_sem);
2802         init_rwsem(&fs_info->subvol_sem);
2803         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2804
2805         btrfs_init_dev_replace_locks(fs_info);
2806         btrfs_init_qgroup(fs_info);
2807         btrfs_discard_init(fs_info);
2808
2809         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2810         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2811
2812         init_waitqueue_head(&fs_info->transaction_throttle);
2813         init_waitqueue_head(&fs_info->transaction_wait);
2814         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2815         init_waitqueue_head(&fs_info->async_submit_wait);
2816         init_waitqueue_head(&fs_info->delayed_iputs_wait);
2817
2818         /* Usable values until the real ones are cached from the superblock */
2819         fs_info->nodesize = 4096;
2820         fs_info->sectorsize = 4096;
2821         fs_info->stripesize = 4096;
2822
2823         spin_lock_init(&fs_info->swapfile_pins_lock);
2824         fs_info->swapfile_pins = RB_ROOT;
2825
2826         fs_info->send_in_progress = 0;
2827
2828         ret = btrfs_alloc_stripe_hash_table(fs_info);
2829         if (ret) {
2830                 err = ret;
2831                 goto fail_alloc;
2832         }
2833
2834         invalidate_bdev(fs_devices->latest_bdev);
2835
2836         /*
2837          * Read super block and check the signature bytes only
2838          */
2839         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2840         if (IS_ERR(bh)) {
2841                 err = PTR_ERR(bh);
2842                 goto fail_alloc;
2843         }
2844
2845         /*
2846          * Verify the type first, if that or the the checksum value are
2847          * corrupted, we'll find out
2848          */
2849         csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2850         if (!btrfs_supported_super_csum(csum_type)) {
2851                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2852                           csum_type);
2853                 err = -EINVAL;
2854                 brelse(bh);
2855                 goto fail_alloc;
2856         }
2857
2858         ret = btrfs_init_csum_hash(fs_info, csum_type);
2859         if (ret) {
2860                 err = ret;
2861                 goto fail_alloc;
2862         }
2863
2864         /*
2865          * We want to check superblock checksum, the type is stored inside.
2866          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2867          */
2868         if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2869                 btrfs_err(fs_info, "superblock checksum mismatch");
2870                 err = -EINVAL;
2871                 brelse(bh);
2872                 goto fail_csum;
2873         }
2874
2875         /*
2876          * super_copy is zeroed at allocation time and we never touch the
2877          * following bytes up to INFO_SIZE, the checksum is calculated from
2878          * the whole block of INFO_SIZE
2879          */
2880         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2881         brelse(bh);
2882
2883         disk_super = fs_info->super_copy;
2884
2885         ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2886                        BTRFS_FSID_SIZE));
2887
2888         if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2889                 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2890                                 fs_info->super_copy->metadata_uuid,
2891                                 BTRFS_FSID_SIZE));
2892         }
2893
2894         features = btrfs_super_flags(disk_super);
2895         if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2896                 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2897                 btrfs_set_super_flags(disk_super, features);
2898                 btrfs_info(fs_info,
2899                         "found metadata UUID change in progress flag, clearing");
2900         }
2901
2902         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2903                sizeof(*fs_info->super_for_commit));
2904
2905         ret = btrfs_validate_mount_super(fs_info);
2906         if (ret) {
2907                 btrfs_err(fs_info, "superblock contains fatal errors");
2908                 err = -EINVAL;
2909                 goto fail_csum;
2910         }
2911
2912         if (!btrfs_super_root(disk_super))
2913                 goto fail_csum;
2914
2915         /* check FS state, whether FS is broken. */
2916         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2917                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2918
2919         /*
2920          * In the long term, we'll store the compression type in the super
2921          * block, and it'll be used for per file compression control.
2922          */
2923         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2924
2925         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2926         if (ret) {
2927                 err = ret;
2928                 goto fail_csum;
2929         }
2930
2931         features = btrfs_super_incompat_flags(disk_super) &
2932                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2933         if (features) {
2934                 btrfs_err(fs_info,
2935                     "cannot mount because of unsupported optional features (%llx)",
2936                     features);
2937                 err = -EINVAL;
2938                 goto fail_csum;
2939         }
2940
2941         features = btrfs_super_incompat_flags(disk_super);
2942         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2943         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2944                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2945         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2946                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2947
2948         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2949                 btrfs_info(fs_info, "has skinny extents");
2950
2951         /*
2952          * flag our filesystem as having big metadata blocks if
2953          * they are bigger than the page size
2954          */
2955         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2956                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2957                         btrfs_info(fs_info,
2958                                 "flagging fs with big metadata feature");
2959                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2960         }
2961
2962         nodesize = btrfs_super_nodesize(disk_super);
2963         sectorsize = btrfs_super_sectorsize(disk_super);
2964         stripesize = sectorsize;
2965         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2966         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2967
2968         /* Cache block sizes */
2969         fs_info->nodesize = nodesize;
2970         fs_info->sectorsize = sectorsize;
2971         fs_info->stripesize = stripesize;
2972
2973         /*
2974          * mixed block groups end up with duplicate but slightly offset
2975          * extent buffers for the same range.  It leads to corruptions
2976          */
2977         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2978             (sectorsize != nodesize)) {
2979                 btrfs_err(fs_info,
2980 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2981                         nodesize, sectorsize);
2982                 goto fail_csum;
2983         }
2984
2985         /*
2986          * Needn't use the lock because there is no other task which will
2987          * update the flag.
2988          */
2989         btrfs_set_super_incompat_flags(disk_super, features);
2990
2991         features = btrfs_super_compat_ro_flags(disk_super) &
2992                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2993         if (!sb_rdonly(sb) && features) {
2994                 btrfs_err(fs_info,
2995         "cannot mount read-write because of unsupported optional features (%llx)",
2996                        features);
2997                 err = -EINVAL;
2998                 goto fail_csum;
2999         }
3000
3001         ret = btrfs_init_workqueues(fs_info, fs_devices);
3002         if (ret) {
3003                 err = ret;
3004                 goto fail_sb_buffer;
3005         }
3006
3007         sb->s_bdi->congested_fn = btrfs_congested_fn;
3008         sb->s_bdi->congested_data = fs_info;
3009         sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
3010         sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
3011         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3012         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3013
3014         sb->s_blocksize = sectorsize;
3015         sb->s_blocksize_bits = blksize_bits(sectorsize);
3016         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3017
3018         mutex_lock(&fs_info->chunk_mutex);
3019         ret = btrfs_read_sys_array(fs_info);
3020         mutex_unlock(&fs_info->chunk_mutex);
3021         if (ret) {
3022                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3023                 goto fail_sb_buffer;
3024         }
3025
3026         generation = btrfs_super_chunk_root_generation(disk_super);
3027         level = btrfs_super_chunk_root_level(disk_super);
3028
3029         chunk_root->node = read_tree_block(fs_info,
3030                                            btrfs_super_chunk_root(disk_super),
3031                                            generation, level, NULL);
3032         if (IS_ERR(chunk_root->node) ||
3033             !extent_buffer_uptodate(chunk_root->node)) {
3034                 btrfs_err(fs_info, "failed to read chunk root");
3035                 if (!IS_ERR(chunk_root->node))
3036                         free_extent_buffer(chunk_root->node);
3037                 chunk_root->node = NULL;
3038                 goto fail_tree_roots;
3039         }
3040         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3041         chunk_root->commit_root = btrfs_root_node(chunk_root);
3042
3043         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3044            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
3045
3046         ret = btrfs_read_chunk_tree(fs_info);
3047         if (ret) {
3048                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3049                 goto fail_tree_roots;
3050         }
3051
3052         /*
3053          * Keep the devid that is marked to be the target device for the
3054          * device replace procedure
3055          */
3056         btrfs_free_extra_devids(fs_devices, 0);
3057
3058         if (!fs_devices->latest_bdev) {
3059                 btrfs_err(fs_info, "failed to read devices");
3060                 goto fail_tree_roots;
3061         }
3062
3063         ret = init_tree_roots(fs_info);
3064         if (ret)
3065                 goto fail_tree_roots;
3066
3067         ret = btrfs_verify_dev_extents(fs_info);
3068         if (ret) {
3069                 btrfs_err(fs_info,
3070                           "failed to verify dev extents against chunks: %d",
3071                           ret);
3072                 goto fail_block_groups;
3073         }
3074         ret = btrfs_recover_balance(fs_info);
3075         if (ret) {
3076                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3077                 goto fail_block_groups;
3078         }
3079
3080         ret = btrfs_init_dev_stats(fs_info);
3081         if (ret) {
3082                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3083                 goto fail_block_groups;
3084         }
3085
3086         ret = btrfs_init_dev_replace(fs_info);
3087         if (ret) {
3088                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3089                 goto fail_block_groups;
3090         }
3091
3092         btrfs_free_extra_devids(fs_devices, 1);
3093
3094         ret = btrfs_sysfs_add_fsid(fs_devices);
3095         if (ret) {
3096                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3097                                 ret);
3098                 goto fail_block_groups;
3099         }
3100
3101         ret = btrfs_sysfs_add_mounted(fs_info);
3102         if (ret) {
3103                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3104                 goto fail_fsdev_sysfs;
3105         }
3106
3107         ret = btrfs_init_space_info(fs_info);
3108         if (ret) {
3109                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3110                 goto fail_sysfs;
3111         }
3112
3113         ret = btrfs_read_block_groups(fs_info);
3114         if (ret) {
3115                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3116                 goto fail_sysfs;
3117         }
3118
3119         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3120                 btrfs_warn(fs_info,
3121                 "writable mount is not allowed due to too many missing devices");
3122                 goto fail_sysfs;
3123         }
3124
3125         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3126                                                "btrfs-cleaner");
3127         if (IS_ERR(fs_info->cleaner_kthread))
3128                 goto fail_sysfs;
3129
3130         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3131                                                    tree_root,
3132                                                    "btrfs-transaction");
3133         if (IS_ERR(fs_info->transaction_kthread))
3134                 goto fail_cleaner;
3135
3136         if (!btrfs_test_opt(fs_info, NOSSD) &&
3137             !fs_info->fs_devices->rotating) {
3138                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3139         }
3140
3141         /*
3142          * Mount does not set all options immediately, we can do it now and do
3143          * not have to wait for transaction commit
3144          */
3145         btrfs_apply_pending_changes(fs_info);
3146
3147 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3148         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3149                 ret = btrfsic_mount(fs_info, fs_devices,
3150                                     btrfs_test_opt(fs_info,
3151                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3152                                     1 : 0,
3153                                     fs_info->check_integrity_print_mask);
3154                 if (ret)
3155                         btrfs_warn(fs_info,
3156                                 "failed to initialize integrity check module: %d",
3157                                 ret);
3158         }
3159 #endif
3160         ret = btrfs_read_qgroup_config(fs_info);
3161         if (ret)
3162                 goto fail_trans_kthread;
3163
3164         if (btrfs_build_ref_tree(fs_info))
3165                 btrfs_err(fs_info, "couldn't build ref tree");
3166
3167         /* do not make disk changes in broken FS or nologreplay is given */
3168         if (btrfs_super_log_root(disk_super) != 0 &&
3169             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3170                 btrfs_info(fs_info, "start tree-log replay");
3171                 ret = btrfs_replay_log(fs_info, fs_devices);
3172                 if (ret) {
3173                         err = ret;
3174                         goto fail_qgroup;
3175                 }
3176         }
3177
3178         ret = btrfs_find_orphan_roots(fs_info);
3179         if (ret)
3180                 goto fail_qgroup;
3181
3182         if (!sb_rdonly(sb)) {
3183                 ret = btrfs_cleanup_fs_roots(fs_info);
3184                 if (ret)
3185                         goto fail_qgroup;
3186
3187                 mutex_lock(&fs_info->cleaner_mutex);
3188                 ret = btrfs_recover_relocation(tree_root);
3189                 mutex_unlock(&fs_info->cleaner_mutex);
3190                 if (ret < 0) {
3191                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3192                                         ret);
3193                         err = -EINVAL;
3194                         goto fail_qgroup;
3195                 }
3196         }
3197
3198         location.objectid = BTRFS_FS_TREE_OBJECTID;
3199         location.type = BTRFS_ROOT_ITEM_KEY;
3200         location.offset = 0;
3201
3202         fs_info->fs_root = btrfs_get_fs_root(fs_info, &location, true);
3203         if (IS_ERR(fs_info->fs_root)) {
3204                 err = PTR_ERR(fs_info->fs_root);
3205                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3206                 fs_info->fs_root = NULL;
3207                 goto fail_qgroup;
3208         }
3209
3210         if (!btrfs_grab_fs_root(fs_info->fs_root)) {
3211                 fs_info->fs_root = NULL;
3212                 err = -ENOENT;
3213                 btrfs_warn(fs_info, "failed to grab a ref on the fs tree");
3214                 goto fail_qgroup;
3215         }
3216
3217         if (sb_rdonly(sb))
3218                 return 0;
3219
3220         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3221             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3222                 clear_free_space_tree = 1;
3223         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3224                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3225                 btrfs_warn(fs_info, "free space tree is invalid");
3226                 clear_free_space_tree = 1;
3227         }
3228
3229         if (clear_free_space_tree) {
3230                 btrfs_info(fs_info, "clearing free space tree");
3231                 ret = btrfs_clear_free_space_tree(fs_info);
3232                 if (ret) {
3233                         btrfs_warn(fs_info,
3234                                    "failed to clear free space tree: %d", ret);
3235                         close_ctree(fs_info);
3236                         return ret;
3237                 }
3238         }
3239
3240         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3241             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3242                 btrfs_info(fs_info, "creating free space tree");
3243                 ret = btrfs_create_free_space_tree(fs_info);
3244                 if (ret) {
3245                         btrfs_warn(fs_info,
3246                                 "failed to create free space tree: %d", ret);
3247                         close_ctree(fs_info);
3248                         return ret;
3249                 }
3250         }
3251
3252         down_read(&fs_info->cleanup_work_sem);
3253         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3254             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3255                 up_read(&fs_info->cleanup_work_sem);
3256                 close_ctree(fs_info);
3257                 return ret;
3258         }
3259         up_read(&fs_info->cleanup_work_sem);
3260
3261         ret = btrfs_resume_balance_async(fs_info);
3262         if (ret) {
3263                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3264                 close_ctree(fs_info);
3265                 return ret;
3266         }
3267
3268         ret = btrfs_resume_dev_replace_async(fs_info);
3269         if (ret) {
3270                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3271                 close_ctree(fs_info);
3272                 return ret;
3273         }
3274
3275         btrfs_qgroup_rescan_resume(fs_info);
3276         btrfs_discard_resume(fs_info);
3277
3278         if (!fs_info->uuid_root) {
3279                 btrfs_info(fs_info, "creating UUID tree");
3280                 ret = btrfs_create_uuid_tree(fs_info);
3281                 if (ret) {
3282                         btrfs_warn(fs_info,
3283                                 "failed to create the UUID tree: %d", ret);
3284                         close_ctree(fs_info);
3285                         return ret;
3286                 }
3287         } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3288                    fs_info->generation !=
3289                                 btrfs_super_uuid_tree_generation(disk_super)) {
3290                 btrfs_info(fs_info, "checking UUID tree");
3291                 ret = btrfs_check_uuid_tree(fs_info);
3292                 if (ret) {
3293                         btrfs_warn(fs_info,
3294                                 "failed to check the UUID tree: %d", ret);
3295                         close_ctree(fs_info);
3296                         return ret;
3297                 }
3298         } else {
3299                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3300         }
3301         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3302
3303         /*
3304          * backuproot only affect mount behavior, and if open_ctree succeeded,
3305          * no need to keep the flag
3306          */
3307         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3308
3309         return 0;
3310
3311 fail_qgroup:
3312         btrfs_free_qgroup_config(fs_info);
3313 fail_trans_kthread:
3314         kthread_stop(fs_info->transaction_kthread);
3315         btrfs_cleanup_transaction(fs_info);
3316         btrfs_free_fs_roots(fs_info);
3317 fail_cleaner:
3318         kthread_stop(fs_info->cleaner_kthread);
3319
3320         /*
3321          * make sure we're done with the btree inode before we stop our
3322          * kthreads
3323          */
3324         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3325
3326 fail_sysfs:
3327         btrfs_sysfs_remove_mounted(fs_info);
3328
3329 fail_fsdev_sysfs:
3330         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3331
3332 fail_block_groups:
3333         btrfs_put_block_group_cache(fs_info);
3334
3335 fail_tree_roots:
3336         free_root_pointers(fs_info, true);
3337         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3338
3339 fail_sb_buffer:
3340         btrfs_stop_all_workers(fs_info);
3341         btrfs_free_block_groups(fs_info);
3342 fail_csum:
3343         btrfs_free_csum_hash(fs_info);
3344 fail_alloc:
3345 fail_iput:
3346         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3347
3348         iput(fs_info->btree_inode);
3349 fail_bio_counter:
3350         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3351 fail_delalloc_bytes:
3352         percpu_counter_destroy(&fs_info->delalloc_bytes);
3353 fail_dirty_metadata_bytes:
3354         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3355 fail_dio_bytes:
3356         percpu_counter_destroy(&fs_info->dio_bytes);
3357 fail_srcu:
3358         cleanup_srcu_struct(&fs_info->subvol_srcu);
3359 fail:
3360         btrfs_free_stripe_hash_table(fs_info);
3361         btrfs_close_devices(fs_info->fs_devices);
3362         return err;
3363 }
3364 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3365
3366 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3367 {
3368         if (uptodate) {
3369                 set_buffer_uptodate(bh);
3370         } else {
3371                 struct btrfs_device *device = (struct btrfs_device *)
3372                         bh->b_private;
3373
3374                 btrfs_warn_rl_in_rcu(device->fs_info,
3375                                 "lost page write due to IO error on %s",
3376                                           rcu_str_deref(device->name));
3377                 /* note, we don't set_buffer_write_io_error because we have
3378                  * our own ways of dealing with the IO errors
3379                  */
3380                 clear_buffer_uptodate(bh);
3381                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3382         }
3383         unlock_buffer(bh);
3384         put_bh(bh);
3385 }
3386
3387 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3388                         struct buffer_head **bh_ret)
3389 {
3390         struct buffer_head *bh;
3391         struct btrfs_super_block *super;
3392         u64 bytenr;
3393
3394         bytenr = btrfs_sb_offset(copy_num);
3395         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3396                 return -EINVAL;
3397
3398         bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3399         /*
3400          * If we fail to read from the underlying devices, as of now
3401          * the best option we have is to mark it EIO.
3402          */
3403         if (!bh)
3404                 return -EIO;
3405
3406         super = (struct btrfs_super_block *)bh->b_data;
3407         if (btrfs_super_bytenr(super) != bytenr ||
3408                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3409                 brelse(bh);
3410                 return -EINVAL;
3411         }
3412
3413         *bh_ret = bh;
3414         return 0;
3415 }
3416
3417
3418 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3419 {
3420         struct buffer_head *bh;
3421         struct buffer_head *latest = NULL;
3422         struct btrfs_super_block *super;
3423         int i;
3424         u64 transid = 0;
3425         int ret = -EINVAL;
3426
3427         /* we would like to check all the supers, but that would make
3428          * a btrfs mount succeed after a mkfs from a different FS.
3429          * So, we need to add a special mount option to scan for
3430          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3431          */
3432         for (i = 0; i < 1; i++) {
3433                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3434                 if (ret)
3435                         continue;
3436
3437                 super = (struct btrfs_super_block *)bh->b_data;
3438
3439                 if (!latest || btrfs_super_generation(super) > transid) {
3440                         brelse(latest);
3441                         latest = bh;
3442                         transid = btrfs_super_generation(super);
3443                 } else {
3444                         brelse(bh);
3445                 }
3446         }
3447
3448         if (!latest)
3449                 return ERR_PTR(ret);
3450
3451         return latest;
3452 }
3453
3454 /*
3455  * Write superblock @sb to the @device. Do not wait for completion, all the
3456  * buffer heads we write are pinned.
3457  *
3458  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3459  * the expected device size at commit time. Note that max_mirrors must be
3460  * same for write and wait phases.
3461  *
3462  * Return number of errors when buffer head is not found or submission fails.
3463  */
3464 static int write_dev_supers(struct btrfs_device *device,
3465                             struct btrfs_super_block *sb, int max_mirrors)
3466 {
3467         struct btrfs_fs_info *fs_info = device->fs_info;
3468         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3469         struct buffer_head *bh;
3470         int i;
3471         int ret;
3472         int errors = 0;
3473         u64 bytenr;
3474         int op_flags;
3475
3476         if (max_mirrors == 0)
3477                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3478
3479         shash->tfm = fs_info->csum_shash;
3480
3481         for (i = 0; i < max_mirrors; i++) {
3482                 bytenr = btrfs_sb_offset(i);
3483                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3484                     device->commit_total_bytes)
3485                         break;
3486
3487                 btrfs_set_super_bytenr(sb, bytenr);
3488
3489                 crypto_shash_init(shash);
3490                 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3491                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3492                 crypto_shash_final(shash, sb->csum);
3493
3494                 /* One reference for us, and we leave it for the caller */
3495                 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3496                               BTRFS_SUPER_INFO_SIZE);
3497                 if (!bh) {
3498                         btrfs_err(device->fs_info,
3499                             "couldn't get super buffer head for bytenr %llu",
3500                             bytenr);
3501                         errors++;
3502                         continue;
3503                 }
3504
3505                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3506
3507                 /* one reference for submit_bh */
3508                 get_bh(bh);
3509
3510                 set_buffer_uptodate(bh);
3511                 lock_buffer(bh);
3512                 bh->b_end_io = btrfs_end_buffer_write_sync;
3513                 bh->b_private = device;
3514
3515                 /*
3516                  * we fua the first super.  The others we allow
3517                  * to go down lazy.
3518                  */
3519                 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3520                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3521                         op_flags |= REQ_FUA;
3522                 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3523                 if (ret)
3524                         errors++;
3525         }
3526         return errors < i ? 0 : -1;
3527 }
3528
3529 /*
3530  * Wait for write completion of superblocks done by write_dev_supers,
3531  * @max_mirrors same for write and wait phases.
3532  *
3533  * Return number of errors when buffer head is not found or not marked up to
3534  * date.
3535  */
3536 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3537 {
3538         struct buffer_head *bh;
3539         int i;
3540         int errors = 0;
3541         bool primary_failed = false;
3542         u64 bytenr;
3543
3544         if (max_mirrors == 0)
3545                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3546
3547         for (i = 0; i < max_mirrors; i++) {
3548                 bytenr = btrfs_sb_offset(i);
3549                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3550                     device->commit_total_bytes)
3551                         break;
3552
3553                 bh = __find_get_block(device->bdev,
3554                                       bytenr / BTRFS_BDEV_BLOCKSIZE,
3555                                       BTRFS_SUPER_INFO_SIZE);
3556                 if (!bh) {
3557                         errors++;
3558                         if (i == 0)
3559                                 primary_failed = true;
3560                         continue;
3561                 }
3562                 wait_on_buffer(bh);
3563                 if (!buffer_uptodate(bh)) {
3564                         errors++;
3565                         if (i == 0)
3566                                 primary_failed = true;
3567                 }
3568
3569                 /* drop our reference */
3570                 brelse(bh);
3571
3572                 /* drop the reference from the writing run */
3573                 brelse(bh);
3574         }
3575
3576         /* log error, force error return */
3577         if (primary_failed) {
3578                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3579                           device->devid);
3580                 return -1;
3581         }
3582
3583         return errors < i ? 0 : -1;
3584 }
3585
3586 /*
3587  * endio for the write_dev_flush, this will wake anyone waiting
3588  * for the barrier when it is done
3589  */
3590 static void btrfs_end_empty_barrier(struct bio *bio)
3591 {
3592         complete(bio->bi_private);
3593 }
3594
3595 /*
3596  * Submit a flush request to the device if it supports it. Error handling is
3597  * done in the waiting counterpart.
3598  */
3599 static void write_dev_flush(struct btrfs_device *device)
3600 {
3601         struct request_queue *q = bdev_get_queue(device->bdev);
3602         struct bio *bio = device->flush_bio;
3603
3604         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3605                 return;
3606
3607         bio_reset(bio);
3608         bio->bi_end_io = btrfs_end_empty_barrier;
3609         bio_set_dev(bio, device->bdev);
3610         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3611         init_completion(&device->flush_wait);
3612         bio->bi_private = &device->flush_wait;
3613
3614         btrfsic_submit_bio(bio);
3615         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3616 }
3617
3618 /*
3619  * If the flush bio has been submitted by write_dev_flush, wait for it.
3620  */
3621 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3622 {
3623         struct bio *bio = device->flush_bio;
3624
3625         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3626                 return BLK_STS_OK;
3627
3628         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3629         wait_for_completion_io(&device->flush_wait);
3630
3631         return bio->bi_status;
3632 }
3633
3634 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3635 {
3636         if (!btrfs_check_rw_degradable(fs_info, NULL))
3637                 return -EIO;
3638         return 0;
3639 }
3640
3641 /*
3642  * send an empty flush down to each device in parallel,
3643  * then wait for them
3644  */
3645 static int barrier_all_devices(struct btrfs_fs_info *info)
3646 {
3647         struct list_head *head;
3648         struct btrfs_device *dev;
3649         int errors_wait = 0;
3650         blk_status_t ret;
3651
3652         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3653         /* send down all the barriers */
3654         head = &info->fs_devices->devices;
3655         list_for_each_entry(dev, head, dev_list) {
3656                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3657                         continue;
3658                 if (!dev->bdev)
3659                         continue;
3660                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3661                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3662                         continue;
3663
3664                 write_dev_flush(dev);
3665                 dev->last_flush_error = BLK_STS_OK;
3666         }
3667
3668         /* wait for all the barriers */
3669         list_for_each_entry(dev, head, dev_list) {
3670                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3671                         continue;
3672                 if (!dev->bdev) {
3673                         errors_wait++;
3674                         continue;
3675                 }
3676                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3677                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3678                         continue;
3679
3680                 ret = wait_dev_flush(dev);
3681                 if (ret) {
3682                         dev->last_flush_error = ret;
3683                         btrfs_dev_stat_inc_and_print(dev,
3684                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3685                         errors_wait++;
3686                 }
3687         }
3688
3689         if (errors_wait) {
3690                 /*
3691                  * At some point we need the status of all disks
3692                  * to arrive at the volume status. So error checking
3693                  * is being pushed to a separate loop.
3694                  */
3695                 return check_barrier_error(info);
3696         }
3697         return 0;
3698 }
3699
3700 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3701 {
3702         int raid_type;
3703         int min_tolerated = INT_MAX;
3704
3705         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3706             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3707                 min_tolerated = min_t(int, min_tolerated,
3708                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3709                                     tolerated_failures);
3710
3711         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3712                 if (raid_type == BTRFS_RAID_SINGLE)
3713                         continue;
3714                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3715                         continue;
3716                 min_tolerated = min_t(int, min_tolerated,
3717                                     btrfs_raid_array[raid_type].
3718                                     tolerated_failures);
3719         }
3720
3721         if (min_tolerated == INT_MAX) {
3722                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3723                 min_tolerated = 0;
3724         }
3725
3726         return min_tolerated;
3727 }
3728
3729 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3730 {
3731         struct list_head *head;
3732         struct btrfs_device *dev;
3733         struct btrfs_super_block *sb;
3734         struct btrfs_dev_item *dev_item;
3735         int ret;
3736         int do_barriers;
3737         int max_errors;
3738         int total_errors = 0;
3739         u64 flags;
3740
3741         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3742
3743         /*
3744          * max_mirrors == 0 indicates we're from commit_transaction,
3745          * not from fsync where the tree roots in fs_info have not
3746          * been consistent on disk.
3747          */
3748         if (max_mirrors == 0)
3749                 backup_super_roots(fs_info);
3750
3751         sb = fs_info->super_for_commit;
3752         dev_item = &sb->dev_item;
3753
3754         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3755         head = &fs_info->fs_devices->devices;
3756         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3757
3758         if (do_barriers) {
3759                 ret = barrier_all_devices(fs_info);
3760                 if (ret) {
3761                         mutex_unlock(
3762                                 &fs_info->fs_devices->device_list_mutex);
3763                         btrfs_handle_fs_error(fs_info, ret,
3764                                               "errors while submitting device barriers.");
3765                         return ret;
3766                 }
3767         }
3768
3769         list_for_each_entry(dev, head, dev_list) {
3770                 if (!dev->bdev) {
3771                         total_errors++;
3772                         continue;
3773                 }
3774                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3775                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3776                         continue;
3777
3778                 btrfs_set_stack_device_generation(dev_item, 0);
3779                 btrfs_set_stack_device_type(dev_item, dev->type);
3780                 btrfs_set_stack_device_id(dev_item, dev->devid);
3781                 btrfs_set_stack_device_total_bytes(dev_item,
3782                                                    dev->commit_total_bytes);
3783                 btrfs_set_stack_device_bytes_used(dev_item,
3784                                                   dev->commit_bytes_used);
3785                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3786                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3787                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3788                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3789                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3790                        BTRFS_FSID_SIZE);
3791
3792                 flags = btrfs_super_flags(sb);
3793                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3794
3795                 ret = btrfs_validate_write_super(fs_info, sb);
3796                 if (ret < 0) {
3797                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3798                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
3799                                 "unexpected superblock corruption detected");
3800                         return -EUCLEAN;
3801                 }
3802
3803                 ret = write_dev_supers(dev, sb, max_mirrors);
3804                 if (ret)
3805                         total_errors++;
3806         }
3807         if (total_errors > max_errors) {
3808                 btrfs_err(fs_info, "%d errors while writing supers",
3809                           total_errors);
3810                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3811
3812                 /* FUA is masked off if unsupported and can't be the reason */
3813                 btrfs_handle_fs_error(fs_info, -EIO,
3814                                       "%d errors while writing supers",
3815                                       total_errors);
3816                 return -EIO;
3817         }
3818
3819         total_errors = 0;
3820         list_for_each_entry(dev, head, dev_list) {
3821                 if (!dev->bdev)
3822                         continue;
3823                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3824                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3825                         continue;
3826
3827                 ret = wait_dev_supers(dev, max_mirrors);
3828                 if (ret)
3829                         total_errors++;
3830         }
3831         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3832         if (total_errors > max_errors) {
3833                 btrfs_handle_fs_error(fs_info, -EIO,
3834                                       "%d errors while writing supers",
3835                                       total_errors);
3836                 return -EIO;
3837         }
3838         return 0;
3839 }
3840
3841 /* Drop a fs root from the radix tree and free it. */
3842 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3843                                   struct btrfs_root *root)
3844 {
3845         spin_lock(&fs_info->fs_roots_radix_lock);
3846         radix_tree_delete(&fs_info->fs_roots_radix,
3847                           (unsigned long)root->root_key.objectid);
3848         if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3849                 btrfs_put_fs_root(root);
3850         spin_unlock(&fs_info->fs_roots_radix_lock);
3851
3852         if (btrfs_root_refs(&root->root_item) == 0)
3853                 synchronize_srcu(&fs_info->subvol_srcu);
3854
3855         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3856                 btrfs_free_log(NULL, root);
3857                 if (root->reloc_root) {
3858                         free_extent_buffer(root->reloc_root->node);
3859                         free_extent_buffer(root->reloc_root->commit_root);
3860                         btrfs_put_fs_root(root->reloc_root);
3861                         root->reloc_root = NULL;
3862                 }
3863         }
3864
3865         if (root->free_ino_pinned)
3866                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3867         if (root->free_ino_ctl)
3868                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3869         btrfs_free_fs_root(root);
3870 }
3871
3872 void btrfs_free_fs_root(struct btrfs_root *root)
3873 {
3874         iput(root->ino_cache_inode);
3875         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3876         if (root->anon_dev)
3877                 free_anon_bdev(root->anon_dev);
3878         if (root->subv_writers)
3879                 btrfs_free_subvolume_writers(root->subv_writers);
3880         free_extent_buffer(root->node);
3881         free_extent_buffer(root->commit_root);
3882         kfree(root->free_ino_ctl);
3883         kfree(root->free_ino_pinned);
3884         btrfs_put_fs_root(root);
3885 }
3886
3887 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3888 {
3889         u64 root_objectid = 0;
3890         struct btrfs_root *gang[8];
3891         int i = 0;
3892         int err = 0;
3893         unsigned int ret = 0;
3894         int index;
3895
3896         while (1) {
3897                 index = srcu_read_lock(&fs_info->subvol_srcu);
3898                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3899                                              (void **)gang, root_objectid,
3900                                              ARRAY_SIZE(gang));
3901                 if (!ret) {
3902                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3903                         break;
3904                 }
3905                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3906
3907                 for (i = 0; i < ret; i++) {
3908                         /* Avoid to grab roots in dead_roots */
3909                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3910                                 gang[i] = NULL;
3911                                 continue;
3912                         }
3913                         /* grab all the search result for later use */
3914                         gang[i] = btrfs_grab_fs_root(gang[i]);
3915                 }
3916                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3917
3918                 for (i = 0; i < ret; i++) {
3919                         if (!gang[i])
3920                                 continue;
3921                         root_objectid = gang[i]->root_key.objectid;
3922                         err = btrfs_orphan_cleanup(gang[i]);
3923                         if (err)
3924                                 break;
3925                         btrfs_put_fs_root(gang[i]);
3926                 }
3927                 root_objectid++;
3928         }
3929
3930         /* release the uncleaned roots due to error */
3931         for (; i < ret; i++) {
3932                 if (gang[i])
3933                         btrfs_put_fs_root(gang[i]);
3934         }
3935         return err;
3936 }
3937
3938 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3939 {
3940         struct btrfs_root *root = fs_info->tree_root;
3941         struct btrfs_trans_handle *trans;
3942
3943         mutex_lock(&fs_info->cleaner_mutex);
3944         btrfs_run_delayed_iputs(fs_info);
3945         mutex_unlock(&fs_info->cleaner_mutex);
3946         wake_up_process(fs_info->cleaner_kthread);
3947
3948         /* wait until ongoing cleanup work done */
3949         down_write(&fs_info->cleanup_work_sem);
3950         up_write(&fs_info->cleanup_work_sem);
3951
3952         trans = btrfs_join_transaction(root);
3953         if (IS_ERR(trans))
3954                 return PTR_ERR(trans);
3955         return btrfs_commit_transaction(trans);
3956 }
3957
3958 void __cold close_ctree(struct btrfs_fs_info *fs_info)
3959 {
3960         int ret;
3961
3962         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3963         /*
3964          * We don't want the cleaner to start new transactions, add more delayed
3965          * iputs, etc. while we're closing. We can't use kthread_stop() yet
3966          * because that frees the task_struct, and the transaction kthread might
3967          * still try to wake up the cleaner.
3968          */
3969         kthread_park(fs_info->cleaner_kthread);
3970
3971         /* wait for the qgroup rescan worker to stop */
3972         btrfs_qgroup_wait_for_completion(fs_info, false);
3973
3974         /* wait for the uuid_scan task to finish */
3975         down(&fs_info->uuid_tree_rescan_sem);
3976         /* avoid complains from lockdep et al., set sem back to initial state */
3977         up(&fs_info->uuid_tree_rescan_sem);
3978
3979         /* pause restriper - we want to resume on mount */
3980         btrfs_pause_balance(fs_info);
3981
3982         btrfs_dev_replace_suspend_for_unmount(fs_info);
3983
3984         btrfs_scrub_cancel(fs_info);
3985
3986         /* wait for any defraggers to finish */
3987         wait_event(fs_info->transaction_wait,
3988                    (atomic_read(&fs_info->defrag_running) == 0));
3989
3990         /* clear out the rbtree of defraggable inodes */
3991         btrfs_cleanup_defrag_inodes(fs_info);
3992
3993         cancel_work_sync(&fs_info->async_reclaim_work);
3994
3995         /* Cancel or finish ongoing discard work */
3996         btrfs_discard_cleanup(fs_info);
3997
3998         if (!sb_rdonly(fs_info->sb)) {
3999                 /*
4000                  * The cleaner kthread is stopped, so do one final pass over
4001                  * unused block groups.
4002                  */
4003                 btrfs_delete_unused_bgs(fs_info);
4004
4005                 ret = btrfs_commit_super(fs_info);
4006                 if (ret)
4007                         btrfs_err(fs_info, "commit super ret %d", ret);
4008         }
4009
4010         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4011             test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4012                 btrfs_error_commit_super(fs_info);
4013
4014         kthread_stop(fs_info->transaction_kthread);
4015         kthread_stop(fs_info->cleaner_kthread);
4016
4017         ASSERT(list_empty(&fs_info->delayed_iputs));
4018         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4019
4020         btrfs_free_qgroup_config(fs_info);
4021         ASSERT(list_empty(&fs_info->delalloc_roots));
4022
4023         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4024                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4025                        percpu_counter_sum(&fs_info->delalloc_bytes));
4026         }
4027
4028         if (percpu_counter_sum(&fs_info->dio_bytes))
4029                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4030                            percpu_counter_sum(&fs_info->dio_bytes));
4031
4032         btrfs_sysfs_remove_mounted(fs_info);
4033         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4034
4035         btrfs_free_fs_roots(fs_info);
4036
4037         btrfs_put_block_group_cache(fs_info);
4038
4039         /*
4040          * we must make sure there is not any read request to
4041          * submit after we stopping all workers.
4042          */
4043         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4044         btrfs_stop_all_workers(fs_info);
4045
4046         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4047         free_root_pointers(fs_info, true);
4048
4049         /*
4050          * We must free the block groups after dropping the fs_roots as we could
4051          * have had an IO error and have left over tree log blocks that aren't
4052          * cleaned up until the fs roots are freed.  This makes the block group
4053          * accounting appear to be wrong because there's pending reserved bytes,
4054          * so make sure we do the block group cleanup afterwards.
4055          */
4056         btrfs_free_block_groups(fs_info);
4057
4058         iput(fs_info->btree_inode);
4059
4060 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4061         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4062                 btrfsic_unmount(fs_info->fs_devices);
4063 #endif
4064
4065         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4066         btrfs_close_devices(fs_info->fs_devices);
4067
4068         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4069         percpu_counter_destroy(&fs_info->delalloc_bytes);
4070         percpu_counter_destroy(&fs_info->dio_bytes);
4071         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4072         cleanup_srcu_struct(&fs_info->subvol_srcu);
4073
4074         btrfs_free_csum_hash(fs_info);
4075         btrfs_free_stripe_hash_table(fs_info);
4076         btrfs_free_ref_cache(fs_info);
4077 }
4078
4079 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4080                           int atomic)
4081 {
4082         int ret;
4083         struct inode *btree_inode = buf->pages[0]->mapping->host;
4084
4085         ret = extent_buffer_uptodate(buf);
4086         if (!ret)
4087                 return ret;
4088
4089         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4090                                     parent_transid, atomic);
4091         if (ret == -EAGAIN)
4092                 return ret;
4093         return !ret;
4094 }
4095
4096 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4097 {
4098         struct btrfs_fs_info *fs_info;
4099         struct btrfs_root *root;
4100         u64 transid = btrfs_header_generation(buf);
4101         int was_dirty;
4102
4103 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4104         /*
4105          * This is a fast path so only do this check if we have sanity tests
4106          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4107          * outside of the sanity tests.
4108          */
4109         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4110                 return;
4111 #endif
4112         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4113         fs_info = root->fs_info;
4114         btrfs_assert_tree_locked(buf);
4115         if (transid != fs_info->generation)
4116                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4117                         buf->start, transid, fs_info->generation);
4118         was_dirty = set_extent_buffer_dirty(buf);
4119         if (!was_dirty)
4120                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4121                                          buf->len,
4122                                          fs_info->dirty_metadata_batch);
4123 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4124         /*
4125          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4126          * but item data not updated.
4127          * So here we should only check item pointers, not item data.
4128          */
4129         if (btrfs_header_level(buf) == 0 &&
4130             btrfs_check_leaf_relaxed(buf)) {
4131                 btrfs_print_leaf(buf);
4132                 ASSERT(0);
4133         }
4134 #endif
4135 }
4136
4137 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4138                                         int flush_delayed)
4139 {
4140         /*
4141          * looks as though older kernels can get into trouble with
4142          * this code, they end up stuck in balance_dirty_pages forever
4143          */
4144         int ret;
4145
4146         if (current->flags & PF_MEMALLOC)
4147                 return;
4148
4149         if (flush_delayed)
4150                 btrfs_balance_delayed_items(fs_info);
4151
4152         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4153                                      BTRFS_DIRTY_METADATA_THRESH,
4154                                      fs_info->dirty_metadata_batch);
4155         if (ret > 0) {
4156                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4157         }
4158 }
4159
4160 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4161 {
4162         __btrfs_btree_balance_dirty(fs_info, 1);
4163 }
4164
4165 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4166 {
4167         __btrfs_btree_balance_dirty(fs_info, 0);
4168 }
4169
4170 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4171                       struct btrfs_key *first_key)
4172 {
4173         return btree_read_extent_buffer_pages(buf, parent_transid,
4174                                               level, first_key);
4175 }
4176
4177 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4178 {
4179         /* cleanup FS via transaction */
4180         btrfs_cleanup_transaction(fs_info);
4181
4182         mutex_lock(&fs_info->cleaner_mutex);
4183         btrfs_run_delayed_iputs(fs_info);
4184         mutex_unlock(&fs_info->cleaner_mutex);
4185
4186         down_write(&fs_info->cleanup_work_sem);
4187         up_write(&fs_info->cleanup_work_sem);
4188 }
4189
4190 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4191 {
4192         struct btrfs_ordered_extent *ordered;
4193
4194         spin_lock(&root->ordered_extent_lock);
4195         /*
4196          * This will just short circuit the ordered completion stuff which will
4197          * make sure the ordered extent gets properly cleaned up.
4198          */
4199         list_for_each_entry(ordered, &root->ordered_extents,
4200                             root_extent_list)
4201                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4202         spin_unlock(&root->ordered_extent_lock);
4203 }
4204
4205 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4206 {
4207         struct btrfs_root *root;
4208         struct list_head splice;
4209
4210         INIT_LIST_HEAD(&splice);
4211
4212         spin_lock(&fs_info->ordered_root_lock);
4213         list_splice_init(&fs_info->ordered_roots, &splice);
4214         while (!list_empty(&splice)) {
4215                 root = list_first_entry(&splice, struct btrfs_root,
4216                                         ordered_root);
4217                 list_move_tail(&root->ordered_root,
4218                                &fs_info->ordered_roots);
4219
4220                 spin_unlock(&fs_info->ordered_root_lock);
4221                 btrfs_destroy_ordered_extents(root);
4222
4223                 cond_resched();
4224                 spin_lock(&fs_info->ordered_root_lock);
4225         }
4226         spin_unlock(&fs_info->ordered_root_lock);
4227
4228         /*
4229          * We need this here because if we've been flipped read-only we won't
4230          * get sync() from the umount, so we need to make sure any ordered
4231          * extents that haven't had their dirty pages IO start writeout yet
4232          * actually get run and error out properly.
4233          */
4234         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4235 }
4236
4237 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4238                                       struct btrfs_fs_info *fs_info)
4239 {
4240         struct rb_node *node;
4241         struct btrfs_delayed_ref_root *delayed_refs;
4242         struct btrfs_delayed_ref_node *ref;
4243         int ret = 0;
4244
4245         delayed_refs = &trans->delayed_refs;
4246
4247         spin_lock(&delayed_refs->lock);
4248         if (atomic_read(&delayed_refs->num_entries) == 0) {
4249                 spin_unlock(&delayed_refs->lock);
4250                 btrfs_info(fs_info, "delayed_refs has NO entry");
4251                 return ret;
4252         }
4253
4254         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4255                 struct btrfs_delayed_ref_head *head;
4256                 struct rb_node *n;
4257                 bool pin_bytes = false;
4258
4259                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4260                                 href_node);
4261                 if (btrfs_delayed_ref_lock(delayed_refs, head))
4262                         continue;
4263
4264                 spin_lock(&head->lock);
4265                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4266                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4267                                        ref_node);
4268                         ref->in_tree = 0;
4269                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4270                         RB_CLEAR_NODE(&ref->ref_node);
4271                         if (!list_empty(&ref->add_list))
4272                                 list_del(&ref->add_list);
4273                         atomic_dec(&delayed_refs->num_entries);
4274                         btrfs_put_delayed_ref(ref);
4275                 }
4276                 if (head->must_insert_reserved)
4277                         pin_bytes = true;
4278                 btrfs_free_delayed_extent_op(head->extent_op);
4279                 btrfs_delete_ref_head(delayed_refs, head);
4280                 spin_unlock(&head->lock);
4281                 spin_unlock(&delayed_refs->lock);
4282                 mutex_unlock(&head->mutex);
4283
4284                 if (pin_bytes)
4285                         btrfs_pin_extent(fs_info, head->bytenr,
4286                                          head->num_bytes, 1);
4287                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4288                 btrfs_put_delayed_ref_head(head);
4289                 cond_resched();
4290                 spin_lock(&delayed_refs->lock);
4291         }
4292         btrfs_qgroup_destroy_extent_records(trans);
4293
4294         spin_unlock(&delayed_refs->lock);
4295
4296         return ret;
4297 }
4298
4299 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4300 {
4301         struct btrfs_inode *btrfs_inode;
4302         struct list_head splice;
4303
4304         INIT_LIST_HEAD(&splice);
4305
4306         spin_lock(&root->delalloc_lock);
4307         list_splice_init(&root->delalloc_inodes, &splice);
4308
4309         while (!list_empty(&splice)) {
4310                 struct inode *inode = NULL;
4311                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4312                                                delalloc_inodes);
4313                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4314                 spin_unlock(&root->delalloc_lock);
4315
4316                 /*
4317                  * Make sure we get a live inode and that it'll not disappear
4318                  * meanwhile.
4319                  */
4320                 inode = igrab(&btrfs_inode->vfs_inode);
4321                 if (inode) {
4322                         invalidate_inode_pages2(inode->i_mapping);
4323                         iput(inode);
4324                 }
4325                 spin_lock(&root->delalloc_lock);
4326         }
4327         spin_unlock(&root->delalloc_lock);
4328 }
4329
4330 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4331 {
4332         struct btrfs_root *root;
4333         struct list_head splice;
4334
4335         INIT_LIST_HEAD(&splice);
4336
4337         spin_lock(&fs_info->delalloc_root_lock);
4338         list_splice_init(&fs_info->delalloc_roots, &splice);
4339         while (!list_empty(&splice)) {
4340                 root = list_first_entry(&splice, struct btrfs_root,
4341                                          delalloc_root);
4342                 root = btrfs_grab_fs_root(root);
4343                 BUG_ON(!root);
4344                 spin_unlock(&fs_info->delalloc_root_lock);
4345
4346                 btrfs_destroy_delalloc_inodes(root);
4347                 btrfs_put_fs_root(root);
4348
4349                 spin_lock(&fs_info->delalloc_root_lock);
4350         }
4351         spin_unlock(&fs_info->delalloc_root_lock);
4352 }
4353
4354 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4355                                         struct extent_io_tree *dirty_pages,
4356                                         int mark)
4357 {
4358         int ret;
4359         struct extent_buffer *eb;
4360         u64 start = 0;
4361         u64 end;
4362
4363         while (1) {
4364                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4365                                             mark, NULL);
4366                 if (ret)
4367                         break;
4368
4369                 clear_extent_bits(dirty_pages, start, end, mark);
4370                 while (start <= end) {
4371                         eb = find_extent_buffer(fs_info, start);
4372                         start += fs_info->nodesize;
4373                         if (!eb)
4374                                 continue;
4375                         wait_on_extent_buffer_writeback(eb);
4376
4377                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4378                                                &eb->bflags))
4379                                 clear_extent_buffer_dirty(eb);
4380                         free_extent_buffer_stale(eb);
4381                 }
4382         }
4383
4384         return ret;
4385 }
4386
4387 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4388                                        struct extent_io_tree *pinned_extents)
4389 {
4390         struct extent_io_tree *unpin;
4391         u64 start;
4392         u64 end;
4393         int ret;
4394         bool loop = true;
4395
4396         unpin = pinned_extents;
4397 again:
4398         while (1) {
4399                 struct extent_state *cached_state = NULL;
4400
4401                 /*
4402                  * The btrfs_finish_extent_commit() may get the same range as
4403                  * ours between find_first_extent_bit and clear_extent_dirty.
4404                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4405                  * the same extent range.
4406                  */
4407                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4408                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4409                                             EXTENT_DIRTY, &cached_state);
4410                 if (ret) {
4411                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4412                         break;
4413                 }
4414
4415                 clear_extent_dirty(unpin, start, end, &cached_state);
4416                 free_extent_state(cached_state);
4417                 btrfs_error_unpin_extent_range(fs_info, start, end);
4418                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4419                 cond_resched();
4420         }
4421
4422         if (loop) {
4423                 if (unpin == &fs_info->freed_extents[0])
4424                         unpin = &fs_info->freed_extents[1];
4425                 else
4426                         unpin = &fs_info->freed_extents[0];
4427                 loop = false;
4428                 goto again;
4429         }
4430
4431         return 0;
4432 }
4433
4434 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4435 {
4436         struct inode *inode;
4437
4438         inode = cache->io_ctl.inode;
4439         if (inode) {
4440                 invalidate_inode_pages2(inode->i_mapping);
4441                 BTRFS_I(inode)->generation = 0;
4442                 cache->io_ctl.inode = NULL;
4443                 iput(inode);
4444         }
4445         btrfs_put_block_group(cache);
4446 }
4447
4448 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4449                              struct btrfs_fs_info *fs_info)
4450 {
4451         struct btrfs_block_group *cache;
4452
4453         spin_lock(&cur_trans->dirty_bgs_lock);
4454         while (!list_empty(&cur_trans->dirty_bgs)) {
4455                 cache = list_first_entry(&cur_trans->dirty_bgs,
4456                                          struct btrfs_block_group,
4457                                          dirty_list);
4458
4459                 if (!list_empty(&cache->io_list)) {
4460                         spin_unlock(&cur_trans->dirty_bgs_lock);
4461                         list_del_init(&cache->io_list);
4462                         btrfs_cleanup_bg_io(cache);
4463                         spin_lock(&cur_trans->dirty_bgs_lock);
4464                 }
4465
4466                 list_del_init(&cache->dirty_list);
4467                 spin_lock(&cache->lock);
4468                 cache->disk_cache_state = BTRFS_DC_ERROR;
4469                 spin_unlock(&cache->lock);
4470
4471                 spin_unlock(&cur_trans->dirty_bgs_lock);
4472                 btrfs_put_block_group(cache);
4473                 btrfs_delayed_refs_rsv_release(fs_info, 1);
4474                 spin_lock(&cur_trans->dirty_bgs_lock);
4475         }
4476         spin_unlock(&cur_trans->dirty_bgs_lock);
4477
4478         /*
4479          * Refer to the definition of io_bgs member for details why it's safe
4480          * to use it without any locking
4481          */
4482         while (!list_empty(&cur_trans->io_bgs)) {
4483                 cache = list_first_entry(&cur_trans->io_bgs,
4484                                          struct btrfs_block_group,
4485                                          io_list);
4486
4487                 list_del_init(&cache->io_list);
4488                 spin_lock(&cache->lock);
4489                 cache->disk_cache_state = BTRFS_DC_ERROR;
4490                 spin_unlock(&cache->lock);
4491                 btrfs_cleanup_bg_io(cache);
4492         }
4493 }
4494
4495 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4496                                    struct btrfs_fs_info *fs_info)
4497 {
4498         struct btrfs_device *dev, *tmp;
4499
4500         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4501         ASSERT(list_empty(&cur_trans->dirty_bgs));
4502         ASSERT(list_empty(&cur_trans->io_bgs));
4503
4504         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4505                                  post_commit_list) {
4506                 list_del_init(&dev->post_commit_list);
4507         }
4508
4509         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4510
4511         cur_trans->state = TRANS_STATE_COMMIT_START;
4512         wake_up(&fs_info->transaction_blocked_wait);
4513
4514         cur_trans->state = TRANS_STATE_UNBLOCKED;
4515         wake_up(&fs_info->transaction_wait);
4516
4517         btrfs_destroy_delayed_inodes(fs_info);
4518
4519         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4520                                      EXTENT_DIRTY);
4521         btrfs_destroy_pinned_extent(fs_info,
4522                                     fs_info->pinned_extents);
4523
4524         cur_trans->state =TRANS_STATE_COMPLETED;
4525         wake_up(&cur_trans->commit_wait);
4526 }
4527
4528 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4529 {
4530         struct btrfs_transaction *t;
4531
4532         mutex_lock(&fs_info->transaction_kthread_mutex);
4533
4534         spin_lock(&fs_info->trans_lock);
4535         while (!list_empty(&fs_info->trans_list)) {
4536                 t = list_first_entry(&fs_info->trans_list,
4537                                      struct btrfs_transaction, list);
4538                 if (t->state >= TRANS_STATE_COMMIT_START) {
4539                         refcount_inc(&t->use_count);
4540                         spin_unlock(&fs_info->trans_lock);
4541                         btrfs_wait_for_commit(fs_info, t->transid);
4542                         btrfs_put_transaction(t);
4543                         spin_lock(&fs_info->trans_lock);
4544                         continue;
4545                 }
4546                 if (t == fs_info->running_transaction) {
4547                         t->state = TRANS_STATE_COMMIT_DOING;
4548                         spin_unlock(&fs_info->trans_lock);
4549                         /*
4550                          * We wait for 0 num_writers since we don't hold a trans
4551                          * handle open currently for this transaction.
4552                          */
4553                         wait_event(t->writer_wait,
4554                                    atomic_read(&t->num_writers) == 0);
4555                 } else {
4556                         spin_unlock(&fs_info->trans_lock);
4557                 }
4558                 btrfs_cleanup_one_transaction(t, fs_info);
4559
4560                 spin_lock(&fs_info->trans_lock);
4561                 if (t == fs_info->running_transaction)
4562                         fs_info->running_transaction = NULL;
4563                 list_del_init(&t->list);
4564                 spin_unlock(&fs_info->trans_lock);
4565
4566                 btrfs_put_transaction(t);
4567                 trace_btrfs_transaction_commit(fs_info->tree_root);
4568                 spin_lock(&fs_info->trans_lock);
4569         }
4570         spin_unlock(&fs_info->trans_lock);
4571         btrfs_destroy_all_ordered_extents(fs_info);
4572         btrfs_destroy_delayed_inodes(fs_info);
4573         btrfs_assert_delayed_root_empty(fs_info);
4574         btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4575         btrfs_destroy_all_delalloc_inodes(fs_info);
4576         mutex_unlock(&fs_info->transaction_kthread_mutex);
4577
4578         return 0;
4579 }
4580
4581 static const struct extent_io_ops btree_extent_io_ops = {
4582         /* mandatory callbacks */
4583         .submit_bio_hook = btree_submit_bio_hook,
4584         .readpage_end_io_hook = btree_readpage_end_io_hook,
4585 };